WorldWideScience

Sample records for anthropogenic impacts recorded

  1. Multi-Century Record of Anthropogenic Impacts on an Urbanized Mesotidal Estuary: Salem Sound, MA

    Science.gov (United States)

    Salem, MA, located north of Boston, has a rich, well-documented history dating back to settlement in 1626 CE, but the associated anthropogenic impacts on Salem Sound are poorly constrained. This project utilized dated sediment cores from the sound to assess the proxy record of an...

  2. Geochemical record of anthropogenic impacts on Lake Valencia, Venezuela

    International Nuclear Information System (INIS)

    Xu Yunping; Jaffe, Rudolf

    2009-01-01

    Bulk geochemical parameters and organic matter biomarkers in a short, high resolution gravity core (Lake Valencia, Venezuela) were examined to reconstruct anthropogenic impacts on the lake's conditions. During the period of ca. 1840-1990, sedimentary organic matter was characterized by high contents of total organic C (TOC) and total N (TN), low TOC/TN values as well as relatively enriched δ 13 C and δ 15 N signals, suggesting a primary autochthonous (algae and macrophytes) organic matter origin. The occurrence of large amounts of C 23 and C 25 relative to C 29 and C 31 n-alkanes indicated substantial inputs from submerged/floating macrophytes. The variations of C 32 15-keto-ol, tetrahymanol, diploptene, C 32 bishomohopanol, 2-methylhopane, dinosterol and isoarborinol concentrations over the investigated period record changes in the planktonic community structure, including Botryococcus braunii, bacteriavore ciliates, cyanobacteria, Eustigmatophytes and dinoflagellates. A principal shift occurred in the 1910s when cyanobacteria and dinoflagellates became more abundant at the expense and decline of B. braunii and Eustigmatophytes, likely related to increasing anthropogenic activity around the lake. A second shift (less obvious) occurred in the 1960s when cyanobacteria became the sole predominant planktonic class, coinciding with further deterioration of lake conditions

  3. Impact of the Atlantic Multidecadal Oscillation (AMO) on deriving anthropogenic warming rates from the instrumental temperature record

    NARCIS (Netherlands)

    van der Werf, G.R.; Dolman, A.J.

    2014-01-01

    The instrumental surface air temperature record has been used in several statistical studies to assess the relative role of natural and anthropogenic drivers of climate change. The results of those studies varied considerably, with anthropogenic temperature trends over the past 25-30 years suggested

  4. Attributing Changing Rates of Temperature Record Breaking to Anthropogenic Influences

    Science.gov (United States)

    King, Andrew D.

    2017-11-01

    Record-breaking temperatures attract attention from the media, so understanding how and why the rate of record breaking is changing may be useful in communicating the effects of climate change. A simple methodology designed for estimating the anthropogenic influence on rates of record breaking in a given time series is proposed here. The frequency of hot and cold record-breaking temperature occurrences is shown to be changing due to the anthropogenic influence on the climate. Using ensembles of model simulations with and without human-induced forcings, it is demonstrated that the effect of climate change on global record-breaking temperatures can be detected as far back as the 1930s. On local scales, a climate change signal is detected more recently at most locations. The anthropogenic influence on the increased occurrence of hot record-breaking temperatures is clearer than it is for the decreased occurrence of cold records. The approach proposed here could be applied in rapid attribution studies of record extremes to quantify the influence of climate change on the rate of record breaking in addition to the climate anomaly being studied. This application is demonstrated for the global temperature record of 2016 and the Central England temperature record in 2014.

  5. Assessing the observed impact of anthropogenic climate change

    OpenAIRE

    Hansen, G; Stone, D

    2016-01-01

    © 2016 Macmillan Publishers Limited. All rights reserved. Impacts of recent regional changes in climate on natural and human systems are documented across the globe, yet studies explicitly linking these observations to anthropogenic forcing of the climate are scarce. Here we provide a systematic assessment of the role of anthropogenic climate change for the range of impacts of regional climate trends reported in the IPCC's Fifth Assessment Report. We find that almost two-thirds of the impacts...

  6. Climatic changes and anthropogenic pollution as evidenced by two Alpine lacustrine records, Switzerland.

    Science.gov (United States)

    Thevenon, Florian; Poté, John; Guédron, Stéphane; Adatte, Thierry; Chiaradia, Massimo; Loizeau, Jean-Luc; Spangenberg, Jorge; Anselmetti, Flavio S.

    2010-05-01

    This study aims to provide high-resolution records of climatic changes and human impacts on two different Alpine environments: Lake Lucerne is a large (114 km2) lake located at 434 m asl in Central Switzerland, whereas Meidsee is a small (industrial history and the last millennia were sampled with a resolution of 1 cm, and investigated for organic (13δC, 15δN, C/N) and/or inorganic (δ13C, δ18O) matter contents, and elemental composition (REE compositions, trace elements, and heavy metals). Both sites exhibit 1) rapid hydrological changes related to variations in winter precipitations, and 2) increases in atmospheric pollution due to human activities. Lead enrichment factors combined to changes in lead isotopic composition (206Pb/207Pb ratio) are used to distinguish natural from anthropogenic sources. The greatest mercury and lead atmospheric emissions occurred during the twentieth century, resulting from the extensive combustion of fossil coal and petroleum in Europe. Although the highest heavy metals fluxes are synchronous with major anthropogenic changes (e.g. Roman mining, industrial revolution), proxies show that in absence of such events, the heavy metals deposition in the sedimentary records is primarily influenced by sedimentological processes linked to climate variations (i.e. runoff and erosion processes).

  7. Anthropogenic impacts on the water quality of Aba River, southeast ...

    African Journals Online (AJOL)

    Anthropogenic impacts on the water quality of Aba River, southeast Nigeria. ... Ethiopian Journal of Environmental Studies and Management ... of Aba River, southeast Nigeria was studied in four stations from November 2014 to August 2015 to identify the major anthropogenic activities and their impact on the water quality.

  8. Anthropogenic impacts on Costa Rican bat parasitism are sex specific.

    Science.gov (United States)

    Frank, Hannah K; Mendenhall, Chase D; Judson, Seth D; Daily, Gretchen C; Hadly, Elizabeth A

    2016-07-01

    While anthropogenic impacts on parasitism of wildlife are receiving growing attention, whether these impacts vary in a sex-specific manner remains little explored. Differences between the sexes in the effect of parasites, linked to anthropogenic activity, could lead to uneven sex ratios and higher population endangerment. We sampled 1108 individual bats in 18 different sites across an agricultural mosaic landscape in southern Costa Rica to investigate the relationships between anthropogenic impacts (deforestation and reductions in host species richness) and bat fly ectoparasitism of 35 species of Neotropical bats. Although female and male bat assemblages were similar across the deforestation gradient, bat fly assemblages tracked their hosts closely only on female bats. We found that in female hosts, parasite abundance per bat decreased with increasing bat species richness, while in male hosts, parasite abundance increased. We hypothesize the differences in the parasite-disturbance relationship are due to differences in roosting behavior between the sexes. We report a sex-specific parasite-disturbance relationship and argue that sex differences in anthropogenic impacts on wildlife parasitism could impact long-term population health and survival.

  9. Assessing the observed impact of anthropogenic climate change

    NARCIS (Netherlands)

    Hansen, G.E.

    2015-01-01

    Assessing the observed impact of anthropogenic climate change

    Gerrit Hansen

    Global climate change is unequivocal, and greenhouse gas emissions continue rising despite international mitigation efforts. Hence whether and to what extent the impacts of human induced

  10. Rapid Assessment of Anthropogenic Impacts of Exposed Sandy ...

    African Journals Online (AJOL)

    We applied a rapid assessment methodology to estimate the degree of human impact of exposed sandy beaches in Ghana using ghost crabs as ecological indicators. The use of size ranges of ghost crab burrows and their population density as ecological indicators to assess extent of anthropogenic impacts on beaches ...

  11. Climate Impacts From a Removal of Anthropogenic Aerosol Emissions

    Science.gov (United States)

    Samset, B. H.; Sand, M.; Smith, C. J.; Bauer, S. E.; Forster, P. M.; Fuglestvedt, J. S.; Osprey, S.; Schleussner, C.-F.

    2018-01-01

    Limiting global warming to 1.5 or 2.0°C requires strong mitigation of anthropogenic greenhouse gas (GHG) emissions. Concurrently, emissions of anthropogenic aerosols will decline, due to coemission with GHG, and measures to improve air quality. However, the combined climate effect of GHG and aerosol emissions over the industrial era is poorly constrained. Here we show the climate impacts from removing present-day anthropogenic aerosol emissions and compare them to the impacts from moderate GHG-dominated global warming. Removing aerosols induces a global mean surface heating of 0.5-1.1°C, and precipitation increase of 2.0-4.6%. Extreme weather indices also increase. We find a higher sensitivity of extreme events to aerosol reductions, per degree of surface warming, in particular over the major aerosol emission regions. Under near-term warming, we find that regional climate change will depend strongly on the balance between aerosol and GHG forcing.

  12. The importance of invertebrates when considering the impacts of anthropogenic noise.

    Science.gov (United States)

    Morley, Erica L; Jones, Gareth; Radford, Andrew N

    2014-02-07

    Anthropogenic noise is now recognized as a major global pollutant. Rapidly burgeoning research has identified impacts on individual behaviour and physiology through to community disruption. To date, however, there has been an almost exclusive focus on vertebrates. Not only does their central role in food webs and in fulfilling ecosystem services make imperative our understanding of how invertebrates are impacted by all aspects of environmental change, but also many of their inherent characteristics provide opportunities to overcome common issues with the current anthropogenic noise literature. Here, we begin by explaining why invertebrates are likely to be affected by anthropogenic noise, briefly reviewing their capacity for hearing and providing evidence that they are capable of evolutionary adaptation and behavioural plasticity in response to natural noise sources. We then discuss the importance of quantifying accurately and fully both auditory ability and noise content, emphasizing considerations of direct relevance to how invertebrates detect sounds. We showcase how studying invertebrates can help with the behavioural bias in the literature, the difficulties in drawing strong, ecologically valid conclusions and the need for studies on fitness impacts. Finally, we suggest avenues of future research using invertebrates that would advance our understanding of the impact of anthropogenic noise.

  13. First record of invasive Burmese Python oviposition and brooding inside an anthropogenic structure

    Science.gov (United States)

    Hanslowe, Emma; Falk, Bryan; Collier, Michelle A. M.; Josimovich, Jillian; Rahill, Thomas; Reed, Robert

    2016-01-01

    We discovered an adult female Python bivittatus (Burmese Python) coiled around a clutch of 25 eggs in a cement culvert in Flamingo, FL, in Everglades National Park. To our knowledge, this is the first record of an invasive Burmese Python laying eggs and brooding inside an anthropogenic structure in Florida. A 92% hatch-success rate suggests that the cement culvert provided suitable conditions for oviposition, embryonic development, and hatching. Given the plenitude of such anthropogenic structures across the landscape, available sites for oviposition and brooding may not be limiting for the invasive Burmese Python population.

  14. Anthropogenic impact on environmental filamentous fungi communities along the Mediterranean littoral.

    Science.gov (United States)

    Al-Yasiri, Mohammed Hashim; Normand, Anne-Cécile; Mauffrey, Jean-François; Ranque, Stéphane

    2017-07-01

    We hypothesised that anthropogenic influences impact the filamentous fungi community structure and that particular species or species patterns might serve as markers to characterise ecosystems. This study aimed to describe the filamentous fungi community structure in various biotopes along the Mediterranean shore that were exposed to various levels of anthropogenic influence. We sampled filamentous fungi from yellow-legged gull faecal samples at five study sites along the Mediterranean littoral in southern France. The sites were characterised by variable anthropogenic influence, ranging from building rooftops in two cities to a natural reserve. The sites also included two suburban ecoclines, one of which was exposed to sewer pollution. Filamentous fungal colonies were quantified and identified via MALDI-TOF mass spectrometry. Interestingly, we found that both fungal diversity and abundance were low in urban areas compared with suburban ecocline or environments little affected by anthropogenic influence. Furthermore, some fungal species were clearly associated with particular environments. In particular, Mucor circinelloides was associated with a natural environment with little anthropogenic impact and distant from human settlements. Whereas, Scedosporium apiospermum was associated with an ecocline polluted by sewage. Our findings indicate that particular fungal species or species combination might be used as surrogate markers of ecosystems exposed to anthropogenic pollution. © 2017 Blackwell Verlag GmbH.

  15. 443 ANTHROPOGENIC IMPACTS ON CORAL REEFS AND THEIR ...

    African Journals Online (AJOL)

    Osondu

    Data collection methodology included household questionnaire survey, key informant interviews, participant .... Anthropogenic Impacts on Coral Reefs and Their Effect on Fishery ................Mbije & ... common along Kilwa coastline, away of large markets ... questionnaire whereas content analysis was used for analyzing ...

  16. Conservation implications of anthropogenic impacts on visual communication and camouflage.

    Science.gov (United States)

    Delhey, Kaspar; Peters, Anne

    2017-02-01

    Anthropogenic environmental impacts can disrupt the sensory environment of animals and affect important processes from mate choice to predator avoidance. Currently, these effects are best understood for auditory and chemosensory modalities, and recent reviews highlight their importance for conservation. We examined how anthropogenic changes to the visual environment (ambient light, transmission, and backgrounds) affect visual communication and camouflage and considered the implications of these effects for conservation. Human changes to the visual environment can increase predation risk by affecting camouflage effectiveness, lead to maladaptive patterns of mate choice, and disrupt mutualistic interactions between pollinators and plants. Implications for conservation are particularly evident for disrupted camouflage due to its tight links with survival. The conservation importance of impaired visual communication is less documented. The effects of anthropogenic changes on visual communication and camouflage may be severe when they affect critical processes such as pollination or species recognition. However, when impaired mate choice does not lead to hybridization, the conservation consequences are less clear. We suggest that the demographic effects of human impacts on visual communication and camouflage will be particularly strong when human-induced modifications to the visual environment are evolutionarily novel (i.e., very different from natural variation); affected species and populations have low levels of intraspecific (genotypic and phenotypic) variation and behavioral, sensory, or physiological plasticity; and the processes affected are directly related to survival (camouflage), species recognition, or number of offspring produced, rather than offspring quality or attractiveness. Our findings suggest that anthropogenic effects on the visual environment may be of similar importance relative to conservation as anthropogenic effects on other sensory modalities

  17. Impact of anthropogenic aerosols on present and future climate

    International Nuclear Information System (INIS)

    Deandreis, C.

    2008-03-01

    Aerosols influence the Earth radiative budget both through their direct effect (scattering and absorption of solar radiation) and their indirect effect (impacts on cloud microphysics). The role of anthropogenic aerosol in climate change has been recognized to be significant when compared to the one of greenhouse gases. Despite many studies on this topic, the assessments of both anthropogenic aerosol radiative forcing and their impacts on meteorological variables are still very uncertain. Major reasons for these uncertainties stem from the insufficient knowledge of the emissions sources and of the processes of formation, transformation and deposition. Models used to study climate are often inadequate to study aerosol processes because of coarse spatial and temporal scales. Uncertainties due to the parameterization of the aerosol are added to the uncertainties in the representation of large scale dynamics and physical processes such as transport, hydrological cycle and radiative budget. To predict, the role of the anthropogenic aerosol impact in the future climate change, I have addressed some of these key uncertainties. In this study, I simulate interactively aerosols processes in a climate model in order to improve the estimation of their direct and indirect effects. I estimate a modification of the top of the atmosphere net flux of 60% for the present period. I also show that, for future projection, the representation of the emissions source is an other important source of error. I assess that aerosols radiative forcing differ by 40% between simulations performed with 2 different emissions inventories. These inventories are representative for a high and a low limit in term of carbonaceous aerosols emissions for the 2050 horizon. (author)

  18. Quantifying Anthropogenic Dust Emissions

    Science.gov (United States)

    Webb, Nicholas P.; Pierre, Caroline

    2018-02-01

    Anthropogenic land use and land cover change, including local environmental disturbances, moderate rates of wind-driven soil erosion and dust emission. These human-dust cycle interactions impact ecosystems and agricultural production, air quality, human health, biogeochemical cycles, and climate. While the impacts of land use activities and land management on aeolian processes can be profound, the interactions are often complex and assessments of anthropogenic dust loads at all scales remain highly uncertain. Here, we critically review the drivers of anthropogenic dust emission and current evaluation approaches. We then identify and describe opportunities to: (1) develop new conceptual frameworks and interdisciplinary approaches that draw on ecological state-and-transition models to improve the accuracy and relevance of assessments of anthropogenic dust emissions; (2) improve model fidelity and capacity for change detection to quantify anthropogenic impacts on aeolian processes; and (3) enhance field research and monitoring networks to support dust model applications to evaluate the impacts of disturbance processes on local to global-scale wind erosion and dust emissions.

  19. Anthropogenic impacts on mosquito populations in North America over the past century

    Science.gov (United States)

    Rochlin, Ilia; Faraji, Ary; Ninivaggi, Dominick V.; Barker, Christopher M.; Kilpatrick, A. Marm

    2016-12-01

    The recent emergence and spread of vector-borne viruses including Zika, chikungunya and dengue has raised concerns that climate change may cause mosquito vectors of these diseases to expand into more temperate regions. However, the long-term impact of other anthropogenic factors on mosquito abundance and distributions is less studied. Here, we show that anthropogenic chemical use (DDT; dichlorodiphenyltrichloroethane) and increasing urbanization were the strongest drivers of changes in mosquito populations over the last eight decades in areas on both coasts of North America. Mosquito populations have increased as much as tenfold, and mosquito communities have become two- to fourfold richer over the last five decades. These increases are correlated with the decay in residual environmental DDT concentrations and growing human populations, but not with temperature. These results illustrate the far-reaching impacts of multiple anthropogenic disturbances on animal communities and suggest that interactions between land use and chemical use may have unforeseen consequences on ecosystems.

  20. Complex demographic heterogeneity from anthropogenic impacts in a coastal marine predator.

    Science.gov (United States)

    Oro, Daniel; Álvarez, David; Velando, Alberto

    2018-04-01

    Environmental drivers, including anthropogenic impacts, affect vital rates of organisms. Nevertheless, the influence of these drivers may depend on the physical features of the habitat and how they affect life history strategies depending on individual covariates such as age and sex. Here, the long-term monitoring (1994-2014) of marked European Shags in eight colonies in two regions with different ecological features, such as foraging habitat, allowed us to test several biological hypotheses about how survival changes by age and sex in each region by means of multi-event capture-recapture modeling. Impacts included fishing practices and bycatch, invasive introduced carnivores and the severe Prestige oil spill. Adult survival was constant but, unexpectedly, it was different between sexes. This difference was opposite in each region. The impact of the oil spill on survival was important only for adults (especially for females) in one region and lasted a single year. Juvenile survival was time dependent but this variability was not synchronized between regions, suggesting a strong signal of regional environmental variability. Mortality due to bycatch was also different between sex, age and region. Interestingly the results showed that the size of the fishing fleet is not necessarily a good proxy for assessing the impact of bycatch mortality, which may be more dependent on the fishing grounds and the fishing gears employed in each season of the year. Anthropogenic impacts affected survival differently by age and sex, which was expected for a long-lived organism with sexual size dimorphism. Strikingly, these differences varied depending on the region, indicating that habitat heterogeneity is demographically important to how environmental variability (including anthropogenic impacts) and resilience influence population dynamics. © 2018 by the Ecological Society of America.

  1. Anthropogenic impacts on coral reefs and their effect on fishery of ...

    African Journals Online (AJOL)

    Anthropogenic impacts on coral reefs and their effect on fishery of Kilwa District, Tanzania. ... Tanzanian fishing coastal communities live on fishing activities as one their major economic activities, practicing fishing on shallow ... Overfishing,

  2. Deep-sea coral record of human impact on watershed quality in the Mississippi River Basin

    Science.gov (United States)

    Prouty, N.; Roark, B.; Koenig, A.; Batista, F. C.; Kocar, B. D.; Selby, D. S.; Mccarthy, M. D.; Mienis, F.; Ross, S. W.; Demopoulos, A. W.

    2015-12-01

    One of the greatest drivers of historical nutrient and sediment transport into the Gulf of Mexico is the unprecedented scale and intensity of land use change in the Mississippi River Basin. These landscape changes are linked to enhanced fluxes of carbon and nitrogen pollution from the Mississippi River, and persistent eutrophication and hypoxia in the northern Gulf of Mexico. Increased terrestrial runoff is one hypothesis for recent enrichment in bulk nitrogen isotope (δ15N) values, a tracer for nutrient source, observed in a Gulf of Mexico deep-sea coral record. However, unambiguously linking anthropogenic land use change to whole scale shifts in downstream Gulf of Mexico biogeochemical cycles is difficult. Here we present a novel approach, coupling a new tracer of agro-industrialization to a multiproxy record of nutrient loading in long-lived deep-sea corals collected in the Gulf of Mexico. We found that coral bulk δ15N values are enriched over the last 150-200 years relative to the last millennia, and compound-specific amino acid δ15N data indicate a strong increase in baseline δ15N of nitrate as the primary cause. Coral rhenium (Re) values are also strongly elevated during this period, suggesting that 34% of Re is of anthropogenic origin, consistent with Re enrichment in major world rivers. However, there are no pre-anthropogenic measurements of Re to confirm this observation. For the first time, an unprecedented record of natural and anthropogenic Re variability is documented through coral Re records. Taken together, these novel proxies link upstream changes in water quality to impacts on the deep-sea coral ecosystem.

  3. Deep-sea coral record of human impact on watershed quality in the Mississippi River Basin

    Science.gov (United States)

    Prouty, Nancy G.; Roark, E. Brendan; Koenig, Alan E.; Demopoulos, Amanda W. J.; Batista, Fabian C.; Kocar, Benjamin D.; Selby, David; McCarthy, Matthew D.; Mienis, Furu

    2014-01-01

    One of the greatest drivers of historical nutrient and sediment transport into the Gulf of Mexico is the unprecedented scale and intensity of land use change in the Mississippi River Basin. These landscape changes are linked to enhanced fluxes of carbon and nitrogen pollution from the Mississippi River, and persistent eutrophication and hypoxia in the northern Gulf of Mexico. Increased terrestrial runoff is one hypothesis for recent enrichment in bulk nitrogen isotope (δ15N) values, a tracer for nutrient source, observed in a Gulf of Mexico deep-sea coral record. However, unambiguously linking anthropogenic land use change to whole scale shifts in downstream Gulf of Mexico biogeochemical cycles is difficult. Here we present a novel approach, coupling a new tracer of agro-industrialization to a multiproxy record of nutrient loading in long-lived deep-sea corals collected in the Gulf of Mexico. We found that coral bulk δ15N values are enriched over the last 150–200 years relative to the last millennia, and compound-specific amino acid δ15N data indicate a strong increase in baseline δ15N of nitrate as the primary cause. Coral rhenium (Re) values are also strongly elevated during this period, suggesting that 34% of Re is of anthropogenic origin, consistent with Re enrichment in major world rivers. However, there are no pre-anthropogenic measurements of Re to confirm this observation. For the first time, an unprecedented record of natural and anthropogenic Re variability is documented through coral Re records. Taken together, these novel proxies link upstream changes in water quality to impacts on the deep-sea coral ecosystem.

  4. Coral Records of 20th Century Central Tropical Pacific SST and Salinity: Signatures of Natural and Anthropogenic Climate Change

    Science.gov (United States)

    Nurhati, I. S.; Cobb, K.; Di Lorenzo, E.

    2011-12-01

    Accurate forecasts of regional climate changes in many regions of the world largely depend on quantifying anthropogenic trends in tropical Pacific climate against its rich background of interannual to decadal-scale climate variability. However, the strong natural climate variability combined with limited instrumental climate datasets have obscured potential anthropogenic climate signals in the region. Here, we present coral-based sea-surface temperature (SST) and salinity proxy records over the 20th century (1898-1998) from the central tropical Pacific - a region sensitive to El Niño-Southern Oscillation (ENSO) whose variability strongly impacts the global climate. The SST and salinity proxy records are reconstructed via coral Sr/Ca and the oxygen isotopic composition of seawater (δ18Osw), respectively. On interannual (2-7yr) timescales, the SST proxy record tracks both eastern- and central-Pacific flavors of ENSO variability (R=0.65 and R=0.67, respectively). Interannual-scale salinity variability in our coral record highlights profound differences in precipitation and ocean advections during the two flavors of ENSO. On decadal (8yr-lowpassed) timescales, the central tropical Pacific SST and salinity proxy records are controlled by different sets of dynamics linked to the leading climate modes of North Pacific climate variability. Decadal-scale central tropical Pacific SST is highly correlated to the recently discovered North Pacific Gyre Oscillation (NPGO; R=-0.85), reflecting strong dynamical links between the central Pacific warming mode and extratropical decadal climate variability. Whereas decadal-scale salinity variations in the central tropical Pacific are significantly correlated with the Pacific Decadal Oscillation (PDO; R=0.54), providing a better understanding on low-frequency salinity variability in the region. Having characterized natural climate variability in this region, the coral record shows a +0.5°C warming trend throughout the last century

  5. Impact of Anthropogenic Factor on Urboecological Space Development

    Directory of Open Access Journals (Sweden)

    Kuprina Tamara

    2016-01-01

    Full Text Available The article discusses the issues of the impact of the anthropogenic factor on urboecological space development. The issues are considered taking into account retrospective theoretical data to show the process of Anthropoecology development as a new branch of sociological science. At present the noosphere acquires features of anthropoecosystems having a number of parameters from the endogenous and exogenous point of view. Anthropoecology has special socio-cultural significance as considers the interaction of all actors of international space. There introduced the new branch Ecopsycology as the outer world is the reflection of the inner human world. There is a definition of the sustainability of ecological system. In the practical part of the article there is an example of academic mobility as the basis of the human potential with possible transfer into the human capital supporting by survey data. In conclusion there are recommendations on management and adaptation of the anthropogenic factor (a kind of biogenesis in modern urboecological space.

  6. Anthropogenic impact and lead pollution throughout the Holocene in Southern Iberia.

    Science.gov (United States)

    García-Alix, A; Jimenez-Espejo, F J; Lozano, J A; Jiménez-Moreno, G; Martinez-Ruiz, F; García Sanjuán, L; Aranda Jiménez, G; García Alfonso, E; Ruiz-Puertas, G; Anderson, R Scott

    2013-04-01

    Present day lead pollution is an environmental hazard of global proportions. A correct determination of natural lead levels is very important in order to evaluate anthropogenic lead contributions. In this paper, the anthropogenic signature of early metallurgy in Southern Iberia during the Holocene, more specifically during the Late Prehistory, was assessed by mean of a multiproxy approach: comparison of atmospheric lead pollution, fire regimes, deforestation, mass sediment transport, and archeological data. Although the onset of metallurgy in Southern Iberia is a matter of controversy, here we show the oldest lead pollution record from Western Europe in a continuous paleoenvironmental sequence, which suggests clear lead pollution caused by metallurgical activities since ~3900 cal BP (Early Bronze Age). This lead pollution was especially important during Late Bronze and Early Iron ages. At the same time, since ~4000 cal BP, an increase in fire activity is observed in this area, which is also coupled with deforestation and increased erosion rates. This study also shows that the lead pollution record locally reached near present-day values many times in the past, suggesting intensive use and manipulation of lead during those periods in this area. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Climatic impacts of anthropogenic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Iversen, T. [Oslo Univ. (Norway)

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. Anthropogenic production of aerosols is mainly connected with combustion of fossil fuel. Measured by particulate mass, the anthropogenic sulphate production is the dominating source of aerosols in the Northern Hemisphere. Particles emitted in mechanical processes, fly ash etc. are less important because of their shorter atmospheric residence time. Possible climatological effects of anthropogenic aerosols are usually classified in two groups: direct and indirect. Direct effects are alterations of the radiative heating budget due to the aerosol particles in clear air. Indirect effects involve the interaction between particles and cloud processes. A simplified one-layer radiation model gave cooling in the most polluted mid-latitude areas and heating due to soot absorption in the Arctic. This differential trend in heating rates may have significant effects on atmospheric meridional circulations, which is important for the atmosphere as a thermodynamic system. Recently the description of sulphur chemistry in the hemispheric scale dispersion model has been improved and will be used in a model for Mie scattering and absorption

  8. Anthropogenic impact in the Mayan Lowlands of Petén, Guatemala, during the last 5500 years

    Science.gov (United States)

    Battistel, D.; Roman, Marco; Marchetti, A; Kehrwald, Natalie; Radaelli, Marta; Balliana, Eleanora; Toscano, Giuseppina; Barbante, Carlo

    2018-01-01

    Trace and rare earth elements from a Lake Peten Itzá (Guatemala) sediment core depict the geochemical dynamics affecting the lake from ~5500 y BP to the present. This timing encompasses the Preclassic (4000 to 1700 y BP) and Classic Periods (1700-1000 y BP) when thriving Maya societies extensively cleared land for agriculture. We demonstrate that this land use occurred during times of increased precipitation, where both processes resulted in increased erosion. Rare earth element ratios depict high precipitation rates between 3000 to 1000 y BP, correlating with an increase in allocthonous silicate input and low organic carbon in the “Maya Clay” stratigraphic section, where this layer is ascribed to intensive anthropogenic land use. Cesium anomalies provide additional evidence for runoff due to high rainfalls and amplified by anthropogenic impacts. The Peten Itzá core contains anomalous spikes of arsenic and mercury, where these peaks correspond to documented volcanic eruptions, and therefore are likely due to natural causes. The geochemical composition of sediments and palynological records indicate a re-growth of the forest after ~900 y BP. This increased forest vegetation coincides with the timing of the decline in Maya agriculture.

  9. Effects of anthropogenic impacts on benthic macroinvertebrates assemblages in subtropical mountain streams

    Directory of Open Access Journals (Sweden)

    Leticia M. Mesa

    2013-12-01

    Full Text Available The nature of the riparian and surrounding landscape has been modified by anthropogenic activities, which may subsequently alter the composition and functional structure of macroinvertebrate assemblages. The effect of these changes on function of benthic fauna is difficult to assess due to the scarce knowledge on functional structures in tropical streams. In this study we evaluate whether sites impacted and unimpacted by anthropogenic alterations differed in assemblage composition and density, richness and diversity of each functional feeding group. The selection of the sites was related to their distinct riparian characteristics, following the QBRy riparian quality index. Collector-gatherer was the dominant functional feeding group, comprising 91% of total density, whereas the proportion of shredders was very low, representing less of 0.5% of total density. Asemblage composition of macroinvertebrates differed between impacted and unimpacted sites. Predators were dominant in taxa number, representing about 60% of total taxa richness. In addition, the diversity and richness of collector-gatherers differed significantly between degraded and unimpacted sites, reflecting the sensitivity of this group to environmental changes and the utility to be used in the assessment of anthropogenic modifications. The results of this study reinforce the idea that riparian corridor management is critical for the distribution of macroinvertebrate assemblages as well as functional organization of lotic streams.

  10. Surveying the anthropogenic impact of the Moldau river sediments and nearby soils using magnetic susceptibility

    Czech Academy of Sciences Publication Activity Database

    Knab, M.; Hoffmann, V.; Petrovský, Eduard; Kapička, Aleš; Jordanova, N.; Appel, E.

    2006-01-01

    Roč. 49, č. 4 (2006), s. 527-535 ISSN 0943-0105 Institutional research plan: CEZ:AV0Z3012916 Keywords : Moldau river sediments * magnetic susceptibility * anthropogenic impact Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.610, year: 2006

  11. Timing anthropogenic stressors to mitigate their impact on marine ecosystem resilience

    OpenAIRE

    Wu, Paul Pao-Yen; Mengersen, Kerrie; McMahon, Kathryn; Kendrick, Gary A.; Chartrand, Kathryn; York, Paul H.; Rasheed, Michael A.; Caley, M. Julian

    2017-01-01

    Better mitigation of anthropogenic stressors on marine ecosystems is urgently needed to address increasing biodiversity losses worldwide. We explore opportunities for stressor mitigation using whole-of-systems modelling of ecological resilience, accounting for complex interactions between stressors, their timing and duration, background environmental conditions and biological processes. We then search for ecological windows, times when stressors minimally impact ecological resilience, defined...

  12. Detection and Attribution of Anthropogenic Climate Change Impacts

    Science.gov (United States)

    Rosenzweig, Cynthia; Neofotis, Peter

    2013-01-01

    Human-influenced climate change is an observed phenomenon affecting physical and biological systems across the globe. The majority of observed impacts are related to temperature changes and are located in the northern high- and midlatitudes. However, new evidence is emerging that demonstrates that impacts are related to precipitation changes as well as temperature, and that climate change is impacting systems and sectors beyond the Northern Hemisphere. In this paper, we highlight some of this new evidence-focusing on regions and sectors that the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) noted as under-represented-in the context of observed climate change impacts, direct and indirect drivers of change (including carbon dioxide itself), and methods of detection. We also present methods and studies attributing observed impacts to anthropogenic forcing. We argue that the expansion of methods of detection (in terms of a broader array of climate variables and data sources, inclusion of the major modes of climate variability, and incorporation of other drivers of change) is key to discerning the climate sensitivities of sectors and systems in regions where the impacts of climate change currently remain elusive. Attributing such changes to human forcing of the climate system, where possible, is important for development of effective mitigation and adaptation. Current challenges in documenting adaptation and the role of indigenous knowledge in detection and attribution are described.

  13. The impact of anthropogenic and biogenic emissions on surface ozone concentrations in Istanbul.

    Science.gov (United States)

    Im, Ulas; Poupkou, Anastasia; Incecik, Selahattin; Markakis, Konstantinos; Kindap, Tayfun; Unal, Alper; Melas, Dimitros; Yenigun, Orhan; Topcu, Sema; Odman, M Talat; Tayanc, Mete; Guler, Meltem

    2011-03-01

    Surface ozone concentrations at Istanbul during a summer episode in June 2008 were simulated using a high resolution and urban scale modeling system coupling MM5 and CMAQ models with a recently developed anthropogenic emission inventory for the region. Two sets of base runs were performed in order to investigate for the first time the impact of biogenic emissions on ozone concentrations in the Greater Istanbul Area (GIA). The first simulation was performed using only the anthropogenic emissions whereas the second simulation was performed using both anthropogenic and biogenic emissions. Biogenic NMVOC emissions were comparable with anthropogenic NMVOC emissions in terms of magnitude. The inclusion of biogenic emissions significantly improved the performance of the model, particularly in reproducing the low night time values as well as the temporal variation of ozone concentrations. Terpene emissions contributed significantly to the destruction of the ozone during nighttime. Biogenic NMVOCs emissions enhanced ozone concentrations in the downwind regions of GIA up to 25ppb. The VOC/NO(x) ratio almost doubled due to the addition of biogenic NMVOCs. Anthropogenic NO(x) and NMVOCs were perturbed by ±30% in another set of simulations to quantify the sensitivity of ozone concentrations to the precursor emissions in the region. The sensitivity runs, as along with the model-calculated ozone-to-reactive nitrogen ratios, pointed NO(x)-sensitive chemistry, particularly in the downwind areas. On the other hand, urban parts of the city responded more to changes in NO(x) due to very high anthropogenic emissions. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. The transformation of vegetation vertical zonality affected by anthropogenic impact in East Fennoscandia (Russia)

    Science.gov (United States)

    Sidorik, Vadim; Miulgauzen, Daria

    2017-04-01

    Ecosystems of East Fennoscandia have been affected by intensive anthropogenic influence that resulted in their significant transformation. Study of ecosystems in the framework of vegetation vertical zonality disturbance as well as its recovery allows to understand the trends of anthropogenically induced changes. The aim of the present research is the comparative analysis of vegetation vertical zonality of the two uplands in East Fennoscandia which may be considered as unaffected and affected by anthropogenic impact. The objects of key studies carried out in the north-west of Kola Peninsula in the vicinity of the Pechenganikel Mining and Metallurgical Plant are represented by ecosystems of Kalkupya (h 357 m) and Hangaslachdenvara (h 284 m) uplands. They are characterized by the similarity in sequence of altitudinal belts due to the position on the northern taiga - forest-tundra boundary. Plant communities of Kalkupya upland have no visible signs of anthropogenic influence, therefore, they can be considered as model ecosystems of the area. The sequence of altitudinal belts is the following: - up to 200 m - pine subshrub and green moss ("zonal") forest replaced by mixed pine and birch forest near the upper boundary; - 200-300 m - birch crooked subshrub wood; - above 300 m - tundra subshrub and lichen communities. Ecosystems of Hangaslachdenvara upland have been damaged by air pollution (SO2, Ni, Cu emissions) of the Pechenganikel Plant. This impact has led to plant community suppression and formation of barren lands. Besides the soil cover was significantly disturbed, especially upper horizons. Burying of soil profiles, represented by Podzols (WRB, 2015), also manifested itself in the exploited part of the area. The vegetation cover of Hangaslachdenvara upland is the following: - up to 130 m - birch and aspen subshrub and grass forest instead of pine forest ("zonal"); - 130-200 m - barren lands instead of pine forest ("zonal"); - above 200 m - barren lands instead of

  15. Disentangling natural and anthropogenic signals in lacustrine records: An example from the Ilan Plain, NE Taiwan

    Directory of Open Access Journals (Sweden)

    Jyh-Jaan Huang

    2016-11-01

    Full Text Available The impact of human activities has been increasing to a degree where humans now outcompete many natural processes. When interpreting environmental and climatic changes recorded in natural archives on historical time scales, it is therefore important to be able to disentangle the relative contribution of natural and anthropogenic processes. Lake Meihua on the Ilan Plain in northeastern Taiwan offers a particularly suitable opportunity to test how human activities known from historical records can be recorded in lacustrine sediment. For this purpose, three cores from Lake Meihua have been studied by a multiproxy approach, providing the first decadal-resolution lacustrine records covering the past 150 years in Taiwan. Profiles of excess 210Pb, 137Cs and 239,240Pu from two short cores (MHL-09-01 and MHL-11-02 allowed a precise chronology to be established. The presence of a yellow, earthy layer with lower levels of organic material coincide with the record of land development associated with the construction of the San-Chin-Gong Temple during AD 1970-1982. Furthermore, in the lower part of the cores, the upwards increasing trend of inc/coh, TOC, TOC/TN, and grain size, coupled with the palynological data (increase of Alnus, Mallotus, Trema and herbs from the nearby core MHL-5A with radiocarbon chronology, suggest that the area surrounding the lake has been significantly affected by agricultural activities since the arrival of Chinese settlers around ~AD 1874. In sum, this study demonstrates that this suite of lacustrine sediments in northeastern Taiwan has recorded human activities in agreement with historical documents, and that different human activities will leave distinct sedimentological, geochemical, and palynological signatures in the sedimentary archives. Therefore, multiproxy reconstructions are important to capture the complex nature of human-environmental interactions. A better understanding of the weathering and erosion response to human

  16. Disentangling natural and anthropogenic signals in lacustrine records: An example from the Ilan Plain, NE Taiwan

    Science.gov (United States)

    Huang, Jyh-Jaan; Huh, Chih-An; Wei, Kuo-Yen; Löwemark, Ludvig; Lin, Shu-Fen; Liao, Wen-Hsuan; Yang, Tien-Nan; Song, Sheng-Rong; Lee, Meng-Yang; Su, Chih-Chieh; Lee, Teh-Quei

    2016-11-01

    The impact of human activities has been increasing to a degree where humans now outcompete many natural processes. When interpreting environmental and climatic changes recorded in natural archives on historical time scales, it is therefore important to be able to disentangle the relative contribution of natural and anthropogenic processes. Lake Meihua on the Ilan Plain in northeastern Taiwan offers a particularly suitable opportunity to test how human activities known from historical records can be recorded in lacustrine sediment. For this purpose, three cores from Lake Meihua have been studied by a multiproxy approach, providing the first decadal-resolution lacustrine records covering the past 150 years in Taiwan. Profiles of excess 210Pb, 137Cs and 239,240Pu from two short cores (MHL-09-01 and MHL-11-02) allowed a precise chronology to be established. The presence of a yellow, earthy layer with lower levels of organic material coincide with the record of land development associated with the construction of the San-Chin-Gong Temple during AD 1970-1982. Furthermore, in the lower part of the cores, the upwards increasing trend of inc/coh, TOC, TOC/TN, and grain size, coupled with the palynological data (increase of Alnus, Mallotus, Trema and herbs) from the nearby core MHL-5A with radiocarbon chronology, suggest that the area surrounding the lake has been significantly affected by agricultural activities since the arrival of Chinese settlers around AD 1874. In sum, this study demonstrates that this suite of lacustrine sediments in northeastern Taiwan has recorded human activities in agreement with historical documents, and that different human activities will leave distinct sedimentological, geochemical, and palynological signatures in the sedimentary archives. Therefore, multiproxy reconstructions are important to capture the complex nature of human-environmental interactions. A better understanding of the weathering and erosion response to human activities can

  17. Distinguishing between anthropogenic and climatic impacts on lake size: a modeling approach using data from Ebinur Lake in arid northwest China

    Directory of Open Access Journals (Sweden)

    Long Ma

    2014-03-01

    Full Text Available Evaluation of anthropogenic and climatic impacts on lake size variation is important for maintaining ecosystem integrity and sustaining societal development. We assumed that climate and human activity are the only drivers of lake-size variation and are independent of each other. We then evaluated anthropogenic and climatic effects on hydrological processes, using a multivariate linear model. Macro-economic data were used to describe the anthropogenic impact on lake surface area in our approach. Ebinur Lake is a shallow, closed, saline lake in arid northwest China; it has shrunk at a rapid rate over the past half century. Using our new method, we explored temporal trends of anthropogenic and climatic impacts on the lake over the past 50 years. Assessment indices indicate that the model represents observed data quite well. Compared with the reference period of 1955-1960, impacts of climate change across the catchment were generally positive with respect to lake area, except for the period from 1961 to 1970. Human activity was responsible for a reduction in lake surface area of 286.8 km2 over the last 50 years. Our approach, which uses economic variables to describe the anthropogenic impact on lake surface area, enables us to explain the lake responses to climate change and human activities quantitatively.

  18. Anthropogenic impact on diazotrophic diversity in the mangrove rhizosphere revealed by nifH pyrosequencing.

    Science.gov (United States)

    Jing, Hongmei; Xia, Xiaomin; Liu, Hongbin; Zhou, Zhi; Wu, Chen; Nagarajan, Sanjay

    2015-01-01

    Diazotrophs in the mangrove rhizosphere play a major role in providing new nitrogen to the mangrove ecosystem and their composition and activity are strongly influenced by anthropogenic activity and ecological conditions. In this study, the diversity of the diazotroph communities in the rhizosphere sediment of five tropical mangrove sites with different levels of pollution along the north and south coastline of Singapore were studied by pyrosequencing of the nifH gene. Bioinformatics analysis revealed that in all the studied locations, the diazotroph communities comprised mainly of members of the diazotrophic cluster I and cluster III. The detected cluster III diazotrophs, which were composed entirely of sulfate-reducing bacteria, were more abundant in the less polluted locations. The metabolic capacities of these diazotrophs indicate the potential for bioremediation and resiliency of the ecosystem to anthropogenic impact. In heavily polluted locations, the diazotrophic community structures were markedly different and the diversity of species was significantly reduced when compared with those in a pristine location. This, together with the increased abundance of Marinobacterium, which is a bioindicator of pollution, suggests that anthropogenic activity has a negative impact on the genetic diversity of diazotrophs in the mangrove rhizosphere.

  19. Anthropogenic Space Weather

    Science.gov (United States)

    Gombosi, T. I.; Baker, D. N.; Balogh, A.; Erickson, P. J.; Huba, J. D.; Lanzerotti, L. J.

    2017-11-01

    Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release experiments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.

  20. Natural and anthropogenic ocean noise recorded at long-term and temporary observatories

    Science.gov (United States)

    Grevemeyer, Ingo; Metz, Dirk; Watts, Anthony B.; Geissler, Wolfram

    2017-04-01

    Most people worldwide would assume that the oceans are silent. However, a number of natural phenomenon's like ocean waves, wind, lightening, ice noise, earthquakes, and submarine volcanic activity contributes to the ambient ocean noise. During their evolution, marine animals like fish and mammals have adopted in many ways to the acoustic properties of the sea. Yet in recent decades, anthropogenic and hence manmade ocean noise level has risen profoundly. Due to extreme reliance of fish and mammals on underwater sounds for basic life functions, including searching for food or mate and the absence of any mechanism to safeguard them against it, underwater noise pollution may disrupt marine life. The primary sources of low-frequency anthropogenic noise include sounds associated with shipping, military operations, oil and gas exploration and production, and even research activities. Some scientists suggest that today virtually no marine environment is without any noise pollution. Thus, all marine life forms that rely heavily on the integrity of their acoustic habitat may have to adapt to new conditions. Of greatest concern for whales are low-frequency sounds that travel long distances in the ocean. Ship propellers and motors, for instance, produce sound at low frequencies, as do natural and manmade seismic activity. These profound, loud noises reverberate in the deep ocean and can effectively mask or block vital whale communication. However, in general very little is known about the world-wide distribution of ambient ocean noise. Thus, on a global scale and considering the vast areas of the world's oceans, we know virtually nothing about noise levels in different parts of the oceans and how anthropogenic noise contributes to ambient noise. Here, we use hydrophone recordings from the UN's Comprehensive Nuclear-Test-Ban Treaty organization (CTBTO) and ocean-bottom seismometers to provide an assessment of noise in all major basins, including the Pacific, Atlantic and Indian

  1. Attributing anthropogenic impact on regional heat wave events using CAM5 model large ensemble simulations

    Science.gov (United States)

    Lo, S. H.; Chen, C. T.

    2017-12-01

    Extreme heat waves have serious impacts on society. It was argued that the anthropogenic forcing might substantially increase the risk of extreme heat wave events (e.g. over western Europe in 2003 and over Russia in 2010). However, the regional dependence of such anthropogenic impact and the sensitivity of the attributed risk to the definition of heat wave still require further studies. In our research framework, the change in the frequency and severity of a heat wave event under current conditions is calculated and compared with the probability and magnitude of the event if the effects of particular external forcing, such as due to human influence, had been absent. In our research, we use the CAM5 large ensemble simulation from the CLIVAR C20C+ Detection and Attribution project (http://portal.nersc.gov/c20c/main.html, Folland et al. 2014) to detect the heat wave events occurred in both historical all forcing run and natural forcing only run. The heat wave events are identified by partial duration series method (Huth et al., 2000). We test the sensitivity of heat wave thresholds from daily maximum temperature (Tmax) in warm season (from May to September) between 1959 and 2013. We consider the anthropogenic effect on the later period (2000-2013) when the warming due to human impact is more evident. Using Taiwan and surrounding area as our preliminary research target, We found the anthropogenic effect will increase the heat wave day per year from 30 days to 75 days and make the mean starting(ending) day for heat waves events about 15-30 days earlier(later). Using the Fraction of Attribution Risk analysis to estimate the risk of frequency of heat wave day, our results show the anthropogenic forcing very likely increase the heat wave days over Taiwan by more than 50%. Further regional differences and sensitivity of the attributed risk to the definition of heat wave will be compared and discussed.

  2. Measuring Hair Cortisol Concentrations to Assess the Effect of Anthropogenic Impacts on Wild Chimpanzees (Pan troglodytes).

    Science.gov (United States)

    Carlitz, Esther H D; Miller, Robert; Kirschbaum, Clemens; Gao, Wei; Hänni, Daniel C; van Schaik, Carel P

    2016-01-01

    Non-human primates face major environmental changes due to increased human impacts all over the world. Although some species are able to survive in certain landscapes with anthropogenic impact, their long-term viability and fitness may be decreased due to chronic stress. Here we assessed long-term stress levels through cortisol analysis in chimpanzee hair obtained from sleeping nests in northwestern Uganda, in order to estimate welfare in the context of ecotourism, forest fragmentation with human-wildlife conflicts, and illegal logging with hunting activity (albeit not of primates), compared with a control without human contact or conflict. Concerning methodological issues, season [F(2,129) = 37.4, p < 0.0001, r2 = 0.18] and the age of nests [F(2,178) = 20.3, p < 0.0001, r2 = 0.11] significantly predicted hair cortisol concentrations (HCC). With regard to effects of anthropogenic impacts, our results neither showed elevation of HCC due to ecotourism, nor due to illegal logging compared to their control groups. We did, however, find significantly increased HCC in the fragment group compared to chimpanzees living in a nearby intact forest [F(1,88) = 5.0, p = 0.03, r2 = 0.20]. In conclusion, our results suggest that hair cortisol analysis is a powerful tool that can help understanding the impact of anthropogenic disturbances on chimpanzee well-being and could be applied to other great ape species.

  3. Variability in fluvial geomorphic response to anthropogenic disturbance

    Science.gov (United States)

    Verstraeten, Gert; Broothaerts, Nils; Van Loo, Maarten; Notebaert, Bastiaan; D'Haen, Koen; Dusar, Bert; De Brue, Hanne

    2017-10-01

    Humans have greatly impacted the processes and intensities of erosion, sediment transport and storage since the introduction of agriculture. In many regions around the world, accelerated floodplain sedimentation can be related to increases in human pressure on the environment. However, the relation between the intensity of anthropogenic disturbance and the magnitude of change in fluvial sediment dynamics is not straightforward and often non-linear. Here, we review a number of case studies from contrasting environmental settings in the European loess belt, the Eastern Mediterranean mountain ranges and the eastern USA. Detailed field-based sediment archive studies and sediment budgets covering time periods ranging from 200 to over 5000 year, as well as the use of pollen and sediment provenance techniques, show that no overarching concept of changes in floodplain sedimentation following anthropogenic disturbance can be established. Slope-channel (dis)connectivity controls the existence of thresholds or tipping points that need to be crossed before significant changes in downstream sediment dynamics are recorded following human impact. This coupling can be related to characteristics of human pressure such as its duration, intensity and spatial patterns, but also to the geomorphic and tectonic setting. Furthermore, internal feedback mechanisms, such as those between erosion and soil thickness, further complicate the story. All these factors controlling the propagation of sediment from eroding hillslopes to river channels vary between regions. Hence, only unique patterns of fluvial geomorphic response can be identified. As a result, unravelling the human impact from current-day sediment archives and predicting the impact of future human disturbances on fluvial sediment dynamics remain a major challenge. This has important implications for interpreting contemporary sediment yields as well as downstream sediment records in large floodplains, deltas and the marine

  4. Measuring Hair Cortisol Concentrations to Assess the Effect of Anthropogenic Impacts on Wild Chimpanzees (Pan troglodytes.

    Directory of Open Access Journals (Sweden)

    Esther H D Carlitz

    Full Text Available Non-human primates face major environmental changes due to increased human impacts all over the world. Although some species are able to survive in certain landscapes with anthropogenic impact, their long-term viability and fitness may be decreased due to chronic stress. Here we assessed long-term stress levels through cortisol analysis in chimpanzee hair obtained from sleeping nests in northwestern Uganda, in order to estimate welfare in the context of ecotourism, forest fragmentation with human-wildlife conflicts, and illegal logging with hunting activity (albeit not of primates, compared with a control without human contact or conflict. Concerning methodological issues, season [F(2,129 = 37.4, p < 0.0001, r2 = 0.18] and the age of nests [F(2,178 = 20.3, p < 0.0001, r2 = 0.11] significantly predicted hair cortisol concentrations (HCC. With regard to effects of anthropogenic impacts, our results neither showed elevation of HCC due to ecotourism, nor due to illegal logging compared to their control groups. We did, however, find significantly increased HCC in the fragment group compared to chimpanzees living in a nearby intact forest [F(1,88 = 5.0, p = 0.03, r2 = 0.20]. In conclusion, our results suggest that hair cortisol analysis is a powerful tool that can help understanding the impact of anthropogenic disturbances on chimpanzee well-being and could be applied to other great ape species.

  5. Long-term Records of Trace Metal Elements in Core Sediments: Anthropogenic Impacts in The Eure River Watershed

    Science.gov (United States)

    Gardes, T.; Debret, M.; Copard, Y.; Patault, E.; Deloffre, J.; Marcotte, S.; Develle, A. L.; Sabatier, P.; Chaumillon, E.; Coulombier, T.; Revillon, S.; Nizou, J.; Laberdesque, Y.; Koltalo, F.

    2017-12-01

    The Martot Dam is located in the Eure River Watershed (Normandy, France), few hundred meters upstream the Eure-Seine Rivers confluence. In the context of the European Water Framework Directive (2000/60/EC), the French Authorities planned to remove this dam in 2017. Nevertheless, impacts of the removal remain poorly studied. Classically, dam blocked sedimentary transfers downstream, but here, sediments are not blocked behind the dam but stored three hundred meters upstream in a hydraulic annex, called the Martot Pond. Furthermore, this pond is submitted to the tidal flow from the Seine Estuary despite the Martot Dam. The aim of the study is to evaluate the dam removal impacts on sedimentary transfers and re-suspension of contaminated sediments stored in the Martot Pond and the Eure River's channel. Concerning past transfers and sediments accumulation in the Eure River Watershed, sedimentary archives have been cored, before dam removal, at the Martot Pond and the Les Damps Pond (located 10km upstream the latter). Dating of sedimentary cores for both ponds indicates a sedimentation rate around 1 cm y-1. Trace metal elements quantification showed a wide metallic contamination with highest concentrations evidenced during the 1950-1960's (As: 13-22 mg kg-1; Cd: 40-55 mg kg-1; Cr: 170-210 mg kg-1; Cu: 400-490 mg kg-1; Hg: 2.3 mg kg-1; Mn: 1,280-2,200 mg kg-1; Ni: 64-75 mg kg-1; Zn: 905-990 mg kg-1) and the 1990-2000's (Cr: 95-215 mg kg-1; Ni: 100 mg kg-1; Pb: 670-855 mg kg-1). These variations of concentrations along cores can be associated with industrial past of the Eure River Watershed and sources of contamination can be identified. Thereby, Zn, Ni or Hg contamination could be associated with wastes of battery factory released in the Eure River during the economic recovery, while Pb contamination is linked to the activities of a cathode-ray tubes factory. Metals quantification in core materials highlighted anthropogenic impacts in the Eure River Watershed. These

  6. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea

    KAUST Repository

    Ziegler, Maren; Roik, Anna Krystyna; Porter, Adam; Zubier, Khalid; Mudarris, Mohammed S.; Ormond, Rupert; Voolstra, Christian R.

    2016-01-01

    Coral-associated bacteria play an increasingly recognized part in coral health. We investigated the effect of local anthropogenic impacts on coral microbial communities on reefs near Jeddah, the largest city on the Saudi Arabian coast of the central Red Sea. We analyzed the bacterial community structure of water and corals (Pocillopora verrucosa and Acropora hemprichii) at sites that were relatively unimpacted, exposed to sedimentation & local sewage, or in the discharge area of municipal wastewaters. Coral microbial communities were significantly different at impacted sites: in both corals the main symbiotic taxon decreased in abundance. In contrast, opportunistic bacterial families, such as e.g. Vibrionaceae and Rhodobacteraceae, were more abundant in corals at impacted sites. In conclusion, microbial community response revealed a measurable footprint of anthropogenic impacts to coral ecosystems close to Jeddah, even though the corals appeared visually healthy.

  7. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea

    KAUST Repository

    Ziegler, Maren

    2016-01-04

    Coral-associated bacteria play an increasingly recognized part in coral health. We investigated the effect of local anthropogenic impacts on coral microbial communities on reefs near Jeddah, the largest city on the Saudi Arabian coast of the central Red Sea. We analyzed the bacterial community structure of water and corals (Pocillopora verrucosa and Acropora hemprichii) at sites that were relatively unimpacted, exposed to sedimentation & local sewage, or in the discharge area of municipal wastewaters. Coral microbial communities were significantly different at impacted sites: in both corals the main symbiotic taxon decreased in abundance. In contrast, opportunistic bacterial families, such as e.g. Vibrionaceae and Rhodobacteraceae, were more abundant in corals at impacted sites. In conclusion, microbial community response revealed a measurable footprint of anthropogenic impacts to coral ecosystems close to Jeddah, even though the corals appeared visually healthy.

  8. Inferring the nature of anthropogenic threats from long-term abundance records.

    Science.gov (United States)

    Shoemaker, Kevin T; Akçakaya, H Resit

    2015-02-01

    Diagnosing the processes that threaten species persistence is critical for recovery planning and risk forecasting. Dominant threats are typically inferred by experts on the basis of a patchwork of informal methods. Transparent, quantitative diagnostic tools would contribute much-needed consistency, objectivity, and rigor to the process of diagnosing anthropogenic threats. Long-term census records, available for an increasingly large and diverse set of taxa, may exhibit characteristic signatures of specific threatening processes and thereby provide information for threat diagnosis. We developed a flexible Bayesian framework for diagnosing threats on the basis of long-term census records and diverse ancillary sources of information. We tested this framework with simulated data from artificial populations subjected to varying degrees of exploitation and habitat loss and several real-world abundance time series for which threatening processes are relatively well understood: bluefin tuna (Thunnus maccoyii) and Atlantic cod (Gadus morhua) (exploitation) and Red Grouse (Lagopus lagopus scotica) and Eurasian Skylark (Alauda arvensis) (habitat loss). Our method correctly identified the process driving population decline for over 90% of time series simulated under moderate to severe threat scenarios. Successful identification of threats approached 100% for severe exploitation and habitat loss scenarios. Our method identified threats less successfully when threatening processes were weak and when populations were simultaneously affected by multiple threats. Our method selected the presumed true threat model for all real-world case studies, although results were somewhat ambiguous in the case of the Eurasian Skylark. In the latter case, incorporation of an ancillary source of information (records of land-use change) increased the weight assigned to the presumed true model from 70% to 92%, illustrating the value of the proposed framework in bringing diverse sources of

  9. Historic records of organic compounds from a high Alpine glacier: influences of biomass burning, anthropogenic emissions, and dust transport

    Directory of Open Access Journals (Sweden)

    C. Müller-Tautges

    2016-01-01

    Full Text Available Historic records of α-dicarbonyls (glyoxal, methylglyoxal, carboxylic acids (C6–C12 dicarboxylic acids, pinic acid, p-hydroxybenzoic acid, phthalic acid, 4-methylphthalic acid, and ions (oxalate, formate, calcium were determined with annual resolution in an ice core from Grenzgletscher in the southern Swiss Alps, covering the time period from 1942 to 1993. Chemical analysis of the organic compounds was conducted using ultra-high-performance liquid chromatography (UHPLC coupled to electrospray ionization high-resolution mass spectrometry (ESI-HRMS for dicarbonyls and long-chain carboxylic acids and ion chromatography for short-chain carboxylates. Long-term records of the carboxylic acids and dicarbonyls, as well as their source apportionment, are reported for western Europe. This is the first study comprising long-term trends of dicarbonyls and long-chain dicarboxylic acids (C6–C12 in Alpine precipitation. Source assignment of the organic species present in the ice core was performed using principal component analysis. Our results suggest biomass burning, anthropogenic emissions, and transport of mineral dust to be the main parameters influencing the concentration of organic compounds. Ice core records of several highly correlated compounds (e.g., p-hydroxybenzoic acid, pinic acid, pimelic, and suberic acids can be related to the forest fire history in southern Switzerland. P-hydroxybenzoic acid was found to be the best organic fire tracer in the study area, revealing the highest correlation with the burned area from fires. Historical records of methylglyoxal, phthalic acid, and dicarboxylic acids adipic acid, sebacic acid, and dodecanedioic acid are comparable with that of anthropogenic emissions of volatile organic compounds (VOCs. The small organic acids, oxalic acid and formic acid, are both highly correlated with calcium, suggesting their records to be affected by changing mineral dust transport to the drilling site.

  10. Viscosity effects and anthropogenic impact on thermohaline flow in the Schleswig-Holstein region (Germany)

    Energy Technology Data Exchange (ETDEWEB)

    Magri, F.; Bayer, U. [GeoForschungsZentrum Potsdam (Germany)

    2008-10-23

    Coupled fluid flow, heat and mass transport (i.e. thermohaline flow) simulations have been carried out in order to study the interactions between shallow and deep brine flow in an aquifer system which includes a salt dome close to the surface. Particular attention has been given to the role of young processes (i.e., faults, Quaternary channels, and shallow salt structures) in affecting groundwater flow at basin scale. The results show that beside topography-driven flow, different convective regimes play a role for extensive solute exchange between shallow and deep aquifers. Particularly, heavy brines sink from the shallow salt dome crest into deeper aquifers. Furthermore, the young basin features strongly control discharge and recharge processes. At this state, the issues to be solved are the role of a transition zone along the salt flank, the effects of variable fluid viscosity in affecting the system dynamics and the impact of anthropogenic activities such as pumping stations on brine migration and heat transport. So far, viscosity effects are well described for rising hot plumes, while their influence on sinking brines are not studied yet. With regard to anthropogenic impact, pumping groundwater in saline environment can provide severe problems. For instance, brines up-coning can disturb wells and pollute the freshwater resources. Although the presented studies focus on the Schleswig-Holstein region (Germany), the results are of great interest for many sedimentary basins in which the described features are commonly encountered. Investigations concerning the potential impact of anthropogenic activities on the dynamics of deep and shallow groundwater processes will provide additional knowledge concerning key factors controlling the formation and evolution of saline waters within basins. At the same time, this research has an important practical use for water resource management. (orig.)

  11. Anthropogenic activities impact on atmospheric environmental quality in a gas-flaring community: application of fuzzy logic modelling concept.

    Science.gov (United States)

    Akintola, Olayiwola Akin; Sangodoyin, Abimbola Yisau; Agunbiade, Foluso Oyedotun

    2018-05-24

    We present a modelling concept for evaluating the impacts of anthropogenic activities suspected to be from gas flaring on the quality of the atmosphere using domestic roof-harvested rainwater (DRHRW) as indicator. We analysed seven metals (Cu, Cd, Pb, Zn, Fe, Ca, and Mg) and six water quality parameters (acidity, PO 4 3- , SO 4 2- , NO 3 - , Cl - , and pH). These were used as input parameters in 12 sampling points from gas-flaring environments (Port Harcourt, Nigeria) using Ibadan as reference. We formulated the results of these input parameters into membership function fuzzy matrices based on four degrees of impact: extremely high, high, medium, and low, using regulatory limits as criteria. We generated indices that classified the degree of anthropogenic activity impact on the sites from the product membership function matrices and weight matrices, with investigated (gas-flaring) environment as between medium and high impact compared to those from reference (residential) environment that was classified as between low and medium impact. Major contaminants of concern found in the harvested rainwater were Pb and Cd. There is also the urgent need to stop gas-flaring activities in Port Harcourt area in particular and Niger Delta region of Nigeria in general, so as to minimise the untold health hazard that people living in the area are currently faced with. The fuzzy methodology presented has also indicated that the water cannot safely support potable uses and should not be consumed without purification due to the impact of anthropogenic activities in the area but may be useful for other domestic purposes.

  12. Avoiding Dangerous Anthropogenic Interference with the Climate System

    Energy Technology Data Exchange (ETDEWEB)

    Keller, K. [Department of Geosciences, Penn State, PA (United States); Hall, M. [Brookings Institution, Washington, DC (United States); Kim, Seung-Rae [Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, NJ (United States); Bradford, D.F. [Department of Economics, Princeton University, Princeton, NJ (United States); Oppenheimer, M. [Woodrow Wilson School and Department of Geosciences, Princeton University, Robertson Hall 448, Princeton, NJ, 08544 (United States)

    2005-12-01

    The UN Framework Convention on Climate Change calls for the avoidance of 'dangerous anthropogenic interference with the climate system'. Among the many plausible choices, dangerous interference with the climate system may be interpreted as anthropogenic radiative forcing causing distinct and widespread climate change impacts such as a widespread demise of coral reefs or a disintegration of the West Antarctic ice sheet. The geological record and numerical models suggest that limiting global warming below critical temperature thresholds significantly reduces the likelihood of these eventualities. Here we analyze economically optimal policies that may ensure this risk-reduction. Reducing the risk of a widespread coral reef demise implies drastic reductions in greenhouse gas emissions within decades. Virtually unchecked greenhouse gas emissions to date (combined with the inertia of the coupled natural and human systems) may have already committed future societies to a widespread demise of coral reefs. Policies to reduce the risk of a West Antarctic ice sheet disintegration allow for a smoother decarbonization of the economy within a century and may well increase consumption in the long run.

  13. Sediment bacterial community structures and their predicted functions implied the impacts from natural processes and anthropogenic activities in coastal area.

    Science.gov (United States)

    Su, Zhiguo; Dai, Tianjiao; Tang, Yushi; Tao, Yile; Huang, Bei; Mu, Qinglin; Wen, Donghui

    2018-06-01

    Coastal ecosystem structures and functions are changing under natural and anthropogenic influences. In this study, surface sediment samples were collected from disturbed zone (DZ), near estuary zone (NEZ), and far estuary zone (FEZ) of Hangzhou Bay, one of the most seriously polluted bays in China. The bacterial community structures and predicted functions varied significantly in different zones. Firmicutes were found most abundantly in DZ, highlighting the impacts of anthropogenic activities. Sediment total phosphorus was most influential on the bacterial community structures. Predicted by PICRUSt analysis, DZ significantly exceeded FEZ and NEZ in the subcategory of Xenobiotics Biodegradation and Metabolism; and DZ enriched all the nitrate reduction related genes, except nrfA gene. Seawater salinity and inorganic nitrogen, respectively as the representative natural and anthropogenic factor, performed exact-oppositely in nitrogen metabolism functions. The changes of bacterial community compositions and predicted functions provide a new insight into human-induced pollution impacts on coastal ecosystem. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Analysis of climate and anthropogenic impacts on runoff in the Lower Pra River Basin of Ghana.

    Science.gov (United States)

    Awotwi, Alfred; Anornu, Geophrey Kwame; Quaye-Ballard, Jonathan; Annor, Thompson; Forkuo, Eric Kwabena

    2017-12-01

    The Lower Pra River Basin (LPRB), located in the forest zone of southern Ghana has experienced changes due to variability in precipitation and diverse anthropogenic activities. Therefore, to maintain the functions of the ecosystem for water resources management, planning and sustainable development, it is important to differentiate the impacts of precipitation variability and anthropogenic activities on stream flow changes. We investigated the variability in runoff and quantified the contributions of precipitation and anthropogenic activities on runoff at the LPRB. Analysis of the precipitation-runoff for the period 1970-2010 revealed breakpoints in 1986, 2000, 2004 and 2010 in the LPRB. The periods influenced by anthropogenic activities were categorized into three periods 1987-2000, 2001-2004 and 2005-2010, revealing a decrease in runoff during 1987-2000 and an increase in runoff during 2001-2004 and 2005-2010. Assessment of monthly, seasonal and annual runoff depicted a significant increasing trend in the runoff time series during the dry season. Generally, runoff increased at a rate of 9.98 × 10 7 m 3 yr -1 , with precipitation variability and human activities contributing 17.4% and 82.3% respectively. The dominant small scale alluvial gold mining activity significantly contributes to the net runoff variability in LPRB.

  15. DEPENDENCE OF GRASS COVER TAXONOMIC AND ECOLOGICAL STRUCTURE ON THE ANTHROPOGENIC IMPACT IN FOREST ECOSYSTEMS

    Directory of Open Access Journals (Sweden)

    N. V. Miroshnik

    2016-01-01

    Full Text Available Pine forests Chigirinsky Bor grow on fresh sod-podzolic soils formed on ancient alluvial deposits. Pine forests are characterized by stringent moisture regimes and constantly suffer from lack of productive moisture in soil.  Industrial development of Cherkasy in 60th years of ХХ century leaded air pollution and emissions of SO2, NOx, NH3, and dust. This contributed to significant negative influence on the surrounding forest ecosystems from enterprises of  Cherkassy industrial agglomeration. The grass cover in pine stands of Chigirinsky Bor transforms into xerophytic grasses and ruderal communities under the impact of negative biotic and abiotic factors. They are namely the anthropogenic violation of forest conditions, stands decline, recreational and industrial tree crowns understocking, xerophytic and heliophytic transformations of forest conditions. All the above mentioned caused strong ruderal and adventive transformation of grass cover. We registered the changes in nitrophilous plant spread regards the Cherkasy industrial agglomeration approaching which emits toxic with nitrogen-containing gases. Adventive and other non-forest species displace ferns and mosses, the ratio of ecomorfs is also changes due to increase of the quantity and development activation of annuals, xerophytic, ruderal, and nitrofil plants. The Asteraceae/Brassicaceae 3:1 ratio indicates significant anthropogenic violations in the region. We fixed the xerophytic, ruderal, and adventive transformation of grass cover in forest ecosystems. It is also founded the tendency of expanding the fraction of mesophilic plant species due to alterations in water regime (creation of Kremenchug reservoir and draining of floodplain Tyasmyn. When approaching the Cherkasy industrial agglomeration the grass cover degradation is clearly observed on the environmental profile. All this causes the forest ecosystem degradation and gradual loss of forest vegetation typical characteristics. We

  16. Diagnosing Possible Anthropogenic Contributions to Heavy Colorado Rainfall in September 2013

    Science.gov (United States)

    Pall, Pardeep; Patricola, Christina; Wehner, Michael; Stone, Dáithí; Paciorek, Christopher; Collins, William

    2015-04-01

    Unusually heavy rainfall occurred over the Colorado Front Range during early September 2013, with record or near-record totals recorded in several locations. It was associated predominantly with a stationary large-scale weather pattern (akin to the North American Monsoon, which occurs earlier in the year) that drove a strong plume of deep moisture inland from the Gulf of Mexico against the Front Range foothills. The resulting floods across the South Platte River basin impacted several thousands of people and many homes, roads, and businesses. To diagnose possible anthropogenic contributions to the odds of such heavy rainfall, we adapt an existing event attribution paradigm of modelling an 'event that was' for September 2013 and comparing it to a modelled 'event that might have been' for that same time but for the absence of historical anthropogenic drivers of climate. Specifically, we first perform 'event that was' simulations with the regional Weather Research and Forecasting (WRF) model at 12 km resolution over North America, driven by NCEP2 re-analysis. We then re-simulate, having adjusted the re-analysis to 'event that might have been conditions' by modifying atmospheric greenhouse gas and other pollutant concentrations, temperature, humidity, and winds, as well as sea ice coverage, and sea-surface temperatures - all according to estimates from global climate model simulations. Thus our findings are highly conditional on the driving re-analysis and adjustments therein, but the setup allows us to elucidate possible mechanisms responsible for heavy Colorado rainfall in September 2013. Our model results suggests that, given an insignificant change in the pattern of large-scale driving weather, there is an increase in atmospheric water vapour under anthropogenic climate warming leading to a substantial increase in the probability of heavy rainfall occurring over the South Platte River basin in September 2013.

  17. Evidence for sites of methylmercury formation in a flowing water system: Impact of anthropogenic barriers and water management

    Energy Technology Data Exchange (ETDEWEB)

    Pizarro-Barraza, Claudia [Department of Natural Resources and Environmental Sciences, University of Nevada-Reno, Reno, NV 89557 (United States); Gustin, Mae Sexauer, E-mail: mgustin@cabnr.unr.edu [Department of Natural Resources and Environmental Sciences, University of Nevada-Reno, Reno, NV 89557 (United States); Peacock, Mary [Department of Biology, University of Nevada-Reno, Reno, NV 89557 (United States); Miller, Matthieu [Department of Natural Resources and Environmental Sciences, University of Nevada-Reno, Reno, NV 89557 (United States)

    2014-04-01

    The Truckee River, California-Nevada, USA is impacted by mercury (Hg) contamination associated with legacy gold mining. In this work, we investigated the potential for hot-spots of methylmercury (MeHg) formation in the river. Mercury concentrations in multiple media were also used to assess the impacts of anthropogenic barriers, restoration, and water management in this flowing water ecosystem. Water samples were collected on a seasonal time step over 3 years, and analyzed for total Hg (THg) and MeHg concentrations, along with a variety of other water quality parameters. In addition, we measured THg and MeHg in sediments, THg in macroinvertebrates, and THg and δ{sup 15}N and δ{sup 13}C concentrations in fish. Differences in stable isotopes and Hg concentrations in fish were applied to understand the mobility of fish in the river. Mercury concentrations of specific macroinvertebrate species were used to identify sites of MeHg production. In general, loads of Hg and nutrients in the river reach above the Reno–Sparks metropolitan area were similar to that reported for pristine systems, while within and below the city, water quality impacts were observed. Fish isotope data showed that in the city reach food resources were different than those upriver and downriver. Based on Hg and isotope data, mobility of the fish in the river is impacted by anthropogenic obstructions and water manipulation. Below the city, particle bound Hg, derived from the legacy mining, continues to be input to the Truckee River. This Hg is deposited in riparian habitats and areas of river restoration, where it is methylated and becomes available to biota. During spring, when flows were highest, MeHg produced and stored in the sediments is mobilized and transported downriver. Fish and macroinvertebrate concentrations increased downriver indicating passive uptake from water. The information presented here could be useful for those doing river restoration and water manipulation in mercury

  18. Evidence for sites of methylmercury formation in a flowing water system: Impact of anthropogenic barriers and water management

    International Nuclear Information System (INIS)

    Pizarro-Barraza, Claudia; Gustin, Mae Sexauer; Peacock, Mary; Miller, Matthieu

    2014-01-01

    The Truckee River, California-Nevada, USA is impacted by mercury (Hg) contamination associated with legacy gold mining. In this work, we investigated the potential for hot-spots of methylmercury (MeHg) formation in the river. Mercury concentrations in multiple media were also used to assess the impacts of anthropogenic barriers, restoration, and water management in this flowing water ecosystem. Water samples were collected on a seasonal time step over 3 years, and analyzed for total Hg (THg) and MeHg concentrations, along with a variety of other water quality parameters. In addition, we measured THg and MeHg in sediments, THg in macroinvertebrates, and THg and δ 15 N and δ 13 C concentrations in fish. Differences in stable isotopes and Hg concentrations in fish were applied to understand the mobility of fish in the river. Mercury concentrations of specific macroinvertebrate species were used to identify sites of MeHg production. In general, loads of Hg and nutrients in the river reach above the Reno–Sparks metropolitan area were similar to that reported for pristine systems, while within and below the city, water quality impacts were observed. Fish isotope data showed that in the city reach food resources were different than those upriver and downriver. Based on Hg and isotope data, mobility of the fish in the river is impacted by anthropogenic obstructions and water manipulation. Below the city, particle bound Hg, derived from the legacy mining, continues to be input to the Truckee River. This Hg is deposited in riparian habitats and areas of river restoration, where it is methylated and becomes available to biota. During spring, when flows were highest, MeHg produced and stored in the sediments is mobilized and transported downriver. Fish and macroinvertebrate concentrations increased downriver indicating passive uptake from water. The information presented here could be useful for those doing river restoration and water manipulation in mercury contaminated

  19. Relationship between anthropogenic impacts and bleaching-associated tissue mortality of corals in Curaçao (Netherlands Antilles)

    NARCIS (Netherlands)

    Nagelkerken, I.

    2007-01-01

    Chronic anthropogenic impacts can have a negative effect on coral health and on coral energy budgets needed for regeneration of lesions. I therefore hypothesise that during massive bleaching events, the degree of corals showing bleaching-related tissue mortality is higher in areas subject to chronic

  20. A 500 year sediment lake record of anthropogenic and natural inputs to Windermere (English Lake District) using double-spike lead isotopes, radiochronology, and sediment microanalysis.

    Science.gov (United States)

    Miller, Helen; Croudace, Ian W; Bull, Jonathan M; Cotterill, Carol J; Dix, Justin K; Taylor, Rex N

    2014-07-01

    A high-resolution record of pollution is preserved in recent sediments from Windermere, the largest lake in the English Lake District. Data derived from X-ray core scanning (validated against wavelength dispersive X-ray fluorescence), radiochronological techniques ((210)Pb and (137)Cs) and ultrahigh precision, double-spike mass spectrometry for lead isotopes are combined to decipher the anthropogenic inputs to the lake. The sediment record suggests that while most element concentrations have been stable, there has been a significant increase in lead, zinc, and copper concentrations since the 1930s. Lead isotope down-core variations identify three major contributory sources of anthropogenic (industrial) lead, comprising gasoline lead, coal combustion lead (most likely source is coal-fired steam ships), and lead derived from Carboniferous Pb-Zn mineralization (mining activities). Periods of metal workings do not correlate with peaks in heavy metals due to the trapping efficiency of up-system lakes in the catchment. Heavy metal increases could be due to flood-induced metal inwash after the cessation of mining and the weathering of bedrock in the catchment. The combination of sediment analysis techniques used provides new insights into the pollutant depositional history of Windermere and could be similarly applied to other lake systems to determine the timing and scale of anthropogenic inputs.

  1. Impact of anthropogenic climate change on wildfire across western US forests.

    Science.gov (United States)

    Abatzoglou, John T; Williams, A Park

    2016-10-18

    Increased forest fire activity across the western continental United States (US) in recent decades has likely been enabled by a number of factors, including the legacy of fire suppression and human settlement, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western United States. Anthropogenic increases in temperature and vapor pressure deficit significantly enhanced fuel aridity across western US forests over the past several decades and, during 2000-2015, contributed to 75% more forested area experiencing high (>1 σ) fire-season fuel aridity and an average of nine additional days per year of high fire potential. Anthropogenic climate change accounted for ∼55% of observed increases in fuel aridity from 1979 to 2015 across western US forests, highlighting both anthropogenic climate change and natural climate variability as important contributors to increased wildfire potential in recent decades. We estimate that human-caused climate change contributed to an additional 4.2 million ha of forest fire area during 1984-2015, nearly doubling the forest fire area expected in its absence. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a driver of increased forest fire activity and should continue to do so while fuels are not limiting.

  2. Anthropogenic impact on diffuse trace metal accumulation in river sediments from agricultural reclamation areas with geochemical and isotopic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Wei; Ouyang, Wei, E-mail: wei@itc.nl; Hao, Fanghua; Lin, Chunye

    2015-12-01

    A better understanding of anthropogenic impact can help assess the diffuse trace metal accumulation in the agricultural environment. In this study, both river sediments and background soils were collected from a case study area in Northeast China and analyzed for total concentrations of six trace metals, four major elements and three lead isotopes. Results showed that Pb, Cd, Cu, Zn, Cr and Ni have accumulated in the river sediments after about 40 years of agricultural development, with average concentrations 1.23–1.71 times higher than local soil background values. Among them Ni, Cr and Cu were of special concern and they may pose adverse biological effects. By calculating enrichment factor (EF), it was found that the trace metal accumulation was still mainly ascribed to natural weathering processes, but anthropogenic contribution could represent up to 40.09% of total sediment content. For Pb, geochemical and isotopic approaches gave very similar anthropogenic contributions. Principal component analysis (PCA) further suggested that the anthropogenic Pb, Cu, Cr and Ni inputs were mostly related to the regional atmospheric deposition of industrial emissions and gasoline combustion, which had a strong affinity for iron oxides in the sediments. Concerning Cd, however, it mainly originated from local fertilizer applications and was controlled by sediment carbonates. - Graphical abstract: The trace metal accumulation was mainly ascribed to natural weathering processes, but anthropogenic contribution could represent up to 40.09% of total sediment content. Anthropogenic Pb, Cu, Cr and Ni mostly came from atmospheric deposition, while fertilizer application was the main anthropogenic source of Cd. - Highlights: • Trace metals have accumulated in the Naolihe sediments. • Natural weathering was still a major contributor to metal accumulation. • Anthropogenic Pb, Cu, Cr and Ni mostly came from atmospheric deposition. • Local fertilizer application was the main

  3. Early anthropogenic impact on Western Central African rainforests 2,600 y ago

    Science.gov (United States)

    Garcin, Yannick; Deschamps, Pierre; Ménot, Guillemette; de Saulieu, Geoffroy; Schefuß, Enno; Sebag, David; Dupont, Lydie M.; Oslisly, Richard; Brademann, Brian; Mbusnum, Kevin G.; Onana, Jean-Michel; Ako, Andrew A.; Epp, Laura S.; Tjallingii, Rik; Strecker, Manfred R.; Brauer, Achim; Sachse, Dirk

    2018-03-01

    A potential human footprint on Western Central African rainforests before the Common Era has become the focus of an ongoing controversy. Between 3,000 y ago and 2,000 y ago, regional pollen sequences indicate a replacement of mature rainforests by a forest–savannah mosaic including pioneer trees. Although some studies suggested an anthropogenic influence on this forest fragmentation, current interpretations based on pollen data attribute the ‘‘rainforest crisis’’ to climate change toward a drier, more seasonal climate. A rigorous test of this hypothesis, however, requires climate proxies independent of vegetation changes. Here we resolve this controversy through a continuous 10,500-y record of both vegetation and hydrological changes from Lake Barombi in Southwest Cameroon based on changes in carbon and hydrogen isotope compositions of plant waxes. δ13C-inferred vegetation changes confirm a prominent and abrupt appearance of C4 plants in the Lake Barombi catchment, at 2,600 calendar years before AD 1950 (cal y BP), followed by an equally sudden return to rainforest vegetation at 2,020 cal y BP. δD values from the same plant wax compounds, however, show no simultaneous hydrological change. Based on the combination of these data with a comprehensive regional archaeological database we provide evidence that humans triggered the rainforest fragmentation 2,600 y ago. Our findings suggest that technological developments, including agricultural practices and iron metallurgy, possibly related to the large-scale Bantu expansion, significantly impacted the ecosystems before the Common Era.

  4. Timing anthropogenic stressors to mitigate their impact on marine ecosystem resilience.

    Science.gov (United States)

    Wu, Paul Pao-Yen; Mengersen, Kerrie; McMahon, Kathryn; Kendrick, Gary A; Chartrand, Kathryn; York, Paul H; Rasheed, Michael A; Caley, M Julian

    2017-11-02

    Better mitigation of anthropogenic stressors on marine ecosystems is urgently needed to address increasing biodiversity losses worldwide. We explore opportunities for stressor mitigation using whole-of-systems modelling of ecological resilience, accounting for complex interactions between stressors, their timing and duration, background environmental conditions and biological processes. We then search for ecological windows, times when stressors minimally impact ecological resilience, defined here as risk, recovery and resistance. We show for 28 globally distributed seagrass meadows that stressor scheduling that exploits ecological windows for dredging campaigns can achieve up to a fourfold reduction in recovery time and 35% reduction in extinction risk. Although the timing and length of windows vary among sites to some degree, global trends indicate favourable windows in autumn and winter. Our results demonstrate that resilience is dynamic with respect to space, time and stressors, varying most strongly with: (i) the life history of the seagrass genus and (ii) the duration and timing of the impacting stress.

  5. A 3-D Model Analysis of The Impact of Asian Anthropogenic Emissions on the Sulfur Cycle Over the Pacific Ocean

    Science.gov (United States)

    Chin, Mian; Thornton, Donald; Bandy, Alan; Huebert, Barry; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The impact of anthropogenic activities on the SO2 and sulfate aerosol levels over the Pacific region is examined in the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model. We focus on the analysis of the data from the NASA Pacific Exploratory Missions (PEM) over the western North Pacific and the tropical Pacific. These missions include PEM-West A in September-October 1991, when the Asian outflow was at the minimum but the upper atmosphere was heavily influenced by the Pinatubo volcanic eruption, and PEM-West B in March-April 1994 when the Asian outflow was at the maximum, and PEM-Tropics A in August-September at a region relatively free of direct anthropogenic influences. Specifically, we will examine the relative importance of anthropogenic, volcanic and biogenic sources to the SO2 and sulfate concentrations over the Pacific, and quantify the processes controlling the distributions of SO2 and sulfate in both the boundary layer and the free troposphere. We will also assess the global impact of SO2 emission in Asia on the sulfate aerosol loading.

  6. Use of Anthropogenic Sea Floor Structures by Australian Fur Seals: Potential Positive Ecological Impacts of Marine Industrial Development?

    Science.gov (United States)

    Arnould, John P Y; Monk, Jacquomo; Ierodiaconou, Daniel; Hindell, Mark A; Semmens, Jayson; Hoskins, Andrew J; Costa, Daniel P; Abernathy, Kyler; Marshall, Greg J

    2015-01-01

    Human-induced changes to habitats can have deleterious effects on many species that occupy them. However, some species can adapt and even benefit from such modifications. Artificial reefs have long been used to provide habitat for invertebrate communities and promote local fish populations. With the increasing demand for energy resources within ocean systems, there has been an expansion of infrastructure in near-shore benthic environments which function as de facto artificial reefs. Little is known of their use by marine mammals. In this study, the influence of anthropogenic sea floor structures (pipelines, cable routes, wells and shipwrecks) on the foraging locations of 36 adult female Australian fur seals (Arctocephalus pusillus doriferus) was investigated. For 9 (25%) of the individuals, distance to anthropogenic sea floor structures was the most important factor in determining the location of intensive foraging activity. Whereas the influence of anthropogenic sea floor structures on foraging locations was not related to age and mass, it was positively related to flipper length/standard length (a factor which can affect manoeuvrability). A total of 26 (72%) individuals tracked with GPS were recorded spending time in the vicinity of structures (from 75% of the foraging trip duration) with pipelines and cable routes being the most frequented. No relationships were found between the amount of time spent frequenting anthropogenic structures and individual characteristics. More than a third (35%) of animals foraging near anthropogenic sea floor structures visited more than one type of structure. These results further highlight potentially beneficial ecological outcomes of marine industrial development.

  7. Use of Anthropogenic Sea Floor Structures by Australian Fur Seals: Potential Positive Ecological Impacts of Marine Industrial Development?

    Directory of Open Access Journals (Sweden)

    John P Y Arnould

    Full Text Available Human-induced changes to habitats can have deleterious effects on many species that occupy them. However, some species can adapt and even benefit from such modifications. Artificial reefs have long been used to provide habitat for invertebrate communities and promote local fish populations. With the increasing demand for energy resources within ocean systems, there has been an expansion of infrastructure in near-shore benthic environments which function as de facto artificial reefs. Little is known of their use by marine mammals. In this study, the influence of anthropogenic sea floor structures (pipelines, cable routes, wells and shipwrecks on the foraging locations of 36 adult female Australian fur seals (Arctocephalus pusillus doriferus was investigated. For 9 (25% of the individuals, distance to anthropogenic sea floor structures was the most important factor in determining the location of intensive foraging activity. Whereas the influence of anthropogenic sea floor structures on foraging locations was not related to age and mass, it was positively related to flipper length/standard length (a factor which can affect manoeuvrability. A total of 26 (72% individuals tracked with GPS were recorded spending time in the vicinity of structures (from 75% of the foraging trip duration with pipelines and cable routes being the most frequented. No relationships were found between the amount of time spent frequenting anthropogenic structures and individual characteristics. More than a third (35% of animals foraging near anthropogenic sea floor structures visited more than one type of structure. These results further highlight potentially beneficial ecological outcomes of marine industrial development.

  8. Plankton food-web functioning in anthropogenically impacted coastal waters (SW Mediterranean Sea): An ecological network analysis

    Science.gov (United States)

    Meddeb, Marouan; Grami, Boutheïna; Chaalali, Aurélie; Haraldsson, Matilda; Niquil, Nathalie; Pringault, Olivier; Sakka Hlaili, Asma

    2018-03-01

    The study is the first attempt to (i) model spring food webs in three SW Mediterranean ecosystems which are under different anthropogenic pressures and (ii) to project the consequence of this stress on their function. Linear inverse models were built using the Monte Carlo method coupled with Markov Chains to characterize the food-web status of the Lagoon, the Channel (inshore waters under high eutrophication and chemical contamination) and the Bay of Bizerte (offshore waters under less anthropogenic pressure). Ecological network analysis was used for the description of structural and functional properties of each food web and for inter-ecosystem comparisons. Our results showed that more carbon was produced by phytoplankton in the inshore waters (966-1234 mg C m-2 d-1) compared to the Bay (727 mg C m-2 d-1). The total ecosystem carbon inputs into the three food webs was supported by high primary production, which was mainly due to >10 μm algae. However, the three carbon pathways were characterized by low detritivory and a high herbivory which was mainly assigned to protozooplankton. This latter was efficient in channelling biogenic carbon. In the Lagoon and the Channel, foods webs acted almost as a multivorous structure with a tendency towards herbivorous one, whereas in the Bay the herbivorous pathway was more dominant. Ecological indices revealed that the Lagoon and the Channel food webs/systems had high total system throughput and thus were more active than the Bay. The Bay food web, which had a high relative ascendency value, was more organized and specialized. This inter-ecosystem difference could be due to the varying levels of anthropogenic impact among sites. Indeed, the low value of Finn's cycling index indicated that the three systems are disturbed, but the Lagoon and the Channel, with low average path lengths, appeared to be more stressed, as both sites have undergone higher chemical pollution and nutrient loading. This study shows that ecosystem models

  9. Modeled impact of anthropogenic land cover change on climate

    Science.gov (United States)

    Findell, K.L.; Shevliakova, E.; Milly, P.C.D.; Stouffer, R.J.

    2007-01-01

    Equilibrium experiments with the Geophysical Fluid Dynamics Laboratory's climate model are used to investigate the impact of anthropogenic land cover change on climate. Regions of altered land cover include large portions of Europe, India, eastern China, and the eastern United States. Smaller areas of change are present in various tropical regions. This study focuses on the impacts of biophysical changes associated with the land cover change (albedo, root and stomatal properties, roughness length), which is almost exclusively a conversion from forest to grassland in the model; the effects of irrigation or other water management practices and the effects of atmospheric carbon dioxide changes associated with land cover conversion are not included in these experiments. The model suggests that observed land cover changes have little or no impact on globally averaged climatic variables (e.g., 2-m air temperature is 0.008 K warmer in a simulation with 1990 land cover compared to a simulation with potential natural vegetation cover). Differences in the annual mean climatic fields analyzed did not exhibit global field significance. Within some of the regions of land cover change, however, there are relatively large changes of many surface climatic variables. These changes are highly significant locally in the annual mean and in most months of the year in eastern Europe and northern India. They can be explained mainly as direct and indirect consequences of model-prescribed increases in surface albedo, decreases in rooting depth, and changes of stomatal control that accompany deforestation. ?? 2007 American Meteorological Society.

  10. What is the impact of natural variability and aerosol-cloud interaction on the effective radiative forcing of anthropogenic aerosol?

    Science.gov (United States)

    Fiedler, S.; Stevens, B.; Mauritsen, T.

    2017-12-01

    State-of-the-art climate models have persistently shown a spread in estimates of the effective radiative forcing (ERF) associated with anthropogenic aerosol. Different reasons for the spread are known, but their relative importance is poorly understood. In this presentation we investigate the role of natural atmospheric variability, global patterns of aerosol radiative effects, and magnitudes of aerosol-cloud interaction in controlling the ERF of anthropogenic aerosol (Fiedler et al., 2017). We use the Earth system model MPI-ESM1.2 for conducting ensembles of atmosphere-only simulations and calculate the shortwave ERF of anthropogenic aerosol at the top of the atmosphere. The radiative effects are induced with the new parameterisation MACv2-SP (Stevens et al., 2017) that prescribes observationally constrained anthropogenic aerosol optical properties and an associated Twomey effect. Firstly, we compare the ERF of global patterns of anthropogenic aerosol from the mid-1970s and today. Our results suggest that such a substantial pattern difference has a negligible impact on the global mean ERF, when the natural variability of the atmosphere is considered. The clouds herein efficiently mask the clear-sky contributions to the forcing and reduce the detectability of significant anthropogenic aerosol radiative effects in all-sky conditions. Secondly, we strengthen the forcing magnitude through increasing the effect of aerosol-cloud interaction by prescribing an enhanced Twomey effect. In that case, the different spatial pattern of aerosol radiative effects from the mid-1970s and today causes a moderate change (15%) in the ERF of anthropogenic aerosol in our model. This finding lets us speculate that models with strong aerosol-cloud interactions would show a stronger ERF change with anthropogenic aerosol patterns. Testing whether the anthropogenic aerosol radiative forcing is model-dependent under prescribed aerosol conditions is currently ongoing work using MACv2-SP in

  11. Anthropogenic noise compromises antipredator behaviour in European eels.

    Science.gov (United States)

    Simpson, Stephen D; Purser, Julia; Radford, Andrew N

    2015-02-01

    Increases in noise-generating human activities since the Industrial Revolution have changed the acoustic landscape of many terrestrial and aquatic ecosystems. Anthropogenic noise is now recognized as a major pollutant of international concern, and recent studies have demonstrated impacts on, for instance, hearing thresholds, communication, movement and foraging in a range of species. However, consequences for survival and reproductive success are difficult to ascertain. Using a series of laboratory-based experiments and an open-water test with the same methodology, we show that acoustic disturbance can compromise antipredator behaviour--which directly affects survival likelihood--and explore potential underlying mechanisms. Juvenile European eels (Anguilla anguilla) exposed to additional noise (playback of recordings of ships passing through harbours), rather than control conditions (playback of recordings from the same harbours without ships), performed less well in two simulated predation paradigms. Eels were 50% less likely and 25% slower to startle to an 'ambush predator' and were caught more than twice as quickly by a 'pursuit predator'. Furthermore, eels experiencing additional noise had diminished spatial performance and elevated ventilation and metabolic rates (indicators of stress) compared with control individuals. Our results suggest that acoustic disturbance could have important physiological and behavioural impacts on animals, compromising life-or-death responses. © 2014 John Wiley & Sons Ltd.

  12. Characterizing aquifer hydrogeology and anthropogenic chemical influences on groundwater near the Idaho Chemical Processing Plant, Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Fromm, J.M.

    1995-01-01

    A conceptual model of the Eastern Snake River Plain aquifer in the vicinity of monitoring well USGS-44, downgradient of the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering Laboratory (INEL), was developed by synthesis and comparison of previous work (40 years) and new investigations into local natural hydrogeological conditions and anthropogenic influences. Quantitative tests of the model, and other recommendations are suggested. The ICPP recovered fissionable uranium from spent nuclear fuel rods and disposed of waste fluids by release to the regional aquifer and lithosphere. Environmental impacts were assessed by a monitoring well network. The conceptual model identifies multiple, highly variable, interacting, and transient components, including INEL facilities multiple operations and liquid waste handling, systems; the anisotropic, in homogeneous aquifer; the network of monitoring and production wells, and the intermittent flow of the Big Lost River. Pre anthropogenic natural conditions and early records of anthropogenic activities were sparsely or unreliably documented making reconstruction of natural conditions or early hydrologic impacts impossible or very broad characterizations

  13. Anthropogenic CO2 in the ocean

    Directory of Open Access Journals (Sweden)

    Tsung-Hung Peng

    2005-06-01

    Full Text Available The focus of this review article is on the anthropogenic CO2 taken up by the ocean. There are several methods of identifying the anthropogenic CO2 signal and quantifying its inventory in the ocean. The ?C* method is most frequently used to estimate the global distribution of anthropogenic CO2 in the ocean. Results based on analysis of the dataset obtained from the comprehensive surveys of inorganic carbon distribution in the world oceans in the 1990s are given. These surveys were jointly conducted during the World Ocean Circulation Experiment (WOCE and the Joint Global Ocean Flux Study (JGOFS. This data set consists of 9618 hydrographic stations from a total of 95 cruises, which represents the most accurate and comprehensive view of the distribution of inorganic carbon in the global ocean available today. The increase of anthropogenic CO2 in the ocean during the past few decades is also evaluated using direct comparison of results from repeat surveys and using statistical method of Multi-parameter Linear Regression (MLR. The impact of increasing oceanic anthropogenic CO2 on the calcium carbonate system in the ocean is reviewed briefly as well. Extensive studies of CaCO3 dissolution as a result of increasing anthropogenic CO2 in the ocean have revealed several distinct oceanic regions where the CaCO3 undersaturation zone has expanded.

  14. Holocene facies analysis of the sedimentary record with anthropogenic impacts in the Ria de Vigo (NW Spain)

    Science.gov (United States)

    Rubio, B.; Garcia-Gil, S.; Vilas, F.; Garcia, A.

    2004-05-01

    The Ria de Vigo constitutes the southernmost ria of the Rias Bajas. The reconnaisance studies of this ria indicate a heterogeneous distribution of both terrigenous and carbonate sediments with a major axial deposit of cohesive sediments. These fine sediments are relatively rich in organic matter, particularly in the inner part of the ria. This is the result of a progressive change in hydrodynamic conditions along the ria. The outer parts are affected by severe storms in winter and by upwelling processes in summer, whilst the inner parts have an estuarine character throughout the year. The upwelling produces a marked increase in the biological productivity in the Ria and, consequently, these sediments have typically very high contents of organic matter. In recent years, increasing interest has been shown in the levels of heavy metals in sediments of the Galician Rias. Particularly, some of these studies showed a higher concentration of heavy metals in the muddiest surficial sediments in the Ria de Vigo. However, and despite of the important human and industrial settlement in the Galician rias, knowledge about the evolution of historical contamination along the Holocene sedimentary record is scarce. In order to ascertain this evolution have been selected 8 gravity corer located along the axial part of the ria. This evaluation was focused on the muddy sediments of the axial part of the ria due to the dependence of metal levels on grain size, resulting from the association of metals with the finer particles, as it has been demonstrated by previous studies in the ria. On these sediments, the combination of geochemical, mineralogical and sedimentological data, facies interpretations (obtained from x-ray radiography), and their integration with high resolution seismic data (Uniboom and 3.5 Khz subbottom profiler) have allowed to establish the evolution of certain heavy metals (Zn, Cu and Pb) along the Holocene recent sedimentary record in the Ria de Vigo. Sediments in the

  15. Radiocarbon analysis in an Alpine ice core: record of anthropogenic and biogenic contributions to carbonaceous aerosols in the past (1650–1940

    Directory of Open Access Journals (Sweden)

    T. M. Jenk

    2006-01-01

    Full Text Available Long-term concentration records of carbonaceous particles (CP are of increasing interest in climate research due to their not yet completely understood effects on climate. Nevertheless, only poor data on their concentrations and sources before the 20th century are available. We present a first long-term record of organic carbon (OC and elemental carbon (EC concentrations – the two main fractions of CP – along with the corresponding fraction of modern carbon (fM derived from radiocarbon (14C analysis in ice. This allows a distinction and quantification of natural (biogenic and anthropogenic (fossil sources in the past. CP were extracted from an ice archive, with resulting carbon quantities in the microgram range. Analysis of 14C by accelerator mass spectrometry (AMS was therefore highly demanding. We analysed 33 samples of 0.4 to 1 kg ice from a 150.5 m long ice core retrieved at Fiescherhorn glacier in December 2002 (46°33'3.2" N, 08°04'0.4" E; 3900 m a.s.l.. Samples were taken from bedrock up to the firn/ice transition, covering the time period 1650–1940 and thus the transition from the pre-industrial to the industrial era. Before ~1850, OC was approaching a purely biogenic origin with a mean concentration of 24 μg kg−1 and a standard deviation of 7 μg kg−1. In 1940, OC concentration was about a factor of 3 higher than this biogenic background, almost half of it originating from anthropogenic sources, i.e. from combustion of fossil fuels. The biogenic EC concentration was nearly constant over the examined time period with 6 μg kg−1 and a standard deviation of 1 μg kg−1. In 1940, the additional anthropogenic input of atmospheric EC was about 50 μg kg−1.

  16. Modelling of anthropogenic and natural climate changes

    Energy Technology Data Exchange (ETDEWEB)

    Grassl, H; Mikolajewicz, U; Bakan, S [Max Planck Institute of Meteorology, Hamburg (Germany)

    1993-06-01

    The delay of anthropogenic climate change caused by oceans and other slowly reacting climate system components forces us to numerical modeling as the basis of decisions. For three three-dimensional numerical examples, namely transient coupled ocean-atmosphere models for the additional greenhouse effect, internal ocean-atmosphere variability, and disturbance by soot particles from burning oil wells, the present-day status is described. From all anthropogenic impacts on the radiative balance, the contribution from trace gases is the most important.

  17. Human threats to sandy beaches: A meta-analysis of ghost crabs illustrates global anthropogenic impacts.

    Science.gov (United States)

    Schlacher, Thomas A.; Lucrezi, Serena; Connolly, Rod M.; Peterson, Charles H.; Gilby, Ben L.; Maslo, Brooke; Olds, Andrew D.; Walker, Simon J.; Leon, Javier X.; Huijbers, Chantal M.; Weston, Michael A.; Turra, Alexander; Hyndes, Glenn A.; Holt, Rebecca A.; Schoeman, David S.

    2016-02-01

    Beach and coastal dune systems are increasingly subjected to a broad range of anthropogenic pressures that on many shorelines require significant conservation and mitigation interventions. But these interventions require reliable data on the severity and frequency of adverse ecological impacts. Such evidence is often obtained by measuring the response of 'indicator species'. Ghost crabs are the largest invertebrates inhabiting tropical and subtropical sandy shores and are frequently used to assess human impacts on ocean beaches. Here we present the first global meta-analysis of these impacts, and analyse the design properties and metrics of studies using ghost-crabs in their assessment. This was complemented by a gap analysis to identify thematic areas of anthropogenic pressures on sandy beach ecosystems that are under-represented in the published literature. Our meta-analysis demonstrates a broad geographic reach, encompassing studies on shores of the Pacific, Indian, and Atlantic Oceans, as well as the South China Sea. It also reveals what are, arguably, two major limitations: i) the near-universal use of proxies (i.e. burrow counts to estimate abundance) at the cost of directly measuring biological traits and bio-markers in the organism itself; and ii) descriptive or correlative study designs that rarely extend beyond a simple 'compare and contrast approach', and hence fail to identify the mechanistic cause(s) of observed contrasts. Evidence for a historically narrow range of assessed pressures (i.e., chiefly urbanisation, vehicles, beach nourishment, and recreation) is juxtaposed with rich opportunities for the broader integration of ghost crabs as a model taxon in studies of disturbance and impact assessments on ocean beaches. Tangible advances will most likely occur where ghost crabs provide foci for experiments that test specific hypotheses associated with effects of chemical, light and acoustic pollution, as well as the consequences of climate change (e

  18. Megafauna of vulnerable marine ecosystems in French mediterranean submarine canyons: Spatial distribution and anthropogenic impacts

    Science.gov (United States)

    Fabri, M.-C.; Pedel, L.; Beuck, L.; Galgani, F.; Hebbeln, D.; Freiwald, A.

    2014-06-01

    Vulnerable Marine Ecosystems (VME) in the deep Mediterranean Sea have been identified by the General Fisheries Commission for the Mediterranean as consisting of communities of Scleractinia (Lophelia pertusa and Madrepora oculata), Pennatulacea (Funiculina quadrangularis) and Alcyonacea (Isidella elongata). This paper deals with video data recorded in the heads of French Mediterranean canyons. Quantitative observations were extracted from 101 video films recorded during the MEDSEACAN cruise in 2009 (Aamp/Comex). Qualitative information was extracted from four other cruises (two Marum/Comex cruises in 2009 and 2011 and two Ifremer cruises in 1995 and 2010) to support the previous observations in the Cassidaigne and Lacaze-Duthiers canyons. All the species, fishing impacts and litter recognized in the video films recorded from 180 to 700 m depth were mapped using GIS. The abundances and distributions of benthic fishing resources (marketable fishes, Aristeidae, Octopodidae), Vulnerable Marine Species, trawling scars and litter of 17 canyons were calculated and compared, as was the open slope between the Stoechades and Toulon canyons. Funiculina quadrangularis was rarely observed, being confined for the most part to the Marti canyon and, I. elongata was abundant in three canyons (Bourcart, Marti, Petit-Rhône). These two cnidarians were encountered in relatively low abundances, and it may be that they have been swept away by repeated trawling. The Lacaze-Duthiers and Cassidaigne canyons comprised the highest densities and largest colony sizes of scleractinian cold-water corals, whose distribution was mapped in detail. These colonies were often seen to be entangled in fishing lines. The alcyonacean Callogorgia verticillata was observed to be highly abundant in the Bourcart canyon and less abundant in several other canyons. This alcyonacean was also severely affected by bottom fishing gears and is proposed as a Vulnerable Marine Species. Our studies on anthropogenic

  19. Isotopic fingerprints of anthropogenic molybdenum in lake sediments.

    Science.gov (United States)

    Chappaz, Anthony; Lyons, Timothy W; Gordon, Gwyneth W; Anbar, Ariel D

    2012-10-16

    We measured the molybdenum isotope compositions (δ(98)Mo) of well-dated sediment cores from two lakes in eastern Canada in an effort to distinguish between natural and anthropogenic contributions to these freshwater aquatic systems. Previously, Chappaz et al. (1) ascribed pronounced 20th-century Mo concentration enrichments in these lakes to anthropogenic inputs. δ(98)Mo values in the deeper sediments (reflecting predominantly natural Mo sources) differ dramatically between the two lakes: -0.32 ± 0.17‰ for oxic Lake Tantare and +0.64 ± 0.09‰ for anoxic Lake Vose. Sediment layers previously identified as enriched in anthropogenic Mo, however, reveal significant δ(98)Mo shifts of ± 0.3‰, resulting in isotopically heavier values of +0.05 ± 0.18‰ in Lake Tantare and lighter values of +0.31 ± 0.03‰ in Lake Vose. We argue that anthropogenic Mo modifies the isotopic composition of the recent sediments, and we determine δ(98)Mo(anthropogenic) values of 0.1 ± 0.1‰ (Lake Vose) and 0.2 ± 0.2‰ (Lake Tantare). These calculated inputs are consistent with the δ(98)Mo of molybdenite (MoS(2)) likely delivered to the lakes via smelting of porphyry copper deposits (Lake Vose) or through combustion of coal and oil also containing Mo (Lake Tantare). Our results confirm the utility of Mo isotopes as a promising fingerprint of human impacts and perhaps the specific sources of contamination. Importantly, the magnitudes of the anthropogenic inputs are large enough, relative to the natural Mo cycles in each lake, to have an impact on the microbiological communities.

  20. Modeling Anthropogenic Impact on Sediment Balance and Relative Sea-Level Rise in Contemporary and Future Deltas

    Science.gov (United States)

    Tessler, Z. D.; Vorosmarty, C. J.; Overeem, I.; Syvitski, J. P.

    2017-12-01

    Modern deltas are dependent on human-mediated freshwater and sediment fluxes. Changes to these fluxes impact delta biogeophysical functioning, and affect the long-term sustainability of these landscapes for both human and natural systems. Here we present contemporary estimates of long-term mean sediment balance and relative sea-level rise across 46 global deltas. We model ongoing development and scenarios of future water resource management and hydropower infrastructure in upstream river basins to explore how changing sediment fluxes impact relative sea-level in coastal delta systems. Model results show that contemporary sediment fluxes, anthropogenic drivers of land subsidence, and sea-level rise result in relative sea-level rise rates in deltas that average 6.8 mm/year. Currently planned or under-construction dams can be expected to increase rates of relative sea-level rise on the order of 1 mm/year. Some deltas systems, including the Magdalena, Orinoco, and Indus, are highly sensitive to future impoundment of river basins, with RSLR rates increasing up to 4 mm/year in a high-hydropower-utilization scenario. Sediment fluxes may be reduced by up to 60% in the Danube and 21% in the Ganges-Brahmaputra-Megnha if all currently planned dams are constructed. Reduced sediment retention on deltas due to increased river channelization and local flood controls increases RSLR on average by nearly 2 mm/year. Long-term delta sustainability requires a more complete understanding of how geophysical and anthropogenic change impact delta geomorphology. Strategies for sustainable delta management that focus on local and regional drivers of change, especially groundwater and hydrocarbon extraction and upstream dam construction, can be highly impactful even in the context of global climate-induced sea-level rise.

  1. Characterizing the Status (Disturbed, Hybrid or Novel) of Swamp Forest Fragments in a Caribbean Ramsar Wetland: The Impact of Anthropogenic Degradation and Invasive Plant Species.

    Science.gov (United States)

    Prospere, Kurt; McLaren, Kurt P; Wilson, Byron

    2016-10-01

    The last remaining Amazonian-type swamp forest fragments in Black River Lower Morass, Jamaica, have been subjected to a myriad of anthropogenic disturbances, compounded by the establishment and spread of several invasive plant species. We established 44 permanent sample plots (covering 3.92 ha) across 10 of these swamp forest fragments and sampled all non-woody plants and all trees ≥2 cm DBH found in the plots. These data were used to (1) identify thresholds of hybridity and novelty, (2) derive several diversity and structural descriptors used to characterize the swamp forest fragments and (3) identify possible indicators of anthropogenic degradation. These were incorporated into a framework and used to determine the status of the swamp forest fragments so that appropriate management and conservation measures can be implemented. We recorded 43 woody plant species (9 endemic, 28 native and 4 non-native) and 21 non-tree species. The composition and structure of all the patches differed significantly due to the impact of the herbaceous invasive plant Alpinia allughas, the presence and diversity of other non-native plants, and differing intensities of anthropogenic disturbance (e.g., burning, cutting and harvesting of non-timber forest products). We ranked forest patches along a continuum representing deviations from a historical proxy (least disturbed) swamp forest to those with dramatically altered structural and floristic attributes (=novel swamp forests). Only one fragment overrun with A. allughas was classified as novel. If effective conservation and management does not come to the BRLM, the remaining swamp forest fragments appear doomed to further degradation and will soon disappear altogether.

  2. Impact of biogenic emission uncertainties on the simulated response of ozone and fine particulate matter to anthropogenic emission reductions.

    Science.gov (United States)

    Hogrefe, Christian; Isukapalli, Sastry S; Tang, Xiaogang; Georgopoulos, Panos G; He, Shan; Zalewsky, Eric E; Hao, Winston; Ku, Jia-Yeong; Key, Tonalee; Sistla, Gopal

    2011-01-01

    The role of emissions of volatile organic compounds and nitric oxide from biogenic sources is becoming increasingly important in regulatory air quality modeling as levels of anthropogenic emissions continue to decrease and stricter health-based air quality standards are being adopted. However, considerable uncertainties still exist in the current estimation methodologies for biogenic emissions. The impact of these uncertainties on ozone and fine particulate matter (PM2.5) levels for the eastern United States was studied, focusing on biogenic emissions estimates from two commonly used biogenic emission models, the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the Biogenic Emissions Inventory System (BEIS). Photochemical grid modeling simulations were performed for two scenarios: one reflecting present day conditions and the other reflecting a hypothetical future year with reductions in emissions of anthropogenic oxides of nitrogen (NOx). For ozone, the use of MEGAN emissions resulted in a higher ozone response to hypothetical anthropogenic NOx emission reductions compared with BEIS. Applying the current U.S. Environmental Protection Agency guidance on regulatory air quality modeling in conjunction with typical maximum ozone concentrations, the differences in estimated future year ozone design values (DVF) stemming from differences in biogenic emissions estimates were on the order of 4 parts per billion (ppb), corresponding to approximately 5% of the daily maximum 8-hr ozone National Ambient Air Quality Standard (NAAQS) of 75 ppb. For PM2.5, the differences were 0.1-0.25 microg/m3 in the summer total organic mass component of DVFs, corresponding to approximately 1-2% of the value of the annual PM2.5 NAAQS of 15 microg/m3. Spatial variations in the ozone and PM2.5 differences also reveal that the impacts of different biogenic emission estimates on ozone and PM2.5 levels are dependent on ambient levels of anthropogenic emissions.

  3. Late Eocene impact events recorded in deep-sea sediments

    Science.gov (United States)

    Glass, B. P.

    1988-01-01

    Raup and Sepkoski proposed that mass extinctions have occurred every 26 Myr during the last 250 Myr. In order to explain this 26 Myr periodicity, it was proposed that the mass extinctions were caused by periodic increases in cometary impacts. One method to test this hypothesis is to determine if there were periodic increases in impact events (based on crater ages) that correlate with mass extinctions. A way to test the hypothesis that mass extinctions were caused by periodic increases in impact cratering is to look for evidence of impact events in deep-sea deposits. This method allows direct observation of the temporal relationship between impact events and extinctions as recorded in the sedimentary record. There is evidence in the deep-sea record for two (possibly three) impact events in the late Eocene. The younger event, represented by the North American microtektite layer, is not associated with an Ir anomaly. The older event, defined by the cpx spherule layer, is associated with an Ir anomaly. However, neither of the two impact events recorded in late Eocene deposits appears to be associated with an unusual number of extinctions. Thus there is little evidence in the deep-sea record for an impact-related mass extinction in the late Eocene.

  4. Anthropogenic phosphorus (P) inputs to a river basin and their impacts on P fluxes along its upstream-downstream continuum

    Science.gov (United States)

    Zhang, Wangshou; Swaney, Dennis; Hong, Bongghi; Howarth, Robert

    2017-04-01

    Phosphorus (P) originating from anthropogenic sources as a pollutant of surface waters has been an environmental issue for decades because of the well-known role of P in eutrophication. Human activities, such as food production and rapid urbanization, have been linked to increased P inputs which are often accompanied by corresponding increases in riverine P export. However, uneven distributions of anthropogenic P inputs along watersheds from the headwaters to downstream reaches can result in significantly different contributions to the riverine P fluxes of a receiving water body. So far, there is still very little scientific understanding of anthropogenic P inputs and their impacts on riverine flux in river reaches along the upstream to downstream continuum. Here, we investigated P budgets in a series of nested watersheds draining into Hongze Lake of China, and developed a simple empirical function to describe the relationship between anthropogenic inputs and riverine TP fluxes. The results indicated that an average of 1.1% of anthropogenic P inputs are exported into rivers, with most of the remainder retained in the watershed landscape over the period studied. Fertilizer application was the main contributor of P loading to the lake (55% of total loads), followed by legacy P stock (30%), food and feed P inputs (12%) and non-food P inputs (4%). From 60% to 89% of the riverine TP loads generated from various locations within this basin were ultimately transported into the receiving lake of the downstream, with an average rate of 1.86 tons P km-1 retaining in the main stem of the inflowing river annually. Our results highlight that in-stream processes can significantly buffer the riverine P loading to the downstream receiving lake. An integrated P management strategy considering the influence of anthropogenic inputs and hydrological interactions is required to assess and optimize P management for protecting fresh waters.

  5. Anthropogenic heat flux estimation from space

    NARCIS (Netherlands)

    Chrysoulakis, Nektarios; Marconcini, Mattia; Gastellu-Etchegorry, Jean Philippe; Grimmond, C.S.B.; Feigenwinter, Christian; Lindberg, Fredrik; Frate, Del Fabio; Klostermann, Judith; Mitraka, Zina; Esch, Thomas; Landier, Lucas; Gabey, Andy; Parlow, Eberhard; Olofson, Frans

    2016-01-01

    H2020-Space project URBANFLUXES (URBan ANthrpogenic heat FLUX from Earth observation Satellites) investigates the potential of Copernicus Sentinels to retrieve anthropogenic heat flux, as a key component of the Urban Energy Budget (UEB). URBANFLUXES advances the current knowledge of the impacts

  6. Reconciling anthropogenic climate change with observed temperature 1998-2008.

    Science.gov (United States)

    Kaufmann, Robert K; Kauppi, Heikki; Mann, Michael L; Stock, James H

    2011-07-19

    Given the widely noted increase in the warming effects of rising greenhouse gas concentrations, it has been unclear why global surface temperatures did not rise between 1998 and 2008. We find that this hiatus in warming coincides with a period of little increase in the sum of anthropogenic and natural forcings. Declining solar insolation as part of a normal eleven-year cycle, and a cyclical change from an El Nino to a La Nina dominate our measure of anthropogenic effects because rapid growth in short-lived sulfur emissions partially offsets rising greenhouse gas concentrations. As such, we find that recent global temperature records are consistent with the existing understanding of the relationship among global surface temperature, internal variability, and radiative forcing, which includes anthropogenic factors with well known warming and cooling effects.

  7. A new record of the non-native fish species Butis koilomatodon (Bleeker 1849 (Teleostei: Eleotridae for southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Riguel Feltrin Contente

    2016-05-01

    Full Text Available This work reports the second record of the Indo-Pacific invasive mud sleeper, Butis koilomatodon, for coastal São Paulo in southeastern Brazil, and represents the southernmost record for this species in the southwestern Atlantic Ocean. The risks of a potential invasion mediated by anthropogenic impacts on the area of occurrence are also discussed.

  8. The evaluation of anthropogenic impact on the ecological stability of landscape.

    Science.gov (United States)

    Michaeli, Eva; Ivanová, Monika; Koco, Štefan

    2015-01-01

    The model area is the northern surrounding of the water reservoir Zemplinska Irava in the east of Slovakia. Selection of the examined territory and the time horizons was not random. The aim was to capture the intensity level of anthropogenic impact on the values of the coefficient of ecological stability after the construction of water reservoir, Zempifnska Irava. The contribution evaluates ecological stability of landscape in the years 1956 and 2009 by GIS technology, using two methods. The first method determines the rate of ecological stability of landscape on the basis of the significance of land cover classes in the regular network of squares (the real size of the square is 0.5 square km). The second method determines the ecological stability of landscape secondary on the basis of the man influence on the landscape. A comparison of two methods has been made, as well as interpretation of the output data (e.g., monitoring the impact of marginal land cover classes with the minimal surfaces in the grid of square at the fluctuation of the index of ecological stability, respectively, it considers the possibilities to streamline the research results using homogeneous spatial units) and it also allows to track the changes in the ecological stability of the landscape in chronological development.

  9. Anthropogenic noise alters bat activity levels and echolocation calls

    OpenAIRE

    Bunkley, Jessie P.; McClure, Christopher J.W.; Kleist, Nathan J.; Francis, Clinton D.; Barber, Jesse R.

    2015-01-01

    Negative impacts from anthropogenic noise are well documented for many wildlife taxa. Investigations of the effects of noise on bats however, have not been conducted outside of the laboratory. Bats that hunt arthropods rely on auditory information to forage. Part of this acoustic information can fall within the spectrum of anthropogenic noise, which can potentially interfere with signal reception and processing. Compressor stations associated with natural gas extraction produce broadband nois...

  10. Anthropogenic transformation of the terrestrial biosphere.

    Science.gov (United States)

    Ellis, Erle C

    2011-03-13

    Human populations and their use of land have transformed most of the terrestrial biosphere into anthropogenic biomes (anthromes), causing a variety of novel ecological patterns and processes to emerge. To assess whether human populations and their use of land have directly altered the terrestrial biosphere sufficiently to indicate that the Earth system has entered a new geological epoch, spatially explicit global estimates of human populations and their use of land were analysed across the Holocene for their potential to induce irreversible novel transformation of the terrestrial biosphere. Human alteration of the terrestrial biosphere has been significant for more than 8000 years. However, only in the past century has the majority of the terrestrial biosphere been transformed into intensively used anthromes with predominantly novel anthropogenic ecological processes. At present, even were human populations to decline substantially or use of land become far more efficient, the current global extent, duration, type and intensity of human transformation of ecosystems have already irreversibly altered the terrestrial biosphere at levels sufficient to leave an unambiguous geological record differing substantially from that of the Holocene or any prior epoch. It remains to be seen whether the anthropogenic biosphere will be sustained and continue to evolve.

  11. First evidence of agro-pastoral farming and anthropogenic impact in the Taman Peninsula, Russia

    Science.gov (United States)

    Kaniewski, David; Giaime, Matthieu; Marriner, Nick; Morhange, Christophe; Otto, Thierry; Porotov, Alexey V.; Van Campo, Elise

    2015-04-01

    Debate on the complex coevolution that has shaped interactions between forested ecosystems and humans through constantly evolving land-use practices over the past millennia has long been centered on the Mediterranean because this area is seen as the cradle for the birth and growth of agricultural activities. Here, we argue that the transition from hunting-gathering by Mesolithic foragers to the food-producing economy of Neolithic farmers was a main trigger of biological changes not only in the Mediterranean but also in the Black Sea and Azov Sea coasts through woodcutting, herding, fire and agriculture. Although the ecological erosion was clearly focused on forested ecosystems, this process seems to have fostered an increased biodiversity. We show, by focusing on the fertile coast of the Azov Sea, that (i) the first evidence of cereal cultivation and human-induced fire occurred in southern Russia 7000 years ago; (ii) the early development of agriculture was a major but discontinuous process; (iii) the coastal ecosystems were rapidly disturbed by anthropogenic activities; and (iv) the Neolithic was a critical threshold for the forested ecosystems of the coastal area. The impact of early anthropogenic pressures seems to have been largely neglected or underestimated for the period encompassing the Neolithic cultural phase.

  12. Impacts of atmospheric anthropogenic nitrogen on the open ocean

    NARCIS (Netherlands)

    Duce, R.A.; LaRoche, J.; Altieri, K.; Arrigo, K.R.; Baker, A.R.; Capone, D.G.; Cornell, S.; Dentener, F.; Galloway, J.; Ganeshram, R.S.; Geider, R.J.; Jickells, T.; Kuypers, M.M.; Langlois, R.; Liss, P.S.; Liu, S.; Middelburg, J.J.; Moore, C.M.; Nickovic, S.; Oschlies, A.; Pedersen, T.; Prospero, J.; Schlitzer, R.; Seitzinger, S.; Sorensen, L.L.; Uematsu, M.; Ulloa, O.; Voss, M.; Ward, B.; Zamora, L.

    2008-01-01

    Increasing quantities of atmospheric anthropogenic fixed nitrogen entering the open ocean could account for up to about a third of the ocean's external (nonrecycled) nitrogen supply and up to 3% of the annual new marine biological production, 0.3 petagram of carbon per year. This input could account

  13. Our fingerprint in tsunami deposits - anthropogenic markers as a new tsunami identification tool

    Science.gov (United States)

    Bellanova, P.; Schwarzbauer, J.; Reicherter, K. R.; Jaffe, B. E.; Szczucinski, W.

    2016-12-01

    Several recent geochemical studies have focused on the use of inorganic indicators to evaluate a tsunami origin of sediment in the geologic record. However, tsunami transport not only particulate sedimentary material from marine to terrestrial areas (and vice versa), but also associated organic material. Thus, tsunami deposits may be characterized by organic-geochemical parameters. Recently increased attention has been given to the use of natural organic substances (biomarkers) to identify tsunami deposits. To date no studies have been made investigating anthropogenic organic indicators in recent tsunami deposits. Anthropogenic organic markers are more sensitive and reliable markers compared to other tracers due to their specific molecular structural properties and higher source specificity. In this study we evaluate whether anthropogenic substances are useful indicators for determining whether an area has been inundated by a tsunami. We chose the Sendai Plain and Sanemoura and Oppa Bays, Japan, as study sites because the destruction of infrastructure by flooding released environmental pollutants (e.g., fuels, fats, tarmac, plastics, heavy metals, etc.) contaminating large areas of the coastal zone during the 2011 Tohoku-oki tsunami. Organic compounds from the tsunami deposits are extracted from tsunami sediment and compared with the organic signature of unaffected pre-tsunami samples using gas chromatography-mass spectrometry (GS/MS) based analyses. For the anthropogenic markers, compounds such as soil derived pesticides (DDT), source specific PAHs, halogenated aromatics from industrial sources were detected and used to observe the inland extent and the impact of the Tohoku-oki tsunami on the coastal region around Sendai.

  14. Tracing the recently increasing anthropogenic Pb inputs into the East China Sea shelf sediments using Pb isotopic analysis

    International Nuclear Information System (INIS)

    Wang, Deli; Zhao, Zhiqi; Dai, Minhan

    2014-01-01

    Highlights: • Lithogenic Pb dominated in the ECS shelf sediments. • Small but increasing anthropogenic Pb occurred in the ECS shelf sediments. • HCl-leachated Pb suggested a source from “polluted” coastal sediments. • Residual Pb was mainly contributed from the “pristine” upper Yangtze watershed. - Abstract: This study examined the Pb content and Pb isotopic composition in a sediment core taken from the East China Sea (ECS) shelf, and it was observed that since 2003 the increasing anthropogenic Pb inputs have impacted as far as the ECS shelf sediments. The ECS shelf sediments were generally characterized with low bulk Pb contents (12.5–15.0 μg/g) and relatively lithogenic Pb isotopic signatures (both HCl-leached and residual fractions). However, elevated Pb records along with lighter Pb isotopic signals have occurred in the post-2003 sediments, as a result of a small but increasing anthropogenic Pb contribution from the heavily human perturbed coastal sediments due to the sharply increasing coal consumption in mainland China since 2003

  15. Anthropogenic Phosphorus Inputs to a River Basin and Their Impacts on Phosphorus Fluxes Along Its Upstream-Downstream Continuum

    Science.gov (United States)

    Zhang, Wangshou; Swaney, Dennis P.; Hong, Bongghi; Howarth, Robert W.

    2017-12-01

    The increasing trend in riverine phosphorus (P) loads resulting from anthropogenic inputs has gained wide attention because of the well-known role of P in eutrophication. So far, however, there is still limited scientific understanding of anthropogenic P inputs and their impacts on riverine flux in river reaches along the upstream-to-downstream continuum. Here we investigated P budgets in a series of nested watersheds draining into Hongze Lake of China and developed an empirical function to describe the relationship between anthropogenic inputs and riverine P fluxes. Our results indicated that there are obvious gradients regarding P budgets in response to changes in human activities. Fertilizer application and food and feed P import was always the dominant source of P inputs in all sections, followed by nonfood P. Further interpretation using the model revealed the processes of P loading to the lake. About 2%-9% of anthropogenic P inputs are transported from the various sections into the corresponding tributaries of the river systems, depending upon local precipitation rates. Of this amount, around 41%-95% is delivered to the main stem of the Huai River after in-stream attenuation in its tributaries. Ultimately, 55%-86% of the P loads delivered to different locations of the main stem are transported into the receiving lake of the downstream, due to additional losses in the main stem. An integrated P management strategy that considers the gradients of P loss along the upstream-to-downstream continuum is required to assess and optimize P management to protect the region's freshwater resource.

  16. A long-term survey on anthropogenic impacts to the water quality of coral reefs, southern Taiwan

    International Nuclear Information System (INIS)

    Meng, P.-J.; Lee, H.-J.; Wang, J.-T.; Chen, C.-C.; Lin, H.-J.; Tew, K.S.; Hsieh, W.-J.

    2008-01-01

    Before 2001, the ecological protection area in the Kenting National Park (KTNP), southern Taiwan, was poorly described. In this study, a set of four-year data (2001-2004) of seawater qualities at 19 sampling sites around the Nanwan Bay in the KTNP was used to explore anthropogenic impacts to ecological environment, especially coral reefs. The parameters of water quality were analyzed immediately after collection. The results showed that higher values of nutrients and suspended solids were attributed to the higher run-off around Nanwan Bay. The fluxes of nutrients and suspended solids were consistently correlated to rainfall. Hence, equations were developed to calculate nutrient fluxes and suspended solids by using only rainfall data. Our results show that suspended solids and ammonia were the dominant factors leading to the drop in coral coverage. In summary, the water quality in the intertidal zone of Nanwan Bay has been degraded and required greater attention. - Suspended solids and ammonium in discharge derived from anthropogenic activities are two main factors causing drop in coral coverage

  17. A long-term survey on anthropogenic impacts to the water quality of coral reefs, southern Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Meng, P.-J. [National Museum of Marine Biology and Aquarium, Checheng, Pingtung 944, Taiwan (China); Institute of Marine Biodiversity and Evolution, National Dong Hwa University, Checheng, Pingtung 944, Taiwan (China)], E-mail: pjmeng@nmmba.gov.tw; Lee, H.-J. [Department of Marine Environmental Informatics, National Taiwan Ocean University, Keelung 20224, Taiwan (China); Wang, J.-T. [Tajen University, Pingtung 907, Taiwan (China)], E-mail: jtw@mail.tajen.edu.tw; Chen, C.-C. [Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan (China); Lin, H.-J. [Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Tew, K.S. [National Museum of Marine Biology and Aquarium, Checheng, Pingtung 944, Taiwan (China); Institute of Marine Biodiversity and Evolution, National Dong Hwa University, Checheng, Pingtung 944, Taiwan (China); Hsieh, W.-J. [National Kaohsiung First University of Science and Technology, Kaohsiung, Taiwan (China)

    2008-11-15

    Before 2001, the ecological protection area in the Kenting National Park (KTNP), southern Taiwan, was poorly described. In this study, a set of four-year data (2001-2004) of seawater qualities at 19 sampling sites around the Nanwan Bay in the KTNP was used to explore anthropogenic impacts to ecological environment, especially coral reefs. The parameters of water quality were analyzed immediately after collection. The results showed that higher values of nutrients and suspended solids were attributed to the higher run-off around Nanwan Bay. The fluxes of nutrients and suspended solids were consistently correlated to rainfall. Hence, equations were developed to calculate nutrient fluxes and suspended solids by using only rainfall data. Our results show that suspended solids and ammonia were the dominant factors leading to the drop in coral coverage. In summary, the water quality in the intertidal zone of Nanwan Bay has been degraded and required greater attention. - Suspended solids and ammonium in discharge derived from anthropogenic activities are two main factors causing drop in coral coverage.

  18. Anthropogenic impact in the Santa Maria di Leuca cold-water coral province (Mediterranean Sea): Observations and conservation straits

    Science.gov (United States)

    D'Onghia, G.; Calculli, C.; Capezzuto, F.; Carlucci, R.; Carluccio, A.; Grehan, A.; Indennidate, A.; Maiorano, P.; Mastrototaro, F.; Pollice, A.; Russo, T.; Savini, A.; Sion, L.; Tursi, A.

    2017-11-01

    The Santa Maria di Leuca (SML) cold-water coral (CWC) province is a proposed priority conservation area according to several conservation initiatives in the Mediterranean Sea. Part of it is a Fisheries Restricted Area (FRA). Anthropogenic impacts due to fishing on this FRA were investigated using a towed camera system during 2005. The geographic distribution of fishing effort in the SML CWC province was examined through an observers' program of longline and trawl fishing activities during 2009 and 2010 and Vessel Monitoring by satellite System (VMS) data from 2008 to 2013. Using the video system, it was possible to observe evidence of impacts in the FRA due to longlines, proved by remains of lines on the bottoms and/or entangled in corals, and those due to trawl nets, proved by trawl door scars on the bottom. The application of Generalized Liner Models indicates that the impacts due to longline were significantly related to a geographic site characterized by carbonate mounds while those from trawl net were significantly related to the soft bottoms, consisting of bioturbated fine-grained sediments. The presence of waste of various types was also observed in the FRA; plastic was the most widespread waste and was significantly related to a macrohabitat characterized by the presence of corals. The geographic distribution of fishing effort for each type of fishing were rather superimposed in the two years of the observers' program and six years of VMS data with a significantly greater fishing effort outside the FRA than inside this area. The trawlers generally fished on the muddy bottoms of the upper and middle slope within the SML CWC province and near and inside the northward limit of the FRA. The longliners fished mainly on the shelf in north and off the FRA. The coral by-catch was only recorded during 2009 in 26% of the trawl hauls. No coral by-catch was recorded from longlining in either year. The catches from longlining mainly consisted of Chelidonichthys lucerna

  19. Blue whales respond to anthropogenic noise.

    Directory of Open Access Journals (Sweden)

    Mariana L Melcón

    Full Text Available Anthropogenic noise may significantly impact exposed marine mammals. This work studied the vocalization response of endangered blue whales to anthropogenic noise sources in the mid-frequency range using passive acoustic monitoring in the Southern California Bight. Blue whales were less likely to produce calls when mid-frequency active sonar was present. This reduction was more pronounced when the sonar source was closer to the animal, at higher sound levels. The animals were equally likely to stop calling at any time of day, showing no diel pattern in their sensitivity to sonar. Conversely, the likelihood of whales emitting calls increased when ship sounds were nearby. Whales did not show a differential response to ship noise as a function of the time of the day either. These results demonstrate that anthropogenic noise, even at frequencies well above the blue whales' sound production range, has a strong probability of eliciting changes in vocal behavior. The long-term implications of disruption in call production to blue whale foraging and other behaviors are currently not well understood.

  20. Challenges for present and future estimates of anthropogenic carbon in the Indian Ocean

    Science.gov (United States)

    Goyet, C.; Touratier, F.

    One of the main challenges we face today is to determine the evolution of the penetration of anthropogenic CO2 into the Indian Ocean and its impacts on marine and human life. Anthropogenic CO2 reaches the ocean via air-sea interactions as well as riverine inputs. It is then stored in the ocean and follows the oceanic circulation. As the carbon dioxide from the atmosphere penetrates into the sea, it reacts with water and acidifies the ocean. Consequently, the whole marine ecosystem is perturbed, thus potentially affecting the food web, which has, in turn, a direct impact on seafood supply for humans. Naturally, this will mainly affect the growing number of people living in coastal areas. Although anthropogenic CO2 in the ocean is identical with natural CO2 and therefore cannot be detected alone, many approaches are available today to estimate it. Since most of the results of these methods are globally in agreement, here we chose one of these methods, the tracer using oxygen, total inorganic carbon, and total alkalinity (TrOCA) approach, to compute the 3-D distribution of the anthropogenic CO2 concentrations throughout the Indian Ocean. The results of this distribution clearly illustrate the contrast between the Arabian Sea and the Bay of Bengal. They further show the importance of the southern part of this ocean that carries some anthropogenic CO2 at great depths. In order to determine the future anthropogenic impacts on the Indian Ocean, it is urgent and necessary to understand the present state. As the seawater temperature increases, how and how fast will the ocean circulation change? What will the impacts on seawater properties be? Many people are living on the bordering coasts, how will they be affected?

  1. Mid- and late Holocene human impact recorded by the Coltrondo peat bog (NE Italian Alps)

    Science.gov (United States)

    Segnana, Michela; Poto, Luisa; Gabrieli, Jacopo; Martino, Matteo; Oeggl, Klaus; Barbante, Carlo

    2016-04-01

    Peat bogs are ideal archives for the study of environmental changes, whether these are natural or human induced. Indeed, receiving water and nutrients exclusively from dry and wet atmospheric depositions, they are among the most suitable matrices for palaeoenvironmental reconstruction. The present study is focused on the Eastern sector of the Italian Alps, where we sampled the Coltrondo peat bog, in the Comelico area (ca. 1800 m a.s.l.) The knowledge of the human history in this area is rather scarce: the only pieces of archaeological evidence found in this area dates back to the Mesolithic and the absence of later archaeological finds makes it difficult to reconstruct the human settlement in the valley. With the main aim to obtain information about the human settlement in that area we selected a multi-proxy approach, combining the study of biotic and abiotic sedimentary components archived in the 7900 years-peat bog record. Pollen analysis is performed along the core registering human impacts on the area from ca. 2500 cal BP, when land-use changes are well evidenced by the presence of human-related pollen and non-pollen palynomorphs (NPPs), as well as by the increase in micro-charcoal particles. Periods of increased human impact are recorded at the end of the Middle Ages and later, at the end of the 19th century. The analysis of trace elements, such as lead, is performed by means of ICP-MS technique and its enrichment factor (EF) is calculated. A first slight increase of Pb EF during Roman Times is possibly related to mining activities carried out by the Romans. Mining activities carried out in the area are registered during the Middle Ages, while the advent of the industrialization in the 20th century is marked by the highest EF values registered on the top of the core. To help and support the interpretation of geochemical data, lead isotopes ratios are also measured using ICP-MS to discriminate between natural and anthropogenic sources of lead. The 206Pb/207Pb

  2. Environmental and anthropogenic determinants of vegetation distribution across Africa

    DEFF Research Database (Denmark)

    Greve, Michelle; Lykke, Anne Mette; Overgaard, Anne Blach

    2011-01-01

    Aim  To assess the influence of natural environmental factors and historic and current anthropogenic processes as determinants of vegetation distributions at a continental scale. Location  Africa. Methods  Boosted regression trees (BRTs) were used to model the distribution of African vegetation...... types, represented by remote-sensing-based land-cover (LC) types, as a function of environmental factors. The contribution of each predictor variable to the best models and the accuracy of all models were assessed. Subsequently, to test for anthropogenic vegetation transformation, the relationship...... between the number of BRT false presences per grid cell and human impact was evaluated using hurdle models. Finally, the relative contributions of environmental, current and historic anthropogenic factors on vegetation distribution were assessed using regression-based variation partitioning. Results...

  3. The anthropogenic influence on heat and humidity in the US Midwest

    Science.gov (United States)

    Inda Diaz, H. A.; O'Brien, T. A.; Stone, D. A.

    2016-12-01

    Heatwaves, and extreme temperatures in general, have a wide range of negative impacts on society, and particularly on human health. In addition to temperature, humidity plays a key role in regulating human body temperature, with higher humidities tending to reduce the effectiveness of perspiration. There is recent theoretical and observational evidence that co-occurring extreme heat and humidity can potentially have a much more dramatic impact on human health than either extreme in isolation. There is an abundance of observational evidence indicating that anthropogenic increases in greenhouse gas (GHG) forcing have contributed to an increase in the intensity and frequency of temperature extremes on a global scale. However, aside from purely thermodynamically-driven increases in near-surface humidity, there is a paucity of similar evidence for anthropogenic impacts on humidity. Thermodynamic scaling would suggest that air masses originating from the ocean would be associated with higher specific humidity in a warmer world, and transpiration from irrigated crops could further increase humidity in warm air masses. In order to explore the role of anthropogenic GHG forcing on the co-occurrence of temperature and humidity extremes in the Midwestern United States (US), we evaluate a large ensemble of global climate model simulations with and without anthropogenic GHG forcing. In particular, we examine differences between the probability distributions of near-surface temperature, humidity, wet-bulb temperature, and the joint distribution of temperature and humidity in this ensemble. Finally, we explore augmenting this experimental framework with additional simulations to explore the role of anthropogenic changes in the land surface, and in particular irrigated crops, on co-occurring extreme heat and humidity.

  4. Central Tibetan Plateau atmospheric trace metals contamination: a 500-year record from the Puruogangri ice core

    Science.gov (United States)

    Beaudon, E.; Gabrielli, P.; Sierra Hernandez, R.; Wegner, A.; Thompson, L. G.

    2017-12-01

    Since the 1980s, Asia has experienced enormous industrial development from rapid population growth, industrialization and consequent large-scale environmental changes. The inherent generated atmospheric pollution currently contributes to half of all Earth's anthropogenic trace metals emissions. Asian trace metal aerosols, when deposited on glaciers of the surrounding mountains of the Tibetan Plateau (TP), leave a characteristic chemical fingerprint. Interpreting trace element (TE) records from glaciers implies a thorough comprehension of their provenance and temporal variability. It is then essential to discriminate the TEs' natural background components from their anthropogenic components. Here we present 500-year TE records from the Puruogangri ice core (Tibet, China) that provide a highly resolved account of the impact of past atmospheric influences, environmental processes and human activities on the central TP. A decreasing aeolian dust input to the ice cap allowed the detection of an atmospheric pollution signal. The anthropogenic pollution contribution emerges in the record since the early 1900s and increases substantially after 1935. The metallurgy (Zn, Pb and steel smelting) emission products from the former Soviet Union and especially from central Asia likely enhanced the anthropogenic deposition to the Puruogangri ice cap between 1935 and 1980, suggesting that the westerlies served as a conveyor of atmospheric pollution to central Tibet. The impact of this industrial pollution cumulated with that of the hemispheric coal and gasoline combustion which are respectively traced by Sb and Pb enrichment in the ice. The Chinese steel production accompanying the Great Leap Forward (1958-1961) and the Chinese Cultural Revolution (1966-1976) is proposed as a secondary but proximal source of Pb pollution affecting the ice cap between 1958 and 1976. The most recent decade (1980-1992) of the enrichment time series suggests that Puruogangri ice cap recorded the early

  5. Substantial nitrous oxide emissions from intertidal sediments and groundwater in anthropogenically-impacted West Falmouth Harbor, Massachusetts

    Science.gov (United States)

    Moseman-Valtierra, Serena; Kroeger, Kevin D.; Crusius, John; Baldwin, Sandy; Green, Adrian; Brooks, Thomas W.; Pugh, E.

    2015-01-01

    Large N2O emissions were observed from intertidal sediments in a coastal estuary, West Falmouth Harbor, MA, USA. Average N2O emission rates from 41 chambers during summer 2008 were 10.7 mol N2O m(-2) h(-1)±4.43 μmol N2O m(-2) h(-1) (standard error). Emissions were highest from sediments within a known wastewater plume, where a maximum N2O emission rate was 155 μmol N2O m(-2) h(-1). Intertidal N2O fluxes were positively related to porewater ammonium concentrations at 10 and 25 cm depths. In groundwater from 7 shoreline wells, dissolved N2O ranged from 488% of saturation (56 nM N2O) to more than 13000% of saturation (1529 nM N2O) and was positively related to nitrate concentrations. Fresh and brackish porewater underlying 14 chambers was also supersaturated in N2O, ranging from 2980% to 13175% of saturation. These observations support a relationship between anthropogenic nutrient loading and N2O emissions in West Falmouth Harbor, with both groundwater sources and also local N2O production within nutrient-rich, intertidal sediments in the groundwater seepage face. N2O emissions from intertidal "hotspot" in this harbor, together with estimated surface water emissions, constituted 2.4% of the average overall rate of nitrogen export from the watershed to the estuary. This suggests that N2O emissions factors from coastal ecosystems may be underestimated. Since anthropogenic nutrient loading affects estuaries worldwide, quantification of N2O dynamics is warranted in other anthropogenically-impacted coastal ecosystems.

  6. Substantial nitrous oxide emissions from intertidal sediments and groundwater in anthropogenically-impacted West Falmouth Harbor, Massachusetts.

    Science.gov (United States)

    Moseman-Valtierra, Serena; Kroeger, Kevin D; Crusius, John; Baldwin, Sandra; Green, Adrian; Brooks, T Wallace; Pugh, Emily

    2015-01-01

    Large N2O emissions were observed from intertidal sediments in a coastal estuary, West Falmouth Harbor, MA, USA. Average N2O emission rates from 41 chambers during summer 2008 were 10.7 mol N2O m(-2) h(-1)±4.43 μmol N2O m(-2) h(-1) (standard error). Emissions were highest from sediments within a known wastewater plume, where a maximum N2O emission rate was 155 μmol N2O m(-2) h(-1). Intertidal N2O fluxes were positively related to porewater ammonium concentrations at 10 and 25 cm depths. In groundwater from 7 shoreline wells, dissolved N2O ranged from 488% of saturation (56 nM N2O) to more than 13000% of saturation (1529 nM N2O) and was positively related to nitrate concentrations. Fresh and brackish porewater underlying 14 chambers was also supersaturated in N2O, ranging from 2980% to 13175% of saturation. These observations support a relationship between anthropogenic nutrient loading and N2O emissions in West Falmouth Harbor, with both groundwater sources and also local N2O production within nutrient-rich, intertidal sediments in the groundwater seepage face. N2O emissions from intertidal "hotspot" in this harbor, together with estimated surface water emissions, constituted 2.4% of the average overall rate of nitrogen export from the watershed to the estuary. This suggests that N2O emissions factors from coastal ecosystems may be underestimated. Since anthropogenic nutrient loading affects estuaries worldwide, quantification of N2O dynamics is warranted in other anthropogenically-impacted coastal ecosystems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The human footprint in the west: a large-scale analysis of anthropogenic impacts.

    Science.gov (United States)

    Leu, M.; Hanser, S.E.; Knick, S.T.

    2008-01-01

    Anthropogenic features such as urbanization, roads, and power lines, are increasing in western United States landscapes in response to rapidly growing human populations. However, their spatial effects have not been evaluated. Our goal was to model the human footprint across the western United States. We first delineated the actual area occupied by anthropogenic features, the physical effect area. Next, we developed the human footprint model based on the ecological effect area, the zone influenced by features beyond their physical presence, by combining seven input models: three models quantified top-down anthropogenic influences of synanthropic predators (avian predators, domestic dog and cat presence risk), and four models quantified bottom-up anthropogenic influences on habitat (invasion of exotic plants, human-caused fires, energy extraction, and anthropogenic wildland fragmentation). Using independent bird population data, we found bird abundance of four synanthropic species to correlate positively with human footprint intensity and negatively for three of the six species influenced by habitat fragmentation. We then evaluated the extent of the human footprint in relation to terrestrial (ecoregions) and aquatic systems (major rivers and lakes), regional management and conservation status, physical environment, and temporal changes in human actions. The physical effect area of anthropogenic features covered 13% of the western United States with agricultural land (9.8%) being most dominant. High-intensity human footprint areas (class 8–10) overlapped highly productive low-elevation private landholdings and covered 7% of the western United States compared to 48% for low-intensity areas (class 1–3), which were confined to low-productivity high-elevation federal landholdings. Areas within 1 km of rivers were more affected by the human footprint compared to lakes. Percentage human population growth was higher in low-intensity human footprint areas. The

  8. Ecosystem changes in the Neva Estuary (Baltic Sea): natural dynamics or response to anthropogenic impacts?

    Science.gov (United States)

    Golubkov, Sergey; Alimov, Alexander

    2010-01-01

    The Neva Estuary situated in the eastern Gulf of Finland is one of the largest estuaries of the Baltic Sea with a large conurbation, St. Petersburg, situated on its coast. Eutrophication, alien species and large-scale digging and dumping of bottom sediment are the most prominent anthropogenic impacts on its ecosystem. However, many ecosystem responses, which are traditionally attribute to these impacts, are related to natural dynamics of the ecosystem. Fluctuations in discharge of the Neva River, intrusions of bottom hypoxic waters from the western part of the Gulf of Finland, higher summer temperatures and a shorter period of ice cover are climatic mediated factors inducing adverse changes in its ecosystem from the 1980s onwards. The main ecosystem responses to these factors are 2-3-fold increase of trophic status, deterioration of native zoobenthic communities and establishment of alien species, as well as the many fold decrease of fish catch and the population of ringed seal in the region. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Assessing anthropogenic impact on boreal lakes with historical fish species distribution data and hydrogeochemical modeling.

    Science.gov (United States)

    Valinia, Salar; Englund, Göran; Moldan, Filip; Futter, Martyn N; Köhler, Stephan J; Bishop, Kevin; Fölster, Jens

    2014-09-01

    Quantifying the effects of human activity on the natural environment is dependent on credible estimates of reference conditions to define the state of the environment before the onset of adverse human impacts. In Europe, emission controls that aimed at restoring ecological status were based on hindcasts from process-based models or paleolimnological reconstructions. For instance, 1860 is used in Europe as the target for restoration from acidification concerning biological and chemical parameters. A more practical problem is that the historical states of ecosystems and their function cannot be observed directly. Therefore, we (i) compare estimates of acidification based on long-term observations of roach (Rutilus rutilus) populations with hindcast pH from the hydrogeochemical model MAGIC; (ii) discuss policy implications and possible scope for use of long-term archival data for assessing human impacts on the natural environment and (iii) present a novel conceptual model for interpreting the importance of physico-chemical and ecological deviations from reference conditions. Of the 85 lakes studied, 78 were coherently classified by both methods. In 1980, 28 lakes were classified as acidified with the MAGIC model, however, roach was present in 14 of these. In 2010, MAGIC predicted chemical recovery in 50% of the lakes, however roach only recolonized in five lakes after 1990, showing a lag between chemical and biological recovery. Our study is the first study of its kind to use long-term archival biological data in concert with hydrogeochemical modeling for regional assessments of anthropogenic acidification. Based on our results, we show how the conceptual model can be used to understand and prioritize management of physico-chemical and ecological effects of anthropogenic stressors on surface water quality. © 2014 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  10. Impacts of Intercontinental Transport of Anthropogenic Fine Particulate Matter on Human Mortality

    Science.gov (United States)

    Anenberg, Susan C.; West, J. Jason; Hongbin, Yu; Chin, Mian; Schulz, Michael; Bergmann, Dan; Bey, Isabelle; Bian, Huisheng; Diehl, Thomas; Fiore, Arlene; hide

    2014-01-01

    Fine particulate matter with diameter of 2.5 microns or less (PM2.5) is associated with premature mortality and can travel long distances, impacting air quality and health on intercontinental scales. We estimate the mortality impacts of 20 % anthropogenic primary PM2.5 and PM2.5 precursor emission reductions in each of four major industrial regions (North America, Europe, East Asia, and South Asia) using an ensemble of global chemical transport model simulations coordinated by the Task Force on Hemispheric Transport of Air Pollution and epidemiologically-derived concentration-response functions. We estimate that while 93-97 % of avoided deaths from reducing emissions in all four regions occur within the source region, 3-7 % (11,500; 95 % confidence interval, 8,800-14,200) occur outside the source region from concentrations transported between continents. Approximately 17 and 13 % of global deaths avoided by reducing North America and Europe emissions occur extraregionally, owing to large downwind populations, compared with 4 and 2 % for South and East Asia. The coarse resolution global models used here may underestimate intraregional health benefits occurring on local scales, affecting these relative contributions of extraregional versus intraregional health benefits. Compared with a previous study of 20 % ozone precursor emission reductions, we find that despite greater transport efficiency for ozone, absolute mortality impacts of intercontinental PM2.5 transport are comparable or greater for neighboring source-receptor pairs, due to the stronger effect of PM2.5 on mortality. However, uncertainties in modeling and concentration-response relationships are large for both estimates.

  11. Interplay of anthropogenic and natural disturbance impacts on the hyporheic ecology

    Science.gov (United States)

    Mori, N.; Brancelj, A.; Simčič, T.; Lukančič, S.

    2009-04-01

    The hyporheic invertebrate community from the pre-alpine river (W Slovenia) was studied in order to analyze the impacts of high discharge and in-stream gravel extraction. Two distinct river reaches were sampled from June 2004 to May 2005. At impacted site, where gravel extraction was carried out, the response of hyporheic community to the anthropogenic disturbance was studied. Physical and chemical parameters, together with the amounts organic matter and activity of the biofilm were measured. Invertebrates were sampled by Bou-Rouch pumping method. Discharge of the Bača River varied from 108 m3s-1 in October 2004 to 1.6 m3s-1 in March 2005. Streambed sediments at both sites were composed of heterogeneous mixture of boulders, cobbles, pebbles, gravel, sand and silt. Oxygen saturation was close to 100 %, indicating good sediment permeability. A total of 75 invertebrate taxa were identified, 40 of which belonged to the occasional hyporheos, 26 to the permanent hyporheos and 9 were stygobites. At both sites, fauna was dominated numerically by juveniles of Cyclopoida and early stages of Leuctra larvae (Plecoptera). Chironomidae (Diptera) contributed significantly to the total invertebrate density at reference site and Baetoidea (Ephemeroptera) to the total density at impacted site. At both sites a decrease in density occurred immediately after disturbance. The recovery was relatively fast (two and a half months). The CCA analysis revealed the importance of fine sediment amounts for hyporheic invertebrate distribution. The results indicated that discharge play an important role in shaping hyporheic invertebrate community in the Bača River and that the removal of sediments due to gravel extraction led to the impoverishment of the structural characteristics of the hyporheic community.

  12. Anthropogenic Warming Impacts on Today's Sierra Nevada Snowpack and Flood Severity

    Science.gov (United States)

    Huang, X.; Hall, A. D.; Berg, N.

    2017-12-01

    Focusing on this recent extreme wet year over California, this study investigates the warming impacts on the snowpack and the flood severity over the Sierra Nevada (SN), where the majority of the precipitation occurs during the winter season and early spring. One of our goals is to quantify anthropogenic warming impacts on the snow water equivalent (SWE) including recent historical warming and prescribed future projected warming scenarios; This work also explores to what extent flooding risk has increased under those warming cases. With a good representation of the historical precipitation and snowpack over the Sierra Nevada from the historical reference run at 9km (using WRF), the results from the offline Noah-MP simulations with perturbed near-surface temperatures reveal magnificent impacts of warming to the loss of the average snowpack. The reduction of the SWE under warming mainly results from the decreased rain-to-snow conversion with a weaker effect from increased snowmelt. Compared to the natural case, the past industrial warming decreased the maximum SWE by about one-fifth averaged over the study area. Future continuing warming can result in around one-third reduction of current maximum SWE under RCP4.5 emissions scenario, and the loss can reach to two-thirds under RCP8.5 as a "business-as-usual" condition. The impact of past warming is particularly outstanding over the North SN region where precipitation dominates and over the middle elevation regions where the snow mainly distributes. In the future, the warming impact on SWE progresses to higher regions, and so to the south and east. Under the business-as-usual scenario, the projected mid-elevation snowpack almost disappears by April 1st with even high-elevation snow reduced by about half. Along with the loss of the snowpack, as the temperature warms, floods can also intensify with increased early season runoff especially under heavy-rainy days caused by the weakened rain-to-snow processes and

  13. Environmental challenges of anthropogenic metals flows and cycles

    DEFF Research Database (Denmark)

    van der Voet, Ester; Salminen, Reijo; Eckelman, Matthew

    This report from the UNEP-hosted International Resource Panel, Environmental Risk and Challenges of Anthropogenic Metals Flows and Cycles, gives a clear picture of the potential environmental impacts of metals at different stages of the life-cycle while linking with other areas of resource use...

  14. The impact of extreme flooding events and anthropogenic stressors on the macrobenthic communities’ dynamics

    Science.gov (United States)

    Cardoso, P. G.; Raffaelli, D.; Lillebø, A. I.; Verdelhos, T.; Pardal, M. A.

    2008-02-01

    Marine and coastal environments are among the most ecologically and socio-economically important habitats on Earth. However, climate change associated with a variety of anthropogenic stressors (e.g. eutrophication) may interact to produce combined impacts on biodiversity and ecosystem functioning, which in turn will have profound implications for marine ecosystems and the economic and social systems that depend upon them. Over period 1980-2000, the environment of the Mondego estuary, Portugal, has deteriorated through eutrophication, manifested in the replacement of seagrasses by opportunistic macroalgae, degradation of water quality and increased turbidity, and the system has also experienced extreme flood events. A restoration plan was implemented in 1998 which aimed to reverse the eutrophication effects, especially to restore the original natural seagrass ( Zostera noltii) community. This paper explores the interactions between extreme weather events (e.g. intense floods) and anthropogenic stressors (e.g. eutrophication) on the dynamics of the macrobenthic assemblages and the socio-economic implications that follow. We found that during the previous decade, the intensification of extreme flooding events had significant effects on the structure and functioning of macrobenthic communities, specifically a decline in total biomass, a decline in species richness and a decline in suspension feeders. However, the earlier eutrophication process also strongly modified the macrobenthic community, seen as a decline in species richness, increase in detritivores and a decline in herbivores together with a significant increase in small deposit-feeding polychaetes. After the implementation of the management plan, macrobenthic assemblages seemed to be recovering from eutrophication, but it is argued here that those earlier impacts reduced system stability and the resilience of the macrobenthic assemblages, so that its ability to cope with other stressors was compromised. Thus

  15. A new record of the non-native fish species Butis koilomatodon (Bleeker 1849 (Teleostei: Eleotridae for southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Riguel Feltrin Contente

    2016-05-01

    Full Text Available http://dx.doi.org/10.5007/2175-7925.2016v29n2p113 This work reports the second record of the Indo-Pacific invasive mud sleeper, Butis koilomatodon, for coastal São Paulo in southeastern Brazil, and represents the southernmost record for this species in the southwestern Atlantic Ocean. The risks of a potential invasion mediated by anthropogenic impacts on the area of occurrence are also discussed.

  16. Multivariate statistical and GIS-based approach to identify source of anthropogenic impacts on metallic elements in sediments from the mid Guangdong coasts, China

    International Nuclear Information System (INIS)

    Gu Yangguang; Wang, Zhao-Hui; Lu Songhui; Jiang Shijun; Mu Dehai; Shu Yonghong

    2012-01-01

    Growing concerns surround the mid Guangdong coasts, one of China’s fastest and developing economical regions. To study the environmental impacts of economic and industrial development, we measured ten metallic elements (Hg, Pb, Cu, Zn, Fe, Al, Ni, Sr, Li, and Co) in surface sediments from nineteen stations in three bays. All these metals showed concentrations substantially higher than their background values, suggesting possible anthropogenic pollution. Highest metal levels were close to the nuclear power plants likely as a result of nuclear waste discharges. Results revealed that Hg, Pb, and Sr largely originated from human activities, while Cu, Ni, Co, Al, and Fe mainly from natural rock weathering. Two types of anthropogenic sources were identified through a principal component analysis, one from shipping industry, port transport service and nuclear power plants, and the other from municipal sewage and coal power plant. - Highlights: ► Ten metallic elements in surface sediments from mid Guangdong coasts were measured. ► High metal levels occurred close to the nuclear power plants. ► Hg, Pb and Sr mainly originated from human activities. ► Two types of anthropogenic metallic sources were identified in this region. - Hot spots of metallic elements were close to the nuclear power plants. Industrial and municipal discharges were the main anthropogenic metallic source.

  17. Anthropogenic Changes in Mid-latitude Storm and Blocking Activities from Observations and Climate Models

    Science.gov (United States)

    Li, D.

    2017-12-01

    Fingerprints of anthropogenic climate change can be most readily detected in the high latitudes of Northern Hemisphere, where temperature has been rising faster than the rest of the globe and sea ice cover has shrunk dramatically over recent decades. Reducing the meridional temperature gradient, this amplified warming over the high latitudes influences weather in the middle latitudes by modulating the jet stream, storms, and atmospheric blocking activities. Whether observational records have revealed significant changes in mid-latitude storms and blocking activities, however, has remained a subject of much debate. Buried deep in strong year-to-year variations, the long-term dynamic responses of the atmosphere are more difficult to identify, compared with its thermodynamic responses. Variabilities of decadal and longer timescales further obscure any trends diagnosed from satellite observations, which are often shorter than 40 years. Here, new metrics reflecting storm and blocking activities are developed using surface air temperature and pressure records, and their variations and long-term trends are examined. This approach gives an inkling of the changes in storm and blocking activities since the Industrial Revolution in regions with abundant long-term observational records, e.g. Europe and North America. The relationship between Atlantic Multi-decadal Oscillation and variations in storm and blocking activities across the Atlantic is also scrutinized. The connection between observed centennial trends and anthropogenic forcings is investigated using a hierarchy of numerical tools, from highly idealized to fully coupled atmosphere-ocean models. Pre-industrial control simulations and a set of large ensemble simulations forced by increased CO2 are analyzed to evaluate the range of natural variabilities, which paves the way to singling out significant anthropogenic changes from observational records, as well as predicting future changes in mid-latitude storm and

  18. Paleolimnological investigations of anthropogenic environmental change in Lake Tanganyika: I. An introduction to the project

    Science.gov (United States)

    Cohen, A.S.; Palacios-Fest, M. R.; McGill, J.; Swarzenski, P.W.; Verschuren, D.; Sinyinza, R.; Songori, T.; Kakagozo, B.; Syampila, M.; O'Reilly, C. M.; Alin, S.R.

    2005-01-01

    We investigated paleolimnological records from a series of river deltas around the northeastern rim of Lake Tanganyika, East Africa (Tanzania and Burundi) in order to understand the history of anthropogenic activity in the lake's catchment over the last several centuries, and to determine the impact of these activities on the biodiversity of littoral and sublittoral lake communities. Sediment pollution caused by increased rates of soil erosion in deforested watersheds has caused significant changes in aquatic communities along much of the lake's shoreline. We analyzed the effects of sediment discharge on biodiversity around six deltas or delta complexes on the east coast of Lake Tanganyika: the Lubulungu River delta, Kabesi River delta, Nyasanga/Kahama River deltas, and Mwamgongo River delta in Tanzania; and the Nyamuseni River delta and Karonge/Kirasa River deltas in Burundi. Collectively, these deltas and their associated rivers were chosen to represent a spectrum of drainage-basin sizes and disturbance levels. By comparing deltas that are similar in watershed attributes (other than disturbance levels), our goal was to explore a series of historical "experiments" at the watershed scale, with which we could more clearly evaluate hypotheses of land use or other effects on nearshore ecosystems. Here we discuss these deltas, their geologic and physiographic characteristics, and the field procedures used for coring and sampling the deltas, and various indicators of anthropogenic impact. ?? Springer 2005.

  19. Long-term genetic monitoring of a riverine dragonfly, Orthetrum coerulescens (Odonata: Libellulidae]: Direct anthropogenic impact versus climate change effects.

    Science.gov (United States)

    Herzog, Rebecca; Hadrys, Heike

    2017-01-01

    Modern conservationists call for long term genetic monitoring datasets to evaluate and understand the impact of human activities on natural ecosystems and species on a global but also local scale. However, long-term monitoring datasets are still rare but in high demand to correctly identify, evaluate and respond to environmental changes. In the presented study, a population of the riverine dragonfly, Orthetrum coerulescens (Odonata: Libellulidae), was monitored over a time period from 1989 to 2013. Study site was an artificial irrigation ditch in one of the last European stone steppes and "nature heritage", the Crau in Southern France. This artificial riverine habitat has an unusual high diversity of odonate species, prominent indicators for evaluating freshwater habitats. A clearing of the canal and destruction of the bank vegetation in 1996 was assumed to have great negative impact on the odonate larval and adult populations. Two mitochondrial markers (CO1 & ND1) and a panel of nuclear microsatellite loci were used to assess the genetic diversity. Over time they revealed a dramatic decline in diversity parameters between the years 2004 and 2007, however not between 1996 and 1997. From 2007 onwards the population shows a stabilizing trend but has not reached the amount of genetic variation found at the beginning of this survey. This decline cannot be referred to the clearing of the canal or any other direct anthropogenic impact. Instead, it is most likely that the populations' decay was due to by extreme weather conditions during the specific years. A severe drought was recorded for the summer months of these years, leading to reduced water levels in the canal causing also other water parameters to change, and therefore impacting temperature sensitive riverine habitat specialists like the O. coerulescens in a significant way. The data provide important insights into population genetic dynamics and metrics not always congruent with traditional monitoring data (e

  20. Climate impact of anthropogenic aerosols on cirrus clouds

    Science.gov (United States)

    Penner, J.; Zhou, C.

    2017-12-01

    Cirrus clouds have a net warming effect on the atmosphere and cover about 30% of the Earth's area. Aerosol particles initiate ice formation in the upper troposphere through modes of action that include homogeneous freezing of solution droplets, heterogeneous nucleation on solid particles immersed in a solution, and deposition nucleation of vapor onto solid particles. However, the efficacy with which particles act to form cirrus particles in a model depends on the representation of updrafts. Here, we use a representation of updrafts based on observations of gravity waves, and follow ice formation/evaporation during both updrafts and downdrafts. We examine the possible change in ice number concentration from anthropogenic soot originating from surface sources of fossil fuel and biomass burning and from aircraft particles that have previously formed ice in contrails. Results show that fossil fuel and biomass burning soot aerosols with this version exert a radiative forcing of -0.15±0.02 Wm-2 while aircraft aerosols that have been pre-activated within contrails exert a forcing of -0.20±0.06 Wm-2, but it is possible to decrease these estimates of forcing if a larger fraction of dust particles act as heterogeneous ice nuclei. In addition aircraft aerosols may warm the climate if a large fraction of these particles act as ice nuclei. The magnitude of the forcing in cirrus clouds can be comparable to the forcing exerted by anthropogenic aerosols on warm clouds. This assessment could therefore support climate models with high sensitivity to greenhouse gas forcing, while still allowing the models to fit the overall historical temperature change.

  1. Climate change and anthropogenic impacts on marine ecosystems and countermeasures in China

    Directory of Open Access Journals (Sweden)

    Nian-Zhi Jiao

    2015-06-01

    Full Text Available The ecosystems of China seas and coasts are undergoing rapid changes under the strong influences of both global climate change and anthropogenic activities. To understand the scope of these changes and the mechanisms behind them is of paramount importance for the sustainable development of China, and for the establishment of national policies on environment protection and climate change mitigation. Here we provide a brief review of the impacts of global climate change and human activities on the oceans in general, and on the ecosystems of China seas and coasts in particular. More importantly, we discuss the challenges we are facing and propose several research foci for China seas/coasts ecosystem studies, including long-term time series observations on multiple scales, facilities for simulation study, blue carbon, coastal ecological security, prediction of ecosystem evolution and ecosystem-based management. We also establish a link to the Future Earth program from the perspectives of two newly formed national alliances, the China Future Ocean Alliance and the Pan-China Ocean Carbon Alliance.

  2. Fishers’ local knowledge on impact of climate change and anthropogenic interferences on Hilsa fishery in South Asia

    DEFF Research Database (Denmark)

    Jahan, Israt; Ahsan, Dewan; Farque, Md Hasan

    2017-01-01

    fishers’ perceptions on effect of climate change and anthropogenic impact on Hilsa fishery at lower Meghna. Fishers’ ecological knowledge indicates that the stock of Hilsa is declining due to several adverse climatic conditions such as increased water temperature, salinity intrusion and low freshwater....... The study also indicates that the major constraints to adopt with the change situation are low level of human capital and restricted access to the formal credit system. Therefore, incorporation of local knowledge in governmental policy formulation and public support to improve human skill are essential...

  3. Quantitative Assessment on Anthropogenic Contributions to the Rainfall Extremes Associated with Typhoon Morakot (2009)

    Science.gov (United States)

    Chen, C. T.; Lo, S. H.; Wang, C. C.; Tsuboki, K.

    2017-12-01

    More than 2000 mm rainfall occurred over southern Taiwan when a category 1 Typhoon Morakot pass through Taiwan in early August 2009. Entire village and hundred of people were buried by massive mudslides induced by record-breaking precipitation. Whether the past anthropogenic warming played a significant role in such extreme event remained very controversial. On one hand, people argue it's nearly impossible to attribute an individual extreme event to global warming. On the other hand, the increase of heavy rainfall is consistent with the expected effects of climate change on tropical cyclone. To diagnose possible anthropogenic contributions to the odds of such heavy rainfall associated with Typhoon Morakot, we adapt an existing probabilistic event attribution framework to simulate a `world that was' and compare it with an alternative condition, 'world that might have been' that removed the historical anthropogenic drivers of climate. One limitation for applying such approach to high-impact weather system is that it will require models capable of capturing the essential processes lead to the studied extremes. Using a cloud system resolving model that can properly simulate the complicated interactions between tropical cyclone, large-scale background, topography, we first perform the ensemble `world that was' simulations using high resolution ECMWF YOTC analysis. We then re-simulate, having adjusted the analysis to `world that might have been conditions' by removing the regional atmospheric and oceanic forcing due to human influences estimated from the CMIP5 model ensemble mean conditions between all forcing and natural forcing only historical runs. Thus our findings are highly conditional on the driving analysis and adjustments therein, but the setup allows us to elucidate possible contribution of anthropogenic forcing to changes in the likelihood of heavy rainfall associated Typhoon Morakot in early August 2009.

  4. Chemical indicators of anthropogenic impacts in sediments of the pristine karst lakes.

    Science.gov (United States)

    Mikac, I; Fiket, Z; Terzić, S; Barešić, J; Mikac, N; Ahel, M

    2011-08-01

    The anthropogenic impact on the pristine karst lakes was investigated using combination of specific parameters, including multielemental analysis of major inorganic constituents (Al, K, Fe) and trace metals (Li, Ag, Cd, Sn, Pb, Bi, Cr, Co, Ni, Cu, Zn and Sb), polycyclic aromatic hydrocarbons (PAHs) and anionic surfactants of linear alkylbenzene sulfonate (LAS) type. The study was performed in the Plitvice Lakes National Park, situated in a sparsely populated area of the northwestern Dinarides, central Croatia. Dated cores of recent sediments from the two biggest lakes, Lake Prosce and Lake Kozjak, were analysed for the selected contaminants using highly specific methods, involving inductively coupled plasma mass spectrometry (ICP/MS), gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS). The concentration of inorganic constituents reflected primarily the geological background of the area as well as geomorphological and geochemical characteristics of the Plitvice Lakes. Due to the higher terrigenous input, the concentration of all elements was significantly higher in the Lake Prosce. The concentration of toxic metals was relatively low in both lakes, except for Cd (>1 mg kg(-1)) and Pb (up to 40 mg kg(-1)). The vertical profiles of these metals suggested that elevated concentrations of Cd were of natural origin, derived from the erosion of the Jurassic dolomite bedrock, while Pb was predominately of recent anthropogenic origin. A similar distribution pattern, suggesting the same prevailing mechanism of input, was observed for pyrolytic PAHs. The characteristic diagnostic PAH ratios revealed that higher PAHs prevailingly originated from the combustion of biomass and fossil fuels. LAS, which represent highly specific indicators of untreated wastewaters, were found in rather high concentrations in the recent sediment layers (up to 4.7 mg kg(-1)), suggesting that contaminated household and hotel wastewaters reach the

  5. Impact of anthropogenic aerosols from global, East Asian, and non-East Asian sources on East Asian summer monsoon system

    Science.gov (United States)

    Wang, Qiuyan; Wang, Zhili; Zhang, Hua

    2017-01-01

    The impact of the total effects due to anthropogenic aerosols from global, East Asian, and non-East Asian sources on East Asian summer monsoon (EASM) system is studied using an aerosol-climate online model BCC_AGCM2.0.1_CUACE/Aero. The results show that the summer mean net all-sky shortwave fluxes averaged over East Asian monsoon region (EAMR) at the top of the atmosphere (TOA) and surface reduce by 4.8 and 5.0 W m- 2, respectively, due to the increases of global aerosol emissions in 2000 relative to 1850. Changes in radiations and their resulting changes in heat and water transport and cloud fraction contribute together to the surface cooling over EAMR in summer. The increases in global anthropogenic aerosols lead to a decrease of 2.1 K in summer mean surface temperature and an increase of 0.4 hPa in summer mean surface pressure averaged over EAMR, respectively. It is shown that the changes in surface temperature and pressure are significantly larger over land than ocean, thus decreasing the contrast of land-sea surface temperature and pressure. This results in the marked anomalies of north and northeast winds over eastern and southern China and the surrounding oceans in summer, thereby weakening the EASM. The summer mean precipitation averaged over the EAMR reduces by 12%. The changes in non-East Asian aerosol emissions play a more important role in inducing the changes of local temperature and pressure, and thus significantly exacerbate the weakness of the EASM circulation due to local aerosol changes. The weakening of circulation due to both is comparable, and even the effect of non-local aerosols is larger in individual regions. The changes of local and non-local aerosols contribute comparably to the reductions in precipitation over oceans, whereas cause opposite changes over eastern China. Our results highlight the importance of aerosol changes outside East Asia in the impact of the changes of anthropogenic aerosols on EASM.

  6. Assessing Anthropogenic Impacts on Tunas, Sharks and Billfishes with Direct Observations of Human Fishers on the High Seas

    Science.gov (United States)

    Block, B.; Ferretti, F.; White, T.; De Leo, G.; Hazen, E. L.; Bograd, S. J.

    2016-12-01

    Anthropogenic impacts on marine predators have been examined within exclusive economic zones, but few data sets have enabled assessing human fishing impacts on the high seas. By combining large electronic tagging databases archiving mobile predator movements (e.g. Tagging of Pacific Pelagics, TAG A Giant, Animal Telemetry Network) with the global fishing catch and fishing effort data, from satellite tracks of vessels on the high seas (AIS), a better understanding of human use and exploitation at a global scale can be obtained. This capacity to combine the movements of mobile ocean predators (tunas, sharks, billfishes) with analyses of their human predator's behaviors, via examination of the global fishing fleet activities is unprecedented due to the new access researchers are garnering to these big satellite derived AIS databases. Global Fishing Watch is one example of such a data provider, that now makes accessible, the AIS data from the global community of maritime vessels, and has developed along with researchers new algorithms that delineate distinct types of fishing vessel behaviors (longline, purse seiner) and effort. When combined with satellite tagging data of mobile apex predators, oceanographic preferences, records of fishing fleets catches, targeted species and economic drivers of fisheries, new quantitative insights can be gained about the catch reporting of fleets, and the pelagic species targeted at a global scale. Research communities can now also examine how humans behave on the high seas, and potentially improve how fish stocks, such as tunas, billfishes, and sharks are exploited. The capacity to gather information on diverse human fishing fleets and behaviors remotely, should provide a wealth of new tools that can potentially be applied toward the resource management efforts surrounding these global fishing fleets. This type of information is essential for prioritizing regions of conservation concern for megaufauna swimming in our oceans.

  7. Detecting anthropogenic footprints in regional and global sea level rise since 1900

    Science.gov (United States)

    Dangendorf, S.; Marcos, M.; Piecuch, C. G.; Jensen, J.

    2015-12-01

    While there is scientific consensus that global and local mean sea level (GMSL and LMSL) is rising since the late 19th century, it remains unclear how much of this rise is due to natural variability or anthropogenic forcing. Distinguishing both contributions requires an extensive knowledge about the persistence of natural high and low stands in GMSL and LMSL. This is challenging, since observational time series represent the superposition of various processes with different spectral properties. Here we provide a probabilistic upper range of long-term persistent natural GMSL/LMSL variability (P=0.99), which in turn determines the minimum/maximum anthropogenic contribution since 1900. To account for different spectral characteristics of various contributing processes, we separate LMSL (corrected for vertical land motion) into a slowly varying volumetric (mass and density changes) and a more rapidly changing atmospheric component. Based on a combination of spectral analyses of tide gauge records, barotropic and baroclinic ocean models and numerical Monte-Carlo experiments, we find that in records where transient atmospheric processes dominate the spectra, the persistence of natural volumetric changes tends to be underestimated. If each component is assessed separately, natural centennial trends are locally up to ~1.0 mm/yr larger than in case of an integrated assessment, therefore erroneously enhancing the significance of anthropogenic footprints. The GMSL, however, remains unaffected by such biases. On the basis of a model assessment of the separate components, we conclude that it is virtually certain (P=0.99) that at least 45% of the observed increase in GMSL is of anthropogenic origin.

  8. A 50-year record of platinum, iridium, and rhodium in Antarctic snow: volcanic and anthropogenic sources.

    Science.gov (United States)

    Soyol-Erdene, Tseren-Ochir; Huh, Youngsook; Hong, Sungmin; Hur, Soon Do

    2011-07-15

    Antarctic snow preserves an atmospheric archive that enables the study of global atmospheric changes and anthropogenic disturbances from the past. We report atmospheric deposition rates of platinum group elements (PGEs) in Antarctica during the last ∼ 50 years based on determinations of Pt, Ir, and Rh in snow samples collected from Queen Maud Land, East Antarctica to evaluate changes in the global atmospheric budget of these noble metals. The 50-year average PGE concentrations in Antarctic snow were 17 fg g(-1) (4.7-76 fg g(-1)) for Pt, 0.12 fg g(-1) (pollution for Pt and probably for Rh since the 1980s, which may be attributed to the increasing emissions of these metals from anthropogenic sources such as automobile catalysts and metal production processes.

  9. Life Cycle Assessment, ExternE and Comprehensive Analysis for an integrated evaluation of the environmental impact of anthropogenic activities

    Energy Technology Data Exchange (ETDEWEB)

    Pietrapertosa, F.; Cosmi, C. [National Research Council, Institute of Methodologies for Environmental Analysis C.N.R.-I.M.A.A. C.da S.Loja, I-85050 Tito Scalo (PZ) (Italy); National Research Council, National Institute for the Physics of Matter, C.N.R.-I.N.F.M. Via Cinthia, I-80126 Naples (Italy); Macchiato, M. [Federico II University, Department of Physical Sciences, Via Cinthia, I-80126 Naples (Italy); National Research Council, National Institute for the Physics of Matter, C.N.R.-I.N.F.M. Via Cinthia, I-80126 Naples (Italy); Salvia, M.; Cuomo, V. [National Research Council, Institute of Methodologies for Environmental Analysis C.N.R.-I.M.A.A. C.da S.Loja, I-85050 Tito Scalo (PZ) (Italy)

    2009-06-15

    The implementation of resource management strategies aimed at reducing the impacts of the anthropogenic activities system requires a comprehensive approach to evaluate on the whole the environmental burdens of productive processes and to identify the best recovery strategies from both an environmental and an economic point of view. In this framework, an analytical methodology based on the integration of Life Cycle Assessment (LCA), ExternE and Comprehensive Analysis was developed to perform an in-depth investigation of energy systems. The LCA methodology, largely utilised by the international scientific community for the assessment of the environmental performances of technologies, combined with Comprehensive Analysis allows modelling the overall system of anthropogenic activities, as well as sub-systems, the economic consequences of the whole set of environmental damages. Moreover, internalising external costs into partial equilibrium models, as those utilised by Comprehensive Analysis, can be useful to identify the best paths for implementing technology innovation and strategies aimed to a more sustainable energy supply and use. This paper presents an integrated application of these three methodologies to a local scale case study (the Val D'Agri area in Basilicata, Southern Italy), aimed to better characterise the environmental impacts of the energy system, with particular reference to extraction activities. The innovative methodological approach utilised takes advantage from the strength points of each methodology with an added value coming from their integration as emphasised by the main results obtained by the scenario analysis. (author)

  10. Life and death of a sewage treatment plant recorded in a coral skeleton δ15N record.

    Science.gov (United States)

    Duprey, Nicolas N; Wang, Xingchen T; Thompson, Philip D; Pleadwell, Jeffrey E; Raymundo, Laurie J; Kim, Kiho; Sigman, Daniel M; Baker, David M

    2017-07-15

    We investigated the potential of coral skeleton δ 15 N (CS-δ 15 N) records for tracking anthropogenic-N sources in coral reef ecosystems. We produced a 56yr-long CS-δ 15 N record (1958-2014) from a reef flat in Guam that has been exposed to varying 1) levels of sewage treatment 2) population density, and 3) land use. Increasing population density (from sewage treatment plant (STP) started operation in 1975. Then, CS-δ 15 N stabilized, despite continued population density and land use changes. Based on population and other considerations, a continued increase in the sewage footprint might have been expected over this time. The stability of CS-δ 15 N, either contradicts this expectation, or indicates that the impacts on the outer reef at the coring site were buffered by the mixing of reef water with the open ocean. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Detecting anthropogenic footprints in sea level rise: the role of complex colored noise

    Science.gov (United States)

    Dangendorf, Sönke; Marcos, Marta; Müller, Alfred; Zorita, Eduardo; Jensen, Jürgen

    2015-04-01

    While there is scientific consensus that global mean sea level (MSL) is rising since the late 19th century, it remains unclear how much of this rise is due to natural variability or anthropogenic forcing. Uncovering the anthropogenic contribution requires profound knowledge about the persistence of natural MSL variations. This is challenging, since observational time series represent the superposition of various processes with different spectral properties. Here we statistically estimate the upper bounds of naturally forced centennial MSL trends on the basis of two separate components: a slowly varying volumetric (mass and density changes) and a more rapidly changing atmospheric component. Resting on a combination of spectral analyses of tide gauge records, ocean reanalysis data and numerical Monte-Carlo experiments, we find that in records where transient atmospheric processes dominate, the persistence of natural volumetric changes is underestimated. If each component is assessed separately, natural centennial trends are locally up to ~0.5 mm/yr larger than in case of an integrated assessment. This implies that external trends in MSL rise related to anthropogenic forcing might be generally overestimated. By applying our approach to the outputs of a centennial ocean reanalysis (SODA), we estimate maximum natural trends in the order of 1 mm/yr for the global average. This value is larger than previous estimates, but consistent with recent paleo evidence from periods in which the anthropogenic contribution was absent. Comparing our estimate to the observed 20th century MSL rise of 1.7 mm/yr suggests a minimum external contribution of at least 0.7 mm/yr. We conclude that an accurate detection of anthropogenic footprints in MSL rise requires a more careful assessment of the persistence of intrinsic natural variability.

  12. Impact of anthropogenic climate change and human activities on environment and ecosystem services in arid regions.

    Science.gov (United States)

    Mahmoud, Shereif H; Gan, Thian Y

    2018-08-15

    The implications of anthropogenic climate change, human activities and land use change (LUC) on the environment and ecosystem services in the coastal regions of Saudi Arabia were analyzed. Earth observations data was used to drive land use categories between 1970 and 2014. Next, a Markov-CA model was developed to characterize the dynamic of LUC between 2014 and 2100 and their impacts on regions' climate and environment. Non-parametric change point and trend detection algorithms were applied to temperature, precipitation and greenhouse gases data to investigate the presence of anthropogenic climate change. Lastly, climate models were used to project future climate change between 2014 and 2100. The analysis of LUC revealed that between 1970 and 2014, built up areas experienced the greatest growth during the study period, leading to a significant monotonic trend. Urban areas increased by 2349.61km 2 between 1970 and 2014, an average increase of >53.4km 2 /yr. The projected LUC between 2014 and 2100 indicate a continued increase in urban areas and irrigated cropland. Human alteration of land use from natural vegetation and forests to other uses after 1970, resulted in a loss, degradation, and fragmentation, all of which usually have devastating effects on the biodiversity of the region. Resulting in a statistically significant change point in temperature anomaly after 1968 with a warming trend of 0.24°C/decade and a downward trend in precipitation anomaly of 12.2mm/decade. Total greenhouse gas emissions including all anthropogenic sources showed a statistically significant positive trend of 78,090Kt/decade after 1991. This is reflected in the future projection of temperature anomaly between 1900 and 2100 with a future warming trend of 0.19°C/decade. In conclusion, human activities, industrial revelation, deforestation, land use transformation and increase in greenhouse gases had significant implications on the environment and ecosystem services of the study area

  13. The disturbance-diversity relationship: integrating biodiversity conservation and resource management in anthropogenic landscapes

    OpenAIRE

    Sharma, Lila Nath

    2016-01-01

    Disturbance, natural or anthropogenic, is ubiquitous to forest and grassland ecosystems across the globe. Many of these ecosystems have evolved alongside centuries old anthropogenic disturbance regimes. Understanding how disturbance impacts biodiversity and ecosystem service delivery is a topic of paramount importance as high biodiversity is likely to provide a wide array of ecosystem goods and services to an ever-growing human population. There is a general consensus that dist...

  14. Impact of anthropogenic aerosols on regional climate change in Beijing, China

    Science.gov (United States)

    Zhao, B.; Liou, K. N.; He, C.; Lee, W. L.; Gu, Y.; Li, Q.; Leung, L. R.

    2015-12-01

    Anthropogenic aerosols affect regional climate significantly through radiative (direct and semi-direct) and indirect effects, but the magnitude of these effects over megacities are subject to large uncertainty. In this study, we evaluated the effects of anthropogenic aerosols on regional climate change in Beijing, China using the online-coupled Weather Research and Forecasting/Chemistry Model (WRF/Chem) with the Fu-Liou-Gu radiation scheme and a spatial resolution of 4km. We further updated this radiation scheme with a geometric-optics surface-wave (GOS) approach for the computation of light absorption and scattering by black carbon (BC) particles in which aggregation shape and internal mixing properties are accounted for. In addition, we incorporated in WRF/Chem a 3D radiative transfer parameterization in conjunction with high-resolution digital data for city buildings and landscape to improve the simulation of boundary-layer, surface solar fluxes and associated sensible/latent heat fluxes. Preliminary simulated meteorological parameters, fine particles (PM2.5) and their chemical components agree well with observational data in terms of both magnitude and spatio-temporal variations. The effects of anthropogenic aerosols, including BC, on radiative forcing, surface temperature, wind speed, humidity, cloud water path, and precipitation are quantified on the basis of simulation results. With several preliminary sensitivity runs, we found that meteorological parameters and aerosol radiative effects simulated with the incorporation of improved BC absorption and 3-D radiation parameterizations deviate substantially from simulation results using the conventional homogeneous/core-shell configuration for BC and the plane-parallel model for radiative transfer. Understanding of the aerosol effects on regional climate change over megacities must consider the complex shape and mixing state of aerosol aggregates and 3D radiative transfer effects over city landscape.

  15. Anthropogenic climate change affects meteorological drought risk in Europe

    International Nuclear Information System (INIS)

    Gudmundsson, L; Seneviratne, S I

    2016-01-01

    Drought constitutes a significant natural hazard in Europe, impacting societies and ecosystems across the continent. Climate model simulations with increasing greenhouse gas concentrations project increased drought risk in southern Europe, and on the other hand decreased drought risk in the north. Observed changes in water balance components and drought indicators resemble the projected pattern. However, assessments of possible causes of the reported regional changes have so far been inconclusive. Here we investigate whether anthropogenic emissions have altered past and present meteorological (precipitation) drought risk. For doing so we first estimate the magnitude of 20 year return period drought years that would occur without anthropogenic effects on the climate. Subsequently we quantify to which degree the occurrence probability, i.e. the risk, of these years has changed if anthropogenic climate change is accounted for. Both an observational and a climate model-based assessment suggest that it is >95% likely that human emissions have increased the probability of drought years in the Mediterranean, whereas it is >95% likely that the probability of dry years has decreased in northern Europe. In central Europe the evidence is inconclusive. The results highlight that anthropogenic climate change has already increased drought risk in southern Europe, stressing the need to develop efficient mitigation measures. (letter)

  16. The Forgotten Legacy: Sediment From Historical Gold Mining Greatly Exceeds all Other Anthropogenic Sources in SE Australian Rivers

    Science.gov (United States)

    Rutherfurd, I.; Davies, P.; Macklin, M. G.; Grove, J. R.

    2016-12-01

    Coarse and fine sediment has been a major pollutant of Australian rivers and receiving waters since European settlement in 1788. Anthropogenic sediment budget models demonstrate that catchment and channel erosion has increased background sediment delivery by 10 to 20 times across SE Australia, but these estimates ignore the contribution of historical gold mining. Detailed historical records allow us to reconstruct the delivery of coarse and fine sediment (including contaminated sediment) to the fluvial system. Between 1851 and 1900 alluvial gold mining in the state of Victoria liberated between 1.2 billion and 1.4 billion m3 of coarse and fine sediment into streams. Catchment scale modelling demonstrates that this volume is at least twice the volume of all anthropogenic (post-European) erosion from hillslopes, river banks, and gullies. We map the deposition and remobilization of these contaminated legacy mining sediments down selected valleys, and find that many contemporary floodplains are blanketed with mining sediments (although mercury contamination is present but low), and discrete sediment-slugs can be recognized migrating down river beds. Overall, the impact of gold mining is one of the strongest indicators of the Anthropocene in the Australian landscape, and the level of impact on rivers is substantially greater than recognized in the past. Perhaps of most interest is the rapid recovery of many river systems from the substantial impacts of gold mining. The result is that these major changes to the landscape are largely forgotten.

  17. Effect of recent climate change on Arctic Pb pollution: A comparative study of historical records in lake and peat sediments

    International Nuclear Information System (INIS)

    Liu Xiaodong; Jiang Shan; Zhang Pengfei; Xu Liqiang

    2012-01-01

    Historical changes of anthropogenic Pb pollution were reconstructed based on Pb concentrations and isotope ratios in lake and peat sediment profiles from Ny-Ålesund of Arctic. The calculated excess Pb isotope ratios showed that Pb pollution largely came from west Europe and Russia. The peat profile clearly reflected the historical changes of atmospheric deposition of anthropogenic Pb into Ny-Ålesund, and the result showed that anthropogenic Pb peaked at 1960s–1970s, and thereafter a significant recovery was observed by a rapid increase of 206 Pb/ 207 Pb ratios and a remarkable decrease in anthropogenic Pb contents. In contrast to the peat record, the longer lake record showed relatively high anthropogenic Pb contents and a persistent decrease of 206 Pb/ 207 Pb ratios within the uppermost samples, suggesting that climate-sensitive processes such as catchment erosion and meltwater runoff might have influenced the recent change of Pb pollution record in the High Arctic lake sediments. - Highlights: ► Historical changes of anthropogenic Pb pollution in Ny-Ålesund were reconstructed. ► Anthropogenic Pb in Ny-Ålesund was largely originated from W. European and Russia. ► Anthropogenic Pb recorded in peat sediments peaked at 1960–1970s and then declined. ► High anthropogenic fluxes were found in recent change of Pb record from lake sediments. ► Climate-sensitive processes might have influenced recent Pb accumulation rate in lakes. - This manuscript reports the effects of climate-sensitive processes on historical records of Pb pollution in sediments of Arctic lakes.

  18. Dental health state of children living in different anthropogenic condition

    Directory of Open Access Journals (Sweden)

    M. A. Luchynskyі

    2015-11-01

    I. Y. Horbachevskyy Ternopil State Medical University of Ministry of Health of Ukraine, Ukraine, Ternopil (Ternopil, Maydan Voli, 1, 46001   Abstract   The purpose of the work is to study dental health of children living in conditions of combined negative impact of natural and technological factors. Materials and methods. It was performed an epidemiological dental examination of 2,551 children aged 6 to 15 years, who settled in different regions of the Precarpathians, in conditions of iodine and fluoride deficiency (plain - 1087 children, foothills - 730 and mountain - 734 children. Results. Comprehensive epidemiological studies found low levels of dental health of children living in different geochemical and anthropogenic conditions of Ivano-Frankivsk region (48,83 ± 0,36% in the general observation, that is not statistically different by regions examination, moreover girls level is lower, than that of boys in examined regions (48,14 ± 0,50 and (49,51 ± 0,52%, respectively. It was founded, that the main diseases, which contribute to the reduction of dental health in children, is dental caries and its complications and abnormalities of dentoalveolar system. It was found, that the frequency and severity of dentoalveolar abnormalities depend on anthropogenic environmental conditions: in children of plain and foothill regions, that suffer from greater anthropogenic pressure, dentoalveolar abnormalities where found in (67,99 ± 1,42 and (65,21 ± 1,76%, against (45,91 ± 1,84% in children of conditionally pure mountain region. These same children also often recorded more severe pathology – combined anomalies (24,09 ± 1,57 and (22,06 ± 1,90%, against (12,17 ± 1,78%, respectively. It was found the connection between the dentoalveolar abnormalities and the presence of caries (r = + 0,95; p <0,01 and periodontal tissue diseases (r = + 0,79; p <0,05.   Keywords: children, dental health, dentoalveolar abnormalities, dental caries, periodontal disease, hypoplasia.

  19. Variability in metagenomic samples from the Puget Sound: Relationship to temporal and anthropogenic impacts.

    Directory of Open Access Journals (Sweden)

    James C Wallace

    Full Text Available Whole-metagenome sequencing (WMS has emerged as a powerful tool to assess potential public health risks in marine environments by measuring changes in microbial community structure and function in uncultured bacteria. In addition to monitoring public health risks such as antibiotic resistance determinants, it is essential to measure predictors of microbial variation in order to identify natural versus anthropogenic factors as well as to evaluate reproducibility of metagenomic measurements.This study expands our previous metagenomic characterization of Puget Sound by sampling new nearshore environments including the Duwamish River, an EPA superfund site, and the Hood Canal, an area characterized by highly variable oxygen levels. We also resampled a wastewater treatment plant, nearshore and open ocean sites introducing a longitudinal component measuring seasonal and locational variations and establishing metagenomics sampling reproducibility. Microbial composition from samples collected in the open sound were highly similar within the same season and location across different years, while nearshore samples revealed multi-fold seasonal variation in microbial composition and diversity. Comparisons with recently sequenced predominant marine bacterial genomes helped provide much greater species level taxonomic detail compared to our previous study. Antibiotic resistance determinants and pollution and detoxification indicators largely grouped by location showing minor seasonal differences. Metal resistance, oxidative stress and detoxification systems showed no increase in samples proximal to an EPA superfund site indicating a lack of ecosystem adaptation to anthropogenic impacts. Taxonomic analysis of common sewage influent families showed a surprising similarity between wastewater treatment plant and open sound samples suggesting a low-level but pervasive sewage influent signature in Puget Sound surface waters. Our study shows reproducibility of

  20. Dynamic soil properties in response to anthropogenic disturbance

    Science.gov (United States)

    Vanacker, Veerle; Ortega, Raúl

    2013-04-01

    Anthropogenic disturbance of natural vegetation can profoundly alter the physical, chemical and biological processes within soils. Rapid removal of topsoil during intense farming can result in an imbalance between soil production through chemical weathering and physical erosion, with direct implications on local biogeochemical cycling. However, the feedbacks between soil erosion, chemical weathering and biogeochemical cycling in response to anthropogenic forcing are not yet fully understood. Here, we study dynamic soil properties for a rapidly changing anthropogenic landscape, and focus on the coupling between physical erosion, soil production and soil chemical weathering. The archaeological site of Santa Maria de Melque (Toledo, Central Spain) was selected for its remarkably long occupation history dating back to the 7th century AD. As part of the agricultural complex, four retention reservoirs were built in the Early Middle Ages. The sedimentary archive was used to track the evolution in sedimentation rates and geochemical properties of the sediment. Catchment-wide soil erosion rates vary slightly between the various occupation phases (7th century-now), but are of the same magnitude as the cosmogenic nuclide-derived erosion rates. However, there exists large spatial variation in physical erosion rates that are coupled with chemical weathering intensities. The sedimentary records suggest that there are important changes in the spatial pattern of sediment source areas through time as a result of changing land use patterns

  1. Benchmarking Anthropogenic Heavy Metals Emissions: Australian and Global Urban Environmental Health Risk Based Indicators of Sustainability

    Science.gov (United States)

    Dejkovski, Nick

    2016-01-01

    In Australia, the impacts of urbanisation and human activity are evident in increased waste generation and the emissions of metals into the air, land or water. Metals that have accumulated in urban soils almost exclusively anthropogenically can persist for long periods in the environment. Anthropogenic waste emissions containing heavy metals are a…

  2. Exploring the Impacts of Anthropogenic Disturbance on Seawater and Sediment Microbial Communities in Korean Coastal Waters Using Metagenomics Analysis

    Directory of Open Access Journals (Sweden)

    Nam-Il Won

    2017-01-01

    Full Text Available The coastal ecosystems are considered as one of the most dynamic and vulnerable environments under various anthropogenic developments and the effects of climate change. Variations in the composition and diversity of microbial communities may be a good indicator for determining whether the marine ecosystems are affected by complex forcing stressors. DNA sequence-based metagenomics has recently emerged as a promising tool for analyzing the structure and diversity of microbial communities based on environmental DNA (eDNA. However, few studies have so far been performed using this approach to assess the impacts of human activities on the microbial communities in marine systems. In this study, using metagenomic DNA sequencing (16S ribosomal RNA gene, we analyzed and compared seawater and sediment communities between sand mining and control (natural sites in southern coastal waters of Korea to assess whether anthropogenic activities have significantly affected the microbial communities. The sand mining sites harbored considerably lower levels of microbial diversities in the surface seawater community during spring compared with control sites. Moreover, the sand mining areas had distinct microbial taxonomic group compositions, particularly during spring season. The microbial groups detected solely in the sediment load/dredging areas (e.g., Marinobacter, Alcanivorax, Novosphingobium are known to be involved in degradation of toxic chemicals such as hydrocarbon, oil, and aromatic compounds, and they also contain potential pathogens. This study highlights the versatility of metagenomics in monitoring and diagnosing the impacts of human disturbance on the environmental health of marine ecosystems from eDNA.

  3. Cascading impacts of anthropogenically driven habitat loss: deforestation, flooding, and possible lead poisoning in howler monkeys (Alouatta pigra).

    Science.gov (United States)

    Serio-Silva, Juan Carlos; Olguín, Eugenia J; Garcia-Feria, Luis; Tapia-Fierro, Karla; Chapman, Colin A

    2015-01-01

    To construct informed conservation plans, researchers must go beyond understanding readily apparent threats such as habitat loss and bush-meat hunting. They must predict subtle and cascading effects of anthropogenic environmental modifications. This study considered a potential cascading effect of deforestation on the howler monkeys (Alouatta pigra) of Balancán, Mexico. Deforestation intensifies flooding. Thus, we predicted that increased flooding of the Usumacinta River, which creates large bodies of water that slowly evaporate, would produce increased lead content in the soils and plants, resulting in lead exposure in the howler monkeys. The average lead levels were 18.18 ± 6.76 ppm in the soils and 5.85 ± 4.37 ppm in the plants. However, the average lead content of the hair of 13 captured howler monkeys was 24.12 ± 5.84 ppm. The lead levels in the animals were correlated with 2 of 15 blood traits (lactate dehydrogenase and total bilirubin) previously documented to be associated with exposure to lead. Our research illustrates the urgent need to set reference values indicating when adverse impacts of high environmental lead levels occur, whether anthropogenic or natural, and the need to evaluate possible cascading effects of deforestation on primates.

  4. Predicting the impacts of anthropogenic disturbances on marine populations

    DEFF Research Database (Denmark)

    Nabe-Nielsen, Jacob; van Beest, Floris; Grimm, Volker

    Marine ecosystems are increasingly exposed to anthropogenic disturbances that cause animals to change behavior and move away from potential foraging grounds. Here we present a process-based modeling framework for assessing population consequences of such sub-lethal behavioral effects. It builds...... on how disturbances influence animal movements, and how this in turn affect their foraging and energetics. The animals’ tendency to move away from disturbances is directly related to the experienced noise level. The reduced foraging in noisy areas affects the animals’ energy budget, fitness...... that determine animal fitness, are expected to have high predictive power in novel environments, making them ideal tools for marine management....

  5. IDENTIFYING ANTHROPOGENIC METALLIC POLLUTANTS USING FREQUENCY DEPENDENT MAGNETIC SUSCEPTIBILITY MEASUREMENTS IN ABUJA METROPOLIS

    Directory of Open Access Journals (Sweden)

    Jatto S. Solomon

    2017-07-01

    Full Text Available Soil formed from lithological and weathering processes of parent rocks generally exhibit paramagnetic properties due to some minerals contained in the rocks and thus have significant value of magnetic susceptibility. This susceptibility arising from the influence of the parent rocks tend to mask anthropogenic grains pollutants released into the environment by human activities. Hence, it becomes difficult to identify the effect of the lithological and anthropogenic magnetic susceptibility in complex soil found in urban areas. The superparamagnetic effect of lithological soil, a single state domain and multi-domain state of anthropogenic grains can easily be investigated by frequency dependent measurements where readings between 0-2.0% indicates the absence of lithological influence, 2.0-8.0% indicates multi-domain grains or mixture of both single stage and multi-domian grains and 8.0-12% indicates the superparamagntic (SP grain from lithological origin. In this work frequency dependent measurements were carried out along 5 selected road networks within the 5 districts of Abuja phase 1. Measurements were also carried out in 379 random points at the surface and depth of 40.0cm to investigate the distribution of anthropogenic grains in Abuja metropolis using the Bartington susceptibility meter. Frequency dependent measurements along the selected road networks indicate0-3.0% immediately after the roads pavement to a distance of about 3.0m from the road, indicating that the magnetic susceptibility arise mostly form anthropogenic influence rather than lithological processes. At the distance of 3.0-8.0m, frequency dependent values of about 3.0-8.0% were recorded, indicating mixture of both superparamagnetic and multi-domain grains. Beyond the distance of 8.0m, the frequency dependent values are mostly above 8.0.0%, indicating virtually all SP grains. The spatial distribution frequency dependent surface map shows the presence of anthropogenic grains in

  6. Evaluation of anthropogenic urban soils. Final report; Bewertung anthropogener Stadtboeden. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Blume, H.P.; Schleuss, U. [eds.

    1997-12-31

    The research project `Evaluation of Anthropogenic Urban Soils` was subsidized by the German Federal Ministry of Education, Science, Research and Technology and adviced by the working group `Stadtboeden` of the German Society of Soil Science. It was realized as a cooperation between the universities of Berlin (TU), Halle-Wittenberg, Hohenheim, Kiel and Rostock and had three objectives: - to characterize soils developed from anthropogenic substratums (`urban soils`), - to figure out distribution patterns of such soils and - to verify whether urban soils could be evaluated according to their filtering and habitat function in the same way as soils developed from natural parent material. Evaluation methods based on easily obtainable field data had to be adapted to `urban soils` respectively developed anew. For that reason some typical soils of anthropogenic lithogenesis had to be examined between 1993 and 1996 both on their importance as habitats for plants and soil organisms and on their filtering, buffering and transforming capacities for organic and inorganic pollutants. Accordingly representative `urban soils` were gathered in the towns of Berlin, Eckernfoerde, Essen, Halle, Kiel, Rostock and Stuttgart; these soils had developed from technogenic substratums (brick and mortar debris, municipal waste, ashes, slag, sludge) and redeposited alkaline resp. acidic natural substratums (mud, coal mine and coking plant deposits). Some of the soils were influenced by ground water, and all soils developed from the same kind of parent material belonged to different stages of development. (orig./SR) [Deutsch] Ziele des vom BMBF gefoerderten und vom Arbeitskreis Stadtboeden der Deutschen Bodenkundlichen Gesellschaft beratenen Verbundprojektes `Bewertung anthropogener Stadtboeden` waren die Charakterisierung von Boeden anthropogener Substrate, die exemplarische Ermittlung des Verteilungsmusters derartiger Boeden und die Pruefung, inwieweit sie sich aehnlich den Boeden natuerlicher

  7. Identification of potential impacts of climate change and anthropogenic activities on streamflow alterations in the Tarim River Basin, China.

    Science.gov (United States)

    Xue, Lianqing; Yang, Fan; Yang, Changbing; Chen, Xinfang; Zhang, Luochen; Chi, Yixia; Yang, Guang

    2017-08-15

    Understanding contributions of climate change and human activities to changes in streamflow is important for sustainable management of water resources in an arid area. This study presents quantitative analysis of climatic and anthropogenic factors to streamflow alteration in the Tarim River Basin (TRB) using the double mass curve method (DMC) and the Budyko methods. The time series (1960~2015) are divided into three periods: the prior impacted period (1960~1972) and the two post impacted periods, 1973~1986 and 1987~2015 with trend analysis. Our results suggest that human activities played a dominant role in deduction in the streamflow in TRB with contribution of 144.6% to 120.68% during the post impacted period I and 228.68% to 140.38% during the post impacted period II. Climatic variables accounted for 20.68%~44.6% of the decrease during the post impacted period I and 40.38% ~128.68% during the post impacted period II. Sensitivity analysis indicates that the streamflow alteration was most sensitive to changes in landscape parameters. The aridity index and all the elasticities showed an obvious increasing trend from the upstream to the downstream in the TRB. Our study suggests that it is important to take effective measures for sustainable development of eco-hydrological and socio-economic systems in the TRB.

  8. Quantitative identification and source apportionment of anthropogenic heavy metals in marine sediment of Hong Kong

    Science.gov (United States)

    Zhou, Feng; Guo, Huaicheng; Liu, Lei

    2007-10-01

    Based on ten heavy metals collected twice annually at 59 sites from 1998 to 2004, enrichment factors (EFs), principal component analysis (PCA) and multivariate linear regression of absolute principal component scores (MLR-APCS) were used in identification and source apportionment of the anthropogenic heavy metals in marine sediment. EFs with Fe as a normalizer and local background as reference values was properly tested and suitable in Hong Kong, and Zn, Ni, Pb, Cu, Cd, Hg and Cr mainly originated from anthropogenic sources, while Al, Mn and Fe were derived from rocks weathering. Rotated PCA and GIS mapping further identified two types of anthropogenic sources and their impacted regions: (1) electronic industrial pollution, riparian runoff and vehicle exhaust impacted the entire Victoria Harbour, inner Tolo Harbour, Eastern Buffer, inner Deep Bay and Cheung Chau; and (2) discharges from textile factories and paint, influenced Tsuen Wan Bay and Kwun Tong typhoon shelter and Rambler Channel. In addition, MLR-APCS was successfully introduced to quantitatively determine the source contributions with uncertainties almost less than 8%: the first anthropogenic sources were responsible for 50.0, 45.1, 86.6, 78.9 and 87.5% of the Zn, Pb, Cu, Cd and Hg, respectively, whereas 49.9% of the Ni and 58.4% of the Cr came from the second anthropogenic sources.

  9. The impact of biogenic, anthropogenic, and biomass burning volatile organic compound emissions on regional and seasonal variations in secondary organic aerosol

    Science.gov (United States)

    Kelly, Jamie M.; Doherty, Ruth M.; O'Connor, Fiona M.; Mann, Graham W.

    2018-05-01

    The global secondary organic aerosol (SOA) budget is highly uncertain, with global annual SOA production rates, estimated from global models, ranging over an order of magnitude and simulated SOA concentrations underestimated compared to observations. In this study, we use a global composition-climate model (UKCA) with interactive chemistry and aerosol microphysics to provide an in-depth analysis of the impact of each VOC source on the global SOA budget and its seasonality. We further quantify the role of each source on SOA spatial distributions, and evaluate simulated seasonal SOA concentrations against a comprehensive set of observations. The annual global SOA production rates from monoterpene, isoprene, biomass burning, and anthropogenic precursor sources is 19.9, 19.6, 9.5, and 24.6 Tg (SOA) a-1, respectively. When all sources are included, the SOA production rate from all sources is 73.6 Tg (SOA) a-1, which lies within the range of estimates from previous modelling studies. SOA production rates and SOA burdens from biogenic and biomass burning SOA sources peak during Northern Hemisphere (NH) summer. In contrast, the anthropogenic SOA production rate is fairly constant all year round. However, the global anthropogenic SOA burden does have a seasonal cycle which is lowest during NH summer, which is probably due to enhanced wet removal. Inclusion of the new SOA sources also accelerates the ageing by condensation of primary organic aerosol (POA), making it more hydrophilic, leading to a reduction in the POA lifetime. With monoterpene as the only source of SOA, simulated SOA and total organic aerosol (OA) concentrations are underestimated by the model when compared to surface and aircraft measurements. Model agreement with observations improves with all new sources added, primarily due to the inclusion of the anthropogenic source of SOA, although a negative bias remains. A further sensitivity simulation was performed with an increased anthropogenic SOA reaction

  10. Initial estimates of anthropogenic heat emissions for the City of Durban

    CSIR Research Space (South Africa)

    Padayachi, Yerdashin R

    2018-03-01

    Full Text Available Cities in South Africa are key hotspots for regional emissions and climate change impacts including the urban heat island effect. Anthropogenic Heat (AH) emission is an important driver of warming in urban areas. The implementation of mitigation...

  11. Deconstructing Demand: The Anthropogenic and Climatic Drivers of Urban Water Consumption.

    Science.gov (United States)

    Hemati, Azadeh; Rippy, Megan A; Grant, Stanley B; Davis, Kristen; Feldman, David

    2016-12-06

    Cities in drought prone regions of the world such as South East Australia are faced with escalating water scarcity and security challenges. Here we use 72 years of urban water consumption data from Melbourne, Australia, a city that recently overcame a 12 year "Millennium Drought", to evaluate (1) the relative importance of climatic and anthropogenic drivers of urban water demand (using wavelet-based approaches) and (2) the relative contribution of various water saving strategies to demand reduction during the Millennium Drought. Our analysis points to conservation as a dominant driver of urban water savings (69%), followed by nonrevenue water reduction (e.g., reduced meter error and leaks in the potable distribution system; 29%), and potable substitution with alternative sources like rain or recycled water (3%). Per-capita consumption exhibited both climatic and anthropogenic signatures, with rainfall and temperature explaining approximately 55% of the variance. Anthropogenic controls were also strong (up to 45% variance explained). These controls were nonstationary and frequency-specific, with conservation measures like outdoor water restrictions impacting seasonal water use and technological innovation/changing social norms impacting lower frequency (baseline) use. The above-noted nonstationarity implies that wavelets, which do not assume stationarity, show promise for use in future predictive models of demand.

  12. Celtic field agriculture and Early Anthropogenic Environmental change in soil records of the Meuse-Demer-Scheldt region, NW Europe.

    Science.gov (United States)

    Van der Sanden, Germaine; Kluiving, Sjoerd; Roymans, Nico

    2017-04-01

    Archaeological research is fundamental in the process of obtaining a greater understanding on the intricate dynamics between the human species and the 'natural' environment. Deep historical processes can evaluate the complex interactions that eventually led to the human species as the dominating agent, in terms of the Earth's biotic and abiotic processes. Regional landscape studies can determine whether the human species can be evaluated as a formative element in soil formation processes during the Holocene. This study is directed to examine early anthropogenic land cover change (ALCC) in the Meuse-Demer-Scheldt region, in the southern Netherlands and northern Belgium, between the Late Bronze Age and Early Roman Period (1050-200 AD). The introduction of an extensive agricultural system, the Celtic field system, in co-relation with demographic rise, led to increased anthropogenic pressure on the MDS landscape. Throughout the Holocene, demographic rise pressured farmers to develop increasingly efficient and innovative methods of extracting more yields per unit area farmed resulting in a decrease in land use per capita over time (Kaplan et al. 2010; Boserup, 1965,1981)). The land use per capita under Celtic field technology was relatively high compared to contemporary numbers, based on the assumption that land use per capita did not remain constant. The MDS region is a clear example of early Holocene ALCC and modification of terrestrial ecosystems due to excessive clearance of vegetation. Early Holocene ALCC resulted in ecological deficiencies in the landscape, e.g. deforestation, acceleration of podzolisation and a decrease in terrestrial carbon storage as well as water retention capacity. ALCC can impact climate through biogeophysical and biogeochemical feedbacks to the atmosphere, and result in regional negative radiative forcing. Here we hypothesize that the previously presumed fundamental restructuring that led to a structural bipartition in the landscape due to

  13. Estimating Anthropogenic Emissions of Hydrogen Chloride and Fine Particulate Chloride in China

    Science.gov (United States)

    Fu, X.; Wang, T.; Wang, S.; Zhang, L.

    2017-12-01

    Nitryl chloride (ClNO2) can significantly impact the atmospheric photochemistry via photolysis and subsequent reactions of chlorine radical with other gases. The formation of ClNO2 in the atmosphere is sensitive to the emissions of chlorine-containing particulates from oceanic and anthropogenic sources. For China, the only available anthropogenic chlorine emission inventory was compiled for the year 1990 with a coarse resolution of 1 degree. In this study, we developed an up-to-date anthropogenic inventory of hydrogen chloride (HCl) and fine particulate chloride (Cl-) emissions in China for the year 2014, including coal burning, industrial processes, biomass burning and waste burning. Bottom-up and top-down methodologies were combined. Detailed local data (e.g. Cl content in coal, control technologies, etc.) were collected and applied. In order to improve the spatial resolution of emissions, detailed point source information were collected for coal-fired power plants, cement factories, iron & steel factories and waste incineration factories. Uncertainties of this emission inventory and their major causes were analyzed using the Monte Carlo method. This work enables better quantification of the ClNO2 production and impact over China.

  14. Decline of Yangtze River water and sediment discharge: Impact from natural and anthropogenic changes

    Science.gov (United States)

    Yang, S. L.; Xu, K. H.; Milliman, J. D.; Yang, H. F.; Wu, C. S.

    2015-01-01

    The increasing impact of both climatic change and human activities on global river systems necessitates an increasing need to identify and quantify the various drivers and their impacts on fluvial water and sediment discharge. Here we show that mean Yangtze River water discharge of the first decade after the closing of the Three Gorges Dam (TGD) (2003–2012) was 67 km3/yr (7%) lower than that of the previous 50 years (1950–2002), and 126 km3/yr less compared to the relatively wet period of pre-TGD decade (1993–2002). Most (60–70%) of the decline can be attributed to decreased precipitation, the remainder resulting from construction of reservoirs, improved water-soil conservation and increased water consumption. Mean sediment flux decreased by 71% between 1950–1968 and the post-TGD decade, about half of which occurred prior to the pre-TGD decade. Approximately 30% of the total decline and 65% of the decline since 2003 can be attributed to the TGD, 5% and 14% of these declines to precipitation change, and the remaining to other dams and soil conservation within the drainage basin. These findings highlight the degree to which changes in riverine water and sediment discharge can be related with multiple environmental and anthropogenic factors. PMID:26206169

  15. Additive negative effects of anthropogenic sedimentation and warming on the survival of coral recruits.

    Science.gov (United States)

    Fourney, Francesca; Figueiredo, Joana

    2017-09-28

    Corals worldwide are facing population declines due to global climate change and local anthropogenic impacts. Global climate change effects are hard to tackle but recent studies show that some coral species can better handle climate change stress when provided with additional energy resources. The local stressor that most undermines energy acquisition is sedimentation because it impedes coral heterotrophic feeding and their ability to photosynthesize. To investigate if reducing local sedimentation will enable corals to better endure ocean warming, we quantitatively assessed the combined effects of increased temperature and sedimentation (concentration and turbidity) on the survival of coral recruits of the species, Porites astreoides. We used sediment from a reef and a boat basin to mimic natural sediment (coarse) and anthropogenic (fine) sediment (common in dredging), respectively. Natural sediment did not negatively impact coral survival, but anthropogenic sediment did. We found that the capacity of coral recruits to survive under warmer temperatures is less compromised when anthropogenic sedimentation is maintained at the lowest level (30 mg.cm -2 ). Our study suggests that a reduction of US-EPA allowable turbidity from 29 Nephelometric Turbidity Units (NTU) above background to less than 7 NTU near coral reefs would facilitate coral recruit survival under current and higher temperatures.

  16. Contrasting isotopic signatures between anthropogenic and geogenic Zn and evidence for post-depositional fractionation processes in smelter-impacted soils from Northern France

    Science.gov (United States)

    Juillot, Farid; Maréchal, Chloe; Morin, Guillaume; Jouvin, Delphine; Cacaly, Sylvain; Telouk, Philipe; Benedetti, Marc F.; Ildefonse, Philippe; Sutton, Steve; Guyot, François; Brown, Gordon E., Jr.

    2011-05-01

    Zinc isotopes have been studied along two smelter-impacted soil profiles sampled near one of the largest Pb and Zn processing plants in Europe located in northern France, about 50 km south of Lille. Mean δ 66Zn values along these two soil profiles range from +0.22 ± 0.17‰ (2 σ) to +0.34 ± 0.17‰ (2 σ) at the lowest horizons and from +0.38 ± 0.45‰ (2 σ) to +0.76 ± 0.14‰ (2 σ) near the surface. The δ 66Zn values in the lowest horizons of the soils are interpreted as being representative of the local geochemical background (mean value +0.31 ± 0.38‰), whereas heavier δ 66Zn values near the surface of the two soils are related to anthropogenic Zn. This anthropogenic Zn occurs in the form of franklinite (ZnFe 2O 4)-bearing slag grains originating from processing wastes at the smelter site and exhibiting δ 66Zn values of +0.81 ± 0.20‰ (2 σ). The presence of franklinite is indicated by EXAFS analysis of the topsoil samples from both soil profiles as well as by micro-XANES analysis of the surface horizon of a third smelter-impacted soil from a distant site. These results indicate that naturally occurring Zn and smelter-derived Zn exhibit significantly different δ 66Zn values, which suggests that zinc isotopes can be used to distinguish between geogenic and anthropogenic sources of Zn in smelter-impacted soils. In addition to a possible influence of additional past sources of light Zn (likely Zn-sulfides and Zn-sulfates directly emitted by the smelter), the light δ 66Zn values in the surface horizons compared to smelter-derived slag materials are interpreted as resulting mainly from fractionation processes associated with biotic and/or abiotic pedological processes (Zn-bearing mineral precipitation, Zn complexation by organic matter, and plant uptake of Zn). This conclusion emphasizes the need for additional Zn isotopic studies before being able to use Zn isotopes to trace sources and pathways of this element in surface environments.

  17. Life on the edge : hedgehog traffic victims and mitigation strategies in an anthropogenic landscape

    NARCIS (Netherlands)

    Huijser, M.P.

    2000-01-01

    This study focused on the most frequently recorded mammal species in road-kill surveys in western Europe: the hedgehog (Erinaceus europaeus). Investigations were conducted in an anthropogenic landscape and had two major aims:

    1. to quantify the effects of traffic

    2. A centennial record of anthropogenic impacts and extreme weather events in southwestern Taiwan: evidence from sedimentary molecular markers in coastal margin.

      Science.gov (United States)

      Kuo, Li-Jung; Lee, Chon-Lin; Louchouarn, Patrick; Huh, Chih-An; Liu, James T; Chen, Jian-Cheng; Lee, Kun-Je

      2014-09-15

      A 100-year history of human and natural disturbances in southwestern Taiwan was reconstructed using a suite of molecular markers in four dated sediment cores from the upper slope region off the Gaoping River mouth. Trends in polycyclic aromatic hydrocarbons (PAHs) tracked Taiwan's industrialization/urbanization starting in the 1970s, and the enactment of environmental regulatory policies thereafter. The predominant pyrogenic sources include vehicular, smelter, and coal combustion but spatial differences are observed among sub-regions of the shelf. Profiles of lignin oxidation products (LOPs) point to a significant increase in terrestrial organic matter inputs driven by land development after the 1970s. Low lignin diagenetic signature ratios [(Ad/Al)v] in all sediments suggest quick transport of fresh plant material from land to sea via mountainous rivers. Shifts in PAHs, LOPs, and radionuclides in recent sediments reveal the deposition of turbidites resulting from typhoon-induced floods. Multiproxy analysis illustrates the interplay between anthropogenic activities and natural processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

    3. Identifying anthropogenic anomalies in air, surface and groundwater temperatures in Germany.

      Science.gov (United States)

      Benz, Susanne A; Bayer, Peter; Blum, Philipp

      2017-04-15

      Human activity directly influences ambient air, surface and groundwater temperatures. The most prominent phenomenon is the urban heat island effect, which has been investigated particularly in large and densely populated cities. This study explores the anthropogenic impact on the thermal regime not only in selected urban areas, but on a countrywide scale for mean annual temperature datasets in Germany in three different compartments: measured surface air temperature, measured groundwater temperature, and satellite-derived land surface temperature. Taking nighttime lights as an indicator of rural areas, the anthropogenic heat intensity is introduced. It is applicable to each data set and provides the difference between measured local temperature and median rural background temperature. This concept is analogous to the well-established urban heat island intensity, but applicable to each measurement point or pixel of a large, even global, study area. For all three analyzed temperature datasets, anthropogenic heat intensity grows with increasing nighttime lights and declines with increasing vegetation, whereas population density has only minor effects. While surface anthropogenic heat intensity cannot be linked to specific land cover types in the studied resolution (1km×1km) and classification system, both air and groundwater show increased heat intensities for artificial surfaces. Overall, groundwater temperature appears most vulnerable to human activity, albeit the different compartments are partially influenced through unrelated processes; unlike land surface temperature and surface air temperature, groundwater temperatures are elevated in cultivated areas as well. At the surface of Germany, the highest anthropogenic heat intensity with 4.5K is found at an open-pit lignite mine near Jülich, followed by three large cities (Munich, Düsseldorf and Nuremberg) with annual mean anthropogenic heat intensities >4K. Overall, surface anthropogenic heat intensities >0K and

    4. Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry

      Directory of Open Access Journals (Sweden)

      J. P. DiGangi

      2012-10-01

      Full Text Available We present simultaneous fast, in-situ measurements of formaldehyde and glyoxal from two rural campaigns, BEARPEX 2009 and BEACHON-ROCS, both located in Pinus Ponderosa forests with emissions dominated by biogenic volatile organic compounds (VOCs. Despite considerable variability in the formaldehyde and glyoxal concentrations, the ratio of glyoxal to formaldehyde, RGF, displayed a very regular diurnal cycle over nearly 2 weeks of measurements. The only deviations in RGF were toward higher values and were the result of a biomass burning event during BEARPEX 2009 and very fresh anthropogenic influence during BEACHON-ROCS. Other rapid changes in glyoxal and formaldehyde concentrations have hardly any affect on RGF and could reflect transitions between low and high NO regimes. The trend of increased RGF from both anthropogenic reactive VOC mixtures and biomass burning compared to biogenic reactive VOC mixtures is robust due to the short timescales over which the observed changes in RGF occurred. Satellite retrievals, which suggest higher RGF for biogenic areas, are in contrast to our observed trends. It remains important to address this discrepancy, especially in view of the importance of satellite retrievals and in situ measurements for model comparison. In addition, we propose that RGF represents a useful metric for biogenic or anthropogenic reactive VOC mixtures and, in combination with absolute concentrations of glyoxal and formaldehyde, furthermore represents a useful metric for the extent of anthropogenic influence on overall reactive VOC processing via NOx. In particular, RGF yields information about not simply the VOCs dominating reactivity in an airmass, but the VOC processing itself that is directly coupled to ozone and secondary organic aerosol production.

  1. Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model

    Directory of Open Access Journals (Sweden)

    N. Mahowald

    2011-02-01

    Full Text Available Coupled-carbon-climate simulations are an essential tool for predicting the impact of human activity onto the climate and biogeochemistry. Here we incorporate prognostic desert dust and anthropogenic aerosols into the CCSM3.1 coupled carbon-climate model and explore the resulting interactions with climate and biogeochemical dynamics through a series of transient anthropogenic simulations (20th and 21st centuries and sensitivity studies. The inclusion of prognostic aerosols into this model has a small net global cooling effect on climate but does not significantly impact the globally averaged carbon cycle; we argue that this is likely to be because the CCSM3.1 model has a small climate feedback onto the carbon cycle. We propose a mechanism for including desert dust and anthropogenic aerosols into a simple carbon-climate feedback analysis to explain the results of our and previous studies. Inclusion of aerosols has statistically significant impacts on regional climate and biogeochemistry, in particular through the effects on the ocean nitrogen cycle and primary productivity of altered iron inputs from desert dust deposition.

  2. Soil Landscape Pattern Changes in Response to Rural Anthropogenic Activity across Tiaoxi Watershed, China

    Science.gov (United States)

    Xiao, Rui; Jiang, Diwei; Christakos, George; Fei, Xufeng; Wu, Jiaping

    2016-01-01

    Soil sealing (loss of soil resources due to extensive land covering for the purpose of house building, road construction etc.) and subsequent soil landscape pattern changes constitute typical environmental problems in many places worldwide. Previous studies concentrated on soil sealing in urbanized regions, whereas rural areas have not been given sufficient attention. Accordingly, this paper studies soil landscape pattern dynamics (i.e., landscape pattern changes in response to rural anthropogenic activities) in the Tiaoxi watershed (Zhejiang province, eastern China), in which surface sealing is by far the predominant component of human forcing with respect to environmental change. A novel approach of quantifying the impacts of rural anthropogenic activities on soil resources is presented. Specifically, quantitative relationships were derived between five soil landscape pattern metrics (patch density, edge density, shape index, Shannon’s diversity index and aggregation index) and three rural anthropogenic activity indicators (anthropogenic activity intensity, distance to towns, and distance to roads) at two landscape block scales (3 and 5 km) between 1985 and 2010. The results showed that the Tiaoxi watershed experienced extensive rural settlement expansion and high rates of soil sealing. Soil landscapes became more fragmented, more irregular, more isolated, and less diverse. Relationships between soil landscape pattern changes and rural anthropogenic activities differed with the scale (spatial and temporal) and variable considered. In particular, the anthropogenic activity intensity was found to be the most important indicator explaining social development intensity, whereas the other two proximity indicators had a significant impact at certain temporal interval. In combination with scale effects, spatial dependency (correlation) was shown to play a key role that should be carefully taken into consideration in any relevant environmental study. Overall, the

  3. Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity

    Directory of Open Access Journals (Sweden)

    S. A. Henson

    2010-02-01

    Full Text Available Global climate change is predicted to alter the ocean's biological productivity. But how will we recognise the impacts of climate change on ocean productivity? The most comprehensive information available on its global distribution comes from satellite ocean colour data. Now that over ten years of satellite-derived chlorophyll and productivity data have accumulated, can we begin to detect and attribute climate change-driven trends in productivity? Here we compare recent trends in satellite ocean colour data to longer-term time series from three biogeochemical models (GFDL, IPSL and NCAR. We find that detection of climate change-driven trends in the satellite data is confounded by the relatively short time series and large interannual and decadal variability in productivity. Thus, recent observed changes in chlorophyll, primary production and the size of the oligotrophic gyres cannot be unequivocally attributed to the impact of global climate change. Instead, our analyses suggest that a time series of ~40 years length is needed to distinguish a global warming trend from natural variability. In some regions, notably equatorial regions, detection times are predicted to be shorter (~20–30 years. Analysis of modelled chlorophyll and primary production from 2001–2100 suggests that, on average, the climate change-driven trend will not be unambiguously separable from decadal variability until ~2055. Because the magnitude of natural variability in chlorophyll and primary production is larger than, or similar to, the global warming trend, a consistent, decades-long data record must be established if the impact of climate change on ocean productivity is to be definitively detected.

  4. 36 CFR 220.5 - Environmental impact statement and record of decision.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Environmental impact..., DEPARTMENT OF AGRICULTURE NATIONAL ENVIRONMENTAL POLICY ACT (NEPA) COMPLIANCE § 220.5 Environmental impact statement and record of decision. (a) Classes of actions normally requiring environmental impact statements...

  5. Possible influence of anthropogenic aerosols on cirrus clouds and anthropogenic forcing

    Directory of Open Access Journals (Sweden)

    J. E. Penner

    2009-02-01

    Full Text Available Cirrus clouds have a net warming effect on the atmosphere and cover about 30% of the Earth's area. Aerosol particles initiate ice formation in the upper troposphere through modes of action that include homogeneous freezing of solution droplets, heterogeneous nucleation on solid particles immersed in a solution, and deposition nucleation of vapor onto solid particles. Here, we examine the possible change in ice number concentration from anthropogenic soot originating from surface sources of fossil fuel and biomass burning, from anthropogenic sulfate aerosols, and from aircraft that deposit their aerosols directly in the upper troposphere. We use a version of the aerosol model that predicts sulfate number and mass concentrations in 3-modes and includes the formation of sulfate aerosol through homogeneous binary nucleation as well as a version that only predicts sulfate mass. The 3-mode version best represents the Aitken aerosol nuclei number concentrations in the upper troposphere which dominated ice crystal residues in the upper troposphere. Fossil fuel and biomass burning soot aerosols with this version exert a radiative forcing of −0.3 to −0.4 Wm−2 while anthropogenic sulfate aerosols and aircraft aerosols exert a forcing of −0.01 to 0.04 Wm−2 and −0.16 to −0.12 Wm−2, respectively, where the range represents the forcing from two parameterizations for ice nucleation. The sign of the forcing in the mass-only version of the model depends on which ice nucleation parameterization is used and can be either positive or negative. The magnitude of the forcing in cirrus clouds can be comparable to the forcing exerted by anthropogenic aerosols on warm clouds, but this forcing has not been included in past assessments of the total anthropogenic radiative forcing of climate.

  6. Centennial record of anthropogenic impacts in Galveston Bay: Evidence from trace metals (Hg, Pb, Ni, Zn) and lignin oxidation products.

    Science.gov (United States)

    Al Mukaimi, Mohammad E; Kaiser, Karl; Williams, Joshua R; Dellapenna, Timothy M; Louchouarn, Patrick; Santschi, Peter H

    2018-06-01

    During the 20th century the impacts of industrialization and urbanization in Galveston Bay resulted in significant shifts in trace metals (Hg, Pb, Ni, Zn) and vascular plant biomarkers (lignin phenols) recorded within the surface sediments and sediment cores profile. A total of 22 sediment cores were collected in Galveston Bay in order to reconstruct the historical input of Hg, Pb, Ni, Zn and terrestrial organic matter. Total Hg (T-Hg) concentration ranged between 6 and 162 ng g -1 in surface sediments, and showed decreasing concentrations southward from the Houston Ship Channel (HSC) toward the open estuary. Core profiles of T-Hg and trace metals (Ni, Zn) showed substantial inputs starting in 1905, with peak concentrations between 1960 and 1970's, and decreasing thereafter with exception to Pb, which peaked around 1930-1940s. Stable carbon isotopes and lignin phenols showed an increasing input of terrestrial organic matter driven by urban development within the watershed in the early 1940s. Both the enrichment factor and the geoaccumulation index (I geo ) for T-Hg as a measure of the effectiveness of environmental management practices showed substantial improvements since the 1970s. The natural recovery rate in Galveston Bay since the peak input of T-Hg was non-linear and displayed a slow recovery during the twenty-first century. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Evidence for and implications of an Early Archean terrestrial impact record

    International Nuclear Information System (INIS)

    Lowe, D.R.; Byerly, G.R.

    1988-01-01

    Early Archean, 3.5 to 3.2 Ga, greenstone sequences in South Africa and Western Australia contain a well-preserved record of early terrestrial meteorite impacts. The main impact-produced deposits are layers, 10 cm to over 1 m thick, composed largely of sand-sized spherules, 0.1 to 4 mm in diameter. The beds studied to date show an assemblage of features indicating formation by the fall of debris from impact-generated ejecta clouds. Some presented data effectively rule out normal magmatic or sedimentary processes in the origin of these units and provide substantial support for an origin by large impacts on the early earth. The presence of at least four, remarkably thick, nearly pure spherule layers suggests that smaller-scale impact deposits may be even more abundant in these sequences. The existence of a well-preserved Archean terrestrial impact record suggests that a direct source of evidence is available regarding a number of important aspects of early earth history

  8. Minimal impact of an electronic medical records system.

    Science.gov (United States)

    Tall, Jill M; Hurd, Marie; Gifford, Thomas

    2015-05-01

    Electronic medical records (EMRs) implementation in hospitals and emergency departments (EDs) is becoming increasingly more common. The purpose of this study was to determine the impact of an EMR system on patient-related factors that correlate to ED workflow efficiency. A retrospective chart review assessed monthly census reports of all patients who registered and were treated to disposition during conversion from paper charts to an EMR system. The primary outcome measurement was an analysis of the time of registration to discharge or total ED length of stay as well as rate of those who left without being seen, eloped, or left against medical advice. These data were recorded from 3 periods, for 18 months: before installation of the EMR system (pre-EMR), during acclimation to the EMR, and post acclimation (post-EMR). A total of 61626 individual patient records were collected and analyzed. The total ED length of stay across all patient subtypes was not significantly affected by the installation of the hospital-wide EMR system (P = .481); however, a significant decrease was found for patients who were admitted to the hospital from the ED (P .25). Installation of a hospital-wide EMR system had minimal impact on workflow efficiency parameters in an ED. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. An educational intervention impact on the quality of nursing records.

    Science.gov (United States)

    Linch, Graciele Fernanda da Costa; Lima, Ana Amélia Antunes; Souza, Emiliane Nogueira de; Nauderer, Tais Maria; Paz, Adriana Aparecida; da Costa, Cíntia

    2017-10-30

    to evaluate the impact of an educational intervention on the quality of nursing records. quasi-experimental study with before-and-after design conducted in a hospital. All the nurses in the cardiac intensive care unit of the hospital received the intervention, which consisted of weekly meetings during five months. To collect data, the instrument Quality of Diagnoses, Interventions and Outcomes was applied to the patients' charts in two moments: baseline and after intervention. the educational intervention had an impact on the quality of the records, since most of the items presented a significant increase in their mean values after the intervention, despite the low values in the two moments. the educational intervention proved to be effective at improving the quality of nursing records and a lack of quality was identified in the evaluated records, revealed by the low mean values and by the weakness of some questions presented in the items, which did not present a significant increase. Therefore, educational actions focused on real clinical cases may have positive implications for nursing practice.

  10. Acceleration of modern acidification in the South China Sea driven by anthropogenic CO2

    Science.gov (United States)

    Liu, Yi; Peng, Zicheng; Zhou, Renjun; Song, Shaohua; Liu, Weiguo; You, Chen-Feng; Lin, Yen-Po; Yu, Kefu; Wu, Chung-Che; Wei, Gangjian; Xie, Luhua; Burr, George S.; Shen, Chuan-Chou

    2014-01-01

    Modern acidification by the uptake of anthropogenic CO2 can profoundly affect the physiology of marine organisms and the structure of ocean ecosystems. Centennial-scale global and regional influences of anthropogenic CO2 remain largely unknown due to limited instrumental pH records. Here we present coral boron isotope-inferred pH records for two periods from the South China Sea: AD 1048–1079 and AD 1838–2001. There are no significant pH differences between the first period at the Medieval Warm Period and AD 1830–1870. However, we find anomalous and unprecedented acidification during the 20th century, pacing the observed increase in atmospheric CO2. Moreover, pH value also varies in phase with inter-decadal changes in Asian Winter Monsoon intensity. As the level of atmospheric CO2 keeps rising, the coupling global warming via weakening the winter monsoon intensity could exacerbate acidification of the South China Sea and threaten this expansive shallow water marine ecosystem. PMID:24888785

  11. A simple modeling approach to study the regional impact of a Mediterranean forest isoprene emission on anthropogenic plumes

    Directory of Open Access Journals (Sweden)

    J. Cortinovis

    2005-01-01

    Full Text Available Research during the past decades has outlined the importance of biogenic isoprene emission in tropospheric chemistry and regional ozone photo-oxidant pollution. The first part of this article focuses on the development and validation of a simple biogenic emission scheme designed for regional studies. Experimental data sets relative to Boreal, Tropical, Temperate and Mediterranean ecosystems are used to estimate the robustness of the scheme at the canopy scale, and over contrasted climatic and ecological conditions. A good agreement is generally found when comparing field measurements and simulated emission fluxes, encouraging us to consider the model suitable for regional application. Limitations of the scheme are nevertheless outlined as well as further on-going improvements. In the second part of the article, the emission scheme is used on line in the broader context of a meso-scale atmospheric chemistry model. Dynamically idealized simulations are carried out to study the chemical interactions of pollutant plumes with realistic isoprene emissions coming from a Mediterranean oak forest. Two types of anthropogenic sources, respectively representative of the Marseille (urban and Martigues (industrial French Mediterranean sites, and both characterized by different VOC/NOx are considered. For the Marseille scenario, the impact of biogenic emission on ozone production is larger when the forest is situated in a sub-urban configuration (i.e. downwind distance TOWN-FOREST -1. In this case the enhancement of ozone production due to isoprene can reach +37% in term of maximum surface concentrations and +11% in term of total ozone production. The impact of biogenic emission decreases quite rapidly when the TOWN-FOREST distance increases. For the Martigues scenario, the biogenic impact on the plume is significant up to TOWN-FOREST distance of 90km where the ozone maximum surface concentration enhancement can still reach +30%. For both cases, the

  12. The unnatural history of Kāne‘ohe Bay: coral reef resilience in the face of centuries of anthropogenic impacts

    Directory of Open Access Journals (Sweden)

    Keisha D. Bahr

    2015-05-01

    Full Text Available Kāneʻohe Bay, which is located on the on the NE coast of Oʻahu, Hawaiʻi, represents one of the most intensively studied estuarine coral reef ecosystems in the world. Despite a long history of anthropogenic disturbance, from early settlement to post European contact, the coral reef ecosystem of Kāneʻohe Bay appears to be in better condition in comparison to other reefs around the world. The island of Moku o Loʻe (Coconut Island in the southern region of the bay became home to the Hawaiʻi Institute of Marine Biology in 1947, where researchers have since documented the various aspects of the unique physical, chemical, and biological features of this coral reef ecosystem. The first human contact by voyaging Polynesians occurred at least 700 years ago. By A.D. 1250 Polynesians voyagers had settled inhabitable islands in the region which led to development of an intensive agricultural, fish pond and ocean resource system that supported a large human population. Anthropogenic disturbance initially involved clearing of land for agriculture, intentional or accidental introduction of alien species, modification of streams to supply water for taro culture, and construction of massive shoreline fish pond enclosures and extensive terraces in the valleys that were used for taro culture. The arrival by the first Europeans in 1778 led to further introductions of plants and animals that radically changed the landscape. Subsequent development of a plantation agricultural system led to increased human immigration, population growth and an end to traditional land and water management practices. The reefs were devastated by extensive dredge and fill operations as well as rapid growth of human population, which led to extensive urbanization of the watershed. By the 1960’s the bay was severely impacted by increased sewage discharge along with increased sedimentation due to improper grading practices and stream channelization, resulting in extensive loss of

  13. The unnatural history of Kāne'ohe Bay: coral reef resilience in the face of centuries of anthropogenic impacts.

    Science.gov (United States)

    Bahr, Keisha D; Jokiel, Paul L; Toonen, Robert J

    2015-01-01

    Kāne'ohe Bay, which is located on the on the NE coast of O'ahu, Hawai'i, represents one of the most intensively studied estuarine coral reef ecosystems in the world. Despite a long history of anthropogenic disturbance, from early settlement to post European contact, the coral reef ecosystem of Kāne'ohe Bay appears to be in better condition in comparison to other reefs around the world. The island of Moku o Lo'e (Coconut Island) in the southern region of the bay became home to the Hawai'i Institute of Marine Biology in 1947, where researchers have since documented the various aspects of the unique physical, chemical, and biological features of this coral reef ecosystem. The first human contact by voyaging Polynesians occurred at least 700 years ago. By A.D. 1250 Polynesians voyagers had settled inhabitable islands in the region which led to development of an intensive agricultural, fish pond and ocean resource system that supported a large human population. Anthropogenic disturbance initially involved clearing of land for agriculture, intentional or accidental introduction of alien species, modification of streams to supply water for taro culture, and construction of massive shoreline fish pond enclosures and extensive terraces in the valleys that were used for taro culture. The arrival by the first Europeans in 1778 led to further introductions of plants and animals that radically changed the landscape. Subsequent development of a plantation agricultural system led to increased human immigration, population growth and an end to traditional land and water management practices. The reefs were devastated by extensive dredge and fill operations as well as rapid growth of human population, which led to extensive urbanization of the watershed. By the 1960's the bay was severely impacted by increased sewage discharge along with increased sedimentation due to improper grading practices and stream channelization, resulting in extensive loss of coral cover. The reefs of K

  14. Attribution of Anthropogenic Influence on Atmospheric Patterns Conducive to Recent Most Severe Haze Over Eastern China

    Science.gov (United States)

    Li, Ke; Liao, Hong; Cai, Wenju; Yang, Yang

    2018-02-01

    Severe haze pollution in eastern China has caused substantial health impacts and economic loss. Conducive atmospheric conditions are important to affect occurrence of severe haze events, and circulation changes induced by future global climate warming are projected to increase the frequency of such events. However, a potential contribution of an anthropogenic influence to recent most severe haze (December 2015 and January 2013) over eastern China remains unclear. Here we show that the anthropogenic influence, which is estimated by using large ensemble runs with a climate model forced with and without anthropogenic forcings, has already increased the probability of the atmospheric patterns conducive to severe haze by at least 45% in January 2013 and 27% in December 2015, respectively. We further confirm that simulated atmospheric circulation pattern changes induced by anthropogenic influence are driven mainly by increased greenhouse gas emissions. Our results suggest that more strict reductions in pollutant emissions are needed under future anthropogenic warming.

  15. Potential for spatial displacement of Cook Inlet beluga whales by anthropogenic noise in critical habitat

    Science.gov (United States)

    Small, Robert J.; Brost, Brian M.; Hooten, Mevin B.; Castellote, Manuel; Mondragon, Jeffrey

    2017-01-01

    The population of beluga whales in Cook Inlet, Alaska, USA, declined by nearly half in the mid-1990s, primarily from an unsustainable harvest, and was listed as endangered in 2008. In 2014, abundance was ~340 whales, and the population trend during 1999-2014 was -1.3% yr-1. Cook Inlet beluga whales are particularly vulnerable to anthropogenic impacts, and noise that has the potential to reduce communication and echolocation range considerably has been documented in critical habitat; thus, noise was ranked as a high potential threat in the Cook Inlet beluga Recovery Plan. The current recovery strategy includes research on effects of threats potentially limiting recovery, and thus we examined the potential impact of anthropogenic noise in critical habitat, specifically, spatial displacement. Using a subset of data on anthropogenic noise and beluga detections from a 5 yr acoustic study, we evaluated the influence of noise events on beluga occupancy probability. We used occupancy models, which account for factors that affect detection probability when estimating occupancy, the first application of these models to examine the potential impacts of anthropogenic noise on marine mammal behavior. Results were inconclusive, primarily because beluga detections were relatively infrequent. Even though noise metrics (sound pressure level and noise duration) appeared in high-ranking models as covariates for occupancy probability, the data were insufficient to indicate better predictive ability beyond those models that only included environmental covariates. Future studies that implement protocols designed specifically for beluga occupancy will be most effective for accurately estimating the effect of noise on beluga displacement.

  16. Is the global rise of asthma an early impact of anthropogenic climate change?

    Directory of Open Access Journals (Sweden)

    Paul John Beggs

    Full Text Available The increase in asthma incidence, prevalence, and morbidity over recent decades presents a significant challenge to public health. Pollen is an important trigger of some types of asthma, and both pollen quantity and season depend on climatic and meteorological variables. Over the same period as the global rise in asthma, there have been considerable increases in atmospheric carbon dioxide concentration and global average surface temperature. We hypothesize anthropogenic climate change as a plausible contributor to the rise in asthma. Greater concentrations of carbon dioxide and higher temperatures may increase pollen quantity and induce longer pollen seasons. Pollen allergenicity can also increase as a result of these changes in climate. Exposure in early life to a more allergenic environment may also provoke the development of other atopic conditions, such as eczema and allergic rhinitis. Although the etiology of asthma is complex, the recent global rise in asthma could be an early health effect of anthropogenic climate change.

  17. Development of a national anthropogenic heating database with an extrapolation for international cities

    Science.gov (United States)

    Sailor, David J.; Georgescu, Matei; Milne, Jeffrey M.; Hart, Melissa A.

    2015-10-01

    Given increasing utility of numerical models to examine urban impacts on meteorology and climate, there exists an urgent need for accurate representation of seasonally and diurnally varying anthropogenic heating data, an important component of the urban energy budget for cities across the world. Incorporation of anthropogenic heating data as inputs to existing climate modeling systems has direct societal implications ranging from improved prediction of energy demand to health assessment, but such data are lacking for most cities. To address this deficiency we have applied a standardized procedure to develop a national database of seasonally and diurnally varying anthropogenic heating profiles for 61 of the largest cities in the United Stated (U.S.). Recognizing the importance of spatial scale, the anthropogenic heating database developed includes the city scale and the accompanying greater metropolitan area. Our analysis reveals that a single profile function can adequately represent anthropogenic heating during summer but two profile functions are required in winter, one for warm climate cities and another for cold climate cities. On average, although anthropogenic heating is 40% larger in winter than summer, the electricity sector contribution peaks during summer and is smallest in winter. Because such data are similarly required for international cities where urban climate assessments are also ongoing, we have made a simple adjustment accounting for different international energy consumption rates relative to the U.S. to generate seasonally and diurnally varying anthropogenic heating profiles for a range of global cities. The methodological approach presented here is flexible and straightforwardly applicable to cities not modeled because of presently unavailable data. Because of the anticipated increase in global urban populations for many decades to come, characterizing this fundamental aspect of the urban environment - anthropogenic heating - is an essential

  18. 77 FR 74027 - Winter Use Plan, Final Environmental Impact Statement Amended Record of Decision, Yellowstone...

    Science.gov (United States)

    2012-12-12

    ...] Winter Use Plan, Final Environmental Impact Statement Amended Record of Decision, Yellowstone National... Availability of Amended Record of Decision for the Final Environmental Impact Statement for a Winter Use Plan... Record of Decision for the Winter Use Plan for Yellowstone National Park, located in Idaho, Montana, and...

  19. Carbon and nitrogen isotope variations in tree-rings as records of perturbations in regional carbon and nitrogen cycles.

    Science.gov (United States)

    Bukata, Andrew R; Kyser, T Kurtis

    2007-02-15

    Increasing anthropogenic pollution from urban centers and fossil fuel combustion can impact the carbon and nitrogen cycles in forests. To assess the impact of twentieth century anthropogenic pollution on forested system carbon and nitrogen cycles, variations in the carbon and nitrogen isotopic compositions of tree-rings were measured. Individual annual growth rings in trees from six sites across Ontario and one in New Brunswick, Canada were used to develop site chronologies of tree-ring delta 15N and delta 13C values. Tree-ring 615N values were approximately 0.5% per hundred higher and correlated with contemporaneous foliar samples from the same tree, but not with delta 15N values of soil samples. Temporal trends in carbon and nitrogen isotopic compositions of these tree-rings are consistent with increasing anthropogenic influence on both the carbon and nitrogen cycles since 1945. Tree-ring delta 13C values and delta 15N values are correlated at both remote and urban-proximal sites, with delta 15N values decreasing since 1945 and converging on 1% per hundred at urban-proximal sites and decreasing but not converging on a single delta 15N value in remote sites. These results indicate that temporal trends in tree-ring nitrogen and carbon isotopic compositions record the regional extent of pollution.

  20. Identification of anthropogenic influences on water quality of rivers in Taihu watershed

    NARCIS (Netherlands)

    Wang, X.L.; Lu, Y.L.; Han, Jingyi; He, G.Z.; Wang, T.Y.

    2007-01-01

    Surface water bodies are progressively subjected to stress as a result of anthropogenic activities. This study assessed and examined the impact of human activities on spatial variation in the water quality of 19 rivers in the Taihu watershed. Concentrations of physicochemical parameters of surface

  1. Direct radiative effects by anthropogenic particles at a polluted site: Rome (Italy)

    International Nuclear Information System (INIS)

    Bergamo, A.; De Tomasi, F.; Perrone, M.R.

    2008-01-01

    The direct radiative effect (DRE) by all (anthropogenic plus natural) and anthropogenic aerosols is calculated at the solar (0.34 μm) and infrared (4-200 μm) spectral range to better address the annual cycle of the anthropogenic aerosols impact at a site (Rome, Italy) significantly affected by pollution. Aerosol optical and microphysical properties from 2003 AERONET Sun/sky-photometer measurements and solar albedos based on MODIS satellite sensor data constitute the necessary input to radiative transfer simulations. Clear- and all-sky conditions are investigated by adopting ISCCP monthly products for high-, mid-and low-cloud cover. It is shown that monthly mean values of aerosol optical depths by anthropogenic particles (AOD a ) are on average more than 50% of the corresponding all-aerosol-optical-depth (AOD) monthly means. In particular, the AOD a /AOD ratio that varies within the (0.51-0.83) on autumn-winter (A W, October-March), varies within the (0.50-0.71 range on spring-summer (S S, April-September) as a consequence of the larger contribution of natural particles on S S. The surface (sfc), all-sky DRE by anthropogenic particles that is negative all year round at solar wave-lengths, represents on average 60% and 51% of the all-sky sfc-DRE by all aerosols on A W and S S, respectively. The all-sky atmospheric forcing by anthropogenic particles (AF a ) that is positive all year round, is little dependent on seasons: it varies within the (1.0-4.1) W/m 2 and (2.0-4.2) W/m 2 range an A W and S S, respectively. Conversely, the all-sky A F by all aerosols is characterized by a marked seasonality. As a consequence, the atmospheric forcing by anthropogenic particles that on average is 50% of the A F value on A W, decreases down to 36% of the A F value on S S. Infrared aerosols DREs that are positive all year round are significantly smaller than the corresponding absolute values of solar DREs. Clouds decrease on average ToA- and sfc-DRE absolute values by anthropogenic

  2. Quantifying the extent of North American mammal extinction relative to the pre-anthropogenic baseline.

    Science.gov (United States)

    Carrasco, Marc A; Barnosky, Anthony D; Graham, Russell W

    2009-12-16

    Earth has experienced five major extinction events in the past 450 million years. Many scientists suggest we are now witnessing a sixth, driven by human impacts. However, it has been difficult to quantify the real extent of the current extinction episode, either for a given taxonomic group at the continental scale or for the worldwide biota, largely because comparisons of pre-anthropogenic and anthropogenic biodiversity baselines have been unavailable. Here, we compute those baselines for mammals of temperate North America, using a sampling-standardized rich fossil record to reconstruct species-area relationships for a series of time slices ranging from 30 million to 500 years ago. We show that shortly after humans first arrived in North America, mammalian diversity dropped to become at least 15%-42% too low compared to the "normal" diversity baseline that had existed for millions of years. While the Holocene reduction in North American mammal diversity has long been recognized qualitatively, our results provide a quantitative measure that clarifies how significant the diversity reduction actually was. If mass extinctions are defined as loss of at least 75% of species on a global scale, our data suggest that North American mammals had already progressed one-fifth to more than halfway (depending on biogeographic province) towards that benchmark, even before industrialized society began to affect them. Data currently are not available to make similar quantitative estimates for other continents, but qualitative declines in Holocene mammal diversity are also widely recognized in South America, Eurasia, and Australia. Extending our methodology to mammals in these areas, as well as to other taxa where possible, would provide a reasonable way to assess the magnitude of global extinction, the biodiversity impact of extinctions of currently threatened species, and the efficacy of conservation efforts into the future.

  3. Quantifying the extent of North American mammal extinction relative to the pre-anthropogenic baseline.

    Directory of Open Access Journals (Sweden)

    Marc A Carrasco

    2009-12-01

    Full Text Available Earth has experienced five major extinction events in the past 450 million years. Many scientists suggest we are now witnessing a sixth, driven by human impacts. However, it has been difficult to quantify the real extent of the current extinction episode, either for a given taxonomic group at the continental scale or for the worldwide biota, largely because comparisons of pre-anthropogenic and anthropogenic biodiversity baselines have been unavailable. Here, we compute those baselines for mammals of temperate North America, using a sampling-standardized rich fossil record to reconstruct species-area relationships for a series of time slices ranging from 30 million to 500 years ago. We show that shortly after humans first arrived in North America, mammalian diversity dropped to become at least 15%-42% too low compared to the "normal" diversity baseline that had existed for millions of years. While the Holocene reduction in North American mammal diversity has long been recognized qualitatively, our results provide a quantitative measure that clarifies how significant the diversity reduction actually was. If mass extinctions are defined as loss of at least 75% of species on a global scale, our data suggest that North American mammals had already progressed one-fifth to more than halfway (depending on biogeographic province towards that benchmark, even before industrialized society began to affect them. Data currently are not available to make similar quantitative estimates for other continents, but qualitative declines in Holocene mammal diversity are also widely recognized in South America, Eurasia, and Australia. Extending our methodology to mammals in these areas, as well as to other taxa where possible, would provide a reasonable way to assess the magnitude of global extinction, the biodiversity impact of extinctions of currently threatened species, and the efficacy of conservation efforts into the future.

  4. Sinks as integrative elements of the anthropogenic metabolism

    Science.gov (United States)

    Kral, Ulrich; Brunner, Paul H.

    2015-04-01

    The anthropogenic metabolism is an open system requiring exchange of materials and energy between the anthroposphere and the environment. Material and energy flows are taken from nature and become utilized by men. After utilization, the materials either remain in the anthroposphere as recycling products, or they leave the anthroposphere as waste and emission flows. To accommodate these materials without jeopardizing human and environmental health, limited natural sinks are available; thus, man-made sinks have to be provided where natural sinks are missing or overloaded. The oral presentation (1) suggests a coherent definition of the term "sink", encompassing natural and man-made processes, (2) presents a framework to analyse and evaluate anthropogenic material flows to sinks, based on the tool substance flow analysis and impact assessment methodology, and (3) applies the framework in a case study approach for selected substances such as Copper and Lead in Vienna and Perfluorooctane sulfonate in Switzerland. Finally, the numeric results are aggregated in terms of a new indicator that specifies on a regional scale which fractions of anthropogenic material flows to sinks are acceptable. The following results are obtained: In Vienna, 99% of Cu flows to natural and man-made sinks are in accordance with accepted standards. However, the 0.7% of Cu entering urban soils and the 0.3% entering receiving waters surpass the acceptable level. In the case of Pb, 92% of all flows into sinks prove to be acceptable, but 8% are disposed of in local landfills with limited capacity. For PFOS, 96% of all flows into sinks are acceptable. 4% cannot be evaluated due to a lack of normative criteria, despite posing a risk for human health and the environment. The case studies corroborate the need and constraints of sinks to accommodate inevitable anthropogenic material flows.

  5. Barents Sea polar bears (Ursus maritimus: population biology and anthropogenic threats

    Directory of Open Access Journals (Sweden)

    Magnus Andersen

    2016-07-01

    Full Text Available This paper examines how anthropogenic threats, such as disturbance, pollution and climate change, are linked to polar bear (Ursus maritimus population biology in the Svalbard and Barents Sea area, with the aim to increase our understanding of how human activity may impact the population. Overharvesting drastically reduced the population of polar bears in the Barents Sea region from about 1870 to 1970. After harvesting was stopped—in 1956 in Russia and 1973 in Norway—the population grew to an estimated 2650 individuals (95% confidence interval 1900–3600 in 2004, and maternity denning in the Svalbard Archipelago became more widely distributed. During recent decades, the population has faced challenges from a variety of new anthropogenic impacts: a range of pollutants, an increasing level of human presence and activity as well as changes in ice conditions. Contaminants bioaccumulate up through the marine food web, culminating in this top predator that consumes ringed, bearded and harp seals. Females with small cubs use land-fast sea ice for hunting and are therefore vulnerable to disturbance by snowmobile drivers. Sea-ice diminution, associated with climate change, reduces polar bears’ access to denning areas and could negatively affect the survival of cubs. There are clear linkages between population biology and current anthropogenic threats, and we suggest that future research and management should focus on and take into consideration the combined effects of several stressors on polar bears.

  6. Sources, Properties, Aging, and Anthropogenic Influences on OA and SOA over the Southeast US and the Amazon duing SOAS, DC3, SEAC4RS, and GoAmazon

    Science.gov (United States)

    The SE US and the Amazon have large sources of biogenic VOCs, varying anthropogenic pollution impacts, and often poor organic aerosol (OA) model performance. Recent results on the sources, properties, aging, and impact of anthropogenic pollution on OA and secondary OA (SOA) over ...

  7. [Inventory and environmental impact of VOCs emission from the typical anthropogenic sources in Sichuan province].

    Science.gov (United States)

    Han, Li; Wang, Xing-Rui; He, Min; Guo, Wei-Guang

    2013-12-01

    Based on Sichuan province environmental statistical survey data and other relevant activity data, volatile organic compounds (VOCs) emissions from typical anthropogenic sources in Sichuan province were calculated for the year of 2011 by applying the emission factor method. Besides, ozone and secondary organic aerosol formation potentials of these typical anthropogenic sources were discussed. The total VOC emission from these sources was about 482 kt in Sichuan province, biomass burning, solvent utilization, industrial processes, storage and distribution of fuel, and fossil fuel combustion contributed 174 kt, 153 kt, 121 kt, 21 kt and 13 kt, respectively; architecture wall painting, furniture coating, wood decoration painting and artificial board were the major emission sectors of the solvent utilization; while for the industrial processes, 19.4% of VOCs emission was from the wine industry. Chengdu was the largest contributor compared to the other cities in Sichuan, whose VOCs emission from these typical anthropogenic sources in 2011 was 112 kt. OFP of these sources was 1,930 kt altogether. Solvent utilization contributed 50.5% of the total SOA formation potentials, biomass burning and industrial processes both contributed about 23% , with storage and distribution of fuel and fossil fuel combustion accounting for 1% and 1.4%, respectively.

  8. Surf zone fish diet as an indicator of environmental and anthropogenic influences

    Science.gov (United States)

    Costa, Leonardo Lopes; Zalmon, Ilana Rosental

    2017-10-01

    Changes in species' abundance have been used as indicators of environmental and anthropogenic disturbances. However, sublethal, e.g., diet, changes should be detected before some alterations in the composition and structure of fish assemblages occur as a result of ecological negative impacts. The objective of the present study was to assess possible changes in surf zone fish diet in response to environmental and anthropogenic disturbances. Surf zone fish were sampled and their stomach contents were analyzed on two sandy beaches under different levels of human pressure in Southeastern Brazil. Habitat variables related to seasonality, food availability, anthropogenic disturbance, upwelling and river influence were measured as follows: (1) wave height; (2) water temperature; (3) intertidal macroinvertebrates abundance; (4) solid waste amount; (5) salinity; (6) particulate organic carbon (POC) and (7) chlorophyll a (Chl a). Our results showed the influence of seasonality, prey abundance and hydrodynamics in prey selection, and diet overlap between typical surf zone residents. A literature search was also performed and it shows that insects and Emerita brasiliensis eggs, which were the main food item consumed by some surf zone fish at urbanized Brazilian beaches, are unusual worldwide. Furthermore, solid waste was related to high consumption of insects by pompanos fish in urbanized areas, suggesting that this fish diet could be a sublethal indicator of human impact on sandy beaches.

  9. Medical impacts of anthropometric records. | Adebisi | Annals of ...

    African Journals Online (AJOL)

    Anthropology is now one of the inter-disciplinary scientific fields that is gaining much attention in forensic, socio-cultural, industrial and bio-medical applications. There is a need for a better awareness of some of the impacts - past and present, in the medical practice, of the records that were obtained by workers in this field in ...

  10. Satellite data based approach for the estimation of anthropogenic heat flux over urban areas

    Science.gov (United States)

    Nitis, Theodoros; Tsegas, George; Moussiopoulos, Nicolas; Gounaridis, Dimitrios; Bliziotis, Dimitrios

    2017-09-01

    Anthropogenic effects in urban areas influence the thermal conditions in the environment and cause an increase of the atmospheric temperature. The cities are sources of heat and pollution, affecting the thermal structure of the atmosphere above them which results to the urban heat island effect. In order to analyze the urban heat island mechanism, it is important to estimate the anthropogenic heat flux which has a considerable impact on the urban energy budget. The anthropogenic heat flux is the result of man-made activities (i.e. traffic, industrial processes, heating/cooling) and thermal releases from the human body. Many studies have underlined the importance of the Anthropogenic Heat Flux to the calculation of the urban energy budget and subsequently, the estimation of mesoscale meteorological fields over urban areas. Therefore, spatially disaggregated anthropogenic heat flux data, at local and city scales, are of major importance for mesoscale meteorological models. The main objectives of the present work are to improve the quality of such data used as input for mesoscale meteorological models simulations and to enhance the application potential of GIS and remote sensing in the fields of climatology and meteorology. For this reason, the Urban Energy Budget concept is proposed as the foundation for an accurate determination of the anthropogenic heat discharge as a residual term in the surface energy balance. The methodology is applied to the cities of Athens and Paris using the Landsat ETM+ remote sensing data. The results will help to improve our knowledge on Anthropogenic Heat Flux, while the potential for further improvement of the methodology is also discussed.

  11. Effect of recent climate change on Arctic Pb pollution: a comparative study of historical records in lake and peat sediments.

    Science.gov (United States)

    Liu, Xiaodong; Jiang, Shan; Zhang, Pengfei; Xu, Liqiang

    2012-01-01

    Historical changes of anthropogenic Pb pollution were reconstructed based on Pb concentrations and isotope ratios in lake and peat sediment profiles from Ny-Ålesund of Arctic. The calculated excess Pb isotope ratios showed that Pb pollution largely came from west Europe and Russia. The peat profile clearly reflected the historical changes of atmospheric deposition of anthropogenic Pb into Ny-Ålesund, and the result showed that anthropogenic Pb peaked at 1960s-1970s, and thereafter a significant recovery was observed by a rapid increase of (206)Pb/(207)Pb ratios and a remarkable decrease in anthropogenic Pb contents. In contrast to the peat record, the longer lake record showed relatively high anthropogenic Pb contents and a persistent decrease of (206)Pb/(207)Pb ratios within the uppermost samples, suggesting that climate-sensitive processes such as catchment erosion and meltwater runoff might have influenced the recent change of Pb pollution record in the High Arctic lake sediments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Biogenic emissions of isoprenoids and NO in China and comparison to anthropogenic emissions

    International Nuclear Information System (INIS)

    Tie Xuexi; Li Guohui; Ying, Zhuming; Guenther, Alex; Madronich, Sasha

    2006-01-01

    In this study, a regional dynamical model (WRF) is used to drive biogenic emission models to calculate high resolution (10 x 10 km) biogenic emissions of isoprene (C 5 H 8 ), monoterpenes (C 1 H 16 ), and nitric oxide (NO) in China. This high resolution biogenic inventory will be available for the community to study the effect of biogenic emissions on photochemical oxidants in China. The biogenic emissions are compared to anthropogenic emissions to gain insight on the potential impact of the biogenic emissions on tropospheric chemistry, especially ozone production in this region. The results show that the biogenic emissions in China exhibit strongly diurnal, seasonal, and spatial variations. The isoprenoid (including both isoprene and monoterpenes) emissions are closely correlated to tree density and strongly vary with season and local time. During winter (January), the biogenic isoprenoid emissions are the lowest, resulting from lower temperature and solar radiation, and highest in summer (July) due to higher temperature and solar radiation. The biogenic NO emissions are also higher during summer and lower during winter, but the magnitude of the seasonal variation is smaller than the emissions of isoprene and monoterpenes. The biogenic emissions of NO are widely spread out in the northern, eastern, and southern China regions, where high-density agricultural soil lands are located. Both biogenic NO and isoprenoid emissions are very small in western China. The calculated total biogenic emission budget is smaller than the total anthropogenic VOC emission budget in China. The biogenic isoprenoid and anthropogenic VOC emissions are 10.9 and 15.1 Tg year -1 , respectively. The total biogenic and anthropogenic emissions of NO are 5.9 and 11.5 Tg(NO) year -1 , respectively. The study shows that in central eastern China, the estimated biogenic emissions of isoprenoids are very small, and the anthropogenic emissions of VOCs are dominant in this region. However, in

  13. Biogenic emissions of isoprenoids and NO in China and comparison to anthropogenic emissions.

    Science.gov (United States)

    Tie, Xuexi; Li, Guohui; Ying, Zhuming; Guenther, Alex; Madronich, Sasha

    2006-12-01

    In this study, a regional dynamical model (WRF) is used to drive biogenic emission models to calculate high resolution (10x10 km) biogenic emissions of isoprene (C(5)H(8)), monoterpenes (C(10)H(16)), and nitric oxide (NO) in China. This high resolution biogenic inventory will be available for the community to study the effect of biogenic emissions on photochemical oxidants in China. The biogenic emissions are compared to anthropogenic emissions to gain insight on the potential impact of the biogenic emissions on tropospheric chemistry, especially ozone production in this region. The results show that the biogenic emissions in China exhibit strongly diurnal, seasonal, and spatial variations. The isoprenoid (including both isoprene and monoterpenes) emissions are closely correlated to tree density and strongly vary with season and local time. During winter (January), the biogenic isoprenoid emissions are the lowest, resulting from lower temperature and solar radiation, and highest in summer (July) due to higher temperature and solar radiation. The biogenic NO emissions are also higher during summer and lower during winter, but the magnitude of the seasonal variation is smaller than the emissions of isoprene and monoterpenes. The biogenic emissions of NO are widely spread out in the northern, eastern, and southern China regions, where high-density agricultural soil lands are located. Both biogenic NO and isoprenoid emissions are very small in western China. The calculated total biogenic emission budget is smaller than the total anthropogenic VOC emission budget in China. The biogenic isoprenoid and anthropogenic VOC emissions are 10.9 and 15.1 Tg year(-1), respectively. The total biogenic and anthropogenic emissions of NO are 5.9 and 11.5 Tg(NO) year(-1), respectively. The study shows that in central eastern China, the estimated biogenic emissions of isoprenoids are very small, and the anthropogenic emissions of VOCs are dominant in this region. However, in

  14. Attenuating initial beliefs: increasing the acceptance of anthropogenic climate change information by reflecting on values.

    Science.gov (United States)

    van Prooijen, Anne-Marie; Sparks, Paul

    2014-05-01

    Anthropogenic climate change information tends to be interpreted against the backdrop of initial environmental beliefs, which can lead to some people being resistant toward the information. In this article (N = 88), we examined whether self-affirmation via reflection on personally important values could attenuate the impact of initial beliefs on the acceptance of anthropogenic climate change evidence. Our findings showed that initial beliefs about the human impact on ecological stability influenced the acceptance of information only among nonaffirmed participants. Self-affirmed participants who were initially resistant toward the information showed stronger beliefs in the existence of climate change risks and greater acknowledgment that individual efficacy has a role to play in reducing climate change risks than did their nonaffirmed counterparts. © 2013 Society for Risk Analysis.

  15. Changes of Bulgarian Coastal Dune Landscape under Anthropogenic Impact

    Science.gov (United States)

    Palazov, A.; Young, R.; Stancheva, M.; Stanchev, H.

    2012-04-01

    and erosion of the beach itself. Typically dunes are located behind sand beaches and they are part of the beach-dune systems. Such type of dune reduction could be driven by combination of many factors, both natural ones (such as severe storms, erosion, heavy rains or flooding) and human impacts (large number of installed coast-protection structures along the coast, which interrupt the sediment transport, create new sedimentary deficit and generate erosion). During the recent years most of the Bulgarian beaches have progressively eroded and their areas have significantly been decreased. ii) Dunes that have been reduced/damaged and lost due to expanded tourist and housing infrastructures/developments and due to afforestaion activities. The principal sources of human impacts on sand dunes in Bulgaria are rapid coastal urbanization over the recent years (i.e., hotel and residential constructions, roads, parking structures, and other related infrastructure), unregulated camping and "temporary" constructions on the dunes, a lax regulatory environment that tolerates the re-zoning of protected sand dunes to "agricultural" areas. At most recreational sites there were wide coastal dunes, which however have been destroyed during tourist constructions. Such are dunes at the most famous Bulgarian sea resorts of Golden Sands and Sunny Beach in the areas of Varna and Nessebar. As a consequence, major areas along the Bulgarian coast were completely urbanized by hotels and other infrastructures and large sand dune systems were damaged. iii) Dunes located at still undeveloped coastal sections: yet they are naturally preserved and unthreatened by human pressure boom. These are just a few dune sites: at the northernmost portion of the Bulgarian coast (in the area of Durankulak), at the central part in the region of the largest Bulgarian river, Kamchia River, and along the southernmost coastline (in the area of Veleka River). Although sand dunes in Bulgaria are protected areas and

  16. CLASSIFICATION OF ANTHROPOGENIC TRANSFORMATIONS SOILS URBOECOSYSTEMS OF DNEPROPETROVSK

    Directory of Open Access Journals (Sweden)

    YAKOVYSHYNA T.F.

    2015-12-01

    Full Text Available Raising of problem. The functioning of the city, as artificially created system of the result of the anthropogenic activity, promotes degradation and, sometimes, destruction of the environment, with change it to the technogenic replacement. First of all suffers the soil, as a basic component of any ecosystem, where the circulation of materials close, because it is a powerful biogeochemical barrier to their migration, able to deposit toxicants a long time through its protective functions. The leading role of the formation of the urban soil plays an anthropogenic factor, which is able to influence directly – the destruction of the soil profile due to construction activity and indirectly – with aerogenic or hydrogenous pollution xenobiotics contained in the emissions and discharges of the industrial enterprises; and it is determined by the type of economic use and history of area developing. The variability of using the urban soil is reflected in the soil profile and contributed to the creation of the organic-mineral layer by the mixing, mound, burial and (or contamination of the different substances on the surface. Therefore, classification of the urban soils by the anthropogenic destruction degree of the soil profile is very important scientific and practical task for the urban ecology to the achievement standards of the ecological safety of the modern city, because the restoring of their protective functions is impossible without knowledge of the morphological structure. Purpose. Classify the anthropogenical soils of city Dnipropetrovsk disturbed by the construction activities by the determining of the morphological characteristics of the soil profile structure with separation of the anthropogenic and technogenic surface formations compared to the zonal soil – ordinery chernozem. Conclusion. Within urboecosystem city Dnipropetrovsk long-term human impact to the zonal soil – chernozem led to its transformation into urbanozem witch

  17. Attribution of irreversible loss to anthropogenic climate change

    Science.gov (United States)

    Huggel, Christian; Bresch, David; Hansen, Gerrit; James, Rachel; Mechler, Reinhard; Stone, Dáithí; Wallimann-Helmer, Ivo

    2016-04-01

    The Paris Agreement (2015) under the UNFCCC has anchored loss and damage in a separate article which specifies that understanding and support should be enhanced in areas addressing loss and damage such as early warning, preparedness, insurance and resilience. Irreversible loss is a special category under loss and damage but there is still missing clarity over what irreversible loss actually includes. Many negative impacts of climate change may be handled or mitigated by existing risk management, reduction and absorption approaches. Irreversible loss, however, is thought to be insufficiently addressed by risk management. Therefore, countries potentially or actually affected by irreversible loss are calling for other measures such as compensation, which however is highly contested in international climate policy. In Paris (2015) a decision was adopted that loss and damage as defined in the respective article of the agreement does not involve compensation and liability. Nevertheless, it is likely that some sort of mechanism will eventually need to come into play for irreversible loss due to anthropogenic climate change, which might involve compensation, other forms of non-monetary reparation, or transformation. Furthermore, climate litigation has increasingly been attempted to address negative effects of climate change. In this context, attribution is important to understand the drivers of change, what counts as irreversible loss due to climate change, and, possibly, who or what is responsible. Here we approach this issue by applying a detection and attribution perspective on irreversible loss. We first analyze detected climate change impacts as assessed in the IPCC Fifth Assessment Report. We distinguish between irreversible loss in physical, biological and human systems, and accordingly identify the following candidates of irreversible loss in these systems: loss of glaciers and ice sheets, loss of subsurface ice (permafrost) and related loss of lake systems; loss

  18. Understanding the Impact of Anthropogenic and Environmental Changes on Dengue Fever Cases in Puerto Rico

    Science.gov (United States)

    Akanda, A. S.; Serman, E. A.; Couret, J.; Puggioni, G.; Ginsberg, H. S.

    2016-12-01

    Worldwide, there are an estimated 50-100 million cases of dengue fever each year, roughly 30 times the number of cases as 50 years ago. Dengue was introduced to Puerto Rico (PR) in 1963 and it has experienced epidemic activity ever since. There have been 4 large epidemics since 1990, the most recent in 2010 where almost 27,000 cases were reported. Vaccine development remains in the testing stages, and years away from mass distribution. Effective control thus depends on our understanding of the complex relationships between environmental and anthropogenic factors, mosquito vector ecology, and disease epidemiology. Dengue virus is primarily transmitted by Aedes aegypti mosquitoes, which also carry the Zika virus, and humans in urban environments are their preferred hosts. The purpose of our analysis is to identify trends between anthropogenic and environmental changes and dengue fever cases in PR over the past 15 years. Data on housing and population density, percent impervious surface, and percent tree canopy at the municipality level were procured from the U.S. Census Bureau and the Multi-Resolution Land Characteristics Consortium (MLRC) project, respectively. Land cover data from the National Land Cover Database, created by USGS and NOAA, as well as environmental data from the National Climatic Data Center (NCDC), were also used. Smaller land cover and green space analysis studies have been performed for PR, but this is the first study to consider the island as a whole, and in six distinct regions, with regards to increases in dengue fever cases. The results from this study can be used to understand the effects of urbanization and climate change on vector-borne disease transmission in PR and to project the impact of growing sub-urban and urban areas on dengue cases in coming years. Our results could also be used to assess Dengue and Zika transmission in growing megacites of the world, where urban slums provide a favorable habitat for Ae. aegypti and foster

  19. Methane hydrate stability and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    D. Archer

    2007-07-01

    Full Text Available Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2.

    Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic.

    The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release as much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.

  20. Disentangling Environmental and Anthropogenic Impacts on the Distribution of Unintentionally Introduced Invasive Alien Insects in Mainland China.

    Science.gov (United States)

    Zhao, Cai-Yun; Li, Jun-Sheng; Xu, Jing; Liu, Xiao-Yan

    2017-05-01

    Globalization increases the opportunities for unintentionally introduced invasive alien species, especially for insects, and most of these species could damage ecosystems and cause economic loss in China. In this study, we analyzed drivers of the distribution of unintentionally introduced invasive alien insects. Based on the number of unintentionally introduced invasive alien insects and their presence/absence records in each province in mainland China, regression trees were built to elucidate the roles of environmental and anthropogenic factors on the number distribution and similarity of species composition of these insects. Classification and regression trees indicated climatic suitability (the mean temperature in January) and human economic activity (sum of total freight) are primary drivers for the number distribution pattern of unintentionally introduced invasive alien insects at provincial scale, while only environmental factors (the mean January temperature, the annual precipitation and the areas of provinces) significantly affect the similarity of them based on the multivariate regression trees. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  1. Chinese mineral dust and anthropogenic aerosol inter-continental transport: a Greenland perspective

    Science.gov (United States)

    Bory, A.; Abouchami, W.; Galer, S.; Svensson, A.; Biscaye, P.

    2012-04-01

    Impurities contained in snow and ice layers in Greenland provide a record of the history of atmospheric dustiness and pollution in the Northern Hemisphere. The source of the particles deposited onto the ice cap may be investigated using specific intrinsic tracers. Provenance discrimination may then provide valuable constraints for the validation of atmospheric transport models as well as for the monitoring of natural and anthropogenic aerosols emissions at a global scale. Clay mineralogy combined with the strontium and neodymium isotope composition of the insoluble particles extracted from recent snow deposits at NorthGRIP (75.1°N, 042.3°W), for instance, enabled us to demonstrate that the Taklimakan desert of North-western China was the main source of mineral dust reaching central Greenland at present [Bory et al., EPSL, 2002 ; GRL, 2003a]. Here we report the lead isotopic signature of these snow-pit samples, covering the 1989-1995 and 1998-2001 time periods. Unradiogenic lead isotopic composition of our Greenland samples, compared to Asian dust isotopic fingerprints, implies that most of the insoluble lead reaching the ice cap is of anthropogenic origin. Lead isotopes reveal likely contributions from European/Canadian and, to a lesser extent, US sources, as well as a marked overprinted signature typical of Chinese anthropogenic lead sources. The relative contribution of the latter appears to have been increasing steadily over the last decade of the 20th century. Quantitative estimates suggest that, in addition to providing most of the dust, China may have already become the most important supplier of anthropogenic lead deposited in Greenland by the turn of the 20th to the 21st century. The close timing between dust and anthropogenic particles deposition onto the ice cap provides new insights for our understanding of Chinese aerosols transport to Greenland.

  2. 87Sr/86Sr and 143Nd/144Nd for disentangling anthropogenic and natural REE contributions in river water during flood events.

    Science.gov (United States)

    Hissler, Christophe; Stille, Peter; Pfister, Laurent

    2017-04-01

    The sustainable management of water resources is one of the greatest challenges of the 21st century. Water is a vital resource that is increasingly put under pressure from multiple perspectives. While the global population is on the rise, socio-economic development makes equally rapid progress - eventually compromising access to clean water bodies. Multiple pollution sources constitute an immediate threat to aquatic ecosystems and are likely to cause long lasting contaminations of water bodies that are critical for drinking and/or irrigation water production. There is a pressing need for an adequate quantification of anthropogenic impacts on the critical zone of river basins and the identification of the temporal dynamics of these impacts. As an example, despite the work done to assess the environmental impact of REE pollutions in larger river systems, we are still lacking information on the dynamics of these anthropogenic compounds in relation to rapid hydrological changes. Filling these knowledge gaps is a pre-requisite for the design and implementation of sustainable water resources management strategies. In order to better constrain the relative contributions of both anthropogenic and geogenic trace element sources we propose using a multitracer approach combining elemental and 87Sr/86Sr, 143Nd/144Nd, and 206Pb/207Pb isotopic ratios. The use of these three separate isotopic systems together with REE concentrations is new in the field of anthropogenic source identification in river systems. We observed enrichments in Anthropogenic Rare Earth Elements (AREE) for dissolved Gd and suspended Nd loads of river water. With increasing discharge, AREE anomalies progressively disappeared and gave way to the geogenic chemical signature of the basin in both dissolved and suspended loads. The isotopic data confirm these observations and shed new light on the trace elements sources. On the one hand, dissolved loads have peculiar isotopic characteristics and carry mainly

  3. Natural and anthropogenic nitrogen uptake by bloom-forming macroalgae

    International Nuclear Information System (INIS)

    Thornber, Carol S.; DiMilla, Peter; Nixon, Scott W.; McKinney, Richard A.

    2008-01-01

    The frequency and duration of macroalgal blooms have increased in many coastal waters over the past several decades. We used field surveys and laboratory culturing experiments to examine the nitrogen content and δ 15 N values of Ulva and Gracilaria, two bloom-forming algal genera in Narragansett Bay, RI (USA). The northern end of this bay is densely populated with large sewage treatment plant nitrogen inputs; the southern end is more lightly populated and opens to the Atlantic Ocean. Field-collected Ulva varied in δ 15 N among sites, but with two exceptions had δ 15 N above 10 per mille , reflecting a significant component of heavy anthropogenic N. This variation was not correlated with a north-south gradient. Both Ulva and Gracilaria cultured in water from across Narragansett Bay also had high signals (δ 15 N = ∼14-17 per mille and 8-12 per mille , respectively). These results indicate that inputs of anthropogenic N can have far-reaching impacts throughout estuaries

  4. Natural and anthropogenic nitrogen uptake by bloom-forming macroalgae

    Energy Technology Data Exchange (ETDEWEB)

    Thornber, Carol S. [Department of Biological Sciences, 100 Flagg Road, University of Rhode Island, Kingston, RI 02881 (United States)], E-mail: thornber@uri.edu; DiMilla, Peter; Nixon, Scott W. [Graduate School of Oceanography, University of Rhode Island, South Ferry Road, Narragansett, RI 02881 (United States); McKinney, Richard A. [US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Drive, Narragansett, RI 02882 (United States)

    2008-02-15

    The frequency and duration of macroalgal blooms have increased in many coastal waters over the past several decades. We used field surveys and laboratory culturing experiments to examine the nitrogen content and {delta}{sup 15}N values of Ulva and Gracilaria, two bloom-forming algal genera in Narragansett Bay, RI (USA). The northern end of this bay is densely populated with large sewage treatment plant nitrogen inputs; the southern end is more lightly populated and opens to the Atlantic Ocean. Field-collected Ulva varied in {delta}{sup 15}N among sites, but with two exceptions had {delta}{sup 15}N above 10 per mille , reflecting a significant component of heavy anthropogenic N. This variation was not correlated with a north-south gradient. Both Ulva and Gracilaria cultured in water from across Narragansett Bay also had high signals ({delta}{sup 15}N = {approx}14-17 per mille and 8-12 per mille , respectively). These results indicate that inputs of anthropogenic N can have far-reaching impacts throughout estuaries.

  5. Natural and anthropogenic nitrogen uptake by bloom-forming macroalgae.

    Science.gov (United States)

    Thornber, Carol S; DiMilla, Peter; Nixon, Scott W; McKinney, Richard A

    2008-02-01

    The frequency and duration of macroalgal blooms have increased in many coastal waters over the past several decades. We used field surveys and laboratory culturing experiments to examine the nitrogen content and delta(15)N values of Ulva and Gracilaria, two bloom-forming algal genera in Narragansett Bay, RI (USA). The northern end of this bay is densely populated with large sewage treatment plant nitrogen inputs; the southern end is more lightly populated and opens to the Atlantic Ocean. Field-collected Ulva varied in delta(15)N among sites, but with two exceptions had delta(15)N above 10 per thousand, reflecting a significant component of heavy anthropogenic N. This variation was not correlated with a north-south gradient. Both Ulva and Gracilaria cultured in water from across Narragansett Bay also had high signals (delta(15)N= approximately 14-17 per thousand and 8-12 per thousand, respectively). These results indicate that inputs of anthropogenic N can have far-reaching impacts throughout estuaries.

  6. A hydrologic drying bias in water-resource impact analyses of anthropogenic climate change

    Science.gov (United States)

    Milly, Paul; Dunne, Krista A.

    2017-01-01

    For water-resource planning, sensitivity of freshwater availability to anthropogenic climate change (ACC) often is analyzed with “offline” hydrologic models that use precipitation and potential evapotranspiration (Ep) as inputs. Because Ep is not a climate-model output, an intermediary model of Ep must be introduced to connect the climate model to the hydrologic model. Several Ep methods are used. The suitability of each can be assessed by noting a credible Ep method for offline analyses should be able to reproduce climate models’ ACC-driven changes in actual evapotranspiration in regions and seasons of negligible water stress (Ew). We quantified this ability for seven commonly used Ep methods and for a simple proportionality with available energy (“energy-only” method). With the exception of the energy-only method, all methods tend to overestimate substantially the increase in Ep associated with ACC. In an offline hydrologic model, the Ep-change biases produce excessive increases in actual evapotranspiration (E), whether the system experiences water stress or not, and thence strong negative biases in runoff change, as compared to hydrologic fluxes in the driving climate models. The runoff biases are comparable in magnitude to the ACC-induced runoff changes themselves. These results suggest future hydrologic drying (wetting) trends likely are being systematically and substantially overestimated (underestimated) in many water-resource impact analyses.

  7. Estimating animal mortality from anthropogenic hazards

    Science.gov (United States)

    Carcass searches are a common method for studying the risk of anthropogenic hazards to wildlife, including non-target poisoning and collisions with anthropogenic structures. Typically, numbers of carcasses found must be corrected for scavenging rates and imperfect detection. Para...

  8. Anthropogenic versus natural control on trace element and Sr-Nd-Pb isotope stratigraphy in peat sediments of southeast Florida (USA), ˜1500 AD to present

    Science.gov (United States)

    Kamenov, George D.; Brenner, Mark; Tucker, Jaimie L.

    2009-06-01

    Analysis of a well-dated peat core from Blue Cypress Marsh (BCM) provides a detailed record of natural and anthropogenic factors that controlled the geochemical cycles of a number of trace elements in Florida over the last five centuries. The trace elements were divided into "natural" and "anthropogenic" groups using concentration trends from the bottom to the top of the core. The "natural" group includes Li, Sc, Cr, Co, Ga, Ge, Zr, Nb, Cs, Ba, Hf, Y, Ta, Th, and REE (Rare Earth Elements). These elements show similar concentrations throughout the core, indicating that changes in human activities after European arrival in the "New World" did not affect their geochemical cycles. The "anthropogenic" group includes Pb, Cu, Zn, V, Sb, Sn, Bi, and Cd. Upcore enrichment of these elements indicates enhancement by anthropogenic activities. From the early 1500s to present, fluxes of the "anthropogenic" metals to the marsh increased significantly, with modern accumulation rates several-fold (e.g., V) to hundreds of times (e.g., Zn) greater than pre-colonial rates. The dominant input mechanism for trace elements from both groups to the marsh has been atmospheric deposition. Atmospheric input of a number of the elements, including the anthropogenic metals, was dominated by local sources during the last century. For several elements, long-distant transport may be important. For instance, REE and Nd isotopes provide evidence for long-range atmospheric transport dominated by Saharan dust. The greatest increase in flux of the "anthropogenic" metals occurred during the 20th century and was caused by changes in the chemical composition of atmospheric deposition entering the marsh. Increased atmospheric inputs were a consequence of several anthropogenic activities, including fossil fuel combustion (coal and oil), agricultural activities, and quarrying and mining operations. Pb and V exhibit similar trends, with peak accumulation rates in 1970. The principal anthropogenic source of V

  9. Estimating the in situ sediment-porewater distribution of PAHs and chlorinated aromatic hydrocarbons in anthropogenic impacted sediments

    Energy Technology Data Exchange (ETDEWEB)

    Hans Peter H. Arp; Gijs D. Breedveld; Gerard Cornelissen [Norwegian Geotechnical Institute (NGI), Oslo (Norway). Department of Environmental Engineering

    2009-08-15

    It has become increasingly apparent that the in situ sediment-porewater distribution behavior of organic compounds within anthropogenic impacted sediments is quite diverse, and challenging to generalize. Traditional models based on octanol-water partitioning generally overestimate native porewater concentrations, and modern approaches accounting for multiple carbon fractions, including black carbon, appear sediment specific. To assess the diversity of this sorption behavior, we collected all peer-reviewed total organic carbon (TOC)-normalized in situ sediment-porewater distribution coefficients, K{sub TOC}, for impacted sediments. This entailed several hundreds of data for PAHs, PCBs, PCDD/Fs, and chlorinated benzenes, covering a large variety of sediments, locations, and experimental methods. Compound-specific KTOC could range up to over 3 orders of magnitude. Output from various predictive models for individual carbonaceous phases found in impacted sediments, based on peer-reviewed polyparameter linear free energy relationships (PP-LFERs), Raoult's Law, and the SPARC online-calculator, were tested to see if any of the models could consistently predict literature K{sub TOC} values within a factor of 30 (i.e. about 1.5 orders of magnitude, or half the range of K{sub TOC} values). The Raoult's Law model and coal tar PP-LFER achieved the sought-after accuracy for all tested compound classes, and are recommended for general, regional-scale modeling purposes. As impacted sediment-porewater distribution models are unlikely to get more accurate than this, this review underpins that the only way to accurately obtain accurate porewater concentrations is to measure them directly, and not infer them from sediment concentrations. 86 refs., 2 figs., 3 tabs.

  10. REFLECTION OF THE THEME OF THE ANTHROPOGENIC IMPACT ON THE ENVIRONMENT OF THE VORKUTA REGION OF THE KOMI REPUBLIC IN THE RUSSIAN ECOLOGICAL ATLAS

    Directory of Open Access Journals (Sweden)

    O. I. Markova

    2015-01-01

    Full Text Available Pechora coal basin is a second reserve of coal and lignite basins in Russia after Kuznetsk. Vorkuta industrial region (VIR, located north of the Arctic Circle, mastered since 1931. Coal mining closed method is produced in five mines. The depth of mining is 298 m. It is deeper than in the Kuznetsk coal basin. Since 2000, opencast mining is making in the Yunyaginsky mine. Field elaboration for more than 80 years has spawned a number of environmental problems specific to the area of coal mining. There are: the formation of anthropogenic landforms, emissions of the dust, heavy metals, the passing methane in the air, waters and soils, reduction and disappearance of aboriginal species of animals and plants. These problems are compounded by harsh natural conditions of Russian North, by special vulnerability of the environment in the tundra zone (subzone of southern shrub tundra. The map of Vorkuta industrial region was making for Ecological Atlas of Russia among other maps of impact areas with very poor ecological situation. The map in the scale 1:200 000 was produced with using of space images and literature data. It include: sources of anthropogenic impacts on the environment (coal mines, enrichment factory, sumps, enterprises of other industry branch, populated localities, roads and different changes in the environment. Anthropogenic forms of relief, a dust content in the air on excess of maximum allowable concentrations, a content of microelements in the air, soils and rock mine dumps, an area of pollution of the cement factory, a polluted piece of the river Vorkuta and a fish productivity of separate pieces of the river Vorkuta are shown on the map by signs and diagrams. Diagrams of the number of species of regional fauna of birds (on natural and changed areas and diagrams of relation of valuable and weed species of fish on different river pieces were built outside the map.

  11. Climate forcing by anthropogenic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, Jr, J A; Hansen, J E; Hofmann, D J [University of Washington, Seattle, WA (USA). Inst. for Environmental Studies, Dept. of Atmospheric Sciences

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of short wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square metre, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes. 73 refs., 4 figs., 2 tabs.

  12. Climate forcing by anthropogenic aerosols.

    Science.gov (United States)

    Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, J A; Hansen, J E; Hofmann, D J

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of shortwavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  13. 78 FR 78822 - Draft Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammals-Acoustic...

    Science.gov (United States)

    2013-12-27

    ... Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammals--Acoustic Threshold Levels for... available in electronic form via the Internet at http://www.nmfs.noaa.gov/pr/acoustics/ . You may submit...: Acoustic Guidance. Instructions: All comments received are a part of the public record and will generally...

  14. The impact of North American anthropogenic emissions and lightning on long-range transport of trace gases and their export from the continent during summers 2002 and 2004

    KAUST Repository

    Martini, Matus

    2011-04-07

    We analyze the contribution of North American (NA) lightning and anthropogenic emissions to ozone concentrations, radiative forcing, and export fluxes from North America during summers 2002 and 2004 using the University of Maryland Chemical Transport Model (UMD-CTM) driven by GEOS-4 reanalysis. Reduced power plant emissions (NOx SIP Call) and cooler temperatures in 2004 compared to 2002 resulted in lower ambient ozone concentrations over the eastern United States. Lightning flash rates in early summer 2004 were 50% higher than 2002 over the United States. Over the North Atlantic, changes in ozone column between early summer 2002 and 2004 due to changes in lightning and meteorology exceeded the change due to emission reductions by a factor of 7. Late summer changes in lightning had a much smaller impact on ozone columns. In summer 2004, net downward radiative flux at the tropopause due to ozone produced from anthropogenic emissions ranged from 0.15 to 0.30 W m−2 across the North Atlantic, while that due to ozone produced from lightning NO emissions ranged from 0.20 to 0.50 W m−2. Enhanced lofting of polluted air followed by stronger westerly winds led to more net export of NOx, NOy, and ozone in early summer 2004 than 2002 despite reduced anthropogenic emissions. Ozone export fluxes across the eastern NA boundary due to anthropogenic emissions were factors of 1.6 and 2 larger than those due to lightning in 2004 and 2002, respectively. Doubling the NA lightning NO source increased downwind ozone enhancements due to lightning NO emissions by one third.

  15. The impact of North American anthropogenic emissions and lightning on long-range transport of trace gases and their export from the continent during summers 2002 and 2004

    KAUST Repository

    Martini, Matus; Allen, Dale J.; Pickering, Kenneth E.; Stenchikov, Georgiy L.; Richter, Andreas; Hyer, Edward J.; Loughner, Christopher P.

    2011-01-01

    We analyze the contribution of North American (NA) lightning and anthropogenic emissions to ozone concentrations, radiative forcing, and export fluxes from North America during summers 2002 and 2004 using the University of Maryland Chemical Transport Model (UMD-CTM) driven by GEOS-4 reanalysis. Reduced power plant emissions (NOx SIP Call) and cooler temperatures in 2004 compared to 2002 resulted in lower ambient ozone concentrations over the eastern United States. Lightning flash rates in early summer 2004 were 50% higher than 2002 over the United States. Over the North Atlantic, changes in ozone column between early summer 2002 and 2004 due to changes in lightning and meteorology exceeded the change due to emission reductions by a factor of 7. Late summer changes in lightning had a much smaller impact on ozone columns. In summer 2004, net downward radiative flux at the tropopause due to ozone produced from anthropogenic emissions ranged from 0.15 to 0.30 W m−2 across the North Atlantic, while that due to ozone produced from lightning NO emissions ranged from 0.20 to 0.50 W m−2. Enhanced lofting of polluted air followed by stronger westerly winds led to more net export of NOx, NOy, and ozone in early summer 2004 than 2002 despite reduced anthropogenic emissions. Ozone export fluxes across the eastern NA boundary due to anthropogenic emissions were factors of 1.6 and 2 larger than those due to lightning in 2004 and 2002, respectively. Doubling the NA lightning NO source increased downwind ozone enhancements due to lightning NO emissions by one third.

  16. Anthropogenic impacts on marine ecosystems in Antarctica.

    Science.gov (United States)

    Aronson, Richard B; Thatje, Sven; McClintock, James B; Hughes, Kevin A

    2011-03-01

    Antarctica is the most isolated continent on Earth, but it has not escaped the negative impacts of human activity. The unique marine ecosystems of Antarctica and their endemic faunas are affected on local and regional scales by overharvesting, pollution, and the introduction of alien species. Global climate change is also having deleterious impacts: rising sea temperatures and ocean acidification already threaten benthic and pelagic food webs. The Antarctic Treaty System can address local- to regional-scale impacts, but it does not have purview over the global problems that impinge on Antarctica, such as emissions of greenhouse gases. Failure to address human impacts simultaneously at all scales will lead to the degradation of Antarctic marine ecosystems and the homogenization of their composition, structure, and processes with marine ecosystems elsewhere. © 2011 New York Academy of Sciences.

  17. Experimental Technique for Producing and Recording Precise Particle Impacts on Transparent Window Materials

    Science.gov (United States)

    Gray, Perry; Guven, Ibrahim

    2016-01-01

    A new facility for making small particle impacts is being developed at NASA. Current sand/particle impact facilities are an erosion test and do not precisely measure and document the size and velocity of each of the impacting particles. In addition, evidence of individual impacts is often obscured by subsequent impacts. This facility will allow the number, size, and velocity of each particle to be measured and adjusted. It will also be possible to determine which particle produced damage at a given location on the target. The particle size and velocity will be measured by high speed imaging techniques. Information as to the extent of damage and debris from impacts will also be recorded. It will be possible to track these secondary particles, measuring size and velocity. It is anticipated that this additional degree of detail will provide input for erosion models and also help determine the impact physics of the erosion process. Particle impacts will be recorded at 90 degrees to the particle flight path and also from the top looking through the target window material.

  18. Quantifying Anthropogenic Stress on Groundwater Resources.

    Science.gov (United States)

    Ashraf, Batool; AghaKouchak, Amir; Alizadeh, Amin; Mousavi Baygi, Mohammad; R Moftakhari, Hamed; Mirchi, Ali; Anjileli, Hassan; Madani, Kaveh

    2017-10-10

    This study explores a general framework for quantifying anthropogenic influences on groundwater budget based on normalized human outflow (h out ) and inflow (h in ). The framework is useful for sustainability assessment of groundwater systems and allows investigating the effects of different human water abstraction scenarios on the overall aquifer regime (e.g., depleted, natural flow-dominated, and human flow-dominated). We apply this approach to selected regions in the USA, Germany and Iran to evaluate the current aquifer regime. We subsequently present two scenarios of changes in human water withdrawals and return flow to the system (individually and combined). Results show that approximately one-third of the selected aquifers in the USA, and half of the selected aquifers in Iran are dominated by human activities, while the selected aquifers in Germany are natural flow-dominated. The scenario analysis results also show that reduced human withdrawals could help with regime change in some aquifers. For instance, in two of the selected USA aquifers, a decrease in anthropogenic influences by ~20% may change the condition of depleted regime to natural flow-dominated regime. We specifically highlight a trending threat to the sustainability of groundwater in northwest Iran and California, and the need for more careful assessment and monitoring practices as well as strict regulations to mitigate the negative impacts of groundwater overexploitation.

  19. Atmospheric mercury emissions in Australia from anthropogenic, natural and recycled sources

    Science.gov (United States)

    Nelson, Peter F.; Morrison, Anthony L.; Malfroy, Hugh J.; Cope, Martin; Lee, Sunhee; Hibberd, Mark L.; Meyer, C. P. (Mick); McGregor, John

    2012-12-01

    The United Nations Environment Programme (UNEP) has begun a process of developing a legally binding instrument to manage emissions of mercury from anthropogenic sources. The UNEP Governing Council has concluded that there is sufficient evidence of significant global adverse impacts from mercury to warrant further international action; and that national, regional and global actions should be initiated as soon as possible to identify populations at risk and to reduce human generated releases. This paper describes the development of, and presents results from, a comprehensive, spatially and temporally resolved inventory of atmospheric mercury emissions from the Australian landmass. Results indicate that the best estimate of total anthropogenic emissions of mercury to the atmosphere in 2006 was 15 ± 5 tonnes. Three industrial sectors contribute substantially to Australian anthropogenic emissions: gold smelting (˜50%, essentially from a single site/operation), coal combustion in power plants (˜15%) and alumina production from bauxite (˜12%). A diverse range of other sectors contribute smaller proportions of the emitted mercury, but industrial emissions account for around 90% of total anthropogenic mercury emissions. The other sectors include other industrial sources (mining, smelting, and cement production) and the use of products containing mercury. It is difficult to determine historical trends in mercury emissions given the large uncertainties in the data. Estimates for natural and re-emitted emissions from soil, water, vegetation and fires are made using meteorological models, satellite observations of land cover and soil and vegetation type, fuel loading, fire scars and emission factors which account for the effects of temperature, insolation and other environmental variables. These natural and re-emitted sources comfortably exceed the anthropogenic emissions, and comprise 4-12 tonnes per year from vegetation, 70-210 tonnes per year from soils, and 21-63 tonnes

  20. Aquatic subsidies transport anthropogenic nitrogen to riparian spiders

    Energy Technology Data Exchange (ETDEWEB)

    Akamatsu, Fumikazu, E-mail: f-akamt55@pwri.go.jp [Department of Environmental Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Toda, Hideshige [Department of Environmental Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)

    2011-05-15

    Stable nitrogen isotopic composition ({delta}{sup 15}N) of aquatic biota increases with anthropogenic N inputs such as sewage and livestock waste downstream. Increase in {delta}{sup 15}N of riparian spiders downstream may reflect the anthropogenic pollution exposure through predation on aquatic insects. A two-source mixing model based on stable carbon isotopic composition showed the greatest dependence on aquatic insects (84%) by horizontal web-building spiders, followed by intermediate (48%) and low (31%) dependence by cursorial and vertical web-building spiders, respectively. The spider body size was negatively correlated with the dietary proportion of aquatic insects and spider {delta}{sup 15}N. The aquatic subsidies transported anthropogenic N to smaller riparian spiders downstream. This transport of anthropogenic N was regulated by spider's guild designation and body size. - Highlights: > {delta}{sup 15}N of aquatic insects increases downstream with anthropogenic nitrogen inputs. > {delta}{sup 15}N of riparian spiders increases with a high dietary proportion of aquatic insects and smaller spider body size. > The aquatic subsidies transport anthropogenic nitrogen to smaller riparian spiders downstream. - Smaller spiders assimilate anthropogenic nitrogen through the predation on aquatic subsides.

  1. Aquatic subsidies transport anthropogenic nitrogen to riparian spiders

    International Nuclear Information System (INIS)

    Akamatsu, Fumikazu; Toda, Hideshige

    2011-01-01

    Stable nitrogen isotopic composition (δ 15 N) of aquatic biota increases with anthropogenic N inputs such as sewage and livestock waste downstream. Increase in δ 15 N of riparian spiders downstream may reflect the anthropogenic pollution exposure through predation on aquatic insects. A two-source mixing model based on stable carbon isotopic composition showed the greatest dependence on aquatic insects (84%) by horizontal web-building spiders, followed by intermediate (48%) and low (31%) dependence by cursorial and vertical web-building spiders, respectively. The spider body size was negatively correlated with the dietary proportion of aquatic insects and spider δ 15 N. The aquatic subsidies transported anthropogenic N to smaller riparian spiders downstream. This transport of anthropogenic N was regulated by spider's guild designation and body size. - Highlights: → δ 15 N of aquatic insects increases downstream with anthropogenic nitrogen inputs. → δ 15 N of riparian spiders increases with a high dietary proportion of aquatic insects and smaller spider body size. → The aquatic subsidies transport anthropogenic nitrogen to smaller riparian spiders downstream. - Smaller spiders assimilate anthropogenic nitrogen through the predation on aquatic subsides.

  2. Benthic communities under anthropogenic pressure show resilience across the Quaternary.

    Science.gov (United States)

    Martinelli, Julieta C; Soto, Luis P; González, Jorge; Rivadeneira, Marcelo M

    2017-09-01

    The Southeast Pacific is characterized by rich upwelling systems that have sustained and been impacted by human groups for at least 12 ka. Recent fishing and aquaculture practices have put a strain on productive coastal ecosystems from Tongoy Bay, in north-central Chile. We use a temporal baseline to determine whether potential changes to community structure and composition over time are due to anthropogenic factors, natural climatic variations or both. We compiled a database ( n  = 33 194) with mollusc species abundances from the Mid-Pleistocene, Late Pleistocene, Holocene, dead shell assemblages and live-sampled communities. Species richness was not significantly different, neither were diversity and evenness indices nor rank abundance distributions. There is, however, an increase in relative abundance for the cultured scallop Argopecten , while the previously dominant clam Mulinia is locally very rare. Results suggest that impacts from both natural and anthropogenic stressors need to be better understood if benthic resources are to be preserved. These findings provide the first Pleistocene temporal baseline for the south Pacific that shows that this highly productive system has had the ability to recover from past alterations, suggesting that if monitoring and management practices continue to be implemented, moderately exploited communities from today have hopes for recovery.

  3. Benthic communities under anthropogenic pressure show resilience across the Quaternary

    Science.gov (United States)

    Martinelli, Julieta C.; Soto, Luis P.; González, Jorge; Rivadeneira, Marcelo M.

    2017-09-01

    The Southeast Pacific is characterized by rich upwelling systems that have sustained and been impacted by human groups for at least 12 ka. Recent fishing and aquaculture practices have put a strain on productive coastal ecosystems from Tongoy Bay, in north-central Chile. We use a temporal baseline to determine whether potential changes to community structure and composition over time are due to anthropogenic factors, natural climatic variations or both. We compiled a database (n = 33 194) with mollusc species abundances from the Mid-Pleistocene, Late Pleistocene, Holocene, dead shell assemblages and live-sampled communities. Species richness was not significantly different, neither were diversity and evenness indices nor rank abundance distributions. There is, however, an increase in relative abundance for the cultured scallop Argopecten, while the previously dominant clam Mulinia is locally very rare. Results suggest that impacts from both natural and anthropogenic stressors need to be better understood if benthic resources are to be preserved. These findings provide the first Pleistocene temporal baseline for the south Pacific that shows that this highly productive system has had the ability to recover from past alterations, suggesting that if monitoring and management practices continue to be implemented, moderately exploited communities from today have hopes for recovery.

  4. Tracking Public Beliefs About Anthropogenic Climate Change.

    Science.gov (United States)

    Hamilton, Lawrence C; Hartter, Joel; Lemcke-Stampone, Mary; Moore, David W; Safford, Thomas G

    2015-01-01

    A simple question about climate change, with one choice designed to match consensus statements by scientists, was asked on 35 US nationwide, single-state or regional surveys from 2010 to 2015. Analysis of these data (over 28,000 interviews) yields robust and exceptionally well replicated findings on public beliefs about anthropogenic climate change, including regional variations, change over time, demographic bases, and the interacting effects of respondent education and political views. We find that more than half of the US public accepts the scientific consensus that climate change is happening now, caused mainly by human activities. A sizable, politically opposite minority (about 30 to 40%) concede the fact of climate change, but believe it has mainly natural causes. Few (about 10 to 15%) say they believe climate is not changing, or express no opinion. The overall proportions appear relatively stable nationwide, but exhibit place-to-place variations. Detailed analysis of 21 consecutive surveys within one fairly representative state (New Hampshire) finds a mild but statistically significant rise in agreement with the scientific consensus over 2010-2015. Effects from daily temperature are detectable but minor. Hurricane Sandy, which brushed New Hampshire but caused no disaster there, shows no lasting impact on that state's time series-suggesting that non-immediate weather disasters have limited effects. In all datasets political orientation dominates among individual-level predictors of climate beliefs, moderating the otherwise positive effects from education. Acceptance of anthropogenic climate change rises with education among Democrats and Independents, but not so among Republicans. The continuing series of surveys provides a baseline for tracking how future scientific, political, socioeconomic or climate developments impact public acceptance of the scientific consensus.

  5. A centennial record of anthropogenic impacts and extreme weather events in southwestern Taiwan: Evidence from sedimentary molecular markers in coastal margin

    International Nuclear Information System (INIS)

    Kuo, Li-Jung; Lee, Chon-Lin; Louchouarn, Patrick; Huh, Chih-An; Liu, James T.; Chen, Jian-Cheng; Lee, Kun-Je

    2014-01-01

    Highlights: • Historical reconstruction of human and natural disturbances in SW Taiwan. • Comparative analysis of PAHs and lignin to evaluate sources/processes. • Distinct timing of PAH maxima between western Pacific, Europe and North America. • Consistently low (Ad/Al) v suggests quick transport of TOM by mountainous rivers. • Both PAHs and lignin point to turbidite flows driven by typhoon floods. - Abstract: A 100-year history of human and natural disturbances in southwestern Taiwan was reconstructed using a suite of molecular markers in four dated sediment cores from the upper slope region off the Gaoping River mouth. Trends in polycyclic aromatic hydrocarbons (PAHs) tracked Taiwan’s industrialization/urbanization starting in the 1970s, and the enactment of environmental regulatory policies thereafter. The predominant pyrogenic sources include vehicular, smelter, and coal combustion but spatial differences are observed among sub-regions of the shelf. Profiles of lignin oxidation products (LOPs) point to a significant increase in terrestrial organic matter inputs driven by land development after the 1970s. Low lignin diagenetic signature ratios [(Ad/Al) v ] in all sediments suggest quick transport of fresh plant material from land to sea via mountainous rivers. Shifts in PAHs, LOPs, and radionuclides in recent sediments reveal the deposition of turbidites resulting from typhoon-induced floods. Multiproxy analysis illustrates the interplay between anthropogenic activities and natural processes

  6. Chernozems microbial community under anthropogenic impact (Russia)

    Science.gov (United States)

    Ivashchenko, Kristina; Ananyeva, Nadezhda; Sushko, Sofia; Vasenev, Viacheslav

    2017-04-01

    Chernozems is important natural resource, which in the last decade under intense influence as a result of plowing and urbanization. The parameters of soil microbial community functioning might be identify some soil deterioration under the impacts. Our research was focused on assessment of microbial community status in different soil layers of virgin steppe, bare fallow and urban ecosystems (Kursk region). In each ecosystem, we chose randomly 3-5 spatially distributed sites, where soil samples were collected by auguring up to 0.5 m depth (each layer 10 cm thickness) and up to 1.5 m depth (0-10, 10-50, 50-100, 100-150 cm layers), totally 127 samples. The bulk density was measured for these soil layers. In all soil samples the microbial biomass carbon content (Cmic) was analyzed by substrate-induced respiration (SIR) method and basal respiration (BR) was assessed by CO2 rate production. The fungi-to-bacteria ratio (selective inhibition technique with antibiotics) was determined and portion of Cmic in soil organic carbon (Corg) content was calculated in topsoil (0-10 cm). The Corg (dichromate oxidation) and pHw (potentiometry) values were measured. The Cmic and BR profile pools were calculated using bulk density and thickness of studied layers. The Cmic (0-10 cm) was varied from 84 to 1954 µg C g-1 soil, in steppe it was on average 3-4 times higher than those in bare fallow and urban. The BR rate was amounted from 0.20 to 1.57 µg CO2-C g-1 soil h-1, however no significant difference between studied ecosystems was found. It was shown the relationship between Cmic, BR and Corg (the linear regression, R2=0.92 and 0.75, respectively, pecosystems row: virgin steppe>bare fallow>urban, and it was on average 6.0, 5.2 and 1.8, respectively. The Cmic profile pool (0.5 m) of steppe was reached up on average 206 g C m-2, and it was 2.0 and 2.5 times higher those bare fallow and urban, respectively. The BR profile pool (0.5 m) in steppe and bare fallow was reached up 5.9 and 5

  7. Mid to Late Holocene climate variability and anthropogenic impacts

    DEFF Research Database (Denmark)

    Olsen, J.; Noe-Nygaard, Nanna; Wolfe, B. B.

    2010-01-01

    this was interrupted by very wet conditions from 5,300 to 5,150, 4,300 to 4,050 and 3,700 to 3,450 cal year BP. The timing of the latter two moist intervals is consistent with other Scandinavian paleoclimatic records. Dry conditions at Lake Bliden between 3,450 and 2,800 cal year BP is consistent with other...... paleolimnological records from southern Sweden but contrasts with records in central Sweden, possibly suggesting a more northerly trajectory of prevailing westerlies carrying moisture from the North Atlantic at this time. Overall, fluctuating moisture conditions at Lake Bliden appear to be strongly linked...... susceptibility, d13CORG, d13Ccarb and d18Ocarb records suggest that the Medieval Warm Period was dry and the Little Ice Age was wet....

  8. The health status of adolescents living at mid-latitude or in the European North in relation to anthropogenic pollution

    Directory of Open Access Journals (Sweden)

    D. A. Kuznetsova

    2016-01-01

    Full Text Available The distribution of health groups among 14-year-old adolescents (n = 707 living since birth under the conditions of mid-latitudes (the towns of Kirov and Yaransk and in the European North (the town of Ukhta and the settlement of Sedyu was compared to determine the impact of anthropogenic pollution at different latitudes on this indicator. It was shown that the conditions of the European North in the absence of anthropogenic pollution failed to affect the number of 14-year-old boys and girls having health groups I, II, III, IV, and V. Anthropogenic pollution was found to decline the number of health group I adolescents living in the European North, without influencing this indicator in those dwelling at mid-latitudes, but, in spite of the latitude of their residence, to increase that of persons with health group II, without having an impact on the number of persons with health groups III, IV, and V.

  9. Small-scale opencast mining: an important research field for anthropogenic geomorphology

    Directory of Open Access Journals (Sweden)

    Byizigiro, R. Vaillant

    2015-12-01

    Full Text Available Artisanal and small-scale mining (A&SM is a growing economic sector in many third-world countries. This review focuses on anthropo-geomorphic factors and processes associated with small-scale opencast mining (SSOM, a form of A&SM in which near-surface ores are extracted by removing relatively thin covers of soil, bedrock or sediments. Being widespread and commonly conducted without proper planning and beyond the control of local authorities, this form of mining has potentially large impacts on landforms and landscape dynamics, often resulting in drastic consequences for the local environment and agriculture. SSOM should be regarded as a component of anthropogenic geomorphology because it involves the role of humans in creating landforms and modifying the operation of natural geomorphological processes, such as weathering, erosion, transport and deposition. By initiating new and modifying natural geomorphic processes, SSOM causes and/or accelerates geomorphic processes, resulting in various forms of land degradation. While the direct geomorphic impact of SSOM is in general easily discernible and leads to characteristic features, such as excavated pits and overburden spoil heaps, many secondary impacts are attributed to geomorphic processes triggered in the wake of the primary mining-induced landscape alterations. The magnitude of such secondary implications may well extend beyond the actual mining areas, but these effects have not been thoroughly addressed in the research so far. This review summarizes the known studies on the geomorphic impacts of SSOM operations and highlights common geomorphic processes and landforms associated with this type of anthropogenic activity, thus establishing a starting point for further in-depth research.

  10. Has Anthropogenic Forcing Caused a Discernible Change in Atlantic Hurricane Activity?

    Science.gov (United States)

    Knutson, T. R.; Vecchi, G. A.

    2007-12-01

    There is currently evidence both for and against the existence of a discernible anthropogenic impact on Atlantic hurricane activity. Emanuel's (pers. comm. 2007) Power Dissipation Index shows unprecedented high values in recent decades in the context of the past 60 yr, and correlates remarkably well with low-frequency tropical Atlantic SST variations. The limited record length, partial basin coverage by aircraft in the pre-satellite era, and lack of reconciliation with models limit the usefulness of this result for identifying possible anthropogenic influences. Landsea (EOS, 2007) uses landfalling storm statistics to infer no significant increase in basin-wide tropical storm counts since 1900. Landsea's critical assumption of a constant landfalling fraction over time limits confidence in this assessment. Nonetheless, an important finding is that U.S. landfalling hurricane activity (frequency and PDI) show no increasing trend over the past century or so. Holland and Webster (Phil. Trans. R. Soc. A 2007) conclude that basin-wide tropical cyclone and hurricane counts have increased dramatically during the past century, related to the rise in tropical Atlantic SSTs. Their key assumption is that the existing HURDAT data reliably portrays basin-wide statistics for tropical storms, hurricanes and major hurricanes, at least back to ~1900, which requires further substantiation. We use historical Atlantic ship track and storm track data to estimate the expected number of missing tropical storms each year in the pre-satellite era (1878-1965). After adjustment, the storm counts covary with tropical SSTs on multi-decadal time scales, but their long-term trend (1878-2006) is weaker than the trend in similarly normalized SSTs (though both are nominally positive). The linear trend in adjusted storm counts for 1900-2006 is strongly positive (+4.2 storms/century) and highly significant even after accounting for serial correlation. However, this trend begins near a local minimum in

  11. Anthropogenic combustion iron as a complex climate forcer.

    Science.gov (United States)

    Matsui, Hitoshi; Mahowald, Natalie M; Moteki, Nobuhiro; Hamilton, Douglas S; Ohata, Sho; Yoshida, Atsushi; Koike, Makoto; Scanza, Rachel A; Flanner, Mark G

    2018-04-23

    Atmospheric iron affects the global carbon cycle by modulating ocean biogeochemistry through the deposition of soluble iron to the ocean. Iron emitted by anthropogenic (fossil fuel) combustion is a source of soluble iron that is currently considered less important than other soluble iron sources, such as mineral dust and biomass burning. Here we show that the atmospheric burden of anthropogenic combustion iron is 8 times greater than previous estimates by incorporating recent measurements of anthropogenic magnetite into a global aerosol model. This new estimation increases the total deposition flux of soluble iron to southern oceans (30-90 °S) by 52%, with a larger contribution of anthropogenic combustion iron than dust and biomass burning sources. The direct radiative forcing of anthropogenic magnetite is estimated to be 0.021 W m -2 globally and 0.22 W m -2 over East Asia. Our results demonstrate that anthropogenic combustion iron is a larger and more complex climate forcer than previously thought, and therefore plays a key role in the Earth system.

  12. Impact of anthropogenic and natural environmental changes on Echinococcus transmission in Ningxia Hui Autonomous Region, the People's Republic of China.

    Science.gov (United States)

    Yang, Yu Rong; Clements, Archie C A; Gray, Darren J; Atkinson, Jo-An M; Williams, Gail M; Barnes, Tamsin S; McManus, Donald P

    2012-07-24

    Echinococcus transmission is known to be affected by various environmental factors, which may be modified by human influence or natural events including global warming. Considerable population growth in the last fifty years in Ningxia Hui Autonomous Region (NHAR), the People's Republic of China (PRC), has led to dramatic increases in deforestation and modified agricultural practices. In turn, this has resulted in many changes in the habitats for the definitive and intermediate hosts of both Echinococcus granulosus and E. multilocularis, which have increased the risks for transmission of both parasites, affecting echinococcosis prevalence and human disease. Ecological environmental changes due to anthropogenic activities and natural events drive Echinococcus transmission and NHAR provides a notable example illustrating how human activity can impact on a parasitic infection of major public health significance. It is very important to continually monitor these environmental (including climatic) factors that drive the distribution of Echinococcus spp. and their impact on transmission to humans because such information is necessary to formulate reliable future public health policy for echinococcosis control programs and to prevent disease spread.

  13. Anthropogenic influences on macro-level mammal occupancy in the Appalachian Trail corridor.

    Directory of Open Access Journals (Sweden)

    Peter L Erb

    Full Text Available Anthropogenic effects on wildlife are typically assessed at the local level, but it is often difficult to extrapolate to larger spatial extents. Macro-level occupancy studies are one way to assess impacts of multiple disturbance factors that might vary over different geographic extents. Here we assess anthropogenic effects on occupancy and distribution for several mammal species within the Appalachian Trail (AT, a forest corridor that extends across a broad section of the eastern United States. Utilizing camera traps and a large volunteer network of citizen scientists, we were able to sample 447 sites along a 1024 km section of the AT to assess the effects of available habitat, hunting, recreation, and roads on eight mammal species. Occupancy modeling revealed the importance of available forest to all species except opossums (Didelphis virginiana and coyotes (Canis latrans. Hunting on adjoining lands was the second strongest predictor of occupancy for three mammal species, negatively influencing black bears (Ursus americanus and bobcats (Lynx rufus, while positively influencing raccoons (Procyon lotor. Modeling also indicated an avoidance of high trail use areas by bears and proclivity towards high use areas by red fox (Vulpes vulpes. Roads had the lowest predictive power on species occupancy within the corridor and were only significant for deer. The occupancy models stress the importance of compounding direct and indirect anthropogenic influences operating at the regional level. Scientists and managers should consider these human impacts and their potential combined influence on wildlife persistence when assessing optimal habitat or considering management actions.

  14. Fire, Ice and Water: Glaciologic, Paleoclimate and Anthropogenic Linkages During Past Mega-Droughts in the Uinta Mountains, Utah

    Science.gov (United States)

    Power, M. J.; Rupper, S.; Codding, B.; Schaefer, J.; Hess, M.

    2017-12-01

    Alpine glaciers provide a valuable water source during prolonged drought events. We explore whether long-term climate dynamics and associated glacier changes within mountain drainage basins and adjacent landscapes ultimately influence how prehistoric human populations choose settlement locations. The Uinta Mountains of Utah, with a steep present-day precipitation gradient from the lowlands to the alpine zone of 20-100 cm per year, has a rich glacial history related to natural and anthropogenic climate variability. Here we examine how past climate variability has impacted glaciers and ultimately the availability of water over long timescales, and how these changes affected human settlement and subsistence decisions. Through a combination of geomorphologic evidence, paleoclimate proxies, and glacier and climate modelling, we test the hypothesis that glacier-charged hydrologic systems buffer prehistoric populations during extreme drought periods, facilitating long-term landscape management with fire. Initial field surveys suggest middle- and low-elevation glacial valleys contain glacially-derived sediment from meltwater and resulted in terraced river channels and outwash plains visible today. These terraces provide estimates of river discharge during varying stages of glacier advance and retreat. Archaeological evidence from middle- and high-elevations in the Uinta Mountains suggests human populations persisted through periods of dramatic climate change, possibly linked to the persistence of glacially-derived water resources through drought periods. Paleoenvironmental records indicate a long history of fire driven by the combined interaction of climatic variation and human disturbance. This research highlights the important role of moisture variability determining human settlement patterns and landscape management throughout time, and has direct relevance to the impacts of anthropogenic precipitation and glacier changes on vulnerable populations in the coming century

  15. Effects of anthropogenic silt on aquatic macroinvertebrates and abiotic variables in streams in the Brazilian Amazon

    Energy Technology Data Exchange (ETDEWEB)

    Couceiro, Sheyla Regina Marques; Hamada, Neusa [Inst. Nacional de Pesquisas da Amazonia, Coordenacao de Pesquisas em Entomologia, Manaus, AM (Brazil); Forsberg, Bruce Rider [Inst. Nacional de Pesquisas da Amazonia, Coordenacao de Pesquisas em Entomologia, Manaus, AM (Brazil); Inst. Nacional de Pesquisas da Amazonia, Coordenacao de Pesquisas em Ecologia, Manaus, AM (Brazil); Padovesi-Fonseca, Claudia [Univ. de Brasilia, Dept. de Ecologia, Brasilia, DF (Brazil)

    2010-01-15

    Purpose: While environmental risks associated with petroleum extraction such as oil spills or leaks are relatively well known, little attention has been given to the impacts of silt. The increase in petroleum exploitation in Amazonia has resulted in sediment input to aquatic systems, with impacts on their biodiversity. Here we use a combination of field measurements and statistical analyses to evaluate the impacts of anthropogenic silt derived from the construction of roads, borrow pits, and wells during the terrestrial development of gas and oil, on macroinvertebrate communities in streams of the Urucu Petroleum Province in the Central Brazilian Amazon. Material and methods: Ten impacted and nine non-impacted streams were sampled in January, April, and November of 2007. Macroinvertebrates were sampled along a 100-m continuous reach in each stream at 10-m intervals using a dip net. Abiotic variables including, a siltation index (SI), suspended inorganic sediment (SIS), sediment color index (SCI), suspend organic sediment (SOS), pH, electrical conductivity, dissolved oxygen, temperature, water velocity, channel width, and depth, were measured at three equidistant points in each stream ({proportional_to}30-m intervals). Results and discussion: SI did not differ between impacted and undisturbed streams. SIS was higher and SCI lower (more reddish) in impacted than in non-impacted streams. SCI had a positive and SIS a negative effect on both macroinvertebrate richness and density. SIS and SCI also influenced macrophyte taxonomic composition. In impacted streams, taxonomic richness and density were 1.5 times lower than in non-impacted streams. No taxon was significantly associated with impacted streams. SIS was positively correlated with SOS and electrical conductivity while SCI was negatively correlated with SOS, electrical conductivity, and pH. The lack of difference in SI between impacted and nonimpacted streams suggests that anthropogenic sediment does not accumulate

  16. Global Climate Models Intercomparison of Anthropogenic Aerosols Effects on Regional Climate over North Pacific

    Science.gov (United States)

    Hu, J.; Zhang, R.; Wang, Y.; Ming, Y.; Lin, Y.; Pan, B.

    2015-12-01

    Aerosols can alter atmospheric radiation and cloud physics, which further exert impacts on weather and global climate. With the development and industrialization of the developing Asian countries, anthropogenic aerosols have received considerable attentions and remain to be the largest uncertainty in the climate projection. Here we assess the performance of two stat-of-art global climate models (National Center for Atmospheric Research-Community Atmosphere Model 5 (CAM5) and Geophysical Fluid Dynamics Laboratory Atmosphere Model 3 (AM3)) in simulating the impacts of anthropogenic aerosols on North Pacific storm track region. By contrasting two aerosol scenarios, i.e. present day (PD) and pre-industrial (PI), both models show aerosol optical depth (AOD) enhanced by about 22%, with CAM5 AOD 40% lower in magnitude due to the long range transport of anthropogenic aerosols. Aerosol effects on the ice water path (IWP), stratiform precipitation, convergence and convection strengths in the two models are distinctive in patterns and magnitudes. AM3 shows qualitatively good agreement with long-term satellite observations, while CAM5 overestimates convection and liquid water path resulting in an underestimation of large-scale precipitation and IWP. Due to coarse resolution and parameterization in convection schemes, both models' performance on convection needs to be improved. Aerosols performance on large-scale circulation and radiative budget are also examined in this study.

  17. Spring flood pH decline in northern Sweden: Towards an operational model separating natural acidity from anthropogenic acidification

    Energy Technology Data Exchange (ETDEWEB)

    Laudon, H.

    1999-10-01

    The spring flood is a defining feature of the ecosystem in northern Sweden. In this region, spring flood is an occasion for dramatic hydrochemical changes that profoundly effect the biodiversity of the aquatic ecosystem. Spring flood is also the period most susceptible to anthropogenic acidification. A belief in the anthropogenic component to pH decline during spring flood has been an important factor in spending over half a billion crowns to lime surface waters in Northern Sweden during the last decade. The natural component of episodic pH decline during spring flood, however, has received less attention. The main objective of this work is to present an operational model for separating and quantifying the anthropogenic and natural contributions of episodic acidification during high flow events in Northern Sweden. The key assumptions in this model are that baseflow ANC has not been affected by anthropogenic acidification, that DOC has not changed due to modern land-use practice and that natural dilution during hydrological episodes can be quantified. The limited data requirements of 10-15 stream water samples before and during spring flood make the model suitable for widespread use in environmental monitoring programs. This makes it possible to distinguish trends of human impact as well as natural pH decline in space and time. Modeling results from northern Sweden demonstrate that the natural driving mechanisms of dilution and organic acidity were the dominant factors in the episodic acidification of spring flood in the region. The anthropogenic contribution to spring pH decline was similar in size to the natural contribution in only two of the more than 30 events where this model was applied. Natural factors alone were found to cause pH values below 4.5 in some streams. Anthropogenic sources of acidity can be superimposed on this natural dynamics. In the sites studied, the magnitude of the anthropogenic ANC decline was correlated to the winter deposition of

  18. Deciphering long-term records of natural variability and human impact as recorded in lake sediments: a palaeolimnological puzzle

    DEFF Research Database (Denmark)

    Mills, Keely; Schillereff, Daniel; Saulnier-Talbot, Émilie

    2017-01-01

    that is particularly acute when considering management options for aquatic ecosystems. The duration and timing of human impacts on lake systems varies geographically, with some regions of the world (such as Africa and South America) having a longer legacy of human impact than others (e.g., New Zealand). A wide array...... of techniques (biological, chemical, physical and statistical) is available to palaeolimnologists to allow the deciphering of complex sedimentary records. Lake sediments are an important archive of how drivers have changed through time, and how these impacts manifest in lake systems. With a paucity of ‘real...

  19. The effects of anthropogenic organic matter inputs on stable carbon and nitrogen isotopes in organisms from different trophic levels in a southern Mediterranean coastal area

    International Nuclear Information System (INIS)

    Vizzini, Salvatrice; Mazzola, Antonio

    2006-01-01

    Stable isotope ratios were used to determine the impact of anthropogenically derived organic matter from onshore and offshore fish farming and a sewage outfall on organisms at different trophic levels (primary producers and consumers) on the south-east coast of Sicily (Italy, Mediterranean). Representative macroalgae and consumers were collected in three sampling locations: 'Impact' and two putative 'Controls' sited to the north of the impacted location. While δ 13 C values of both organic matter sources and consumers varied little between locations, δ 15 N spatial variability was higher and δ 15 N was shown to be a good descriptor of organic enrichment and uptake of anthropogenically derived material within coastal food webs. Isotopic data were analysed using a multivariate approach. Organic matter sources and benthic components were more sensitive to pollution than nektobenthic species and revealed that the effects of anthropogenic activities seem to be detectable over a wide area. The study site is characterised by wide waste dispersal, which brings a reduction in impact in the area directly affected by organic matter inputs and enlarges the area of moderate impact

  20. Anthropogenic and tidal influences on salinity levels of the Shatt al-Arab River, Basra, Iraq

    NARCIS (Netherlands)

    Abdullah, Ali Dinar; Karim, Usama F.A.; Masih, Ilyas; Popescu, Ioana; van der Zaag, Pieter

    2016-01-01

    ABSTRACT: Understanding the salinity variation caused by a combination of anthropogenic and marine sources is important for water resource management in heavily used rivers impacted by tidal influence. A quantitative analysis of intra-annual variability of salinity levels was conducted in the Shatt

  1. Inventory of anthropogenic landforms for flood management in small catchments of the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Slabá, E.; Jakubínský, Jiří; Báčová, R.; Herber, V.; Kubíček, P.

    2015-01-01

    Roč. 59, č. 2 (2015), s. 075-093 ISSN 0372-8854 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : Anthropogenic landforms * fluvial geomorphology * flood risk * small catchments * landscape degradation Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.103, year: 2015

  2. Impact Theory of Mass Extinctions and the Invertebrate Fossil Record

    Science.gov (United States)

    Alvarez, Walter; Kauffman, Erle G.; Surlyk, Finn; Alvarez, Luis W.; Asaro, Frank; Michel, Helen V.

    1984-03-01

    There is much evidence that the Cretaceous-Tertiary boundary was marked by a massive meteorite impact. Theoretical consideration of the consequences of such an impact predicts sharp extinctions in many groups of animals precisely at the boundary. Paleontological data clearly show gradual declines in diversity over the last 1 to 10 million years in various invertebrate groups. Reexamination of data from careful studies of the best sections shows that, in addition to undergoing the decline, four groups (ammonites, cheilostomate bryozoans, brachiopods, and bivalves) were affected by sudden truncations precisely at the iridium anomaly that marks the boundary. The paleontological record thus bears witness to terminal-Cretaceous extinctions on two time scales: a slow decline unrelated to the impact and a sharp truncation synchronous with and probably caused by the impact.

  3. Individual, population and community level effects of subtle anthropogenic contamination in estuarine meiobenthos

    International Nuclear Information System (INIS)

    Rubal, Marcos; Guilhermino, Lucia M.; Medina, Matias H.

    2009-01-01

    The study presented here searched for the level of taxonomic resolution required to detect the effects of low-level chronic pollution on estuarine meiobenthic communities. Meiofauna from two sites, with special attention to harpacticoid copepods, was analysed at different taxonomic levels of aggregation using uni- and multivariate methods. Adaptation processes that could buffer biodiversity disruptions were also considered through the analysis of fitness-related and tolerance traits in the harpacticoid copepod Paronychocamptus nanus. Results showed that uni- and multivariate analyses could be inadequate when assessing subtle anthropogenic contamination. Instead, the assessment of inter-population differences in tolerance to the main source of stress rises as a required procedure if potential effects of this type of contamination are being investigated. Specifically, a 96 h acute toxicity test performed with populations from the affected site appears as a faster and reliable general tool to assess impacts of low-level chronic pollution in estuaries. - Tolerance of local populations as a reliable tool to assess impacts of subtle anthropogenic contamination in estuaries.

  4. Individual, population and community level effects of subtle anthropogenic contamination in estuarine meiobenthos

    Energy Technology Data Exchange (ETDEWEB)

    Rubal, Marcos [CIIMAR/CIMAR-LA - Centro Interdisciplinar de Investigacao Marinha e Ambiental, Universidade do Porto, Laboratorio de Ecotoxicologia, Rua dos Bragas 289, 4050-123 Porto (Portugal); Guilhermino, Lucia M. [CIIMAR/CIMAR-LA - Centro Interdisciplinar de Investigacao Marinha e Ambiental, Universidade do Porto, Laboratorio de Ecotoxicologia, Rua dos Bragas 289, 4050-123 Porto (Portugal); ICBAS - Instituto de Ciencias Biomedicas de Abel Salazar, Departamento de Estudos de Populacoes, Laboratorio de Ecotoxicologia, Universidade do Porto, Lg. Prof. Abel Salazar 2, 4099-003 Porto (Portugal); Medina, Matias H., E-mail: matias.medina@avs-chile.c [AVS Chile SA, Imperial 0655, Off. 3A, Puerto Varas (Chile); Centro i-mar, Universidad de Los Lagos, Camino Chinquihue km 6, Puerto Montt (Chile)

    2009-10-15

    The study presented here searched for the level of taxonomic resolution required to detect the effects of low-level chronic pollution on estuarine meiobenthic communities. Meiofauna from two sites, with special attention to harpacticoid copepods, was analysed at different taxonomic levels of aggregation using uni- and multivariate methods. Adaptation processes that could buffer biodiversity disruptions were also considered through the analysis of fitness-related and tolerance traits in the harpacticoid copepod Paronychocamptus nanus. Results showed that uni- and multivariate analyses could be inadequate when assessing subtle anthropogenic contamination. Instead, the assessment of inter-population differences in tolerance to the main source of stress rises as a required procedure if potential effects of this type of contamination are being investigated. Specifically, a 96 h acute toxicity test performed with populations from the affected site appears as a faster and reliable general tool to assess impacts of low-level chronic pollution in estuaries. - Tolerance of local populations as a reliable tool to assess impacts of subtle anthropogenic contamination in estuaries.

  5. Anthropogenic and volcanic emission impacts on SO2 dynamics and acid rain profiles. Numerical study using WRF-Chem in a high-resolution modeling

    Science.gov (United States)

    Vela, A. V.; González, C. M.; Ynoue, R.; Rojas, N. Y.; Aristizábal, B. H.; Wahl, M.

    2017-12-01

    Eulerian 3-D chemistry transport models (CTM) have been widely used for the study of air quality in urban environments, becoming an essential tool for studying the impacts and dynamics of gases and aerosols on air quality. However, their use in Colombia is scarce, especially in medium-sized cities, which are experimenting a fast urban growth, increasing the risk associated with possible air pollution episodes. In the densely populated medium-sized Andean city of Manizales, Colombia - a city located on the western slopes of the central range of the Andes (urban population 368000; 2150 m.a.s.l), there is an influence of the active Nevado del Ruiz volcano, located 28 km to the southwest. This natural source emits daily gas and particle fluxes, which could influence the atmospheric chemistry of the city and neighboring towns. Hence, the zone presents a unique combination of anthropogenic and volcanic sulfur gas emissions, which affects SO2 dynamics in the urban area, influencing also in the formation of acid rain phenomenon in the city. Therefore, studies analyzing the relative contribution of anthropogenic and volcanic emission could contribute with a deep understanding about causes and dynamics of both acid rain phenomenon and ambient SO2 levels in Manizales. This work aimed to analyze the influence of anthropogenic (on-road vehicular and industrial point-sources) and volcanic sulfur emissions in SO2 atmospheric chemistry dynamics, evaluating its possible effects on acid rain profiles. Ambient SO2 levels and day-night rain samples were measured and used to analyze results obtained from the application of the fully-coupled on-line WRF-Chem model. Two high-resolution simulations were performed during two dry and wet one-week periods in 2015. Analysis of SO2 dispersion patterns and comparison with SO2 observations in the urban area were performed for three different scenarios in which natural and anthropogenic emissions were simulated separately. Results suggest that

  6. Impacts of Underwater Noise on Marine Vertebrates: Project Introduction and First Results.

    Science.gov (United States)

    Liebschner, Alexander; Seibel, Henrike; Teilmann, Jonas; Wittekind, Dietrich; Parmentier, Eric; Dähne, Michael; Dietz, Rune; Driver, Jörg; van Elk, Cornelis; Everaarts, Eligius; Findeisen, Henning; Kristensen, Jacob; Lehnert, Kristina; Lucke, Klaus; Merck, Thomas; Müller, Sabine; Pawliczka, Iwona; Ronnenberg, Katrin; Rosenberger, Tanja; Ruser, Andreas; Tougaard, Jakob; Schuster, Max; Sundermeyer, Janne; Sveegaard, Signe; Siebert, Ursula

    2016-01-01

    The project conducts application-oriented research on impacts of underwater noise on marine vertebrates in the North and Baltic Seas. In distinct subprojects, the hearing sensitivity of harbor porpoises and gray seals as well as the acoustic tolerance limit of harbor porpoises to impulsive noise from pile driving and stress reactions caused by anthropogenic noise is investigated. Animals are equipped with DTAGs capable of recording the actual surrounding noise field of free-swimming harbor porpoises and seals. Acoustic noise mapping including porpoise detectors in the Natura 2000 sites of the North and Baltic Seas will help to fully understand current noise impacts.

  7. Responses of Surface Ozone Air Quality to Anthropogenic Nitrogen Deposition

    Science.gov (United States)

    Zhang, L.; Zhao, Y.; Tai, A. P. K.; Chen, Y.; Pan, Y.

    2017-12-01

    Human activities have substantially increased atmospheric deposition of reactive nitrogen to the Earth's surface, inducing unintentional effects on ecosystems with complex environmental and climate consequences. One consequence remaining unexplored is how surface air quality might respond to the enhanced nitrogen deposition through surface-atmosphere exchange. We combine a chemical transport model (GEOS-Chem) and a global land model (Community Land Model) to address this issue with a focus on ozone pollution in the Northern Hemisphere. We consider three processes that are important for surface ozone and can be perturbed by addition of atmospheric deposited nitrogen: emissions of biogenic volatile organic compounds (VOCs), ozone dry deposition, and soil nitrogen oxide (NOx) emissions. We find that present-day anthropogenic nitrogen deposition (65 Tg N a-1 to the land), through enhancing plant growth (represented as increases in vegetation leaf area index (LAI) in the model), could increase surface ozone from increased biogenic VOC emissions, but could also decrease ozone due to higher ozone dry deposition velocities. Meanwhile, deposited anthropogenic nitrogen to soil enhances soil NOx emissions. The overall effect on summer mean surface ozone concentrations show general increases over the globe (up to 1.5-2.3 ppbv over the western US and South Asia), except for some regions with high anthropogenic NOx emissions (0.5-1.0 ppbv decreases over the eastern US, Western Europe, and North China). We compare the surface ozone changes with those driven by the past 20-year climate and historical land use changes. We find that the impacts from anthropogenic nitrogen deposition can be comparable to the climate and land use driven surface ozone changes at regional scales, and partly offset the surface ozone reductions due to land use changes reported in previous studies. Our study emphasizes the complexity of biosphere-atmosphere interactions, which can have important

  8. Benthic Nutrient Fluxes from Mangrove Sediments of an Anthropogenically Impacted Estuary in Southern China

    Directory of Open Access Journals (Sweden)

    David Kaiser

    2015-06-01

    Full Text Available Mangroves serve as either sinks or sources for inorganic and organic nutrients and can mitigate anthropogenic nutrient pollution, control the production in adjacent systems, and prevent eutrophication. To better understand the nutrient dynamics in a subtropical mangrove, we employed a three-way approach in the Nanliu River Estuary, southern China: Pore water profiles and sediment incubations revealed benthic early diagenesis as well as sediment–water exchange of dissolved nutrients and oxygen, while tidal sampling of estuarine and mangrove water identified source and sink functions of the entire mangrove forest. Fluxes of oxygen during incubations were always directed into the sediment, indicating heterotrophy of the system. There was a net uptake of dissolved inorganic nitrogen, mainly caused by nitrate influx, while ammonium and nitrite showed variable flux direction. Despite high pore water concentrations, phosphate and silica showed net uptake. Fluxes of dissolved organic carbon were generally low except for high efflux in the dark following a storm event. Due to the combination of small forest area and strong anthropogenic nutrient input, the net sink function for dissolved nitrogen and phosphorus provides no significant buffer against the eutrophication of coastal waters.

  9. Contrasting pattern of hydrological changes during the past two millennia from central and northern India: Regional climate difference or anthropogenic impact?

    Science.gov (United States)

    Mishra, Praveen K.; Prasad, Sushma; Marwan, Norbert; Anoop, A.; Krishnan, R.; Gaye, Birgit; Basavaiah, N.; Stebich, Martina; Menzel, Philip; Riedel, Nils

    2018-02-01

    High resolution reconstructions of the India Summer Monsoon (ISM) are essential to identify regionally different patterns of climate change and refine predictive models. We find opposing trends of hydrological proxies between northern (Sahiya cave stalagmite) and central India (Lonar Lake) between 100 and 1300 CE with the strongest anti-correlation between 810 and 1300 CE. The apparently contradictory data raise the question if these are related to widely different regional precipitation patterns or reflect human influence in/around the Lonar Lake. By comparing multiproxy data with historical records, we demonstrate that only the organic proxies in the Lonar Lake show evidence of anthropogenic impact. However, evaporite data (mineralogy and δ18O) are indicative of precipitation/evaporation (P/E) into the Lonar Lake. Back-trajectories of air-mass circulation over northern and central India show that the relative contribution of the Bay of Bengal (BoB) branch of the ISM is crucial for determining the δ18O of carbonate proxies only in north India, whereas central India is affected significantly by the Arabian Sea (AS) branch of the ISM. We conclude that the δ18O of evaporative carbonates in the Lonar Lake reflects P/E and, in the interval under consideration, is not influenced by source water changes. The opposing trend between central and northern India can be explained by (i) persistent multidecadal droughts over central India between 810 and 1300 CE that provided an effective mechanism for strengthening sub-tropical westerly winds resulting in enhancement of wintertime (non-monsoonal) rainfall over northern parts of the Indian subcontinent, and/or (ii) increased moisture influx to northern India from the depleted BoB source waters.

  10. Island biogeography and landscape structure: Integrating ecological concepts in a landscape perspective of anthropogenic impacts in temporary wetlands

    International Nuclear Information System (INIS)

    Angeler, David G.; Alvarez-Cobelas, Miguel

    2005-01-01

    Although our understanding of environmental risk assessment in temporary wetlands has been improved by the use of multi-species toxicity testing, we still know little of how landscape variables mediate the strength of, and recovery from, anthropogenic stress in such ecosystems. To bridge this research gap, we provide a theoretical framework of the response of temporary wetlands to anthropogenic disturbance along a habitat-isolation continuum based on island biogeography theory, landscape ecology and dispersal and colonization strategies of temporary wetland organisms. - Environmental risk assessment in temporary wetlands may benefit from consideration of island biogeography theory and landscape structure

  11. Past and Future of the Anthropogenic Biosphere

    Science.gov (United States)

    Ellis, E. C.

    2010-12-01

    Human populations and their use of land have now transformed most of the terrestrial biosphere into anthropogenic biomes (anthromes). As anthromes have emerged as the dominant global forms of ecological pattern and process, human interactions with terrestrial ecosystems have become a key earth system process, determining the structure and functioning of the biosphere. This presentation explores Ester Boserup’s land use intensification theories as models for understanding the emergence and dynamics of anthromes and their ecological processes, including their biogeochemistry and community structure, from the mostly wild biosphere of the Holocene to the primarily anthropogenic biosphere of the present and future. Existing global models and data for human population growth and land use over the Holocene differ in their portrayal of the global transition to a mostly anthropogenic biosphere. Yet there is little doubt that human populations have continued to grow over the long term and that anthromes have been increasingly important global ecological systems for millennia. This is conclusive evidence that human interactions with ecosystems can be sustained over the long-term, albeit under conditions that may no longer be realizable by either Earth or human systems. The classic Malthusian paradigm, in which human population growth outstrips natural resources leading to population collapse is unsupported by historical observations at global scale. Boserupian intensification is the better model, providing a robust theoretical foundation in which socio-ecological systems evolve as human populations increase, towards increasingly efficient use of limiting natural resources and enhanced production of anthropogenic ecological services such as food. This is not a story of technical advance, but rather of the forced adoption of ever more energy-intensive technical solutions in support of ever increasing population demands. And it does explain historical changes in the biosphere

  12. Global economic impacts of climate variability and change during the 20th century.

    Science.gov (United States)

    Estrada, Francisco; Tol, Richard S J; Botzen, Wouter J W

    2017-01-01

    Estimates of the global economic impacts of observed climate change during the 20th century obtained by applying five impact functions of different integrated assessment models (IAMs) are separated into their main natural and anthropogenic components. The estimates of the costs that can be attributed to natural variability factors and to the anthropogenic intervention with the climate system in general tend to show that: 1) during the first half of the century, the amplitude of the impacts associated with natural variability is considerably larger than that produced by anthropogenic factors and the effects of natural variability fluctuated between being negative and positive. These non-monotonic impacts are mostly determined by the low-frequency variability and the persistence of the climate system; 2) IAMs do not agree on the sign (nor on the magnitude) of the impacts of anthropogenic forcing but indicate that they steadily grew over the first part of the century, rapidly accelerated since the mid 1970's, and decelerated during the first decade of the 21st century. This deceleration is accentuated by the existence of interaction effects between natural variability and natural and anthropogenic forcing. The economic impacts of anthropogenic forcing range in the tenths of percentage of the world GDP by the end of the 20th century; 3) the impacts of natural forcing are about one order of magnitude lower than those associated with anthropogenic forcing and are dominated by the solar forcing; 4) the interaction effects between natural and anthropogenic factors can importantly modulate how impacts actually occur, at least for moderate increases in external forcing. Human activities became dominant drivers of the estimated economic impacts at the end of the 20th century, producing larger impacts than those of low-frequency natural variability. Some of the uses and limitations of IAMs are discussed.

  13. Carbon budget of oligotrophic mires in the Southern Taiga of Western Siberia under anthropogenic impact

    Science.gov (United States)

    Golovatskaya, Eugenia; Dyukarev, Egor

    2010-05-01

    Role of peatlands in the global greenhouse gases budget is highly relevant. According to present estimates peatlands in undisturbed conditions act as a sink for the atmospheric carbon. Anthropogenic impact on peatlands (melioration, changes in land use, influence of underground water catchments) results in water table lowering, changing in vegetation cover, and degradation of peat deposit. Peatlands could provide a significant positive feedback for climate changes if warming and peatlands drying stimulates bulk soil organic matter decomposition which enhances CO2 release to the atmosphere. Western Siberian peatlands usually represented big bog massifs. Big peatlands have higher stability to external influence. Small peatlands have all signs of big bogs but react on changes in environmental variables more quickly. The present study is devoted to investigation of primary carbon fluxes (CO2 emission and net primary productivity) and carbon balance at oligotrophic bogs in native condition (key area "Bakchar") and under anthropogenic impact (key area "Ob'-Tom'"). The key area "Bakchar" is located between the Iksa and Bakchar rivers (56o58`N 82o36`E) at the Bakcharskoe bog (area 1400 km2). The key area "Ob'-Tom'"is located in the northern part of Ob' and Tom' interfluve (56o21`N 82o31`E). The "Bakchar" key area includes the following ecosystems: pine- shrub-sphagnum community, a similar community with stunted (low) pine trees, and sedge-sphagnum fen. Two small peatlands were studied at Ob' and Tom' interfluve. Kirsanovskoe bog includes pine- shrub-sphagnum community and sedge fen. Timiryazevskoe bog was represented by pine- shrub-sphagnum (TPSS) community and sedge fen. An infrared gas analyzer OPTOGAS 500.4 (OPTEC Corp., St.-Petersburg, Russia) attached to a static opaque plastic been used for carbon dioxide emission measurements. The net primary productivity was measured by clipping method (Golovatskaya and Dyukarev, Plant Soil 2009). Peatlands at "Ob'-Tom'" key area

  14. Anthropogenic effects on interaction outcomes: examples from insect-microbial symbioses in forest and savanna ecosystems

    DEFF Research Database (Denmark)

    Six, Diana L.; Thomas-Poulsen, Michael; Hansen, Allison K.

    2011-01-01

    The influence of humans on ecosystem dynamics has been, and continues to be, profound. Anthropogenic effects are expected to amplify as human populations continue to increase. Concern over these effects has given rise to a large number of studies focusing on impacts of human activities...... of mutualisms can be to an equally varied set of anthropogenic influences. We also show how alterations of mutualisms may ramify throughout affected systems. We stress that researchers must be cognizant that many observed changes in the behaviors, abundances, and distributions of organisms due to human...... activities are likely to be mediated by mutualists which may alter predictions and actual outcomes in significant ways....

  15. Two Centuries of Trace Element Deposition at the Top of the Himalaya: Natural Background vs. Anthropogenic Pollution.

    Science.gov (United States)

    Wegner, A.; Gabrielli, P.; Barker, J. D.; Sierra Hernandez, R.; Beaudon, E.; Thompson, L. G.

    2014-12-01

    South East Asia is one of the fastest developing regions on Earth and has experienced a recent large increase in atmospheric pollution. Glaciers of the nearby Himalayan mountains represent a unique archive that provides the potential to be used to determine the strength and timing of the onset of anthropogenic atmospheric pollution in the region. Within the Third Pole Project several ice cores from the Tibetan Plateau and the Himalaya are analyzed for their trace element concentrations. Here we present results of a new trace element record from the Dasuopu ice core spanning 1790 - 1993 AD. The Dasuopu ice core was drilled in 1997 at 7200 m altitude in the Himalaya and provides the highest elevation ice core record ever obtained. Due to the high altitude this site has the potential to archive not only contamination records of regional significance, but possibly also long distant pollution from, for example, Europe and climatic signals influenced by the North Atlantic. This area is heavily influenced by the monsoon regime providing seasonally and highly variable snow accumulation rates. The upper 50 m of the core covering the time interval from 1950 to 1997 consist of Firn and is sampled non-continuously in a resolution of approximately one sample/year. The time interval between 1790 and 1950 is presented by a continuous record in subannual resolution. Crustal enrichment factors are used to discriminate between the terrigenous and the anthropogenic contributions. In this study we focus two research topics: (1) determine the onset of the earliest anthropogenic contamination from trace elements at this elevation (7200 m) Himalayan site and (2) determine intra-annual variations of atmospheric trace elements, with a focus on discriminating between pre-monsoon season (when the aerosol input is governed by the high dust input in spring) and the monsoon and dry season. We find trace element concentrations to be very low and very variable throughout the year with

  16. Exploring records of Saharan dust transport and hurricanes in the Caribbean and Gulf of Mexico over recent millennia

    Science.gov (United States)

    Hayes, C. T.; Wallace, D. J.

    2017-12-01

    Locations in the northern Caribbean and Gulf of Mexico receive aerosol deposition from the summertime Saharan dust plume that is representative of atmospheric conditions over a very large expanse of the North Atlantic Ocean. A recent reconstruction of stable dust deposition in the Bahamas over the past 2 thousand years contrasts other records from the African continent which were impacted by local anthropogenic emissions. Dust deposition in the Bahamas also appeared relatively insensitive to expected changes in intertropical convergence zone position. Here, we will investigate records of Atlantic hurricane activity and Saharan dust transport, parameters which are anti-correlated today, in the Caribbean and Gulf region over the past few thousand years to further probe possible variations in Saharan dust forcings on Atlantic climate.

  17. Seasonal variations in the sources of natural and anthropogenic lead deposited at the East Rongbuk Glacier in the high-altitude Himalayas.

    Science.gov (United States)

    Burn-Nunes, Laurie; Vallelonga, Paul; Lee, Khanghyun; Hong, Sungmin; Burton, Graeme; Hou, Shugui; Moy, Andrew; Edwards, Ross; Loss, Robert; Rosman, Kevin

    2014-07-15

    Lead (Pb) isotopic compositions and concentrations, and barium (Ba) and indium (In) concentrations have been analysed at sub-annual resolution in three sections from a snow pit samples dated to 2004/2005, recovered from the East Rongbuk Glacier in the high-altitude Himalayas. Ice core sections indicate that atmospheric chemistry prior to ~1,953 was controlled by mineral dust inputs, with no discernible volcanic or anthropogenic contributions. Eighteenth century monsoon ice core chemistry is indicative of dominant contributions from local Himalayan sources; non-monsoon ice core chemistry is linked to contributions from local (Himalayan), regional (Indian/Thar Desert) and long-range (North Africa, Central Asia) sources. Twentieth century monsoon and non-monsoon ice core data demonstrate similar seasonal sources of mineral dust, however with a transition to less-radiogenic isotopic signatures that suggests local and regional climate/environmental change. The snow pit record demonstrates natural and anthropogenic contributions during both seasons, with increased anthropogenic influence during non-monsoon times. Monsoon anthropogenic inputs are most likely sourced to South/South-East Asia and/or India, whereas non-monsoon anthropogenic inputs are most likely sourced to India and Central Asia. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Anthropogenic Biomes of the World, Version 2: 1700

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Biomes of the World, Version 2: 1700 data set describes anthropogenic transformations within the terrestrial biosphere caused by sustained direct...

  19. Anthropogenic Biomes of the World, Version 2: 1900

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Biomes of the World, Version 2: 1900 data set describes anthropogenic transformations within the terrestrial biosphere caused by sustained direct...

  20. Anthropogenic Biomes of the World, Version 2: 1800

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Biomes of the World, Version 2: 1800 data set describes anthropogenic transformations within the terrestrial biosphere caused by sustained direct...

  1. Anthropogenic Biomes of the World, Version 2: 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Biomes of the World, Version 2: 2000 data set describes anthropogenic transformations within the terrestrial biosphere caused by sustained direct...

  2. Impact of anthropogenic and natural environmental changes on Echinococcus transmission in Ningxia Hui Autonomous Region, the People’s Republic of China

    Science.gov (United States)

    2012-01-01

    Echinococcus transmission is known to be affected by various environmental factors, which may be modified by human influence or natural events including global warming. Considerable population growth in the last fifty years in Ningxia Hui Autonomous Region (NHAR), the People’s Republic of China (PRC), has led to dramatic increases in deforestation and modified agricultural practices. In turn, this has resulted in many changes in the habitats for the definitive and intermediate hosts of both Echinococcus granulosus and E. multilocularis, which have increased the risks for transmission of both parasites, affecting echinococcosis prevalence and human disease. Ecological environmental changes due to anthropogenic activities and natural events drive Echinococcus transmission and NHAR provides a notable example illustrating how human activity can impact on a parasitic infection of major public health significance. It is very important to continually monitor these environmental (including climatic) factors that drive the distribution of Echinococcus spp. and their impact on transmission to humans because such information is necessary to formulate reliable future public health policy for echinococcosis control programs and to prevent disease spread. PMID:22827890

  3. Impact of anthropogenic and natural environmental changes on Echinococcus transmission in Ningxia Hui Autonomous Region, the People’s Republic of China

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2012-07-01

    Full Text Available Abstract Echinococcus transmission is known to be affected by various environmental factors, which may be modified by human influence or natural events including global warming. Considerable population growth in the last fifty years in Ningxia Hui Autonomous Region (NHAR, the People’s Republic of China (PRC, has led to dramatic increases in deforestation and modified agricultural practices. In turn, this has resulted in many changes in the habitats for the definitive and intermediate hosts of both Echinococcus granulosus and E. multilocularis, which have increased the risks for transmission of both parasites, affecting echinococcosis prevalence and human disease. Ecological environmental changes due to anthropogenic activities and natural events drive Echinococcus transmission and NHAR provides a notable example illustrating how human activity can impact on a parasitic infection of major public health significance. It is very important to continually monitor these environmental (including climatic factors that drive the distribution of Echinococcus spp. and their impact on transmission to humans because such information is necessary to formulate reliable future public health policy for echinococcosis control programs and to prevent disease spread.

  4. Lead isotopic signatures in Antarctic marine sediment cores: A comparison between 1 M HCl partial extraction and HF total digestion pre-treatments for discerning anthropogenic inputs

    International Nuclear Information System (INIS)

    Townsend, A.T.; Snape, I.; Palmer, A.S.; Seen, A.J.

    2009-01-01

    Sensitive analytical techniques are typically required when dealing with samples from Antarctica as even low concentrations of contaminants can have detrimental environmental effects. Magnetic Sector ICP-MS is an ideal technique for environmental assessment as it offers high sensitivity, multi-element capability and the opportunity to determine isotope ratios. Here we consider the Pb isotope record of five marine sediment cores collected from three sites in the Windmill Islands area of East Antarctica: Brown Bay adjacent to the current Australian station Casey, Wilkes near the abandoned US/Australian Station and McGrady Cove lying midway between the two. Two sediment pre-treatment approaches were considered, namely partial extraction with 1 M HCl and total dissolution involving HF. Lead isotope ratio measurements made following sediment partial extraction provided a more sensitive indication of Pb contamination than either Pb concentrations alone (irrespective of sample pre-treatment method) or isotope ratios made after HF digestion, offering greater opportunity for discrimination between impacted and natural/geogenic samples and sites. Over 90% of the easily extractable Pb from sediments near Casey was anthropogenic in origin, consisting of Pb from major Australian deposits. At Wilkes impact from discarded batteries with a unique isotopic signature was found to be a key source of Pb contamination to the marine environment with ∼ 70-80% of Pb being anthropogenic in origin. The country and source of origin of these batteries remain unknown. Little evidence was found suggesting contamination at Wilkes by Pb originating from the major US source, Missouri. No definitive assessment could be made regarding Pb impact at McGrady Cove as the collected sediment core was of insufficient depth. Although Pb isotope ratio signatures may indicate anthropogenic input, spatial concentration gradients at nearby Brown Bay suggest contamination at McGrady Cove is unlikely. We

  5. Future Climate Impacts of Direct Radiative Forcing Anthropogenic Aerosols, Tropospheric Ozone, and Long-lived Greenhouse Gases

    Science.gov (United States)

    Chen, Wei-Ting; Liao, Hong; Seinfeld, John H.

    2007-01-01

    Long-lived greenhouse gases (GHGs) are the most important driver of climate change over the next century. Aerosols and tropospheric ozone (O3) are expected to induce significant perturbations to the GHG-forced climate. To distinguish the equilibrium climate responses to changes in direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and GHG between present day and year 2100, four 80-year equilibrium climates are simulated using a unified tropospheric chemistry-aerosol model within the Goddard Institute for Space Studies (GISS) general circulation model (GCM) 110. Concentrations of sulfate, nitrate, primary organic (POA) carbon, secondary organic (SOA) carbon, black carbon (BC) aerosols, and tropospheric ozone for present day and year 2100 are obtained a priori by coupled chemistry-aerosol GCM simulations, with emissions of aerosols, ozone, and precursors based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenario (SRES) A2. Changing anthropogenic aerosols, tropospheric ozone, and GHG from present day to year 2100 is predicted to perturb the global annual mean radiative forcing by +0.18 (considering aerosol direct effects only), +0.65, and +6.54 W m(sup -2) at the tropopause, and to induce an equilibrium global annual mean surface temperature change of +0.14, +0.32, and +5.31 K, respectively, with the largest temperature response occurring at northern high latitudes. Anthropogenic aerosols, through their direct effect, are predicted to alter the Hadley circulation owing to an increasing interhemispheric temperature gradient, leading to changes in tropical precipitation. When changes in both aerosols and tropospheric ozone are considered, the predicted patterns of change in global circulation and the hydrological cycle are similar to those induced by aerosols alone. GHG-induced climate changes, such as amplified warming over high latitudes, weakened Hadley circulation, and increasing precipitation over the

  6. Classification and Use of Natural and Anthropogenic Soils by Indigenous Communities of the Upper Amazon Region of Colombia.

    Science.gov (United States)

    Peña-Venegas, C P; Stomph, T J; Verschoor, G; Echeverri, J A; Struik, P C

    Outsiders often oversimplify Amazon soil use by assuming that abundantly available natural soils are poorly suited to agriculture and that sporadic anthropogenic soils are agriculturally productive. Local perceptions about the potentials and limitations of soils probably differ, but information on these perceptions is scarce. We therefore examined how four indigenous communities in the Middle Caquetá River region in the Colombian Amazon classify and use natural and anthropogenic soils. The study was framed in ethnopedology: local classifications, preferences, rankings, and soil uses were recorded through interviews and field observations. These communities recognized nine soils varying in suitability for agriculture. They identified anthropogenic soils as most suitable for agriculture, but only one group used them predominantly for their swiddens. As these communities did not perceive soil nutrient status as limiting, they did not base crop-site selection on soil fertility or on the interplay between soil quality and performance of manioc genetic resources.

  7. Natural and anthropogenic impacts on historical heritage along the north Bulgarian Black Sea coast

    Science.gov (United States)

    Peev, Preslav; Palazov, Atanas; Stancheva, Margarita; Stanchev, Hristo; Krastev, Anton; Shtirkov, Ilko

    2014-05-01

    of erosion and coastal landslides. Among human activities that might have direct or indirect adverse impact on cultural heritage the main are coastal and underwater developments and infrastructures. These are building of coast- and shore-protection structures, roads, placing different types of pipeline (a recent case from Bulgaria is envisaged construction of gas pipeline "South Stream"). Other categories of anthropogenic impacts, such as coastal tourism and expansion of settlements, etc. are less negative factors, but locals and visitors can accidentally damage monuments, or in most of the cases by not being aware of the presence and importance of a archeological site. Finally, insufficient decision-making and management of coastal and underwater cultural heritage can also have potential adverse impact. Recommendations for mitigation and protection measures are also outlined in the end. This work is a part of the Project "Submarine Archaeological Heritage on the Western Black Sea Shelf - HERAS", financed by European Union under the CBC Program Romania-Bulgaria.

  8. Factors determining the occurrence of anthropogenic materials in nests of the white stork Ciconia ciconia.

    Science.gov (United States)

    Jagiello, Zuzanna A; Dylewski, Łukasz; Winiarska, Dominika; Zolnierowicz, Katarzyna M; Tobolka, Marcin

    2018-03-13

    Birds have been using anthropogenic materials for nest construction for the past few decades. However, there is a trade-off between the use of new nesting material, which is often linked to greater breeding success, and the higher risk of nestling mortality due to entanglement or ingestion of debris. Here, we investigate the incorporation of anthropogenic materials into nests of the white stork Ciconia ciconia, based on a long-term study of a population in Western Poland. We recorded at least one item of debris in 50 and 42% of nests at the egg and nestling stages, respectively. More debris was found in nests located in territories with higher number of anthropogenic material in the surrounding environment. We found a relationship between the age of females, the number of debris in the area surrounding a nest, and the number of debris in the nest. We found no significant effect of the total number of debris in nests on clutch size, number of fledglings, or breeding success. Studies on the influence of the age and sex of individuals in understanding this behaviour and its drivers in bird populations should be continued.

  9. Atmospheric lead and heavy metal pollution records from a Belgian peat bog spanning the last two millenia: Human impact on a regional to global scale

    Energy Technology Data Exchange (ETDEWEB)

    Vleeschouwer, Francois de [URAP, Departement de Geologie, Universite de Liege, Allee du 6 Aout B18 Sart Tilman B4000 - Liege (Belgium)]. E-mail: fdevleeschouwer@student.ulg.ac.be; Gerard, Laetitia [URAP, Departement de Geologie, Universite de Liege, Allee du 6 Aout B18 Sart Tilman B4000 - Liege (Belgium); Goormaghtigh, Catherine [Unite de recherche: ' Isotopes, Petrologie et Environnement' , Departement des Sciences de la Terre et de l' Environnement, CP 160/02 Universite Libre de Bruxelles, Avenue FD. Roosevelt, 50, B-1050 Bruxelles (Belgium); Mattielli, Nadine [Unite de recherche: ' Isotopes, Petrologie et Environnement' , Departement des Sciences de la Terre et de l' Environnement, CP 160/02 Universite Libre de Bruxelles, Avenue FD. Roosevelt, 50, B-1050 Bruxelles (Belgium); Le Roux, Gael [Institute of Environmental Geochemistry, University of Heidelberg, Im Neuenheimer Feld 236 B-69120 Heidelberg (Germany); Fagel, Nathalie [URAP, Departement de Geologie, Universite de Liege, Allee du 6 Aout B18 Sart Tilman B4000 - Liege (Belgium)

    2007-05-15

    Europe has been continuously polluted throughout the last two millennia. During the Roman Empire, these pollutions were mainly from ore extraction and smelting across Europe. Then, during the Middle Ages and the Early times of Industrial revolution (i.e. 1750), these pollutions extended to coal burning and combustion engine. Belgian ombrotrophic peat bogs have proved an effective archive of these pollutants and provide the opportunity to reconstruct the history of atmospheric deposition in NW Europe. The results of recent and past trace metal accumulation and Pb isotopes from a one-meter peat core (in the Misten peat bog) have been derived using XRF and Nu-plasma MC-ICP-MS. Combined with {sup 14}C and {sup 210}Pb dates these data have enabled us to trace fluxes in anthropogenic pollution back to original Roman times. Several periods of well-known Pb pollution events are clearly recorded including the Early and Late Roman Empire, the Middle Ages and the second industrial revolution. Also recorded is the introduction of leaded gasoline, and more recently the introduction of unleaded gasoline. Lead isotopes in this site have also enabled us to fingerprint several regional and global sources of anthropogenic particles.

  10. Atmospheric lead and heavy metal pollution records from a Belgian peat bog spanning the last two millenia. Human impact on a regional to global scale

    Energy Technology Data Exchange (ETDEWEB)

    De Vleeschouwer, Francois; Gerard, Laetitia; Fagel, Nathalie [URAP, Departement de Geologie, Universite de Liege, Allee du 6 Aout B18 Sart Tilman B4000 - Liege (Belgium); Goormaghtigh, Catherine; Mattielli, Nadine [Unite de recherche: ' ' Isotopes, Petrologie et Environnement' ' , Departement des Sciences de la Terre et de l' Environnement, CP 160/02 Universite Libre de Bruxelles, Avenue FD. Roosevelt, 50, B-1050 Bruxelles (Belgium); Le Roux, Gael [Institute of Environmental Geochemistry, University of Heidelberg, Im Neuenheimer Feld 236 B-69120 Heidelberg (Germany)

    2007-05-15

    Europe has been continuously polluted throughout the last two millennia. During the Roman Empire, these pollutions were mainly from ore extraction and smelting across Europe. Then, during the Middle Ages and the Early times of Industrial revolution (i.e. 1750), these pollutions extended to coal burning and combustion engine. Belgian ombrotrophic peat bogs have proved an effective archive of these pollutants and provide the opportunity to reconstruct the history of atmospheric deposition in NW Europe. The results of recent and past trace metal accumulation and Pb isotopes from a one-meter peat core (in the Misten peat bog) have been derived using XRF and Nu-plasma MC-ICP-MS. Combined with {sup 14}C and {sup 210}Pb dates these data have enabled us to trace fluxes in anthropogenic pollution back to original Roman times. Several periods of well-known Pb pollution events are clearly recorded including the Early and Late Roman Empire, the Middle Ages and the second industrial revolution. Also recorded is the introduction of leaded gasoline, and more recently the introduction of unleaded gasoline. Lead isotopes in this site have also enabled us to fingerprint several regional and global sources of anthropogenic particles. (author)

  11. Climate Change and Anthropogenic Impacts on Wetland and Agriculture in the Songnen and Sanjiang Plain, Northeast China

    Directory of Open Access Journals (Sweden)

    Hao Chen

    2018-02-01

    Full Text Available Influences of the increasing pressure of climate change and anthropogenic activities on wetlands ecosystems and agriculture are significant around the world. This paper assessed the spatiotemporal land use and land cover changes (LULCC, especially for conversion from marshland to other LULC types (e.g., croplands over the Songnen and Sanjiang Plain (SNP and SJP, northeast China, during the past 35 years (1980–2015. The relative role of human activities and climatic changes in terms of their impacts on wetlands and agriculture dynamics were quantitatively distinguished and evaluated in different periods based on a seven-stage LULC dataset. Our results indicated that human activities, such as population expansion and socioeconomic development, and institutional policies related to wetlands and agriculture were the main driving forces for LULCC of the SJP and SNP during the past decades, while increasing contributions of climatic changes were also found. Furthermore, as few studies have identified which geographic regions are most at risk, how the future climate changes will spatially and temporally impact wetlands and agriculture, i.e., the suitability of wetlands and agriculture distributions under different future climate change scenarios, were predicted and analyzed using a habitat distribution model (Maxent at the pixel-scale. The present findings can provide valuable references for policy makers on regional sustainability for food security, water resource rational management, agricultural planning and wetland protection as well as restoration of the region.

  12. Linking effects of anthropogenic debris to ecological impacts

    Science.gov (United States)

    Browne, Mark Anthony; Underwood, A. J.; Chapman, M. G.; Williams, Rob; Thompson, Richard C.; van Franeker, Jan A.

    2015-01-01

    Accelerated contamination of habitats with debris has caused increased effort to determine ecological impacts. Strikingly, most work on organisms focuses on sublethal responses to plastic debris. This is controversial because (i) researchers have ignored medical insights about the mechanisms that link effects of debris across lower levels of biological organization to disease and mortality, and (ii) debris is considered non-hazardous by policy-makers, possibly because individuals can be injured or removed from populations and assemblages without ecological impacts. We reviewed the mechanisms that link effects of debris across lower levels of biological organization to assemblages and populations. Using plastic, we show microplastics reduce the ‘health’, feeding, growth and survival of ecosystem engineers. Larger debris alters assemblages because fishing-gear and tyres kill animals and damage habitat-forming plants, and because floating bottles facilitate recruitment and survival of novel taxa. Where ecological linkages are not known, we show how to establish hypothetical links by synthesizing studies to assess the likelihood of impacts. We also consider how population models examine ecological linkages and guide management of ecological impacts. We show that by focusing on linkages to ecological impacts rather than the presence of debris and its sublethal impacts, we could reduce threats posed by debris. PMID:25904661

  13. Anthropogenic effect on avalanche and debris flow activity

    OpenAIRE

    S. A. Sokratov; Yu. G. Seliverstov; A. L. Shnyparkov; K. P. Koltermann

    2013-01-01

    The paper presents examples of the change in snow avalanches and debris flows activity due to the anthropogenic pressure on vegetation and relief. The changes in dynamical characteristics of selected snow avalanches and debris flows due to the anthropogenic activity are quantified. The conclusion is made that the anthropogenic effects on the snow avalanches and debris flows activity are more pronounced than the possible effects of the climate change. The necessity is expressed on the unavoida...

  14. Anthropogenic halo disturbances alter landscape and plant richness: a ripple effect.

    Science.gov (United States)

    Liu, Bingliang; Su, Jinbao; Chen, Jianwei; Cui, Guofa; Ma, Jianzhang

    2013-01-01

    Although anthropogenic landscape fragmentation is often considered as the primary threat to biodiversity, other factors such as immediate human disturbances may also simultaneously threaten species persistence in various ways. In this paper, we introduce a conceptual framework applied to recreation landscapes (RLs), with an aim to provide insight into the composite influences of landscape alteration accompanying immediate human disturbances on plant richness dynamics. These impacts largely occur at patch-edges. They can not only alter patch-edge structure and environment, but also permeate into surrounding natural matrices/patches affecting species persistence-here we term these "Halo disturbance effects" (HDEs). We categorized species into groups based on seed or pollen dispersal mode (animal- vs. wind-dispersed) as they can be associated with species richness dynamics. We evaluated the richness of the two groups and total species in our experimental landscapes by considering the distance from patch-edge, the size of RLs and the intensity of human use over a six-year period. Our results show that animal-dispersed species decreased considerably, whereas wind-dispersed species increased while their richness presented diverse dynamics at different distances from patch-edges. Our findings clearly demonstrate that anthropogenic HDEs produce ripple effects on plant, providing an experimental interpretation for the diverse responses of species to anthropogenic disturbances. This study highlights the importance of incorporating these composite threats into conservation and management strategies.

  15. Anthropogenic halo disturbances alter landscape and plant richness: a ripple effect.

    Directory of Open Access Journals (Sweden)

    Bingliang Liu

    Full Text Available Although anthropogenic landscape fragmentation is often considered as the primary threat to biodiversity, other factors such as immediate human disturbances may also simultaneously threaten species persistence in various ways. In this paper, we introduce a conceptual framework applied to recreation landscapes (RLs, with an aim to provide insight into the composite influences of landscape alteration accompanying immediate human disturbances on plant richness dynamics. These impacts largely occur at patch-edges. They can not only alter patch-edge structure and environment, but also permeate into surrounding natural matrices/patches affecting species persistence-here we term these "Halo disturbance effects" (HDEs. We categorized species into groups based on seed or pollen dispersal mode (animal- vs. wind-dispersed as they can be associated with species richness dynamics. We evaluated the richness of the two groups and total species in our experimental landscapes by considering the distance from patch-edge, the size of RLs and the intensity of human use over a six-year period. Our results show that animal-dispersed species decreased considerably, whereas wind-dispersed species increased while their richness presented diverse dynamics at different distances from patch-edges. Our findings clearly demonstrate that anthropogenic HDEs produce ripple effects on plant, providing an experimental interpretation for the diverse responses of species to anthropogenic disturbances. This study highlights the importance of incorporating these composite threats into conservation and management strategies.

  16. Anthropogenic disturbances affect population size and biomass allocation of two alpine species from the headwater area of the Urumqi River, China

    International Nuclear Information System (INIS)

    Zhao, R.; Zhang, H.; An, L.

    2018-01-01

    The survival of alpine plants are seriously threatened by increasing anthropogenic activity. Saussurea involucrata and Rhodiola quadrifida are particularly affected because of their high medicinal value. To assess the impact of anthropogenic disturbance on the two species, their population size and biomass allocation were examined at three levels of disturbance at low and high altitudes. Anthropogenic disturbance was the most serious threat to the populations and changed the population density, biomass, and biomass allocation of both species significantly (p<0.05). The changes differed with the species and the altitude, and were also affected by the interaction between these two factors. Population density and biomass of the two species decreased with an increase in the level of anthropogenic disturbance. These results imply that the decrease in population size and in biomass allocation to reproductive organs due to anthropogenic disturbances may make the plant populations even smaller and scarce. Meanwhile, change of making their survival dependent on the extent of anthropogenic disturbance: unless such disturbance is checked and the species are protected, they will probably disappear from the headwater area of the Urumqi River. This influence of anthropogenic disturbances may be potential threats to population ability of survival and reproduction. (author)

  17. Who decides who has won the bet? Total and Anthropogenic Warming Indices

    Science.gov (United States)

    Haustein, K.; Allen, M. R.; Otto, F. E. L.; Schmidt, A.; Frame, D. J.; Forster, P.; Matthews, D.

    2016-12-01

    An extension of the idea of betting markets as a means of revealing opinions about future climate are climate policies indexed to geophysical indicators: for example, to ensure net zero global carbon dioxide emissions by the time anthropogenic warming reaches 1.5 degrees above pre-industrial, given about 1 degree of warming already, emissions must fall, on average, by 20% of their current value for every tenth of a degree of anthropogenic warming from now on. In principle, policies conditioned on some measure of attributable warming are robust to uncertainty in the global climate response: the risk of a higher or lower response than expected is borne by those affected by climate change mitigation policy rather than those affected by climate change impacts, as is the case with emission targets for specific years based on "current understanding" of the response. To implement any indexed policy, or to agree payout terms for any bet on future climate, requires consensus on the definition of the index: how is it calculated, and who is responsible for releasing it? The global mean surface temperature of the current decade relative to pre-industrial may vary by 0.1 degree or more depending on precisely what is measured, what is defined as pre-industrial, and the treatment of regions with sparse data coverage in earlier years. Indices defined using different conventions, however, are all expected to evolve very similarly over the coming decades, so agreeing on a conservative, traceable index such as HadCRUT is more important than debating the "true" global temperature. A more important question is whether indexed policies and betting markets should focus on total warming, including natural and anthropogenic drivers and internal variability, or an Anthropogenic Warming Index (AWI) representing an unbiased estimate of warming attributable to human influence to date. We propose a simple AWI based solely on observed temperatures and global natural and anthropogenic forcing

  18. Anthropogenic impacts in North Poland over the last 1300 years - A record of Pb, Zn, Cu, Ni and S in an ombrotrophic peat bog

    International Nuclear Information System (INIS)

    De Vleeschouwer, Francois; Fagel, Nathalie; Cheburkin, Andriy; Pazdur, Anna; Sikorski, Jaroslaw; Mattielli, Nadine; Renson, Virginie; Fialkiewicz, Barbara; Piotrowska, Natalia; Le Roux, Gael

    2009-01-01

    Lead pollution history over Northern Poland was reconstructed for the last ca. 1300 years using the elemental and Pb isotope geochemistry of a dated Polish peat bog. The data show that Polish Pb-Zn ores and coal were the main sources of Pb, other heavy metals and S over Northern Poland up until the industrial revolution. After review of the potential mobility of each element, most of the historical interpretation was based on Pb and Pb isotopes, the other chemical elements (Zn, Cu, Ni, S) being considered secondary indicators of pollution. During the last century, leaded gasoline also contributed to anthropogenic Pb pollution over Poland. Coal and Pb-Zn ores, however, remained important sources of pollution in Eastern European countries during the last 50 years, as demonstrated by a high 206 Pb/ 207 Pb ratio (1.153) relative to that of Western Europe (ca. 1.10). The Pb data for the last century were also in good agreement with modelled Pb inventories over Poland and the Baltic region.

  19. Anthropogenic Threats and Conservation Needs of Blue Whales, Balaenoptera musculus indica, around Sri Lanka

    Directory of Open Access Journals (Sweden)

    A. de Vos

    2016-01-01

    Full Text Available Blue whales in the Northern Indian Ocean are a morphologically and acoustically distinct population restricted to these waters. Off Sri Lanka a portion of the population concentrates near shore where they are exposed to a range of anthropogenic threats. We review available data to determine anthropogenic threats/stressors faced by this population and assign subjective rankings for the population-level severity of each threat/stressor based on severity, scope, and immediacy. With the cessation of direct illegal catches on this population in the late 1960s, we ranked ship strike as the most important population-level threat. Incidental catch, which includes entanglement and bycatch, is also important as it can result in death. Other less important stressors that may negatively impact this population include threats resulting from oil and gas development and pollution. However, some stressors can have a long-term cumulative impact that is difficult to assess. The most important research needed for the conservation of these whales is to obtain an estimate of the size of the population using photo-identification methods.

  20. Linking effects of anthropogenic debris to ecological impacts.

    Science.gov (United States)

    Browne, Mark Anthony; Underwood, A J; Chapman, M G; Williams, Rob; Thompson, Richard C; van Franeker, Jan A

    2015-05-22

    Accelerated contamination of habitats with debris has caused increased effort to determine ecological impacts. Strikingly, most work on organisms focuses on sublethal responses to plastic debris. This is controversial because (i) researchers have ignored medical insights about the mechanisms that link effects of debris across lower levels of biological organization to disease and mortality, and (ii) debris is considered non-hazardous by policy-makers, possibly because individuals can be injured or removed from populations and assemblages without ecological impacts. We reviewed the mechanisms that link effects of debris across lower levels of biological organization to assemblages and populations. Using plastic, we show microplastics reduce the 'health', feeding, growth and survival of ecosystem engineers. Larger debris alters assemblages because fishing-gear and tyres kill animals and damage habitat-forming plants, and because floating bottles facilitate recruitment and survival of novel taxa. Where ecological linkages are not known, we show how to establish hypothetical links by synthesizing studies to assess the likelihood of impacts. We also consider how population models examine ecological linkages and guide management of ecological impacts. We show that by focusing on linkages to ecological impacts rather than the presence of debris and its sublethal impacts, we could reduce threats posed by debris. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  1. Relative importance of natural and anthropogenic factors influencing karst rocky desertification

    Science.gov (United States)

    Xu, Erqi; Zhang, Hongqi

    2017-04-01

    As the most severe ecological issue in southwest China, karst rocky desertification (KRD) has both threatened and constrained regional sustainable development. Comprehensively understanding the relationship between the evolution of KRD and relevant driving data would provide more information to combat KRD in such complex karst environments. Past studies have been limited in quantifying the relative importance of driving factors influencing fine-scale KRD evolution, and have also lacked insight into their interactive impacts. To address these issues, we have used geographical information system techniques and a geographical detector model to explore the spatial consistency of driving factors and their interactions in relation to the evolution of KRD. Changshun County in China was selected as a representative area for the study. Nine relevant driving factors, including both natural and anthropogenic factors, were studied in regard to their relationships with KRD transformation between 2000 and 2010. Our results demonstrate the relative importance of driving data in influencing the improvement and deterioration of KRD. Lithology, soil type and road influence are identified as the leading factors. Interestingly, to our study at least, there is no significant difference between the impacts of natural and anthropogenic factors influencing KRD improvement, and even natural factors have a higher impact on KRD deterioration. Factors were found to enhance the influence of each other for KRD transformation. In particular, the results show a non-linearly enhanced effect between driving factors, which significantly aggravates KRD. New information found in our study helps to effectively control and restore areas afflicted by KRD.

  2. Quarrying: an anthropogenic geomorphological approach

    International Nuclear Information System (INIS)

    David, L.

    2008-01-01

    The study intends to give an introduction to the significance of quarrying from the point of view of anthropogenic geomorphology, indicating the level of surface forming due to the mining of mineral raw materials. The significance of this topic is supported by the existence of the so-called 'mining landscapes' that emerged since to the 19 th century. Authors focus on the geomorphic impact of quarrying with special emphasis on factors influencing its spatial distribution, as well as on the characteristics and classification of surface features produced by quarrying, providing an overview of the most important excavated and accumulated forms and form components, on the macro, meso and micro scales. Finally, international and Hungarian case studies illustrate some aspects of the opening and after-use of mining sites in order to observe how abandoned quarries can be turned into 'environmental values', and used as possible sites for exhibitions or for regional and tourism development projects. (author)

  3. 10-year record of atmospheric composition in the high Himalayas: source, transport and impact

    Science.gov (United States)

    Bonasoni, Paolo; Laj, Paolo; Marinoni, Angela; Cristofanelli, Paolo; Maione, Michela; Putero, Davide; Calzolari, Francescopiero; Decesari, Stefano; Facchini, Maria Cristina; Fuzzi, Sandro; Gobbi, Gianpaolo; Sellegri, Karine; Verza, Gianpietro; Vuillermoz, Elisa; Arduini, Jgor

    2016-04-01

    South Asia represents a global "hot-spot" for air-quality and climate impacts. Since the end of the 20th Century, field experiments and satellite observations identified a thick layer of atmospheric pollutants extending from the Indian Ocean up to the atmosphere of the Himalayas. Since large amount of short-lived climate pollutants (SLCPs) - like atmospheric aerosol (in particular, the light-absorbing aerosol) and ozone - characterize this region, severe implications were recognized for population health, ecosystem integrity as well as regional climate impacts, especially for what concerns hydrological cycle, monsoon regimes and cryosphere. Since 2006, the Nepal Climate Observatory - Pyramid (NCO-P, 27.95N, 86.82 E, 5079 m a.s.l.), a global station of the WMO/GAW programme has been active in the eastern Nepal Himalaya, not far from the Mt. Everest. NCO-P is located away from large direct anthropogenic pollution sources. The closest major urban area is Kathmandu (200 km south-west from the measurement site). As being located along the Khumbu valley, the observations are representative of synoptic-scale and mountain thermal circulation, providing direct information about the vertical transport of pollutants/climate-altering compounds to the Himalayas and to the free troposphere. In the framework of international programmes (GAW/WMO, UNEP-ABC, AERONET) the following continuous measurement programmes have been carried out at NCO-P: surface ozone, aerosol size distribution (from 10 nm to 25 micron), total particle number, aerosol scattering and absorption coefficients, equivalent BC, PM1-PM10, AOD by sun-photometry, global solar radiation (SW and LW), meteorology. Long-term sampling programmes for the off-line determination of halogenated gases and aerosol chemistry have been also activated. The atmospheric observation records at NCO-P, now representing the longest time series available for the high Himalayas, provided the first direct evidences about the systematic

  4. A methodological note on the making of causal statements in the debate on anthropogenic global warming

    NARCIS (Netherlands)

    Kampen, J.K.

    2011-01-01

    At best, the empirical evidence for human impact on climate change, more specifically, the anthropogenic global warming (AGW), is based on correlational research. That is, no experiment has been carried out that confirms or falsifies the causal hypothesis put forward by the International Panel on

  5. Anthropogenic impact on biogenic substance distribution and bacterial community in sediment along the Yarlung Tsangpo River on Tibet Plateau, China

    Science.gov (United States)

    Wang, C.; Peifang, W.; Wang, X.; Hou, J.; Miao, L.

    2017-12-01

    Lotic river system plays an important part in water-vapor transfer and biogenic substances migration and transformation. Anthropogenic activities, including wastewater discharging and river damming, have altered river ecosystem and continuum. However, as the longest alpine river in China and suffered from increasing anthropogenic activities, the Yarlung Tsangpo River has been rarely studied. Recently, more attention has also been paid to the bacteria in river sediment as they make vital contributions to the biogeochemical nutrient cycling. Here, the distribution of biogenic substances, including nitrogen, phosphorus, silicon and carbon, was explored in both water and sediment of the Yarlung Tsangpo River. By using the next generation 16S rRNA sequencing, the bacterial diversity and structure in river sediment were presented. The results indicated that the nutrient concentrations increased in densely populated sites, revealing that biogenic substance distribution corresponded with the intensity of anthropogenic activity along the river. Nitrogen, phosphorus, silicon and carbon in water and sediment were all retained by the Zangmu Dam which is the only dam in the mainstream of the river. Moreover, the river damming decreased the biomass and diversity of bacteria in sediment, but no significant alteration of community structure was observed upstream and downstream of the dam. The most dominant bacteria all along the river was Proteobacteria. Meanwhile, Verrucomicrobia and Firmicutes also dominated the community composition in upstream and downstream of the river, respectively. In addition, total organic carbon (TOC) was proved to be the most important environmental factor shaping the bacterial community in river sediment. Our study offered the preliminary insights into the biogenic substance distribution and bacterial community in sediment along an alpine river which was affected by anthropogenic activities. In the future, more studies are needed to reveal the

  6. Anthropogenic infrastructure as a component of urbogeosystems

    Directory of Open Access Journals (Sweden)

    Oleksii Chuiev

    2017-11-01

    Full Text Available This article deals with the definition of the concept of "anthropogenic infrastructure" and attempts to find its place in the structure of urbogeosystems. The concept itself can not be called new, as many foreign authors have already used it, but the final definition never happened. The reasons why city studies are becoming more relevant in the face of ever-accelerating urbanization are briefly presented. Prerequisites for the emergence of the urban environment and approaches to its study are given. A special attention is paid to the consideration of urbosystems and their component structure. The main four components are described, which include the technosphere, biosphere, population and abiotic nature. The causes of the appearance of urban ecosystems and their specific features are analyzed. Based on the deficiencies of the "Urbosphere", "Urbosystem" and "Urboecosystem", the notion of "Urbogeosystem" is formed once again. Since architectural and construction objects are key components of such systems, their integration into anthropogenic infrastructure allows us to operate with a more general concept. Functional zones of the city, which are part of the anthropogenic infrastructure, are described. These include residential, industrial, forest and park areas. Examples of the use and functioning of each of the zones are given. An attempt has been made to estimate the boundaries of urbogeosystems. The existing approaches to the classification of anthropogenic infrastructure are analyzed. For one of them, it is advisable to allocate separately "hard" and "soft" infrastructure by the nature of the tasks of society, which they are called upon to satisfy. An alternative approach is to divide the anthropogenic infrastructure into "human" and "physical" ones. If the first satisfies the socio-cultural needs of people, the second is used for production, development, establishment of communications, transportation. It is proved why it is expedient to

  7. A late Holocene metal record of Andean climate and anthropogenic activity in lake sediments near Quelccaya Ice Cap, Peru

    Science.gov (United States)

    Beal, S. A.; Kelly, M. A.; Jackson, B. P.; Stroup, J. S.; Osterberg, E. C.

    2011-12-01

    The tropical hypothesis maintains that major changes in global climate are motivated by phenomena based at tropical latitudes. Evidence for this hypothesis lies in: modern-day observations of El Niño Southern Oscillation (ENSO); East African lake sediment records of Intertropical Convergence Zone (ITCZ) position that precede high-latitude changes; and the potential for ITCZ shifts to cause major CO2 degassing from the Southern Ocean. In order to improve the understanding of these phenomena we present an ~1800 year record of atmospheric metal deposition in a lake sediment core near Quelccaya Ice Cap, Peru (13.9 °S). In June, 2010 we collected a 1.45 meter-long core from Yanacocha - a small, closed-basin tarn that has been isolated from glacial input since ~11,200 BP. The chronology for the core is based on 4 of 6 AMS 14C dates on aquatic macrofossils and one sharp Zr/Ti anomaly at 36 cm, likely derived from the 350 BP eruption of Huaynaputina. We completely digested organic-rich core samples at 1 cm resolution using HNO3, HCl, and HF in a closed-vessel microwave system, and then analyzed the digestates for 67 metals by inductively coupled plasma mass spectrometry. Here we show fluxes of lithogenic metals (Fe, Nb, Ti, and Zr) that reflect changes in wind strength and aridity, fluxes of lithogenic metal isotopes (REEs and Pb) that reflect wind direction, and enrichment factors (EFs) of metals (Ag, As, Cd, Cu, Hg, and Pb) that reflect anthropogenic activity. Five episodic peaks in lithogenic metal fluxes, centered around 1800, 1300, 900, 600, and 100 yrs BP, are thought to result from either drier or windier conditions, potentially caused by a northern ITCZ position or a more persistent El Niño state. The provenance of atmospheric deposition, evidenced by REE ratios (light REEs / heavy REEs), suggest that high lithogenic fluxes are associated with a change in wind direction, possibly caused by a change in the ENSO state, which will be explored with forthcoming Pb

  8. Discriminating background from anthropogenic lead by isotopic methods

    International Nuclear Information System (INIS)

    Nelson, B.K.; O'Brien, H.E.

    1995-01-01

    The goal of this pilot project was to evaluate the practicality of using natural variations in the isotopic composition of lead to test for the presence of anthropogenic lead in soil, surface water and ground water. Complex chemical reactions in the environment may cause measured lead concentrations to be ambiguous indicators of anthropogenic lead component. The lead isotope tracer technique has the potential to identify both the presence and proportion of anthropogenic lead in the environment. The tested the lead isotope technique at Eielson Air Force Base, Alaska, on sources of suspected fuel contamination. Although the results are specific to this base, the general technique of using lead isotopes to trace the movement of anthropogenic lead is applicable to other CERCLA sites. The study had four objectives: (1) characterize the natural lead isotope composition of bedrock, stream sediment and soils; (2) characterize the isotopic composition of the contaminant lead derived from fuel; (3) evaluate the sensitivity of the isotopic method to distinguishing between anthropogenic and natural lead in soil and water samples and (4) evaluate the analytical feasibility and accuracy of the method at the Isotope Geochemistry Laboratory at the University of Washington

  9. Environmental impacts of hydroelectric power and other anthropogenic developments on the hydromorphology and ecology of the Durance channel and the Etang de Berre, southeast France.

    Science.gov (United States)

    Warner, Robin F

    2012-08-15

    The generation of electricity through hydropower can, along with other anthropogenic activities, degrade river hydromorphology and ecosystems. In this case, water for power generation is diverted from the River Durance to a canal, which services a chain of 17 power stations, with the lower three being in the catchment of the Etang de Berre. This means that excess water and sediments are discharged into the salt-water lagoon with enormous consequences for ecosystems there. This paper summarizes the impacts of HEP and other human activities on both the river and lagoonal systems. It also considers agency and government attempts to understand and counter the degradation of these systems, both to date and in the future, with the latter catering for the potential impacts of future human development and global warming. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Anthropogenic range contractions bias species climate change forecasts

    Science.gov (United States)

    Faurby, Søren; Araújo, Miguel B.

    2018-03-01

    Forecasts of species range shifts under climate change most often rely on ecological niche models, in which characterizations of climate suitability are highly contingent on the species range data used. If ranges are far from equilibrium under current environmental conditions, for instance owing to local extinctions in otherwise suitable areas, modelled environmental suitability can be truncated, leading to biased estimates of the effects of climate change. Here we examine the impact of such biases on estimated risks from climate change by comparing models of the distribution of North American mammals based on current ranges with ranges accounting for historical information on species ranges. We find that estimated future diversity, almost everywhere, except in coastal Alaska, is drastically underestimated unless the full historical distribution of the species is included in the models. Consequently forecasts of climate change impacts on biodiversity for many clades are unlikely to be reliable without acknowledging anthropogenic influences on contemporary ranges.

  11. Geochemical analysis of sediments from a semi-enclosed bay (Dongshan Bay, southeast China) to determine the anthropogenic impact and source.

    Science.gov (United States)

    Xu, Yonghang; Sun, Qinqin; Ye, Xiang; Yin, Xijie; Li, Dongyi; Wang, Liang; Wang, Aijun; Li, Yunhai

    2017-05-01

    The geochemical compositions of sediments in the Dongshan Bay, a semi-enclosed bay on the southeast coast of China, were obtained to identify pollutant sources and evaluate the anthropogenic impacts over the last 100 years. The results indicated that the metal flux had been increasing since the 1980s. Enrichment factor values (Pb, Zn and Cu) suggested only slight enrichment. The proportion of anthropogenic Pb changed from 9% to 15% during 2000-2014. Coal combustion might be an important contamination source in the Dongshan Bay. The historical variation in the metal flux reflected the economic development and urbanization in the Zhangjiang drainage area in the past 30 years. According to the Landsat satellite remote sensing data, the urbanization area expanded approximately three times from 1995 to 2010. The δ 13 C values (-21‰ to -23‰) of the organic matter (OM) in the sediments indicated that the OM was primarily sourced from aquatic, terrigenous and marsh C 3 plants. Nitrogen was mainly derived from aquatic plants and terrigenous erosion before the 1980s. However, the total organic carbon (TOC) contents, total nitrogen (TN) contents and δ 15 N had been increasing since the 1980s, which suggested that the sources of nitrogen were soil erosion, fertilizer and sewage. In addition, the TOC and TN fluxes in the Dongshan Bay had significantly increased since the 1980s, which reflected the use of N fertilizer. However, the TOC and TN fluxes significantly decreased in the past decade because environmental awareness increased and environmental protection policies were implemented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The use of recorded lectures in education and the impact on lecture attendance and exam performance

    NARCIS (Netherlands)

    Bos, Nynke; Groeneveld, Caspar; Van Bruggen, Jan; Brand-Gruwel, Saskia

    2017-01-01

    Universities increasingly record lectures and make them available online for students. Though the technology to record these lectures is now solidly implemented and embed- ded in many institutions, the impact of the usage of recorded lectures on exam perfor- mance is not clear. The purpose of the

  13. Gridded anthropogenic emissions inventory and atmospheric transport of carbonyl sulfide in the U.S.: U.S. Anthropogenic COS Source and Transport

    Energy Technology Data Exchange (ETDEWEB)

    Zumkehr, Andrew [Sierra Nevada Research Institute, University of California, Merced California USA; Hilton, Timothy W. [Sierra Nevada Research Institute, University of California, Merced California USA; Whelan, Mary [Sierra Nevada Research Institute, University of California, Merced California USA; Smith, Steve [Joint Global Change Research Institute, PNNL, College Park Maryland USA; Campbell, J. Elliott [Sierra Nevada Research Institute, University of California, Merced California USA

    2017-02-21

    Carbonyl sulfide (COS or OCS), the most abundant sulfur containing gas in the troposphere, has recently emerged as a potentially important atmospheric tracer for the carbon cycle. Atmospheric inverse modeling studies may be able to use existing tower, airborne, and satellite observations of COS to infer information about photosynthesis. However, such analysis relies on gridded anthropogenic COS source estimates that are largely based on industry activity data from over three decades ago. Here we use updated emission factor data and industry activity data to develop a gridded inventory with a 0.1 degree resolution for the U.S. domain. The inventory includes the primary anthropogenic COS sources including direct emissions from the coal and aluminum industries as well as indirect sources from industrial carbon disulfide emissions. Compared to the previously published inventory, we found that the total anthropogenic source (direct and indirect) is 47% smaller. Using this new gridded inventory to drive the STEM/WRF atmospheric transport model, we found that the anthropogenic contribution to COS variation in the troposphere is small relative to the biosphere influence, which is encouraging of carbon cycle applications in this region. Additional anthropogenic sectors with highly uncertain emission factors require further field measurements.

  14. Anthropogenic ecological change and impacts on mosquito breeding and control strategies in salt-marshes, Northern Territory, Australia.

    Science.gov (United States)

    Jacups, Susan; Warchot, Allan; Whelan, Peter

    2012-06-01

    Darwin, in the tropical north of Australia, is subject to high numbers of mosquitoes and several mosquito-borne diseases. Many of Darwin's residential areas were built in close proximity to tidally influenced swamps, where long-term storm-water run-off from nearby residences into these swamps has led to anthropogenic induced ecological change. When natural wet-dry cycles were disrupted, bare mud-flats and mangroves were transformed into perennial fresh to brackish-water reed swamps. Reed swamps provided year-round breeding habitat for many mosquito species, such that mosquito abundance was less predictable and seasonally dependent, but constant and often occurring in plague proportions. Drainage channels were constructed throughout the wetlands to reduce pooled water during dry-season months. This study assesses the impact of drainage interventions on vegetation and mosquito ecology in three salt-marshes in the Darwin area. Findings revealed a universal decline in dry-season mosquito abundance in each wetland system. However, some mosquito species increased in abundance during wet-season months. Due to the high expense and potentially detrimental environmental impacts of ecosystem and non-target species disturbance, large-scale modifications such as these are sparingly undertaken. However, our results indicate that some large scale environmental modification can assist the process of wetland restoration, as appears to be the case for these salt marsh systems. Drainage in all three systems has been restored to closer to their original salt-marsh ecosystems, while reducing mosquito abundances, thereby potentially lowering the risk of vector-borne disease transmission and mosquito pest biting problems.

  15. The utility of the historical record in assessing future carbon budgets

    Science.gov (United States)

    Millar, R.; Friedlingstein, P.; Allen, M. R.

    2017-12-01

    It has long been known that the cumulative emissions of carbon dioxide (CO2) is the most physically relevant determiner of long-lived anthropogenic climate change, with an approximately linear relationship between CO2-induced global mean surface warming and cumulative emissions. The historical observational record offers a way to constrain the relationship between cumulative carbon dioxide emission and global mean warming using observations to date. Here we show that simple regression analysis indicates that the 1.5°C carbon budget would be exhausted after nearly three decades of current emissions, substantially in excess of many estimates from Earth System Models. However, there are many reasons to be cautious about carbon budget assessments from the historical record alone. Accounting for the uncertainty in non-CO2 radiative forcing using a simple climate model and a standard optimal fingerprinting detection attribution technique gives substantial uncertainty in the contribution of CO2 warming to date, and hence the transient climate response to cumulative emissions. Additionally, the existing balance between CO2 and non-CO2 forcing may change in the future under ambitious mitigation scenarios as non-CO2 emissions become more (or less) important to global mean temperature changes. Natural unforced variability can also have a substantial impact on estimates of remaining carbon budgets. By examining all warmings of a given magnitude in both the historical record and past and future ESM simulations we quantify the impact unforced climate variability may have on estimates of remaining carbon budgets, derived as a function of estimated non-CO2 warming and future emission scenario. In summary, whilst the historical record can act as a useful test of climate models, uncertainties in the response to future cumulative emissions remain large and extrapolations of future carbon budgets from the historical record alone should be treated with caution.

  16. Modelling Southern Africa Air Quality and Atmosphere: Importance and Interplay of Natural and Anthropogenic Emissions

    Science.gov (United States)

    Garland, R. M.; Naidoo, M.; Dedekind, Z.; Sibiya, B.; Piketh, S.; Engelbrecht, C. J.; Engelbrecht, F.

    2017-12-01

    Many parts of the southern hemisphere are linked in part due to the strong impact that emissions from natural sources, such as large biomass burning events and marine sources, as well as growing anthropogenic emission sources. Most of southern Africa has an arid to semi-arid climate that is strongly impacted by biomass burning, biogenic and dust emissions. In addition, there are areas of growing industrialization and urbanization that contributes to poor air quality. This air pollution can impact not only human health, but also agriculture, ecosystems, and the climate. This presentation will highlight on-going research to simulate the southern Africa atmosphere and impacts, with a focus on the interplay and relative importance of natural and anthropogenic emissions. The presentation will discuss the simulated sensitivity of the southern African climate to aerosol particles to highlight the importance of natural sources. These historical simulations (1979-2012) were performed with CCAM and are towards the development of the first Africa-led earth systems model. The analysis focused on the simulated sensitivity of the climate and clouds off the southwestern coast of Africa to aerosol particles. The interplay between natural and anthropogenic sources on air pollution will be highlighted using the Waterberg region of South Africa as a case study. CAMx was run at 2km resolution for 2013 using local emission inventories and meteorological output from CCAM to simulate the air quality of the region. These simulations estimate that, on average in the summer, up to 20% of ozone in and around a power plant plume is attributable to biogenic sources of VOCs, with ozone peaks of up to 120ppb; highlighting the importance of understanding the mix of pollutants in this area. In addition to presenting results from this study, the challenges in modelling will be highlighted. These challenges include very few or no measurements that are important to understand, and then accurately

  17. Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources

    Science.gov (United States)

    Querol, Xavier; Alastuey, Andrés; Rodriguez, Sergio; Plana, Felicià; Mantilla, Enrique; Ruiz, Carmen R.

    Investigations on the monitoring of ambient air levels of atmospheric particulates were developed around a large source of primary anthropogenic particulate emissions: the industrial ceramic area in the province of Castelló (Eastern Spain). Although these primary particulate emissions have a coarse grain-size distribution, the atmospheric transport dominated by the breeze circulation accounts for a grain-size segregation, which results in ambient air particles occurring mainly in the 2.5-10 μm range. The chemical composition of the ceramic particulate emissions is very similar to the crustal end-member but the use of high Al, Ti and Fe as tracer elements as well as a peculiar grain-size distribution in the insoluble major phases allow us to identify the ceramic input in the bulk particulate matter. PM2.5 instead of PM10 monitoring may avoid the interference of crustal particles without a major reduction in the secondary anthropogenic load, with the exception of nitrate. However, a methodology based in PM2.5 measurement alone is not adequate for monitoring the impact of primary particulate emissions (such as ceramic emissions) on air quality, since the major ambient air particles derived from these emissions are mainly in the range of 2.5-10 μm. Consequently, in areas characterised by major secondary particulate emissions, PM2.5 monitoring should detect anthropogenic particulate pollutants without crustal particulate interference, whereas PM10 measurements should be used in areas with major primary anthropogenic particulate emissions.

  18. Dating the period when intensive anthropogenic activity began to influence the Sanjiang Plain, Northeast China

    Science.gov (United States)

    Cong, Jinxin; Gao, Chuanyu; Zhang, Yan; Zhang, Shaoqing; He, Jiabao; Wang, Guoping

    2016-01-01

    Dating the start of intensive anthropogenic influence on ecosystems is important for identifying the conditions necessary for ecosystem recovery. However, few studies have focused on determining when anthropogenic influences on wetland began through sedimentary archives. To fill this critical gap in our knowledge, combustion sources and emission intensities, reconstructed via black carbon (BC) and polycyclic aromatic hydrocarbons (PAHs) were analyzed in two wetlands in the Sanjiang Plain in Northeast China. 14C provided age control for the sedimentary records. By combining previous sedimentary and archaeological studies, we attempt to date the beginning of intensive anthropogenic influences on the Sanjiang Plain. Our results showed that BC deposition fluxes increased from 0.02 to 0.7 g C/m2.yr during the last 10,000 years. An upward trend was apparent during the last 500 years. Before 1200 cal yr BP, human activities were minor, such that the wetland ecosystem in the Sanjiang Plain before this period may represent the reference conditions that for the recovery of these wetlands. As the human population increased after 1200 cal yr BP, combustion sources changed and residential areas became a major source of BC and PAHs. In this way, the wetland ecosystem gradually became more heavily influenced by human activities. PMID:26907560

  19. Dating the period when intensive anthropogenic activity began to influence the Sanjiang Plain, Northeast China

    Science.gov (United States)

    Cong, Jinxin; Gao, Chuanyu; Zhang, Yan; Zhang, Shaoqing; He, Jiabao; Wang, Guoping

    2016-02-01

    Dating the start of intensive anthropogenic influence on ecosystems is important for identifying the conditions necessary for ecosystem recovery. However, few studies have focused on determining when anthropogenic influences on wetland began through sedimentary archives. To fill this critical gap in our knowledge, combustion sources and emission intensities, reconstructed via black carbon (BC) and polycyclic aromatic hydrocarbons (PAHs) were analyzed in two wetlands in the Sanjiang Plain in Northeast China. 14C provided age control for the sedimentary records. By combining previous sedimentary and archaeological studies, we attempt to date the beginning of intensive anthropogenic influences on the Sanjiang Plain. Our results showed that BC deposition fluxes increased from 0.02 to 0.7 g C/m2.yr during the last 10,000 years. An upward trend was apparent during the last 500 years. Before 1200 cal yr BP, human activities were minor, such that the wetland ecosystem in the Sanjiang Plain before this period may represent the reference conditions that for the recovery of these wetlands. As the human population increased after 1200 cal yr BP, combustion sources changed and residential areas became a major source of BC and PAHs. In this way, the wetland ecosystem gradually became more heavily influenced by human activities.

  20. Hemispheric aerosol vertical profiles: anthropogenic impacts on optical depth and cloud nuclei.

    Science.gov (United States)

    Clarke, Antony; Kapustin, Vladimir

    2010-09-17

    Understanding the effect of anthropogenic combustion upon aerosol optical depth (AOD), clouds, and their radiative forcing requires regionally representative aerosol profiles. In this work, we examine more than 1000 vertical profiles from 11 major airborne campaigns in the Pacific hemisphere and confirm that regional enhancements in aerosol light scattering, mass, and number are associated with carbon monoxide from combustion and can exceed values in unperturbed regions by more than one order of magnitude. Related regional increases in a proxy for cloud condensation nuclei (CCN) and AOD imply that direct and indirect aerosol radiative effects are coupled issues linked globally to aged combustion. These profiles constrain the influence of combustion on regional AOD and CCN suitable for challenging climate model performance and informing satellite retrievals.

  1. Separating natural acidity from anthropogenic acidification in the spring flood of northern Sweden

    International Nuclear Information System (INIS)

    Laudon, Hjalmar

    2000-01-01

    Spring flood is an occasion for transient hydrochemical changes that profoundly effect the biodiversity of the aquatic ecosystem. Spring flood is also very susceptible to anthropogenic acidification. Belief that acid deposition is primarily responsible for pH decline during spring flood has been an important factor in the decision to spend close to one billion Swedish crowns to lime surface waters in northern Sweden during the last decade. The objective of this work is to present an operational tool, the Boreal Dilution Model (BDM), for separating and quantifying the anthropogenic and natural contributions to episodic acidification during spring flood episodes in northern Sweden. The limited data requirements of 10-15 stream water samples before and during spring flood make the BDM suitable for widespread use in environmental monitoring programs. This creates a possibility for distinguishing trends and spatial patterns in the human impact as well as natural pH decline. The results from applying the BDM, and a one point 'pBDM' version of the model, in northern Sweden demonstrate that the anthropogenic component associated with spring flood episodes is now generally limited. Instead it is the combination of natural organic acidity and dilution of the buffering capacity that is the major driving mechanism of episodic acidity during spring flood events in the region. While the anthropogenic component of episodic acidification generally contributes 0.1 to 0.3 pH units to the natural pH decline of up to 2.5 pH units, the current regional extent of areas that are severely affected by anthropogenically driven episodes is approximately 6%. Prior to the initiation of the Swedish Environmental Protection Agency's 'Episode Project' the limited spring flood data together with lack of a systematic methodology for determining liming candidates forced the liming authorities to base the remediation strategy in northern Sweden on biological indications. But, since there are more

  2. Climate Implications of the Heterogeneity of Anthropogenic Aerosol Forcing

    Science.gov (United States)

    Persad, Geeta Gayatri

    Short-lived anthropogenic aerosols are concentrated in regions of high human activity, where they interact with radiation and clouds, causing horizontally heterogeneous radiative forcing between polluted and unpolluted regions. Aerosols can absorb shortwave energy in the atmosphere, but deplete it at the surface, producing opposite radiative perturbations between the surface and atmosphere. This thesis investigates climate and policy implications of this horizontal and vertical heterogeneity of anthropogenic aerosol forcing, employing the Geophysical Fluid Dynamics Laboratory's AM2.1 and AM3 models, both at a global scale and using East Asia as a regional case study. The degree of difference between spatial patterns of climate change due to heterogeneous aerosol forcing versus homogeneous greenhouse gas forcing deeply impacts the detection, attribution, and prediction of regional climate change. This dissertation addresses a gap in current understanding of these two forcings' response pattern development, using AM2.1 historical forcing simulations. The results indicate that fast atmospheric and land-surface processes alone substantially homogenize the global pattern of surface energy flux response to heterogeneous aerosol forcing. Aerosols' vertical redistribution of energy significantly impacts regional climate, but is incompletely understood. It is newly identified here, via observations and historical and idealized forcing simulations, that increased aerosol-driven atmospheric absorption may explain half of East Asia's recent surface insolation decline. Further, aerosols' surface and atmospheric effects counteract each other regionally---atmospheric heating enhances summer monsoon circulation, while surface dimming suppresses it---but absorbing aerosols' combined effects reduce summer monsoon rainfall. This thesis constitutes the first vertical decomposition of aerosols' impacts in this high-emissions region and elucidates the monsoonal response to aerosols

  3. An Integrated Approach for Understanding Anthropogenic and Climatic Impacts on Lakes: A Case study from Lake Iznik, Turkey

    Science.gov (United States)

    Derin, Y.; Milewski, A.; Fryar, A. E.; Schroeder, P.

    2013-12-01

    Lakes are among the most vital natural water resource, providing many environmental and economic advantages to a region. Unfortunately, many lakes are disappearing or continue to be polluted as industrial and agricultural practices increase to keep pace with rising populations. Lake Iznik, the biggest lake (approximately 300 km2) in the Marmara Region in Turkey, is a significant water resource as it provides opportunities for recreational activities, agriculture, industry, and water production for the region. However, rapid population growth combined with poor land management practices in this water basin has contributed to decreased water quality and water levels. As a result, Lake Iznik has switched from being Mesotrophic to Eutrophic in the past thirty years. This research aims to understand both the anthropogenic and climatic impacts on Lake Iznik. An integrated approach combining satellite remote sensing, hydrogeology, hydrologic modeling, and climatology was utilized to identify the source and timing responsible for the decline in water quality and quantity. Specifically, Landsat TM images from 1990, 2000, 2005, and 2010 were collected, processed, and analyzed for changes in landuse/landcover and surface area extent of Lake Iznik. Water level and water quality data (e.g. streamflow, lake level, pH, conductivity, total nitrogen, total dissolved solid etc.) collected from the General Directorate of State Hydraulic Works (DSI) from 1980-2012 were obtained from 4 stations and compared to the Landsat landuse mosaics. Meteorological data collected from Turkish State Meteorological Service from 1983-2012 were obtained from 3 stations (precipitation, temperature, atmospheric pressure, relative humidity, vapor pressure, wind speed and pan evaporation). A hydrologic model using MIKE21 was constructed to measure the change in streamflow and subsequent lake level as a result of changes in both land use and climate. Results have demonstrated the drop in water level from

  4. Seasonal variations in the sources of natural and anthropogenic lead deposited at the East Rongbuk Glacier in the high-altitude Himalayas

    International Nuclear Information System (INIS)

    Burn-Nunes, Laurie; Vallelonga, Paul; Lee, Khanghyun; Hong, Sungmin; Burton, Graeme; Hou, Shugui; Moy, Andrew; Edwards, Ross; Loss, Robert; Rosman, Kevin

    2014-01-01

    Lead (Pb) isotopic compositions and concentrations, and barium (Ba) and indium (In) concentrations have been analysed at sub-annual resolution in three sections from a < 110 m ice core dated to the 18th and 20th centuries, as well as snow pit samples dated to 2004/2005, recovered from the East Rongbuk Glacier in the high-altitude Himalayas. Ice core sections indicate that atmospheric chemistry prior to ∼ 1953 was controlled by mineral dust inputs, with no discernible volcanic or anthropogenic contributions. Eighteenth century monsoon ice core chemistry is indicative of dominant contributions from local Himalayan sources; non-monsoon ice core chemistry is linked to contributions from local (Himalayan), regional (Indian/Thar Desert) and long-range (North Africa, Central Asia) sources. Twentieth century monsoon and non-monsoon ice core data demonstrate similar seasonal sources of mineral dust, however with a transition to less-radiogenic isotopic signatures that suggests local and regional climate/environmental change. The snow pit record demonstrates natural and anthropogenic contributions during both seasons, with increased anthropogenic influence during non-monsoon times. Monsoon anthropogenic inputs are most likely sourced to South/South-East Asia and/or India, whereas non-monsoon anthropogenic inputs are most likely sourced to India and Central Asia. - Highlights: • Pb isotopes in ice and snow show seasonality in Mt Everest atmospheric chemistry. • Local (Himalayan) mineral dust inputs are present year round. • Regional and long-range mineral dust inputs are evident during non-monsoon times. • Snow samples indicate increased anthropogenic inputs during non-monsoon times. • Anthropogenic inputs are linked with Indian, South Asian and Central Asian sources

  5. Seasonal variations in the sources of natural and anthropogenic lead deposited at the East Rongbuk Glacier in the high-altitude Himalayas

    Energy Technology Data Exchange (ETDEWEB)

    Burn-Nunes, Laurie, E-mail: L.Nunes@curtin.edu.au [Department of Imaging and Applied Physics, Curtin University, GPO Box U 1987, Perth 6845, Western Australia (Australia); Vallelonga, Paul [Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Lee, Khanghyun [Environmental Measurement and Analysis Center, National Institute of Environmental Research, Environmental Research Complex, Kyungseo-dong, Seo-gu, Incheon 404-170 (Korea, Republic of); Hong, Sungmin [Department of Ocean Sciences, Inha University, 100 Inha-ro, Nam-gu, Incheon 402-751 (Korea, Republic of); Burton, Graeme [Department of Imaging and Applied Physics, Curtin University, GPO Box U 1987, Perth 6845, Western Australia (Australia); Hou, Shugui [Key Laboratory of Coast and Island development of Ministry of Education, School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093 (China); Moy, Andrew [Department of the Environment, Australian Antarctic Division, Channel Highway, Kingston 7050, Tasmania (Australia); Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Private Bag 80, Hobart 7001, Tasmania (Australia); Edwards, Ross; Loss, Robert; Rosman, Kevin [Department of Imaging and Applied Physics, Curtin University, GPO Box U 1987, Perth 6845, Western Australia (Australia)

    2014-07-01

    Lead (Pb) isotopic compositions and concentrations, and barium (Ba) and indium (In) concentrations have been analysed at sub-annual resolution in three sections from a < 110 m ice core dated to the 18th and 20th centuries, as well as snow pit samples dated to 2004/2005, recovered from the East Rongbuk Glacier in the high-altitude Himalayas. Ice core sections indicate that atmospheric chemistry prior to ∼ 1953 was controlled by mineral dust inputs, with no discernible volcanic or anthropogenic contributions. Eighteenth century monsoon ice core chemistry is indicative of dominant contributions from local Himalayan sources; non-monsoon ice core chemistry is linked to contributions from local (Himalayan), regional (Indian/Thar Desert) and long-range (North Africa, Central Asia) sources. Twentieth century monsoon and non-monsoon ice core data demonstrate similar seasonal sources of mineral dust, however with a transition to less-radiogenic isotopic signatures that suggests local and regional climate/environmental change. The snow pit record demonstrates natural and anthropogenic contributions during both seasons, with increased anthropogenic influence during non-monsoon times. Monsoon anthropogenic inputs are most likely sourced to South/South-East Asia and/or India, whereas non-monsoon anthropogenic inputs are most likely sourced to India and Central Asia. - Highlights: • Pb isotopes in ice and snow show seasonality in Mt Everest atmospheric chemistry. • Local (Himalayan) mineral dust inputs are present year round. • Regional and long-range mineral dust inputs are evident during non-monsoon times. • Snow samples indicate increased anthropogenic inputs during non-monsoon times. • Anthropogenic inputs are linked with Indian, South Asian and Central Asian sources.

  6. Impact of OSHA Final Rule—Recording Hearing Loss: An Analysis of an Industrial Audiometric Dataset

    OpenAIRE

    Rabinowitz, Peter M.; Slade, Martin; Dixon-Ernst, Christine; Sircar, Kanta; Cullen, Mark

    2003-01-01

    The 2003 Occupational Safety and Health Administration (OSHA) Occupational Injury and Illness Recording and Reporting Final Rule changed the definition of recordable work-related hearing loss. We performed a study of the Alcoa Inc. audiometric database to evaluate the impact of this new rule. The 2003 rule increased the rate of potentially recordable hearing loss events from 0.2% to 1.6% per year. A total of 68.6% of potentially recordable cases had American Academy of Audiology/American Medi...

  7. Coherence among the Northern Hemisphere land, cryosphere, and ocean responses to natural variability and anthropogenic forcing during the satellite era

    Science.gov (United States)

    Gonsamo, Alemu; Chen, Jing M.; Shindell, Drew T.; Asner, Gregory P.

    2016-08-01

    A lack of long-term measurements across Earth's biological and physical systems has made observation-based detection and attribution of climate change impacts to anthropogenic forcing and natural variability difficult. Here we explore coherence among land, cryosphere and ocean responses to recent climate change using 3 decades (1980-2012) of observational satellite and field data throughout the Northern Hemisphere. Our results show coherent interannual variability among snow cover, spring phenology, solar radiation, Scandinavian Pattern, and North Atlantic Oscillation. The interannual variability of the atmospheric peak-to-trough CO2 amplitude is mostly impacted by temperature-mediated effects of El Niño/Southern Oscillation (ENSO) and Pacific/North American Pattern (PNA), whereas CO2 concentration is affected by Polar Pattern control on sea ice extent dynamics. This is assuming the trend in anthropogenic CO2 emission remains constant, or the interannual changes in the trends are negligible. Our analysis suggests that sea ice decline-related CO2 release may outweigh increased CO2 uptake through longer growing seasons and higher temperatures. The direct effects of variation in solar radiation and leading teleconnections, at least in part via their impacts on temperature, dominate the interannual variability of land, cryosphere and ocean indicators. Our results reveal a coherent long-term changes in multiple physical and biological systems that are consistent with anthropogenic forcing of Earth's climate and inconsistent with natural drivers.

  8. 21st Century Rise in Anthropogenic Nitrogen Deposition on a Remote Coral Reef

    Science.gov (United States)

    Ren, H. A.; Chen, Y. C.; Wang, X. T.; Wong, G. T. F.; Cohen, A. L.; DeCarlo, T. M.; Weigand, M. A.; Mii, H. S.; Sigman, D. M.

    2017-12-01

    With the rapid rise in pollution-associated nitrogen inputs to the western Pacific, it has been suggested that even the open ocean has been impacted through atmospheric deposition. In a coral core from Dongsha Atoll, a coral reef ecosystem 340 km from the nearest continent, we observe a decline in the 15N/14N of coral skeleton-bound organic matter, signaling increased deposition of anthropogenic atmospheric N on the open ocean and its incorporation into plankton and in turn the corals living on the atoll. The decrease began just several years before 2000 CE, decades later than predicted by other work, and the amplitude of decline suggests that anthropogenic atmospheric N input is now 20±5% of the annual N input to the surface ocean in this region, less than two-thirds of that estimated by models and analyses of nutrient ratio changes.

  9. The Use of Recorded Lectures in Education and the Impact on Lecture Attendance and Exam Performance

    Science.gov (United States)

    Bos, Nynke; Groeneveld, Caspar; van Bruggen, Jan; Brand-Gruwel, Saskia

    2016-01-01

    Universities increasingly record lectures and make them available online for students. Though the technology to record these lectures is now solidly implemented and embedded in many institutions, the impact of the usage of recorded lectures on exam performance is not clear. The purpose of the current study is to address the use of recorded…

  10. Isopycnal mixing by mesoscale eddies significantly impacts oceanic anthropogenic carbon uptake

    Science.gov (United States)

    Gnanadesikan, Anand; Pradal, Marie-Aude; Abernathey, Ryan

    2015-06-01

    Anthropogenic carbon dioxide uptake varies across Earth System Models for reasons that have remained obscure. When varied within a single model, the lateral eddy mixing coefficient ARedi produces a range of uptake similar to the modeled range. The highest uptake, resulting from a simulation with a constant ARedi of 2400 m2/s, simulates 15% more historical carbon uptake than a model with ARedi = 400 m2/s. A sudden doubling in carbon dioxide produces a 21% range in carbon uptake across the models. Two spatially dependent representations of ARedi produce uptake that lies in the middle of the range of constant values despite predicting very large values in the subtropical gyres. One-dimensional diffusive models of the type used for integrated assessments can be fit to the simulations, with ARedi accounting for a substantial fraction of the effective vertical diffusion. Such models, however, mask significant regional changes in stratification and biological carbon storage.

  11. Radiative absorption enhancement of dust mixed with anthropogenic pollution over East Asia

    Directory of Open Access Journals (Sweden)

    P. Tian

    2018-06-01

    Full Text Available The particle mixing state plays a significant yet poorly quantified role in aerosol radiative forcing, especially for the mixing of dust (mineral absorbing and anthropogenic pollution (black carbon absorbing over East Asia. We have investigated the absorption enhancement of mixed-type aerosols over East Asia by using the Aerosol Robotic Network observations and radiative transfer model calculations. The mixed-type aerosols exhibit significantly enhanced absorbing ability than the corresponding unmixed dust and anthropogenic aerosols, as revealed in the spectral behavior of absorbing aerosol optical depth, single scattering albedo, and imaginary refractive index. The aerosol radiative efficiencies for the dust, mixed-type, and anthropogenic aerosols are −101.0, −112.9, and −98.3 Wm−2 τ−1 at the bottom of the atmosphere (BOA; −42.3, −22.5, and −39.8 Wm−2 τ−1 at the top of the atmosphere (TOA; and 58.7, 90.3, and 58.5 Wm−2 τ−1 in the atmosphere (ATM, respectively. The BOA cooling and ATM heating efficiencies of the mixed-type aerosols are significantly higher than those of the unmixed aerosol types over the East Asia region, resulting in atmospheric stabilization. In addition, the mixed-type aerosols correspond to a lower TOA cooling efficiency, indicating that the cooling effect by the corresponding individual aerosol components is partially counteracted. We conclude that the interaction between dust and anthropogenic pollution not only represents a viable aerosol formation pathway but also results in unfavorable dispersion conditions, both exacerbating the regional air pollution in East Asia. Our results highlight the necessity to accurately account for the mixing state of aerosols in atmospheric models over East Asia in order to better understand the formation mechanism for regional air pollution and to assess its impacts on human health, weather, and climate.

  12. Anthropogenic effect on avalanche and debris flow activity

    Directory of Open Access Journals (Sweden)

    S. A. Sokratov

    2013-01-01

    Full Text Available The paper presents examples of the change in snow avalanches and debris flows activity due to the anthropogenic pressure on vegetation and relief. The changes in dynamical characteristics of selected snow avalanches and debris flows due to the anthropogenic activity are quantified. The conclusion is made that the anthropogenic effects on the snow avalanches and debris flows activity are more pronounced than the possible effects of the climate change. The necessity is expressed on the unavoidable changes of the natural environment as the result of a construction and of use of the constructed infrastructure to be account for in corresponding planning of the protection measures.

  13. Anthropogenic impacts on global organic river pollution

    NARCIS (Netherlands)

    Wen, Y.

    2017-01-01

    Organic pollution of rivers by wastewater discharge from human activities negatively impacts people and ecosystems. Without treatment, pollution control relies on a combination of natural degradation and dilution by natural runoff to reduce downstream effects. To implement integrated water

  14. Anthropogenic and impact spherules: Morphological similarity and ...

    Indian Academy of Sciences (India)

    Spherule; road dust; meteoritic impact; microtektites; fly ash. ... of Allahabad city with sample locations and number of spherules recovered per location shown with ..... Education. T raining. C en tre,. Civil. Lines. L ittle g reenery; heav y traffic. 20.

  15. Bacterial diversity in relatively pristine and anthropogenically-influenced mangrove ecosystems (Goa, India

    Directory of Open Access Journals (Sweden)

    Sheryl Oliveira Fernandes

    2014-12-01

    Full Text Available To appreciate differences in benthic bacterial community composition at the relatively pristine Tuvem and the anthropogenically-influenced Divar mangrove ecosystems in Goa, India, parallel tag sequencing of the V6 region of 16S rDNA was carried out. We hypothesize that availability of extraneously-derived anthropogenic substrates could act as a stimulatant but not a deterrent to promote higher bacterial diversity at Divar. Our observations revealed that the phylum Proteobacteria was dominant at both locations comprising 43-46% of total tags. The Tuvem ecosystem was characterized by an abundance of members belonging to the class Deltaproteobacteria (21%, ~ 2100 phylotypes and 1561 operational taxonomic units (OTUs sharing > 97% similarity. At Divar, the Gammaproteobacteria were ~ 2x higher (17% than at Tuvem. A more diverse bacterial community with > 3300 phylotypes and > 2000 OTUs mostly belonging to Gammaproteobacteria and a significantly higher DNT (n = 9, p < 0.001, df = 1 were recorded at Divar. These findings suggest that the quantity and quality of pollutants at Divar are perhaps still at a level to maintain high diversity. Using this technique we could show higher diversity at Divar with the possibility of Gammaproteobacteria contributing to modulating excess nitrate.

  16. Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability.

    Science.gov (United States)

    Ghan, Steven; Wang, Minghuai; Zhang, Shipeng; Ferrachat, Sylvaine; Gettelman, Andrew; Griesfeller, Jan; Kipling, Zak; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Zhang, Kai

    2016-05-24

    A large number of processes are involved in the chain from emissions of aerosol precursor gases and primary particles to impacts on cloud radiative forcing. Those processes are manifest in a number of relationships that can be expressed as factors dlnX/dlnY driving aerosol effects on cloud radiative forcing. These factors include the relationships between cloud condensation nuclei (CCN) concentration and emissions, droplet number and CCN concentration, cloud fraction and droplet number, cloud optical depth and droplet number, and cloud radiative forcing and cloud optical depth. The relationship between cloud optical depth and droplet number can be further decomposed into the sum of two terms involving the relationship of droplet effective radius and cloud liquid water path with droplet number. These relationships can be constrained using observations of recent spatial and temporal variability of these quantities. However, we are most interested in the radiative forcing since the preindustrial era. Because few relevant measurements are available from that era, relationships from recent variability have been assumed to be applicable to the preindustrial to present-day change. Our analysis of Aerosol Comparisons between Observations and Models (AeroCom) model simulations suggests that estimates of relationships from recent variability are poor constraints on relationships from anthropogenic change for some terms, with even the sign of some relationships differing in many regions. Proxies connecting recent spatial/temporal variability to anthropogenic change, or sustained measurements in regions where emissions have changed, are needed to constrain estimates of anthropogenic aerosol impacts on cloud radiative forcing.

  17. The Likelihood of Recent Record Warmth.

    Science.gov (United States)

    Mann, Michael E; Rahmstorf, Stefan; Steinman, Byron A; Tingley, Martin; Miller, Sonya K

    2016-01-25

    2014 was nominally the warmest year on record for both the globe and northern hemisphere based on historical records spanning the past one and a half centuries. It was the latest in a recent run of record temperatures spanning the past decade and a half. Press accounts reported odds as low as one-in-650 million that the observed run of global temperature records would be expected to occur in the absence of human-caused global warming. Press reports notwithstanding, the question of how likely observed temperature records may have have been both with and without human influence is interesting in its own right. Here we attempt to address that question using a semi-empirical approach that combines the latest (CMIP5) climate model simulations with observations of global and hemispheric mean temperature. We find that individual record years and the observed runs of record-setting temperatures were extremely unlikely to have occurred in the absence of human-caused climate change, though not nearly as unlikely as press reports have suggested. These same record temperatures were, by contrast, quite likely to have occurred in the presence of anthropogenic climate forcing.

  18. Anthropogenic 236U recorded in annually banded coral skeleton at Majuro atoll, the equatorial Pacific

    International Nuclear Information System (INIS)

    Sakaguchi, Aya; Eto, Asuka; Takahashi, Yoshio; Steier, Peter; Yamazaki, Atsuko; Watanabe, Tsuyoshi; Sasaki, Keiichi; Yamano, Hiroya

    2013-01-01

    Historical 236 U/ 238 U atom ratio and concentration of 236 U were determined by Accelerator Mass Spectrometry (AMS) in skeletons of dated modern coral core sample collected from Majuro atoll, equatorial Pacific, to reconstruct anthropogenic 236 U inputs to the Equatorial Pacific. The maximum hydrogen bomb-pulses of 236 U/ 238 U and 236 U concentration, 2.83x10 -9 and 1.85x10 7 atom/g, in an annually resolved coral core were captured in 1954 (Operation Castle at Bikini and Enewetok atolls). The values were abruptly decreased in a few years, and they have been gradually decreased over time. Our results allow studies of not only the present distribution pattern, but gives access to the temporal evolution of 236 U in surface seawater of North Equatorial Current which is introduced to the Japan Sea and the North West Pacific Ocean as Kuroshio and Tsushima currents over the past decades. (author)

  19. Atmospheric metal pollution records in the Kovářská Bog (Czech Republic) as an indicator of anthropogenic activities over the last three millennia.

    Science.gov (United States)

    Bohdálková, Leona; Bohdálek, Petr; Břízová, Eva; Pacherová, Petra; Kuběna, Aleš Antonín

    2018-08-15

    Three peat cores were extracted from the Kovářská Bog in the central Ore Mountains to study anthropogenic pollution generated by mining and metallurgy. The core profiles were 14 C dated, and concentrations of selected elements were determined by ICP MS and HG-AAS. Principal component analysis indicated that Pb, Cu, As and Ag may be useful elements for the reconstruction of historical atmospheric pollution. Total and anthropogenic accumulation rates (ARs) of Pb, Cu and As estimated for the last ca. 3500years showed similar chronologies, and revealed twelve periods of elevated ARs of Pb, As and Cu related to possible mining and metallurgic activities. In total, four periods of elevated ARs of Pb, Cu and As were detected during the Middle and Late Bronze Ages, including a distinct Late Bronze Age pollution event between 1030BCE and 910BCE. The Iron Age included three episodes of increased ARs of Pb and As; the first and the most distinctive episode, recorded between 730 and 440BCE, was simultaneous with the Bylany culture during the Hallstatt Period. The Roman Age was characterized by one pollution event, two events were detected in the Middle Ages, and the last two during the modern period. Enhanced element ARs in the late 12th and 15th centuries clearly documented the onset of two periods of intense mining in the Ore Mountains. Metal ARs culminated in ca. 1600CE, and subsequently decreased after the beginning of the Thirty Years' War. The last boom of mining between 1700CE and 1830CE represented the last period of important metallurgical operations. Late Medieval and modern period metal ARs are in good agreement with written documents. Earlier pollution peaks suggest that local metal production could have a much longer tradition than commonly believed; however, archaeological or written evidence is scarce or lacking. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Marine Socio-Environmental Covariates: queryable global layers of environmental and anthropogenic variables for marine ecosystem studies.

    Science.gov (United States)

    Yeager, Lauren A; Marchand, Philippe; Gill, David A; Baum, Julia K; McPherson, Jana M

    2017-07-01

    Biophysical conditions, including climate, environmental stress, and habitat availability, are key drivers of many ecological processes (e.g., community assembly and productivity) and associated ecosystem services (e.g., carbon sequestration and fishery production). Furthermore, anthropogenic impacts such as coastal development and fishing can have drastic effects on the structure and function of marine ecosystems. Scientists need to account for environmental variation and human impacts to accurately model, manage, and conserve marine ecosystems. Although there are many types of environmental data available from global remote sensing and open-source data products, some are inaccessible to potential end-users because they exist as global layers in high temporal and spatial resolutions which require considerable computational power to process. Additionally, coastal locations often suffer from missing data or data quality issues which limit the utility of some global marine products for coastal sites. Herein we present the Marine Socio-Environmental Covariates dataset for the global oceans, which consists of environmental and anthropogenic variables summarized in ecologically relevant ways. The dataset includes four sets of environmental variables related to biophysical conditions (net primary productivity models corrected for shallow-water reflectance, wave energy including sheltered-coastline corrections) and landscape context (coral reef and land cover within varying radii). We also present two sets of anthropogenic variables, human population density (within varying radii) and distance to large population center, which can serve as indicators of local human impacts. We have paired global, summarized layers available for download with an online data querying platform that allows users to extract data for specific point locations with finer control of summary statistics. In creating these global layers and online platform, we hope to make the data accessible to a

  1. Anthropogenic impact on amorphous silica pools in temperate soils

    Directory of Open Access Journals (Sweden)

    W. Clymans

    2011-08-01

    Full Text Available Human land use changes perturb biogeochemical silica (Si cycling in terrestrial ecosystems. This directly affects Si mobilisation and Si storage and influences Si export from the continents, although the magnitude of the impact is unknown. A major reason for our lack of understanding is that very little information exists on how land use affects amorphous silica (ASi storage in soils. We have quantified and compared total alkali-extracted (PSia and easily soluble (PSie Si pools at four sites along a gradient of anthropogenic disturbance in southern Sweden. Land use clearly affects ASi pools and their distribution. Total PSia and PSie for a continuous forested site at Siggaboda Nature Reserve (66 900 ± 22 800 kg SiO2 ha−1 and 952 ± 16 kg SiO2 ha−1 are significantly higher than disturbed land use types from the Råshult Culture Reserve including arable land (28 800 ± 7200 kg SiO2 ha−1 and 239 ± 91 kg SiO2 ha−1, pasture sites (27 300 ± 5980 kg SiO2 ha−1 and 370 ± 129 kg SiO2 ha−1 and grazed forest (23 600 ± 6370 kg SiO2 ha−1 and 346 ± 123 kg SiO2 ha−1. Vertical PSia and PSie profiles show significant (p < 0.05 variation among the sites. These differences in size and distribution are interpreted as the long-term effect of reduced ASi replenishment, as well as changes in ecosystem specific pedogenic processes and increased mobilisation of the PSia in disturbed soils. We have also made a first, though rough, estimate of the magnitude of change in temperate continental ASi pools due to human disturbance. Assuming that our data are representative, we estimate that total ASi storage in soils has declined by ca. 10 % since the onset of agricultural development (3000 BCE

  2. ANTHROPOGENIC ACTIVITIES THREATENING THE ...

    African Journals Online (AJOL)

    Osondu

    2012-02-17

    Feb 17, 2012 ... anthropogenic activities across the protected areas in the country. ... education and provision of fund to support sustainable livelihood practices. ... wildlife conservation and tourism. ... Fig: 1 Map of Oyo State showing location of Old Oyo National Park and adjoining community. #. #. # .... This was the view of.

  3. Occurrence, distribution, and sources of emerging organic contaminants in tropical coastal sediments of anthropogenically impacted Klang River estuary, Malaysia.

    Science.gov (United States)

    Omar, Tuan Fauzan Tuan; Aris, Ahmad Zaharin; Yusoff, Fatimah Md; Mustafa, Shuhaimi

    2018-06-01

    This baseline assessment reports on the occurrence, distribution, and sources of emerging organic contaminants (EOCs) in tropical coastal sediments of anthropogenically impacted Klang River estuary, Malaysia. Bisphenol A was the highest concentration detected at 16.84 ng g -1 dry weight, followed by diclofenac (13.88 ng g -1 dry weight) and E1 (12.47 ng g -1 dry weight). Five compounds, namely, amoxicillin, progesterone, diazinon, bisphenol A, and E1, were found in all sampling stations assessed, and other compounds such as primidone, diclofenac, testosterone, E2, and EE2 were ubiquitously present in sediment samples, with percentage of detection range from 89.04% to 98.38%. Organic carbon content and pH were the important factors controlling the fate of targeted compounds in the tropical estuarine sediment. On the basis of the literature from other studies, the sources of EOCs are thought to be from wastewater treatment plants, domestic/medical waste discharge, livestock activities, industrial waste discharge, and agricultural activities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Assessment of global industrial-age anthropogenic arsenic contamination.

    Science.gov (United States)

    Han, Fengxiang X; Su, Yi; Monts, David L; Plodinec, M John; Banin, Amos; Triplett, Glover E

    2003-09-01

    Arsenic, a carcinogenic trace element, threatens not only the health of millions of humans and other living organisms, but also global sustainability. We present here, for the first time, the global industrial-age cumulative anthropogenic arsenic production and its potential accumulation and risks in the environment. In 2000, the world cumulative industrial-age anthropogenic arsenic production was 4.53 million tonnes. The world-wide coal and petroleum industries accounted for 46% of global annual gross arsenic production, and their overall contribution to industrial-age gross arsenic production was 27% in 2000. Global industrial-age anthropogenic As sources (as As cumulative production) follow the order: As mining production>As generated from coal>As generated from petroleum. The potential industrial-age anthropogenic arsenic input in world arable surface in 2000 was 2.18 mg arsenic kg(-1), which is 1.2 times that in the lithosphere. The development of substitute materials for arsenic applications in the agricultural and forestry industries and controls of arsenic emissions from the coal industry may be possible strategies to significantly decrease arsenic pollution sources and dissipation rates into the environment.

  5. Impact of climate change and human activity on soil landscapes over the past 12,300 years.

    Science.gov (United States)

    Rothacker, Leo; Dosseto, Anthony; Francke, Alexander; Chivas, Allan R; Vigier, Nathalie; Kotarba-Morley, Anna M; Menozzi, Davide

    2018-01-10

    Soils are key to ecosystems and human societies, and their critical importance requires a better understanding of how they evolve through time. However, identifying the role of natural climate change versus human activity (e.g. agriculture) on soil evolution is difficult. Here we show that for most of the past 12,300 years soil erosion and development were impacted differently by natural climate variability, as recorded by sediments deposited in Lake Dojran (Macedonia/Greece): short-lived ( < 1,000 years) climatic shifts had no effect on soil development but impacted soil erosion. This decoupling disappeared between 3,500 and 3,100 years ago, when the sedimentary record suggests an unprecedented erosion event associated with the development of agriculture in the region. Our results show unambiguously how differently soils evolved under natural climate variability (between 12,300 and 3,500 years ago) and later in response to intensifying human impact. The transition from natural to anthropogenic landscape started just before, or at, the onset of the Greek 'Dark Ages' (~3,200 cal yr BP). This could represent the earliest recorded sign of a negative feedback between civilization and environmental impact, where the development of agriculture impacted soil resources, which in turn resulted in a slowdown of civilization expansion.

  6. Anthropogenic sulfur dioxide emissions: 1850–2005

    Directory of Open Access Journals (Sweden)

    S. J. Smith

    2011-02-01

    Full Text Available Sulfur aerosols impact human health, ecosystems, agriculture, and global and regional climate. A new annual estimate of anthropogenic global and regional sulfur dioxide emissions has been constructed spanning the period 1850–2005 using a bottom-up mass balance method, calibrated to country-level inventory data. Global emissions peaked in the early 1970s and decreased until 2000, with an increase in recent years due to increased emissions in China, international shipping, and developing countries in general. An uncertainty analysis was conducted including both random and systemic uncertainties. The overall global uncertainty in sulfur dioxide emissions is relatively small, but regional uncertainties ranged up to 30%. The largest contributors to uncertainty at present are emissions from China and international shipping. Emissions were distributed on a 0.5° grid by sector for use in coordinated climate model experiments.

  7. Future anthropogenic pollutant emissions in a Mediterranean port city with emphasis on the maritime sector emissions - Study of the impact on the city air quality

    Science.gov (United States)

    Liora, Natalia; Poupkou, Anastasia; Markakis, Konstantinos; Giannaros, Theodoros; Karagiannidis, Athanasios; Melas, Dimitrios

    2013-04-01

    The aim of this study is the estimation of the future emissions in the area of the large urban center of Thessaloniki (Greece) with emphasis on the emissions originated from the maritime sector within the port area of the city which are presented in detail. In addition, the contribution of the future anthropogenic emissions to atmospheric pollution levels in Thessaloniki focusing on PM levels is studied. A 2km spatial resolution anthropogenic gaseous and particulate matter emission inventory has been compiled for the port city of Thessaloniki for the year 2010 with the anthropogenic emission model MOSESS, developed by Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki. MOSESS was used for the estimation of emissions from several emission sources (road transport, central heating, industries, maritime sector etc) while the natural emission model NEMO was implemented for the calculation of dust, sea salt and biogenic emissions. Maritime emissions originated from the various processes inside the area of the port (harbor operations such as stockpiles, loading/unloading operations, machineries etc) as well as from the maritime transport sector including passenger ships, cargo shipping, inland waterways vessels (e.g. pleasure crafts) and fish catching ships. Ship emissions were estimated for the three operation modes; cruising, maneuvering and hotelling. For the calculation of maritime emissions, the activity data used were provided by local and national authorities (e.g.Thessaloniki Port Authority S.A.). Pollutant anthropogenic emissions were projected to the year 2020. The emissions from all the anthropogenic sources except for the maritime sector were projected using factors provided by the GAINS model. Future emissions from the maritime activities were estimated on the basis of the future activity data provided by the Port Authority and of the legislation for shipping in the future. Future maritime emissions are determined by the vessels

  8. Are there impact-formed zircons in the Hadean record?

    Science.gov (United States)

    Wielicki, M. M.; Lu, X.; Bell, E. A.; Schmitt, A. K.; Harrison, T. M.

    2008-12-01

    Detrital Hadean zircons from the Jack Hills, Western Australia, show a remarkable cluster of crystallization temperatures at 680±25°C. This is particularly surprising as a simple model relating rock composition and Zr concentration predicts that a very broad spectrum of crystallization temperatures (ca. 650°C to 1000°C) with a median value of 780°C, would result from impact melting of the Earth's surface. Magmatic fractionation would tend to increase the aforementioned values. Given the predicted high rate of impacts during the Hadean, the absence of such a population in the Jack Hills zircons could signal a profound sampling problem, a hint of a history much different than previously supposed, or our lack of understanding of zircon formation due to impact related processes. We have begun to examine the latter issue by investigating the crystallization temperatures of zircons formed in melt sheets preserved in the geologic record. The Sudbury Igneous Complex, formed at 1850±3 Ma within the second largest impact crater on Earth, includes two igneous units termed the Black and Felsic Norites. Examination of zircons from each by SIMS confirms their crystallization age at 1847.3±2.2 Ma and yields Ti-in-zircon temperatures of 720°C and 750°C, respectively. This is consistent with that predicted from zircon saturation systematics. A statistical test indicates that the combined norite population is distinct from the Hadean temperature distribution. Thus the question arises: where are the Hadean zircons expected to have formed at >780°C via impact processes? Similar analysis is being pursued for zircons from the Vredefort Impact Structure, South Africa, which should provide further information on impact-formed zircon temperature spectra.

  9. Distinguishing Natural and Anthropogenic Sources of Chemical Loading on a Watershed-Scale, Mill River Watershed, Massachusetts

    Science.gov (United States)

    Rhodes, A. L.; Newton, R. M.; Pufall, A.

    2001-05-01

    The Mill River Watershed (MRW), a 125 km2 catchment of the Connecticut River, possesses heterogeneous topography, geology, and human settlement patterns suitable for distinguishing natural sources of chemical loading to rivers from anthropogenic sources. The MRW is divided into catchments by drainage patterns of dominant tributaries. Catchments are further classified into land-use zones, defined by intensity of human activity. Water chemistry in Zone I areas, where human activity is minimal to absent, serves as a baseline for assessing human impacts on water quality from within the watershed. Zone II areas are primarily affected by water removal from drinking water reservoirs on two tributaries ( ~9500 m3 per day, combined). Zone III regions receive runoff from agricultural, residential, and transportation areas. Since 1997, water samples collected from 13 sites in MRW have been analyzed for specific conductance, temperature, pH, ANC, base cations (Ca, Mg, Na, K, NH4), anions (Cl, SO4, NO3, PO4), and dissolved silica. GIS software was used to calculate percent area of different land uses that drain to each sample site. For the majority of sample sites in MRW, average concentrations of both NO3 and SO4 show a positive, linear relationship with percent area of anthropogenic land (R2> 0.91). Concentrations of Cl increase linearly with road density (R2= 0.95). However, two Zone III sites receiving additional point-source pollution show higher NO3 and SO4 concentrations than predicted by land use; concentrations reflect 20 and 50% more anthropogenic area than actually exists. Removal of drinking water from the larger reservoir also produces 20 and 30% more NO3 and SO4 than predicted by land use, showing that water removal concentrates pollution. Low-gradient, Zone III sites that receive highway runoff show elevated salt concentrations that persist throughout the year. Salt-impacted regions show a strong correlation between Na and Cl (R2 = 0.86 to 0.95). Cl typically

  10. Anthropogenic noise playback impairs embryonic development and increases mortality in a marine invertebrate

    Science.gov (United States)

    Nedelec, Sophie L.; Radford, Andrew N.; Simpson, Stephen D.; Nedelec, Brendan; Lecchini, David; Mills, Suzanne C.

    2014-07-01

    Human activities can create noise pollution and there is increasing international concern about how this may impact wildlife. There is evidence that anthropogenic noise may have detrimental effects on behaviour and physiology in many species but there are few examples of experiments showing how fitness may be directly affected. Here we use a split-brood, counterbalanced, field experiment to investigate the effect of repeated boat-noise playback during early life on the development and survival of a marine invertebrate, the sea hare Stylocheilus striatus at Moorea Island (French Polynesia). We found that exposure to boat-noise playback, compared to ambient-noise playback, reduced successful development of embryos by 21% and additionally increased mortality of recently hatched larvae by 22%. Our work, on an understudied but ecologically and socio-economically important taxon, demonstrates that anthropogenic noise can affect individual fitness. Fitness costs early in life have a fundamental influence on population dynamics and resilience, with potential implications for community structure and function.

  11. Monitoring of impact of anthropogenic inputs on water quality of mangrove ecosystem of Uran, Navi Mumbai, west coast of India.

    Science.gov (United States)

    Pawar, Prabhakar R

    2013-10-15

    Surface water samples were collected from substations along Sheva creek and Dharamtar creek mangrove ecosystems of Uran (Raigad), Navi Mumbai, west coast of India. Water samples were collected fortnightly from April 2009 to March 2011 during spring low and high tides and were analyzed for pH, Temperature, Turbidity, Total solids (TS), Total dissolved solids (TDS), Total suspended solids (TSS), Dissolved oxygen (DO), Biochemical oxygen demand (BOD), Carbon dioxide (CO2), Chemical oxygen demand (COD), Salinity, Orthophosphate (O-PO4), Nitrite-nitrogen (NO2-N), Nitrate-nitrogen (NO3-N), and Silicates. Variables like pH, turbidity, TDS, salinity, DO, and BOD show seasonal variations. Higher content of O-PO4, NO3-N, and silicates is recorded due to discharge of domestic wastes and sewage, effluents from industries, oil tanking depots and also from maritime activities of Jawaharlal Nehru Port Trust (JNPT), hectic activities of Container Freight Stations (CFS), and other port wastes. This study reveals that water quality from mangrove ecosystems of Uran is deteriorating due to industrial pollution and that mangrove from Uran is facing the threat due to anthropogenic stress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Additive negative effects of anthropogenic sedimentation and warming on the survival of coral recruits

    OpenAIRE

    Fourney, Francesca; Figueiredo, Joana

    2017-01-01

    Corals worldwide are facing population declines due to global climate change and local anthropogenic impacts. Global climate change effects are hard to tackle but recent studies show that some coral species can better handle climate change stress when provided with additional energy resources. The local stressor that most undermines energy acquisition is sedimentation because it impedes coral heterotrophic feeding and their ability to photosynthesize. To investigate if reducing local sediment...

  13. Evaluation of the anthropogenic radionuclide concentrations in sediments and fauna collected in the Beaufort Sea and northern Alaska

    International Nuclear Information System (INIS)

    Efurd, D.W.; Miller, G.G.; Rokop, D.J.

    1997-07-01

    This study was performed to establish a quality controlled data set about the levels of radio nuclide activity in the environment and in selected biota in the U.S. Arctic. Sediment and biota samples were collected by the National Oceanic and Atmospheric Administration (NOAA), the National Biological Service, and the North Slope Borough's Department of Wildlife Management to determine the impact of anthropogenic radionuclides in the Arctic. The results summarized in this report are derived from samples collected in northwest Alaska with emphasis on species harvested for subsistence in Barrow, Alaska. Samples were analyzed for the anthropogenic radionuclides 90 Sr, 137 Cs, 238 Pu, 239 Pu, 240 Pu and 241 Am. The naturally occurring radionuclides 40 K, 212 Pb and 214 Pb were also measured. One goal of this study was to determine the amounts of anthropogenic radionuclides present in the Beaufort Sea. Sediment samples were isotopically fingerprinted to determine the sources of radio nuclide activities. Biota samples of subsistence and ecological value were analyzed to search for evidence of bio-accumulation of radionuclides and to determine the radiation exposures associated with subsistence living in northern Alaska. The anthropogenic radio nuclide content of sediments collected in the Beaufort Sea was predominantly the result of the deposition of global fallout. No other sources of anthropogenic radionuclides could be conclusively identified in the sediments. The anthropogenic radio nuclide concentrations in fish, birds and mammals were very low. Assuming that ingestion of food is an important pathway leading to human contact with radioactive contaminants and given the dietary patterns in coastal Arctic communities, it can be surmised that marine food chains are presently not significantly affected

  14. Impact of radius and skew angle on areal density in heat assisted magnetic recording hard disk drives

    Science.gov (United States)

    Cordle, Michael; Rea, Chris; Jury, Jason; Rausch, Tim; Hardie, Cal; Gage, Edward; Victora, R. H.

    2018-05-01

    This study aims to investigate the impact that factors such as skew, radius, and transition curvature have on areal density capability in heat-assisted magnetic recording hard disk drives. We explore a "ballistic seek" approach for capturing in-situ scan line images of the magnetization footprint on the recording media, and extract parametric results of recording characteristics such as transition curvature. We take full advantage of the significantly improved cycle time to apply a statistical treatment to relatively large samples of experimental curvature data to evaluate measurement capability. Quantitative analysis of factors that impact transition curvature reveals an asymmetry in the curvature profile that is strongly correlated to skew angle. Another less obvious skew-related effect is an overall decrease in curvature as skew angle increases. Using conventional perpendicular magnetic recording as the reference case, we characterize areal density capability as a function of recording position.

  15. The assessment of anthropogenic impact on the environment in East Fennoscandia based on the Normalized Difference Vegetation Index data

    Science.gov (United States)

    Miulgauzen, Daria; Pankratova, Lubov

    2017-04-01

    Being a part of Eurasian "cold sector", ecosystems of East Fennoscandia may fit in the category of the most vulnerable to any external impact, including anthropogenic one. The productivity of plant communities can serve as an indicator representing the state of ecosystems, especially in disturbed areas. The present research is aimed at the environmental impact assessment caused by the Pechenganikel Mining and Metallurgical Plant based on the plant communities' productivity data on the example of ecosystems of East Fennoscandia. Vegetation productivity was assessed on the basis of the Normalized Difference Vegetation Index (NDVI) which is often used for screenings to quantify plant canopy. The essence of the method is that of the difference between the spectral reflectance of vegetation in red and near-infrared regions. The index was calculated on the satellite images of Landsat 8 in IDRISI Kilimanjaro (Clark Labs) according to the equation: N DV I = N-IR- RED-; N IR +RED NIR - spectral reflectance measurements in near-infrared region, RED - spectral reflectance measurements in red region. To compare the index calculations with the information on the state of plant communities, the field studies were carried out in the area of 380 km2 in the vicinity of the Pechenganikel Mining and Metallurgical Plant (Kola Peninsula, Nikel urban-type settlement). As a result, there was created a map in MapInfo Professional 12.5 (Pitney Bowes Software) that represents the vegetation damage at a scale of 1:100,000. The field research has revealed the morphogenetic discrepancy between the soil-plant cover of the area in question and the one of "zonal" ecosystems. Plant communities have been widely modified or destroyed because of air pollution and there are numerous disturbances in the soil profile structure. In terms of vegetation productivity, the analysis of the NDVI figures has shown that the closer the pollution source (Pechenganikel Plant) is, the more significant the

  16. The role of sustained observations in tracking impacts of environmental change on marine biodiversity and ecosystems.

    Science.gov (United States)

    Mieszkowska, N; Sugden, H; Firth, L B; Hawkins, S J

    2014-09-28

    Marine biodiversity currently faces unprecedented threats from multiple pressures arising from human activities. Global drivers such as climate change and ocean acidification interact with regional eutrophication, exploitation of commercial fish stocks and localized pressures including pollution, coastal development and the extraction of aggregates and fuel, causing alteration and degradation of habitats and communities. Segregating natural from anthropogenically induced change in marine ecosystems requires long-term, sustained observations of marine biota. In this review, we outline the history of biological recording in the coastal and shelf seas of the UK and Ireland and highlight where sustained observations have contributed new understanding of how anthropogenic activities have impacted on marine biodiversity. The contributions of sustained observations, from those collected at observatories, single station platforms and multiple-site programmes to the emergent field of multiple stressor impacts research, are discussed, along with implications for management and sustainable governance of marine resources in an era of unprecedented use of the marine environment. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  17. Anthropogenic features and hillslope processes interaction

    Science.gov (United States)

    Tarolli, Paolo; Sofia, Giulia

    2016-04-01

    Topography emerges as a result of natural driving forces, but some human activities (such as mining, agricultural practices and the construction of road networks) directly or indirectly move large quantities of soil, which leave clear topographic signatures embedded on the Earth's morphology. These signatures can cause drastic changes to the geomorphological organization of the landscape, with direct consequences on Earth surface processes (Tarolli and Sofia, 2016). To this point, the present research investigates few case studies highlighting the influences of anthropogenic topographic signatures on hillslope processes, and it shows the effectiveness of High-Resolution Topography (HRT) derived from the recent remote sensing technologies (e.g. lidar, satellite, structure from motion photogrammetry), to better understand this interaction. The first example is related to agricultural terraces. In recent times, terraced areas acquired a new relevance to modern concerns about erosion and land instability, being the agricultural land mostly threatened by abandonment or intensification and specialization of agriculture, resulting in more landslide-prone bench terraces, or heavy land levelling with increased erosion. The second case study discusses about the role of agricultural and forest roads on surface erosion and landslides. The third case study investigates geomorphic processes in an open pit mine. In all case studies, HRT served as the basis for the development of new methodologies able to recognize and analyze changes on Earth surface processes along hillslopes. The results show how anthropogenic elements have crucial effects on sediment production and sediment delivery, also influencing the landscape connectivity. The availability of HRT can improve our ability to actually model anthropogenic morphologies, quantify them, and analyse the links between anthropogenic elements and geomorphic processes. The results presented here, and the creation and dissemination of

  18. Potential climatic effects of anthropogenic aerosols

    International Nuclear Information System (INIS)

    Pueschel, R.F.

    1993-01-01

    Aerosols act as part of the climate system through their influence on solar and terrestrial radiation. The effect of anthropogenic aerosols on the reduction of visibility is explored in this chapter. Elemental carbon has been identified as the most effective visibility-reducing species. Most of the visibility reduction is due to particles with diameter smaller than 2.5 μm. Studies indicate that sulfate is also a very important aerosol species that results in low visibility and high turbidity. Radiative properties such as aerosol single-scattering albedo values and absorption-to-backscatter ratios purported to produce warming or cooling effects of aerosols are discussed. It is concluded that aerosol clouds have a tendency to cool when they are over a low-albedo surface and have a tendency to warm when they are over high-albedo surfaces such as snow. Anthropogenic aerosols have a tendency to warm the earth's atmospheric system, based on calculations and assumed aerosol optical properties. However, this effect is somewhat offset by the absorption and re-emission into space of infrared terrestrial radiation. The net effect depends on the ratio of the absorption coefficients in the visible and infrared and also on the surface albedo. The effects on infrared radiation are documented for two anthropogenic aerosol sources in the United States, the Denver metropolitan area and power plant plumes in New Mexico, through calculations and measurements. Measured cooling rates within an aerosol plume are not sufficient to offset the warming rate due to absorption of short-wave radiation. Research indicates that anthropogenic aerosols can possibly cause local-scale warming of the atmosphere, but global-scale climatic effects remain an open question

  19. The impacts of past climate change on terrestrial and aquatic ecosystems

    International Nuclear Information System (INIS)

    Bradshaw, R.H.W.; Anderson, N.J.

    2001-01-01

    The last two million years of global history have been dominated by the impacts of rapid climate change. This influence is not immediately obvious to most biologists whose observations rarely extend beyond a period of a few years, but becomes apparent when interpreting long-term data sets whether they be population studies or palaeoecological data. It is appropriate therefore to consider how terrestrial and aquatic ecosystems have responded to climate change during the Quaternary when speculating about response to future climatic developments. In this chapter we discuss and illustrate the complex interactions between climate and anthropogenic influence on terrestrial and aquatic ecosystems during the Holocene. Climate influences ecosystems both directly (e.g. physiological responses or lake thermal stratification) and indirectly (e.g. via fire frequency or catchment hydrology). Lake sediments can be used to study both past climatic change directly and the effects of past climatic variability. In this chapter we present summary examples of the influence of past climate change on terrestrial and aquatic ecosystems as well showing how lake sediment records can provide proxy records of past climate change. The geological record from the last 18 000 years documents large changes in terrestrial and aquatic ecosystems that are primarily driven by climatic change, but are modified by internal ecosystem processes. These changes are comparable in magnitude and rapidity to those predicted for the near future. Species at their distributional limits are particularly sensitive to climate change and contractions of range can be sudden in response to extreme climatic events such as the storm of December 1999 that damaged Picea trees far more than tree species that lay within their natural range limits. Palaeoecological records provide compelling evidence for direct climate forcing of aquatic and terrestrial ecosystems but importantly also permit comparative analyses of impacts

  20. Change in diurnal variations of meteorological variables induced by anthropogenic aerosols over the North China Plain in summer 2008

    Science.gov (United States)

    Gao, Yi; Zhang, Meigen; Liu, Xiaohong; Wang, Lili

    2016-04-01

    This study investigates the impacts of all anthropogenic aerosols and anthropogenic black carbon (BC) on the diurnal variations of meteorological variables in the atmospheric boundary layer over the North China Plain (NCP) during June to August 2008, using a coupled meteorology and chemistry model (WRF-Chem). The results of the ensemble numerical experiments show that surface air temperature decreases by about 0.6 to 1.2 K with the maximum decrease over the Beijing urban area and the southern part of Hebei province, and the surface relative humidity (RH) increases by 2-4 % owing to all anthropogenic aerosols. On the contrary, anthropogenic BC induces a small change of temperature and RH at surface. Averaged for Beijing, Tianjin, and Hebei province (BTH region) and High Particle Concentration (HPC) periods when PM2.5 surface concentration is more than 60 μg m-3 and daily AOD is more than 0.9, all anthropogenic aerosols decrease air temperature under 850 hPa and increase it between 500 and 850 hPa, while anthropogenic BC increases it for whole atmosphere. The maximum changes occur at 08:00-20:00 (local time). Aerosol-induced surface energy and diabatic heating change leads to a cooling at the surface and in the lower atmosphere and a warming in the middle troposphere at 08:00-17:00, with reversed effects at 20:00-05:00. BC cools the atmosphere at the surface and warms the atmosphere above for the whole day. As a result, the equivalent potential temperature profile change shows that the lower atmosphere is more stable at 08:00 and 14:00. All anthropogenic aerosols decrease the surface wind speed by 20-60 %, while anthropogenic BC decreases the wind speed by 10-40 % over the NCP with the maximum decrease at 08:00. The aerosol-induced stabilization of the lower atmosphere favors the accumulation of air pollutants and thus contributes to deterioration of visibility and fog-haze events.

  1. The imprint of anthropogenic CO2 emissions on Atlantic bluefin tuna otoliths

    Science.gov (United States)

    Fraile, Igaratza; Arrizabalaga, Haritz; Groeneveld, Jeroen; Kölling, Martin; Santos, Miguel Neves; Macías, David; Addis, Piero; Dettman, David L.; Karakulak, Saadet; Deguara, Simeon; Rooker, Jay R.

    2016-06-01

    Otoliths of Atlantic bluefin tuna (Thunnus thynnus) collected from the Mediterranean Sea and North Atlantic Ocean were analyzed to evaluate changes in the seawater isotopic composition over time. We report an annual otolith δ13C record that documents the magnitude of the δ13C depletion in the Mediterranean Sea between 1989 and 2010. Atlantic bluefin tuna in our sample (n = 632) ranged from 1 to 22 years, and otolith material corresponding to the first year of life (back-calculated birth year) was used to reconstruct seawater isotopic composition. Otolith δ18O remained relatively stable between 1989 and 2010, whereas a statistically significant decrease in δ13C was detected across the time interval investigated, with a rate of decline of 0.05‰ yr- 1 (- 0.94‰ depletion throughout the recorded period). The depletion in otolith δ13C over time was associated with the oceanic uptake of anthropogenically derived CO2.

  2. 78 FR 41924 - Privacy Act of 1974; System of Records-Impact Evaluation of Math Professional Development

    Science.gov (United States)

    2013-07-12

    ... DEPARTMENT OF EDUCATION Privacy Act of 1974; System of Records--Impact Evaluation of Math... ``Impact Evaluation of Math Professional Development'' (18-13-35). The National Center for Education...-focused math professional development (PD) program on teacher knowledge, teacher practices, and student...

  3. High-Resolution Mapping of Anthropogenic Heat in China from 1992 to 2010

    Directory of Open Access Journals (Sweden)

    Wangming Yang

    2014-04-01

    Full Text Available Anthropogenic heat generated by human activity contributes to urban and regional climate warming. Due to the resolution and accuracy of existing anthropogenic heat data, it is difficult to analyze and simulate the corresponding effects. This study exploited a new method to estimate high spatial and temporal resolutions of anthropogenic heat based on long-term data of energy consumption and the US Air Force Defense Meteorological Satellite Program-Operational Linescan System (DMSP-OLS data from 1992 to 2010 across China. Our results showed that, throughout the entire study period, there are apparent increasing trends in anthropogenic heat in three major metropoli, i.e., the Beijing-Tianjin region, the Yangzi River delta and the Pearl River delta. The annual mean anthropogenic heat fluxes for Beijing, Shanghai and Guangzhou in 2010 were 17 Wm−2, 19 and 7.8 Wm−2, respectively. Comparisons with previous studies indicate that DMSP-OLS data could provide a better spatial proxy for estimating anthropogenic heat than population density and our analysis shows better performance at large scales for estimation of anthropogenic heat.

  4. The anthropogenic influence on carbonaceous aerosol in the European background

    Energy Technology Data Exchange (ETDEWEB)

    May, Barbara; Wagenbach, Dietmar; Hammer, Samuel (Institut fuer Umweltphysik, Univ. Heidelberg (Germany)). e-mail: barbara.may@iup.uni-heidelberg.de; Steier, Peter (VERA laboratory, Univ. of Vienna (Austria)); Puxbaum, Hans (Inst. for Chemical Technologies and Analytics, Vienna Univ. of Technology, Vienna (Austria)); Pio, Casimiro (CESAM and Dept. of Environment, Univ. of Aveiro (Portugal))

    2009-07-01

    To constrain the relatively uncertain anthropogenic impact on the organic aerosol load, radiocarbon analyses were performed on aerosol samples, collected year-round, at six non-urban sites including a maritime background and three remote mountain stations, lying on a west-east transect over Western Europe. From a crude three component model supported by TOC and levoglucosan filter data, the fossil fuel, biomass burning and biogenic TOC fraction are estimated, showing at all stations year-round, a relatively constant fossil fuel fraction of around (26 +- 6)%, a dominant biogenic contribution of on average (73 +- 7)% in summer and the continental as well as the maritime background TOC to be only about 50% biogenic. Assuming biomass burning as completely anthropogenic, the carbonaceous aerosol concentration at the mountain sites was found to have increased by a factor of up to (1.4 +- 0.2) in summer and up to (2.5 +- 1.0) in winter. This figure is significantly lower, however, than the respective TOC change since pre-industrial times seen in an Alpine ice core. Reconciling both observations would require an increase, since pre-industrial times, of the background biogenic aerosol load, which is estimated at a factor of 1.3-1.7.

  5. The anthropogenic influence on carbonaceous aerosol in the European background

    Energy Technology Data Exchange (ETDEWEB)

    May, Barbara; Wagenbach, Dietmar; Hammer, Samuel (Inst. fuer Umweltphysik, Univ. Heidelberg (Germany)). e-mail: barbara.may@iup.uni-heidelberg.de; Steier, Peter (VERA laboratory, Univ. of Vienna (Austria)); Puxbaum, Hans (Inst. for Chemical Technologies and Analytics, Vienna Univ. of Technology (Austria)); Pio, Casimiro (CESAM and Dept. of Environment, Univ. of Aveiro (Portugal))

    2008-07-01

    To constrain the relatively uncertain anthropogenic impact on the organic aerosol load, radiocarbon analyses were performed on aerosol samples, collected year-round, at six non-urban sites including a maritime background and three remote mountain stations, lying on a west-east transect over Western Europe. From a crude three component model supported by TOC and levoglucosan filter data, the fossil fuel, biomass burning and biogenic TOC fraction are estimated, showing at all stations year-round, a relatively constant fossil fuel fraction of around (26 +- 6)% , a dominant biogenic contribution of on average (73 +- 7)% in summer and the continental as well as the maritime background TOC to be only about 50% biogenic. Assuming biomass burning as completely anthropogenic, the carbonaceous aerosol concentration at the mountain sites was found to have increased by a factor of up to (1.4 +- 0.2) in summer and up to (2.5 +- 1.0) in winter. This figure is significantly lower, however, than the respective TOC change since pre-industrial times seen in an Alpine ice core. Reconciling both observations would require an increase, since pre-industrial times, of the background biogenic aerosol load, which is estimated at a factor of 1.3-1.7

  6. Synergistic impacts of anthropogenic and biogenic emissions on summer surface O3 in East Asia.

    Science.gov (United States)

    Qu, Yu; An, Junling; Li, Jian

    2013-03-01

    A factor separation technique and an improved regional air quality model (RAQM) were applied to calculate synergistic contributions of anthropogenic volatile organic compounds (AVOCs), biogenic volatile organic compounds (BVOCs) and nitrogen oxides (NOx) to daily maximum surface 03 (O3DM) concentrations in East Asia in summer (June to August 2000). The summer averaged synergistic impacts of AVOCs and NOx are dominant in most areas of North China, with a maximum of 60 ppbv, while those of BVOCs and NOx are notable only in some limited areas with high BVOC emissions in South China, with a maximum of 25 ppbv. This result implies that BVOCs contribute much less to summer averaged O3DM concentrations than AVOCs in most areas of East Asia at a coarse spatial resolution (1 degree x 1 degree) although global emissions of BVOCs are much greater than those of AVOCs. Daily maximum total contributions of BVOCs can approach 20 ppbv in North China, but they can reach 40 ppbv in South China, approaching or exceeding those in some developed countries in Europe and North America. BVOC emissions in such special areas should be considered when 03 control measures are taken. Synergistic contributions among AVOCs, BVOCs and NOx significantly enhance O3 concentrations in the Beijing-Tianjin-Tangshan region and decrease them in some areas in South China. Thus, the total contributions of BVOCs to O3DM vary significantly from day to day and from location to location. This result suggests that 03 control measures obtained from episodic studies could be limited for long-term applications.

  7. Biochemical responses and physiological status in the crab Hemigrapsus crenulatus (Crustacea, Varunidae) from high anthropogenically-impacted estuary (Lenga, south-central Chile).

    Science.gov (United States)

    Díaz-Jaramillo, M; Socowsky, R; Pardo, L M; Monserrat, J M; Barra, R

    2013-02-01

    Estuarine environmental assessment by sub-individual responses is important in order to understand contaminant effects and to find suitable estuarine biomonitor species. Our study aimed to analyze oxidative stress responses, including glutathione-S-transferase (GST) activity, total antioxidant capacity (ACAP) and lipid peroxidation levels (TBARS) in estuarine crabs Hemigrapsus crenulatus from a high anthropogenically-impacted estuary (Lenga) compared to low and non-polluted estuaries (Tubul and Raqui), in a seasonal scale (winter-summer), tissue specific (hepatopancreas and gills) and sex related responses. Results showed that hepatopancreas in male crabs better reflected inter-estuary differences. Morpho-condition traits as Cephalothorax hepatopancreas index (CHI) could be used as an indicator of physiological status of estuarine crabs. Discriminant analysis also showed that GST and TBARS levels in summer are more suitable endpoints for establishing differences between polluted and non-polluted sites. These results suggest the importance of seasonality, target tissue, sex and physiological status of brachyuran crabs for estuarine biomonitoring assessment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. On the record: Talking about Day Zero and beyond: the impact of the ...

    African Journals Online (AJOL)

    On the record: Talking about Day Zero and beyond: the impact of the water crisis ... become part of daily life for those of us faced by the imminent (but previously ... points and in supermarkets have captured attention on social media, and city ...

  9. Condensed-phase biogenic-anthropogenic interactions with implications for cold cloud formation.

    Science.gov (United States)

    Charnawskas, Joseph C; Alpert, Peter A; Lambe, Andrew T; Berkemeier, Thomas; O'Brien, Rachel E; Massoli, Paola; Onasch, Timothy B; Shiraiwa, Manabu; Moffet, Ryan C; Gilles, Mary K; Davidovits, Paul; Worsnop, Douglas R; Knopf, Daniel A

    2017-08-24

    Anthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil fuel combustion can acquire a coating of SOA. We investigate SOA-soot biogenic-anthropogenic interactions and their impact on ice nucleation in relation to the particles' organic phase state. SOA particles were generated from the OH oxidation of naphthalene, α-pinene, longifolene, or isoprene, with or without the presence of sulfate or soot particles. Corresponding particle glass transition (T g ) and full deliquescence relative humidity (FDRH) were estimated using a numerical diffusion model. Longifolene SOA particles are solid-like and all biogenic SOA sulfate mixtures exhibit a core-shell configuration (i.e. a sulfate-rich core coated with SOA). Biogenic SOA with or without sulfate formed ice at conditions expected for homogeneous ice nucleation, in agreement with respective T g and FDRH. α-pinene SOA coated soot particles nucleated ice above the homogeneous freezing temperature with soot acting as ice nuclei (IN). At lower temperatures the α-pinene SOA coating can be semisolid, inducing ice nucleation. Naphthalene SOA coated soot particles acted as ice nuclei above and below the homogeneous freezing limit, which can be explained by the presence of a highly viscous SOA phase. Our results suggest that biogenic SOA does not play a significant role in mixed-phase cloud formation and the presence of sulfate renders this even less likely. However, anthropogenic SOA may have an enhancing effect on cloud glaciation under mixed-phase and cirrus cloud conditions compared to biogenic SOA that dominate during pre-industrial times or in pristine areas.

  10. Anthropogenic noise alters bat activity levels and echolocation calls

    Directory of Open Access Journals (Sweden)

    Jessie P. Bunkley

    2015-01-01

    Full Text Available Negative impacts from anthropogenic noise are well documented for many wildlife taxa. Investigations of the effects of noise on bats however, have not been conducted outside of the laboratory. Bats that hunt arthropods rely on auditory information to forage. Part of this acoustic information can fall within the spectrum of anthropogenic noise, which can potentially interfere with signal reception and processing. Compressor stations associated with natural gas extraction produce broadband noise 24 hours a day, 365 days a year. With over half a million producing gas wells in the U.S. this infrastructure is a major source of noise pollution across the landscape. We conducted a ‘natural experiment’ in the second largest gas extraction field in the U.S. to investigate the potential effects of gas compressor station noise on the activity levels of the local bat assemblage. We used acoustic monitoring to compare the activity level (number of minutes in a night with a bat call of the bat assemblage at sites with compressor stations to sites lacking this infrastructure. We found that activity levels for the Brazilian free-tailed bat (Tadarida brasiliensis were 40% lower at loud compressor sites compared to quieter well pads, whereas the activity levels of four other species (Myotis californicus, M. cillolabrum, M. lucifugus, Parastrellus hesperus were not affected by noise. Furthermore, our results reveal that the assemblage of bat species emitting low frequency (35 kHz echolocation did not exhibit altered activity levels in noise. Lower activity levels of Brazilian free-tailed bats at loud sites indicate a potential reduction in habitat for this species. Additionally, a comparison of echolocation search calls produced by free-tailed bats at sites with and without compressor stations reveal that this species modifies its echolocation search calls in noise—producing longer calls with a narrower bandwidth. Call alterations might affect prey

  11. Global Scale Attribution of Anthropogenic and Natural Dust Sources and their Emission Rates Based on MODIS Deep Blue Aerosol Products

    Science.gov (United States)

    Ginoux, Paul; Prospero, Joseph M.; Gill, Thomas E.; Hsu, N. Christina; Zhao, Ming

    2012-01-01

    Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Here we present a global-scale high-resolution (0.1 deg) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use. We ascribe dust sources to natural and anthropogenic (primarily agricultural) origins, calculate their respective contributions to emissions, and extensively compare these products against literature. Natural dust sources globally account for 75% of emissions; anthropogenic sources account for 25%. North Africa accounts for 55% of global dust emissions with only 8% being anthropogenic, mostly from the Sahel. Elsewhere, anthropogenic dust emissions can be much higher (75% in Australia). Hydrologic dust sources (e.g., ephemeral water bodies) account for 31% worldwide; 15% of them are natural while 85% are anthropogenic. Globally, 20% of emissions are from vegetated surfaces, primarily desert shrublands and agricultural lands. Since anthropogenic dust sources are associated with land use and ephemeral water bodies, both in turn linked to the hydrological cycle, their emissions are affected by climate variability. Such changes in dust emissions can impact climate, air quality, and human health. Improved dust emission estimates will require a better mapping of threshold wind velocities, vegetation dynamics, and surface conditions (soil moisture and land use) especially in the sensitive regions identified here, as well as improved ability to address small-scale convective processes producing dust via cold pool (haboob) events frequent in monsoon regimes.

  12. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products

    Science.gov (United States)

    Ginoux, Paul; Prospero, Joseph M.; Gill, Thomas E.; Hsu, N. Christina; Zhao, Ming

    2012-09-01

    Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Here we present a global-scale high-resolution (0.1°) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use. We ascribe dust sources to natural and anthropogenic (primarily agricultural) origins, calculate their respective contributions to emissions, and extensively compare these products against literature. Natural dust sources globally account for 75% of emissions; anthropogenic sources account for 25%. North Africa accounts for 55% of global dust emissions with only 8% being anthropogenic, mostly from the Sahel. Elsewhere, anthropogenic dust emissions can be much higher (75% in Australia). Hydrologic dust sources (e.g., ephemeral water bodies) account for 31% worldwide; 15% of them are natural while 85% are anthropogenic. Globally, 20% of emissions are from vegetated surfaces, primarily desert shrublands and agricultural lands. Since anthropogenic dust sources are associated with land use and ephemeral water bodies, both in turn linked to the hydrological cycle, their emissions are affected by climate variability. Such changes in dust emissions can impact climate, air quality, and human health. Improved dust emission estimates will require a better mapping of threshold wind velocities, vegetation dynamics, and surface conditions (soil moisture and land use) especially in the sensitive regions identified here, as well as improved ability to address small-scale convective processes producing dust via cold pool (haboob) events frequent in monsoon regimes.

  13. Cubic zirconia in >2370 °C impact melt records Earth's hottest crust

    Science.gov (United States)

    Timms, Nicholas E.; Erickson, Timmons M.; Zanetti, Michael R.; Pearce, Mark A.; Cayron, Cyril; Cavosie, Aaron J.; Reddy, Steven M.; Wittmann, Axel; Carpenter, Paul K.

    2017-11-01

    Bolide impacts influence primordial evolution of planetary bodies because they can cause instantaneous melting and vaporization of both crust and impactors. Temperatures reached by impact-generated silicate melts are unknown because meteorite impacts are ephemeral, and established mineral and rock thermometers have limited temperature ranges. Consequently, impact melt temperatures in global bombardment models of the early Earth and Moon are poorly constrained, and may not accurately predict the survival, stabilization, geochemical evolution and cooling of early crustal materials. Here we show geological evidence for the transformation of zircon to cubic zirconia plus silica in impact melt from the 28 km diameter Mistastin Lake crater, Canada, which requires super-heating in excess of 2370 °C. This new temperature determination is the highest recorded from any crustal rock. Our phase heritage approach extends the thermometry range for impact melts by several hundred degrees, more closely bridging the gap between nature and theory. Profusion of >2370 °C superheated impact melt during high intensity bombardment of Hadean Earth likely facilitated consumption of early-formed crustal rocks and minerals, widespread volatilization of various species, including hydrates, and formation of dry, rigid, refractory crust.

  14. Atmospheric Depositions of Natural and Anthropogenic Aerosols on the Guliya Ice Cap (Northwestern Tibetan Plateau) during the last 340 years

    Science.gov (United States)

    Sierra Hernandez, R.; Gabrielli, P.; Beaudon, E.; Thompson, L. G.; Wegner, A.

    2017-12-01

    Anthropogenic emissions (e.g., greenhouse gases, trace elements (TE) including toxic metals) to the atmosphere have dramatically increased since the Industrial Revolution in the 19th century. High temperature processes such as fossil fuel combustion and pyrometallurgy generate fumes and fine particles (industrial times. Thus, ice core records of TEs from mid- and low-latitudes are needed to assess the spatial and temporal extent and levels of pollution in the environment. Here we present records of 29 TEs spanning the period 1650-1991 CE from the Guliya ice cap in the western Kunlun Mountains, northwest Tibetan Plateau to assess their natural and anthropogenic sources. The Guliya TEs records show two distinct periods with only crustal contributions prior to the 1850s and non-crustal contributions (Pb, Cd, Sb, Zn, Sn) after the 1850s. Enrichments of Pb, Cd, Sb, and Zn in Guliya between 1850 and 1950 can be attributed primarily to coal combustion emissions from western countries (Europe) while regional emissions (fossil fuel combustion, mining/smelting, fertilizers) from Central Asia, and probably from Kashgar in western China, and South Asia (India, Nepal) could be the source of the TE enrichments (Cd, Pb, Sn) observed in Guliya after 1950. This information can be used by modelers to assess pollution transport at local, regional, and global scales and by policy makers to develop strategies and policies to reduce their emissions.

  15. Detecting anthropogenic climate change with an optimal fingerprint method

    International Nuclear Information System (INIS)

    Hegerl, G.C.; Storch, H. von; Hasselmann, K.; Santer, B.D.; Jones, P.D.

    1994-01-01

    We propose a general fingerprint strategy to detect anthropogenic climate change and present application to near surface temperature trends. An expected time-space-variable pattern of anthropogenic climate change (the 'signal') is identified through application of an appropriate optimally matched space-time filter (the 'fingerprint') to the observations. The signal and the fingerprint are represented in a space with sufficient observed and simulated data. The signal pattern is derived from a model-generated prediction of anthropogenic climate change. Application of the fingerprint filter to the data yields a scalar detection variable. The statistically optimal fingerprint is obtained by weighting the model-predicted pattern towards low-noise directions. A combination of model output and observations is used to estimate the noise characteristics of the detection variable, arising from the natural variability of climate in the absence of external forcing. We test then the null hypothesis that the observed climate change is part of natural climate variability. We conclude that a statistically significant externally induced warming has been observed, with the caveat of a possibly inadequate estimate of the internal climate variability. In order to attribute this warming uniquely to anthropogenic greenhouse gas forcing, more information on the climate's response to other forcing mechanisms (e.g. changes in solar radiation, volcanic or anthropogenic aerosols) and their interaction is needed. (orig./KW)

  16. The impact of the West Sumatran regional recording industry on Minangkabau oral literature

    Directory of Open Access Journals (Sweden)

    S. Suryadi

    2010-04-01

    Full Text Available Due to the emergence of what in Indonesian is called industri rekaman daerah ‘Indonesian regional recording industries’, which has developed significantly since the 1980s, many regional recording companies have been established in Indonesia. As a consequence, more and more aspects of Indonesian regional culture have appeared in commercial recordings. Nowadays commercial cassettes and Video Compact Discs (VCDs of regional pop and oral literature genres from different ethnic groups are being produced and distributed in provincial and regency towns, even those situated far from the Indonesian capital of Jakarta. Considering the extensive mediation and commodification of ethnic cultures in Indonesia, this paper investigates the impact of the rise of a regional recording industry on Minangkabau oral literature in West Sumatra. Focussing on recordings of some Minangkabau traditional verbal art genres on commercial cassettes and VCDs by West Sumatran recording companies, this paper attempts to examine the way in which Minangkabau traditional verbal art performers have engaged with electronic communication, and how this shapes technological and commercial conditions for ethnic art and performance in one modernizing society in regional Indonesia.

  17. Identifying the role of historical anthropogenic activities on urban soils: geochemical impact and city scale mapping

    Science.gov (United States)

    Le Guern, Cecile; Baudouin, Vivien; Conil, Pierre

    2017-04-01

    Recently, European cities have faced several changes including deindustrialization and population increase. To limit urban sprawl, urban densification is preferred. It conducts to (re)develop available areas such as brownfields. Although these areas can be attractive for housing due to their location (in proximity to the city centre or to a riverside), their soils and subsoils are often contaminated. They are therefore potentially harmful for human health and the environment, and potentially costly to remediate. Currently, in case of contamination suspicion, depth geochemical characterization of urban soil and subsoil are carried out at site scale. Nevertheless, large redevelopment project occur at quarter to city scale. It appears therefore useful to acquire the preliminary knowledge on the structure and quality of soil and subsoils, as well as on the potential sources of contamination at quarter to city scale. In the frame of the Ile de Nantes (France) redevelopment project, we considered more particularly anthropogenic deposits and former industrial activities as main sources of contamination linked to human activities. To face the low traceability of the use of anthropogenic deposits and the lack of synthesis of former industrial activities, we carried out a historical study, synthetizing the information spread in numerous archive documents to spatialize the extent of the deposits and of the former activities. In addition we developed a typology of made grounds according to their contamination potential to build a 3D geological model with a geochemical coherence. In this frame, we valorized existing borehole descriptions coming mainly from pollution diagnosis and geotechnical studies. We also developed a methodology to define urban baseline compatibility levels using the existing analytical data at depth from pollution diagnosis. These data were previously gathered in a local geodatabase towards with borehole descriptions (more than 2000 borehole descriptions

  18. The impact of online video lecture recordings and automated feedback on student performance

    NARCIS (Netherlands)

    Wieling, M. B.; Hofman, W. H. A.

    To what extent a blended learning configuration of face-to-face lectures, online on-demand video recordings of the face-to-face lectures and the offering of online quizzes with appropriate feedback has an additional positive impact on the performance of these students compared to the traditional

  19. Increasing potential of biomass burning over Sumatra, Indonesia induced by anthropogenic tropical warming

    International Nuclear Information System (INIS)

    Lestari, R Kartika; Watanabe, Masahiro; Kimoto, Masahide; Imada, Yukiko; Shiogama, Hideo; Field, Robert D; Takemura, Toshihiko

    2014-01-01

    Uncontrolled biomass burning in Indonesia during drought periods damages the landscape, degrades regional air quality, and acts as a disproportionately large source of greenhouse gas emissions. The expansion of forest fires is mostly observed in October in Sumatra favored by persistent droughts during the dry season from June to November. The contribution of anthropogenic warming to the probability of severe droughts is not yet clear. Here, we show evidence that past events in Sumatra were exacerbated by anthropogenic warming and that they will become more frequent under a future emissions scenario. By conducting two sets of atmospheric general circulation model ensemble experiments driven by observed sea surface temperature for 1960–2011, one with and one without an anthropogenic warming component, we found that a recent weakening of the Walker circulation associated with tropical ocean warming increased the probability of severe droughts in Sumatra, despite increasing tropical-mean precipitation. A future increase in the frequency of droughts is then suggested from our analyses of the Coupled Model Intercomparison Project Phase 5 model ensembles. Increasing precipitation to the north of the equator accompanies drier conditions over Indonesia, amplified by enhanced ocean surface warming in the central equatorial Pacific. The resultant precipitation decrease leads to a ∼25% increase in severe drought events from 1951–2000 to 2001–2050. Our results therefore indicate the global warming impact to a potential of wide-spreading forest fires over Indonesia, which requires mitigation policy for disaster prevention. (letter)

  20. Nesting habits influence population genetic structure of a bee living in anthropogenic disturbance.

    Science.gov (United States)

    Vickruck, J L; Richards, M H

    2017-05-01

    While most organisms are negatively affected by anthropogenic disturbance, a few species thrive in landscapes altered by humans. Typically, native bees are negatively impacted by anthropogenic environmental change, including habitat alteration and climate change. Here, we investigate the population structure of the eastern carpenter bee Xylocopa virginica, a generalist pollinator with a broad geographic range spanning eastern North America. Eastern carpenter bees now nest almost exclusively in artificial wooden structures, linking their geographic distribution and population structure to human activities and disturbance. To investigate the population structure of these bees, we sampled females from 16 different populations from across their range. Nine species-specific microsatellite loci showed that almost all populations are genetically distinct, but with high levels of genetic diversity and low levels of inbreeding overall. Broadly speaking, populations clustered into three distinct genetic groups: a northern group, a western group and a core group. The northern group had low effective population sizes, decreased genetic variability and the highest levels of inbreeding in the data set, suggesting that carpenter bees may be expanding their range northward. The western group was genetically distinct, but lacked signals of a recent range expansion. Climatic data showed that summer and winter temperatures explained a significant amount of the genetic differentiation seen among populations, while precipitation did not. Our results indicate that X. virginica may be one of the rare 'anthrophilic' species that thrive in the face of anthropogenic disturbance. © 2017 John Wiley & Sons Ltd.

  1. Anthropogenic climate change has altered primary productivity in Lake Superior.

    Science.gov (United States)

    O'Beirne, M D; Werne, J P; Hecky, R E; Johnson, T C; Katsev, S; Reavie, E D

    2017-06-09

    Anthropogenic climate change has the potential to alter many facets of Earth's freshwater resources, especially lacustrine ecosystems. The effects of anthropogenic changes in Lake Superior, which is Earth's largest freshwater lake by area, are not well documented (spatially or temporally) and predicted future states in response to climate change vary. Here we show that Lake Superior experienced a slow, steady increase in production throughout the Holocene using (paleo)productivity proxies in lacustrine sediments to reconstruct past changes in primary production. Furthermore, data from the last century indicate a rapid increase in primary production, which we attribute to increasing surface water temperatures and longer seasonal stratification related to longer ice-free periods in Lake Superior due to anthropogenic climate warming. These observations demonstrate that anthropogenic effects have become a prominent influence on one of Earth's largest, most pristine lacustrine ecosystems.

  2. The impact of anthropogenic pollution on limnological characteristics of a subtropical highland reservoir “Lago de Guadalupe”, Mexico

    Directory of Open Access Journals (Sweden)

    Sepulveda-Jauregui A.

    2013-08-01

    Full Text Available “Lago de Guadalupe” is an important freshwater ecosystem located in the northern part of the metropolitan area surrounding Mexico City, under high demographic pressure. It receives approximately 15 hm3·y-1 of untreated municipal wastewater from the surrounding municipalities. In order to develop a comparative assessment of the pollution effect over the limnological characteristics of Lago de Guadalupe, this lake was characterised from February 2006 to July 2009, and the results were compared with those obtained from a non-polluted lake “Lago el Llano” located in the same drainage area. Lago de Guadalupe was hypereutrophic with anoxic conditions throughout most of the water column. In contrast, Lago el Llano was mesotrophic with high dissolved oxygen concentrations throughout the entire water column with a clinograde profile. Both reservoirs had a monomictic mixing regime. The longitudinal zonation of physicochemical and biological variables were investigated in order to better understand the processes controlling the water quality across the reservoir during its residence time. This study shows the impact of anthropogenic pollution on the limnological characteristics of a subtropical reservoir and confirms that under adequate management schemes, namely avoiding pollution and wastewater discharges, subtropical reservoirs can be prevented from developing eutrophic conditions.

  3. Wild inside: Urban wild boar select natural, not anthropogenic food resources.

    Science.gov (United States)

    Stillfried, Milena; Gras, Pierre; Busch, Matthias; Börner, Konstantin; Kramer-Schadt, Stephanie; Ortmann, Sylvia

    2017-01-01

    Most wildlife species are urban avoiders, but some became urban utilizers and dwellers successfully living in cities. Often, they are assumed to be attracted into urban areas by easily accessible and highly energetic anthropogenic food sources. We macroscopically analysed stomachs of 247 wild boar (Sus scrofa, hereafter WB) from urban areas of Berlin and from the surrounding rural areas. From the stomach contents we determined as predictors of food quality modulus of fineness (MOF,), percentage of acid insoluble ash (AIA) and macronutrients such as amount of energy and percentage of protein, fat, fibre and starch. We run linear mixed models to test: (1) differences in the proportion of landscape variables, (2) differences of nutrients consumed in urban vs. rural WB and (3) the impact of landscape variables on gathered nutrients. We found only few cases of anthropogenic food in the qualitative macroscopic analysis. We categorized the WB into five stomach content categories but found no significant difference in the frequency of those categories between urban and rural WB. The amount of energy was higher in stomachs of urban WB than in rural WB. The analysis of landscape variables revealed that the energy of urban WB increased with increasing percentage of sealing, while an increased human density resulted in poor food quality for urban and rural WB. Although the percentage of protein decreased in areas with a high percentage of coniferous forests, the food quality increased. High percentage of grassland decreased the percentage of consumed fat and starch and increased the percentage of fibre, while a high percentage of agricultural areas increased the percentage of consumed starch. Anthropogenic food such as garbage might serve as fallback food when access to natural resources is limited. We infer that urban WB forage abundant, natural resources in urban areas. Urban WB might use anthropogenic resources (e.g. garbage) if those are easier to exploit and more abundant

  4. Modeling climatic effects of anthropogenic CO2 emissions: Unknowns and uncertainties

    Science.gov (United States)

    Soon, W.; Baliunas, S.; Idso, S.; Kondratyev, K. Ya.; Posmentier, E. S.

    2001-12-01

    A likelihood of disastrous global environmental consequences has been surmised as a result of projected increases in anthropogenic greenhouse gas emissions. These estimates are based on computer climate modeling, a branch of science still in its infancy despite recent, substantial strides in knowledge. Because the expected anthropogenic climate forcings are relatively small compared to other background and forcing factors (internal and external), the credibility of the modeled global and regional responses rests on the validity of the models. We focus on this important question of climate model validation. Specifically, we review common deficiencies in general circulation model calculations of atmospheric temperature, surface temperature, precipitation and their spatial and temporal variability. These deficiencies arise from complex problems associated with parameterization of multiply-interacting climate components, forcings and feedbacks, involving especially clouds and oceans. We also review examples of expected climatic impacts from anthropogenic CO2 forcing. Given the host of uncertainties and unknowns in the difficult but important task of climate modeling, the unique attribution of observed current climate change to increased atmospheric CO2 concentration, including the relatively well-observed latest 20 years, is not possible. We further conclude that the incautious use of GCMs to make future climate projections from incomplete or unknown forcing scenarios is antithetical to the intrinsically heuristic value of models. Such uncritical application of climate models has led to the commonly-held but erroneous impression that modeling has proven or substantiated the hypothesis that CO2 added to the air has caused or will cause significant global warming. An assessment of the positive skills of GCMs and their use in suggesting a discernible human influence on global climate can be found in the joint World Meteorological Organisation and United Nations

  5. Isotopic evidence for anthropogenic impacts on aquatic food web dynamics and mercury cycling in a subtropical wetland ecosystem in the US

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang, E-mail: ywang@magnet.fsu.edu [Department of Earth, Ocean and Atmospheric Science, Florida State University and National High Magnetic Field Laboratory, Tallahassee, FL 32306–4100 (United States); Gu, Binhe [South Florida Water Management District, West Palm Beach, FL 33406 (United States); Lee, Ming-Kuo [Department of Geology and Geography, Auburn University, Auburn, AL 36839 (United States); Jiang, Shijun, E-mail: sjiang@jnu.edu.cn [Institute of Hydrobiology/Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, Guangdong 510632 (China); Xu, Yingfeng [Department of Earth, Ocean and Atmospheric Science, Florida State University and National High Magnetic Field Laboratory, Tallahassee, FL 32306–4100 (United States)

    2014-07-01

    Quantifying and predicting the food web consequences of anthropogenic changes is difficult using traditional methods (based on gut content analysis) because natural food webs are variable and complex. Here, stable and radioactive carbon isotopes are used, in conjunction with nitrogen isotopes and mercury (Hg) concentration data, to document the effects of land-use change on food webs and Hg bioaccumulation in the Everglades – a subtropical wetland ecosystem in the US. Isotopic signatures of largemouth bass and sunfish in reference (relatively pristine) wetlands indicate reliance on the food supply of modern primary production within the wetland. In contrast, both fish in areas impacted by agricultural runoff had radiocarbon ages as old as 540 years B.P., and larger isotopic variability than counterparts in reference wetlands, reflecting differences in the food web between impacted and reference wetlands. Consistent with this difference, particulate and dissolved organic matter in impacted areas had old radiocarbon ages (> 600 years B.P.), indicating that old carbon derived from historic peat deposits in the Everglades Agricultural Area was passed along the food chain to consumers. Significant radiocarbon deficiencies in largemouth bass and sunfish, relative to mosquitofish, in impacted areas most likely indicate a reduced dependence on small fish. Furthermore, largemouth bass and sunfish from impacted areas had much lower Hg contents than those from reference wetlands. Taken together, these data suggest a shift toward lower trophic levels and a possible reduction in mercury methylation in impacted wetlands. Our study provides clear evidence that hydrological modification and land-use change in the Everglades have changed the system from one driven primarily by in-situ productivity to one that is partially dependent on allochthonous carbon input from peat soils in the agricultural area and altered the Hg biogeochemical cycle in the wetlands. The results have

  6. Isotopic evidence for anthropogenic impacts on aquatic food web dynamics and mercury cycling in a subtropical wetland ecosystem in the US

    International Nuclear Information System (INIS)

    Wang, Yang; Gu, Binhe; Lee, Ming-Kuo; Jiang, Shijun; Xu, Yingfeng

    2014-01-01

    Quantifying and predicting the food web consequences of anthropogenic changes is difficult using traditional methods (based on gut content analysis) because natural food webs are variable and complex. Here, stable and radioactive carbon isotopes are used, in conjunction with nitrogen isotopes and mercury (Hg) concentration data, to document the effects of land-use change on food webs and Hg bioaccumulation in the Everglades – a subtropical wetland ecosystem in the US. Isotopic signatures of largemouth bass and sunfish in reference (relatively pristine) wetlands indicate reliance on the food supply of modern primary production within the wetland. In contrast, both fish in areas impacted by agricultural runoff had radiocarbon ages as old as 540 years B.P., and larger isotopic variability than counterparts in reference wetlands, reflecting differences in the food web between impacted and reference wetlands. Consistent with this difference, particulate and dissolved organic matter in impacted areas had old radiocarbon ages (> 600 years B.P.), indicating that old carbon derived from historic peat deposits in the Everglades Agricultural Area was passed along the food chain to consumers. Significant radiocarbon deficiencies in largemouth bass and sunfish, relative to mosquitofish, in impacted areas most likely indicate a reduced dependence on small fish. Furthermore, largemouth bass and sunfish from impacted areas had much lower Hg contents than those from reference wetlands. Taken together, these data suggest a shift toward lower trophic levels and a possible reduction in mercury methylation in impacted wetlands. Our study provides clear evidence that hydrological modification and land-use change in the Everglades have changed the system from one driven primarily by in-situ productivity to one that is partially dependent on allochthonous carbon input from peat soils in the agricultural area and altered the Hg biogeochemical cycle in the wetlands. The results have

  7. Breakeven prices for recording of indicator traits to reduce the environmental impact of milk production

    DEFF Research Database (Denmark)

    Axelsson, Helen Hansen; Thomasen, Jørn Rind; Sørensen, Anders Christian

    2015-01-01

    A breeding scheme using genomic selection and an indicator trait for environmental impact (EI) was studied to find the most effective recording strategy in terms of annual monetary genetic gain and breakeven price for the recording of indicator traits. The breakeven price shows the investment space......) or small scale (residual feed intake and total enteric methane measured in a respiration chamber). In the scenario with stayability, the genetic gain in EI was over 11% higher than it was in NoIT. The breakeven price of recording stayability was €8 per record. Stayability is easy to record in the national...... of the cow was used as indicator trait. The breakeven price for this indicator trait was €29 per record in the reference population. Ideally the recording of a specific indicator trait for EI would take place when: (i) the genetic correlation between the IT and EI is high; and (ii) the number of phenotypic...

  8. Impact of OSHA Final Rule—Recording Hearing Loss: An Analysis of an Industrial Audiometric Dataset

    Science.gov (United States)

    Rabinowitz, Peter M.; Slade, Martin; Dixon-Ernst, Christine; Sircar, Kanta; Cullen, Mark

    2013-01-01

    The 2003 Occupational Safety and Health Administration (OSHA) Occupational Injury and Illness Recording and Reporting Final Rule changed the definition of recordable work-related hearing loss. We performed a study of the Alcoa Inc. audiometric database to evaluate the impact of this new rule. The 2003 rule increased the rate of potentially recordable hearing loss events from 0.2% to 1.6% per year. A total of 68.6% of potentially recordable cases had American Academy of Audiology/American Medical Association (AAO/AMA) hearing impairment at the time of recordability. On average, recordable loss occurred after onset of impairment, whereas the non-age-corrected 10-dB standard threshold shift (STS) usually preceded impairment. The OSHA Final Rule will significantly increase recordable cases of occupational hearing loss. The new case definition is usually accompanied by AAO/AMA hearing impairment. Other, more sensitive metrics should therefore be used for early detection and prevention of hearing loss. PMID:14665813

  9. Soil diagnosis of an urban settlement with low levels of anthropogenic pollution (Stepnoe, Saratov region)

    Science.gov (United States)

    Ngun, C. T.; Pleshakova, Ye V.; Reshetnikov, M. V.

    2018-01-01

    A soil diagnosis of an urban territory Stepnoe (Saratov region) was conducted within the framework of soil research monitoring of inhabited localities with low levels of anthropogenic impact using chemical and microbiological analysis. Excess over maximum permissible concentration (MPC) of mobile forms of Cr, Zn and Cd were not observed within the researched territory. A universal excess over MPC of mobile forms of Ni, Cu and Pb was established which is most likely connected with anthropogenic contamination. It was discovered that, at the territory of the Stepnoe settlement, mobile forms of heavy metals compounds (HM) in most cases formed paragenetic associations with high correlation coefficient and despite this, an excess over MPC was not significant. This point to a common mineralogical origin of the elements inherited from the parent rock. The values of the total index of chemical contamination were not above 16, which puts the researched samples in a category with permissible contamination. The indices of the total number of heterotrophic bacteria, iron-oxidizing and hydrocarbon-oxidizing bacteria in most samples corresponded to normal indices for chestnut solonetsous and saline soils. In some samples, a deviation from the normal indices was observed justifying the impact of specific contaminants on the soil.

  10. Anthropogenic warming exacerbates European soil moisture droughts

    Science.gov (United States)

    Samaniego, L.; Thober, S.; Kumar, R.; Wanders, N.; Rakovec, O.; Pan, M.; Zink, M.; Sheffield, J.; Wood, E. F.; Marx, A.

    2018-05-01

    Anthropogenic warming is anticipated to increase soil moisture drought in the future. However, projections are accompanied by large uncertainty due to varying estimates of future warming. Here, using an ensemble of hydrological and land-surface models, forced with bias-corrected downscaled general circulation model output, we estimate the impacts of 1-3 K global mean temperature increases on soil moisture droughts in Europe. Compared to the 1.5 K Paris target, an increase of 3 K—which represents current projected temperature change—is found to increase drought area by 40% (±24%), affecting up to 42% (±22%) more of the population. Furthermore, an event similar to the 2003 drought is shown to become twice as frequent; thus, due to their increased occurrence, events of this magnitude will no longer be classified as extreme. In the absence of effective mitigation, Europe will therefore face unprecedented increases in soil moisture drought, presenting new challenges for adaptation across the continent.

  11. Anthropogenic mercury emissions from 1980 to 2012 in China.

    Science.gov (United States)

    Huang, Ying; Deng, Meihua; Li, Tingqiang; Japenga, Jan; Chen, Qianqian; Yang, Xiaoe; He, Zhenli

    2017-07-01

    China was considered the biggest contributor for airborne mercury in the world but the amount of mercury emission in effluents and solid wastes has not been documented. In this study, total national and regional mercury emission to the environment via exhaust gases, effluents and solid wastes were accounted with updated emission factors and the amount of goods produced and/or consumed. The national mercury emission in China increased from 448 to 2151 tons during the 1980-2012 period. Nearly all of the emissions were ended up as exhaust gases and solid wastes. The proportion of exhaust gases decreased with increasing share of solid wastes and effluents. Of all the anthropogenic sources, coal was the most important contributor in quantity, followed by mercury mining, gold smelting, nonferrous smelting, iron steel production, domestic wastes, and cement production, with accounting for more than 90% of the total emission. There was a big variation of regional cumulative mercury emission during 1980-2012 in China, with higher emissions occurred in eastern areas and lower values in the western and far northern regions. The biggest cumulative emission occurred in GZ (Guizhou), reaching 3974 t, while the smallest cumulative emission was lower than 10 t in XZ (Tibet). Correspondingly, mercury accumulation in soil were higher in regions with larger emissions in unit area. Therefore, it is urgent to reduce anthropogenic mercury emission and subsequent impact on ecological functions and human health. Copyright © 2017. Published by Elsevier Ltd.

  12. E-research platform of EPOS Thematic Core Service "ANTHROPOGENIC HAZARDS"

    Science.gov (United States)

    Orlecka-Sikora, Beata; Lasocki, Stanisław; Grasso, Jean Robert; Schmittbuhl, Jean; Kwiatek, Grzegorz; Garcia, Alexander; Cassidy, Nigel; Sterzel, Mariusz; Szepieniec, Tomasz; Dineva, Savka; Biggare, Pascal; Saccorotti, Gilberto; Sileny, Jan; Fischer, Tomas

    2016-04-01

    EPOS Thematic Core Service ANTHROPOGENIC HAZARDS (TCS AH) aims to create new research opportunities in the field of anthropogenic hazards evoked by exploitation of georesources. TCS AH, based on the prototype built in the framework of the IS-EPOS project (https://tcs.ah-epos.eu/), financed from Polish structural funds (POIG.02.03.00-14-090/13-00), is being further developed within EPOS IP project (H2020-INFRADEV-1-2015-1, INFRADEV-3-2015). TCS AH is designed as a functional e-research environment to ensure a researcher the maximum possible freedom for in silico experimentation by providing a virtual laboratory in which researcher will be able to create own workspace with own processing streams. The unique integrated RI is: (i) data gathered in the so- called "episodes", comprehensively describing a geophysical process, induced or triggered by human technological activity, which under certain circumstances can become hazardous for people, infrastructure and the environment and (ii) problem-oriented, specific high-level services, with the particular attention devoted to methods analyzing correlations between technology, geophysical response and resulting hazard. Services to be implemented are grouped within six blocks: (1) Basic services for data integration and handling; (2) Services for physical models of stress/strain changes over time and space as driven by geo-resource production; (3) Services for analysing geophysical signals; (4) Services to extract the relation between technological operations and observed induced seismic/deformation; (5) Services to quantitative probabilistic assessments of anthropogenic seismic hazard - statistical properties of anthropogenic seismic series and their dependence on time-varying anthropogenesis; ground motion prediction equations; stationary and time-dependent probabilistic seismic hazard estimates, related to time-changeable technological factors inducing the seismic process; (6) Simulator for Multi

  13. Environmental impact of site location on macro- and microelements ...

    African Journals Online (AJOL)

    Human activities cause specific impact on the enveronment, which also could been monitored by mineral contents in the soil and in the plants. Two different caracteristic locations had been selected for the experiments: anthropogenic-Ada Huja contamineted industrial zone and non anthropogenic- Topcider park area.

  14. Influence of Holocene environmental change and anthropogenic impact on the diversity and distribution of roe deer.

    Science.gov (United States)

    Baker, K H; Hoelzel, A R

    2014-06-01

    Extant patterns of population structure and levels of diversity are a consequence of factors that vary in both space and time. Our objective in this study is to investigate a species that has responded to both natural and anthropogenic changes in ways that have shaped modern populations and provide insight into the key processes. The roe deer (Capreolus capreolus) is one of the two species of deer native to Britain. During the last glacial maximum (LGM), the British habitat was largely under ice and there was a land bridge to mainland Europe. As the Earth warmed during the early Holocene, the land bridge was lost. Subsequent hunting on the British mainland left the southern region extirpated of roe deer, whereas a refugial population remained in the north. Later reintroductions from Europe led to population expansion, especially in southern United Kingdom. Here, we combine data from ancient and modern DNA to track population dynamics and patterns of connectivity, and test hypotheses about the influence of natural and anthropogenic environmental change. We find that past expansion and divergence events coincided with a warming environment and the subsequent closure of the land bridge between Europe and the United Kingdom. We also find turnover in British roe deer haplotypes between the late-Holocene and modern day that have likely resulted from recent human disturbance activities such as habitat perturbation, overhunting and restocking.

  15. Analysis of stream temperature and heat budget in an urban river under strong anthropogenic influences

    Science.gov (United States)

    Xin, Zhuohang; Kinouchi, Tsuyoshi

    2013-05-01

    Stream temperature variations of the Tama River, which runs through highly urbanized areas of Tokyo, were studied in relation to anthropogenic impacts, including wastewater effluents, dam release and water withdrawal. Both long-term and longitudinal changes in stream temperature were identified and the influences of stream flow rate, temperature and volume of wastewater effluents and air temperature were investigated. Water and heat budget analyses were also conducted for several segments of the mainstream to clarify the relative impacts from natural and anthropogenic factors. Stream temperatures in the winter season significantly increased over the past 20 years at sites affected by intensive and warm effluents from wastewater treatment plants (WWTPs) located along the mainstream. In the summer season, a larger stream temperature increase was identified in the upstream reaches, which was attributable to the decreased flow rate due to water withdrawal. The relationship between air and stream temperatures indicated that stream temperatures at the upstream site were likely to be affected by a dam release, while temperatures in the downstream reaches have deviated more from air temperatures in recent years, probably due to the increased impacts of effluents from WWTPs. Results of the water and heat budget analyses indicated that the largest contributions to water and heat gains were attributable to wastewater effluents, while other factors such as groundwater recharge and water withdrawal were found to behave as energy sinks, especially in summer. The inflow from tributaries worked to reduce the impacts of dam release and the heat exchanges at the air-water interface contributed less to heat budgets in both winter and summer seasons for all river segments.

  16. An invasive vector of zoonotic disease sustained by anthropogenic resources: the raccoon dog in northern Europe.

    Directory of Open Access Journals (Sweden)

    Karmen Süld

    Full Text Available The raccoon dog (Nyctereutes procyonoides is an introduced species in Europe with a continually expanding range. Since the species is capable of affecting local ecosystems and is a vector for a number of severe zoonotic diseases, it is important to understand its food habits. Raccoon dog diet was studied in Estonia by examining the contents of 223 stomach samples collected during the coldest period of the year, August to March, in 2010-2012. The most frequently consumed food categories were anthropogenic plants (e.g. cereals, fruits; FO = 56.1% and carrion (e.g. carcasses of artiodactyls and carnivores; FO = 48.4%. Carrion was also the only food category that was consumed significantly more frequently by raccoon dogs exhibiting symptoms of sarcoptic mange than by uninfected animals. Small mammals, which represent intermediate hosts for the zoonotic tapeworm Echinococcus multilocularis, were more commonly recorded in samples also containing anthropogenic plants than expected by chance. Comparison of raccoon dog and red fox (Vulpes vulpes diet in Estonia revealed higher overlap than found elsewhere in Europe, with 'carrion' and 'anthropogenic plants' making up the bulk of both species' diet; however, raccoon dogs were more omnivorous than red foxes. Our results suggest that while the use of most food categories reflects the phenology of natural food sources, 'anthropogenic plants' and 'carrion' provide an essential resource for raccoon dogs during the coldest period of the year, with the latter resource especially important for individuals infected with sarcoptic mange. Since both of these food categories and small mammals are often found at supplementary feeding sites for wild boar (Sus scrofa, this game management practice may facilitate high densities of mesocarnivores and promote the spread of some severe zoonotic diseases, including alveolar echinococcosis, trichinellosis, rabies and sarcoptic mange.

  17. An invasive vector of zoonotic disease sustained by anthropogenic resources: the raccoon dog in northern Europe.

    Science.gov (United States)

    Süld, Karmen; Valdmann, Harri; Laurimaa, Leidi; Soe, Egle; Davison, John; Saarma, Urmas

    2014-01-01

    The raccoon dog (Nyctereutes procyonoides) is an introduced species in Europe with a continually expanding range. Since the species is capable of affecting local ecosystems and is a vector for a number of severe zoonotic diseases, it is important to understand its food habits. Raccoon dog diet was studied in Estonia by examining the contents of 223 stomach samples collected during the coldest period of the year, August to March, in 2010-2012. The most frequently consumed food categories were anthropogenic plants (e.g. cereals, fruits; FO = 56.1%) and carrion (e.g. carcasses of artiodactyls and carnivores; FO = 48.4%). Carrion was also the only food category that was consumed significantly more frequently by raccoon dogs exhibiting symptoms of sarcoptic mange than by uninfected animals. Small mammals, which represent intermediate hosts for the zoonotic tapeworm Echinococcus multilocularis, were more commonly recorded in samples also containing anthropogenic plants than expected by chance. Comparison of raccoon dog and red fox (Vulpes vulpes) diet in Estonia revealed higher overlap than found elsewhere in Europe, with 'carrion' and 'anthropogenic plants' making up the bulk of both species' diet; however, raccoon dogs were more omnivorous than red foxes. Our results suggest that while the use of most food categories reflects the phenology of natural food sources, 'anthropogenic plants' and 'carrion' provide an essential resource for raccoon dogs during the coldest period of the year, with the latter resource especially important for individuals infected with sarcoptic mange. Since both of these food categories and small mammals are often found at supplementary feeding sites for wild boar (Sus scrofa), this game management practice may facilitate high densities of mesocarnivores and promote the spread of some severe zoonotic diseases, including alveolar echinococcosis, trichinellosis, rabies and sarcoptic mange.

  18. The Great Acceleration and the disappearing surficial geologic record

    Science.gov (United States)

    Rech, Jason A.; Springer, Kathleen; Pigati, Jeffrey S.

    2017-01-01

    The surficial geologic record is the relatively thin veneer of young (Earth’s terrestrial surface (Fig. 1). Once largely ignored as “overburden” by geologists, surficial deposits are now studied to address a wide range of issues related to the sustainability of human societies. Geologists use surficial deposits to determine the frequency and severity of past climatic changes, quantify natural and anthropogenic erosion rates, identify hazards, and calculate recurrence intervals associated with earthquakes, landslides, tsunamis, and volcanic eruptions. Increasingly, however, humans are eradicating the surficial geologic record in many key areas through progressive modification of Earth’s surface.

  19. Retrospective analysis of bottlenose dolphin foraging: a legacy of anthropogenic ecosystem disturbance

    Science.gov (United States)

    Rossman, Sam; Barros, Nélio B.; Ostrom, Peggy H.; Stricker, Craig A.; Hohn, Aleta A.; Gandhi, Hasand; Wells, Randall S.

    2013-01-01

    We used stable isotope analysis to investigate the foraging ecology of coastal bottlenose dolphins (Tursiops truncatus) in relation to a series of anthropogenic disturbances. We first demonstrated that stable isotopes are a faithful indicator of habitat use by comparing muscle isotope values to behavioral foraging data from the same individuals. δ13C values increased, while δ34S and δ15N values decreased with the percentage of feeding observations in seagrass habitat. We then utilized stable isotope values of muscle to assess temporal variation in foraging habitat from 1991 to 2010 and collagen from tooth crown tips to assess the time period 1944 to 2007. From 1991 to 2010, δ13C values of muscle decreased while δ34S values increased indicating reduced utilization of seagrass habitat. From 1944 to 1989 δ13C values of the crown tip declined significantly, likely due to a reduction in the coverage of seagrass habitat and δ15N values significantly increased, a trend we attribute to nutrient loading from a rapidly increasing human population. Our results demonstrate the utility of using marine mammal foraging habits to retrospectively assess the extent to which anthropogenic disturbance impacts coastal food webs.

  20. Anthropogenic radionuclides in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Q; Weng, J; Wang, J

    2007-11-15

    Studies of radionuclides in the environment have entered a new era with the renaissance of nuclear energy and associated fuel reprocessing, geological disposal of high-level nuclear wastes, and concerns about national security with respect to nuclear non-proliferation. This work presents an overview of anthropogenic radionuclide contamination in the environment, as well as the salient geochemical behavior of important radionuclides. We first discuss the following major anthropogenic sources and current development that contribute to the radionuclide contamination of the environment: (1) nuclear weapons program; (2) nuclear weapons testing; (3) nuclear power plants; (4) commercial fuel reprocessing; (5) geological repository of high-level nuclear wastes, and (6) nuclear accidents. Then, we summarize the geochemical behavior for radionuclides {sup 99}Tc, {sup 129}I, and {sup 237}Np, because of their complex geochemical behavior, long half-lives, and presumably high mobility in the environment. Biogeochemical cycling and environment risk assessment must take into account speciation of these redox-sensitive radionuclides.

  1. Environmental and Anthropogenic Factors Influencing Salamanders in Riparian Forests: A Review

    Directory of Open Access Journals (Sweden)

    Hannah L. Clipp

    2014-11-01

    Full Text Available Salamanders and riparian forests are intimately interconnected. Salamanders are integral to ecosystem functions, contributing to vertebrate biomass and complex food webs in riparian forests. In turn, these forests are critical ecosystems that perform many environmental services, facilitate high biodiversity and species richness, and provide habitat to salamander populations. Due to the global decline of amphibians, it is important to understand, as thoroughly and holistically as possible, the roles of environmental parameters and the impact of human activities on salamander abundance and diversity in riparian forests. To determine the population responses of salamanders to a variety of environmental factors and anthropogenic activities, we conducted a review of published literature that compared salamander abundance and diversity, and then summarized and synthesized the data into general patterns. We identify stream quality, leaf litter and woody debris, riparian buffer width, and soil characteristics as major environmental factors influencing salamander populations in riparian forests, describe and explain salamander responses to those factors, and discuss the effects of anthropogenic activities such as timber harvest, prescribed fires, urbanization, road construction, and habitat fragmentation. This review can assist land and natural resource managers in anticipating the consequences of human activities and preparing strategic conservation plans.

  2. Quantifying the impact of human activity on temperatures in Germany

    Science.gov (United States)

    Benz, Susanne A.; Bayer, Peter; Blum, Philipp

    2017-04-01

    Human activity directly influences ambient air, surface and groundwater temperatures. Alterations of surface cover and land use influence the ambient thermal regime causing spatial temperature anomalies, most commonly heat islands. These local temperature anomalies are primarily described within the bounds of large and densely populated urban settlements, where they form so-called urban heat islands (UHI). This study explores the anthropogenic impact not only for selected cities, but for the thermal regime on a countrywide scale, by analyzing mean annual temperature datasets in Germany in three different compartments: measured surface air temperature (SAT), measured groundwater temperature (GWT), and satellite-derived land surface temperature (LST). As a universal parameter to quantify anthropogenic heat anomalies, the anthropogenic heat intensity (AHI) is introduced. It is closely related to the urban heat island intensity, but determined for each pixel (for satellite-derived LST) or measurement point (for SAT and GWT) of a large, even global, dataset individually, regardless of land use and location. Hence, it provides the unique opportunity to a) compare the anthropogenic impact on temperatures in air, surface and subsurface, b) to find main instances of anthropogenic temperature anomalies within the study area, in this case Germany, and c) to study the impact of smaller settlements or industrial sites on temperatures. For all three analyzed temperature datasets, anthropogenic heat intensity grows with increasing nighttime lights and declines with increasing vegetation, whereas population density has only minor effects. While surface anthropogenic heat intensity cannot be linked to specific land cover types in the studied resolution (1 km × 1 km) and classification system, both air and groundwater show increased heat intensities for artificial surfaces. Overall, groundwater temperature appears most vulnerable to human activity; unlike land surface temperature

  3. Linking effects of anthropogenic debris to ecological impacts

    NARCIS (Netherlands)

    Browne, M.A.; Underwood, A.J.; Chapman, M.G.; Williams, R.; Thompson, R.C.; Franeker, van J.A.

    2015-01-01

    Accelerated contamination of habitats with debris has caused increased effort to determine ecological impacts. Strikingly, most work on organisms focuses on sublethal responses to plastic debris. This is controversial because (i) researchers have ignored medical insights about the mechanisms that

  4. The ecological impacts of marine debris

    NARCIS (Netherlands)

    Rochman, Chelsea M.; Browne, Mark Anthony; Underwood, A.J.; Franeker, Van Jan A.; Thompson, Richard C.; Amaral-Zettler, Linda A.

    2016-01-01

    Anthropogenic debris contaminates marine habitats globally, leading to several perceived ecological impacts. Here, we critically and systematically review the literature regarding impacts of debris from several scientific fields to understand the weight of evidence regarding the ecological

  5. Volatile organic compounds (VOCs) in air from Nisyros Island (Dodecanese Archipelago, Greece): Natural versus anthropogenic sources

    International Nuclear Information System (INIS)

    Tassi, F.; Capecchiacci, F.; Giannini, L.; Vougioukalakis, G.E.; Vaselli, O.

    2013-01-01

    This study presents the chemical composition of VOCs in air and gas discharges collected at Nisyros Island (Dodecanese Archipelago, Greece). The main goals are i) to discriminate between natural and anthropogenic VOC sources and ii) to evaluate their impact on local air quality. Up to 63 different VOCs were recognized and quantitatively determined in 6 fumaroles and 19 air samples collected in the Lakki caldera, where fumarolic emissions are located, and the outer ring of the island, including the Mandraki village and the main harbor. Air samples from the crater area show significant concentrations of alkanes, alkenes, cyclic, aromatics, and S- and O-bearing heterocycles directly deriving from the hydrothermal system, as well as secondary O-bearing compounds from oxidation of primary VOCs. At Mandraki village, C 6 H 6 /Σ(methylated aromatics) and Σ(linear)/Σ(branched) alkanes ratios 2 O–CO 2 –H 2 S rich and discharge a large variety of VOC species. •Benzene/toluene ratios identify anthropogenic and natural sources of VOCs in air. •Aldehydes in air are produced by oxidation of alkanes and alkenes. •Geogenic furans and hydrogenated halocarbons in air are recalcitrant. -- Anthropogenic and natural VOCs in air are distinguished on the basis of aromatic, O-substituted, S-substituted and halogenated compounds

  6. Characterization of anthropogenic impacts in a large urban center by examining the spatial distribution of halogenated flame retardants.

    Science.gov (United States)

    Wei, Yan-Li; Bao, Lian-Jun; Wu, Chen-Chou; Zeng, Eddy Y

    2016-08-01

    Anthropogenic impacts have continuously intensified in mega urban centers with increasing urbanization and growing population. The spatial distribution pattern of such impacts can be assessed with soil halogenated flame retardants (HFRs) as HFRs are mostly derived from the production and use of various consumer products. In the present study, soil samples were collected from the Pearl River Delta (PRD), a large urbanized region in southern China, and its surrounding areas and analyzed for a group of HFRs, i.e., polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane, bis(hexachlorocyclopentadieno)cyclooctane (DP) and hexabromobenzene. The sum concentrations of HFRs and PBDEs were in the ranges of 0.66-6500 and 0.37-5700 (mean: 290 and 250) ng g(-1) dry weight, respectively, around the middle level of the global range. BDE-209 was the predominant compound likely due to the huge amounts of usage and its persistence. The concentrations of HFRs were greater in the land-use types of residency, industry and landfill than in agriculture, forestry and drinking water source, and were also greater in the central PRD than in its surrounding areas. The concentrations of HFRs were moderately significantly (r(2) = 0.32-0.57; p urbanization levels, population densities and gross domestic productions in fifteen administrative districts. The spatial distribution of DP isomers appeared to be stereoselective as indicated by the similarity in the spatial patterns for the ratio of anti-DP versus the sum of DP isomers (fanti-DP) and DP concentrations. Finally, the concentrations of HFRs sharply decreased with increasing distance from an e-waste recycling site, indicating that e-waste derived HFRs largely remained in local soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Practical management of cumulative anthropogenic impacts with working marine examples.

    Science.gov (United States)

    Wright, Andrew J; Kyhn, Line A

    2015-04-01

    Human pressure on the environment is expanding and intensifying, especially in coastal and offshore areas. Major contributors to this are the current push for offshore renewable energy sources, which are thought of as environmentally friendly sources of power, as well as the continued demand for petroleum. Human disturbances, including the noise almost ubiquitously associated with human activity, are likely to increase the incidence, magnitude, and duration of adverse effects on marine life, including stress responses. Stress responses have the potential to induce fitness consequences for individuals, which add to more obvious directed takes (e.g., hunting or fishing) to increase the overall population-level impact. To meet the requirements of marine spatial planning and ecosystem-based management, many efforts are ongoing to quantify the cumulative impacts of all human actions on marine species or populations. Meanwhile, regulators face the challenge of managing these accumulating and interacting impacts with limited scientific guidance. We believe there is scientific support for capping the level of impact for (at a minimum) populations in decline or with unknown statuses. This cap on impact can be facilitated through implementation of regular application cycles for project authorization or improved programmatic and aggregated impact assessments that simultaneously consider multiple projects. Cross-company collaborations and a better incorporation of uncertainty into decision making could also help limit, if not reduce, cumulative impacts of multiple human activities. These simple management steps may also form the basis of a rudimentary form of marine spatial planning and could be used in support of future ecosystem-based management efforts. © 2014 Society for Conservation Biology.

  8. Impact Of anthropogenic activities on the water quality of Songor Lagoon, Ada, Greater Accra Region

    International Nuclear Information System (INIS)

    Sackey, Justice

    2014-06-01

    Wetlands are vital ecosystems with important social, economic and environmental functions. The Ada Songor lagoon (located in the Dangbe East district, Greater Accra Region), is an internationally designated wetland (Ramsar site). Intense anthropogenic activities have impacted negatively on the quality of water and sediment in the lagoon. The study assessed the extent of heavy metal, pesticide residues and nutrients contamination of surface water and sediment in the Ada Songor Lagoon. The objective of the study was achieved through the determination of physico-chemical parameters [pH, temperature, electrical conductivity (EC), salinity, total dissolved solids (TDS), alkalinity, turbidity, biological oxygen demand (BOD), total hardness)]; the nutrients load (SO_4"2"- , PO_4"3"- , NO_3"- ) using UV-Visible Spectrophotometry; major ions (Na"+, K"+, Ca"2"+, HCO_3 "-); trace metals (Cd, Cr, Ni, Pb, Co, Zn, Cu, As and Hg) using Atomic Absorption Spectrometry (AAS); and pesticides residues [organochlorines (OC’s), and synthetic pyrethroids by gas chromatography-electron capture detection (GC-ECD) and organophosphorus (OP’s) by gas chromatography-pulse flame photometric detection (G C-PFPD)]. Na and K contents were determined by Flame Emission Photometry. The water temperature (25.7 to 26.6 "oC), fall in the range of 25 to 30 "oC suitable for sustainability fish and aquatic organisms. The pH range (8.18 to 9.70) which is typical of coastal waters in Ghana is ideal for aquatic organisms. The TDS range (591 to 1,046 mg/L) is not ideal for water birds spawning since it makes it harder for them to find food. BOD ranges from 1.19 to 5.35 mg/L. The pattern of ionic dominance in the lagoon during the present study was K"+ > Na"+ > Ca"2"+ > Mg"2"+. The cationic dominance pattern was similar to that of seawater as observed by other works. Nitrate levels ranges from 0.83 to 0.92 mg/L. PO_4"3"- in this study varied from 0.05 to 2.92 mg/L which exceeds the levels in most natural

  9. Anthropogenic Radionuglides in Marine Polar Regions

    Science.gov (United States)

    Holm, Elis

    The polar regions are important for the understanding of long range water and atmospheric transport of anthropogenic substances. Investigations show that atmospheric transport of anthropogenic radionuclides is the most important route of transport to the Antarctic while water transport plays a greater role for the Arctic. Fallout from nuclear detonation tests is the major source in the Antarctic while in the Arctic other sources, especially European reprocessing facilities, dominate for conservatively behaving rdionuclides such as 137Cs . The flux of 137Cs and 239+240Pu in the Antarctic is about 1/10 of that for the Arctic and the resulting concentrations in surface sea-water show the same ratio for the two areas. In the Antarctic concentration factors for 137Cs are higher than in the Arctic for similar species

  10. Seasonal shift of diet in bank voles explains trophic fate of anthropogenic osmium?

    Science.gov (United States)

    Ecke, Frauke; Berglund, Åsa M M; Rodushkin, Ilia; Engström, Emma; Pallavicini, Nicola; Sörlin, Dieke; Nyholm, Erik; Hörnfeldt, Birger

    2018-05-15

    Diet shifts are common in mammals and birds, but little is known about how such shifts along the food web affect contaminant exposure. Voles are staple food for many mammalian and avian predators. There is therefore a risk of transfer of contaminants accumulated in voles within the food chain. Osmium is one of the rarest earth elements with osmium tetroxide (OsO 4 ) as the most toxic vapor-phase airborne contaminant. Anthropogenic OsO 4 accumulates in fruticose lichens that are important winter food of bank voles (Myodes glareolus). Here, we test if a) anthropogenic osmium accumulates in bank voles in winter, and b) accumulation rates and concentrations are lower in autumn when the species is mainly herbivorous. Our study, performed in a boreal forest impacted by anthropogenic osmium, supported the hypotheses for all studied tissues (kidney, liver, lung, muscle and spleen) in 50 studied bank voles. In autumn, osmium concentrations in bank voles were even partly similar to those in the graminivorous field vole (Microtus agrestis; n=14). In autumn but not in late winter/early spring, osmium concentrations were generally negatively correlated with body weight and root length of the first mandible molar, i.e. proxies of bank vole age. Identified negative correlations between organ-to-body weight ratios and osmium concentrations in late winter/early spring indicate intoxication. Our results suggest unequal accumulation risk for predators feeding on different cohorts of bank voles. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Intensification of Chile-Peru upwelling under climate change: diagnosing the impact of natural and anthropogenic forcing from the IPSL-CM5 model.

    Science.gov (United States)

    Jebri, B.; Khodri, M.; Gastineau, G.; Echevin, V.; Thiria, S.

    2017-12-01

    Upwelling is critical to the biological production, acidification, and deoxygenation of the ocean's major eastern boundary current ecosystems. A conceptual hypothesis suggests that the winds that favour coastal upwelling intensify with anthropogenic global warming due to increased land-sea temperature contrast. We examine this hypothesis for the dynamics of the Peru-Chile upwelling using a set of four large ensembles of coupled, ocean-atmosphere model simulations with the IPSL model covering the 1940-2014 period. In one large ensemble we prescribe the standard CMIP5 greenhouse gas (GHG) concentrations, anthropogenic aerosol, ozone and volcanic forcings, following the historical experiments through 2005 and RCP8.5 from 2006-2014, while the other ensembles consider separately the GHG, ozone and volcanic forcings. We find evidence for intensification of upwelling-favourable winds with however little evidence of atmospheric pressure gradients in response to increasing land-sea temperature differences. Our analyses reveal poleward migration and intensification of the South Pacific Anticyclone near poleward boundaries of climatological Peruvian and Chilean upwelling zones. This contribution further investigates the physical mechanisms for the Peru-Chile upwelling intensification and the relative role of natural and anthropogenic forcings.

  12. Recent changes in anthropogenic reactive nitrogen compounds

    Science.gov (United States)

    Andronache, Constantin

    2014-05-01

    Significant anthropogenic perturbations of the nitrogen cycle are the result of rapid population growth, with mounting need for food and energy production. The increase of reactive nitrogen compounds (such as NOx, HNO3, NH3, and N2O) has a significant impact on human health, environment, and climate. NOx emissions contribute to O3 chemistry, aerosol formation and acidic precipitation. Ammonia is a notable atmospheric pollutant that may deteriorate ecosystems and contribute to respiratory problems. It reacts with acidic gases to form aerosols or is deposited back to ecosystems. The application of fertilizers accounts for most of the N2O production, adding to greenhouse gas emissions. We analyze the change of some reactive nitrogen compounds based on observations, in eastern United States. Results show that the control of NOx and SO2 emissions over the last decades caused a significant decrease of acidic deposition. The nitrate deposition is highest in eastern US, while the ammonium ion concentration is highest in central US regions. Overall, the inorganic nitrogen wet deposition from nitrate and ammonium is enhanced in central, and eastern US. Research shows that sensitive ecosystems in northeastern regions exhibit a slow recovery from the accumulated effects of acidic deposition. Given the growing demand for nitrogen in agriculture and industry, we discuss possible pathways to reduce the impact of excess reactive nitrogen on the environment.

  13. Seagrass blue carbon dynamics in the Gulf of Mexico: Stocks, losses from anthropogenic disturbance, and gains through seagrass restoration.

    Science.gov (United States)

    Thorhaug, Anitra; Poulos, Helen M; López-Portillo, Jorge; Ku, Timothy C W; Berlyn, Graeme P

    2017-12-15

    Seagrasses comprise a substantive North American and Caribbean Sea blue carbon sink. Yet fine-scale estimates of seagrass carbon stocks, fluxes from anthropogenic disturbances, and potential gains in sedimentary carbon from seagrass restoration are lacking for most of the Western Hemisphere. To begin to fill this knowledge gap in the subtropics and tropics, we quantified organic carbon (C org ) stocks, losses, and gains from restorations at 8 previously-disturbed seagrass sites around the Gulf of Mexico (GoM) (n=128 cores). Mean natural seagrass C org stocks were 25.7±6.7MgC org ha -1 around the GoM, while mean C org stocks at adjacent barren sites that had previously hosted seagrass were 17.8MgC org ha -1 . Restored seagrass beds contained a mean of 38.7±13.1MgC org ha -1 . Mean C org losses differed by anthropogenic impact type, but averaged 20.98±7.14MgC org ha -1 . C org gains from seagrass restoration averaged 20.96±8.59Mgha -1 . These results, when combined with the similarity between natural and restored C org content, highlight the potential of seagrass restoration for mitigating seagrass C org losses from prior impact events. Our GoM basin-wide estimates of natural C org totaled ~36.4Tg for the 947,327ha for the USA-GoM. Including Mexico, the total basin contained an estimated 37.2-37.5Tg C org . Regional US-GoM losses totaled 21.69Tg C org . C org losses differed significantly among anthropogenic impacts. Yet, seagrass restoration appears to be an important climate change mitigation strategy that could be implemented elsewhere throughout the tropics and subtropics. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Assessing Sources of Stress to Aquatic Ecosystems: Using Biomarkers and Bioindicators to Characterize Exodure-Response Profiles of Anthropogenic Activities

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.

    1999-03-29

    Establishing causal relationships between sources of environmental stressors and aquatic ecosystem health if difficult because of the many biotic and abiotic factors which can influence or modify responses of biological systems to stress, the orders of magnitude involved in extrapolation over both spatial and temporal scales, and compensatory mechanisms such as density-dependent responses that operate in populations. To address the problem of establishing causality between stressors and effects on aquatic systems, a diagnostic approach, based on exposure-response profiles for various anthropogenic activities, was developed to help identify sources of stress responsible for effects on aquatic systems at ecological significant levels of biological organization (individual, population, community). To generate these exposure-effects profiles, biomarkers of exposure were plotted against bioindicators of corresponding effects for several major anthropogenic activities including petrochemical , pulp and paper, domestic sewage, mining operations, land-development activities, and agricultural activities. Biomarkers of exposure to environmental stressors varied depending on the type of anthropogenic activity involved. Bioindicator effects, however, including histopathological lesions, bioenergetic status, individual growth, reproductive impairment, and community-level responses were similar among many of the major anthropogenic activities. This approach is valuable to help identify and diagnose sources of stressors in environments impacted by multiple stressors. By identifying the types and sources of environmental stressors, aquatic ecosystems can be more effectively protected and managed to maintain acceptable levels of environmental quality and ecosystem fitness.

  15. A study of climate change and anthropogenic impacts in West Africa.

    Science.gov (United States)

    Wittig, Rüdiger; König, Konstantin; Schmidt, Marco; Szarzynski, Jörg

    2007-05-01

    During the last decades ecological conditions in West Africa have dramatically changed. Very evident is the climate change, which has resulted in a southward shift of the climate zones, e.g. a spread of the desert (Sahara) into the Sahelian zone. After the drought period of the early 1970s and 1980s, livestock density increased resulting in an intensification of grazing pressure. This anthropogenous phenomenon leads to similar landscape changes as those caused by the climate. Only very few investigations exist on vegetation dynamics, climate changes and land use changes for the Sudanian zone. The paper presents data on changes of precipitation, of land use, of the geographical range of species, and of the composition of the flora, which have to be regarded as proofs of the sahelisation of large areas of the Sudanian zone. Area of investigation: Burkina Faso. Precipitation data analysis: precipitation data from 67 stations; time series analysis and geo-statistical spatial interpolation. Analysis of land use change: Landsat satellite MSS and ETM+ data, acquired for two different dates between 1972 and 2001 analyzed by the software ERDAS/IMAGINE version 8.6 and ArcView 3.2 with the Spatial Analyst extension. Intensive ground truthing (160 training areas). Inventory of the flora: based on the data of the Herbarium Senckenbergianum (FR) in Frankfurt, Germany, and of the herbarium of the university of Ouagadougou (OUA), Burkina Faso, as well as on various investigations on the vegetation of Burkina Faso carried out in the years 1990 to 2005 by the team of the senior author. Life form analysis of the flora: based on the inventory of permanent plots. Precipitation: Remarkable latitudinal shift of isohyets towards the South translates to a general reduction of average rainfall in great parts of the country. The last decade (1990-1999) shows some improvement, however, the more humid conditions of the 1950's and 1960's are not yet established again. Landcover change: In the

  16. Global gridded anthropogenic emissions inventory of carbonyl sulfide

    Science.gov (United States)

    Zumkehr, Andrew; Hilton, Tim W.; Whelan, Mary; Smith, Steve; Kuai, Le; Worden, John; Campbell, J. Elliott

    2018-06-01

    Atmospheric carbonyl sulfide (COS or OCS) is the most abundant sulfur containing gas in the troposphere and is an atmospheric tracer for the carbon cycle. Gridded inventories of global anthropogenic COS are used for interpreting global COS measurements. However, previous gridded anthropogenic data are a climatological estimate based on input data that is over three decades old and are not representative of current conditions. Here we develop a new gridded data set of global anthropogenic COS sources that includes more source sectors than previously available and uses the most current emissions factors and industry activity data as input. Additionally, the inventory is provided as annually varying estimates from years 1980-2012 and employs a source specific spatial scaling procedure. We estimate a global source in year 2012 of 406 Gg S y-1 (range of 223-586 Gg S y-1), which is highly concentrated in China and is twice as large as the previous gridded inventory. Our large upward revision in the bottom-up estimate of the source is consistent with a recent top-down estimate based on air-monitoring and Antarctic firn data. Furthermore, our inventory time trends, including a decline in the 1990's and growth after the year 2000, are qualitatively consistent with trends in atmospheric data. Finally, similarities between the spatial distribution in this inventory and remote sensing data suggest that the anthropogenic source could potentially play a role in explaining a missing source in the global COS budget.

  17. Towards better monitoring of technology critical elements in Europe: Coupling of natural and anthropogenic cycles.

    Science.gov (United States)

    Nuss, Philip; Blengini, Gian Andrea

    2018-02-01

    The characterization of elemental cycles has a rich history in biogeochemistry. Well known examples include the global carbon cycle, or the cycles of the 'grand nutrients' nitrogen, phosphorus, and sulfur. More recently, efforts have increased to better understand the natural cycling of technology critical elements (TCEs), i.e. elements with a high supply risk and economic importance in the EU. On the other hand, tools such as material-flow analysis (MFA) can help to understand how substances and goods are transported and accumulated in man-made technological systems ('anthroposphere'). However, to date both biogeochemical cycles and MFA studies suffer from narrow system boundaries, failing to fully illustrate relative anthropogenic and natural flow magnitude and the degree to which human activity has perturbed the natural cycling of elements. We discuss important interconnections between natural and anthropogenic cycles and relevant EU raw material dossiers. Increased integration of both cycles could help to better capture the transport and fate of elements in nature including their environmental/human health impacts, highlight potential future material stocks in the anthroposphere (in-use stocks) and in nature (e.g., in soils, tailings, or mining wastes), and estimate anticipated emissions of TCEs to nature in the future (based on dynamic stock modeling). A preliminary assessment of natural versus anthropogenic element fluxes indicates that anthropogenic fluxes induced by the EU-28 of palladium, platinum, and antimony (as a result of materials uses) might be greater than the respective global natural fluxes. Increased combination of MFA and natural cycle data at EU level could help to derive more complete material cycles and initiate a discussion between the research communities of biogeochemists and material flow analysts to more holistically address the issues of sustainable resource management. Copyright © 2017 The Authors. Published by Elsevier B.V. All

  18. The use of vibration monitoring to record the blasting works impact on buildings surrounding open-pit mines

    Directory of Open Access Journals (Sweden)

    Sołtys Anna

    2018-01-01

    Full Text Available Environmental protection law and geological and mining law require the mineral mining plant to protect its surroundings from the effects of mining operations. This also applies to the negative impact of vibrations induced by blasting works on people and construction facilities. Effective protection is only possible if the level of this impact is known, therefore it is necessary to record it. The thesis formulated in this way has been and continues to be the guiding principle of the research works carried out in the AGH Laboratory of Blasting Work and Environmental Protection. As a result of these works are procedures for conducting preventive activities by open-pit mines in order to minimize the impact of blasting on facilities in the surrounding area. An important element of this activity is the monitoring of vibrations in constructions, which is a source of knowledge for excavation supervisors and engineers performing blasting works, thus contributing to raising the awareness of the responsible operation of the mining plant. Developed in the Laboratory of the Mine's Vibration Monitoring Station (KSMD, after several modernizations, it became a fully automated system for monitoring and recording the impact of blasting works on the surrounding environment. Currently, there are 30 measuring devices in 10 open-pit mines, and additional 8 devices are used to provide periodic measurement and recording services for the mines concerned.

  19. The use of vibration monitoring to record the blasting works impact on buildings surrounding open-pit mines

    Science.gov (United States)

    Sołtys, Anna; Pyra, Józef; Winzer, Jan

    2018-04-01

    Environmental protection law and geological and mining law require the mineral mining plant to protect its surroundings from the effects of mining operations. This also applies to the negative impact of vibrations induced by blasting works on people and construction facilities. Effective protection is only possible if the level of this impact is known, therefore it is necessary to record it. The thesis formulated in this way has been and continues to be the guiding principle of the research works carried out in the AGH Laboratory of Blasting Work and Environmental Protection. As a result of these works are procedures for conducting preventive activities by open-pit mines in order to minimize the impact of blasting on facilities in the surrounding area. An important element of this activity is the monitoring of vibrations in constructions, which is a source of knowledge for excavation supervisors and engineers performing blasting works, thus contributing to raising the awareness of the responsible operation of the mining plant. Developed in the Laboratory of the Mine's Vibration Monitoring Station (KSMD), after several modernizations, it became a fully automated system for monitoring and recording the impact of blasting works on the surrounding environment. Currently, there are 30 measuring devices in 10 open-pit mines, and additional 8 devices are used to provide periodic measurement and recording services for the mines concerned.

  20. The impact of tourists on Antarctic tardigrades: an ordination-based model

    Directory of Open Access Journals (Sweden)

    Sandra J. McInnes

    2013-05-01

    Full Text Available Tardigrades are important members of the Antarctic biota yet little is known about their role in the soil fauna or whether they are affected by anthropogenic factors. The German Federal Environment Agency commissioned research to assess the impact of human activities on soil meiofauna at 14 localities along the Antarctic peninsula during the 2009/2010 and 2010/2011 austral summers. We used ordination techniques to re-assess the block-sampling design used to compare areas of high and low human impact, to identify which of the sampled variables were biologically relevant and/or demonstrated an anthropogenic significance. We found the most significant differences between locations, reflecting local habitat and vegetation factor, rather than within-location anthropogenic impact. We noted no evidence of exotic imports but report on new maritime Antarctic sample sites and habitats.

  1. Atmospheric delivery of anthropogenic bioavailable iron from mineral dust to the ocean

    OpenAIRE

    伊藤, 彰記; 時, 宗波; ITO, Akinori; SHI, Zongbo

    2015-01-01

    Atmospheric deposition of anthropogenic soluble iron (Fe) to the ocean has been suggested to modulate primary ocean productivity and thus indirectly affect the climate. A key process contributing to anthropogenic sources of soluble Fe is associated with air pollution, which acidifies Fe-containing mineral aerosols during their transport and leads to Fe transformation from insoluble to soluble forms. However, there is large uncertainty in our estimate of this anthropogenic soluble Fe. Here, we...

  2. Signatures of natural catastrophic events and anthropogenic impact in an estuarine environment, New Zealand

    International Nuclear Information System (INIS)

    Chague-Goff, C.; Nichol, S.L.; Jenkinson, A.V.; Heijnis, H.

    2000-01-01

    The sedimentary record of known natural catastrophic events and human activity in the Ahuriri Estuary, Hawke's Bay, is assessed using sedimentological, chemical and geochronological techniques. Evidence for the 1931 Hawke's Bay earthquake, which resulted in an uplift of one to two metres in the Napier area, is given by a change from silt- to sand-dominated sediment in the lower estuary, which is consistent with a shift toward higher energy depositional conditions following uplift. Post-European settlement impact is mainly restricted to the lower estuary, where increased concentrations of Zn, Cr, Pb and Cu are attributed to industrial discharges. Chemical data (Cl and S) suggest a change in the depositional environment in the upper estuary due to increased freshwater influx and/or decrease in seawater influence. Dating by 210 Pb suggests that this occurred around the middle of the 19th century, and might be attributed to river flooding at that time. 50 refs., 9 figs

  3. The Early Anthropogenic Hypothesis: Top-Down and Bottom-up Evidence

    Science.gov (United States)

    Ruddiman, W. F.

    2014-12-01

    Two complementary lines of evidence support the early anthropogenic hypothesis. Top-down evidence comes from comparing Holocene greenhouse-gas trends with those during equivalent intervals of previous interglaciations. The increases in CO2 and CH4 during the late Holocene are anomalous compared to the decreasing trends in a stacked average of previous interglaciations, thereby supporting an anthropogenic origin. During interglacial stage 19, the closest Holocene insolation analog, CO2 fell to 245 ppm by the time equivalent to the present, in contrast to the observed pre-industrial rise to 280-285 ppm. The 245-ppm level measured in stage 19 falls at the top of the natural range predicted by the original anthropogenic hypothesis of Ruddiman (2003). Bottom-up evidence comes from a growing list of archeological and other compilations showing major early anthropogenic transformations of Earth's surface. Key examples include: efforts by Dorian Fuller and colleagues mapping the spread of irrigated rice agriculture across southern Asia and its effects on CH4 emissions prior to the industrial era; an additional effort by Fuller showing the spread of methane-emitting domesticated livestock across Asia and Africa (coincident with the spread of fertile crescent livestock across Europe); historical compilations by Jed Kaplan and colleagues documenting very high early per-capita forest clearance in Europe, thus underpinning simulations of extensive pre-industrial clearance and large CO2 emissions; and wide-ranging studies by Erle Ellis and colleagues of early anthropogenic land transformations in China and elsewhere.

  4. Extending the Instrumental Record of Sea-Level Change: A 1300-Year Sea-Level Record From Eastern Connecticut

    Science.gov (United States)

    Donnelly, J. P.; Cleary, P.

    2002-12-01

    The instrumental record of sea-level change in the northeastern United States extends back to the early 20th century and at New York City (NYC) extends back to 1856. These tide gauge records indicate that sea level has risen at a rate of 2.5 to 4 mm/year over the last 100-150 years. Geologic evidence of sea-level change in the region over the last 2,000 years indicates rates of sea-level rise of about 1 mm/year or less. The discordance between the instrumental and geologic records is frequently cited as potentially providing evidence that anthropogenic warming of the climate system has resulted in an increase in the rate of sea-level rise. In order to begin to test the hypothesis that acceleration in the rate of sea-level rise has occurred in the last 150 years due to anthropogenic climate warming, accurate and precise information on the timing of the apparent acceleration in sea-level rise are needed. Here we construct a high-resolution relative sea-level record for the past 1350 years by dating basal salt marsh peat samples above a glacial erratic in a western Connecticut salt marsh. Preservation of marsh vegetation remains in the sediment record that has a narrow vertical habitat range at the upper end of the tidal range provides information on past sea levels. { \\it Spartina patens} (marsh hay) and { \\it Juncus gerardi} (black rush) dominate both the modern marsh and their remains are the major constituent of the marsh sediments and occur in the modern marsh between mean high water (MHW) and mean highest high water. We use the elevation distribution of modern plant communities to estimate the relationship of sediment samples to paleo-mean high water. The chronology is based on 15 radiocarbon ages, supplemented by age estimates derived from the horizons of industrial Pb pollution and pollen indicative of European land clearance. Thirteen of the radiocarbon ages and the Pb and pollen data come from samples taken along a contact between marsh peat and a glacial

  5. Gastropod diversity, distribution and abundance in habitats with and without anthropogenic disturbances in Lake Victoria, Kenya

    DEFF Research Database (Denmark)

    Lange, C. N.; Kristensen, Thomas K.; Madsen, Henry

    2013-01-01

    We investigated freshwater gastropod diversity, abundance and distribution in habitats with and without anthropogenic disturbance in two localities, Ndere in the Winam Gulf and Mbita Point, Lake Victoria, Kenya, from May 2002 to January 2004. A total of 133 984 gastropod specimens belonging to 15...... species were recorded, 14 from Mbita and 12 from Ndere. Two species, Ferrissia kavirondica and Cleopatra cridlandi, which were recorded only from undisturbed habitats, could be indicators of least disturbed habitats. Water chemistry did differ between fish landing sites and undisturbed habitats at some......, while other species may not tolerate these changes. In order to protect gastropod diversity and avoid dominance of intermediate hosts, such as B. choanomphala, a management plan for the use of these fish landing sites should be developed. This could include rules on how to dispose of fish remnants...

  6. Impact of biogenic emissions on ozone formation in the Mediterranean area - a BEMA modelling study

    International Nuclear Information System (INIS)

    Thunis, P.; Cuvelier, C.

    2000-01-01

    The aim of this modelling study is to understand and quantify the influence of biogenic volatile organic compound (BVOC) emissions on the formation of tropospheric ozone in the Burriana area (north of Valencia) on the east coast of Spain. The mesoscale modelling system used consists of the meteorology/transport module TVM and the chemical reaction mechanism RACM. The results of the model simulations are validated and compared with the data collected during the biogenic emissions in the mediterranean area (BEMA) field campaign that took place in June 1997. Anthropogenic and biogenic emission inventories have been constructed with an hourly resolution. Averaged (over the land area and over 24 h) emission fluxes for AVOC, anthropogenic NO x , BVOC and biogenic NO x are given by 16.0, 9.9, 6.2, and 0.7 kg km -2 day -1 , respectively. The impact of biogenic emissions is investigated on peak ozone values by performing simulations with and without biogenic emissions; while keeping anthropogenic emissions constant. The impact on ozone formation is also studied in combination with some anthropogenic emissions reduction strategies, i.e. when anthropogenic VOC emissions and/or NO x emissions are reduced. A factor separation technique is applied to isolate the impact due to biogenic emissions from the overall impact due to biogenic and anthropogenic emissions together. The results indicate that the maximum impact of biogenic emissions on ozone formation represents at the most 10 ppb, while maximum ozone values are of the order of 100 ppb. At different locations the maximum impact is reached at different times of the day depending on the arrival time of the sea breeze. It is also shown that this impact does not coincide in time with the maximum simulated ozone concentrations that are reached over the day. By performing different emission reduction scenarios, BVOC impacts are found to be sensitive mainly to NO x , and not to AVOC. Finally, it is shown that amongst the various

  7. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers

    Science.gov (United States)

    Aronson, Myla F. J.; La Sorte, Frank A.; Nilon, Charles H.; Katti, Madhusudan; Goddard, Mark A.; Lepczyk, Christopher A.; Warren, Paige S.; Williams, Nicholas S. G.; Cilliers, Sarel; Clarkson, Bruce; Dobbs, Cynnamon; Dolan, Rebecca; Hedblom, Marcus; Klotz, Stefan; Kooijmans, Jip Louwe; Kühn, Ingolf; MacGregor-Fors, Ian; McDonnell, Mark; Mörtberg, Ulla; Pyšek, Petr; Siebert, Stefan; Sushinsky, Jessica; Werner, Peter; Winter, Marten

    2014-01-01

    Urbanization contributes to the loss of the world's biodiversity and the homogenization of its biota. However, comparative studies of urban biodiversity leading to robust generalities of the status and drivers of biodiversity in cities at the global scale are lacking. Here, we compiled the largest global dataset to date of two diverse taxa in cities: birds (54 cities) and plants (110 cities). We found that the majority of urban bird and plant species are native in the world's cities. Few plants and birds are cosmopolitan, the most common being Columba livia and Poa annua. The density of bird and plant species (the number of species per km2) has declined substantially: only 8% of native bird and 25% of native plant species are currently present compared with estimates of non-urban density of species. The current density of species in cities and the loss in density of species was best explained by anthropogenic features (landcover, city age) rather than by non-anthropogenic factors (geography, climate, topography). As urbanization continues to expand, efforts directed towards the conservation of intact vegetation within urban landscapes could support higher concentrations of both bird and plant species. Despite declines in the density of species, cities still retain endemic native species, thus providing opportunities for regional and global biodiversity conservation, restoration and education. PMID:24523278

  8. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers.

    Science.gov (United States)

    Aronson, Myla F J; La Sorte, Frank A; Nilon, Charles H; Katti, Madhusudan; Goddard, Mark A; Lepczyk, Christopher A; Warren, Paige S; Williams, Nicholas S G; Cilliers, Sarel; Clarkson, Bruce; Dobbs, Cynnamon; Dolan, Rebecca; Hedblom, Marcus; Klotz, Stefan; Kooijmans, Jip Louwe; Kühn, Ingolf; Macgregor-Fors, Ian; McDonnell, Mark; Mörtberg, Ulla; Pysek, Petr; Siebert, Stefan; Sushinsky, Jessica; Werner, Peter; Winter, Marten

    2014-04-07

    Urbanization contributes to the loss of the world's biodiversity and the homogenization of its biota. However, comparative studies of urban biodiversity leading to robust generalities of the status and drivers of biodiversity in cities at the global scale are lacking. Here, we compiled the largest global dataset to date of two diverse taxa in cities: birds (54 cities) and plants (110 cities). We found that the majority of urban bird and plant species are native in the world's cities. Few plants and birds are cosmopolitan, the most common being Columba livia and Poa annua. The density of bird and plant species (the number of species per km(2)) has declined substantially: only 8% of native bird and 25% of native plant species are currently present compared with estimates of non-urban density of species. The current density of species in cities and the loss in density of species was best explained by anthropogenic features (landcover, city age) rather than by non-anthropogenic factors (geography, climate, topography). As urbanization continues to expand, efforts directed towards the conservation of intact vegetation within urban landscapes could support higher concentrations of both bird and plant species. Despite declines in the density of species, cities still retain endemic native species, thus providing opportunities for regional and global biodiversity conservation, restoration and education.

  9. Anthropogenic and geomorphic controls on peatland dynamics in contrasting floodplain environments during the Holocene and its impact on carbon storage

    Science.gov (United States)

    Verstraeten, Gert; Broothaerts, Nils; Notebaert, Bastiaan

    2016-04-01

    Peatlands are an important store of carbon in terrestrial environments, and scientific interest in peatlands has increased strongly in the light of the recent global climatic changes. Much attention has been paid to peatland dynamics in extensive arctic and boreal wetlands or to blanket peat in temperate regions. Nevertheless, long-term dynamics of peat in alluvial wetlands in temperate regions remains largely underresearched. In this study, data from three contrasting environments were used to provide more insights in the anthropogenic and geomorphic controls on peatland dynamics. The results show a high variability in alluvial peatland dynamics between the different study sites. In the central Belgian Loess Belt, alluvial peatlands developed during the early Holocene but gradually disappeared from the Mid-Holocene onwards due to the gradual intensification of agricultural activities in the catchment and consequent higher sedimentation rates in the floodplain system. The end of peat growth is shown to be diachronous at catchment scale, ranging between 6500 and 500 cal a BP. The disappearance of the alluvial peatlands has important implications since it potentially reduces the storage of locally produced C. Nevertheless, it was shown that this reduced production of local C but was outbalanced by the burial of hillslope derived C. Also within the sandy catchments of the Belgian Campine region alluvial peatlands initiated in the early Holocene but, here, they abruptly disappeared in the Mid-Holocene before the onset of intense agricultural activities in the catchment. This suggests that for the sandy regions, anthropogenic impact on peatland dynamics is less important compared to natural factors. For these regions, the disappearance of alluvial peatland formation resulted in a sharp decline in alluvial carbon storage as there is no compensation through hillslope derived C input. For the upper Dee catchment in NE Scotland, Holocene carbon floodplain storage varies

  10. ANthropogenic heat FLUX estimation from Space

    NARCIS (Netherlands)

    Chrysoulakis, Nektarios; Marconcini, Mattia; Gastellu-Etchegorry, Jean Philippe; Grimmong, C.S.B.; Feigenwinter, Christian; Lindberg, Fredrik; Frate, Del Fabio; Klostermann, Judith; Mi, Zina; Esch, Thomas; Landier, Lucas; Gabey, Andy; Parlow, Eberhard; Olofson, Frans

    2017-01-01

    The H2020-Space project URBANFLUXES (URBan ANthrpogenic heat FLUX from Earth observation Satellites) investigates the potential of Copernicus Sentinels to retrieve anthropogenic heat flux, as a key component of the Urban Energy Budget (UEB). URBANFLUXES advances the current knowledge of the

  11. Increased noise levels have different impacts on the anti-predator behaviour of two sympatric fish species.

    Directory of Open Access Journals (Sweden)

    Irene K Voellmy

    Full Text Available Animals must avoid predation to survive and reproduce, and there is increasing evidence that man-made (anthropogenic factors can influence predator-prey relationships. Anthropogenic noise has been shown to have a variety of effects on many species, but work investigating the impact on anti-predator behaviour is rare. In this laboratory study, we examined how additional noise (playback of field recordings of a ship passing through a harbour, compared with control conditions (playback of recordings from the same harbours without ship noise, affected responses to a visual predatory stimulus. We compared the anti-predator behaviour of two sympatric fish species, the three-spined stickleback (Gasterosteus aculeatus and the European minnow (Phoxinus phoxinus, which share similar feeding and predator ecologies, but differ in their body armour. Effects of additional-noise playbacks differed between species: sticklebacks responded significantly more quickly to the visual predatory stimulus during additional-noise playbacks than during control conditions, while minnows exhibited no significant change in their response latency. Our results suggest that elevated noise levels have the potential to affect anti-predator behaviour of different species in different ways. Future field-based experiments are needed to confirm whether this effect and the interspecific difference exist in relation to real-world noise sources, and to determine survival and population consequences.

  12. Evaluation of anthropogenic influence in probabilistic forecasting of coastal change

    Science.gov (United States)

    Hapke, C. J.; Wilson, K.; Adams, P. N.

    2014-12-01

    Prediction of large scale coastal behavior is especially challenging in areas of pervasive human activity. Many coastal zones on the Gulf and Atlantic coasts are moderately to highly modified through the use of soft sediment and hard stabilization techniques. These practices have the potential to alter sediment transport and availability, as well as reshape the beach profile, ultimately transforming the natural evolution of the coastal system. We present the results of a series of probabilistic models, designed to predict the observed geomorphic response to high wave events at Fire Island, New York. The island comprises a variety of land use types, including inhabited communities with modified beaches, where beach nourishment and artificial dune construction (scraping) occur, unmodified zones, and protected national seashore. This variation in land use presents an opportunity for comparison of model accuracy across highly modified and rarely modified stretches of coastline. Eight models with basic and expanded structures were developed, resulting in sixteen models, informed with observational data from Fire Island. The basic model type does not include anthropogenic modification. The expanded model includes records of nourishment and scraping, designed to quantify the improved accuracy when anthropogenic activity is represented. Modification was included as frequency of occurrence divided by the time since the most recent event, to distinguish between recent and historic events. All but one model reported improved predictive accuracy from the basic to expanded form. The addition of nourishment and scraping parameters resulted in a maximum reduction in predictive error of 36%. The seven improved models reported an average 23% reduction in error. These results indicate that it is advantageous to incorporate the human forcing into a coastal hazards probability model framework.

  13. Seasonal and Spatial Variability of Anthropogenic and Natural Factors Influencing Groundwater Quality Based on Source Apportionment

    Directory of Open Access Journals (Sweden)

    Xueru Guo

    2018-02-01

    Full Text Available Globally, groundwater resources are being deteriorated by rapid social development. Thus, there is an urgent need to assess the combined impacts of natural and enhanced anthropogenic sources on groundwater chemistry. The aim of this study was to identify seasonal characteristics and spatial variations in anthropogenic and natural effects, to improve the understanding of major hydrogeochemical processes based on source apportionment. 34 groundwater points located in a riverside groundwater resource area in northeast China were sampled during the wet and dry seasons in 2015. Using principal component analysis and factor analysis, 4 principal components (PCs were extracted from 16 groundwater parameters. Three of the PCs were water-rock interaction (PC1, geogenic Fe and Mn (PC2, and agricultural pollution (PC3. A remarkable difference (PC4 was organic pollution originating from negative anthropogenic effects during the wet season, and geogenic F enrichment during the dry season. Groundwater exploitation resulted in dramatic depression cone with higher hydraulic gradient around the water source area. It not only intensified dissolution of calcite, dolomite, gypsum, Fe, Mn and fluorine minerals, but also induced more surface water recharge for the water source area. The spatial distribution of the PCs also suggested the center of the study area was extremely vulnerable to contamination by Fe, Mn, COD, and F−.

  14. δ15N as a proxy for historic anthropogenic nitrogen loading in Charleston Harbor, SC, USA

    Science.gov (United States)

    Payne, T. N.; Andrus, C. F. T.

    2015-12-01

    Bivalve shell geochemistry can serve as a useful indicator of changes in coastal environments. There is increasing interest in developing paleoenvironmental proxies from mollusk shell organic components. Numerous studies have focused on how the δ15N obtained from bivalve tissues can be used to trace present-day wastewater input into estuaries. However, comparatively little attention has been paid to tracing the impact of anthropogenic nitrogen loading into estuaries over time. By measuring historic levels of δ15N in the organic fraction of oyster shells (Crassostrea virginica) from archaeological sites around Charleston Harbor and comparing those levels to the δ15N content of modern shells, it is possible to assess how nitrogen has fluctuated historically in the area. Whole-shell samples from the Late Archaic Period (~3000-4000 BP, Late Woodland Period (~1400-800 BP), 18th and 19th centuries, and modern controls were measured for %N and d15N. Evidence of increased anthropogenic input of N is expected to begin in the early historic period based on similar analysis in Chesapeake Bay. More ancient samples may give insight into baseline conditions prior to recent population growth and industrialization. This information could help understand how large-scale anthropogenic nitrogen loading has affected coastal ecosystems over time and guide future remediation. Furthermore, this project will help refine and improve this novel proxy of past environmental conditions.

  15. Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years.

    Science.gov (United States)

    Joos, Fortunat; Spahni, Renato

    2008-02-05

    The rate of change of climate codetermines the global warming impacts on natural and socioeconomic systems and their capabilities to adapt. Establishing past rates of climate change from temperature proxy data remains difficult given their limited spatiotemporal resolution. In contrast, past greenhouse gas radiative forcing, causing climate to change, is well known from ice cores. We compare rates of change of anthropogenic forcing with rates of natural greenhouse gas forcing since the Last Glacial Maximum and of solar and volcanic forcing of the last millennium. The smoothing of atmospheric variations by the enclosure process of air into ice is computed with a firn diffusion and enclosure model. The 20th century increase in CO(2) and its radiative forcing occurred more than an order of magnitude faster than any sustained change during the past 22,000 years. The average rate of increase in the radiative forcing not just from CO(2) but from the combination of CO(2), CH(4), and N(2)O is larger during the Industrial Era than during any comparable period of at least the past 16,000 years. In addition, the decadal-to-century scale rate of change in anthropogenic forcing is unusually high in the context of the natural forcing variations (solar and volcanoes) of the past millennium. Our analysis implies that global climate change, which is anthropogenic in origin, is progressing at a speed that is unprecedented at least during the last 22,000 years.

  16. Variation in the response of the invasive species Potamopyrgus antipodarum (Smith) to natural (cyanobacterial toxin) and anthropogenic (herbicide atrazine) stressors

    International Nuclear Information System (INIS)

    Gerard, Claudia; Poullain, Virginie

    2005-01-01

    In the context of increasing freshwater pollution, the impact on life-traits (survival, growth and fecundity) and locomotion of Potamopyrgus antipodarum of a 5-week field-concentration exposure to the cyanobacterial toxin microcystin-LR and the triazine herbicide, atrazine was studied. Whatever the age of exposed snails (juveniles, subadults, adults), microcystin-LR induced a decrease in survival, growth and fecundity but had no effect on locomotion. Atrazine induced a decrease in locomotory activity but had no significant effect on the life-traits. These results are discussed in terms of consequences to field populations. - At concentrations relevant to the field, cyanobacterial toxins (natural) and atrazine (anthropogenic) are detrimental to the gastropod Potamopyrgus antipodarum, with a greater toxicity for the natural (vs anthropogenic) stressor

  17. Variation in the response of the invasive species Potamopyrgus antipodarum (Smith) to natural (cyanobacterial toxin) and anthropogenic (herbicide atrazine) stressors

    Energy Technology Data Exchange (ETDEWEB)

    Gerard, Claudia [UMR CNRS Ecobio 6553, Equipe Physiologie et Ecophysiologie, Universite de Rennes 1, Avenue du General Leclerc, 35042 Rennes cedex (France)]. E-mail: claudia.gerard@univ-rennes1.fr; Poullain, Virginie [UMR CNRS Ecobio 6553, Equipe Physiologie et Ecophysiologie, Universite de Rennes 1, Avenue du General Leclerc, 35042 Rennes cedex (France)

    2005-11-15

    In the context of increasing freshwater pollution, the impact on life-traits (survival, growth and fecundity) and locomotion of Potamopyrgus antipodarum of a 5-week field-concentration exposure to the cyanobacterial toxin microcystin-LR and the triazine herbicide, atrazine was studied. Whatever the age of exposed snails (juveniles, subadults, adults), microcystin-LR induced a decrease in survival, growth and fecundity but had no effect on locomotion. Atrazine induced a decrease in locomotory activity but had no significant effect on the life-traits. These results are discussed in terms of consequences to field populations. - At concentrations relevant to the field, cyanobacterial toxins (natural) and atrazine (anthropogenic) are detrimental to the gastropod Potamopyrgus antipodarum, with a greater toxicity for the natural (vs anthropogenic) stressor.

  18. Efficacy of extracting indices from large-scale acoustic recordings to monitor biodiversity.

    Science.gov (United States)

    Buxton, Rachel; McKenna, Megan F; Clapp, Mary; Meyer, Erik; Stabenau, Erik; Angeloni, Lisa M; Crooks, Kevin; Wittemyer, George

    2018-04-20

    Passive acoustic monitoring has the potential to be a powerful approach for assessing biodiversity across large spatial and temporal scales. However, extracting meaningful information from recordings can be prohibitively time consuming. Acoustic indices offer a relatively rapid method for processing acoustic data and are increasingly used to characterize biological communities. We examine the ability of acoustic indices to predict the diversity and abundance of biological sounds within recordings. First we reviewed the acoustic index literature and found that over 60 indices have been applied to a range of objectives with varying success. We then implemented a subset of the most successful indices on acoustic data collected at 43 sites in temperate terrestrial and tropical marine habitats across the continental U.S., developing a predictive model of the diversity of animal sounds observed in recordings. For terrestrial recordings, random forest models using a suite of acoustic indices as covariates predicted Shannon diversity, richness, and total number of biological sounds with high accuracy (R 2 > = 0.94, mean squared error MSE indices assessed, roughness, acoustic activity, and acoustic richness contributed most to the predictive ability of models. Performance of index models was negatively impacted by insect, weather, and anthropogenic sounds. For marine recordings, random forest models predicted Shannon diversity, richness, and total number of biological sounds with low accuracy (R 2 = 195), indicating that alternative methods are necessary in marine habitats. Our results suggest that using a combination of relevant indices in a flexible model can accurately predict the diversity of biological sounds in temperate terrestrial acoustic recordings. Thus, acoustic approaches could be an important contribution to biodiversity monitoring in some habitats in the face of accelerating human-caused ecological change. This article is protected by copyright. All rights

  19. Time series monitoring of water quality and microalgal diversity in a tropical bay under intense anthropogenic interference (SW coast of the Bay of Bengal, India)

    Digital Repository Service at National Institute of Oceanography (India)

    Shaik, A.R.; Biswas, H.; Reddy, N.P.C.; Rao, V.S.; Bharathi, M.D.; Subbaiah, Ch.V.

    In recent decades, material fluxes to coastal waters from various land based anthropogenic activities have signifi- cantly been enhanced around the globe which can considerably impact the coastal water quality and ecosystem health. Hence, there is a...

  20. Heavy metal contents in growth bands of Porites corals: Record of anthropogenic and human developments from the Jordanian Gulf of Aqaba

    International Nuclear Information System (INIS)

    Al-Rousan, Saber A.; Al-Shloul, Rashid N.; Al-Horani, Fuad A.; Abu-Hilal, Ahmad H.

    2007-01-01

    In order to assess pollutants and impact of environmental changes in the coastal region of the Jordanian Gulf of Aqaba, concentrations of six metals were traced through variations in 5 years growth bands sections of recent Porties coral skeleton. X-radiography showed annual growth band patterns extending back to the year 1925. Baseline metal concentrations in Porites corals were established using 35 years-long metal record from late Holocene coral (deposited in pristine environment) and coral from reef that is least exposed to pollution in the marine reserve in the Gulf of Aqaba. The skeleton samples of the collected corals were acid digested and analyzed for their Cd, Cu, Fe, Mn, Pb and Zn content using Flame Atomic Absorption Spectrophotometer (FAAS). All metal profiles (except Fe and Zn) recorded the same metal signature from recent coral (1925-2005) in which low steady baseline levels were displayed in growth bands older than 1965, similar to those obtained from fossil and unpolluted corals. Most metals showed dramatic increase (ranging from 17% to 300%) in growth band sections younger than 1965 suggesting an extensive contamination of the coastal area since the mid sixties. This date represents the beginning of a period that witnessed increasing coastal activities, constructions and urbanization. This has produced a significant reduction in coral skeletal extension rates. Results from this study strongly suggest that Porites corals have a high tendency to accumulate heavy metals in their skeletons and therefore can serve as proxy tools to monitor and record environmental pollution (bioindicators) in the Gulf of Aqaba

  1. Heavy metal contents in growth bands of Porites corals: Record of anthropogenic and human developments from the Jordanian Gulf of Aqaba

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rousan, Saber A. [Marine Science Station, University of Jordan and Yarmouk University, P.O. Box 195, Aqaba 77110 (Jordan)], E-mail: s.rousan@ju.edu.jo; Al-Shloul, Rashid N. [Department of Earth and Environmental Science, Faculty of Science, Yarmouk University, Irbid 21163 (Jordan); Al-Horani, Fuad A. [Marine Science Station, University of Jordan and Yarmouk University, P.O. Box 195, Aqaba 77110 (Jordan); Abu-Hilal, Ahmad H. [Department of Earth and Environmental Science, Faculty of Science, Yarmouk University, Irbid 21163 (Jordan)

    2007-12-15

    In order to assess pollutants and impact of environmental changes in the coastal region of the Jordanian Gulf of Aqaba, concentrations of six metals were traced through variations in 5 years growth bands sections of recent Porties coral skeleton. X-radiography showed annual growth band patterns extending back to the year 1925. Baseline metal concentrations in Porites corals were established using 35 years-long metal record from late Holocene coral (deposited in pristine environment) and coral from reef that is least exposed to pollution in the marine reserve in the Gulf of Aqaba. The skeleton samples of the collected corals were acid digested and analyzed for their Cd, Cu, Fe, Mn, Pb and Zn content using Flame Atomic Absorption Spectrophotometer (FAAS). All metal profiles (except Fe and Zn) recorded the same metal signature from recent coral (1925-2005) in which low steady baseline levels were displayed in growth bands older than 1965, similar to those obtained from fossil and unpolluted corals. Most metals showed dramatic increase (ranging from 17% to 300%) in growth band sections younger than 1965 suggesting an extensive contamination of the coastal area since the mid sixties. This date represents the beginning of a period that witnessed increasing coastal activities, constructions and urbanization. This has produced a significant reduction in coral skeletal extension rates. Results from this study strongly suggest that Porites corals have a high tendency to accumulate heavy metals in their skeletons and therefore can serve as proxy tools to monitor and record environmental pollution (bioindicators) in the Gulf of Aqaba.

  2. Natural and anthropogenic radionuclides in the environment

    International Nuclear Information System (INIS)

    Hille, R.

    1984-01-01

    A survey is given on the actual knowledge about occurence and environmental relevancy of the most important radionuclides from natural and anthropogenic origin. The contribution of AGF installation is emphasized. (orig.) [de

  3. Practical management of cumulative anthropogenic impacts with working marine examples

    DEFF Research Database (Denmark)

    Kyhn, Line Anker; Wright, Andrew J.

    2014-01-01

    for petroleum. Human disturbances, including the noise almost ubiquitously associated with human activity, are likely to increase the incidence, magnitude, and duration of adverse effects on marine life, including stress responses. Stress responses have the potential to induce fitness consequences...... on impact can be facilitated through implementation of regular application cycles for project authorization or improved programmatic and aggregated impact assessments that simultaneously consider multiple projects. Cross-company collaborations and a better incorporation of uncertainty into decision making...... could also help limit, if not reduce, cumulative impacts of multiple human activities. These simple management steps may also form the basis of a rudimentary form of marine spatial planning and could be used in support of future ecosystem-based management efforts....

  4. Characterizing the anthropogenic signature in the LCLU dynamics in the Central Asia region

    Science.gov (United States)

    Tatarskii, V.; Sokolik, I. N.; de Beurs, K.; Shiklomanov, A. I.

    2017-12-01

    Humans have been changing the LCLU dynamics over time through the world. In the Central Asia region, these changes have been especially pronounced due to the political and economic transformation. We present a detailed analysis, focusing on identifying and quantifying the anthropogenic signature in the water and land use across the region. We have characterized the anthropogenic dust emission by combining the modeling and observations. The model is a fully coupled model called WRF-Chem-DuMo that takes explicitly into account the vegetation treatment in modeling the dust emission. We have reconstructed the anthropogenic dust sources in the region, such as the retreat of the Aral Sea, changes in agricultural fields, etc. In addition, we characterize the anthropogenic water use dynamics, including the changes in the water use for the agricultural production. Furthermore, we perform an analysis to identify the anthropogenic signature in the NDVI pattern. The NDVI were analyzed in conjunction with the meteorological fields that were simulated at the high special resolution using the WRF model. Meteorological fields of precipitation and temperature were used for the correlation analysis to separate the natural vs. anthropogenic changes. In this manner, we were able to identify the regions that have been affected by human activities. We will present the quantitative assessment of the anthropogenic changes. The diverse consequences for the economy of the region, as well as, the environment will be addressed.

  5. 75 FR 10308 - Fire Management Plan, Final Environmental Impact Statement, Record of Decision, Grand Canyon...

    Science.gov (United States)

    2010-03-05

    ... DEPARTMENT OF THE INTERIOR National Park Service Fire Management Plan, Final Environmental Impact... Statement for the Fire Management Plan, Grand Canyon National Park. SUMMARY: Pursuant to the National... the Record of Decision for the Fire Management Plan, Grand Canyon National Park, Arizona. On January...

  6. Estimation of the Relationship Between Remotely Sensed Anthropogenic Heat Discharge and Building Energy Use

    Science.gov (United States)

    Zhou, Yuyu; Weng, Qihao; Gurney, Kevin R.; Shuai, Yanmin; Hu, Xuefei

    2012-01-01

    This paper examined the relationship between remotely sensed anthropogenic heat discharge and energy use from residential and commercial buildings across multiple scales in the city of Indianapolis, Indiana, USA. The anthropogenic heat discharge was estimated with a remote sensing-based surface energy balance model, which was parameterized using land cover, land surface temperature, albedo, and meteorological data. The building energy use was estimated using a GIS-based building energy simulation model in conjunction with Department of Energy/Energy Information Administration survey data, the Assessor's parcel data, GIS floor areas data, and remote sensing-derived building height data. The spatial patterns of anthropogenic heat discharge and energy use from residential and commercial buildings were analyzed and compared. Quantitative relationships were evaluated across multiple scales from pixel aggregation to census block. The results indicate that anthropogenic heat discharge is consistent with building energy use in terms of the spatial pattern, and that building energy use accounts for a significant fraction of anthropogenic heat discharge. The research also implies that the relationship between anthropogenic heat discharge and building energy use is scale-dependent. The simultaneous estimation of anthropogenic heat discharge and building energy use via two independent methods improves the understanding of the surface energy balance in an urban landscape. The anthropogenic heat discharge derived from remote sensing and meteorological data may be able to serve as a spatial distribution proxy for spatially-resolved building energy use, and even for fossil-fuel CO2 emissions if additional factors are considered.

  7. The impact of records management system in transparency of public administrations: Transparency by design

    Directory of Open Access Journals (Sweden)

    Agustí Cerrillo Martínez

    2018-05-01

    Full Text Available Records management system has a great impact in the improvement of transparency in public administration. Transparency by design refers to the inclusion of transparency duties stated by legislation in force in the records’ life cycle in a way that it guarantees citizens effective access to public information. In this paper, the changes that public administrations have to propel in their records management systems to improve public transparency and to make easy access to information are analysed. In particular, as a case study, provisions made by Law 19/2014, of December 29, on Transparency, Access to Public Information and Good Governance of Catalonia are explored.

  8. Continental-scale assessment of long-term trends in wet deposition trajectories: Role of anthropogenic and hydro-climatic drivers

    Science.gov (United States)

    Park, J.; Gall, H. E.; Niyogi, D.; Rao, S.

    2012-12-01

    The global trend of increased urbanization, and associated increased intensity of energy and material consumption and waste emissions, has contributed to shifts in the trajectories of aquatic, terrestrial, and atmospheric environments. Here, we focus on continental-scale spatiotemporal patterns in two atmospheric constituents (nitrate and sulfate), whose global biogeochemical cycles have been dramatically altered by emissions from mobile and fixed sources in urbanized and industrialized regions. The observed patterns in wet deposition fluxes of nitrate and sulfate are controlled by (1) natural hydro-climatic forcing, and (2) anthropogenic forcing (emissions and regulatory control), both of which are characterized by stochasticity and non-stationarity. We examine long-term wet deposition records in the U.S., Europe, and East Asia to evaluate how anthropogenic and natural forcing factors jointly contributed to the shifting temporal patterns of wet deposition fluxes at continental scales. These data offer clear evidence for successful implementation of regulatory controls and widespread adoption of technologies contributed to improving water quality and mitigation of adverse ecological impacts. We developed a stochastic model to project the future trajectories of wet deposition fluxes in emerging countries with fast growing urban areas. The model generates ellipses within which projected wet deposition flux trajectories are inscribed, similar to the trends in observational data. The shape of the ellipses provides information regarding the relative dominance of anthropogenic (e.g., industrial and urban emissions) versus hydro-climatic drivers (e.g., rainfall patterns, aridity index). Our analysis facilitates projections of the trajectory shift as a result of urbanization and other land-use changes, climate change, and regulatory enforcement. We use these observed data and the model to project likely trajectories for rapidly developing countries (BRIC), with a

  9. Anthropogenic disturbance on the vegetation in makurunge

    African Journals Online (AJOL)

    Mgina

    landscape in Tanzania that has been severely affected by anthropogenic disturbance ... Fragmentation of habitats formed patches that have reduced plant species population sizes, and ... by the movement of the Inter-Tropical ..... of pollinators.

  10. Decadal trends in tropospheric ozone over East Asian Pacific rim during 1998-2007: Implications for emerging Asian emissions impacts and comparison to European and North American records (Invited)

    Science.gov (United States)

    Tanimoto, H.; Ohara, T.; Uno, I.

    2010-12-01

    We examine springtime ozone trends at nine remote locations in East Asian Pacific rim during the last decade (1998-2007). The observed decadal ozone trends are relatively small at surface sites but are substantially larger at a mountainous site. The level and increasing rate of ozone at the mountainous site are both higher than those observed at background sites in Europe and North America. We use a regional chemistry-transport model to explore the observed changes and how changes in Asian anthropogenic emissions have contributed to the observed increasing trends. The model with yearly-dependent regional emissions successfully reproduces the levels, variability, and interannual variations of ozone at all the surface sites. It predicts increasing trends at the mountainous site, suggesting that increasing Asian anthropogenic emissions account for about half the observed increase. However, the discrepancy between the observation and model results after 2003 (the time of largest emission increase) suggests significant underestimation of the actual growth of the Asian anthropogenic emissions and/or incompleteness in the modeling of pollution export from continental Asia. These findings imply that improving emissions inventory and transport scheme is needed to better understand rapidly evolving tropospheric ozone in East Asia and its potential climatic and environmental impacts.

  11. Assessing anthropogenic impacts on limited water resources under semi-arid conditions: three-dimensional transient regional modelling in Jordan

    Science.gov (United States)

    Rödiger, Tino; Magri, Fabien; Geyer, Stefan; Morandage, Shehan Tharaka; Ali Subah, H. E.; Alraggad, Marwan; Siebert, Christian

    2017-11-01

    Both increasing aridity and population growth strongly stress freshwater resources in semi-arid areas such as Jordan. The country's second largest governorate, Irbid, with over 1 million inhabitants, is already suffering from an annual water deficit of 25 million cubic meters (MCM). The population is expected to double within the next 20 years. Even without the large number of refugees from Syria, the deficit will likely increase to more then 50 MCM per year by 2035 The Governorate's exclusive resource is groundwater, abstracted by the extensive Al Arab and Kufr Asad well fields. This study presents the first three-dimensional transient regional groundwater flow model of the entire Wadi al Arab to answer important questions regarding the dynamic quality and availability of water within the catchment. Emphasis is given to the calculation and validation of the dynamic groundwater recharge, derived from a multi-proxy approach, including (1) a hydrological model covering a 30-years dataset, (2) groundwater level measurements and (3) information about springs. The model enables evaluation of the impact of abstraction on the flow regime and the groundwater budget of the resource. Sensitivity analyses of controlling parameters indicate that intense abstraction in the southern part of the Wadi al Arab system can result in critical water-level drops of 10 m at a distance of 16 km from the production wells. Moreover, modelling results suggest that observed head fluctuations are strongly controlled by anthropogenic abstraction rather than variable recharge rates due to climate changes.

  12. Visual attention based detection of signs of anthropogenic activities in satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Skurikhin, Alexei N [Los Alamos National Laboratory

    2010-10-13

    With increasing deployment of satellite imaging systems, only a small fraction of collected data can be subject to expert scrutiny. We present and evaluate a two-tier approach to broad area search for signs of anthropogenic activities in high-resolution commercial satellite imagery. The method filters image information using semantically oriented interest points by combining Harris corner detection and spatial pyramid matching. The idea is that anthropogenic structures, such as rooftop outlines, fence corners, road junctions, are locally arranged in specific angular relations to each other. They are often oriented at approximately right angles to each other (which is known as rectilinearity relation). Detecting the rectilinearity provides an opportunity to highlight regions most likely to contain anthropogenic activity. This is followed by supervised classification of regions surrounding the detected corner points as man-made vs. natural scenes. We consider, in particular, a search for anthropogenic activities in uncluttered areas. In this paper, we proposed and evaluated a two-tier approach to broad area search for signs of anthropogenic activities. Results from experiments on high-resolution ({approx}0.6m) commercial satellite image data showed the potential applicability of this approach and its ability of achieving both high precision and recall rates. The main advantage of combining corner-based cueing with general object recognition is that the incorporation of domain specific knowledge even in its more general form, such as presence of comers, provides a useful cue to narrow the focus of search for signs of anthropogenic activities. Combination of comer based cueing with spatial pyramid matching addressed the issue of comer categorization. An important practical issue for further research is optimizing the balance between false positive and false negative rates. While the results presented in the paper are encouraging, the problem of an automated broad area

  13. Anthropogenic effects on sediment quality offshore southwestern Taiwan: Assessing the sediment core geochemical record

    Digital Repository Service at National Institute of Oceanography (India)

    Selvaraj, K.; Parthiban, G.; Chen, C.T.A.; Lou, J.Y.

    -Fernández, A.C., Páez-Osuna, F., Urrutia-Fucugauchi, J., Preda, M., Rehault, I., 2004. Historical trace metal fluxes in the Mexico City Metropolitan Zone as evidenced by a sedimentary record from the Espejo de los Lirios lake. Journal of Environmental...

  14. Investigations of anthropogenic sediments in Qaranilaca, Vanuabalavu Island, Fiji

    International Nuclear Information System (INIS)

    Nunn, P.D.; Matararaba, S.; Ramos, J.

    2000-01-01

    Fieldwork throughout the Vanuabalavu group of islands in northeast Fiji in July 1999 by a team from the University of the South Pacific and the Fiji Museum focused on locating evidence for early (Lapita-age) settlement largely through the collection of potsherds from the surface and in test pits. Another site of especial interest was the large cave named Qaranilaca or 'sail cave' (qara = cave, laca = sail) at the southernmost tip of the main island, Vanuabalavu. The oral tradition states that a man named Ravuravu from Totoya Island in southeast Fiji travelled by outrigger canoe (takia) to Vanuabalavu and, upon arrival, put his sail in this cave to dry before going on to club a hunchbacked man to death farther north. It was originally hoped that the extraordinarily voluminous anthropogenic fill of Qaranilaca might contain a record of human occupation extending back further than the last millenium. Although 14 C dating has demonstrated this not to be so, there is undoubtedly a complex story preserved here which is worthy of more detailed excavation than was possible on this occasion. 10 refs., 3 figs

  15. Anthropogenic forcing dominates sea level rise since 1850

    DEFF Research Database (Denmark)

    Jevrejeva, Svetlana; Grinsted, Aslak; Moore, John

    2009-01-01

    The rate of sea level rise and its causes are topics of active debate. Here we use a delayed response statistical model to attribute the past 1000 years of sea level variability to various natural (volcanic and solar radiative) and anthropogenic (greenhouse gases and aerosols) forcings. We show...... that until 1800 the main drivers of sea level change are volcanic and solar radiative forcings. For the past 200 years sea level rise is mostly associated with anthropogenic factors. Only 4 ± 1.5 cm (25% of total sea level rise) during the 20th century is attributed to natural forcings, the remaining 14 ± 1...

  16. Anthropogenic control on geomorphic process rates: can we slow down the erosion rates? (Geomorphology Outstanding Young Scientist Award & Penck Lecture)

    Science.gov (United States)

    Vanacker, V.

    2012-04-01

    The surface of the Earth is changing rapidly, largely in response to anthropogenic perturbation. Direct anthropogenic disturbance of natural environments may be much larger in many places than the (projected) indirect effects of climate change. There is now large evidence that humans have significantly altered geomorphic process rates, mainly through changes in vegetation composition, density and cover. While much attention has been given to the impact of vegetation degradation on geomorphic process rates, I suggest that the pathway of restoration is equally important to investigate. First, vegetation recovery after crop abandonment has a rapid and drastic impact on geomorphic process rates. Our data from degraded catchments in the tropical Andes show that erosion rates can be reduced by up to 100 times when increasing the protective vegetation cover. During vegetation restoration, the combined effects of the reduction in surface runoff, sediment production and hydrological connectivity are stronger than the individual effects together. Therefore, changes in erosion and sedimentation during restoration are not simply the reverse of those observed during degradation. Second, anthropogenic perturbation causes a profound but often temporary change in geomorphic process rates. Reconstruction of soil erosion rates in Spain shows us that modern erosion rates in well-vegetated areas are similar to long-term rates, despite evidence of strong pulses in historical erosion rates after vegetation clearance and agriculture. The soil vegetation system might be resilient to short pulses of accelerated erosion (and deposition), as there might exist a dynamic coupling between soil erosion and production also in degraded environments.

  17. Consequences of climate change, eutrophication, and other anthropogenic impacts to coastal salt marshes: multiple stressors reduce resiliency and sustainability

    Science.gov (United States)

    Watson, E. B.; Wigand, C.; Nelson, J.; Davey, E.; Van Dyke, E.; Wasson, K.

    2011-12-01

    Coastal salt marshes provide a wide variety of ecosystem services, including habitat for protected vertebrates and ecologically valuable invertebrate fauna, flood protection, and improvements in water quality for adjacent marine and estuarine environments. Here, we consider the impacts of future sea level rise combined with other anthropogenic stressors to salt marsh sustainability through the implementation of field and laboratory mesocosms, manipulative experiments, correlative studies, and predictive modeling conducted in central California and southern New England salt marshes. We report on measurements of soil respiration, decomposition, sediment accumulation, and marsh elevation, which considered jointly suggest an association between nitrate input and marsh elevation loss resulting from mineralization of soil organic matter. Furthermore, use of imaging techniques (CT scans) has shown differences in belowground root and rhizome structure associated with fertilization, resulting in a loss of sediment cohesion promoted by fine root structure. Additionally, field and greenhouse mesocosm experiments have provided insight into the specific biogeochemical processes responsible for plant mortality at high immersion or salinity levels. In conclusion, we have found that poor water quality (i.e. eutrophication) leads to enhanced respiration and decomposition of soil organic matter, which ultimately contributes to a loss of salt marsh sustainability. However, marsh deterioration studied at field sites (Jamaica Bay, NY and Elkhorn Slough, CA) is associated not only with enhanced nutrient loads, but also increased immersion due to tidal range increases resulting from dredging. To ensure the continuation of the ecosystem services provided by tidal wetlands and to develop sustainable management strategies that provide favorable outcomes under a variety of future sea level rise and land use scenarios, we need to develop a better understanding of the relative impacts of the

  18. Assessing the relation between anthropogenic pressure and PAH concentrations in surface water in the Seine River basin using multivariate analysis

    Energy Technology Data Exchange (ETDEWEB)

    Uher, Emmanuelle, E-mail: emmanuelle.uher@irstea.fr [Irstea, UR HBAN Hydrosystèmes et bioprocédés, 1 rue Pierre-Gilles de Gennes, CS 10030, 92761 Antony cedex (France); FIRE, FR-30204 place Jussieu, 75005 Paris (France); Mirande-Bret, Cécile [LISA, 61 avenue du général de Gaulle, 94010 Créteil (France); Gourlay-Francé, Catherine [Anses, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex (France)

    2016-07-01

    Understanding the relation between polycyclic aromatic hydrocarbons (PAHs) in freshwater and anthropogenic pressure is fundamental to finding a solution to reduce the presence of PAHs in water, and thus their potential impact on aquatic life. In this paper we propose to gain greater insight into the variability, sources and partitioning of PAHs in labile (or freely dissolved = not associated to the organic matter), dissolved and particulate phases in freshwater. This study was conducted using land use data as a marker of anthropogenic pressure and coupling it with chemical measurements. This study was conducted on 30 sites in the Seine River basin, which is subjected to a strong human impact and exhibits a wide range of land uses. Half of the sites were studied twice. Labile PAHs were measured by semi-permeable membrane devices (SPMDs), and dissolved and particulate phases by grab samples. Partial least squares regressions were performed between chemical measurements and data of anthropogenic pressure. The results indicate different sources for the dissolved phase and particles. Dissolved and labile phases were more related to the population density of the watershed, while particles were more related to a local pressure. Season and land use data are necessary information to correctly interpret and compare PAH concentrations from different sites. Furthermore, the whole data set of the 45 field deployments comprising labile, dissolved, total and particulate PAH concentrations as well as the physico-chemical parameters is available in the supplementary information. - Highlights: • A large-scale deployment of semi-permeable membrane devices was performed at the Seine Catchment scale • Partial least squares regressions were performed between chemical measurements and data of anthropogenic pressure • The results seem to show a PAHs release from particles to dissolved phase slower than in laboratory work • Dissolved and labile phases were related to a pressure at

  19. Assessment of the effect of anthropogenic pollution on the ecology of small shallow lakes using the palaeolimnological approach

    Directory of Open Access Journals (Sweden)

    Tiiu Koff

    2016-11-01

    Full Text Available Palaeolimnological techniques were utilized to determine the extent of the effect of anthropogenic pollutants or other environmental stressors on three lake ecosystems over the last 200 years. The ecology of the study sites has experienced significant changes due to various activities such as (1 extensive catchment drainage and using poisoning as a fish management measure, (2 seepage of urban waste water due to establishment and growth of a town and (3 artificial inflow of oil-shale mining waters. Sediment geochemical composition, fossil pigments and Cladocera remains from the sediment cores were analysed to demonstrate that sufficient information can be derived from sediments to permit a historical reconstruction. The integrated use of archival maps, historical records and lake monitoring data confirmed links to anthropogenic pollutants, primarily on the catchment level. The examples show how the sediment indicators provide unique insights into the causes and temporal dynamics of lake ecosystem changes relevant for environmental management decisions. This study demonstrates that palaeolimnology has great potential to assist in eutrophication assessment and management efforts in waterbodies.

  20. DNA barcode-based survey of Trichoptera in the Crooked River reveals three new species records for British Columbia.

    Science.gov (United States)

    Erasmus, Daniel J; Yurkowski, Emily A; Huber, Dezene P W

    2018-01-01

    Anthropogenic pressures on aquatic systems have placed a renewed focus on biodiversity of aquatic macroinvertebrates. By combining classical taxonomy and DNA barcoding we identified 39 species of caddisflies from the Crooked River, a unique and sensitive system in the southernmost arctic watershed in British Columbia. Our records include three species never before recorded in British Columbia: Lepidostoma togatum (Lepidostomatidae), Ceraclea annulicornis (Leptoceridae), and possibly Cheumatopsyche harwoodi (Hydropsychidae). Three other specimens may represent new occurrence records and a number of other records seem to be substantial observed geographic range expansions within British Columbia.

  1. The Impact of Electronic Health Records on Healthcare Professional's Beliefs and Attitudes toward Face to Face Communication

    Science.gov (United States)

    Nickles, Kenneth Patrick

    2012-01-01

    The impact of electronic health records on healthcare professional's beliefs and attitudes toward face to face communication during patient and provider interactions was examined. Quantitative survey research assessed user attitudes towards an electronic health record system and revealed that healthcare professionals from a wide range of…

  2. Simulations of the global carbon cycle and anthropogenic CO2 transient

    International Nuclear Information System (INIS)

    Sarmiento, J.L.

    1994-01-01

    This research focuses on improving the understanding of the anthropogenic carbon dioxide transient using observations and models of the past and present. In addition, an attempt is made to develop an ability to predict the future of the carbon cycle in response to continued anthropogenic perturbations and climate change. Three aspects of the anthropogenic carbon budget were investigated: (1) the globally integrated budget at the present time; (2) the time history of the carbon budget; and (3) the spatial distribution of carbon fluxes. One of the major activities of this study was the participation in the model comparison study of Enting, et al. [1994] carried out in preparation for the IPCC 1994 report

  3. Separating underwater ambient noise from flow noise recorded on stereo acoustic tags attached to marine mammals

    NARCIS (Netherlands)

    Benda-Beckmann, A.M. von; Wensveen, P.J.; Samarra, F.I.P.; Beerens, S.P.; Miller, P.J.O.

    2016-01-01

    Sound-recording acoustic tags attached to marine animals are commonly used in behavioural studies. Measuring ambient noise is of interest to efforts to understand responses of marine mammals to anthropogenic underwater sound, or to assess their communication space. Noise of water flowing around the

  4. Finding even more anthropogenic indicators in mildly prepared sediment samples

    DEFF Research Database (Denmark)

    Enevold, Renée; Odgaard, Bent Vad

    2016-01-01

    be worth the effort to prepare the NPP samples with as mild a preparation method as possible. We have mildly prepared NPP samples from a small forest hollow, Tårup Lund, Denmark. From the recovered NPP assemblages we attempt identifying anthropogenic indicators by comparing to the environmental information......NPPs in anthropogenic soils and archaeological samples are often numerous in types as well as in abundance. Preparing these soil samples with methods based on acid digestion holds the potential of severe bias leaving the NPP assemblages devoid of acid vulnerable NPPs. In many cases it might...... derived from sediment, pollen and macrofossil analyses. The sediment from the forest hollow encompasses environmental information from the last 6000 years, including a period of locally intense pastoral and/or agricultural activity during the Iron Age. Keywords: NPP diversity, forest hollow, anthropogenic...

  5. Impact of dissolution on the sedimentary record of the Paleocene-Eocene thermal maximum

    Science.gov (United States)

    Bralower, Timothy J.; Kelly, D. Clay; Gibbs, Samantha; Farley, Kenneth; Eccles, Laurie; Lindemann, T. Logan; Smith, Gregory J.

    2014-09-01

    The input of massive amounts of carbon to the atmosphere and ocean at the Paleocene-Eocene Thermal Maximum (PETM; ˜55.53 Ma) resulted in pervasive carbonate dissolution at the seafloor. At many sites this dissolution also penetrated into the underlying sediment column. The magnitude of dissolution at and below the seafloor, a process known as chemical erosion, and its effect on the stratigraphy of the PETM, are notoriously difficult to constrain. Here, we illuminate the impact of dissolution by analyzing the complete spectrum of sedimentological grain sizes across the PETM at three deep-sea sites characterized by a range of bottom water dissolution intensity. We show that the grain size spectrum provides a measure of the sediment fraction lost during dissolution. We compare these data with dissolution and other proxy records, electron micrograph observations of samples and lithology. The complete data set indicates that the two sites with slower carbonate accumulation, and less active bioturbation, are characterized by significant chemical erosion. At the third site, higher carbonate accumulation rates, more active bioturbation, and possibly winnowing have limited the impacts of dissolution. However, grain size data suggest that bioturbation and winnowing were not sufficiently intense to diminish the fidelity of isotopic and microfossil assemblage records.

  6. Anthropogenic influence on forest landscape in the Khumbu valley, Nepal

    Science.gov (United States)

    Lingua, Emanuele; Garbarino, Matteo; Urbinati, Carlo; Carrer, Marco

    2013-04-01

    High altitude Himalayan regions are geo-dynamically very active and very sensitive to natural and anthropogenic disturbances due to their steep slopes, variations of precipitations with elevation and short growing periods. Nonetheless, even in this remote region human pressure is often the most important factor affecting forest landscape. In the last decades the firewood demand has increased each year between September to December. The increase in the number of tourists, mountaineering, guides, porters, carpenters, lodges lead to a peak in the use of fuelwood. In order to understand anthropogenic impacts on forest, resources landscape and stand scale dynamics were analyzed in the Sagarmatha National Park (SNP) and its Buffer Zone in the Khumbu Valley (Nepal, Eastern Himalaya). Biological and historical data sources were employed, and a multi-scale approach was adopted to capture the influence of human activities on the distribution of tree species and forest structure. Stand structure and a range of environmental variables were sampled in 197 20x20 m square plots, and land use and anthropogenic variables were derived in a GIS environment (thematic maps and IKONOS, Landsat and Terra ASTER satellite images). We used multivariate statistical analyses to relate forest structure, anthropogenic influences, land uses, and topography. Fuel wood is the prime source of energy for cooking (1480-1880 Kg/person/year) and Quercus semecarpifolia, Rhododendron arboreum and Pinus wallichiana, among the others, are the most exploited species. Due to lack of sufficient energy sources deforestation is becoming a problem in the area. This might be a major threat causing soil erosion, landslides and other natural hazards. Among the 25 species of trees that were found in the Buffer Zone Community Forests of SNP, Pinus wallichiana, Lyonia ovalifolia, Quercus semecarpifolia and Rhododendron arboreum are the dominant species. The total stand density ranged from 228 to 379 tree/ha and the

  7. Metals in pond sediments as archives of anthropogenic activities: a study in response to health concerns

    International Nuclear Information System (INIS)

    Graney, Joseph R.; Eriksen, Timothy M.

    2004-01-01

    An environmental geochemistry approach was applied in response to health concerns about present day and past exposure to pollutants within Broome County, New York by determining historical records of anthropogenic activities as preserved in sediment cores. Sediment was collected from a stormwater retention pond adjacent to a warehouse complex in the urban community of Hillcrest as well as from 3 other ponds in rural locations in Broome County. Metal concentrations and decay products of 210 Pb and 137 Cs were measured to determine the timing of source specific differences in the distribution of metals in the sediment cores. Concentrations of Zn, Pb, Ni, Cu, Cr, Cd and As were elevated in the retention pond sediments when compared to sediment from other locations. Topography influenced atmospheric transport and deposition of pollutants within incised river valleys and enhanced runoff from impervious surfaces within an urban watershed contributed to the elevated metal concentrations at Hillcrest. Temporal changes in Pb deposition within retention pond sediment mimic the rise and fall in use of leaded gasoline. Arsenic concentrations decreased following placement of emission controls on nearby coal-fired power plant sources. Superimposed over the temporal trends of Pb and As are co-varying Zn, Ni, Cu, Cr and Cd concentrations; a suite of metals commonly used in metal plating processes by local industries. Analysis of sediment in stormwater retention ponds in other urban areas may provide opportunities for detailed records of pollution history to be obtained in many communities. Residents in urban communities located in incised river valley locations similar to Hillcrest may be particularly prone to enhanced exposure to metals from anthropogenic sources

  8. Natural and anthropogenic mercury sources and their impact on the air-surface exchange of mercury on regional and global scales

    Energy Technology Data Exchange (ETDEWEB)

    Ebinghaus, R.; Tripathi, R.M.; Wallschlaeger, D.; Lindberg, S.E.

    1998-12-31

    Mercury is outstanding among the global environmental pollutants of continuing concern. Especially in the last decade of the 20th century, environmental scientists, legislators, politicians and the public have become aware of mercury pollution in the global environment. It has often been suggested that anthropogenic emissions are leading to a general increase in mercury on local, regional, and global scales (Lindqvist et al. 1991; Expert Panel 1994). Mercury is emitted into the atmosphere from a number of natural as well as anthropogenic sources. In contrast with most of the other heavy metals, mercury and many of its compounds behave exceptionally in the environment due to their volatility and capability for methylation. Long-range atmospheric transport of mercury, its transformation to more toxic methylmercury compounds, and their bioaccumulation in the aquatic foodchain have motivated intensive research on mercury as a pollutant of global concern. Mercury takes part in a number of complex environmental cycles, and special interest is focused on the aquatic-biological and the atmospheric cycles. (orig./SR)

  9. Natural and anthropogenic mercury sources and their impact on the air-surface exchange of mercury on regional and global scales

    Energy Technology Data Exchange (ETDEWEB)

    Ebinghaus, R; Tripathi, R M; Wallschlaeger, D; Lindberg, S E

    1999-12-31

    Mercury is outstanding among the global environmental pollutants of continuing concern. Especially in the last decade of the 20th century, environmental scientists, legislators, politicians and the public have become aware of mercury pollution in the global environment. It has often been suggested that anthropogenic emissions are leading to a general increase in mercury on local, regional, and global scales (Lindqvist et al. 1991; Expert Panel 1994). Mercury is emitted into the atmosphere from a number of natural as well as anthropogenic sources. In contrast with most of the other heavy metals, mercury and many of its compounds behave exceptionally in the environment due to their volatility and capability for methylation. Long-range atmospheric transport of mercury, its transformation to more toxic methylmercury compounds, and their bioaccumulation in the aquatic foodchain have motivated intensive research on mercury as a pollutant of global concern. Mercury takes part in a number of complex environmental cycles, and special interest is focused on the aquatic-biological and the atmospheric cycles. (orig./SR)

  10. Simulated anthropogenic CO2 storage and acidification of the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    J. Palmiéri

    2015-02-01

    Full Text Available Constraints on the Mediterranean Sea's storage of anthropogenic CO2 are limited, coming only from data-based approaches that disagree by more than a factor of two. Here we simulate this marginal sea's anthropogenic carbon storage by applying a perturbation approach in a high-resolution regional model. Our model simulates that, between 1800 and 2001, basin-wide CO2 storage by the Mediterranean Sea has increased by 1.0 Pg C, a lower limit based on the model's weak deep-water ventilation, as revealed by evaluation with CFC-12. Furthermore, by testing a data-based approach (transit time distribution in our model, comparing simulated anthropogenic CO2 to values computed from simulated CFC-12 and physical variables, we conclude that the associated basin-wide storage of 1.7 Pg, published previously, must be an upper bound. Out of the total simulated storage of 1.0 Pg C, 75% comes from the air–sea flux into the Mediterranean Sea and 25% comes from net transport from the Atlantic across the Strait of Gibraltar. Sensitivity tests indicate that the Mediterranean Sea's higher total alkalinity, relative to the global-ocean mean, enhances the Mediterranean's total inventory of anthropogenic carbon by 10%. Yet the corresponding average anthropogenic change in surface pH does not differ significantly from the global-ocean average, despite higher total alkalinity. In Mediterranean deep waters, the pH change is estimated to be between −0.005 and −0.06 pH units.

  11. The observed influence of local anthropogenic pollution on northern Alaskan cloud properties

    Science.gov (United States)

    Maahn, Maximilian; de Boer, Gijs; Creamean, Jessie M.; Feingold, Graham; McFarquhar, Greg M.; Wu, Wei; Mei, Fan

    2017-12-01

    Due to their importance for the radiation budget, liquid-containing clouds are a key component of the Arctic climate system. Depending on season, they can cool or warm the near-surface air. The radiative properties of these clouds depend strongly on cloud drop sizes, which are governed in part by the availability of cloud condensation nuclei. Here, we investigate how cloud drop sizes are modified in the presence of local emissions from industrial facilities at the North Slope of Alaska. For this, we use aircraft in situ observations of clouds and aerosols from the 5th Department of Energy Atmospheric Radiation Measurement (DOE ARM) Program's Airborne Carbon Measurements (ACME-V) campaign obtained in summer 2015. Comparison of observations from an area with petroleum extraction facilities (Oliktok Point) with data from a reference area relatively free of anthropogenic sources (Utqiaġvik/Barrow) represents an opportunity to quantify the impact of local industrial emissions on cloud properties. In the presence of local industrial emissions, the mean effective radii of cloud droplets are reduced from 12.2 to 9.4 µm, which leads to suppressed drizzle production and precipitation. At the same time, concentrations of refractory black carbon and condensation nuclei are enhanced below the clouds. These results demonstrate that the effects of anthropogenic pollution on local climate need to be considered when planning Arctic industrial infrastructure in a warming environment.

  12. Re-Occupancy of Breeding Territories by Ferruginous Hawks in Wyoming: Relationships to Environmental and Anthropogenic Factors.

    Science.gov (United States)

    Wallace, Zachary P; Kennedy, Patricia L; Squires, John R; Oakleaf, Robert J; Olson, Lucretia E; Dugger, Katie M

    2016-01-01

    Grassland and shrubland birds are declining globally due in part to anthropogenic habitat modification. Because population performance of these species is also influenced by non-anthropogenic factors, it is important to incorporate all relevant ecological drivers into demographic models. We used design-based sampling and occupancy models to test relationships of environmental factors that influence raptor demographics with re-occupancy of breeding territories by ferruginous hawks (Buteo regalis) across Wyoming, USA, 2011-2013. We also tested correlations of territory re-occupancy with oil and gas infrastructure-a leading cause of habitat modification throughout the range of this species of conservation concern. Probability of re-occupancy was not related to any covariates we investigated in 2011, had a strong negative relationship with cover of sagebrush (Artemisia spp.) in 2012, was slightly higher for territories with artificial platforms than other nest substrates in 2013, and had a positive relationship with abundance of ground squirrels (Urocitellus spp.) that was strong in 2012 and weak in 2013. Associations with roads were weak and varied by year, road-type, and scale: in 2012, re-occupancy probability had a weak positive correlation with density of roads not associated with oil and gas fields at the territory-scale; however, in 2013 re-occupancy had a very weak negative correlation with density of oil and gas field roads near nest sites (≤500 m). Although our results indicate re-occupancy of breeding territories by ferruginous hawks was compatible with densities of anthropogenic infrastructure in our study area, the lack of relationships between oil and gas well density and territory re-occupancy may have occurred because pre-treatment data were unavailable. We used probabilistic sampling at a broad spatial extent, methods to account for imperfect detection, and conducted extensive prey sampling; nonetheless, future research using before-after-control-impact

  13. The green turtle Chelonia mydas as a marine and coastal environmental sentinels: anthropogenic activities and diseases

    Directory of Open Access Journals (Sweden)

    Isabela Guarnier Domiciano

    2017-10-01

    Full Text Available The green turtle Chelonia mydas is a widely distributed, slowly maturing species with a complex life cycle, using both oceanic and coastal environments. The species is exposed to different threats and is considered an environmental sentinel that indicates variation among, and the severity of hazards to marine ecosystems. This study aimed to describe both anthropogenic impacts, and infectious and parasitic diseases in C. mydas - including cases along the Brazilian coast - and implications for conservation. Bycatch is reported as the main threat to the conservation of this species, followed by debris ingestion, collisions with boats, dredging, and chronic environmental contamination. All of these impacts may directly or indirectly cause death, by facilitating contact with pathological agents and by increasing vulnerability to secondary diseases. The pathological agents associated with lesions include viruses, bacteria, fungi, protozoa, and helminths. Fibropapillomatosis is an example of a chronic disease characterized by cutaneous and visceral tumors that affects mostly juvenile C. mydas worldwide and is associated with the Chelonid herpesvirus 5. The bacterias Vibrio alginolyticus, Aeromonas hydrophila, and Pseudomonas fluorescens are found in the aquatic environment and among C. mydas lesions in various organs. Trematode adults and eggs of the family Spirorchiidae are also frequent in systemic cardiovascular diseases of C. mydas. The direct impacts of anthropogenic activities and diseases are synergistic and may affect the specie’s health and conservation. Therefore, the monitoring and systematic diagnosing of diseases and causes of death - including necropsy, histopathology, and molecular exams - are necessary to assess a population’s health, to support appropriate decisions of coastal management and to target future research topics that optimize C. mydas conservation.

  14. Anthropogenic nitrogen deposition in boreal forests has a minor impact on the global carbon cycle.

    Science.gov (United States)

    Gundale, Michael J; From, Fredrik; Bach, Lisbet H; Nordin, Annika

    2014-01-01

    It is proposed that increases in anthropogenic reactive nitrogen (Nr ) deposition may cause temperate and boreal forests to sequester a globally significant quantity of carbon (C); however, long-term data from boreal forests describing how C sequestration responds to realistic levels of chronic Nr deposition are scarce. Using a long-term (14-year) stand-scale (0.1 ha) N addition experiment (three levels: 0, 12.5, and 50 kg N ha(-1)  yr(-1) ) in the boreal zone of northern Sweden, we evaluated how chronic N additions altered N uptake and biomass of understory communities, and whether changes in understory communities explained N uptake and C sequestration by trees. We hypothesized that understory communities (i.e. mosses and shrubs) serve as important sinks for low-level N additions, with the strength of these sinks weakening as chronic N addition rates increase, due to shifts in species composition. We further hypothesized that trees would exhibit nonlinear increases in N acquisition, and subsequent C sequestration as N addition rates increased, due to a weakening understory N sink. Our data showed that understory biomass was reduced by 50% in response to the high N addition treatment, mainly due to reduced moss biomass. A (15) N labeling experiment showed that feather mosses acquired the largest fraction of applied label, with this fraction decreasing as the chronic N addition level increased. Contrary to our hypothesis, the proportion of label taken up by trees was equal (ca. 8%) across all three N addition treatments. The relationship between N addition and C sequestration in all vegetation pools combined was linear, and had a slope of 16 kg C kg(-1)  N. While canopy retention of Nr deposition may cause C sequestration rates to be slightly different than this estimate, our data suggest that a minor quantity of annual anthropogenic CO2 emissions are sequestered into boreal forests as a result of Nr deposition. © 2013 John Wiley & Sons Ltd.

  15. Distinguishing natural hydrocarbons from anthropogenic contamination in ground water

    International Nuclear Information System (INIS)

    Lesage, S.; Xu, H.; Novakowski, K.S.

    1997-01-01

    Differentiation between natural and anthropogenic sources of ground-water contamination by petroleum hydrocarbons is necessary in areas where natural hydrocarbons may be present in the subsurface. Because of the similarity in composition between natural and refined petroleum, the use of statistical techniques to discern trends is required. In this study, both multivariate plotting techniques and principal component analysis were used to investigate the origin of hydrocarbons from a variety of study sites. Ground-water and gas samples were collected from the Niagara Falls area and from three gasoline stations where leaking underground storage tanks had been found. Although soil gas surveys are used to indicate the presence of hydrocarbons, they were not useful in differentiating between natural and anthropogenic sources of contamination in ground water. Propane and pentene were found to be the most useful chemical parameters in discriminating between the natural and anthropogenic sources. These chemicals are not usually measured in investigations of ground-water contamination, yet analysis can be conducted by most environmental laboratories using conventional methods

  16. [Developmental instability of the organism as a result of pessimization of environment under anthropogenic transformation of natural landscapes].

    Science.gov (United States)

    Shadrina, E G; Vol'pert, Ia L

    2014-01-01

    The value of fluctuating asymmetry is considered to be an indicator of the developmental instability of the organism. The consequences of activities of the mining industry plants, which are characterized by alienation and transformation of large areas of natural landscapes, are analyzed as an anthropogenic factor. The objects of study were small mammals (northern red-backed (Clethrionomys rutilus) and gray red-backed (Clethrionomys rufocanus) voles, tundra vole (Microtus oeconomus), Laxmann's (Sorex caecutiens) and tundra (S. tundrensis) shrews) and trees (Japanese white birch (Betula platyphylla), Betula divaricate, Betula exilis, Duschekiafruticosa, and common osier (Salix viminalis)). In total, 3500 skulls and approximately 30000 leaves collected in the taiga zone of Yakutia were studied. The index offluctuating asymmetry, as well as population parameters and composition of small mammal communities, were analyzed. The data on the value of the fluctuating asymmetry in the studied species in natural habitats are given. It is shown that, in natural conditions, this parameter can rise with deterioration in living conditions, particularly at the ecological periphery of the range. Anthropogenic transformation of natural landscapes creates an "anthropogenic periphery" and causes changes similar to the adaptive responses at the northern limit of the distribution of species. It was found that, through pollution and disruption of ecosystems, the mining industry affects all levels of organization of the living matter, but the population and cenotic parameters give an unambiguous response only at macroanthropogenic transformations. Increase in the level of fluctuating asymmetry is the most sensitive indicator of anthropogenic impact and it should also be taken into account that disruptions in the developmental stability of an organism reflect the destructive processes occurring in the population and community.

  17. Satellite constraint for emissions of nitrogen oxides from anthropogenic, lightning and soil sources over East China on a high-resolution grid

    Directory of Open Access Journals (Sweden)

    J.-T. Lin

    2012-03-01

    Full Text Available Vertical column densities (VCDs of tropospheric nitrogen dioxide (NO2 retrieved from space provide valuable information to estimate emissions of nitrogen oxides (NOx inversely. Accurate emission attribution to individual sources, important both for understanding the global biogeochemical cycling of nitrogen and for emission control, remains difficult. This study presents a regression-based multi-step inversion approach to estimate emissions of NOx from anthropogenic, lightning and soil sources individually for 2006 over East China on a 0.25° long × 0.25° lat grid, employing the DOMINO product version 2 retrieved from the Ozone Monitoring Instrument. The inversion is done gridbox by gridbox to derive the respective emissions, taking advantage of differences in seasonality between anthropogenic and natural sources. Lightning and soil emissions are combined together for any given gridbox due to their similar seasonality; and their different spatial distributions are used implicitly for source separation to some extent. The nested GEOS-Chem model for East Asia is used to simulate the seasonal variations of different emission sources and impacts on VCDs of NO2 for the inversion purpose. Sensitivity tests are conducted to evaluate key assumptions embedded in the inversion process. The inverse estimate suggests annual budgets of about 7.1 TgN (±39%, 0.21 TgN (±61%, and 0.38 TgN (±65% for the a posteriori anthropogenic, lightning and soil emissions, respectively, about 18–23% higher than the respective a priori values. The enhancements in anthropogenic emissions are largest in cities and areas with extensive use of coal, particularly in the north in winter, as evident on the high-resolution grid. Derived soil emissions are consistent with recent bottom-up estimates. They are less than 6% of anthropogenic emissions annually, increasing to about 13% for July. Derived lightning emissions are about 3% of

  18. Anthropogenics: human influence on global and genetic homogenization of parasite populations.

    Science.gov (United States)

    Zarlenga, Dante S; Hoberg, Eric; Rosenthal, Benjamin; Mattiucci, Simonetta; Nascetti, Giuseppe

    2014-12-01

    The distribution, abundance, and diversity of life on Earth have been greatly shaped by human activities. This includes the geographic expansion of parasites; however, measuring the extent to which humans have influenced the dissemination and population structure of parasites has been challenging. In-depth comparisons among parasite populations extending to landscape-level processes affecting disease emergence have remained elusive. New research methods have enhanced our capacity to discern human impact, where the tools of population genetics and molecular epidemiology have begun to shed light on our historical and ongoing influence. Only since the 1990s have parasitologists coupled morphological diagnosis, long considered the basis of surveillance and biodiversity studies, with state-of-the-art tools enabling variation to be examined among, and within, parasite populations. Prior to this time, populations were characterized only by phenotypic attributes such as virulence, infectivity, host range, and geographical location. The advent of genetic/molecular methodologies (multilocus allozyme electrophoresis, polymerase chain reaction-DNA [PCR-DNA] fragments analysis, DNA sequencing, DNA microsatellites, single nucleotide polymorphisms, etc.) have transformed our abilities to reveal variation among, and within, populations at local, regional, landscape, and global scales, and thereby enhanced our understanding of the biosphere. Numerous factors can affect population structure among parasites, e.g., evolutionary and ecological history, mode of reproduction and transmission, host dispersal, and life-cycle complexity. Although such influences can vary considerably among parasite taxa, anthropogenic factors are demonstrably perturbing parasite fauna. Minimal genetic structure among many geographically distinct (isolated) populations is a hallmark of human activity, hastened by geographic introductions, environmental perturbation, and global warming. Accelerating

  19. Impacts of hydrometeorological extremes in the Bohemian-Moravian Highlands in 1706–1889 as derived from taxation records

    Czech Academy of Sciences Publication Activity Database

    Dolák, Lukáš; Brázdil, Rudolf; Valášek, H.

    2015-01-01

    Roč. 120, č. 4 (2015), s. 465-488 ISSN 1212-0014 R&D Projects: GA ČR(CZ) GA13-19831S Institutional support: RVO:67179843 Keywords : historical climatology * ice-age * documentary * vulnerability * temperatures * europe * winter * hydrometeorological extremes * taxation records * damage * impacts * Bohemian-Moravian Highlands Subject RIV: EH - Ecology, Behaviour Impact factor: 0.415, year: 2015

  20. On Dangerous Anthropogenic Interference and Climate Change Risk (Invited)

    Science.gov (United States)

    Mann, M. E.

    2009-12-01

    The United Nations Framework Convention on Climate Change (UNFCCC) commits signatory nations (which includes all major nations including the United States) to stabilizing greenhouse gas concentrations at levels short of Dangerous Anthropogenic Interference (“ DAI”) with the climate. To properly define DAI, one must take into account issues that are not only scientific, but, economic, political, and ethical in nature. Defining DAI is furthermore complicated by the inter-generational and regionally-disaggregated nature of the risks associated with climate change. In this talk, I will explore the nature of anthropogenic climate change risks and the notion of DAI.

  1. 75 FR 53980 - Notice of Availability of the Record of Decision; Elk Management Plan/Environmental Impact...

    Science.gov (United States)

    2010-09-02

    ... March 8, 2010. The Preferred Alternative will make use of skilled public volunteers to assist the Park... DEPARTMENT OF THE INTERIOR National Park Service Notice of Availability of the Record of Decision; Elk Management Plan/Environmental Impact Statement for Theodore Roosevelt National Park ACTION: Notice...

  2. Anthropogenic influence of small urban watercourses - Case study from the Czech Republic

    Science.gov (United States)

    Svobodova, Eva; Jakubinsky, Jiri; Bacova, Radka; Kubicek, Petr; Herber, Vladimir

    2013-04-01

    Rivers and streams in the urban areas are losing natural environmental values. There is especially small watercourses issue, where there exists the lack of river management and interest of municipalities. The main used methods are based on the field research of river landscape, mapping and inventory of anthropogenic landforms and determination of Channel Capacity Coefficient (CCC). We establish the list of anthropogenic landforms, which we divide to the five categories - industrial, agrarian, urban, transport network, and water management structures. Values of the channel morphologic parameters - width of channel, width of riverbed, and the degree of countersink - are measured for Channel Capacity Coefficient calculation. Pattern of objects shrinking transverse profile and limiting the smooth flow are investigated beside the morphological features. Resulting from the application of these theoretical methods are several practical outputs. Firstly, we construct thematic grid cell monitoring maps (a) count of anthropogenic landforms in the floodplain; (b) weighted average of landform, whose weight was determined on the basis of their influence on the impact of floods. Secondly, we identify pattern distribution of the watercourses channel capacity in the selected study areas. Thirdly, we confirm existence of the urban stream syndrome which is characterized by consistently observed ecological degradation of brooks. The main symptoms of degradation are the altered channel morphology, occurrence of flashfloods, and the rate of ecological stability. Above mentioned characteristics were applied in two different catchments in the Czech Republic - the Leskava Brook and the Lacnovsky Brook. Both streams flow through the urban area in the diverse natural conditions and with various historical development. The Leskava Brook is situated in the southern part of Brno in the Southern Moravia, and the Lacnovsky Brook, lies in the northern part of Svitavy town on the border of Moravia

  3. Effects of anthropogenic aerosol particles on the radiation balance of the atmosphere. Einfluss anthropogener Aerosolteilchen auf den Strahlungshaushalt der Atmosphaere

    Energy Technology Data Exchange (ETDEWEB)

    Newiger, M

    1985-01-01

    The influence of aerosol particles is assessed on the basis of the changes in the climate parameters ''albedo'' and ''neutron flux''. Apart from the directly emitted particles, particles formed in the atmosphere as a result of SO/sub 2/ emissions are investigated. The model of aerosol effects on the radiation field takes account of the feedback with the microphysical parameters of the clouds. In the investigation, given particle concentrations were recalculated for three size classes using a two-dimensional transport model. The particle size distribution is described by a modified power function. Extreme-value estimates are made because the absorption capacity of anthropogenic particles is little known. A comparison of the climatic effects of anthropogenic activities shows that aerosol particles and SO/sub 2/ emissions have opposite effects on the radiation balance. (orig./PW).

  4. Seasonal and mesoscale variability of oceanic transport of anthropogenic CO2

    Directory of Open Access Journals (Sweden)

    J.-C. Dutay

    2009-11-01

    Full Text Available Estimates of the ocean's large-scale transport of anthropogenic CO2 are based on one-time hydrographic sections, but the temporal variability of this transport has not been investigated. The aim of this study is to evaluate how the seasonal and mesoscale variability affect data-based estimates of anthropogenic CO2 transport. To diagnose this variability, we made a global anthropogenic CO2 simulation using an eddy-permitting version of the coupled ocean sea-ice model ORCA-LIM. As for heat transport, the seasonally varying transport of anthropogenic CO2 is largest within 20° of the equator and shows secondary maxima in the subtropics. Ekman transport generally drives most of the seasonal variability, but the contribution of the vertical shear becomes important near the equator and in the Southern Ocean. Mesoscale variabilty contributes to the annual-mean transport of both heat and anthropogenic CO2 with strong poleward transport in the Southern Ocean and equatorward transport in the tropics. This "rectified" eddy transport is largely baroclinic in the tropics and barotropic in the Southern Ocean due to a larger contribution from standing eddies. Our analysis revealed that most previous hydrographic estimates of meridional transport of anthropogenic CO2 are severely biased because they neglect temporal fluctuations due to non-Ekman velocity variations. In each of the three major ocean basins, this bias is largest near the equator and in the high southern latitudes. In the subtropical North Atlantic, where most of the hydrographic-based estimates have been focused, this uncertainty represents up to 20% and 30% of total meridional transport of heat and CO2. Generally though, outside the tropics and Southern Ocean, there are only small variations in meridional transport due to seasonal variations in tracer fields and time variations in eddy transport. For the North Atlantic, eddy variability accounts for up to 10% and 15% of the total transport of

  5. Global anthropogenic emissions of particulate matter including black carbon

    Science.gov (United States)

    Klimont, Zbigniew; Kupiainen, Kaarle; Heyes, Chris; Purohit, Pallav; Cofala, Janusz; Rafaj, Peter; Borken-Kleefeld, Jens; Schöpp, Wolfgang

    2017-07-01

    was the most important sector, contributing about 60 % for BC and OC, 45 % for PM2. 5, and less than 40 % for PM10, where large combustion sources and industrial processes are equally important. Global anthropogenic emissions of BC were estimated at about 6.6 and 7.2 Tg in 2000 and 2010, respectively, and represent about 15 % of PM2. 5 but for some sources reach nearly 50 %, i.e. for the transport sector. Our global BC numbers are higher than previously published owing primarily to the inclusion of new sources. This PM estimate fills the gap in emission data and emission source characterization required in air quality and climate modelling studies and health impact assessments at a regional and global level, as it includes both carbonaceous and non-carbonaceous constituents of primary particulate matter emissions. The developed emission dataset has been used in several regional and global atmospheric transport and climate model simulations within the ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants) project and beyond, serves better parameterization of the global integrated assessment models with respect to representation of black carbon and organic carbon emissions, and built a basis for recently published global particulate number estimates.

  6. Global anthropogenic emissions of particulate matter including black carbon

    Directory of Open Access Journals (Sweden)

    Z. Klimont

    2017-07-01

    anthropogenic total, and residential combustion was the most important sector, contributing about 60 % for BC and OC, 45 % for PM2. 5, and less than 40 % for PM10, where large combustion sources and industrial processes are equally important. Global anthropogenic emissions of BC were estimated at about 6.6 and 7.2 Tg in 2000 and 2010, respectively, and represent about 15 % of PM2. 5 but for some sources reach nearly 50 %, i.e. for the transport sector. Our global BC numbers are higher than previously published owing primarily to the inclusion of new sources. This PM estimate fills the gap in emission data and emission source characterization required in air quality and climate modelling studies and health impact assessments at a regional and global level, as it includes both carbonaceous and non-carbonaceous constituents of primary particulate matter emissions. The developed emission dataset has been used in several regional and global atmospheric transport and climate model simulations within the ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants project and beyond, serves better parameterization of the global integrated assessment models with respect to representation of black carbon and organic carbon emissions, and built a basis for recently published global particulate number estimates.

  7. Anthropogenic and natural sources of acidity and metals and their influence on the structure of stream food webs

    International Nuclear Information System (INIS)

    Hogsden, Kristy L.; Harding, Jon S.

    2012-01-01

    We compared food web structure in 20 streams with either anthropogenic or natural sources of acidity and metals or circumneutral water chemistry in New Zealand. Community and diet analysis indicated that mining streams receiving anthropogenic inputs of acidic and metal-rich drainage had much simpler food webs (fewer species, shorter food chains, less links) than those in naturally acidic, naturally high metal, and circumneutral streams. Food webs of naturally high metal streams were structurally similar to those in mining streams, lacking fish predators and having few species. Whereas, webs in naturally acidic streams differed very little from those in circumneutral streams due to strong similarities in community composition and diets of secondary and top consumers. The combined negative effects of acidity and metals on stream food webs are clear. However, elevated metal concentrations, regardless of source, appear to play a more important role than acidity in driving food web structure. - Highlights: ► Food webs in acid mine drainage impacted streams are small and extremely simplified. ► Conductivity explained differences in food web properties between streams. ► Number of links and web size accounted for much dissimilarity between food webs. ► Food web structure was comparable in naturally acidic and circumneutral streams. - Food web structure differs in streams with anthropogenic and natural sources of acidity and metals.

  8. Anthropogenic heat fluxes over Moscow agglomeration and other Russian and world cities

    Science.gov (United States)

    Belova, Iya; Ginzburg, Alexander

    2010-05-01

    Urbanization, particularly with respect to its sustainability, remains to be a great challenge in all regions of the world. Urbanization has an influence on soils, hydrology, and climate, these changes have effect on global climate, pollution, increase of anthropogenic greenhouse gases in the earth's atmosphere and human health. Thus anthropogenic heat flux is an important factor for estimation of development of global climate. The simple formula for anthropogenic heat fluxes (AHF) was proposed in the EGU General Assembly 2008 presentation [1] AHF = k × PD × EC, were PD is urban population density and EC is total energy consumption per capita. It was estimated that two of the world megacities - Seoul and Moscow - have the highest AHF values - 83 and 56 W/m2 correspondently. In presented paper it was studied the reasons of such high anthropogenic heat fluxes within Moscow region as well as AHF over the major Russian cities. It was shown that main reason of this circumstance is the administrative divisions in Moscow region. Moscow is ringed by Moscow circle motor road. Accordingly the city has sharply defined boundaries and densely populated residential suburbs are cut off and don't included in Moscow city administrative area. It was constructed the special graph to illuminate why Moscow city has such a high anthropogenic heat factor and how much Moscow agglomeration AHF could be if consider not only Moscow city itself but also the nearest suburb towns. Using the data from World Bank [2] and Russian governmental statistic agency [3] anthropogenic heat fluxes for Russian cities with population more than 500 000 were estimated. Energy consumption data for different Russian regions were calculated by special routine using in the Web-atlas [4]. This research is supported by RAS Fundamental Research Project 'Influence of anthropogenic heat fluxes and aerosol pollution on heat balance and climate of urbanized areas'. Other results of this project is presented in paper [5

  9. Anthropogenic shift of planktonic food web structure in a coastal lagoon by freshwater flow regulation

    Science.gov (United States)

    Hemraj, Deevesh A.; Hossain, A.; Ye, Qifeng; Qin, Jian G.; Leterme, Sophie C.

    2017-03-01

    Anthropogenic modification of aquatic systems has diverse impacts on food web interactions and ecosystem states. To reverse the adverse effects of modified freshwater flow, adequate management of discharge is required, especially due to higher water requirements and abstractions for human use. Here, we look at the effects of anthropogenically controlled freshwater flow regimes on the planktonic food web of a Ramsar listed coastal lagoon that is under recovery from degradation. Our results show shifts in water quality and plankton community interactions associated to changes in water flow. These shifts in food web interactions represent modifications in habitat complexity and water quality. At high flow, phytoplankton-zooplankton interactions dominate the food web. Conversely, at low flow, bacteria, viruses and nano/picoplankton interactions are more dominant, with a substantial switch of the food web towards heterotrophy. This switch can be associated with excess organic matter loading, decomposition of dead organisms, and synergistic and antagonistic interactions. We suggest that a lower variability in flow amplitude could be beneficial for the long-term sustaining of water quality and food web interactions, while improving the ecosystem health of systems facing similar stresses as the Coorong.

  10. Anthropogenic Cycles of Rare Earth Elements

    Science.gov (United States)

    Du, X.; Graedel, T. E.

    2009-12-01

    This research will develop quantitatively resolved anthropogenic cycles and in-use stocks for the rare earth metals specifically cerium, lanthanum and dysprosium in Japan, China, and the U.S. for the year of 2007. Rare earth elements (REE) is a group of 17 scare metals widely used in a growing number of emerging technologies and have been in high demand for emerging technologies as raw materials during past the three decades. New market participants from newly industrializing countries, primarily China, have had strong impacts on the demand of share. Consequently, the importance to sustain a reliable, steady, uninterrupted supply on global market triggered comprehensive research to recognize and understand the life cycles of rare earths. Moreover, because China plays a dominant role in mining production since 1990, it requires the assessment for the countries, which are almost completely dependent on imports from China with respect to rare earth resources. The study aims to analyze the flows and stocks of rare earth elements individually as elemental form in spite of their natural geological co-occurrence and mixed composition in applications. By applying the method of Material Flow Analysis (MFA) work has been done on evaluating current and historical flows of specific technologically significant materials, for example, copper, zinc, nickel, etc., determining the stocks available in different types of reservoirs (e.g., lithosphere, in-use) and the flows among the reservoirs, developing scenarios of possible futures of metal use, and assessing the environmental and policy implications of the results. Therefore, REE as a new target deserves inclusion because of its potential demand-supply conflict and importance to secure the competitive advantage of technical innovation in future. This work will generate a quantitatively resolved anthropogenic life cycle and in-use stocks for REE for the main target countries for a chosen year, 2007, providing flows and stocks from

  11. Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean

    OpenAIRE

    伊藤, 彰記; 時, 宗波; ITO, Akinori; SHI, Zongbo

    2016-01-01

    Atmospheric deposition of anthropogenic soluble iron (Fe) to the ocean has been suggested to modulate primary ocean productivity and thus indirectly affect the climate. A key process contributing to anthropogenic sources of soluble Fe is associated with air pollution, which acidifies Fe-containing mineral aerosols during their transport and leads to Fe transformation from insoluble to soluble forms. However, there is large uncertainty in our estimate of this anthropogenic soluble Fe. In this ...

  12. Long-term Increases in Flower Production by Growth Forms in Response to Anthropogenic Change in a Tropical Forest

    Science.gov (United States)

    Pau, S.; Wright, S. J.

    2016-12-01

    There is mounting evidence that anthropogenic global change is altering the ecology of tropical forests. A limited number of studies have focused on long-term trends in tropical reproductive activity, yet differences in reproductive activity should have consequences for demography and ultimately forest carbon, water, and energy balance. Here we analyze a 28-year record of tropical flower production in response to anthropogenic climate change. We show that a multi-decadal increase in flower production is most strongly driven by rising atmospheric CO2, which had approximately 8x the effect of the Multivariate ENSO Index and approximately 13x the effect of rainfall or solar radiation. Interannual peaks in flower production were associated with greater solar radiation and low rainfall during El Niño years. Observed changes in solar radiation explained flower production better than rainfall (models including solar radiation accounted for 94% of cumulative AICc weight compared to 87% for rainfall). All growth forms (lianas, canopy trees, midstory trees, and shrubs) produced more flowers with increasing CO2 except for understory treelets. The increase in flower production was matched by a lengthening of flowering duration for canopy trees and midstory trees; duration was also longer for understory treelets. Given that anthropogenic CO2 emissions will continue to climb over the next century, the long-term increase in flower production may persist unless offset by increasing cloudiness in the tropics, or until rising CO2 and/or warming temperatures associated with the greenhouse effect pass critical thresholds for plant reproduction.

  13. Small Boreal Lake Ecosystem Evolution under the Influence of Natural and Anthropogenic Factors: Results of Multidisciplinary Long-Term Study

    Directory of Open Access Journals (Sweden)

    Liudmila Shirokova

    2016-07-01

    Full Text Available Small aquatic ecosystems of the boreal zone are known to be most sensitive indicators of on-going environmental change as well as local anthropogenic pressure, while being highly vulnerable to external impacts. Compared to rather detailed knowledge of the evolution of large and small lakes in Scandinavia and Canada, and large lakes in Eurasia, highly abundant small boreal lakes of northwest Russia have received very little attention, although they may become important centers of attraction of growing rural population in the near future. Here we present the results of a multidisciplinary, multi-annual study of a small boreal humic lake of NW Russia. A shallow (3 m and a deep (16 m site of this lake were regularly sampled for a range of chemical and biological parameters. Average multi-daily, summer-time values of the epilimnion (upper oxygenated layer of the lake provided indications of possible trends in temperature, nutrients, and bacterio-plankton concentration that revealed the local pollution impact in the shallow zone and overall environmental trend in the deep sampling point of the lake. Organic phosphorus, nitrate, and lead were found to be most efficient tracers of local anthropogenic pollution, especially visible in the surface layer of the shallow site of the lake. Cycling of trace elements between the epilimnion and hypolimnion is tightly linked to dissolved organic matter speciation and size fractionation due to the dominance of organic and organo-ferric colloids. The capacity of lake self-purification depends on the ratio of primary productivity to mineralization of organic matter. This ratio remained >1 both during winter and summer periods, which suggests a high potential of lake recovery from the input of allochthonous dissolved organic matter and local anthropogenic pollution.

  14. Sensitivity of air pollution simulations with LOTOS-EUROS to temporal distribution of anthropogenic emissions

    Science.gov (United States)

    Mues, A.; Kuenen, J.; Hendriks, C.; Manders, A.; Segers, A.; Scholz, Y.; Hueglin, C.; Builtjes, P.; Schaap, M.

    2013-07-01

    In this study the sensitivity of the model performance of the chemistry transport model (CTM) LOTOS-EUROS to the description of the temporal variability of emissions was investigated. Currently the temporal release of anthropogenic emissions is described by European average diurnal, weekly and seasonal time profiles per sector. These default time profiles largely neglect the variation of emission strength with activity patterns, region, species, emission process and meteorology. The three sources dealt with in this study are combustion in energy and transformation industries (SNAP1), non-industrial combustion (SNAP2) and road transport (SNAP7). First the impact of neglecting the temporal emission profiles for these SNAP categories on simulated concentrations was explored. In a~second step, we constructed more detailed emission time profiles for the three categories and quantified their impact on the model performance separately as well as combined. The performance in comparison to observations for Germany was quantified for the pollutants NO2, SO2 and PM10 and compared to a simulation using the default LOTOS-EUROS emission time profiles. In general the largest impact on the model performance was found when neglecting the default time profiles for the three categories. The daily average correlation coefficient for instance decreased by 0.04 (NO2), 0.11 (SO2) and 0.01 (PM10) at German urban background stations compared to the default simulation. A systematic increase of the correlation coefficient is found when using the new time profiles. The size of the increase depends on the source category, the component and station. Using national profiles for road transport showed important improvements of the explained variability over the weekdays as well as the diurnal cycle for NO2. The largest impact of the SNAP1 and 2 profiles were found for SO2. When using all new time profiles simultaneously in one simulation the daily average correlation coefficient increased by 0

  15. Research on the daily activity of the stone marten (Martes foina erxl. in anthropogenically influenced habitats in Bulgaria

    Directory of Open Access Journals (Sweden)

    Georgi S. Dudin

    2016-12-01

    Full Text Available The study was done on a kind of a small predator by digital photo cameras in three remote geographic areas. There have been 709 photos of stone marten (Martes foina, of which 518 in Sinite Kamani Nature Park, 118 in State Hunting Department "Chepino" and 75 in anthropogenically influenced habitats in the villages of Byga and Isperihovo. By analyzing the daily activity of the species is recorded night or twilight activity between 17 and 7:00 hours (morning, evening or night. In the time interval between 07-17 during the day, the activity of the type is not registered.

  16. Problems of anthropogenic tritium limitation

    Directory of Open Access Journals (Sweden)

    Kochetkov О.A.

    2013-12-01

    Full Text Available This article contains the current situation in respect to the environmental concentrations of anthropogenic and natural tritium. There are presented and analyzed domestic standards for НТО of all Radiation Safety Standards (NRB, as well as the regulations analyzed for tritium in drinking water taken in other countries today. This article deals with the experience of limitation of tritium and focuses on the main problem of rationing of tritium — rationing of organically bound tritium.

  17. Anthropogenic and natural CO2 exchange through the Strait of Gibraltar

    Directory of Open Access Journals (Sweden)

    J. Ruíz

    2009-04-01

    Full Text Available The exchange of both anthropogenic and natural inorganic carbon between the Atlantic Ocean and the Mediterranean Sea through Strait of Gibraltar was studied for a period of two years under the frame of the CARBOOCEAN project. A comprehensive sampling program was conducted, which was design to collect samples at eight fixed stations located in the Strait in successive cruises periodically distributed through the year in order to ensure a good spatial and temporal coverage. As a result of this monitoring, a time series namely GIFT (GIbraltar Fixed Time series has been established, allowing the generation of an extensive data set of the carbon system parameters in the area. Data acquired during the development of nine campaigns were analyzed in this work. Total inorganic carbon concentration (CT was calculated from alkalinity-pHT pairs and appropriate thermodynamic relationships, with the concentration of anthropogenic carbon (CANT being also computed using two methods, the ΔC* and the TrOCA approach. Applying a two-layer model of water mass exchange through the Strait and using a value of −0.85 Sv for the average transport of the outflowing Mediterranean water recorded in situ during the considered period, a net export of inorganic carbon from the Mediterranean Sea to the Atlantic was obtained, which amounted to 25±0.6 Tg C yr−1. A net alkalinity output of 16±0.6 Tg C yr−1 was also observed to occur through the Strait. In contrast, the Atlantic water was found to contain a higher concentration of anthropogenic carbon than the Mediterranean water, resulting in a net flux of CANT towards the Mediterranean basin of 4.20±0.04 Tg C yr−1 by using the ΔC* method, which constituted the most adequate approach for this environment. A carbon balance in the Mediterranean was assessed and fluxes through the Strait are discussed in relation to the highly diverse estimates available in the literature for the area and the different approaches

  18. Effect of coupled anthropogenic perturbations on stratospheric ozone

    International Nuclear Information System (INIS)

    Wuebbles, D.J.; Luther, F.M.; Penner, J.E.

    1992-01-01

    Since 1976 the greatest concern about potential perturbations to stratospheric ozone has been in regard to the atmospheric release of chlorofluorocarbons. Consequently, atmospheric measurements of ozone have usually been compared with model calculations in which only chlorocarbon perturbations are considered. However, in order to compare theoretical calculations with recent measurements of ozone and to project expected changes to atmospheric ozone levels over the next few decades, one must consider the effect from other perturbations as well. In this paper, the authors consider the coupling between several possible anthropogenic atmospheric perturbations. Namely, they examine the effects of past and possible future increases of chlorocarbons, CO 2 , N 2 O, and NO x . The focus of these calculations is on the potential changes in ozone due to chlorocarbon emissions, how other anthropogenic perturbations may have influenced the actual change in ozone over the last decade, and how these perturbations may influence future changes in ozone. Although calculations including future chlorocarbon emissions alone result in significant reductions in ozone, there is very little change in total ozone over the coming decades when other anthropogenic sources are included. Increasing CO 2 concentrations have the largest offsetting effect on the change in total ozone due to chlorocarbons. Owing to the necessity of considering emissions from a number of trace gases simultaneously, determining expected global-scale chemical and climatic effects is more complex than was previously recognized

  19. The influence of natural and anthropogenic secondary sources on the glyoxal global distribution

    International Nuclear Information System (INIS)

    Myriokefalitakis, S.; Kanakidou, M.; Vrekoussis, M.; Wittrock, F.; Richter, A.; Burrows, J.P.; Tsigaridis, K.; Bruhl, C.; Volkamer, R.

    2008-01-01

    Glyoxal, the smallest dicarbonyl, which has recently been observed from space, is expected to provide indications on volatile organic compounds (VOC) oxidation and secondary aerosol formation in the troposphere. Glyoxal (CHOCHO) is known to be mostly of natural origin and is produced during biogenic VOC oxidation. However, a number of anthropogenically emitted hydrocarbons, like acetylene and aromatics, have been positively identified as CHOCHO precursors. The present study investigates the contribution of pollution to the CHOCHO levels by taking into account the secondary chemical formation of CHOCHO from precursors emitted from biogenic, anthropogenic and biomass burning sources. The impact of potential primary land emissions of CHOCHO is also investigated. A global 3-dimensional chemistry transport model of the troposphere (TM4-ECPL) able to simulate the gas phase chemistry coupled with all major aerosol components is used. The secondary anthropogenic contribution from fossil fuel and industrial VOCs emissions oxidation to the CHOCHO columns is found to reach 20-70% in the industrialized areas of the Northern Hemisphere and 3-20% in the tropics. This secondary CHOCHO source is on average three times larger than that from oxidation of VOCs from biomass burning sources. The chemical production of CHOCHO is calculated to equal to about 56 Tgy -1 with 70% being produced from biogenic hydrocarbons oxidation, 17% from acetylene, 11% from aromatic chemistry and 2% from ethene and propene. CHOCHO is destroyed in the troposphere primarily by reaction with OH radicals (23%) and by photolysis (63%), but it is also removed from the atmosphere through wet (8%) and dry deposition (6%). Potential formation of secondary organic aerosol through CHOCHO losses on/in aerosols and clouds is neglected here due to the significant uncertainties associated with the underlying chemistry. The global annual mean CHOCHO burden and lifetime in the model domain are estimated to be 0.02 Tg

  20. Central Asian supra-glacier snow melt enhanced by anthropogenic black carbon

    Science.gov (United States)

    Schmale, Julia; Flanner, Mark; Kang, Shichang; Sprenger, Michael; Farinotti, Daniel; Zhang, Qianggong; Guo, Junming; Li, Yang; Lawrence, Mark; Schwikowski, Margit

    2016-04-01

    In Central Asia, more than 60 % of the population depends on water stored in glaciers and mountain snow. Densely populated areas near lower-lying mountain ranges are particularly vulnerable and a recent study showed that the region might lose 50 % of its glacier mass by 2050. While temperature, precipitation and dynamic processes are key drivers of glacial change, deposition of light absorbing impurities such as mineral dust and black carbon can lead to accelerated melting through surface albedo reduction. Here, we discuss the origin of deposited mineral dust and black carbon and their impacts on albedo change and snow melt. 218 snow samples were taken on 4 glaciers, Abramov (Pamir), Suek, Glacier No. 354 and Golubin (Tien Shan), representing deposition between summer 2012 and 2014. They were analyzed for elemental carbon, mineral dust and iron among other parameters. We find the elemental carbon concentration to be at the higher end of the range reported for neighboring mountain ranges between 70 and 502 ng g-1 (interquartile range). To investigate the origin of the snow impurities, we used a Lagrangian particle dispersion model, LAGRANTO. Back trajectory ensembles of 40 members with varied starting points to capture the meteorological spread were released every 6 hours for the covered period at all sites. "Footprints" were calculated and combined with emission inventories to estimate the relative contribution of anthropogenic and natural BC to deposited aerosol on the glaciers. We find that more than 94 % of BC is of anthropogenic origin and the major source region is Central Asia followed by the Middle East. Further exploring the implications of mineral dust and BC deposition, we calculate the snow albedo reduction with the Snow-Ice-Aerosol-Radiative model (SNICAR). Even though mineral dust concentrations were up to a factor of 50 higher than BC concentrations, BC dominates the albedo reduction. Using these results we calculate the snow melt induced by

  1. Slower CCN growth kinetics of anthropogenic aerosol compared to biogenic aerosol observed at a rural site

    Science.gov (United States)

    Shantz, N. C.; Chang, R. Y.-W.; Slowik, J. G.; Vlasenko, A.; Abbatt, J. P. D.; Leaitch, W. R.

    2010-01-01

    Growth rates of water droplets were measured with a static diffusion cloud condensation chamber in May-June 2007 at a rural field site in Southern Ontario, Canada, 70 km north of Toronto. The observations include periods when the winds were from the south and the site was impacted by anthropogenic air from the U.S. and Southern Ontario as well as during a 5-day period of northerly wind flow when the aerosol was dominated by biogenic sources. The growth of droplets on anthropogenic size-selected particles centred at 0.1 μm diameter and composed of approximately 40% organic and 60% ammonium sulphate (AS) by mass, was delayed by on the order of 1 s compared to a pure AS aerosol. Simulations of the growth rate on monodisperse particles indicate that a lowering of the water mass accommodation coefficient from αc=1 to an average of αc=0.04 is needed (assuming an insoluble organic with hygroscopicity parameter, κorg, of zero). Simulations of the initial growth rate on polydisperse anthropogenic particles agree best with observations for αc=0.07. In contrast, the growth rate of droplets on size-selected aerosol of biogenic character, consisting of >80% organic, was similar to that of pure AS. Simulations of the predominantly biogenic polydisperse aerosol show agreement between the observations and simulations when κorg=0.2 (with upper and lower limits of 0.5 and 0.07, respectively) and αc=1. Inhibition of water uptake by the anthropogenic organic applied to an adiabatic cloud parcel model in the form of a constant low αc increases the number of droplets in a cloud compared to pure AS. If the αc is assumed to increase with increasing liquid water on the droplets, then the number of droplets decreases which could diminish the indirect climate forcing effect. The slightly lower κorg in the biogenic case decreases the number of droplets in a cloud compared to pure AS.

  2. Are erosion regimes in SE Australian forests responding to anthropogenic climate change?

    Science.gov (United States)

    Nyman, P.; Rutherfurd, I.; Lane, P. N. J.; Sheridan, G. J.

    2017-12-01

    In southeast Australia a series of exceptional climate events over the last decade have resulted in widespread debris flow activity across the region. The Millennium Drought (1996-2010), extreme fire-weather and record breaking rainfall in the La Nina year of 2011 have all contributed to an intensification of processes such as runoff production and mass failures that lead to debris flows. Debris flows in landmark locations such as the Grampians and Wilsons Promontory National Parks in 2011 were triggered by mass failure as a result of large volumes of intense summer rainfall. Runoff generated debris flows in burned areas have been occurring regularly and in large numbers along the East Coast Dividing Range from the Warrumbungle Mountains (New South Wales) in the north to Kinglake (Victoria) in the south. In northeast Victoria debris flows have been delivering sediment to the Ovens River following wildfires in 2003, 2007, 2009 and in 2013. The impact of these erosion events on infrastructure, water quality and aquatic ecosystems are considerable and important questions are emerging around i) how frequently events have occurred in the past, ii) the importance of fire as a geomorphic agent, and iii) the effects of climate change on erosion regimes. In this paper we investigate the conditions under which these debris flows occurred, and examine the underlying climatic events in context of historical records. Using data on rainfall distributions and fire history dating back to the 1960s we quantify the frequency with which catchments are primed for extreme erosion events. With these data we begin to speculate on whether or not current catchment conditions (e.g. soil depths, colluvial storage and accumulation rate) is consistent with the erosion regimes we observe. The broader aim of our research is to quantify debris flow thresholds using geophysical response models and use these models to determine the sensitivity of debris flow frequency to climatic forcing. In the

  3. Seminar Investigation of the effect of anthropogenic factors on water systems

    International Nuclear Information System (INIS)

    2004-01-01

    The present CD contains 59 presentations, presented on the seminar Investigation of the anthropogenic factors effect on water systems, held in Bratislava, Slovakia, 23-24 April 2003. The content of this Proceedings is divided into thematic groups: Precipitation, Global Climatic Changes, Rainfall-runoff Modelling, design Values; Quality of Water in Water streams; River Basin Management; Water Retention in River Basins, Effect of Forests, Urban Areas, River Training; Hydraulic Modelling of Flood Flow, Flood Plain Areas, Flood Maps; Sediment Transport in relation with Flood Discharges; Diffuse Sources of Pollution, Point Sources in River Basin; Surface Water and Groundwater Interaction; GIS Utilization for Problem Solution. Water management indirectly influences by its activities the social and economic development of Slovakia. Water as raw material for drinking water production as well as vital liquid and raw material enter almost all manufacturing processes. But water become also a destructive element that hit different locations of Slovak territory and cause damages on people and live animals as well as material damages. In economic utilizing of water and handling water, drainage and treatment, the principle of minimising negative impacts on the environment must be exercised having in mind sustaining, in for the future generations.Water management is struggling with a number of problems at the moment. The project Investigation of the anthropogenic factors effect on water systems is aiming to solve the most important issues like are surface and subsurface run, retention capacity of river basin. quality of surface and ground water, water interaction and other

  4. The influence of climatic and anthropogenic factors on hydrological regime of rivers at the south of Krasnoyarsk Krai

    Directory of Open Access Journals (Sweden)

    T. A. Burenia

    2018-04-01

    Full Text Available Despite a large number of publications covering various aspects of the influence of climatic factors on runoff, this direction in hydrological research acquires a new meaning in connection with the increase in anthropogenic pressure on river systems. In order to identify regional and local features of the hydrological regime of the rivers in Sayan mountain region, the spatial and temporal dynamics of runoff of the main rivers in the study area were analyzed; the analysis of river flow trends against the backdrop of climate change and forest management in the drain areas was performed. Studies have shown that the revealed trends in the annual runoff of the studied rivers differ in type and in magnitude. The hydrological regime of the rivers with the negative trend of annual runoff is determined by the general nature of the humidification of the territory, which overrides the influence of all other factors. Despite a general trend of decreasing precipitation, the positive trend of annual runoff is due to a decrease in evaporation in the drainage areas, which depends both on the temperature regime of the research area and on the anthropogenic transformation of forest vegetation under logging impact. In spite of the considerable variability of annual river flow, trends in runoff coefficients for study rivers vary slightly, indicating the relative stability in water availability. This is due to cumulative effect of anthropogenic transformation of forest vegetation in the drainage areas, i.e. new felling, regeneration on logging sites and creating forest crops. Obtained results show that at the regional level in conditions of anthropogenic pressure on the forests in the drainage areas of medium and small rivers, the trends of climatic parameters, in particular precipitation, are offset by the forest harvesting and subsequent reforestation dynamics at clear cuts.

  5. Improving regional climate and hydrological forecasting following the record setting flooding across the Lake Ontario - St. Lawrence River system

    Science.gov (United States)

    Gronewold, A.; Seglenieks, F.; Bruxer, J.; Fortin, V.; Noel, J.

    2017-12-01

    In the spring of 2017, water levels across Lake Ontario and the upper St. Lawrence River exceeded record high levels, leading to widespread flooding, damage to property, and controversy over regional dam operating protocols. Only a few years earlier, water levels on Lakes Superior, Michigan, and Huron (upstream of Lake Ontario) had dropped to record low levels leading to speculation that either anthropogenic controls or climate change were leading to chronic water loss from the Great Lakes. The contrast between low water level conditions across Earth's largest lake system from the late 1990s through 2013, and the rapid rise prior to the flooding in early 2017, underscores the challenges of quantifying and forecasting hydrologic impacts of rising regional air and water temperatures (and associated changes in lake evaporation) and persistent increases in long-term precipitation. Here, we assess the hydrologic conditions leading to the recent record flooding across the Lake Ontario - St. Lawrence River system, with a particular emphasis on understanding the extent to which those conditions were consistent with observed and anticipated changes in historical and future climate, and the extent to which those conditions could have been anticipated through improvements in seasonal climate outlooks and hydrological forecasts.

  6. The observed influence of local anthropogenic pollution on northern Alaskan cloud properties

    Directory of Open Access Journals (Sweden)

    M. Maahn

    2017-12-01

    Full Text Available Due to their importance for the radiation budget, liquid-containing clouds are a key component of the Arctic climate system. Depending on season, they can cool or warm the near-surface air. The radiative properties of these clouds depend strongly on cloud drop sizes, which are governed in part by the availability of cloud condensation nuclei. Here, we investigate how cloud drop sizes are modified in the presence of local emissions from industrial facilities at the North Slope of Alaska. For this, we use aircraft in situ observations of clouds and aerosols from the 5th Department of Energy Atmospheric Radiation Measurement (DOE ARM Program's Airborne Carbon Measurements (ACME-V campaign obtained in summer 2015. Comparison of observations from an area with petroleum extraction facilities (Oliktok Point with data from a reference area relatively free of anthropogenic sources (Utqiaġvik/Barrow represents an opportunity to quantify the impact of local industrial emissions on cloud properties. In the presence of local industrial emissions, the mean effective radii of cloud droplets are reduced from 12.2 to 9.4 µm, which leads to suppressed drizzle production and precipitation. At the same time, concentrations of refractory black carbon and condensation nuclei are enhanced below the clouds. These results demonstrate that the effects of anthropogenic pollution on local climate need to be considered when planning Arctic industrial infrastructure in a warming environment.

  7. Mapping 1995 global anthropogenic emissions of mercury

    NARCIS (Netherlands)

    Pacyna, Jozef M.; Pacyna, Elisabeth G.; Steenhuisen, Frits; Wilson, Simon

    2003-01-01

    This paper presents maps of anthropogenic Hg emissions worldwide within a 1degrees x 1degrees latitude/longitude grid system in 1995. As such, the paper is designed for modelers simulating the Hg transport within air masses and Hg deposition to aquatic and terrestrial ecosystems. Maps of total Hg

  8. Major anthropogenic causes for and outcomes of wild animal presentation to a wildlife clinic in East Tennessee, USA, 2000-2011.

    Directory of Open Access Journals (Sweden)

    Ashley N Schenk

    Full Text Available To determine the reasons for presentation and outcome of wildlife cases in East Tennessee, a retrospective analysis was performed using 14,303 records from cases presented to the wildlife clinic of the University of Tennessee Veterinary Teaching Hospital between 2000 and 2011. The cases were first categorized into amphibian/non-avian reptile, mammal, or avian and then classified into groups based on the primary admitting/presenting sign. There are a variety of reasons animals were presented to the clinic, and some were directly or indirectly anthropogenic in origin, including cat related, dog related, hit by automobile, and other human encounters leading to trauma; of the cases reviewed, 4,443 (31.1% presented for one of these 4 reasons. Overall case fatality risk in regard to these 4 admitting/presenting signs was 0.519 for the amphibian/non-avian reptile cases, 0.675 for mammal cases, and 0.687 for avian cases. This study confirms the importance of monitoring wildlife morbidity and mortality and of focusing efforts to reduce the anthropogenic threat on native habitats and resident wildlife populations.

  9. Impact of errors in recorded compressed breast thickness measurements on volumetric density classification using volpara v1.5.0 software

    OpenAIRE

    Waade, G; Highnam, R; Hauge, I; McEntee, M; Hofvind, S; Denton, E; Kelly, J; Sarwar, J; Hogg, P

    2016-01-01

    Purpose: Mammographic density has been demonstrated to predict breast cancer risk. It has been proposed that it could be used for stratifying screening pathways and recommending additional imaging. Volumetric density tools use the recorded compressed breast thickness (CBT) of the breast measured at the x-ray unit in their calculation, however the accuracy of the recorded thickness can vary. The aim of this study was to investigate whether inaccuracies in recorded CBT impact upon volumetric de...

  10. The pattern of anthropogenic signal emergence in Greenland Ice Sheet surface mass balance

    NARCIS (Netherlands)

    Fyke, J.G.; Vizcaino, M.; Lipscomb, W.H.

    2014-01-01

    Surface mass balance (SMB) trends influence observed Greenland Ice Sheet (GrIS) mass loss, but the component of these trends related to anthropogenic forcing is unclear. Here we study the simulated spatial pattern of emergence of an anthropogenically derived GrIS SMB signal between 1850 and 2100

  11. Responses of nitrogen and carbon deposition rates in Comau Fjord (42°S, southern Chile) to natural and anthropogenic impacts during the last century

    Science.gov (United States)

    Mayr, Christoph; Rebolledo, Lorena; Schulte, Katharina; Schuster, Astrid; Zolitschka, Bernd; Försterra, Günter; Häussermann, Verena

    2014-04-01

    Carbon isotopes and C/N ratios are frequently used to separate allochthonous and autochthonous organic matter input into marine shelf sediments. We test the applicability of this approach for the sediment record from Comau Fjord in southern Chile (42°S) with the aim to reconstruct carbon and nitrogen mass accumulation rates and to determine their allochthonous and autochthonous sources for the last century. Comparisons with isotopic and geochemical signatures of potential organic matter sources demonstrate that mixtures between terrigenous soil and peat on the one hand and marine planktonic organic matter on the other hand readily explain variations of organic carbon (δ13Corg) and nitrogen (δ15N) isotopes as well as in C/N and N/C ratios and explain differences in absolute values of these parameters along a transect of cores. Nitrogen mass accumulation rates, calculated from δ15N and C/N ratio, and carbon mass accumulation rates, calculated from δ13Corg and N/C ratios of terrigenous organic matter, varied considerably less compared to those of autochthonous planktonic organic matter. Autochthonous carbon accumulation rates increased from between 1.2 and 5.2 g m-2 a-1 at the beginning of the last century to values between 21.5 and 29.9 g m-2 a-1 around the turn of the millennium. Even if the highest amount of diagenetic degradation is considered the mass accumulation rates increased by at least a factor of 2 within the last decades of the 20th century. The reasons for such a shift in primary productivity are discussed (1) in terms of recent climatic change in northwestern Patagonia possibly having lowered fluvial inflow into Comau Fjord and (2) in relation to anthropogenic eutrophication by rapidly expanding aquaculture. Given that allochthonous mass-accumulation rates remained fairly constant, we conclude that anthropogenic eutrophication caused by aquaculture is the more likely explanation for increased carbon and nitrogen accumulation rates in the last two

  12. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms.

    Science.gov (United States)

    Orr, James C; Fabry, Victoria J; Aumont, Olivier; Bopp, Laurent; Doney, Scott C; Feely, Richard A; Gnanadesikan, Anand; Gruber, Nicolas; Ishida, Akio; Joos, Fortunat; Key, Robert M; Lindsay, Keith; Maier-Reimer, Ernst; Matear, Richard; Monfray, Patrick; Mouchet, Anne; Najjar, Raymond G; Plattner, Gian-Kasper; Rodgers, Keith B; Sabine, Christopher L; Sarmiento, Jorge L; Schlitzer, Reiner; Slater, Richard D; Totterdell, Ian J; Weirig, Marie-France; Yamanaka, Yasuhiro; Yool, Andrew

    2005-09-29

    Today's surface ocean is saturated with respect to calcium carbonate, but increasing atmospheric carbon dioxide concentrations are reducing ocean pH and carbonate ion concentrations, and thus the level of calcium carbonate saturation. Experimental evidence suggests that if these trends continue, key marine organisms--such as corals and some plankton--will have difficulty maintaining their external calcium carbonate skeletons. Here we use 13 models of the ocean-carbon cycle to assess calcium carbonate saturation under the IS92a 'business-as-usual' scenario for future emissions of anthropogenic carbon dioxide. In our projections, Southern Ocean surface waters will begin to become undersaturated with respect to aragonite, a metastable form of calcium carbonate, by the year 2050. By 2100, this undersaturation could extend throughout the entire Southern Ocean and into the subarctic Pacific Ocean. When live pteropods were exposed to our predicted level of undersaturation during a two-day shipboard experiment, their aragonite shells showed notable dissolution. Our findings indicate that conditions detrimental to high-latitude ecosystems could develop within decades, not centuries as suggested previously.

  13. Ultra-High Foraging Rates of Harbor Porpoises Make Them Vulnerable to Anthropogenic Disturbance.

    Science.gov (United States)

    Wisniewska, Danuta Maria; Johnson, Mark; Teilmann, Jonas; Rojano-Doñate, Laia; Shearer, Jeanne; Sveegaard, Signe; Miller, Lee A; Siebert, Ursula; Madsen, Peter Teglberg

    2016-06-06

    The question of how individuals acquire and allocate resources to maximize fitness is central in evolutionary ecology. Basic information on prey selection, search effort, and capture rates are critical for understanding a predator's role in its ecosystem and for predicting its response to natural and anthropogenic disturbance. Yet, for most marine species, foraging interactions cannot be observed directly. The high costs of thermoregulation in water require that small marine mammals have elevated energy intakes compared to similar-sized terrestrial mammals [1]. The combination of high food requirements and their position at the apex of most marine food webs may make small marine mammals particularly vulnerable to changes within the ecosystem [2-4], but the lack of detailed information about their foraging behavior often precludes an informed conservation effort. Here, we use high-resolution movement and prey echo recording tags on five wild harbor porpoises to examine foraging interactions in one of the most metabolically challenged cetacean species. We report that porpoises forage nearly continuously day and night, attempting to capture up to 550 small (3-10 cm) fish prey per hour with a remarkable prey capture success rate of >90%. Porpoises therefore target fish that are smaller than those of commercial interest, but must forage almost continually to meet their metabolic demands with such small prey, leaving little margin for compensation. Thus, for these "aquatic shrews," even a moderate level of anthropogenic disturbance in the busy shallow waters they share with humans may have severe fitness consequences at individual and population levels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Trace elements records from vermetids aragonite as millennial paleo-oceanographic archives in the South-East Mediterranean

    Science.gov (United States)

    Jacobson, Yitzhak; Yam, Ruth; Shemesh, Aldo

    2017-04-01

    The Mediterranean Sea is a region under high anthropogenic stress, thus a hotspot for climate change studies. Natural conditions, such as SST, productivity, precipitation and dust fluxes along with human induced activity affect seawater chemistry. We study millennial variability of trace elements in East Mediterranean Sea high-resolution records, in attempt to connect them to environmental factors. The Mediterranean reef builder Vermetid, D. petraeum is a sessile gastropod, secreting its aragonite shells in tidal zones. Cores of Vermetid reefs from the South Eastern Mediterranean (Israel) were previously analyzed by Sisma?Ventura et al. (2014) to reconstruct seawater surface temperature (SST) and δ13C of dissolved inorganic carbon (DIC). In this study we analyzed trace elements of these vermetid cores, and reconstructed millennial records of elements to calcium (el/Ca) molar ratios. Vermetid trace element contents from recent decades are mostly in agreement with known values for marine biogenic aragonites from corals and mollusk. We divide vermetid trace element records into three element groups: 1) Sr and U are related to SST and DIC. These elements correlate with major climatic events of the last millennium, such as the Medieval Warm Period (900-1300 AD) and the Little Ice Age (1450-1850 AD). 2) Pb and Cd are related to anthropogenic pollution and demonstrate industrial sourced trends throughout the anthropocene (since 1750 AD). 3) Terrogenous elements, including Fe, Al, Mn and V. Al in seawater and sediments has been used to trace water masses and land derived sediment source. We observe a major change in average vermetid Al/Fe ratios from 0.5 to 2.5 over the recorded period (n=72). This vermetid Al/Fe change points at a possible shift from Nilotic sediments (0.1-0.5 Al/Fe molar ratio) to Saharan dust ratio (2-4 Al/Fe molar ratio). Mn and V show a similar variability to Fe. Understanding the variability of vermetid TE can help us interpret the relative

  15. Humidity-dependent phase state of SOA particles from biogenic and anthropogenic precursors

    Directory of Open Access Journals (Sweden)

    E. Saukko

    2012-08-01

    Full Text Available The physical phase state (solid, semi-solid, or liquid of secondary organic aerosol (SOA particles has important implications for a number of atmospheric processes. We report the phase state of SOA particles spanning a wide range of oxygen to carbon ratios (O / C, used here as a surrogate for SOA oxidation level, produced in a flow tube reactor by photo-oxidation of various atmospherically relevant surrogate anthropogenic and biogenic volatile organic compounds (VOCs. The phase state of laboratory-generated SOA was determined by the particle bounce behavior after inertial impaction on a polished steel substrate. The measured bounce fraction was evaluated as a function of relative humidity and SOA oxidation level (O / C measured by an Aerodyne high resolution time of flight aerosol mass spectrometer (HR-ToF AMS.

    The main findings of the study are: (1 biogenic and anthropogenic SOA particles are found to be amorphous solid or semi-solid based on the measured bounced fraction (BF, which was typically higher than 0.6 on a 0 to 1 scale. A decrease in the BF is observed for most systems after the SOA is exposed to relative humidity of at least 80% RH, corresponding to a RH at impaction of 55%. (2 Long-chain alkanes have a low BF (indicating a "liquid-like", less viscous phase particles at low oxidation levels (BF < 0.2 ± 0.05 for O / C = 0.1. However, BF increases substantially upon increasing oxidation. (3 Increasing the concentration of sulphuric acid (H2SO4 in solid SOA particles (here tested for longifolene SOA causes a decrease in BF levels. (4 In the majority of cases the bounce behavior of the various SOA systems did not show correlation with the particle O / C. Rather, the molar mass of the gas-phase VOC precursor showed a positive correlation with the resistance to the RH-induced phase change of the formed SOA particles.

  16. Natural and anthropogenic radiation exposure of humans in Germany

    International Nuclear Information System (INIS)

    Koelzer, Winfried

    2016-12-01

    The contribution on natural and anthropogenic radiation exposure in Germany covers the following issues: (1) natural radiation exposure: external radiation exposure - cosmic and terrestric radiation, internal radiation exposure - primordial and cosmogenic radionuclides; radiation exposure due to sola neutrinos and geo-neutrinos. (2) Anthropogenic radiation exposure: radiation exposure in medicine, radioactivity in industrial products, radiation exposure during flights, radiation exposure due to nuclear facilities, radiation exposure due to fossil energy carriers in power generation, radiation exposure due to nuclear explosions, radiation exposure due to nuclear accidents. (3) Occupational radiation exposure in Germany: radiation monitoring with personal dosimeters in medicine and industry, dose surveillance of the aviation personal, working places with increases radiation exposure by natural radiation sources.

  17. Anthropogenic Forcing of Carbonate and Organic Carbon Preservation in Marine Sediments.

    Science.gov (United States)

    Keil, Richard

    2017-01-03

    Carbon preservation in marine sediments, supplemented by that in large lakes, is the primary mechanism that moves carbon from the active surficial carbon cycle to the slower geologic carbon cycle. Preservation rates are low relative to the rates at which carbon moves between surface pools, which has led to the preservation term largely being ignored when evaluating anthropogenic forcing of the global carbon cycle. However, a variety of anthropogenic drivers-including ocean warming, deoxygenation, and acidification, as well as human-induced changes in sediment delivery to the ocean and mixing and irrigation of continental margin sediments-all work to decrease the already small carbon preservation term. These drivers affect the cycling of both carbonate and organic carbon in the ocean. The overall effect of anthropogenic forcing in the modern ocean is to decrease delivery of carbon to sediments, increase sedimentary dissolution and remineralization, and subsequently decrease overall carbon preservation.

  18. U.S. ozone air quality under changing climate and anthropogenic emissions.

    Science.gov (United States)

    Racherla, Pavan N; Adams, Peter J

    2009-02-01

    We examined future ozone (O3) air quality in the United States (U.S.) under changing climate and anthropogenic emissions worldwide by performing global climate-chemistry simulations, utilizing various combinations of present (1990s) and future (Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 2050s) climates, and present and future (2050s; IPCC SRES A2 and B1) anthropogenic emissions. The A2 climate scenario is employed here because it lies at the upper extreme of projected climate change for the 21st century. To examine the sensitivity of U.S. O3 to regional emissions increases (decreases), the IPCC SRES A2 and B1 scenarios, which have overall higher and lower O3-precursor emissions for the U.S., respectively, have been chosen. We find that climate change, by itself, significantly worsens the severity and frequency of high-O3 events ("episodes") over most locations in the U.S., with relatively small changes in average O3 air quality. These high-O3 increases due to climate change alone will erode moderately the gains made under a U.S. emissions reduction scenario (e.g., B1). The effect of climate change on high- and average-O3 increases with anthropogenic emissions. Insofar as average O3 air quality is concerned, changes in U.S. anthropogenic emissions will play the most important role in attaining (or not) near-term U.S. O3 air quality standards. However, policy makers must plan appropriately for O3 background increases due to projected increases in global CH4 abundance and non-U.S. anthropogenic emissions, as well as potential local enhancements that they could cause. These findings provide strong incentives for more-than-planned emissions reductions at locations that are currently O3-nonattainment.

  19. Impact of anthropogenic activities on the dissemination of antibiotic resistance across ecological boundaries.

    Science.gov (United States)

    Tripathi, Vijay; Cytryn, Eddie

    2017-02-28

    Antibiotics are considered to be one of the major medical breakthroughs in history. Nonetheless, over the past four decades, antibiotic resistance has reached alarming levels worldwide and this trend is expected to continue to increase, leading some experts to forecast the coming of a 'post-antibiotic' era. Although antibiotic resistance in pathogens is traditionally linked to clinical environments, there is a rising concern that the global propagation of antibiotic resistance is also associated with environmental reservoirs that are linked to anthropogenic activities such as animal husbandry, agronomic practices and wastewater treatment. It is hypothesized that the emergence and dissemination of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) within and between environmental microbial communities can ultimately contribute to the acquisition of antibiotic resistance in human pathogens. Nonetheless, the scope of this phenomenon is not clear due to the complexity of microbial communities in the environment and methodological constraints that limit comprehensive in situ evaluation of microbial genomes. This review summarizes the current state of knowledge regarding antibiotic resistance in non-clinical environments, specifically focusing on the dissemination of antibiotic resistance across ecological boundaries and the contribution of this phenomenon to global antibiotic resistance. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  20. Yearly variation of bacterial production in the Arraial do Cabo protection area (Cabo Frio upwelling region): an evidence of anthropogenic pressure.

    Science.gov (United States)

    Coelho-Souza, Sérgio A; Pereira, Gilberto C; Coutinho, Ricardo; Guimarães, Jean R D

    2013-12-01

    Arraial do Cabo is where upwelling occurs more intensively on the Brazilian coast. Although it is a protection area it suffers anthropogenic pressure such as harbor activities and sporadic sewage emissions. Short-time studies showed a high variability of bacterial production (BP) in this region but none of them evaluated BP during long periods in a large spatial scale including stations under different natural (upwelling and cold fronts) and anthropogenic pressures. During 2006, we sampled surface waters 10 times (5 in upwelling and 5 in subsidence periods) in 8 stations and we measured BP, temperature as well as the concentrations of inorganic nutrients, pigments and particulate organic matter (POM). BP was up to 400 times higher when sewage emissions were observed visually and it had a positive correlation with ammonia concentrations. Therefore, in 2007, we did two samples (each during upwelling and subsidence periods) during sewage emissions in five stations under different anthropogenic pressure and we also measured particles abundance by flow cytometry. The 12 samples in the most impacted area confirmed that BP was highest when ammonia was higher than 2 μM, also reporting the highest concentrations of chlorophyll a and suspended particles. However, considering all measured variables, upwelling was the main disturbing factor but the pressure of fronts should not be neglected since it had consequences in the auto-heterotrophic coupling, increasing the concentrations of non fluorescent particles and POM. Stations clustered in function of natural and anthropogenic pressures degrees and both determined the temporal-spatial variability.