WorldWideScience

Sample records for anthropogenic boundary depth

  1. Boundary Layer Depth In Coastal Regions

    Science.gov (United States)

    Porson, A.; Schayes, G.

    The results of earlier studies performed about sea breezes simulations have shown that this is a relevant feature of the Planetary Boundary Layer that still requires effort to be diagnosed properly by atmospheric models. Based on the observations made during the ESCOMPTE campaign, over the Mediterranean Sea, different CBL and SBL height estimation processes have been tested with a meso-scale model, TVM. The aim was to compare the critical points of the BL height determination computed using turbulent kinetic energy profile with some other standard evaluations. Moreover, these results have been analysed with different mixing length formulation. The sensitivity of formulation is also analysed with a simple coastal configuration.

  2. Anthropogenic moisture production and its effect on boundary layer circulations over New York City

    International Nuclear Information System (INIS)

    Bornstein, R.D.; Tam, Y.T.

    1975-01-01

    A heat and moisture excess over New York City is shown to exist by the analysis of helicopter soundings of temperature and wet bulb depression. The magnitude of the temporal and spatial distribution of anthropogenic moisture emissions in New York City were estimated from fuel usage data. The URBMET urban boundary layer model was used to evaluate the effects on the dynamics of the urban boundary layer resulting from the observed urban moisture excess. Work is currently in progress which seeks to determine the fraction of the observed moisture excess over New York that is due to anthropogenic sources. (auth)

  3. Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth.

    Science.gov (United States)

    Davy, Richard; Esau, Igor

    2016-05-25

    The Earth has warmed in the last century and a large component of that warming has been attributed to increased anthropogenic greenhouse gases. There are also numerous processes that introduce strong, regionalized variations to the overall warming trend. However, the ability of a forcing to change the surface air temperature depends on its spatial and temporal distribution. Here we show that the efficacy of a forcing is determined by the effective heat capacity of the atmosphere, which in cold and dry climates is defined by the depth of the planetary boundary layer. This can vary by an order of magnitude on different temporal and spatial scales, and so we get a strongly amplified temperature response in shallow boundary layers. This must be accounted for to assess the efficacy of a climate forcing, and also implies that multiple climate forcings cannot be linearly combined to determine the temperature response.

  4. Hemispheric aerosol vertical profiles: anthropogenic impacts on optical depth and cloud nuclei.

    Science.gov (United States)

    Clarke, Antony; Kapustin, Vladimir

    2010-09-17

    Understanding the effect of anthropogenic combustion upon aerosol optical depth (AOD), clouds, and their radiative forcing requires regionally representative aerosol profiles. In this work, we examine more than 1000 vertical profiles from 11 major airborne campaigns in the Pacific hemisphere and confirm that regional enhancements in aerosol light scattering, mass, and number are associated with carbon monoxide from combustion and can exceed values in unperturbed regions by more than one order of magnitude. Related regional increases in a proxy for cloud condensation nuclei (CCN) and AOD imply that direct and indirect aerosol radiative effects are coupled issues linked globally to aged combustion. These profiles constrain the influence of combustion on regional AOD and CCN suitable for challenging climate model performance and informing satellite retrievals.

  5. Impact of anthropogenic activities on the dissemination of antibiotic resistance across ecological boundaries.

    Science.gov (United States)

    Tripathi, Vijay; Cytryn, Eddie

    2017-02-28

    Antibiotics are considered to be one of the major medical breakthroughs in history. Nonetheless, over the past four decades, antibiotic resistance has reached alarming levels worldwide and this trend is expected to continue to increase, leading some experts to forecast the coming of a 'post-antibiotic' era. Although antibiotic resistance in pathogens is traditionally linked to clinical environments, there is a rising concern that the global propagation of antibiotic resistance is also associated with environmental reservoirs that are linked to anthropogenic activities such as animal husbandry, agronomic practices and wastewater treatment. It is hypothesized that the emergence and dissemination of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) within and between environmental microbial communities can ultimately contribute to the acquisition of antibiotic resistance in human pathogens. Nonetheless, the scope of this phenomenon is not clear due to the complexity of microbial communities in the environment and methodological constraints that limit comprehensive in situ evaluation of microbial genomes. This review summarizes the current state of knowledge regarding antibiotic resistance in non-clinical environments, specifically focusing on the dissemination of antibiotic resistance across ecological boundaries and the contribution of this phenomenon to global antibiotic resistance. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  6. Effect of environmental factors (wave exposure and depth) and anthropogenic pressure in the C sink capacity of Posidonia oceanica meadows

    KAUST Repository

    Mazarrasa, Iné s; Marbà , Nú ria; Garcia-Orellana, Jordi; Masqué , Pere; Arias-Ortiz, Ariane; Duarte, Carlos M.

    2017-01-01

    Seagrass are among the most important natural carbon sinks on Earth with Posidonia oceanica (Mediterranean Sea) considered as the most relevant species. Yet, the number of direct measurements of organic carbon burial rates in P. oceanica is still scarce and the effect of local environmental factors remains largely unexplored. In addition, P. oceanica meadows are declining due to the increase in anthropogenic pressure in coastal areas during the last century. The aim of this study is to assess the recent carbon sink capacity of P. oceanica and particularly the effect of human pressure and two environmental factors, water depth and exposure to wave energy (based on a fetch index), on the carbon burial rate since 1900. We conducted an extensive survey of sediment cores in meadows distributed across a gradient of depth, fetch, and human pressure around The Balearic Islands. Sediment and carbon accumulation rates were obtained from 210Pb concentrations profiles. Top-30 centimeters carbon stocks (6.1 ± 1.4 kg C m−2) and burial rates (26 ± 6 g C m−2 yr1) varied up to fivefold across meadows. No significant effect of water depth in carbon burial rates was observed. Although fetch was significantly correlated with sediment mean grain size, confirming the effect of wave exposure in the patterns of sedimentation, fetch alone could not explain the differences in carbon burial rates among the meadows examined. Human pressure affected carbon burial rates, leading to increased rates since the onset of the rise in anthropogenic pressure, particularly so in sheltered meadows supporting high human pressure.

  7. Effect of environmental factors (wave exposure and depth) and anthropogenic pressure in the C sink capacity of Posidonia oceanica meadows

    KAUST Repository

    Mazarrasa, Inés

    2017-03-20

    Seagrass are among the most important natural carbon sinks on Earth with Posidonia oceanica (Mediterranean Sea) considered as the most relevant species. Yet, the number of direct measurements of organic carbon burial rates in P. oceanica is still scarce and the effect of local environmental factors remains largely unexplored. In addition, P. oceanica meadows are declining due to the increase in anthropogenic pressure in coastal areas during the last century. The aim of this study is to assess the recent carbon sink capacity of P. oceanica and particularly the effect of human pressure and two environmental factors, water depth and exposure to wave energy (based on a fetch index), on the carbon burial rate since 1900. We conducted an extensive survey of sediment cores in meadows distributed across a gradient of depth, fetch, and human pressure around The Balearic Islands. Sediment and carbon accumulation rates were obtained from 210Pb concentrations profiles. Top-30 centimeters carbon stocks (6.1 ± 1.4 kg C m−2) and burial rates (26 ± 6 g C m−2 yr1) varied up to fivefold across meadows. No significant effect of water depth in carbon burial rates was observed. Although fetch was significantly correlated with sediment mean grain size, confirming the effect of wave exposure in the patterns of sedimentation, fetch alone could not explain the differences in carbon burial rates among the meadows examined. Human pressure affected carbon burial rates, leading to increased rates since the onset of the rise in anthropogenic pressure, particularly so in sheltered meadows supporting high human pressure.

  8. A boundary element model for diffraction of water waves on varying water depth

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, Sanne

    1997-12-31

    In this thesis a boundary element model for calculating diffraction of water waves on varying water depth is presented. The varying water depth is approximated with a perturbed constant depth in the mild-slope wave equation. By doing this, the domain integral which is a result of the varying depth is no longer a function of the unknown wave potential but only a function of position and the constant depth wave potential. The number of unknowns is the resulting system of equations is thus reduced significantly. The integration procedures in the model are tested very thoroughly and it is found that a combination of analytical integration in the singular region and standard numerical integration outside works very well. The gradient of the wave potential is evaluated successfully using a hypersingular integral equation. Deviations from the analytical solution are only found on the boundary or very close to, but these deviations have no significant influence on the accuracy of the solution. The domain integral is evaluated using the dual reciprocity method. The results are compared with a direct integration of the integral, and the accuracy is quite satisfactory. The problem with irregular frequencies is taken care of by the CBIEM (or CHIEF-method) together with a singular value decomposition technique. This method is simple to implement and works very well. The model is verified using Homma`s island as a test case. The test cases are limited to shallow water since the analytical solution is only valid in this region. Several depth ratios are examined, and it is found that the accuracy of the model increases with increasing wave period and decreasing depth ratio. Short waves, e.g. wind generated waves, can allow depth variations up to approximately 2 before the error exceeds 10%, while long waves can allow larger depth ratios. It is concluded that the perturbation idea is highly usable. A study of (partially) absorbing boundary conditions is also conducted. (EG)

  9. Effect of boundary conditions on the classical skin depth and nonlocal behavior in inductively coupled plasmas

    International Nuclear Information System (INIS)

    Rehman, Aman-ur; Pu Yikang

    2005-01-01

    When the finiteness of plasma geometry is taken into account, the expression for classical skin depth is different from the one obtained for an unbounded plasma (for both the planar and cylindrical geometries). This change in the expression of the classical skin depth also changes the nonlocality parameter, which is defined as the square of the ratio of the effective mean free path to the classical skin depth. It is concluded that it is the compactness of the geometry due to the metallic boundary condition (E=0) that impacts nonlocal heating (particularly in the low-frequency regime) rather than the shape of the geometry

  10. A Formula for the Depth of the Stable Boundary layer: Evaluation and Dimensional Analysis

    NARCIS (Netherlands)

    Steeneveld, G.J.; Wiel, van de B.J.H.; Holtslag, A.A.M.

    2006-01-01

    The height (h) of the stable boundary layer (SBL) is of major importance to understand the relevant processes that govern the SBL development. The SBL depth is the layer in which turbulence transport takes place, and thus governs the vertical structure of the lower atmosphere. Furthermore, release

  11. Trans-boundary movement of mercury in the Northeast Asian region predicted by CAMQ-Hg from anthropogenic emissions distribution

    Science.gov (United States)

    Sung, Jin-Ho; Roy, Debananda; Oh, Joo-Sung; Back, Seung-Ki; Jang, Ha-Na; Kim, Seong-Heon; Seo, Yong-Chil; Kim, Jeong-Hun; Lee, Chong Bum; Han, Young-Ji

    2018-05-01

    The percentage contribution of trans-boundary mercury (Hg) from China at different locations in South Korea was estimated from Hg anthropogenic emission distributions using the Hg dispersion model, CMAQ-Hg. This investigation quantifies the trans-boundary Hg emissions as contribution ratios. In addition, the long-range transportation frequency is also calculated, to verify inflow cases from China. The seasonal distribution of the Hg contribution ratio was found to be highest in winter (40%), followed by fall (16%). Seasonal observations of Hg inflow frequencies were estimated as 40%, 25%, 21%, and 4% in winter, fall, summer, and spring, respectively, at the same location. Such results would be produced by the wind generally blowing from the west and north-west with a speed of 5.0 m/s and 4.5 m/s, respectively, during winter and fall, around the study area. This study made an effort to quantify the trans-boundary Hg transport and to plot Hg anthropogenic emissions distribution in the region.

  12. GASEOUS ELEMENTAL MERCURY IN THE MARINE BOUNDARY LAYER: EVIDENCE FOR RAPID REMOVAL IN ANTHROPOGENIC POLLUTION

    Science.gov (United States)

    In this study, gas-phase elemental mercury (Hg0) and related species (including inorganic reactive gaseous mercury (RGM) and particulate mercury (PHg)) were measured at Cheeka Peak Observatory (CPO), Washington State, in the marine boundary layer (MBL) during 2001-2002. Air of...

  13. Stress rotation across the Cascadia megathrust requires a weak subduction plate boundary at seismogenic depths

    Science.gov (United States)

    Li, Duo; McGuire, Jeffrey J.; Liu, Yajing; Hardebeck, Jeanne L.

    2018-01-01

    The Mendocino Triple Junction region is the most seismically active part of the Cascadia Subduction Zone. The northward moving Pacific plate collides with the subducting Gorda plate causing intense internal deformation within it. Here we show that the stress field rotates rapidly with depth across the thrust interface from a strike-slip regime within the subducting plate, reflecting the Pacific plate collision, to a thrust regime in the overriding plate. We utilize a dense focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our results indicate that the shear stress on the plate boundary fault is likely no more than about ∼50 MPa at ∼20 km depth. Regardless of the assumed mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of ∼0 to 0.2 at seismogenic depths. Such a low value for the effective friction coefficient requires a combination of high fluid pressures and/or fault-zone minerals with low inherent friction in the region where a great earthquake is expected in Cascadia.

  14. Stress rotation across the Cascadia megathrust requires a weak subduction plate boundary at seismogenic depths

    Science.gov (United States)

    Li, Duo; McGuire, Jeffrey J.; Liu, Yajing; Hardebeck, Jeanne L.

    2018-03-01

    The Mendocino Triple Junction region is the most seismically active part of the Cascadia Subduction Zone. The northward moving Pacific plate collides with the subducting Gorda plate causing intense internal deformation within it. Here we show that the stress field rotates rapidly with depth across the thrust interface from a strike-slip regime within the subducting plate, reflecting the Pacific plate collision, to a thrust regime in the overriding plate. We utilize a dense focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our results indicate that the shear stress on the plate boundary fault is likely no more than about ∼50 MPa at ∼20 km depth. Regardless of the assumed mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of ∼0 to 0.2 at seismogenic depths. Such a low value for the effective friction coefficient requires a combination of high fluid pressures and/or fault-zone minerals with low inherent friction in the region where a great earthquake is expected in Cascadia.

  15. Effects of Iron and Aluminum on Phase Boundaries at 600-800 km Depths

    Science.gov (United States)

    Shim, Sang-Heon; Ye, Yu; Prakapenka, Vitali; Meng, Yue

    2014-05-01

    High-resolution seismic studies have reported complex discontinuity structures at 600-800 km depths. However, the origin of the structures have not been well understood. In order to understand compositional effects, we have measured the post-spinel, post-garnet, and post-ilmenite phase boundaries in MgO-Al2O3-SiO2 (iron free) and CaO-MgO-Al2O3-SiO2-FeO (iron bearing) systems with pyrolitic oxide ratios. In-situ X-ray diffraction measurements were performed at 20-30 GPa and 1500-2300 K in the laser-heated diamond-anvil cell at the GSECARS and HPCAT sectors of the Advanced Photon Source. We use the Pt and Au pressure scales for the iron-free and iron-bearing compositions, respectively. The Pt and Au scales were calibrated with respect to each other in separate experiments. In most experiments, Ar was cryogenically loaded in the sample chamber as a thermal insulation and pressure transmitting medium, except for a few experiments where a KCl medium was used. At temperatures above 1900 K, the post-garnet transition occurs at higher pressures than the post-spinel transition in both the iron-free and iron-bearing systems. At lower temperatures, while the post-ilmenite transition occurs at nearly same pressures as the post-spinel transition in the iron-bearing system, the post-ilmenite transition occurs at slightly higher pressure (1 GPa) than the post-spinel transitions in the iron-free system. In the iron-free system, akimotoite is stable to much higher temperature (2300 K) than previously thought. In the iron-bearing system, the stability of akimotoite is limited to 2050 K. Our data indicate that Al partitions more into akimotoite than garnet in the iron-free system, which is the opposite to what has been found in iron-bearing systems. The high Al content in akimotoite seems to be responsible for the high-temperature stability of akimotoite in the iron-free system. The Clapeyron slope of the post-garnet boundary is greater by a factor of 2.5 in the iron-bearing system

  16. Regional and sediment depth differences in nematode community structure greater than between habitats on the New Zealand margin: Implications for vulnerability to anthropogenic disturbance

    Science.gov (United States)

    Rosli, Norliana; Leduc, Daniel; Rowden, Ashley A.; Probert, P. Keith; Clark, Malcolm R.

    2018-01-01

    Deep-sea community attributes vary at a range of spatial scales. However, identifying the scale at which environmental factors affect variability in deep-sea communities remains difficult, as few studies have been designed in such a way as to allow meaningful comparisons across more than two spatial scales. In the present study, we investigated nematode diversity, community structure and trophic structure at different spatial scales (sediment depth (cm), habitat (seamount, canyon, continental slope; 1-100 km), and geographic region (100-10000 km)), while accounting for the effects of water depth, in two regions on New Zealand's continental margin. The greatest variability in community attributes was found between sediment depth layers and between regions, which explained 2-4 times more variability than habitats. The effect of habitat was consistently stronger in the Hikurangi Margin than the Bay of Plenty for all community attributes, whereas the opposite pattern was found in the Bay of Plenty where effect of sediment depth was greater in Bay of Plenty. The different patterns at each scale in each region reflect the differences in the environmental variables between regions that control nematode community attributes. Analyses suggest that nematode communities are mostly influenced by sediment characteristics and food availability, but that disturbance (fishing activity and bioturbation) also accounts for some of the observed patterns. The results provide new insight on the relative importance of processes operating at different spatial scales in regulating nematode communities in the deep-sea, and indicate potential differences in vulnerability to anthropogenic disturbance.

  17. Differences in meiofauna communities with sediment depth are greater than habitat effects on the New Zealand continental margin: implications for vulnerability to anthropogenic disturbance

    Directory of Open Access Journals (Sweden)

    Norliana Rosli

    2016-07-01

    Full Text Available Studies of deep-sea benthic communities have largely focused on particular (macro habitats in isolation, with few studies considering multiple habitats simultaneously in a comparable manner. Compared to mega-epifauna and macrofauna, much less is known about habitat-related variation in meiofaunal community attributes (abundance, diversity and community structure. Here, we investigated meiofaunal community attributes in slope, canyon, seamount, and seep habitats in two regions on the continental slope of New Zealand (Hikurangi Margin and Bay of Plenty at four water depths (700, 1,000, 1,200 and 1,500 m. We found that patterns were not the same for each community attribute. Significant differences in abundance were consistent across regions, habitats, water and sediment depths, while diversity and community structure only differed between sediment depths. Abundance was higher in canyon and seep habitats compared with other habitats, while between sediment layer, abundance and diversity were higher at the sediment surface. Our findings suggest that meiofaunal community attributes are affected by environmental factors that operate on micro- (cm to meso- (0.1–10 km, and regional scales (> 100 km. We also found a weak, but significant, correlation between trawling intensity and surface sediment diversity. Overall, our results indicate that variability in meiofaunal communities was greater at small scale than at habitat or regional scale. These findings provide new insights into the factors controlling meiofauna in these deep-sea habitats and their potential vulnerability to anthropogenic activities.

  18. Mixed and mixing layer depths in the ocean surface boundary layer under conditions of diurnal stratification

    Science.gov (United States)

    Sutherland, G.; Reverdin, G.; Marié, L.; Ward, B.

    2014-12-01

    A comparison between mixed (MLD) and mixing (XLD) layer depths is presented from the SubTRopical Atlantic Surface Salinity Experiment (STRASSE) cruise in the subtropical Atlantic. This study consists of 400 microstructure profiles during fairly calm and moderate conditions (2 background level. Two different thresholds for the background dissipation level are tested, 10-8 and 10-9 m2 s-3, and these are compared with the MLD as calculated using a density threshold. The larger background threshold agrees with the MLD during restratification but only extends to half the MLD during nighttime convection, while the lesser threshold agrees well during convection but is deeper by a factor of 2 during restratification. Observations suggest the use of a larger density threshold to determine the MLD in a buoyancy driven regime.

  19. Hotspot identification of trans-boundary water conflict due to anthropogenic water use and climate change in the future

    Science.gov (United States)

    Ueki, A.; Yoshikawa, S.; Kanae, S.

    2014-12-01

    A significant fraction of world population is projected to experience increased water stress in response to the combined effects of population growth and climate change. Some previous studies have suggested that high water stress had significant causality for civil war, and militarized conflict and trans-boundary water conflict in international river basin. On the other hand, some previous empirical analyses have found that institutionalization (e.g., specific provisions in trans-boundary freshwater treaties) in international river basin was associated with a lower risk of water conflicts during water scarcity. The purpose of this study is to identify these water conflict "hotspots", integrating institutional and governance mechanisms of adaptations to impact of water stress. These adaptations is classified to 4 abilities and skills and then used to calculate the adaptive capacity. The adaptive capacity includes the way to manage water conflict effectively, plan to deal with uncertainty in the future, alter current situation and create institutionalization with common perspective throughout the whole activities. This study identifies water conflict "hotspots" by combining high water stress areas projected by a global water resource model and a lower degree of the adaptive capacity. This study finds that 9 water conflict "hotspots" in Africa, Asia and South America.

  20. Boundary-enhancement in propagation-based x-ray phase-contrast tomosynthesis improves depth position characterization.

    Science.gov (United States)

    Guan, Huifeng; Xu, Qiaofeng; Garson, Alfred B; Anastasio, Mark A

    2015-04-21

    Propagation-based x-ray phase-contrast (PB XPC) tomosynthesis combines the concepts of tomosynthesis and XPC imaging to realize the advantages of both for biological imaging applications. Tomosynthesis permits reductions in acquisition times compared with full-view tomography, while XPC imaging provides the opportunity to resolve weakly absorbing structures. In this note, an investigation of the depth resolving properties of PB XPC tomosynthesis is conducted. The results demonstrate that in-plane structures display strong boundary-enhancement while out-of-plane structures do not. This effect can facilitate the identification of in-plane structures in PB XPC tomosynthesis that could normally not be distinguished from out-of-plane structures in absorption-based tomosynthesis.

  1. Boundary-enhancement in propagation-based x-ray phase-contrast tomosynthesis improves depth position characterization

    International Nuclear Information System (INIS)

    Guan, Huifeng; Xu, Qiaofeng; Garson, Alfred B III; Anastasio, Mark A

    2015-01-01

    Propagation-based x-ray phase-contrast (PB XPC) tomosynthesis combines the concepts of tomosynthesis and XPC imaging to realize the advantages of both for biological imaging applications. Tomosynthesis permits reductions in acquisition times compared with full-view tomography, while XPC imaging provides the opportunity to resolve weakly absorbing structures. In this note, an investigation of the depth resolving properties of PB XPC tomosynthesis is conducted. The results demonstrate that in-plane structures display strong boundary-enhancement while out-of-plane structures do not. This effect can facilitate the identification of in-plane structures in PB XPC tomosynthesis that could normally not be distinguished from out-of-plane structures in absorption-based tomosynthesis. (note)

  2. Frictional power dissipation on plate boundary faults: Implications for coseismic slip propagation at near-surface depths

    Science.gov (United States)

    Ikari, M.; Kopf, A.; Saffer, D. M.; Marone, C.; Carpenter, B. M.

    2013-12-01

    The general lack of earthquake slip at shallow (behavior associated with laboratory observations that disaggregated fault gouges commonly strengthen with increasing sliding velocity (i.e. velocity-strengthening friction), which precludes strain energy release via stress drops. However, the 2011 Tohoku earthquake demonstrated that coseismic rupture and slip can sometimes propagate to the surface in subduction zones. Surface rupture is also known to occur on other plate boundary faults, such as the Alpine Fault in New Zealand. It is uncertain how the extent of coseismic slip propagation from depth is controlled by the frictional properties of the near-surface portion of major faults. In these situations, it is common for slip to localize within gouge having a significant component of clay minerals, which laboratory experiments have shown are generally weak and velocity strengthening. However, low overall fault strength should facilitate coseismic slip, while velocity-strengthening behavior would resist it. In order to investigate how frictional properties may control the extent of coseismic slip propagation at shallow depths, we compare frictional strength and velocity-dependence measurements using samples from three subduction zones known for hosting large magnitude earthquakes. We focus on samples recovered during scientific drilling projects from the Nankai Trough, Japan, the Japan Trench in the region of the Tohoku earthquake, and the Middle America Trench, offshore Costa Rica; however we also include comparisons with other major fault zones sampled by drilling. In order to incorporate the combined effects of overall frictional strength and friction velocity-dependence, we estimate shear strength as a function of slip velocity (at constant effective normal stress), and integrate this function to obtain the areal power density, or frictional power dissipation capability of the fault zone. We also explore the role of absolute shear stress level before arrival of a

  3. Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site

    Energy Technology Data Exchange (ETDEWEB)

    Pal, S., E-mail: sp5hd@Virginia.EDU; Lee, T.R.; Phelps, S.; De Wekker, S.F.J.

    2014-10-15

    The development of the atmospheric boundary layer (ABL) plays a key role in affecting the variability of atmospheric constituents such as aerosols, greenhouse gases, water vapor, and ozone. In general, the concentration of any tracers within the ABL varies due to the changes in the mixing volume (i.e. ABL depth). In this study, we investigate the impact on the near-surface aerosol concentration in a valley site of 1) the boundary layer dilution due to vertical mixing and 2) changes in the wind patterns. We use a data set obtained during a 10-day field campaign in which a number of remote sensing and in-situ instruments were deployed, including a ground-based aerosol lidar system for monitoring of the ABL top height (z{sub i}), a particle counter to determine the number concentration of aerosol particles at eight different size ranges, and tower-based standard meteorological instruments. Results show a clearly visible decreasing trend of the mean daytime z{sub i} from 2900 m AGL (above ground level) to 2200 m AGL during a three-day period which resulted in increased near-surface pollutant concentrations. An inverse relationship exists between the z{sub i} and the fine fraction (0.3–0.7 μm) accumulation mode particles (AMP) on some days due to the dilution effect in a well-mixed ABL. These days are characterized by the absence of daytime upvalley winds and the presence of northwesterly synoptic-driven winds. In contrast, on the days with an onset of an upvalley wind circulation after the morning transition, the wind-driven local transport mechanism outweighs the ABL-dilution effect in determining the variability of AMP concentration. The interplay between the ABL depth evolution and the onset of the upvalley wind during the morning transition period significantly governs the air quality in a valley and could be an important component in the studies of mountain meteorology and air quality. - Highlights: • Role of atmospheric boundary layer depth on particle

  4. Precise age for the Permian-Triassic boundary in South China from high-precision U-Pb geochronology and Bayesian age-depth modeling

    Science.gov (United States)

    Baresel, Björn; Bucher, Hugo; Brosse, Morgane; Cordey, Fabrice; Guodun, Kuang; Schaltegger, Urs

    2017-03-01

    This study is based on zircon U-Pb ages of 12 volcanic ash layers and volcanogenic sandstones from two deep water sections with conformable and continuous formational Permian-Triassic boundaries (PTBs) in the Nanpanjiang Basin (South China). Our dates of single, thermally annealed and chemically abraded zircons bracket the PTB in Dongpan and Penglaitan and provide the basis for a first proof-of-concept study utilizing a Bayesian chronology model comparing the three sections of Dongpan, Penglaitan and the Global Stratotype Section and Point (GSSP) at Meishan. Our Bayesian modeling demonstrates that the formational boundaries in Dongpan (251.939 ± 0.030 Ma), Penglaitan (251.984 ± 0.031 Ma) and Meishan (251.956 ± 0.035 Ma) are synchronous within analytical uncertainty of ˜ 40 ka. It also provides quantitative evidence that the ages of the paleontologically defined boundaries, based on conodont unitary association zones in Meishan and on macrofaunas in Dongpan, are identical and coincide with the age of the formational boundaries. The age model also confirms the extreme condensation around the PTB in Meishan, which distorts the projection of any stratigraphic points or intervals onto other more expanded sections by means of Bayesian age-depth models. Dongpan and Penglaitan possess significantly higher sediment accumulation rates and thus offer a greater potential for high-resolution studies of environmental proxies and correlations around the PTB than Meishan. This study highlights the power of high-resolution radio-isotopic ages that allow a robust intercalibration of patterns of biotic changes and fluctuating environmental proxies and will help recognizing their global, regional or local significance.

  5. GNAQPMS-Hg v1.0, a global nested atmospheric mercury transport model: model description, evaluation and application to trans-boundary transport of Chinese anthropogenic emissions

    Science.gov (United States)

    Chen, H. S.; Wang, Z. F.; Li, J.; Tang, X.; Ge, B. Z.; Wu, X. L.; Wild, O.; Carmichael, G. R.

    2015-09-01

    Atmospheric mercury (Hg) is a toxic pollutant and can be transported over the whole globe due to its long lifetime in the atmosphere. For the purpose of assessing Hg hemispheric transport and better characterizing regional Hg pollution, a global nested atmospheric Hg transport model (GNAQPMS-Hg - Global Nested Air Quality Prediction Modeling System for Hg) has been developed. In GNAQPMS-Hg, the gas- and aqueous-phase Hg chemistry representing the transformation among three forms of Hg: elemental mercury (Hg(0)), divalent mercury (Hg(II)), and primary particulate mercury (Hg(P)) are calculated. A detailed description of the model, including mercury emissions, gas- and aqueous-phase chemistry, and dry and wet deposition is given in this study. Worldwide observations including extensive data in China have been collected for model evaluation. Comparison results show that the model reasonably simulates the global mercury budget and the spatiotemporal variation of surface mercury concentrations and deposition. Overall, model predictions of annual total gaseous mercury (TGM) and wet deposition agree with observations within a factor of 2, and within a factor of 5 for oxidized mercury and dry deposition. The model performs significantly better in North America and Europe than in East Asia. This can probably be attributed to the large uncertainties in emission inventories, coarse model resolution and to the inconsistency between the simulation and observation periods in East Asia. Compared to the global simulation, the nested simulation shows improved skill at capturing the high spatial variability of surface Hg concentrations and deposition over East Asia. In particular, the root mean square error (RMSE) of simulated Hg wet deposition over East Asia is reduced by 24 % in the nested simulation. Model sensitivity studies indicate that Chinese primary anthropogenic emissions account for 30 and 62 % of surface mercury concentrations and deposition over China, respectively

  6. Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site.

    Science.gov (United States)

    Pal, S; Lee, T R; Phelps, S; De Wekker, S F J

    2014-10-15

    The development of the atmospheric boundary layer (ABL) plays a key role in affecting the variability of atmospheric constituents such as aerosols, greenhouse gases, water vapor, and ozone. In general, the concentration of any tracers within the ABL varies due to the changes in the mixing volume (i.e. ABL depth). In this study, we investigate the impact on the near-surface aerosol concentration in a valley site of 1) the boundary layer dilution due to vertical mixing and 2) changes in the wind patterns. We use a data set obtained during a 10-day field campaign in which a number of remote sensing and in-situ instruments were deployed, including a ground-based aerosol lidar system for monitoring of the ABL top height (zi), a particle counter to determine the number concentration of aerosol particles at eight different size ranges, and tower-based standard meteorological instruments. Results show a clearly visible decreasing trend of the mean daytime zi from 2900 m AGL (above ground level) to 2200 m AGL during a three-day period which resulted in increased near-surface pollutant concentrations. An inverse relationship exists between the zi and the fine fraction (0.3-0.7 μm) accumulation mode particles (AMP) on some days due to the dilution effect in a well-mixed ABL. These days are characterized by the absence of daytime upvalley winds and the presence of northwesterly synoptic-driven winds. In contrast, on the days with an onset of an upvalley wind circulation after the morning transition, the wind-driven local transport mechanism outweighs the ABL-dilution effect in determining the variability of AMP concentration. The interplay between the ABL depth evolution and the onset of the upvalley wind during the morning transition period significantly governs the air quality in a valley and could be an important component in the studies of mountain meteorology and air quality. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Investigation of the spatio-temporal variability of atmospheric boundary layer depths over mountainous terrain observed with a suite of ground-based and airborne instruments during the MATERHORN field experiment

    Science.gov (United States)

    Pal, S.; De Wekker, S.; Emmitt, G. D.

    2013-12-01

    We present first results of the spatio-temporal variability of atmospheric boundary layer depths obtained with a suite of ground-based and airborne instruments deployed during the first field phase of The Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program (http://www3.nd.edu/~dynamics/materhorn/index.php) at Dugway Proving Ground (DPG, Utah, USA) in Fall 2012. We mainly use high-resolution data collected on selected intensive observation periods obtained by Doppler lidars, ceilometer, and in-situ measurements from an unmanned aerial vehicle for the measurements of atmospheric boundary layer (ABL) depths. In particular, a Navy Twin Otter aircraft flew 6 missions of about 5 hours each during the daytime, collecting remotely sensed (Doppler lidar, TODWL) wind data in addition to in-situ turbulence measurements which allowed a detailed investigation of the spatial heterogeneity of the convective boundary layer turbulence features over a steep isolated mountain of a horizontal and vertical scale of about 10 km and 1 km, respectively. Additionally, we use data collected by (1) radiosonde systems at two sites of Granite Mountain area in DPG (Playa and Sagebrush), (2) sonic anemometers (CSAT-3D) for high resolution turbulence flux measurements near ground, (3) Pyranometer for incoming solar radiation, and (4) standard meteorological measurements (PTU) obtained near the surface. In this contribution, we discuss and address (1) composites obtained with lidar, ceilometer, micro-meteorological measurements, and radiosonde observations to determine the quasi-continuous regime of ABL depths, growth rates, maximum convective boundary layer (CBL) depths, etc., (2) the temporal variability in the ABL depths during entire diurnal cycle and the spatial heterogeneity in the daytime ABL depths triggered by the underlying orography in the experimental area to investigate the most possible mechanisms (e.g. combined effect of diurnal cycle and orographic trigger

  8. Boundary Spanning

    DEFF Research Database (Denmark)

    Zølner, Mette

    The paper explores how locals span boundaries between corporate and local levels. The aim is to better comprehend potentialities and challenges when MNCs draws on locals’ culture specific knowledge. The study is based on an in-depth, interpretive case study of boundary spanning by local actors in...... approach with pattern matching is a way to shed light on the tacit local knowledge that organizational actors cannot articulate and that an exclusively inductive research is not likely to unveil....

  9. Anthropogenic CO2 distribution in the North Pacific ocean

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C [National Sun Yat-Sen University, Kaohsiung (Taiwan, Province of China)

    1993-06-01

    This paper discusses the penetration depth of anthropogenic CO2 in the North Pacific Ocean based on carbonate data in the literature. The carbonate data in the literature were used to supplement the tracer data showing oceanic mixing features for waters formed in the last 140 years. The deepest penetration over 2,000m was found in the northwest North Pacific. On the other hand, the shallowest penetration to less than 400m was found in the eastern equatorial Pacific. Consequently, it was suggested that penetration depth of anthropogenic CO2 has been controlled by such factors as deep water formation in the Northwest Pacific, upwelling in the equatorial Pacific, and vertical mixing in the western boundary areas. It was revealed that these results are in harmony well with results implied from tritium, C-14, and freons distributions. The total inventory of excess carbon in the North Pacific was 14.7[plus minus]4[times]10[sup 15]g around 1980. 48 refs., 10 figs.

  10. Quantifying Anthropogenic Dust Emissions

    Science.gov (United States)

    Webb, Nicholas P.; Pierre, Caroline

    2018-02-01

    Anthropogenic land use and land cover change, including local environmental disturbances, moderate rates of wind-driven soil erosion and dust emission. These human-dust cycle interactions impact ecosystems and agricultural production, air quality, human health, biogeochemical cycles, and climate. While the impacts of land use activities and land management on aeolian processes can be profound, the interactions are often complex and assessments of anthropogenic dust loads at all scales remain highly uncertain. Here, we critically review the drivers of anthropogenic dust emission and current evaluation approaches. We then identify and describe opportunities to: (1) develop new conceptual frameworks and interdisciplinary approaches that draw on ecological state-and-transition models to improve the accuracy and relevance of assessments of anthropogenic dust emissions; (2) improve model fidelity and capacity for change detection to quantify anthropogenic impacts on aeolian processes; and (3) enhance field research and monitoring networks to support dust model applications to evaluate the impacts of disturbance processes on local to global-scale wind erosion and dust emissions.

  11. ANTHROPOGENIC ACTIVITIES THREATENING THE ...

    African Journals Online (AJOL)

    Osondu

    2012-02-17

    Feb 17, 2012 ... anthropogenic activities across the protected areas in the country. ... education and provision of fund to support sustainable livelihood practices. ... wildlife conservation and tourism. ... Fig: 1 Map of Oyo State showing location of Old Oyo National Park and adjoining community. #. #. # .... This was the view of.

  12. Anthropogenic infrastructure as a component of urbogeosystems

    Directory of Open Access Journals (Sweden)

    Oleksii Chuiev

    2017-11-01

    Full Text Available This article deals with the definition of the concept of "anthropogenic infrastructure" and attempts to find its place in the structure of urbogeosystems. The concept itself can not be called new, as many foreign authors have already used it, but the final definition never happened. The reasons why city studies are becoming more relevant in the face of ever-accelerating urbanization are briefly presented. Prerequisites for the emergence of the urban environment and approaches to its study are given. A special attention is paid to the consideration of urbosystems and their component structure. The main four components are described, which include the technosphere, biosphere, population and abiotic nature. The causes of the appearance of urban ecosystems and their specific features are analyzed. Based on the deficiencies of the "Urbosphere", "Urbosystem" and "Urboecosystem", the notion of "Urbogeosystem" is formed once again. Since architectural and construction objects are key components of such systems, their integration into anthropogenic infrastructure allows us to operate with a more general concept. Functional zones of the city, which are part of the anthropogenic infrastructure, are described. These include residential, industrial, forest and park areas. Examples of the use and functioning of each of the zones are given. An attempt has been made to estimate the boundaries of urbogeosystems. The existing approaches to the classification of anthropogenic infrastructure are analyzed. For one of them, it is advisable to allocate separately "hard" and "soft" infrastructure by the nature of the tasks of society, which they are called upon to satisfy. An alternative approach is to divide the anthropogenic infrastructure into "human" and "physical" ones. If the first satisfies the socio-cultural needs of people, the second is used for production, development, establishment of communications, transportation. It is proved why it is expedient to

  13. Anthropogenic Space Weather

    Science.gov (United States)

    Gombosi, T. I.; Baker, D. N.; Balogh, A.; Erickson, P. J.; Huba, J. D.; Lanzerotti, L. J.

    2017-11-01

    Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release experiments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.

  14. Double Compressions of Atmospheric Depth by Geopotential Tendency, Vorticity, and Atmospheric Boundary Layer Affected Abrupt High Particulate Matter Concentrations at a Coastal City for a Yellow Dust Period in October

    Directory of Open Access Journals (Sweden)

    Hyo Choi

    2014-01-01

    Full Text Available Using GRIMM-aerosol sampler, NOAA-HYSPLIT model, and 3D-WRF-3.3 model, the transportation of dusts from Gobi Desert toward Gangneung city, Korea was investigated from 09:00 LST October 27 to 04:00 LST October 28, 2003. Maximum PM10 (PM2.5, PM1 concentration was detected with 3.8 (3.4, 14.1 times higher magnitude than one in non-Yellow Dust period. The combination of dusts transported from the desert under westerly wind with particulate matters and gases from vehicles on the road of the city caused high PM concentrations near the ground surface at 09:00 LST and their maxima at 17:00 LST near sunset with further pollutants from heating boilers in the resident area. Positive geopotential tendency at the 500 hPa level of the city (∂Φ/∂t; m day−1 corresponding to negative vorticity of -4×10-5 sec−1 (-2.5×10-5 sec−1 at 0900 LST (21:00 LST; at night was +83 m day−1 (+30 m day−1 and it caused atmospheric depth between 500 hPa level and the ground surface to be vertically expanded. However, its net reduction to −53 m/12 hrs until 21:00 LST indicated synoptic-scale atmospheric layer to be vertical shrunken, resulting in the increase of PM concentrations at 17:00 LST. Simultaneously, much shallower microscale stable nocturnal surface inversion layer (NSIL than daytime thermal internal boundary layer induced particulate matters to be merged inside the NSIL, resulting in maximum PM concentrations at 17:00 LST.

  15. Occlusion edge blur: A cue to relative visual depth

    OpenAIRE

    Marshall, J.A.; Burbeck, C.A.; Ariely, D.; Rolland, J.P.; Martin, K.E.

    1996-01-01

    We studied whether the blur/sharpness of an occlusion boundary between a sharply focused surface and a blurred surface is used as a relative depth cue. Observers judged relative depth in pairs of images that differed only in the blurriness of the common boundary between two adjoining texture regions, one blurred and one sharply focused. Two experiments were conducted; in both, observers consistently used the blur of the boundary as a cue to relative depth. However, the strength of the cue, re...

  16. Climate forcing by anthropogenic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, Jr, J A; Hansen, J E; Hofmann, D J [University of Washington, Seattle, WA (USA). Inst. for Environmental Studies, Dept. of Atmospheric Sciences

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of short wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square metre, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes. 73 refs., 4 figs., 2 tabs.

  17. Climate forcing by anthropogenic aerosols.

    Science.gov (United States)

    Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, J A; Hansen, J E; Hofmann, D J

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of shortwavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  18. Mapping tectonic and anthropogenic processes in central California using satellite and airborne InSAR

    Science.gov (United States)

    Liu, Z.; Lundgren, P.; Liang, C.; Farr, T. G.; Fielding, E. J.

    2017-12-01

    The improved spatiotemporal resolution of surface deformation from recent satellite and airborne InSAR measurements provides a great opportunity to improve our understanding of both tectonic and non-tectonic processes. In central California the primary plate boundary fault system (San Andreas fault) lies adjacent to the San Joaquin Valley (SJV), a vast structural trough that accounts for about one-sixth of the United Sates' irrigated land and one-fifth of its extracted groundwater. The central San Andreas fault (CSAF) displays a range of fault slip behavior with creeping in its central segment that decreases towards its northwest and southeast ends, where it transitions to being fully locked. Despite much progress, many questions regarding fault and anthropogenic processes in the region still remain. In this study, we combine satellite InSAR and NASA airborne UAVSAR data to image fault and anthropogenic deformation. The UAVSAR data cover fault perpendicular swaths imaged from opposing look directions and fault parallel swaths since 2009. The much finer spatial resolution and optimized viewing geometry provide important constraints on near fault deformation and fault slip at very shallow depth. We performed a synoptic InSAR time series analysis using Sentinel-1, ALOS, and UAVSAR interferograms. We estimate azimuth mis-registration between single look complex (SLC) images of Sentinel-1 in a stack sense to achieve accurate azimuth co-registration between SLC images for low coherence and/or long interval interferometric pairs. We show that it is important to correct large-scale ionosphere features in ALOS-2 ScanSAR data for accurate deformation measurements. Joint analysis of UAVSAR and ALOS interferometry measurements show clear variability in deformation along the fault strike, suggesting variable fault creep and locking at depth and along strike. In addition to fault creep, the L-band ALOS, and especially ALOS-2 ScanSAR interferometry, show large-scale ground

  19. Estimating animal mortality from anthropogenic hazards

    Science.gov (United States)

    Carcass searches are a common method for studying the risk of anthropogenic hazards to wildlife, including non-target poisoning and collisions with anthropogenic structures. Typically, numbers of carcasses found must be corrected for scavenging rates and imperfect detection. Para...

  20. Problems of anthropogenic tritium limitation

    Directory of Open Access Journals (Sweden)

    Kochetkov О.A.

    2013-12-01

    Full Text Available This article contains the current situation in respect to the environmental concentrations of anthropogenic and natural tritium. There are presented and analyzed domestic standards for НТО of all Radiation Safety Standards (NRB, as well as the regulations analyzed for tritium in drinking water taken in other countries today. This article deals with the experience of limitation of tritium and focuses on the main problem of rationing of tritium — rationing of organically bound tritium.

  1. Directional Joint Bilateral Filter for Depth Images

    Directory of Open Access Journals (Sweden)

    Anh Vu Le

    2014-06-01

    Full Text Available Depth maps taken by the low cost Kinect sensor are often noisy and incomplete. Thus, post-processing for obtaining reliable depth maps is necessary for advanced image and video applications such as object recognition and multi-view rendering. In this paper, we propose adaptive directional filters that fill the holes and suppress the noise in depth maps. Specifically, novel filters whose window shapes are adaptively adjusted based on the edge direction of the color image are presented. Experimental results show that our method yields higher quality filtered depth maps than other existing methods, especially at the edge boundaries.

  2. Emerging boundaries

    DEFF Research Database (Denmark)

    Løvschal, Mette

    2014-01-01

    of temporal and material variables have been applied as a means of exploring the processes leading to their socioconceptual anchorage. The outcome of this analysis is a series of interrelated, generative boundary principles, including boundaries as markers, articulations, process-related devices, and fixation...

  3. Changing Boundaries

    DEFF Research Database (Denmark)

    Brodkin, Evelyn; Larsen, Flemming

    2013-01-01

    project that is altering the boundary between the democratic welfare state and the market economy. We see workfare policies as boundary-changing with potentially profound implications both for individuals disadvantaged by market arrangements and for societies seeking to grapple with the increasing...

  4. Anthropogenic Pu distribution in Tropical East Pacific

    International Nuclear Information System (INIS)

    Kinoshita, Norikazu; Sumi, Takahiro; Takimoto, Kiyotaka; Nagaoka, Mika; Yokoyama, Akihiko; Nakanishi, Takashi

    2011-01-01

    The geographical distribution of the anthropogenic radionuclides 238 Pu and 239+240 Pu in the Tropical East Pacific in 2003 was studied from the viewpoint of material migration. We measured the contents of Pu isotopes in seawater and in sediment from the sea bottom. The distributions of Pu isotopes, together with those of coexisting nitrate and phosphate species and dissolved oxygen, are discussed in relation to the potential temperature and potential density (sigma-θ). The Pu contents in sediment samples were compared with those in the seawater. Horizontal migration across the Equator from north to south was investigated at depths down to ∼ 800 m in the eastern Pacific. The Pu distribution at 0-400 m correlated well with the distribution of potential temperature. Maximum Pu levels were observed in the subsurface layer at 600-800 m, corresponding to the depth where sigma-θ ∼ 27.0. It is suggested that the Pu distribution depends on the structure of the water mass and the particular temperature and salinity. The water column/sediment column inventory ratio and the vertical distribution of Pu may reflect the efficiency of scavenging in the relevant water areas. Research Highlights: → Geographical distributions of Pu isotopes were investigated from viewpoint of material migration. → Horizontal migration from north to south was found at depths down to ∼800 m in the eastern Pacific. → Pu distribution at 0-400 m was correlated with water temperature. → The distribution at 600-800 m correlated with water mass structure. → Pu in seawater and sediment gave information about efficiency of scavenging.

  5. Climatic impacts of anthropogenic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Iversen, T. [Oslo Univ. (Norway)

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. Anthropogenic production of aerosols is mainly connected with combustion of fossil fuel. Measured by particulate mass, the anthropogenic sulphate production is the dominating source of aerosols in the Northern Hemisphere. Particles emitted in mechanical processes, fly ash etc. are less important because of their shorter atmospheric residence time. Possible climatological effects of anthropogenic aerosols are usually classified in two groups: direct and indirect. Direct effects are alterations of the radiative heating budget due to the aerosol particles in clear air. Indirect effects involve the interaction between particles and cloud processes. A simplified one-layer radiation model gave cooling in the most polluted mid-latitude areas and heating due to soot absorption in the Arctic. This differential trend in heating rates may have significant effects on atmospheric meridional circulations, which is important for the atmosphere as a thermodynamic system. Recently the description of sulphur chemistry in the hemispheric scale dispersion model has been improved and will be used in a model for Mie scattering and absorption

  6. Methane hydrate stability and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    D. Archer

    2007-07-01

    Full Text Available Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2.

    Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic.

    The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release as much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.

  7. Negotiating boundaries

    DEFF Research Database (Denmark)

    Aarhus, Rikke; Ballegaard, Stinne Aaløkke

    2010-01-01

    to maintain the order of the home when managing disease and adopting new healthcare technology. In our analysis we relate this boundary work to two continuums of visibility-invisibility and integration-segmentation in disease management. We explore five factors that affect the boundary work: objects......, activities, places, character of disease, and collaboration. Furthermore, the processes are explored of how boundary objects move between social worlds pushing and shaping boundaries. From this we discuss design implications for future healthcare technologies for the home.......To move treatment successfully from the hospital to that of technology assisted self-care at home, it is vital in the design of such technologies to understand the setting in which the health IT should be used. Based on qualitative studies we find that people engage in elaborate boundary work...

  8. Assessing the effectiveness of RegCM4 regional climate model in simulating the aerosol optical depth patterns over the region of Eastern Mediterranean

    Science.gov (United States)

    Georgoulias, Aristeidis K.; Tsikerdekis, Athanasios; Ntogras, Christos; Zanis, Prodromos

    2014-05-01

    In this work, the ability of the regional climate model RegCM4 to simulate the aerosol optical depth (AOD) patterns over the region of Eastern Mediterranean is assessed. Three separate runs were implemented within the framework of the QUADIEEMS project for the time period 2000-2010 at a horizontal resolution of 50km covering the region of Europe. ERA-interim data were used as lateral boundary conditions while the model was driven by emissions from CMIP5. In the first case, the total of the aerosol types that RegCM4 accounts for were included (sulfate, black carbon, sea salt, dust), while in the other two cases only anthropogenic and dust particles were taken into account, respectively. The total AOD patterns were compared against level-2 satellite observations from MODIS TERRA and AQUA and ground-based measurements from 12 AERONET sites located in the region. In addition, the RegCM4 anthropogenic and dust AOD patterns were compared against the anthropogenic and dust component of MODIS AOD which was calculated using a combination of various satellite, model and reanalysis products. Our results indicate a significant underestimation of the anthropogenic AOD, while, on the contrary, the dust AOD fields are simulated in a more efficient way. The QUADIEEMS project is co-financed by the European Social Fund (ESF) and national resources under the operational programme Education and Lifelong Learning (EdLL) within the framework of the Action "Supporting Postdoctoral Researchers".

  9. Planetary boundaries: exploring the safe operating space for humanity

    Science.gov (United States)

    Johan Rockström; Will Steffen; Kevin Noone; Asa Persson; F. Stuart Chapin; Eric Lambin; Timothy M. Lenton; Marten Scheffer; Carl Folke; Hans Joachim Schellnhuber; Björn Nykvist; Cynthia A. de Wit; Terry Hughes; Sander van der Leeuw; Henning Rodhe; Sverker Sörlin; Peter K. Snyder; Robert Costanza; Uno Svedin; Malin Falkenmark; Louise Karlberg; Robert W. Corell; Victoria J. Fabry; James Hansen; Brian Walker; Diana Liverman; Katherine Richardson; Paul Crutzen; Jonathan Foley

    2009-01-01

    Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due...

  10. Anthropogenic radionuclides in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Q; Weng, J; Wang, J

    2007-11-15

    Studies of radionuclides in the environment have entered a new era with the renaissance of nuclear energy and associated fuel reprocessing, geological disposal of high-level nuclear wastes, and concerns about national security with respect to nuclear non-proliferation. This work presents an overview of anthropogenic radionuclide contamination in the environment, as well as the salient geochemical behavior of important radionuclides. We first discuss the following major anthropogenic sources and current development that contribute to the radionuclide contamination of the environment: (1) nuclear weapons program; (2) nuclear weapons testing; (3) nuclear power plants; (4) commercial fuel reprocessing; (5) geological repository of high-level nuclear wastes, and (6) nuclear accidents. Then, we summarize the geochemical behavior for radionuclides {sup 99}Tc, {sup 129}I, and {sup 237}Np, because of their complex geochemical behavior, long half-lives, and presumably high mobility in the environment. Biogeochemical cycling and environment risk assessment must take into account speciation of these redox-sensitive radionuclides.

  11. Atmospheric carbonaceous aerosols from Indo-Gangetic Plain and Central Himalaya: impact of anthropogenic sources.

    Science.gov (United States)

    Ram, Kirpa; Sarin, M M

    2015-01-15

    In the present-day scenario of growing anthropogenic activities, carbonaceous aerosols contribute significantly (∼20-70%) to the total atmospheric particulate matter mass and, thus, have immense potential to influence the Earth's radiation budget and climate on a regional to global scale. In addition, formation of secondary organic aerosols is being increasingly recognized as an important process in contributing to the air-pollution and poor visibility over urban regions. It is, thus, essential to study atmospheric concentrations of carbonaceous species (EC, OC and WSOC), their mixing state and absorption properties on a regional scale. This paper presents the comprehensive data on emission sources, chemical characteristics and optical properties of carbonaceous aerosols from selected urban sites in the Indo-Gangetic Plain (IGP) and from a high-altitude location in the central Himalaya. The mass concentrations of OC, EC and WSOC exhibit large spatio-temporal variability in the IGP. This is attributed to seasonally varying emissions from post-harvest agricultural-waste burning, their source strength, boundary layer dynamics and secondary aerosol formation. The high concentrations of OC and SO4(2-), and their characteristic high mass scattering efficiency, contribute significantly to the aerosol optical depth and scattering coefficient. This has implications to the assessment of single scattering albedo and aerosol radiative forcing on a regional scale. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Het verband tussen natuurlijke en anthropogene landschapsvormen, bezien vanuit de betrekkingen in grensmilieu’s

    NARCIS (Netherlands)

    Leeuwen, van Chr.G.

    1965-01-01

    The isomorphy of natural and anthropogeneous landscapes with regard to the environmental conditions in border areas The contact in space between opposite situations constitutes two main types of boundaries. The distinction of these two types offers a useful expedient in ecology. It may also clarify

  13. Blurring Boundaries

    DEFF Research Database (Denmark)

    Neergaard, Ulla; Nielsen, Ruth

    2010-01-01

    of welfare functions into EU law both from an internal market law and a constitutional law perspective. The main problem areas covered by the Blurring Boundaries project were studied in sub-projects on: 1) Internal market law and welfare services; 2) Fundamental rights and non-discrimination law aspects......; and 3) Services of general interest. In the Blurring Boundaries project, three aspects of the European Social Model have been particularly highlighted: the constitutionalisation of the European Social Model, its multi-level legal character, and the clash between market access justice at EU level...... and distributive justice at national level....

  14. Characterization of the atmospheric boundary layer from radiosonde ...

    Indian Academy of Sciences (India)

    In this paper, a comparison of two methods for the calculation of the height of atmospheric boundary layer (ABL) ... Boundary layer; GPS sonde; mixed layer height; turbulent flow depth. J. Earth Syst. ..... for her PhD research work. References.

  15. Quarrying: an anthropogenic geomorphological approach

    International Nuclear Information System (INIS)

    David, L.

    2008-01-01

    The study intends to give an introduction to the significance of quarrying from the point of view of anthropogenic geomorphology, indicating the level of surface forming due to the mining of mineral raw materials. The significance of this topic is supported by the existence of the so-called 'mining landscapes' that emerged since to the 19 th century. Authors focus on the geomorphic impact of quarrying with special emphasis on factors influencing its spatial distribution, as well as on the characteristics and classification of surface features produced by quarrying, providing an overview of the most important excavated and accumulated forms and form components, on the macro, meso and micro scales. Finally, international and Hungarian case studies illustrate some aspects of the opening and after-use of mining sites in order to observe how abandoned quarries can be turned into 'environmental values', and used as possible sites for exhibitions or for regional and tourism development projects. (author)

  16. Changes in anthropogenic carbon storage in the Northeast Pacific in the last decade

    Science.gov (United States)

    Chu, Sophie N.; Wang, Zhaohui Aleck; Doney, Scott C.; Lawson, Gareth L.; Hoering, Katherine A.

    2016-07-01

    In order to understand the ocean's role as a sink for anthropogenic carbon dioxide (CO2), it is important to quantify changes in the amount of anthropogenic CO2 stored in the ocean interior over time. From August to September 2012, an ocean acidification cruise was conducted along a portion of the P17N transect (50°N 150°W to 33.5°N 135°W) in the Northeast Pacific. These measurements are compared with data from the previous occupation of this transect in 2001 to estimate the change in the anthropogenic CO2 inventory in the Northeast Pacific using an extended multiple linear regression (eMLR) approach. Maximum increases in the surface waters were 11 µmol kg-1 over 11 years near 50°N. Here, the penetration depth of anthropogenic CO2 only reached ˜300 m depth, whereas at 33.5°N, penetration depth reached ˜600 m. The average increase of the depth-integrated anthropogenic carbon inventory was 0.41 ± 0.12 mol m-2 yr-1 across the transect. Lower values down to 0.20 mol m-2 yr-1 were observed in the northern part of the transect near 50°N and increased up to 0.55 mol m-2 yr-1 toward 33.5°N. This increase in anthropogenic carbon in the upper ocean resulted in an average pH decrease of 0.002 ± 0.0003 pH units yr-1 and a 1.8 ± 0.4 m yr-1 shoaling rate of the aragonite saturation horizon. An average increase in apparent oxygen utilization of 13.4 ± 15.5 µmol kg-1 centered on isopycnal surface 26.6 kg m-3 from 2001 to 2012 was also observed.

  17. Weighted halfspace depth

    Czech Academy of Sciences Publication Activity Database

    Kotík, Lukáš; Hlubinka, D.; Vencálek, O.

    Vol. 46, č. 1 (2010), s. 125-148 ISSN 0023-5954 Institutional research plan: CEZ:AV0Z10750506 Keywords : data depth * nonparametric multivariate analysis * strong consistency of depth * mixture of distributions Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.461, year: 2010 http://library.utia.cas.cz/separaty/2010/SI/kotik-weighted halfspace depth.pdf

  18. Anthropogenic radionuclides in sea water

    International Nuclear Information System (INIS)

    Honda, Teruyuki

    1999-01-01

    On the basis of data base of IAEA-MEL (International Atomic Energy Agency, Marine Environment Laboratory) and other organizations, the distribution and behavior of anthropogenic radionuclides in sea water, 137 Cs, 90 Sr, 239+240 Pu, 241 Am and 3 H, are explained. 137 Cs (β - , γ: 30.2 y half life) is the most important pollution source and tracer to make clear mixture and diffusion process in seawater. The concentration of 137 Cs in surface seawater of Northern Hemisphere is larger than that of Southern Hemisphere, because many inner space nuclear tests were carried out in the Northern Hemisphere. Especially, the concentration of Northern-east Ocean and Mediterranean Sea are 21 Bq/m 3 and 13 Bq/m 3 , respectively, ten times as much as the other, because of discharge of nuclear fuel reprocessing plants and Chernobyl accident. 2.5 Bq/m 3 137 Cs was observed in North Atlantic Ocean. Behavior of 90 Sr (β - : 29.0 y half life) is the same as 137 Sr in seawater. Secular change of 137 Sr and 90 Sr in seawater in coastal areas of Japan shows decrease of the values from 1964 and reached to 2 to 4 mBq/l and 1 to 3 mBq/l, respectively. 239+240 Pu is the most large load of transuranic elements (TRU) in the earth and originated from nuclear tests. The concentration of 239+240 Pu is 20 to 30 (10 -4 pCi/l, 1968) in the Pacific Ocean and 2.5 to 10.0 μBq/l (1982 to 1993). 241 Am (α: 433 y half life) is generated by decay of 241 Pu. Accordingly, the maximum value is observed after about 100 years. 241 Am/ 239+240 Pu showed less than about 0.3 of fall out, so that emission of 241 Am increases much more than 239+240 Pu. 3 H (β - : 12.3 y half life) has the most short half life in the anthropogenic radionuclides and exists the form as water (HTO) in the sea. The origin of 3 H is hydrogen bomb tests during 1952 and 1975. The concentration of 3 H in sea is average 3.6 TU (1994). The vertical profile of 137 Cs and 90 Sr is similar to each other since both nuclides become ions such

  19. Boundary issues

    Science.gov (United States)

    Townsend, Alan R.; Porder, Stephen

    2011-03-01

    What is our point of no return? Caesar proclaimed 'the die is cast' while crossing the Rubicon, but rarely does modern society find so visible a threshold in our continued degradation of ecosystems and the services they provide. Humans have always used their surroundings to make a living— sometimes successfully, sometimes not (Diamond 2005)—and we intuitively know that there are boundaries to our exploitation. But defining these boundaries has been a challenge since Malthus first prophesied that nature would limit the human population (Malthus 1798). In 2009, Rockström and colleagues tried to quantify what the 6.8 billion (and counting) of us could continue to get away with, and what we couldn't (Rockström et al 2009). In selecting ten 'planetary boundaries', the authors contend that a sustainable human enterprise requires treating a number of environmental thresholds as points of no return. They suggest we breach these Rubicons at our own peril, and that we've already crossed three: biodiversity loss, atmospheric CO2, and disruption of the global nitrogen (N) cycle. As they clearly hoped, the very act of setting targets has provoked scientific inquiry about their accuracy, and about the value of hard targets in the first place (Schlesinger 2009). Such debate is a good thing. Despite recent emphasis on the science of human-ecosystem interactions, understanding of our planetary boundaries is still in its infancy, and controversy can speed scientific progress (Engelhardt and Caplan 1987). A few weeks ago in this journal, Carpenter and Bennett (2011) took aim at one of the more controversial boundaries in the Rockström analysis: that for human alteration of the global phosphorus (P) cycle. Rockström's group chose riverine P export as the key indicator, suggesting that humans should not exceed a value that could trigger widespread marine anoxic events—and asserting that we have not yet crossed this threshold. There are defensible reasons for a marine

  20. boundary dissipation

    Directory of Open Access Journals (Sweden)

    Mehmet Camurdan

    1998-01-01

    are coupled by appropriate trace operators. This overall model differs from those previously studied in the literature in that the elastic chamber floor is here more realistically modeled by a hyperbolic Kirchoff equation, rather than by a parabolic Euler-Bernoulli equation with Kelvin-Voight structural damping, as in past literature. Thus, the hyperbolic/parabolic coupled system of past literature is replaced here by a hyperbolic/hyperbolic coupled model. The main result of this paper is a uniform stabilization of the coupled PDE system by a (physically appealing boundary dissipation.

  1. Exploring the planetary boundary for chemical pollution

    DEFF Research Database (Denmark)

    Diamond, Miriam L.; de Wit, Cynthia A.; Molander, Sverker

    2015-01-01

    Rockström et al. (2009a, 2009b) have warned that humanity must reduce anthropogenic impacts defined by nine planetary boundaries if "unacceptable global change" is to be avoided. Chemical pollution was identified as one of those boundaries for which continued impacts could erode the resilience...... of ecosystems and humanity. The central concept of the planetary boundary (or boundaries) for chemical pollution (PBCP or PBCPs) is that the Earth has a finite assimilative capacity for chemical pollution, which includes persistent, as well as readily degradable chemicals released at local to regional scales......, which in aggregate threaten ecosystem and human viability. The PBCP allows humanity to explicitly address the increasingly global aspects of chemical pollution throughout a chemical's life cycle and the need for a global response of internationally coordinated control measures. We submit that sufficient...

  2. Complexity and Dynamical Depth

    Directory of Open Access Journals (Sweden)

    Terrence Deacon

    2014-07-01

    Full Text Available We argue that a critical difference distinguishing machines from organisms and computers from brains is not complexity in a structural sense, but a difference in dynamical organization that is not well accounted for by current complexity measures. We propose a measure of the complexity of a system that is largely orthogonal to computational, information theoretic, or thermodynamic conceptions of structural complexity. What we call a system’s dynamical depth is a separate dimension of system complexity that measures the degree to which it exhibits discrete levels of nonlinear dynamical organization in which successive levels are distinguished by local entropy reduction and constraint generation. A system with greater dynamical depth than another consists of a greater number of such nested dynamical levels. Thus, a mechanical or linear thermodynamic system has less dynamical depth than an inorganic self-organized system, which has less dynamical depth than a living system. Including an assessment of dynamical depth can provide a more precise and systematic account of the fundamental difference between inorganic systems (low dynamical depth and living systems (high dynamical depth, irrespective of the number of their parts and the causal relations between them.

  3. Natural and anthropogenic radionuclides in the environment

    International Nuclear Information System (INIS)

    Hille, R.

    1984-01-01

    A survey is given on the actual knowledge about occurence and environmental relevancy of the most important radionuclides from natural and anthropogenic origin. The contribution of AGF installation is emphasized. (orig.) [de

  4. Anthropogenic disturbance on the vegetation in makurunge

    African Journals Online (AJOL)

    Mgina

    landscape in Tanzania that has been severely affected by anthropogenic disturbance ... Fragmentation of habitats formed patches that have reduced plant species population sizes, and ... by the movement of the Inter-Tropical ..... of pollinators.

  5. Anthropogenic Biomes of the World, Version 2: 1700

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Biomes of the World, Version 2: 1700 data set describes anthropogenic transformations within the terrestrial biosphere caused by sustained direct...

  6. Anthropogenic Biomes of the World, Version 2: 1900

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Biomes of the World, Version 2: 1900 data set describes anthropogenic transformations within the terrestrial biosphere caused by sustained direct...

  7. Anthropogenic Biomes of the World, Version 2: 1800

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Biomes of the World, Version 2: 1800 data set describes anthropogenic transformations within the terrestrial biosphere caused by sustained direct...

  8. Anthropogenic Biomes of the World, Version 2: 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Biomes of the World, Version 2: 2000 data set describes anthropogenic transformations within the terrestrial biosphere caused by sustained direct...

  9. Modelling of anthropogenic and natural climate changes

    Energy Technology Data Exchange (ETDEWEB)

    Grassl, H; Mikolajewicz, U; Bakan, S [Max Planck Institute of Meteorology, Hamburg (Germany)

    1993-06-01

    The delay of anthropogenic climate change caused by oceans and other slowly reacting climate system components forces us to numerical modeling as the basis of decisions. For three three-dimensional numerical examples, namely transient coupled ocean-atmosphere models for the additional greenhouse effect, internal ocean-atmosphere variability, and disturbance by soot particles from burning oil wells, the present-day status is described. From all anthropogenic impacts on the radiative balance, the contribution from trace gases is the most important.

  10. Anthropogenic inputs of dissolved organic matter in New York Harbor

    Science.gov (United States)

    Gardner, G. B.; Chen, R. F.; Olavasen, J.; Peri, F.

    2016-02-01

    The Hudson River flows into the Atlantic Ocean through a highly urbanized region which includes New York City to the east and Newark, New Jersey to the west. As a result, the export of Dissolved Organic Carbon (DOC) from the Hudson to the Atlantic Ocean includes a significant anthropogenic component. A series of high resolution studies of the DOC dynamics of this system were conducted between 2003 and 2010. These included both the Hudson and adjacent large waterways (East River, Newark Bay, Kill Van Kull and Arthur Kill) using coastal research vessels and smaller tributaries (Hackensack, Pasaic and Raritan rivers) using a 25' boat. In both cases measurements were made using towed instrument packages which could be cycled from near surface to near bottom depths with horizontal resolution of approximately 20 to 200 meters depending on depth and deployment strategy. Sensors on the instrument packages included a CTD to provide depth and salinity information and a chromophoric dissolved organic matter(CDOM) fluorometer to measure the fluorescent fraction of the DOC. Discrete samples allowed calibration of the fluorometer and the CDOM data to be related to DOC. The combined data set from these cruises identified multiple scales of source and transport processes for DOC within the Hudson River/New York Harbor region. The Hudson carries a substantial amount of natural DOC from its 230 km inland stretch. Additional sources exist in fringing salt marshes adjacent to the Hackensack and Raritan rivers. However the lower Hudson/New Harbor region receives a large input of DOC from multiple publically owned treatment works (POTW) discharges. The high resolution surveys allowed us to elucidate the distribution of these sources and the manner in which they are rapidly mixed to create the total export. We estimate that anthropogenic sources account for up to 2.5 times the DOC flux contributed by natural processes.

  11. Anthropogenic CO2 in the ocean

    Directory of Open Access Journals (Sweden)

    Tsung-Hung Peng

    2005-06-01

    Full Text Available The focus of this review article is on the anthropogenic CO2 taken up by the ocean. There are several methods of identifying the anthropogenic CO2 signal and quantifying its inventory in the ocean. The ?C* method is most frequently used to estimate the global distribution of anthropogenic CO2 in the ocean. Results based on analysis of the dataset obtained from the comprehensive surveys of inorganic carbon distribution in the world oceans in the 1990s are given. These surveys were jointly conducted during the World Ocean Circulation Experiment (WOCE and the Joint Global Ocean Flux Study (JGOFS. This data set consists of 9618 hydrographic stations from a total of 95 cruises, which represents the most accurate and comprehensive view of the distribution of inorganic carbon in the global ocean available today. The increase of anthropogenic CO2 in the ocean during the past few decades is also evaluated using direct comparison of results from repeat surveys and using statistical method of Multi-parameter Linear Regression (MLR. The impact of increasing oceanic anthropogenic CO2 on the calcium carbonate system in the ocean is reviewed briefly as well. Extensive studies of CaCO3 dissolution as a result of increasing anthropogenic CO2 in the ocean have revealed several distinct oceanic regions where the CaCO3 undersaturation zone has expanded.

  12. Motivation with Depth.

    Science.gov (United States)

    DiSpezio, Michael A.

    2000-01-01

    Presents an illusional arena by offering experience in optical illusions in which students must apply critical analysis to their innate information gathering systems. Introduces different types of depth illusions for students to experience. (ASK)

  13. Efficient Depth Enhancement Using a Combination of Color and Depth Information.

    Science.gov (United States)

    Lee, Kyungjae; Ban, Yuseok; Lee, Sangyoun

    2017-07-01

    Studies on depth images containing three-dimensional information have been performed for many practical applications. However, the depth images acquired from depth sensors have inherent problems, such as missing values and noisy boundaries. These problems significantly affect the performance of applications that use a depth image as their input. This paper describes a depth enhancement algorithm based on a combination of color and depth information. To fill depth holes and recover object shapes, asynchronous cellular automata with neighborhood distance maps are used. Image segmentation and a weighted linear combination of spatial filtering algorithms are applied to extract object regions and fill disocclusion in the object regions. Experimental results on both real-world and public datasets show that the proposed method enhances the quality of the depth image with low computational complexity, outperforming conventional methods on a number of metrics. Furthermore, to verify the performance of the proposed method, we present stereoscopic images generated by the enhanced depth image to illustrate the improvement in quality.

  14. Mechanisms and velocities of anthropogenic Pb migration in Mediterranean soils

    International Nuclear Information System (INIS)

    Erel, Y.

    1998-01-01

    The isotopic composition of Pb measured in soil samples was used to determine rates and mechanisms of anthropogenic Pb migration in the soil. Petrol-Pb found in soluble halogenated aerosols migrates into the soil and is retained in the soil by the stationary soil particles. Lead infiltration velocity is approximately 5 x 10 -1 cm/year, and its retardation factor is estimated to be on the order of 1 x 10 3 . The infiltration of Pb into the soil is best described by the advection-dispersion equation under the assumption that the time scale of the longitudinal dispersion is much longer than the time scale of advection. Therefore, the contribution of dispersion to the solution of the advection-dispersion equation is negligible. As a result, the soil profile of petrol-Pb resembles the time-dependent input function of petrol-Pb. The estimated petrol-Pb penetration velocity and the isotopic composition profile of Pb in off-road soil are used for the computation of the fraction of anthropogenic Pb in this soil. It is calculated that the fraction of anthropogenic Pb in the acid-leached soil samples and in the soil residue of this soil profile drops from 60 and 22% near the surface to 6 and 0% at a depth of 33 cm, respectively. The downward migration velocity of Pb in soils of the studied area, which are typically 50 to 100 cm deep, implies a residence time of Pb in the soil of 100 to 200 years

  15. The sea surface microlayer: biology, chemistry and anthropogenic enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, J T

    1982-01-01

    Recent studies increasingly point to the interface between the world's atmosphere and hydrosphere (the sea-surface microlayer) as an important biological habitat and a collection point for anthropogenic materials. Newly developed sampling techniques collect different qualitative and quantitative fractions of the upper sea surface from depths of less than one micron to several centimeters. The microlayer provides a habitat for a biota, including the larvae of many commercial fishery species, which are often highly enriched in density compared to subsurface water only a few cm below. Common enrichments for bacterioneuston, phytoneuston, and zooneuston are 10/sup 2/-10/sup 4/, 1-10/sup 2/, and 1-10, respectively. The trophic relationships or intergrated functioning of these neustonic communities have not been examined. Surface tension forces provide a physically stable microlayer, but one which is subjected to greater environmental and climatic variation than the water column. A number of poorly understood physical processes control the movement and flux of materials within and through the microlayer. The microlayer is generally coated with a natural organic film of lipid and fatty acid material overlying a polysaccharide protein complex. The microlayer serves as both a source and a sink for materials in the atmosphere and the water column. Among these materials are large quantities of anthropogenic substances which frequently occur at concentrations 10/sup 2/-10/sup 4/ greater than those in the water column. These include plastics, tar lumps, polyaromatic hydrocarbons, chlorinated hydrocarbons, and potentially toxic metals, such as, lead, copper, zinc, and nickel. How the unique processes occurring in the microlayer affect the fate of anthropogenic substances is not yet clear.

  16. Prestack depth migration

    International Nuclear Information System (INIS)

    Postma, R.W.

    1991-01-01

    Two lines form the southern North Sea, with known velocity inhomogeneities in the overburden, have been pre-stack depth migrated. The pre-stack depth migrations are compared with conventional processing, one with severe distortions and one with subtle distortions on the conventionally processed sections. The line with subtle distortions is also compared with post-stack depth migration. The results on both lines were very successful. Both have already influenced drilling decisions, and have caused a modification of structural interpretation in the respective areas. Wells have been drilled on each of the lines, and well tops confirm the results. In fact, conventional processing led to incorrect locations for the wells, both of which were dry holes. The depth migrated sections indicate the incorrect placement, and on one line reveals a much better drilling location. This paper reports that even though processing costs are high for pre-stack depth migration, appropriate use can save millions of dollars in dry-hole expense

  17. Chernozems microbial community under anthropogenic impact (Russia)

    Science.gov (United States)

    Ivashchenko, Kristina; Ananyeva, Nadezhda; Sushko, Sofia; Vasenev, Viacheslav

    2017-04-01

    Chernozems is important natural resource, which in the last decade under intense influence as a result of plowing and urbanization. The parameters of soil microbial community functioning might be identify some soil deterioration under the impacts. Our research was focused on assessment of microbial community status in different soil layers of virgin steppe, bare fallow and urban ecosystems (Kursk region). In each ecosystem, we chose randomly 3-5 spatially distributed sites, where soil samples were collected by auguring up to 0.5 m depth (each layer 10 cm thickness) and up to 1.5 m depth (0-10, 10-50, 50-100, 100-150 cm layers), totally 127 samples. The bulk density was measured for these soil layers. In all soil samples the microbial biomass carbon content (Cmic) was analyzed by substrate-induced respiration (SIR) method and basal respiration (BR) was assessed by CO2 rate production. The fungi-to-bacteria ratio (selective inhibition technique with antibiotics) was determined and portion of Cmic in soil organic carbon (Corg) content was calculated in topsoil (0-10 cm). The Corg (dichromate oxidation) and pHw (potentiometry) values were measured. The Cmic and BR profile pools were calculated using bulk density and thickness of studied layers. The Cmic (0-10 cm) was varied from 84 to 1954 µg C g-1 soil, in steppe it was on average 3-4 times higher than those in bare fallow and urban. The BR rate was amounted from 0.20 to 1.57 µg CO2-C g-1 soil h-1, however no significant difference between studied ecosystems was found. It was shown the relationship between Cmic, BR and Corg (the linear regression, R2=0.92 and 0.75, respectively, pecosystems row: virgin steppe>bare fallow>urban, and it was on average 6.0, 5.2 and 1.8, respectively. The Cmic profile pool (0.5 m) of steppe was reached up on average 206 g C m-2, and it was 2.0 and 2.5 times higher those bare fallow and urban, respectively. The BR profile pool (0.5 m) in steppe and bare fallow was reached up 5.9 and 5

  18. AIRS Views of Anthropogenic and Biomass Burning CO: INTEX-B/MILAGRO and TEXAQS/GoMACCS

    Science.gov (United States)

    McMillan, W. W.; Warner, J.; Wicks, D.; Barnet, C.; Sachse, G.; Chu, A.; Sparling, L.

    2006-12-01

    Utilizing the Atmospheric InfraRed Sounder's (AIRS) unique spatial and temporal coverage, we present observations of anthropogenic and biomass burning CO emissions as observed by AIRS during the 2006 field experiments INTEX-B/MILAGRO and TEXAQS/GoMACCS. AIRS daily CO maps covering more than 75% of the planet demonstrate the near global transport of these emissions. AIRS day/night coverage of significant portions of the Earth often show substantial changes in 12 hours or less. However, the coarse vertical resolution of AIRS retrieved CO complicates its interpretation. For example, extensive CO emissions are evident from Asia during April and May 2006, but it is difficult to determine the relative contributions of biomass burning in Thailand vs. domestic and industrial emissions from China. Similarly, sometimes AIRS sees enhanced CO over and downwind of Mexico City and other populated areas. AIRS low information content and decreasing sensitivity in the boundary layer can result in underestimates of CO total columns and free tropospheric abundances. Building on our analyses of INTEX-A/ICARTT data from 2004, we present comparisons with INTEX-B/MILAGRO and TEXAQS/GoMACCS in situ aircraft measurements and other satellite CO observations. The combined analysis of AIRS CO, water vapor and O3 retrievals; MODIS aerosol optical depths; and forward trajectory computations illuminate a variety of dynamical processes in the troposphere.

  19. Observations of the Hawaiian Mesopelagic Boundary Community in Daytime and Nighttime Habitats Using Estimated Backscatter

    Directory of Open Access Journals (Sweden)

    Comfort CM

    2017-07-01

    Full Text Available The Hawaiian mesopelagic boundary community is a slope-associated assemblage of micronekton that undergoes diel migrations along the slopes of the islands, residing at greater depths during the day and moving upslope to forage in shallower water at night. The timing of these migrations may be influenced by environmental factors such as moon phase or ambient light. To investigate the movements of this community, we examined echo intensity data from acoustic Doppler current profilers (ADCPs deployed at shallow and deep sites on the southern slope of Oahu, Hawaii. Diel changes in echo intensity (and therefore in estimated backscatter were observed and determined to be caused, at least in part, by the horizontal migration of the mesopelagic boundary community. Generalized additive modeling (GAM was used to assess the impact of environmental factors on the migration timing. Sunset time and lunar illumination were found to be significant factors. Movement speeds of the mesopelagic boundary community were estimated at 1.25–1.99 km h-1 (35–55 cm s-1. The location at which the migrations were observed is the future site of a seawater air conditioning system, which will cause artificial upwelling at our shallow observation site and may cause animal entrainment at the seawater intake near our deep water observation site. This study is the first to observe the diel migration of the mesopelagic boundary community on southern Oahu in both deep and shallow parts of the habitat, and it is also the first to examine migration trends over long time scales, which allows a better assessment of the effects of seasons and lunar illumination on micronekton migrations. Understanding the driving mechanisms of mesopelagic boundary community behavior will increase our ability to assess and manage coastal ecosystems in the face of increasing anthropogenic impacts.

  20. Radon depth migration

    International Nuclear Information System (INIS)

    Hildebrand, S.T.; Carroll, R.J.

    1993-01-01

    A depth migration method is presented that used Radon-transformed common-source seismograms as input. It is shown that the Radon depth migration method can be extended to spatially varying velocity depth models by using asymptotic ray theory (ART) to construct wavefield continuation operators. These operators downward continue an incident receiver-array plane wave and an assumed point-source wavefield into the subsurface. The migration velocity model is constrain to have longer characteristic wavelengths than the dominant source wavelength such that the ART approximations for the continuation operators are valid. This method is used successfully to migrate two synthetic data examples: (1) a point diffractor, and (2) a dipping layer and syncline interface model. It is shown that the Radon migration method has a computational advantage over the standard Kirchhoff migration method in that fewer rays are computed in a main memory implementation

  1. IDENTIFYING ANTHROPOGENIC METALLIC POLLUTANTS USING FREQUENCY DEPENDENT MAGNETIC SUSCEPTIBILITY MEASUREMENTS IN ABUJA METROPOLIS

    Directory of Open Access Journals (Sweden)

    Jatto S. Solomon

    2017-07-01

    Full Text Available Soil formed from lithological and weathering processes of parent rocks generally exhibit paramagnetic properties due to some minerals contained in the rocks and thus have significant value of magnetic susceptibility. This susceptibility arising from the influence of the parent rocks tend to mask anthropogenic grains pollutants released into the environment by human activities. Hence, it becomes difficult to identify the effect of the lithological and anthropogenic magnetic susceptibility in complex soil found in urban areas. The superparamagnetic effect of lithological soil, a single state domain and multi-domain state of anthropogenic grains can easily be investigated by frequency dependent measurements where readings between 0-2.0% indicates the absence of lithological influence, 2.0-8.0% indicates multi-domain grains or mixture of both single stage and multi-domian grains and 8.0-12% indicates the superparamagntic (SP grain from lithological origin. In this work frequency dependent measurements were carried out along 5 selected road networks within the 5 districts of Abuja phase 1. Measurements were also carried out in 379 random points at the surface and depth of 40.0cm to investigate the distribution of anthropogenic grains in Abuja metropolis using the Bartington susceptibility meter. Frequency dependent measurements along the selected road networks indicate0-3.0% immediately after the roads pavement to a distance of about 3.0m from the road, indicating that the magnetic susceptibility arise mostly form anthropogenic influence rather than lithological processes. At the distance of 3.0-8.0m, frequency dependent values of about 3.0-8.0% were recorded, indicating mixture of both superparamagnetic and multi-domain grains. Beyond the distance of 8.0m, the frequency dependent values are mostly above 8.0.0%, indicating virtually all SP grains. The spatial distribution frequency dependent surface map shows the presence of anthropogenic grains in

  2. Measuring depth in boreholes

    International Nuclear Information System (INIS)

    Hodson, G.M.

    1979-01-01

    This invention relates to a method of determining the depth of rock strata and other features of a borehole. It may be employed with particular advantage when access to the top of the borehole is difficult, for example in underwater operations. A radioactive marker, such as a source of gamma rays, is positioned near the top of the riser of a sub-sea wellhead structure. A radiation detector is lowered between the marker and a radioactive stratum and the length of line supplied is measured on the floating platform. This enables the depth of the stratum to be measured irrespective of tidal variations of the height of the platform. (U.K.)

  3. Direct radiative effects by anthropogenic particles at a polluted site: Rome (Italy)

    International Nuclear Information System (INIS)

    Bergamo, A.; De Tomasi, F.; Perrone, M.R.

    2008-01-01

    The direct radiative effect (DRE) by all (anthropogenic plus natural) and anthropogenic aerosols is calculated at the solar (0.34 μm) and infrared (4-200 μm) spectral range to better address the annual cycle of the anthropogenic aerosols impact at a site (Rome, Italy) significantly affected by pollution. Aerosol optical and microphysical properties from 2003 AERONET Sun/sky-photometer measurements and solar albedos based on MODIS satellite sensor data constitute the necessary input to radiative transfer simulations. Clear- and all-sky conditions are investigated by adopting ISCCP monthly products for high-, mid-and low-cloud cover. It is shown that monthly mean values of aerosol optical depths by anthropogenic particles (AOD a ) are on average more than 50% of the corresponding all-aerosol-optical-depth (AOD) monthly means. In particular, the AOD a /AOD ratio that varies within the (0.51-0.83) on autumn-winter (A W, October-March), varies within the (0.50-0.71 range on spring-summer (S S, April-September) as a consequence of the larger contribution of natural particles on S S. The surface (sfc), all-sky DRE by anthropogenic particles that is negative all year round at solar wave-lengths, represents on average 60% and 51% of the all-sky sfc-DRE by all aerosols on A W and S S, respectively. The all-sky atmospheric forcing by anthropogenic particles (AF a ) that is positive all year round, is little dependent on seasons: it varies within the (1.0-4.1) W/m 2 and (2.0-4.2) W/m 2 range an A W and S S, respectively. Conversely, the all-sky A F by all aerosols is characterized by a marked seasonality. As a consequence, the atmospheric forcing by anthropogenic particles that on average is 50% of the A F value on A W, decreases down to 36% of the A F value on S S. Infrared aerosols DREs that are positive all year round are significantly smaller than the corresponding absolute values of solar DREs. Clouds decrease on average ToA- and sfc-DRE absolute values by anthropogenic

  4. Natural and anthropogenic hydrocarbons in the Antarctic pack ice

    International Nuclear Information System (INIS)

    Nemirovskaya, I.A.; Novigatsky, A.N.

    2004-01-01

    A field experiment was conducted near the Russian Antarctic stations in May, 2001 in the Pridz Bay and coastal part of the Davies Sea to examine the content of dissolved and suspended forms of aliphatic hydrocarbons in melted snow samples, pack ice and ice cores. The site included clean control areas and polluted test areas. A spill was performed by covering the bare ice surface with marine diesel fuel. The different physical characteristics of clean and polluted ice were measured. This included radiation balance, reflected solar radiation, integral albedo radiation, surface temperature, seawater temperature, salinity at depth, and ice salinity. The study showed that accumulation of natural and anthropogenic hydrocarbon took place in the ice-water barrier zone, mostly in suspended form. It was concluded that for oil spills in pack Antarctic ice, the mechanism of filtration due to convection-diffusion plays an important role in the transformation of diesel fuel. 14 refs., 2 tabs., 2 figs

  5. Technology for Boundaries

    DEFF Research Database (Denmark)

    Bødker, Susanne; Kristensen, Jannie Friis; Nielsen, Christina

    2003-01-01

    .After analysing the history and the current boundary work, the paper will propose new technological support for boundary work. In particular the paper will suggest means of supporting boundaries when these are productive and for changing boundaries when this seems more appropriate. In total, flexible technologies......This paper presents a study of an organisation, which is undergoing a process transforming organisational and technological boundaries. In particular, we shall look at three kinds of boundaries: the work to maintain and change the boundary between the organisation and its customers; boundaries...... seem a core issue when dealing with technology for boundaries....

  6. Why bother about depth?

    DEFF Research Database (Denmark)

    Stæhr, Peter A.; Obrador, Biel; Christensen, Jesper Philip

    We present results from a newly developed method to determine depth specific rates of GPP, NEP and R using frequent automated profiles of DO and temperature. Metabolic rate calculations were made for three lakes of different trophic status using a diel DO methodology that integrates rates across...

  7. Defining depth of anesthesia.

    Science.gov (United States)

    Shafer, S L; Stanski, D R

    2008-01-01

    In this chapter, drawn largely from the synthesis of material that we first presented in the sixth edition of Miller's Anesthesia, Chap 31 (Stanski and Shafer 2005; used by permission of the publisher), we have defined anesthetic depth as the probability of non-response to stimulation, calibrated against the strength of the stimulus, the difficulty of suppressing the response, and the drug-induced probability of non-responsiveness at defined effect site concentrations. This definition requires measurement of multiple different stimuli and responses at well-defined drug concentrations. There is no one stimulus and response measurement that will capture depth of anesthesia in a clinically or scientifically meaningful manner. The "clinical art" of anesthesia requires calibration of these observations of stimuli and responses (verbal responses, movement, tachycardia) against the dose and concentration of anesthetic drugs used to reduce the probability of response, constantly adjusting the administered dose to achieve the desired anesthetic depth. In our definition of "depth of anesthesia" we define the need for two components to create the anesthetic state: hypnosis created with drugs such as propofol or the inhalational anesthetics and analgesia created with the opioids or nitrous oxide. We demonstrate the scientific evidence that profound degrees of hypnosis in the absence of analgesia will not prevent the hemodynamic responses to profoundly noxious stimuli. Also, profound degrees of analgesia do not guarantee unconsciousness. However, the combination of hypnosis and analgesia suppresses hemodynamic response to noxious stimuli and guarantees unconsciousness.

  8. Approaches to defining a planetary boundary for biodiversity

    NARCIS (Netherlands)

    Mace, G.M.; Reyers, B.; Alkemade, R.; Biggs, R.; Stuart Chapin, F.; Cornell, S.E.; Diaz, S.

    2014-01-01

    The idea that there is an identifiable set of boundaries, beyond which anthropogenic change will put the Earth system outside a safe operating space for humanity, is attracting interest in the scientific community and gaining support in the environmental policy world. Rockstrom et al. (2009)

  9. Anthropogenic sea level rise and adaptation in the Yangtze estuary

    Science.gov (United States)

    Cheng, H.; Chen, J.; Chen, Z.; Ruan, R.; Xu, G.; Zeng, G.; Zhu, J.; Dai, Z.; Gu, S.; Zhang, X.; Wang, H.

    2016-02-01

    Sea level rise is a major projected threat of climate change. There are regional variations in sea level changes, depending on both naturally the tectonic subsidence, geomorphology, naturally changing river inputs and anthropogenic driven forces as artificial reservoir water impoundment within the watershed and urban land subsidence driven by ground water depletion in the river delta. Little is known on regional sea level fall in response to the channel erosion due to the sediment discharge decline by reservoir interception in the upstream watershed, and water level rise driven by anthropogenic measures as the land reclamation, deep waterway regulation and fresh water reservoir construction to the sea level change in estuaries. Changing coastal cities are situated in the delta regions expected to be threatened in various degrees. Shanghai belongs to those cities. Here we show that the anthropogenic driven sea level rise in the Yangtze estuary from the point of view of the continuous hydrodynamic system consisted of river catchment, estuary and coastal sea. Land subsidence is cited as 4 mm/a (2011-2030). Scour depth of the estuarine channel by upstream engineering as Three Gauge Dam is estimated at 2-10 cm (2011-2030). The rise of water level by deep waterway and land reclamation is estimated at 8-10 cm (2011-2030). The relative sea level rise will be speculated about 10 -16 cm (2011-2030), which these anthropogenic sea level changes will be imposed into the absolute sea level rise 2 mm/a and tectonic subsidence 1 mm/a measured in 1990s. The action guideline to the sea level rise strategy in the Shanghai city have been proposed to the Shanghai government as (1) recent actions (2012-2015) to upgrade the city water supply and drainage engineering and protective engineering; (2) interim actions (2016-2020) to improve sea level monitoring and early warning system, and then the special, city, regional planning considering sea level rise; (3) long term actions (2021

  10. Knowledge Sharing Across Global-Local Boundaries

    DEFF Research Database (Denmark)

    Zølner, Mette

    The paper explores how locals span boundaries between corporate and local levels. The aim is to better comprehend potentialities and challenges when MNCs draws on locals’ culture specific knowledge. The study is based on an in-depth, interpretive case study of boundary spanning by local actors in...... approach with pattern matching is a way to shed light on the tacit local knowledge that organizational actors cannot articulate and that an exclusively inductive research is not likely to unveil....

  11. Mapping 1995 global anthropogenic emissions of mercury

    NARCIS (Netherlands)

    Pacyna, Jozef M.; Pacyna, Elisabeth G.; Steenhuisen, Frits; Wilson, Simon

    2003-01-01

    This paper presents maps of anthropogenic Hg emissions worldwide within a 1degrees x 1degrees latitude/longitude grid system in 1995. As such, the paper is designed for modelers simulating the Hg transport within air masses and Hg deposition to aquatic and terrestrial ecosystems. Maps of total Hg

  12. Anthropogenic heat flux estimation from space

    NARCIS (Netherlands)

    Chrysoulakis, Nektarios; Marconcini, Mattia; Gastellu-Etchegorry, Jean Philippe; Grimmond, C.S.B.; Feigenwinter, Christian; Lindberg, Fredrik; Frate, Del Fabio; Klostermann, Judith; Mitraka, Zina; Esch, Thomas; Landier, Lucas; Gabey, Andy; Parlow, Eberhard; Olofson, Frans

    2016-01-01

    H2020-Space project URBANFLUXES (URBan ANthrpogenic heat FLUX from Earth observation Satellites) investigates the potential of Copernicus Sentinels to retrieve anthropogenic heat flux, as a key component of the Urban Energy Budget (UEB). URBANFLUXES advances the current knowledge of the impacts

  13. ANthropogenic heat FLUX estimation from Space

    NARCIS (Netherlands)

    Chrysoulakis, Nektarios; Marconcini, Mattia; Gastellu-Etchegorry, Jean Philippe; Grimmong, C.S.B.; Feigenwinter, Christian; Lindberg, Fredrik; Frate, Del Fabio; Klostermann, Judith; Mi, Zina; Esch, Thomas; Landier, Lucas; Gabey, Andy; Parlow, Eberhard; Olofson, Frans

    2017-01-01

    The H2020-Space project URBANFLUXES (URBan ANthrpogenic heat FLUX from Earth observation Satellites) investigates the potential of Copernicus Sentinels to retrieve anthropogenic heat flux, as a key component of the Urban Energy Budget (UEB). URBANFLUXES advances the current knowledge of the

  14. Activity concentration of some anthropogenic radionuclides in the surface marine sediments near the Saudi coast of the Arabian (Persian) Gulf

    International Nuclear Information System (INIS)

    Al-Kheliewi, A.S.; Shabana, E.I.

    2007-01-01

    Activity concentrations of some anthropogenic radionuclides ( 90 Sr, 137 Cs, 238 Pu, 239+240 Pu and 241 Am) have been measured in the surface of marine sediments along the Saudi coast of the Arabian (Persian) Gulf. The samples were collected at different locations and water depths. The spatial distribution of the concentrations of the measured radionuclides showed a heterogeneous pattern and is independent of location or water depth. The obtained results are discussed and some conclusions are drawn. (author)

  15. Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability.

    Science.gov (United States)

    Ghan, Steven; Wang, Minghuai; Zhang, Shipeng; Ferrachat, Sylvaine; Gettelman, Andrew; Griesfeller, Jan; Kipling, Zak; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Zhang, Kai

    2016-05-24

    A large number of processes are involved in the chain from emissions of aerosol precursor gases and primary particles to impacts on cloud radiative forcing. Those processes are manifest in a number of relationships that can be expressed as factors dlnX/dlnY driving aerosol effects on cloud radiative forcing. These factors include the relationships between cloud condensation nuclei (CCN) concentration and emissions, droplet number and CCN concentration, cloud fraction and droplet number, cloud optical depth and droplet number, and cloud radiative forcing and cloud optical depth. The relationship between cloud optical depth and droplet number can be further decomposed into the sum of two terms involving the relationship of droplet effective radius and cloud liquid water path with droplet number. These relationships can be constrained using observations of recent spatial and temporal variability of these quantities. However, we are most interested in the radiative forcing since the preindustrial era. Because few relevant measurements are available from that era, relationships from recent variability have been assumed to be applicable to the preindustrial to present-day change. Our analysis of Aerosol Comparisons between Observations and Models (AeroCom) model simulations suggests that estimates of relationships from recent variability are poor constraints on relationships from anthropogenic change for some terms, with even the sign of some relationships differing in many regions. Proxies connecting recent spatial/temporal variability to anthropogenic change, or sustained measurements in regions where emissions have changed, are needed to constrain estimates of anthropogenic aerosol impacts on cloud radiative forcing.

  16. Fluence dependence of disorder depth profiles in Pb implanted Si

    International Nuclear Information System (INIS)

    Christodoulides, C.E.; Kadhim, N.J.; Carter, G.

    1980-01-01

    The total, depth integrated disorder, induced by Pb implantation into Si at room temperature, initially increases rapidly with implantation fluence and then reaches a quasi saturation level where the increase with fluence is slow. Measurements of the depth distributions of the disorder, using high resolution low angle exit Rutherford Backscattering/Channelling analysis, suggest that the quasi saturation results from overlapping of disordered zones generated deep in the tail of the disorder-depth profiles. The depth of the disordered solid-crystal boundary, xsub(D), increases with ion fluence PHI, according to the relation xsub(D) = x bar + f(PHI).σ, where x bar is the most probable projected depth and σ the projected standard deviation of disorder generation. It is shown that this relationship is consistent with an approximately Gaussian depth distribution of disorder production. (author)

  17. Depth as an organizer of fish assemblages in floodplain lakes

    Science.gov (United States)

    Miranda, L.E.

    2011-01-01

    Depth reduction is a natural process in floodplain lakes, but in many basins has been accelerated by anthropogenic disturbances. A diverse set of 42 floodplain lakes in the Yazoo River Basin (Mississippi, USA) was examined to test the hypothesis of whether depth reduction was a key determinant of water quality and fish assemblage structure. Single and multiple variable analyses were applied to 10 commonly monitored water variables and 54 fish species. Results showed strong associations between depth and water characteristics, and between depth and fish assemblages. Deep lakes provided less variable environments, clearer water, and a wider range of microhabitats than shallow lakes. The greater environmental stability was reflected by the dominant species in the assemblages, which included a broader representation of large-body species, species less tolerant of extreme water quality, and more predators. Stability in deep lakes was further reflected by reduced among-lake variability in taxa representation. Fish assemblages in shallow lakes were more variable than deep lakes, and commonly dominated by opportunistic species that have early maturity, extended breeding seasons, small adult size, and short lifespan. Depth is a causal factor that drives many physical and chemical variables that contribute to organizing fish assemblages in floodplain lakes. Thus, correlations between fish and water transparency, temperature, oxygen, trophic state, habitat structure, and other environmental descriptors may ultimately be totally or partly regulated by depth. In basins undergoing rapid anthropogenic modifications, local changes forced by depth reductions may be expected to eliminate species available from the regional pool and could have considerable ecological implications. ?? 2010 Springer Basel AG (outside the USA).

  18. Anthropogenic Radionuglides in Marine Polar Regions

    Science.gov (United States)

    Holm, Elis

    The polar regions are important for the understanding of long range water and atmospheric transport of anthropogenic substances. Investigations show that atmospheric transport of anthropogenic radionuclides is the most important route of transport to the Antarctic while water transport plays a greater role for the Arctic. Fallout from nuclear detonation tests is the major source in the Antarctic while in the Arctic other sources, especially European reprocessing facilities, dominate for conservatively behaving rdionuclides such as 137Cs . The flux of 137Cs and 239+240Pu in the Antarctic is about 1/10 of that for the Arctic and the resulting concentrations in surface sea-water show the same ratio for the two areas. In the Antarctic concentration factors for 137Cs are higher than in the Arctic for similar species

  19. Challenges for present and future estimates of anthropogenic carbon in the Indian Ocean

    Science.gov (United States)

    Goyet, C.; Touratier, F.

    One of the main challenges we face today is to determine the evolution of the penetration of anthropogenic CO2 into the Indian Ocean and its impacts on marine and human life. Anthropogenic CO2 reaches the ocean via air-sea interactions as well as riverine inputs. It is then stored in the ocean and follows the oceanic circulation. As the carbon dioxide from the atmosphere penetrates into the sea, it reacts with water and acidifies the ocean. Consequently, the whole marine ecosystem is perturbed, thus potentially affecting the food web, which has, in turn, a direct impact on seafood supply for humans. Naturally, this will mainly affect the growing number of people living in coastal areas. Although anthropogenic CO2 in the ocean is identical with natural CO2 and therefore cannot be detected alone, many approaches are available today to estimate it. Since most of the results of these methods are globally in agreement, here we chose one of these methods, the tracer using oxygen, total inorganic carbon, and total alkalinity (TrOCA) approach, to compute the 3-D distribution of the anthropogenic CO2 concentrations throughout the Indian Ocean. The results of this distribution clearly illustrate the contrast between the Arabian Sea and the Bay of Bengal. They further show the importance of the southern part of this ocean that carries some anthropogenic CO2 at great depths. In order to determine the future anthropogenic impacts on the Indian Ocean, it is urgent and necessary to understand the present state. As the seawater temperature increases, how and how fast will the ocean circulation change? What will the impacts on seawater properties be? Many people are living on the bordering coasts, how will they be affected?

  20. Rigid supersymmetry with boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, D.V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Van Nieuwenhuizen, P. [State Univ. of New York, Stony Brook, NY (United States). C.N. Yang Inst. for Theoretical Physics

    2008-01-15

    We construct rigidly supersymmetric bulk-plus-boundary actions, both in x-space and in superspace. For each standard supersymmetric bulk action a minimal supersymmetric bulk-plus-boundary action follows from an extended F- or D-term formula. Additional separately supersymmetric boundary actions can be systematically constructed using co-dimension one multiplets (boundary superfields). We also discuss the orbit of boundary conditions which follow from the Euler-Lagrange variational principle. (orig.)

  1. Heavy metals anthropogenic pollutants in Austria

    International Nuclear Information System (INIS)

    Anderl, M.; Gager, M.; Gugele, B.; Huttunen, K.; Kurzweil, A.; Poupa, S.; Ritter, M.; Wappel, D.; Wieser, M.

    2004-01-01

    Several heavy metals from anthropogenic sources are emitted in the atmosphere damaging the air quality and the human health, besides they accumulate on the soil and lately are transmitted into the human food chain. Therefore at international level there is a concern to reduce them. Austrian heavy metals emissions (cadmium, mercury and lead) during 1990-2002 are given including an analysis of causes and sources. Lead is the main pollutant and the main sector responsible is the industry. 5 figs. (nevyjel)

  2. Potential climatic effects of anthropogenic aerosols

    International Nuclear Information System (INIS)

    Pueschel, R.F.

    1993-01-01

    Aerosols act as part of the climate system through their influence on solar and terrestrial radiation. The effect of anthropogenic aerosols on the reduction of visibility is explored in this chapter. Elemental carbon has been identified as the most effective visibility-reducing species. Most of the visibility reduction is due to particles with diameter smaller than 2.5 μm. Studies indicate that sulfate is also a very important aerosol species that results in low visibility and high turbidity. Radiative properties such as aerosol single-scattering albedo values and absorption-to-backscatter ratios purported to produce warming or cooling effects of aerosols are discussed. It is concluded that aerosol clouds have a tendency to cool when they are over a low-albedo surface and have a tendency to warm when they are over high-albedo surfaces such as snow. Anthropogenic aerosols have a tendency to warm the earth's atmospheric system, based on calculations and assumed aerosol optical properties. However, this effect is somewhat offset by the absorption and re-emission into space of infrared terrestrial radiation. The net effect depends on the ratio of the absorption coefficients in the visible and infrared and also on the surface albedo. The effects on infrared radiation are documented for two anthropogenic aerosol sources in the United States, the Denver metropolitan area and power plant plumes in New Mexico, through calculations and measurements. Measured cooling rates within an aerosol plume are not sufficient to offset the warming rate due to absorption of short-wave radiation. Research indicates that anthropogenic aerosols can possibly cause local-scale warming of the atmosphere, but global-scale climatic effects remain an open question

  3. Quantifying Anthropogenic Stress on Groundwater Resources

    OpenAIRE

    Ashraf, Batool; AghaKouchak, Amir; Alizadeh, Amin; Mousavi Baygi, Mohammad; R. Moftakhari, Hamed; Mirchi, Ali; Anjileli, Hassan; Madani, Kaveh

    2017-01-01

    This study explores a general framework for quantifying anthropogenic influences on groundwater budget based on normalized human outflow (hout) and inflow (hin). The framework is useful for sustainability assessment of groundwater systems and allows investigating the effects of different human water abstraction scenarios on the overall aquifer regime (e.g., depleted, natural flow-dominated, and human flow-dominated). We apply this approach to selected regions in the USA, Germany and Iran to e...

  4. Blue whales respond to anthropogenic noise.

    Directory of Open Access Journals (Sweden)

    Mariana L Melcón

    Full Text Available Anthropogenic noise may significantly impact exposed marine mammals. This work studied the vocalization response of endangered blue whales to anthropogenic noise sources in the mid-frequency range using passive acoustic monitoring in the Southern California Bight. Blue whales were less likely to produce calls when mid-frequency active sonar was present. This reduction was more pronounced when the sonar source was closer to the animal, at higher sound levels. The animals were equally likely to stop calling at any time of day, showing no diel pattern in their sensitivity to sonar. Conversely, the likelihood of whales emitting calls increased when ship sounds were nearby. Whales did not show a differential response to ship noise as a function of the time of the day either. These results demonstrate that anthropogenic noise, even at frequencies well above the blue whales' sound production range, has a strong probability of eliciting changes in vocal behavior. The long-term implications of disruption in call production to blue whale foraging and other behaviors are currently not well understood.

  5. Anthropogenic transformation of the terrestrial biosphere.

    Science.gov (United States)

    Ellis, Erle C

    2011-03-13

    Human populations and their use of land have transformed most of the terrestrial biosphere into anthropogenic biomes (anthromes), causing a variety of novel ecological patterns and processes to emerge. To assess whether human populations and their use of land have directly altered the terrestrial biosphere sufficiently to indicate that the Earth system has entered a new geological epoch, spatially explicit global estimates of human populations and their use of land were analysed across the Holocene for their potential to induce irreversible novel transformation of the terrestrial biosphere. Human alteration of the terrestrial biosphere has been significant for more than 8000 years. However, only in the past century has the majority of the terrestrial biosphere been transformed into intensively used anthromes with predominantly novel anthropogenic ecological processes. At present, even were human populations to decline substantially or use of land become far more efficient, the current global extent, duration, type and intensity of human transformation of ecosystems have already irreversibly altered the terrestrial biosphere at levels sufficient to leave an unambiguous geological record differing substantially from that of the Holocene or any prior epoch. It remains to be seen whether the anthropogenic biosphere will be sustained and continue to evolve.

  6. Shave-off depth profiling: Depth profiling with an absolute depth scale

    International Nuclear Information System (INIS)

    Nojima, M.; Maekawa, A.; Yamamoto, T.; Tomiyasu, B.; Sakamoto, T.; Owari, M.; Nihei, Y.

    2006-01-01

    Shave-off depth profiling provides profiling with an absolute depth scale. This method uses a focused ion beam (FIB) micro-machining process to provide the depth profile. We show that the shave-off depth profile of a particle reflected the spherical shape of the sample and signal intensities had no relationship to the depth. Through the introduction of FIB micro-sampling, the shave-off depth profiling of a dynamic random access memory (DRAM) tip was carried out. The shave-off profile agreed with a blue print from the manufacturing process. Finally, shave-off depth profiling is discussed with respect to resolutions and future directions

  7. Migrating mule deer: effects of anthropogenically altered landscapes.

    Directory of Open Access Journals (Sweden)

    Patrick E Lendrum

    Full Text Available Migration is an adaptive strategy that enables animals to enhance resource availability and reduce risk of predation at a broad geographic scale. Ungulate migrations generally occur along traditional routes, many of which have been disrupted by anthropogenic disturbances. Spring migration in ungulates is of particular importance for conservation planning, because it is closely coupled with timing of parturition. The degree to which oil and gas development affects migratory patterns, and whether ungulate migration is sufficiently plastic to compensate for such changes, warrants additional study to better understand this critical conservation issue.We studied timing and synchrony of departure from winter range and arrival to summer range of female mule deer (Odocoileus hemionus in northwestern Colorado, USA, which has one of the largest natural-gas reserves currently under development in North America. We hypothesized that in addition to local weather, plant phenology, and individual life-history characteristics, patterns of spring migration would be modified by disturbances associated with natural-gas extraction. We captured 205 adult female mule deer, equipped them with GPS collars, and observed patterns of spring migration during 2008-2010.Timing of spring migration was related to winter weather (particularly snow depth and access to emerging vegetation, which varied among years, but was highly synchronous across study areas within years. Additionally, timing of migration was influenced by the collective effects of anthropogenic disturbance, rate of travel, distance traveled, and body condition of adult females. Rates of travel were more rapid over shorter migration distances in areas of high natural-gas development resulting in the delayed departure, but early arrival for females migrating in areas with high development compared with less-developed areas. Such shifts in behavior could have consequences for timing of arrival on birthing areas

  8. Spatial resolution of subsurface anthropogenic heat fluxes in cities

    Science.gov (United States)

    Benz, Susanne; Bayer, Peter; Menberg, Kathrin; Blum, Philipp

    2015-04-01

    Urban heat islands in the subsurface contain large quantities of energy in the form of elevated groundwater temperatures caused by anthropogenic heat fluxes (AHFS) into the subsurface. Hence, the objective of this study is to exemplarily quantify these AHFS and the generated thermal powers in two German cities, Karlsruhe and Cologne. A two-dimensional (2D) statistical analytical model of the vertical subsurface anthropogenic heat fluxes across the unsaturated zone was developed. The model consists of a so-called Local Monte Carlo approach that introduces a spatial representation of the following sources of AHFS: (1) elevated ground surface temperatures, (2) basements, (3) sewage systems, (4) sewage leakage, (5) subway tunnels, and (6) district heating networks. The results show that district heating networks induce the largest local AHFS with values larger than 60 W/m2 and one order of magnitude higher than the other evaluated heat sources. Only sewage pipes and basements reaching into the groundwater cause equally high heat fluxes, with maximal values of 40.37 W/m2 and 13.60 W/m2, respectively. While dominating locally, the district heating network is rather insignificant for the citywide energy budget in both urban subsurfaces. Heat from buildings (1.51 ± 1.36 PJ/a in Karlsruhe; 0.31 ± 0.14 PJ/a in Cologne) and elevated GST (0.34 ± 0.10 PJ/a in Karlsruhe; 0.42 ± 0.13 PJ/a in Cologne) are dominant contributors to the anthropogenic thermal power of the urban aquifer. In Karlsruhe, buildings are the source of 70% of the annual heat transported into the groundwater, which is mainly caused by basements reaching into the groundwater. A variance analysis confirms these findings: basement depth is the most influential factor to citywide thermal power in the studied cities with high groundwater levels. The spatial distribution of fluxes, however, is mostly influenced by the prevailing thermal gradient across the unsaturated zone. A relatively cold groundwater

  9. Anthropogenic features and hillslope processes interaction

    Science.gov (United States)

    Tarolli, Paolo; Sofia, Giulia

    2016-04-01

    Topography emerges as a result of natural driving forces, but some human activities (such as mining, agricultural practices and the construction of road networks) directly or indirectly move large quantities of soil, which leave clear topographic signatures embedded on the Earth's morphology. These signatures can cause drastic changes to the geomorphological organization of the landscape, with direct consequences on Earth surface processes (Tarolli and Sofia, 2016). To this point, the present research investigates few case studies highlighting the influences of anthropogenic topographic signatures on hillslope processes, and it shows the effectiveness of High-Resolution Topography (HRT) derived from the recent remote sensing technologies (e.g. lidar, satellite, structure from motion photogrammetry), to better understand this interaction. The first example is related to agricultural terraces. In recent times, terraced areas acquired a new relevance to modern concerns about erosion and land instability, being the agricultural land mostly threatened by abandonment or intensification and specialization of agriculture, resulting in more landslide-prone bench terraces, or heavy land levelling with increased erosion. The second case study discusses about the role of agricultural and forest roads on surface erosion and landslides. The third case study investigates geomorphic processes in an open pit mine. In all case studies, HRT served as the basis for the development of new methodologies able to recognize and analyze changes on Earth surface processes along hillslopes. The results show how anthropogenic elements have crucial effects on sediment production and sediment delivery, also influencing the landscape connectivity. The availability of HRT can improve our ability to actually model anthropogenic morphologies, quantify them, and analyse the links between anthropogenic elements and geomorphic processes. The results presented here, and the creation and dissemination of

  10. Diagnosing causes of extreme aerosol optical depth events

    Science.gov (United States)

    Bernstein, D. N.; Sullivan, R.; Crippa, P.; Thota, A.; Pryor, S. C.

    2017-12-01

    Aerosol burdens and optical properties exhibit substantial spatiotemporal variability, and simulation of current and possible future aerosol burdens and characteristics exhibits relatively high uncertainty due to uncertainties in emission estimates and in chemical and physical processes associated with aerosol formation, dynamics and removal. We report research designed to improve understanding of the causes and characteristics of extreme aerosol optical depth (AOD) at the regional scale, and diagnose and attribute model skill in simulating these events. Extreme AOD events over the US Midwest are selected by identifying all dates on which AOD in a MERRA-2 reanalysis grid cell exceeds the local seasonally computed 90th percentile (p90) value during 2004-2016 and then finding the dates on which the highest number of grid cells exceed their local p90. MODIS AOD data are subsequently used to exclude events dominated by wildfires. MERRA-2 data are also analyzed within a synoptic classification to determine in what ways the extreme AOD events are atypical and to identify possible meteorological `finger-prints' that can be detected in regional climate model simulations of future climate states to project possible changes in the occurrence of extreme AOD. Then WRF-Chem v3.6 is applied at 12-km resolution and regridded to the MERRA-2 resolution over eastern North America to quantify model performance, and also evaluated using in situ measurements of columnar AOD (AERONET) and near-surface PM2.5 (US EPA). Finally the sensitivity to (i) spin-up time (including procedure used to spin-up the chemistry), (ii) modal versus sectional aerosol schemes, (iii) meteorological nudging, (iv) chemistry initial and boundary conditions, and (v) anthropogenic emissions is quantified. Despite recent declines in mean AOD, supraregional (> 1000 km) extreme AOD events continue to occur. During these events AOD exceeds 0.6 in many Midwestern grid cells for multiple consecutive days. In all

  11. Wind profiler mixing depth and entrainment measurements with chemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Angevine, W.M.; Trainer, M.; Parrish, D.D.; Buhr, M.P.; Fehsenfeld, F.C. [NOAA Aeronomy Lab., Boulder, CO (United States); Kok, G.L. [NCAR Research Aviation Facility, Boulder, CO (United States)

    1994-12-31

    Wind profiling radars operating at 915 MHz have been present at a number of regional air quality studies. The profilers can provide a continuous, accurate record of the depth of the convective mixed layer with good time resolution. Profilers also provide information about entrainment at the boundary layer top. Mixing depth data from several days of the Rural Oxidants in the Southern Environment II (ROSE II) study in Alabama in June, 1992 are presented. For several cases, chemical measurements from aircraft and ground-based instruments are shown to correspond to mixing depth and entrainment zone behavior observed by the profiler.

  12. Institutional Strength in Depth

    International Nuclear Information System (INIS)

    Weightman, M.

    2016-01-01

    Much work has been undertaken in order to identify, learn and implement the lessons from the TEPCO Fukushima Daiichi nuclear accident. These have mainly targeted on engineering or operational lessons. Less attention has been paid to the institutional lessons, although there have been some measures to improve individual peer reviews, particularly by the World Association of Nuclear Operators, and the authoritative IAEA report published in 2015 brought forward several important lessons for regulators and advocated a system approach. The report noted that one of the contributing factors the accident was the tendency of stakeholders not to challenge. Additionally, it reported deficiencies in the regulatory authority and system. Earlier, the root cause of the accident was identified by a Japanese independent parliamentary report as being cultural and institutional. The sum total of the institutions, the safety system, was ineffective. While it is important to address the many technical and operational lessons these may not necessary address this more fundamental lesson, and may not serve to provide robust defences against human or institutional failings over a wide variety of possible events and combinations. The overall lesson is that we can have rigorous and comprehensive safety standards and other tools in place to deliver high levels of safety, but ultimately what is important is the ability of the nuclear safety system to ensure that the relevant institutions diligently and effectively apply those standards and tools — to be robust and resilient. This has led to the consideration of applying the principles of the strength in depth philosophy to a nuclear safety system as a way of providing a framework for developing, assessing, reviewing and improving the system. At an IAEA conference in October 2013, a model was presented for a robust national nuclear safety system based on strength in depth philosophy. The model highlighted three main layers: industry, the

  13. Offshore Wind Technology Depth Zones

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coastal bathymetric depth, measured in meters at depth values of: -30, -60, -900 Shallow Zone (0-30m): Technology has been demonstrated on a commercial scale at...

  14. Political State Boundary (National)

    Data.gov (United States)

    Department of Transportation — State boundaries with political limit - boundaries extending into the ocean (NTAD). The TIGER/Line Files are shapefiles and related database files (.dbf) that are an...

  15. Allegheny County Municipal Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the municipal boundaries in Allegheny County. Data was created to portray the boundaries of the 130 Municipalities in Allegheny County the...

  16. HUD GIS Boundary Files

    Data.gov (United States)

    Department of Housing and Urban Development — The HUD GIS Boundary Files are intended to supplement boundary files available from the U.S. Census Bureau. The files are for community planners interested in...

  17. State Agency Administrative Boundaries

    Data.gov (United States)

    Kansas Data Access and Support Center — This database comprises 28 State agency boundaries and point of contact. The Kansas Geological Survey collected legal descriptions of the boundaries for various...

  18. Past and Future of the Anthropogenic Biosphere

    Science.gov (United States)

    Ellis, E. C.

    2010-12-01

    Human populations and their use of land have now transformed most of the terrestrial biosphere into anthropogenic biomes (anthromes). As anthromes have emerged as the dominant global forms of ecological pattern and process, human interactions with terrestrial ecosystems have become a key earth system process, determining the structure and functioning of the biosphere. This presentation explores Ester Boserup’s land use intensification theories as models for understanding the emergence and dynamics of anthromes and their ecological processes, including their biogeochemistry and community structure, from the mostly wild biosphere of the Holocene to the primarily anthropogenic biosphere of the present and future. Existing global models and data for human population growth and land use over the Holocene differ in their portrayal of the global transition to a mostly anthropogenic biosphere. Yet there is little doubt that human populations have continued to grow over the long term and that anthromes have been increasingly important global ecological systems for millennia. This is conclusive evidence that human interactions with ecosystems can be sustained over the long-term, albeit under conditions that may no longer be realizable by either Earth or human systems. The classic Malthusian paradigm, in which human population growth outstrips natural resources leading to population collapse is unsupported by historical observations at global scale. Boserupian intensification is the better model, providing a robust theoretical foundation in which socio-ecological systems evolve as human populations increase, towards increasingly efficient use of limiting natural resources and enhanced production of anthropogenic ecological services such as food. This is not a story of technical advance, but rather of the forced adoption of ever more energy-intensive technical solutions in support of ever increasing population demands. And it does explain historical changes in the biosphere

  19. Contrasting Boundary Scavenging in two Eastern Boundary Current Regimes

    Science.gov (United States)

    Anderson, R. F.; Fleisher, M. Q.; Pavia, F. J.; Vivancos, S. M.; Lu, Y.; Zhang, P.; Cheng, H.; Edwards, R. L.

    2016-02-01

    We use data from two US GEOTRACES expeditions to compare boundary scavenging intensity in two eastern boundary current systems: the Canary Current off Mauritania and the Humboldt Current off Peru. Boundary scavenging refers to the enhanced removal of trace elements from the ocean by sorption to sinking particles in regions of greater than average particle abundance. Both regimes experience high rates of biological productivity and generation of biogenic particles, with rates of productivity potentially a little greater off Peru, whereas dust fluxes are an order of magnitude greater off NW Africa (see presentation by Vivancos et al., this meeting). Despite greater productivity off Peru, we find greater intensity of scavenging off NW Africa as measured by the residence time of dissolved 230Th integrated from the surface to a depth of 2500 m (10-11 years off NW Africa vs. 15-17 years off Peru). Dissolved 231Pa/230Th ratios off NW Africa (Hayes et al., Deep Sea Res.-II 116 (2015) 29-41) are nearly twice the values observed off Peru. We attribute this difference to the well-known tendency for lithogenic phases (dust) to strongly fractionate in favor of Th uptake during scavenging and removal, leaving the dissolved phase enriched in Pa. This behavior needs to be considered when interpreting sedimentary 231Pa/230Th ratios as a paleo proxy.

  20. Reactive Halogens in the Marine Boundary Layer (RHaMBLe: the tropical North Atlantic experiments

    Directory of Open Access Journals (Sweden)

    J. D. Lee

    2010-02-01

    these air mass classifications is observed in the time series of soluble gas and aerosol composition measurements, with additional identification of periods of slightly elevated dust concentrations consistent with the trajectories passing over the African continent. The CVAO is shown to be broadly representative of the wider North Atlantic marine boundary layer; measurements of NO, O3 and black carbon from the ship are consistent with a clean Northern Hemisphere marine background. Aerosol composition measurements do not indicate elevated organic material associated with clean marine air. Closer to the African coast, black carbon and NO levels start to increase, indicating greater anthropogenic influence. Lower ozone in this region is possibly associated with the increased levels of measured halocarbons, associated with the nutrient rich waters of the Mauritanian upwelling. Bromide and chloride deficits in coarse mode aerosol at both the CVAO and on D319 and the continuous abundance of inorganic gaseous halogen species at CVAO indicate significant reactive cycling of halogens.

    Aircraft measurements of O3 and CO show that surface measurements are representative of the entire boundary layer in the vicinity both in diurnal variability and absolute levels. Above the inversion layer similar diurnal behaviour in O3 and CO is observed at lower mixing ratios in the air that had originated from south of Cape Verde, possibly from within the ITCZ. ECMWF calculations on two days indicate very different boundary layer depths and aircraft flights over the ship replicate this, giving confidence in the calculated boundary layer depth.

  1. On boundary superalgebras

    International Nuclear Information System (INIS)

    Doikou, Anastasia

    2010-01-01

    We examine the symmetry breaking of superalgebras due to the presence of appropriate integrable boundary conditions. We investigate the boundary breaking symmetry associated with both reflection algebras and twisted super-Yangians. We extract the generators of the resulting boundary symmetry as well as we provide explicit expressions of the associated Casimir operators.

  2. Tracing anthropogenic thallium in soil using stable isotope compositions.

    Science.gov (United States)

    Kersten, Michael; Xiao, Tangfu; Kreissig, Katharina; Brett, Alex; Coles, Barry J; Rehkämper, Mark

    2014-08-19

    Thallium stable isotope data are used in this study, for the first time, to apportion Tl contamination in soils. In the late 1970s, a cement plant near Lengerich, Germany, emitted cement kiln dust (CKD) with high Tl contents, due to cocombustion of Tl-enriched pyrite roasting waste. Locally contaminated soil profiles were obtained down to 1 m depth and the samples are in accord with a binary mixing relationship in a diagram of Tl isotope compositions (expressed as ε(205)Tl, the deviation of the (205)Tl/(203)Tl ratio of a sample from the NIST SRM 997 Tl isotope standard in parts per 10(4)) versus 1/[Tl]. The inferred mixing endmembers are the geogenic background, as defined by isotopically light soils at depth (ε(205)Tl ≈ -4), and the Tl emissions, which produce Tl-enriched topsoils with ε(205)Tl as high as ±0. The latter interpretation is supported by analyses of the CKD, which is also characterized by ε(205)Tl ≈ ± 0, and the same ε(205)Tl value was found for a pyrite from the deposit that produced the cocombusted pyrite roasting waste. Additional measurements for samples from a locality in China, with outcrops of Tl sulfide mineralization and associated high natural Tl backgrounds, reveal significant isotope fractionation between soils (ε(205)Tl ≈ +0.4) and locally grown green cabbage (ε(205)Tl between -2.5 and -5.4). This demonstrates that biological isotope fractionation cannot explain the isotopically heavy Tl in the Lengerich topsoils and the latter are therefore clearly due to anthropogenic Tl emissions from cement processing. Our results thus establish that isotopic data can reinforce receptor modeling for the toxic trace metal Tl.

  3. Quantifying Anthropogenic Stress on Groundwater Resources.

    Science.gov (United States)

    Ashraf, Batool; AghaKouchak, Amir; Alizadeh, Amin; Mousavi Baygi, Mohammad; R Moftakhari, Hamed; Mirchi, Ali; Anjileli, Hassan; Madani, Kaveh

    2017-10-10

    This study explores a general framework for quantifying anthropogenic influences on groundwater budget based on normalized human outflow (h out ) and inflow (h in ). The framework is useful for sustainability assessment of groundwater systems and allows investigating the effects of different human water abstraction scenarios on the overall aquifer regime (e.g., depleted, natural flow-dominated, and human flow-dominated). We apply this approach to selected regions in the USA, Germany and Iran to evaluate the current aquifer regime. We subsequently present two scenarios of changes in human water withdrawals and return flow to the system (individually and combined). Results show that approximately one-third of the selected aquifers in the USA, and half of the selected aquifers in Iran are dominated by human activities, while the selected aquifers in Germany are natural flow-dominated. The scenario analysis results also show that reduced human withdrawals could help with regime change in some aquifers. For instance, in two of the selected USA aquifers, a decrease in anthropogenic influences by ~20% may change the condition of depleted regime to natural flow-dominated regime. We specifically highlight a trending threat to the sustainability of groundwater in northwest Iran and California, and the need for more careful assessment and monitoring practices as well as strict regulations to mitigate the negative impacts of groundwater overexploitation.

  4. Lithologic boundaries from gravity and magnetic anomalies over ...

    Indian Academy of Sciences (India)

    67

    The data was acquired at ~25 m spacing. The surveys were taken for determination of lithological boundaries, depths and nature of causative source using Euler depth solutions and radially averaged power spectrum (RAPS). Residual anomaly maps of gravity and magnetic. Manuscript. Click here to view linked References.

  5. Modeled impact of anthropogenic land cover change on climate

    Science.gov (United States)

    Findell, K.L.; Shevliakova, E.; Milly, P.C.D.; Stouffer, R.J.

    2007-01-01

    Equilibrium experiments with the Geophysical Fluid Dynamics Laboratory's climate model are used to investigate the impact of anthropogenic land cover change on climate. Regions of altered land cover include large portions of Europe, India, eastern China, and the eastern United States. Smaller areas of change are present in various tropical regions. This study focuses on the impacts of biophysical changes associated with the land cover change (albedo, root and stomatal properties, roughness length), which is almost exclusively a conversion from forest to grassland in the model; the effects of irrigation or other water management practices and the effects of atmospheric carbon dioxide changes associated with land cover conversion are not included in these experiments. The model suggests that observed land cover changes have little or no impact on globally averaged climatic variables (e.g., 2-m air temperature is 0.008 K warmer in a simulation with 1990 land cover compared to a simulation with potential natural vegetation cover). Differences in the annual mean climatic fields analyzed did not exhibit global field significance. Within some of the regions of land cover change, however, there are relatively large changes of many surface climatic variables. These changes are highly significant locally in the annual mean and in most months of the year in eastern Europe and northern India. They can be explained mainly as direct and indirect consequences of model-prescribed increases in surface albedo, decreases in rooting depth, and changes of stomatal control that accompany deforestation. ?? 2007 American Meteorological Society.

  6. Simulation of climate variability and anthropogenic climate change

    International Nuclear Information System (INIS)

    Bengtsson, Lennart

    1999-01-01

    The climatic changes in the last century were discussed and focus was on the questions: 1) What are the causes of the rapid climate fluctuations and 2) Is the global warming, which is observed during the last century, caused by natural or anthropogenic effects. It is concluded that an understanding of climate based on the interpretation of observational data only is not feasible, unless supported by an adequate theoretical interpretation. The capabilities of climatic models were discussed and the importance of incorporating 1) calculations of the internal variability of the atmosphere when forced from an ocean with prescribed sea surface temperature as well as for a system consisting of an atmosphere and a mixed ocean of limited depth, 2) a fully coupled atmospheric and ocean model and finally, 3) a fully coupled system including transiently changing greenhouse gases and aerosols. A short summation of the results is presented. The pronounced warming during the last century is not reproduced under the assumption of constant forcing and pollution emissions have to be incorporated into the models in order to bring the simulated data in agreement with observations

  7. Physical behaviour of anthropogenic light propagation into the nocturnal environment.

    Science.gov (United States)

    Aubé, Martin

    2015-05-05

    Propagation of artificial light at night (ALAN) in the environment is now known to have non negligible consequences on fauna, flora and human health. These consequences depend on light levels and their spectral power distributions, which in turn rely on the efficiency of various physical processes involved in the radiative transfer of this light into the atmosphere and its interactions with the built and natural environment. ALAN can affect the living organisms by direct lighting and indirect lighting (scattered by the sky and clouds and/or reflected by local surfaces). This paper mainly focuses on the behaviour of the indirect light scattered under clear sky conditions. Various interaction processes between anthropogenic light sources and the natural environment are discussed. This work mostly relies on a sensitivity analysis conducted with the light pollution radiative transfer model, Illumina (Aubé et al. 2005 Light pollution modelling and detection in a heterogeneous environment: toward a night-time aerosol optical depth retrieval method. In Proc. SPIE 2005, vol. 5890, San Diego, California, USA). More specifically, the impact of (i) the molecular and aerosol scattering and absorption, (ii) the second order of scattering, (iii) the topography and obstacle blocking, (iv) the ground reflectance and (v) the spectrum of light devices and their angular emission functions are examined. This analysis considers different behaviour as a function of the distance from the city centre, along with different zenith viewing angles in the principal plane. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  8. Anthropogenic and ecological drivers of amphibian disease (ranavirosis.

    Directory of Open Access Journals (Sweden)

    Alexandra C North

    Full Text Available Ranaviruses are causing mass amphibian die-offs in North America, Europe and Asia, and have been implicated in the decline of common frog (Rana temporaria populations in the UK. Despite this, we have very little understanding of the environmental drivers of disease occurrence and prevalence. Using a long term (1992-2000 dataset of public reports of amphibian mortalities, we assess a set of potential predictors of the occurrence and prevalence of Ranavirus-consistent common frog mortality events in Britain. We reveal the influence of biotic and abiotic drivers of this disease, with many of these abiotic characteristics being anthropogenic. Whilst controlling for the geographic distribution of mortality events, disease prevalence increases with increasing frog population density, presence of fish and wild newts, increasing pond depth and the use of garden chemicals. The presence of an alternative host reduces prevalence, potentially indicating a dilution effect. Ranavirosis occurrence is associated with the presence of toads, an urban setting and the use of fish care products, providing insight into the causes of emergence of disease. Links between occurrence, prevalence, pond characteristics and garden management practices provides useful management implications for reducing the impacts of Ranavirus in the wild.

  9. Evaluation of anthropogenic urban soils. Final report; Bewertung anthropogener Stadtboeden. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Blume, H.P.; Schleuss, U. [eds.

    1997-12-31

    The research project `Evaluation of Anthropogenic Urban Soils` was subsidized by the German Federal Ministry of Education, Science, Research and Technology and adviced by the working group `Stadtboeden` of the German Society of Soil Science. It was realized as a cooperation between the universities of Berlin (TU), Halle-Wittenberg, Hohenheim, Kiel and Rostock and had three objectives: - to characterize soils developed from anthropogenic substratums (`urban soils`), - to figure out distribution patterns of such soils and - to verify whether urban soils could be evaluated according to their filtering and habitat function in the same way as soils developed from natural parent material. Evaluation methods based on easily obtainable field data had to be adapted to `urban soils` respectively developed anew. For that reason some typical soils of anthropogenic lithogenesis had to be examined between 1993 and 1996 both on their importance as habitats for plants and soil organisms and on their filtering, buffering and transforming capacities for organic and inorganic pollutants. Accordingly representative `urban soils` were gathered in the towns of Berlin, Eckernfoerde, Essen, Halle, Kiel, Rostock and Stuttgart; these soils had developed from technogenic substratums (brick and mortar debris, municipal waste, ashes, slag, sludge) and redeposited alkaline resp. acidic natural substratums (mud, coal mine and coking plant deposits). Some of the soils were influenced by ground water, and all soils developed from the same kind of parent material belonged to different stages of development. (orig./SR) [Deutsch] Ziele des vom BMBF gefoerderten und vom Arbeitskreis Stadtboeden der Deutschen Bodenkundlichen Gesellschaft beratenen Verbundprojektes `Bewertung anthropogener Stadtboeden` waren die Charakterisierung von Boeden anthropogener Substrate, die exemplarische Ermittlung des Verteilungsmusters derartiger Boeden und die Pruefung, inwieweit sie sich aehnlich den Boeden natuerlicher

  10. Possible influence of anthropogenic aerosols on cirrus clouds and anthropogenic forcing

    Directory of Open Access Journals (Sweden)

    J. E. Penner

    2009-02-01

    Full Text Available Cirrus clouds have a net warming effect on the atmosphere and cover about 30% of the Earth's area. Aerosol particles initiate ice formation in the upper troposphere through modes of action that include homogeneous freezing of solution droplets, heterogeneous nucleation on solid particles immersed in a solution, and deposition nucleation of vapor onto solid particles. Here, we examine the possible change in ice number concentration from anthropogenic soot originating from surface sources of fossil fuel and biomass burning, from anthropogenic sulfate aerosols, and from aircraft that deposit their aerosols directly in the upper troposphere. We use a version of the aerosol model that predicts sulfate number and mass concentrations in 3-modes and includes the formation of sulfate aerosol through homogeneous binary nucleation as well as a version that only predicts sulfate mass. The 3-mode version best represents the Aitken aerosol nuclei number concentrations in the upper troposphere which dominated ice crystal residues in the upper troposphere. Fossil fuel and biomass burning soot aerosols with this version exert a radiative forcing of −0.3 to −0.4 Wm−2 while anthropogenic sulfate aerosols and aircraft aerosols exert a forcing of −0.01 to 0.04 Wm−2 and −0.16 to −0.12 Wm−2, respectively, where the range represents the forcing from two parameterizations for ice nucleation. The sign of the forcing in the mass-only version of the model depends on which ice nucleation parameterization is used and can be either positive or negative. The magnitude of the forcing in cirrus clouds can be comparable to the forcing exerted by anthropogenic aerosols on warm clouds, but this forcing has not been included in past assessments of the total anthropogenic radiative forcing of climate.

  11. Defence in depth perspectives

    International Nuclear Information System (INIS)

    Veneau, Tania; Ferrier, Agnes; Barbaud, Jean

    2017-01-01

    The Defence in Depth (DiD) concept was introduced to the field of nuclear safety in the sixties and early seventies. Even though it was not well developed at the beginning, the principles rapidly became close to those currently used. The concept was then composed of 3 levels, and was already associated with operating conditions. These principles have progressed over time and now there are five levels, including progressively situations issued from design extension conditions, to cope with severe accidents and dealing with accident management off-site. Indeed, human and organizational features are considered as a part of the safety provisions at all levels in an integrated approach that is not just related to reactor design. That's the current vision from IAEA, addressed first in INSAG 3 then in INSAG 10, and in the IAEA standards requirements currently addressed by SSR-2/1 superseding NS-R-1). These five levels of DiD are also referred to in other texts including WENRA documents in Europe, but also in the national requirements from different countries. Thus, the application of DiD principle has become a recognized international practice. The 2011 Fukushima Daiichi accidents, even if they raised many questions on nuclear safety issues, confirmed the merits of the DiD concept. Indeed, lessons learned from the accidents have reinforced the use of the DiD concept to ensure adequate safety. The discussions focused more on the implementation of the concept (how it has been or can be used in practice) than the concept itself, and in particular on the following subjects: the notion of level robustness, generally addressed separately from the levels definition, but playing an important role for the efficiency of the concept; the notion of levels independence and the need for strengthening them; the role of diversity to achieve levels independence. However, a prescription of additional diversity and independence across all safety levels could result in inappropriately

  12. Large-scale regionalization of water table depth in peatlands optimized for greenhouse gas emission upscaling

    Science.gov (United States)

    Bechtold, M.; Tiemeyer, B.; Laggner, A.; Leppelt, T.; Frahm, E.; Belting, S.

    2014-09-01

    Fluxes of the three main greenhouse gases (GHG) CO2, CH4 and N2O from peat and other soils with high organic carbon contents are strongly controlled by water table depth. Information about the spatial distribution of water level is thus a crucial input parameter when upscaling GHG emissions to large scales. Here, we investigate the potential of statistical modeling for the regionalization of water levels in organic soils when data covers only a small fraction of the peatlands of the final map. Our study area is Germany. Phreatic water level data from 53 peatlands in Germany were compiled in a new data set comprising 1094 dip wells and 7155 years of data. For each dip well, numerous possible predictor variables were determined using nationally available data sources, which included information about land cover, ditch network, protected areas, topography, peatland characteristics and climatic boundary conditions. We applied boosted regression trees to identify dependencies between predictor variables and dip-well-specific long-term annual mean water level (WL) as well as a transformed form (WLt). The latter was obtained by assuming a hypothetical GHG transfer function and is linearly related to GHG emissions. Our results demonstrate that model calibration on WLt is superior. It increases the explained variance of the water level in the sensitive range for GHG emissions and avoids model bias in subsequent GHG upscaling. The final model explained 45% of WLt variance and was built on nine predictor variables that are based on information about land cover, peatland characteristics, drainage network, topography and climatic boundary conditions. Their individual effects on WLt and the observed parameter interactions provide insight into natural and anthropogenic boundary conditions that control water levels in organic soils. Our study also demonstrates that a large fraction of the observed WLt variance cannot be explained by nationally available predictor variables and

  13. Evaluation of Depth of Field for depth perception in DVR

    KAUST Repository

    Grosset, A.V.Pascal; Schott, Mathias; Bonneau, Georges-Pierre; Hansen, Charles D.

    2013-01-01

    In this paper we present a user study on the use of Depth of Field for depth perception in Direct Volume Rendering. Direct Volume Rendering with Phong shading and perspective projection is used as the baseline. Depth of Field is then added to see its impact on the correct perception of ordinal depth. Accuracy and response time are used as the metrics to evaluate the usefulness of Depth of Field. The onsite user study has two parts: static and dynamic. Eye tracking is used to monitor the gaze of the subjects. From our results we see that though Depth of Field does not act as a proper depth cue in all conditions, it can be used to reinforce the perception of which feature is in front of the other. The best results (high accuracy & fast response time) for correct perception of ordinal depth occurs when the front feature (out of the two features users were to choose from) is in focus and perspective projection is used. © 2013 IEEE.

  14. Evaluation of Depth of Field for depth perception in DVR

    KAUST Repository

    Grosset, A.V.Pascal

    2013-02-01

    In this paper we present a user study on the use of Depth of Field for depth perception in Direct Volume Rendering. Direct Volume Rendering with Phong shading and perspective projection is used as the baseline. Depth of Field is then added to see its impact on the correct perception of ordinal depth. Accuracy and response time are used as the metrics to evaluate the usefulness of Depth of Field. The onsite user study has two parts: static and dynamic. Eye tracking is used to monitor the gaze of the subjects. From our results we see that though Depth of Field does not act as a proper depth cue in all conditions, it can be used to reinforce the perception of which feature is in front of the other. The best results (high accuracy & fast response time) for correct perception of ordinal depth occurs when the front feature (out of the two features users were to choose from) is in focus and perspective projection is used. © 2013 IEEE.

  15. Anthropogenic effect on avalanche and debris flow activity

    OpenAIRE

    S. A. Sokratov; Yu. G. Seliverstov; A. L. Shnyparkov; K. P. Koltermann

    2013-01-01

    The paper presents examples of the change in snow avalanches and debris flows activity due to the anthropogenic pressure on vegetation and relief. The changes in dynamical characteristics of selected snow avalanches and debris flows due to the anthropogenic activity are quantified. The conclusion is made that the anthropogenic effects on the snow avalanches and debris flows activity are more pronounced than the possible effects of the climate change. The necessity is expressed on the unavoida...

  16. Mapping 1995 global anthropogenic emissions of mercury

    Science.gov (United States)

    Pacyna, Jozef M.; Pacyna, Elisabeth G.; Steenhuisen, Frits; Wilson, Simon

    This paper presents maps of anthropogenic Hg emissions worldwide within a 1°×1° latitude/longitude grid system in 1995. As such, the paper is designed for modelers simulating the Hg transport within air masses and Hg deposition to aquatic and terrestrial ecosystems. Maps of total Hg emissions and its three main chemical species: elemental gaseous Hg, divalent gaseous Hg, and particle-associated Hg are presented. The main emissions occur in southeast Asia (particularly in China), South Africa, Central and Eastern Europe, and the Eastern United States. These are the regions where coal combustion is the main source of electricity and heat production. Waste incineration adds to these emissions in the Eastern United States. Emissions of total Hg and its three species are quite similar in terms of their (global) spatial distributions. They reflect the worldwide distribution of coal consumption in large power plants, industrial burners, and small combustion units, such as residential and commercial furnaces.

  17. Anthropogenic sulfur dioxide emissions: 1850–2005

    Directory of Open Access Journals (Sweden)

    S. J. Smith

    2011-02-01

    Full Text Available Sulfur aerosols impact human health, ecosystems, agriculture, and global and regional climate. A new annual estimate of anthropogenic global and regional sulfur dioxide emissions has been constructed spanning the period 1850–2005 using a bottom-up mass balance method, calibrated to country-level inventory data. Global emissions peaked in the early 1970s and decreased until 2000, with an increase in recent years due to increased emissions in China, international shipping, and developing countries in general. An uncertainty analysis was conducted including both random and systemic uncertainties. The overall global uncertainty in sulfur dioxide emissions is relatively small, but regional uncertainties ranged up to 30%. The largest contributors to uncertainty at present are emissions from China and international shipping. Emissions were distributed on a 0.5° grid by sector for use in coordinated climate model experiments.

  18. Modeling Fallout of Anthropogenic I-129

    DEFF Research Database (Denmark)

    Englund, Edvard; Aldahan, Als; Possnert, Göran

    2008-01-01

    Despite the relatively well-recognized emission rates of the anthropogenic 1291, there is little knowledge about the temporal fallout patterns and magnitude of fluxes since the start of the atomic era at the early 1940s. We here present measurements of annual 1291 concentrations in sediment......, a numerical model approach was used taking into account the emission rates/estimated fallout, transport pathways, and the sediment system. The model outcomes suggest a relatively dominating marine source of 1291 to north Europe compared to direct gaseous releases. A transfer rate of 1291 from sea...... to atmosphere is derived for pertinent sea areas (English Channel, Irish Sea, and North Sea), which is estimated at 0.04 to 0.21 y(-1)....

  19. Chemometric characterization of soil depth profiles

    International Nuclear Information System (INIS)

    Krieg, M.; Einax, J.

    1994-01-01

    The application of multivariate-statistical methods to the description of the metal distribution in soil depth profiles is shown. By means of cluster analysis, it is possible to get a first overview of the main differences in the metal status of the soil horizons. In case of anthropogenic soil pollution or geogenic enrichment, cluster analysis was able to detect the extent of the polluted soil layer or the different geological layers. The results of cluster analysis can be confirmed by means of multidimensional variance and discriminant analysis. Methods of discriminant analysis can also be used as a tool to determine the optimum number of variables which has to be measured for the classification of unknown soil samples into different pollution levels. Factor analysis yields an identification of not directly observable relationships between the variables. With additional knowledge about the orographic situation of the area and the probable sources of emission the factor loadings give information on the immission structure at the sampling location. (orig.)

  20. Exploring Multiple Constraints of Anthropogenic Pollution

    Science.gov (United States)

    Arellano, A. F., Jr.; Tang, W.; Silva, S. J.; Raman, A.

    2017-12-01

    It is imperative that we provide more accurate and consistent analysis of anthropogenic pollution emissions at scales that is relevant to air quality, energy, and environmental policy. Here, we present three proof-of-concept studies that explore observational constraints from ground, aircraft, and satellite-derived measurements of atmospheric composition on bulk characteristics of anthropogenic combustion in megacities and fire regions. We focus on jointly analyzing co-emitted combustion products such as CO2, NO2, CO, SO2, and aerosols from GOSAT, OCO-2, OMI, MOPITT, and MODIS retrievals, in conjunction with USEPA AQS and NASA field campaigns. Each of these constituents exhibit distinct atmospheric signatures that depend on fuel type, combustion technology, process, practices and regulatory policies. Our results show that distinguishable patterns and relationships between the increases in concentrations across the megacity (or enhancements) due to emissions of these constituents enable us to: a) identify trends in combustion activity and efficiency, and b) reconcile discrepancies between state- to country-based emission inventories and modeled concentrations of these constituents. For example, the trends in enhancement ratios of these species reveal combustion emission pathways for China and United States that are not captured by current emission inventories and chemical reanalysis. Analysis of their joint distributions has considerable potential utility in current and future integrated constituent data assimilation and inverse modeling activities for monitoring, verifying, and reporting emissions, particularly for regions with few observations and limited information on local combustion processes. This work also motivates the need for continuous and preferably collocated satellite measurements of atmospheric composition, including CH4 and CO2, and studies related to improving the applicability and integration of these observations with ground- and aircraft- based

  1. Anthropogenic Carbon Pump in an Urbanized Estuary

    Science.gov (United States)

    Park, J. H.; Yoon, T. K.; Jin, H.; Begum, M. S.

    2015-12-01

    The importance of estuaries as a carbon source has been increasingly recognized over the recent decades. However, constraining sources of CO2 evasion from urbanized estuaries remains incomplete, particularly in densely populated river systems receiving high loads of organic carbon from anthropogenic sources. To account for major factors regulating carbon fluxes the tidal reach of the Han River estuary along the metropolitan Seoul, characterization of organic carbon in the main stem and major urban tributaries were combined with continuous, submersible sensor measurements of pCO2 at a mid-channel location over a year and continuous underway measurements using a submersible sensor and two equilibrator sytems across the estuarine section receiving urban streams. Single-site continuous measurements exhibited large seasonal and diurnal variations in pCO2, ranging from sub-ambient air levels to exceptionally high values approaching 10,000 ppm. Diurnal variations of pCO2 were pronounced in summer and had an inverse relationship with dissolved oxygen, pointing to a potential role of day-time algal consumption of CO2. Cruise measurements displayed sharp pCO2 pulses along the confluences of urban streams as compared with relatively low values along the upper estuary receiving low-CO2 outflows from upstream dams. Large downstream increases in pCO2, concurrent with increases in DOC concentrations and fluorescence intensities indicative of microbially processed organic components, imply a translocation and subsequent dilution of CO2 carried by urban streams and/or fast transformations of labile C during transit along downstream reaches. The unique combination of spatial and temporal continuous measurements of pCO2 provide insights on estuarine CO2 pulses that might have resulted from the interplay between high loads of CO2 and organic C of anthropogenic origin and their priming effects on estuarine microbial processing of terrigenous and algal organic matter.

  2. Tracking Public Beliefs About Anthropogenic Climate Change.

    Science.gov (United States)

    Hamilton, Lawrence C; Hartter, Joel; Lemcke-Stampone, Mary; Moore, David W; Safford, Thomas G

    2015-01-01

    A simple question about climate change, with one choice designed to match consensus statements by scientists, was asked on 35 US nationwide, single-state or regional surveys from 2010 to 2015. Analysis of these data (over 28,000 interviews) yields robust and exceptionally well replicated findings on public beliefs about anthropogenic climate change, including regional variations, change over time, demographic bases, and the interacting effects of respondent education and political views. We find that more than half of the US public accepts the scientific consensus that climate change is happening now, caused mainly by human activities. A sizable, politically opposite minority (about 30 to 40%) concede the fact of climate change, but believe it has mainly natural causes. Few (about 10 to 15%) say they believe climate is not changing, or express no opinion. The overall proportions appear relatively stable nationwide, but exhibit place-to-place variations. Detailed analysis of 21 consecutive surveys within one fairly representative state (New Hampshire) finds a mild but statistically significant rise in agreement with the scientific consensus over 2010-2015. Effects from daily temperature are detectable but minor. Hurricane Sandy, which brushed New Hampshire but caused no disaster there, shows no lasting impact on that state's time series-suggesting that non-immediate weather disasters have limited effects. In all datasets political orientation dominates among individual-level predictors of climate beliefs, moderating the otherwise positive effects from education. Acceptance of anthropogenic climate change rises with education among Democrats and Independents, but not so among Republicans. The continuing series of surveys provides a baseline for tracking how future scientific, political, socioeconomic or climate developments impact public acceptance of the scientific consensus.

  3. Development and Applications of Time of Flight Neutron Depth Profiling

    International Nuclear Information System (INIS)

    Cady, Bingham; Unlu, Kenan

    2005-01-01

    The depth profiles of intentional or intrinsic constituents of a sample provide valuable information for the characterization of materials. For example, the subtle differences in spatial distribution and composition of many chemical species in the near surface region and across interfacial boundaries can significantly alter the electronic and optical properties of materials. A number of analytical techniques for depth profiling have been developed during the last two decades. neutron Depth Profiling (NDP) is one of the leading analytical techniques. The NDP is a nondestructive near surface technique that utilizes thermal/cold neutron beam to measure the concentration of specific light elements versus their depth in materials. The depth is obtained from the energy loss of protons, alphas or recoil atoms in substrate materials. Since the charged particle energy determination using surface barrier detector is used for NDP, the depth resolution is highly dependent on the detectors an d detection instruments. The depth resolutions of a few tens of nm are achieved with available NDP facilities in the world. However, the performance of NDP needs to be improved in order to obtain a few A depth resolutions

  4. Grain boundary migration

    International Nuclear Information System (INIS)

    Dimitrov, O.

    1975-01-01

    Well-established aspects of grain-boundary migration are first briefly reviewed (influences of driving force, temperature, orientation and foreign atoms). Recent developments of the experimental methods and results are then examined, by considering the various driving of resistive forces acting on grain boundaries. Finally, the evolution in the theoretical models of grain-boundary motion is described, on the one hand for ideally pure metals and, on the other hand, in the presence of solute impurity atoms [fr

  5. Stable Boundary Layer Issues

    OpenAIRE

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The development of robust stable boundary layer parameterizations for use in NWP and climate models is hampered by the multiplicity of processes and their unknown interactions. As a result, these models suffer ...

  6. Boundary layer heights derived from velocity spectra

    Energy Technology Data Exchange (ETDEWEB)

    Hoejstrup, J.; Barthelmie, R.J. [Risoe National Lab., Roskilde (Denmark); Kaellstrand, B. [Univ. of Uppsala, Uppsala (Sweden)

    1997-10-01

    It is a well-known fact that the height of the mixed layer determines the size of the largest and most energetic eddies that can be observed in the unstable boundary layer, and consequently a peak can be observed in the power spectra of the along-wind velocity component at scales comparable to the mixed layer depth. We will now show how the mixed layer depth can be derived from the u-specta and the results will be compared with direct measurements using pibal and tethersonde measurements. (au)

  7. Slab tears and intermediate-depth seismicity

    Science.gov (United States)

    Meighan, Hallie E.; ten Brink, Uri S.; Pulliam, Jay

    2013-01-01

    Active tectonic regions where plate boundaries transition from subduction to strike slip can take several forms, such as triple junctions, acute, and obtuse corners. Well-documented slab tears that are associated with high rates of intermediate-depth seismicity are considered here: Gibraltar arc, the southern and northern ends of the Lesser Antilles arc, and the northern end of Tonga trench. Seismicity at each of these locations occurs, at times, in the form of swarms or clusters, and various authors have proposed that each marks an active locus of tear propagation. The swarms and clusters start at the top of the slab below the asthenospheric wedge and extend 30–60 km vertically downward within the slab. We propose that these swarms and clusters are generated by fluid-related embrittlement of mantle rocks. Focal mechanisms of these swarms generally fit the shear motion that is thought to be associated with the tearing process.

  8. Influence of the anthropogenic changes of gamma dose radiation connected connected with uranium mining upon selected plants

    International Nuclear Information System (INIS)

    Solecki, A. T.; Wislocka, M.A.

    2000-01-01

    The situation of flora in the regions with expressive anthropogenic changes in the background of gamma radiation and concentration of the radon in atmospheric air was observed. The content of heavy metals in the depth of the anomaly terrain was analyzed. The analyses of the selected radionuclides in plant ash by method in thin layer were performed. The concentration of radionuclides and situation of flora was correlated. (authors)

  9. Towards better monitoring of technology critical elements in Europe: Coupling of natural and anthropogenic cycles.

    Science.gov (United States)

    Nuss, Philip; Blengini, Gian Andrea

    2018-02-01

    The characterization of elemental cycles has a rich history in biogeochemistry. Well known examples include the global carbon cycle, or the cycles of the 'grand nutrients' nitrogen, phosphorus, and sulfur. More recently, efforts have increased to better understand the natural cycling of technology critical elements (TCEs), i.e. elements with a high supply risk and economic importance in the EU. On the other hand, tools such as material-flow analysis (MFA) can help to understand how substances and goods are transported and accumulated in man-made technological systems ('anthroposphere'). However, to date both biogeochemical cycles and MFA studies suffer from narrow system boundaries, failing to fully illustrate relative anthropogenic and natural flow magnitude and the degree to which human activity has perturbed the natural cycling of elements. We discuss important interconnections between natural and anthropogenic cycles and relevant EU raw material dossiers. Increased integration of both cycles could help to better capture the transport and fate of elements in nature including their environmental/human health impacts, highlight potential future material stocks in the anthroposphere (in-use stocks) and in nature (e.g., in soils, tailings, or mining wastes), and estimate anticipated emissions of TCEs to nature in the future (based on dynamic stock modeling). A preliminary assessment of natural versus anthropogenic element fluxes indicates that anthropogenic fluxes induced by the EU-28 of palladium, platinum, and antimony (as a result of materials uses) might be greater than the respective global natural fluxes. Increased combination of MFA and natural cycle data at EU level could help to derive more complete material cycles and initiate a discussion between the research communities of biogeochemists and material flow analysts to more holistically address the issues of sustainable resource management. Copyright © 2017 The Authors. Published by Elsevier B.V. All

  10. Global Climate Models Intercomparison of Anthropogenic Aerosols Effects on Regional Climate over North Pacific

    Science.gov (United States)

    Hu, J.; Zhang, R.; Wang, Y.; Ming, Y.; Lin, Y.; Pan, B.

    2015-12-01

    Aerosols can alter atmospheric radiation and cloud physics, which further exert impacts on weather and global climate. With the development and industrialization of the developing Asian countries, anthropogenic aerosols have received considerable attentions and remain to be the largest uncertainty in the climate projection. Here we assess the performance of two stat-of-art global climate models (National Center for Atmospheric Research-Community Atmosphere Model 5 (CAM5) and Geophysical Fluid Dynamics Laboratory Atmosphere Model 3 (AM3)) in simulating the impacts of anthropogenic aerosols on North Pacific storm track region. By contrasting two aerosol scenarios, i.e. present day (PD) and pre-industrial (PI), both models show aerosol optical depth (AOD) enhanced by about 22%, with CAM5 AOD 40% lower in magnitude due to the long range transport of anthropogenic aerosols. Aerosol effects on the ice water path (IWP), stratiform precipitation, convergence and convection strengths in the two models are distinctive in patterns and magnitudes. AM3 shows qualitatively good agreement with long-term satellite observations, while CAM5 overestimates convection and liquid water path resulting in an underestimation of large-scale precipitation and IWP. Due to coarse resolution and parameterization in convection schemes, both models' performance on convection needs to be improved. Aerosols performance on large-scale circulation and radiative budget are also examined in this study.

  11. Resilience to Changing Snow Depth in a Shrubland Ecosystem.

    Science.gov (United States)

    Loik, M. E.

    2008-12-01

    Snowfall is the dominant hydrologic input for high elevations and latitudes of the arid- and semi-arid western United States. Sierra Nevada snowpack provides numerous important services for California, but is vulnerable to anthropogenic forcing of the coupled ocean-atmosphere system. GCM and RCM scenarios envision reduced snowpack and earlier melt under a warmer climate, but how will these changes affect soil and plant water relations and ecosystem processes? And, how resilient will this ecosystem be to short- and long-term forcing of snow depth and melt timing? To address these questions, our experiments utilize large- scale, long-term roadside snow fences to manipulate snow depth and melt timing in eastern California, USA. Interannual snow depth averages 1344 mm with a CV of 48% (April 1, 1928-2008). Snow fences altered snow melt timing by up to 18 days in high-snowfall years, and affected short-term soil moisture pulses less in low- than medium- or high-snowfall years. Sublimation in this arid location accounted for about 2 mol m- 2 of water loss from the snowpack in 2005. Plant water potential increased after the ENSO winter of 2005 and stayed relatively constant for the following three years, even after the low snowfall of winter 2007. Over the long-term, changes in snow depth and melt timing have impacted cover or biomass of Achnatherum thurberianum, Elymus elemoides, and Purshia tridentata. Growth of adult conifers (Pinus jeffreyi and Pi. contorta) was not equally sensitive to snow depth. Thus, complex interactions between snow depth, soil water inputs, physiological processes, and population patterns help drive the resilience of this ecosystem to changes in snow depth and melt timing.

  12. Anthropogenic impacts on the water quality of Aba River, southeast ...

    African Journals Online (AJOL)

    Anthropogenic impacts on the water quality of Aba River, southeast Nigeria. ... Ethiopian Journal of Environmental Studies and Management ... of Aba River, southeast Nigeria was studied in four stations from November 2014 to August 2015 to identify the major anthropogenic activities and their impact on the water quality.

  13. Anthropogenic Cycles of Rare Earth Elements

    Science.gov (United States)

    Du, X.; Graedel, T. E.

    2009-12-01

    This research will develop quantitatively resolved anthropogenic cycles and in-use stocks for the rare earth metals specifically cerium, lanthanum and dysprosium in Japan, China, and the U.S. for the year of 2007. Rare earth elements (REE) is a group of 17 scare metals widely used in a growing number of emerging technologies and have been in high demand for emerging technologies as raw materials during past the three decades. New market participants from newly industrializing countries, primarily China, have had strong impacts on the demand of share. Consequently, the importance to sustain a reliable, steady, uninterrupted supply on global market triggered comprehensive research to recognize and understand the life cycles of rare earths. Moreover, because China plays a dominant role in mining production since 1990, it requires the assessment for the countries, which are almost completely dependent on imports from China with respect to rare earth resources. The study aims to analyze the flows and stocks of rare earth elements individually as elemental form in spite of their natural geological co-occurrence and mixed composition in applications. By applying the method of Material Flow Analysis (MFA) work has been done on evaluating current and historical flows of specific technologically significant materials, for example, copper, zinc, nickel, etc., determining the stocks available in different types of reservoirs (e.g., lithosphere, in-use) and the flows among the reservoirs, developing scenarios of possible futures of metal use, and assessing the environmental and policy implications of the results. Therefore, REE as a new target deserves inclusion because of its potential demand-supply conflict and importance to secure the competitive advantage of technical innovation in future. This work will generate a quantitatively resolved anthropogenic life cycle and in-use stocks for REE for the main target countries for a chosen year, 2007, providing flows and stocks from

  14. Stable Boundary Layer Issues

    NARCIS (Netherlands)

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The

  15. Anthropogenic heat fluxes over Moscow agglomeration and other Russian and world cities

    Science.gov (United States)

    Belova, Iya; Ginzburg, Alexander

    2010-05-01

    Urbanization, particularly with respect to its sustainability, remains to be a great challenge in all regions of the world. Urbanization has an influence on soils, hydrology, and climate, these changes have effect on global climate, pollution, increase of anthropogenic greenhouse gases in the earth's atmosphere and human health. Thus anthropogenic heat flux is an important factor for estimation of development of global climate. The simple formula for anthropogenic heat fluxes (AHF) was proposed in the EGU General Assembly 2008 presentation [1] AHF = k × PD × EC, were PD is urban population density and EC is total energy consumption per capita. It was estimated that two of the world megacities - Seoul and Moscow - have the highest AHF values - 83 and 56 W/m2 correspondently. In presented paper it was studied the reasons of such high anthropogenic heat fluxes within Moscow region as well as AHF over the major Russian cities. It was shown that main reason of this circumstance is the administrative divisions in Moscow region. Moscow is ringed by Moscow circle motor road. Accordingly the city has sharply defined boundaries and densely populated residential suburbs are cut off and don't included in Moscow city administrative area. It was constructed the special graph to illuminate why Moscow city has such a high anthropogenic heat factor and how much Moscow agglomeration AHF could be if consider not only Moscow city itself but also the nearest suburb towns. Using the data from World Bank [2] and Russian governmental statistic agency [3] anthropogenic heat fluxes for Russian cities with population more than 500 000 were estimated. Energy consumption data for different Russian regions were calculated by special routine using in the Web-atlas [4]. This research is supported by RAS Fundamental Research Project 'Influence of anthropogenic heat fluxes and aerosol pollution on heat balance and climate of urbanized areas'. Other results of this project is presented in paper [5

  16. Development of boundary layers

    International Nuclear Information System (INIS)

    Herbst, R.

    1980-01-01

    Boundary layers develop along the blade surfaces on both the pressure and the suction side in a non-stationary flow field. This is due to the fact that there is a strongly fluctuating flow on the downstream blade row, especially as a result of the wakes of the upstream blade row. The author investigates the formation of boundary layers under non-stationary flow conditions and tries to establish a model describing the non-stationary boundary layer. For this purpose, plate boundary layers are measured, at constant flow rates but different interferent frequency and variable pressure gradients. By introducing the sample technique, measurements of the non-stationary boundary layer become possible, and the flow rate fluctuation can be divided in its components, i.e. stochastic turbulence and periodical fluctuation. (GL) [de

  17. Recent changes in anthropogenic reactive nitrogen compounds

    Science.gov (United States)

    Andronache, Constantin

    2014-05-01

    Significant anthropogenic perturbations of the nitrogen cycle are the result of rapid population growth, with mounting need for food and energy production. The increase of reactive nitrogen compounds (such as NOx, HNO3, NH3, and N2O) has a significant impact on human health, environment, and climate. NOx emissions contribute to O3 chemistry, aerosol formation and acidic precipitation. Ammonia is a notable atmospheric pollutant that may deteriorate ecosystems and contribute to respiratory problems. It reacts with acidic gases to form aerosols or is deposited back to ecosystems. The application of fertilizers accounts for most of the N2O production, adding to greenhouse gas emissions. We analyze the change of some reactive nitrogen compounds based on observations, in eastern United States. Results show that the control of NOx and SO2 emissions over the last decades caused a significant decrease of acidic deposition. The nitrate deposition is highest in eastern US, while the ammonium ion concentration is highest in central US regions. Overall, the inorganic nitrogen wet deposition from nitrate and ammonium is enhanced in central, and eastern US. Research shows that sensitive ecosystems in northeastern regions exhibit a slow recovery from the accumulated effects of acidic deposition. Given the growing demand for nitrogen in agriculture and industry, we discuss possible pathways to reduce the impact of excess reactive nitrogen on the environment.

  18. Anthropogenic warming exacerbates European soil moisture droughts

    Science.gov (United States)

    Samaniego, L.; Thober, S.; Kumar, R.; Wanders, N.; Rakovec, O.; Pan, M.; Zink, M.; Sheffield, J.; Wood, E. F.; Marx, A.

    2018-05-01

    Anthropogenic warming is anticipated to increase soil moisture drought in the future. However, projections are accompanied by large uncertainty due to varying estimates of future warming. Here, using an ensemble of hydrological and land-surface models, forced with bias-corrected downscaled general circulation model output, we estimate the impacts of 1-3 K global mean temperature increases on soil moisture droughts in Europe. Compared to the 1.5 K Paris target, an increase of 3 K—which represents current projected temperature change—is found to increase drought area by 40% (±24%), affecting up to 42% (±22%) more of the population. Furthermore, an event similar to the 2003 drought is shown to become twice as frequent; thus, due to their increased occurrence, events of this magnitude will no longer be classified as extreme. In the absence of effective mitigation, Europe will therefore face unprecedented increases in soil moisture drought, presenting new challenges for adaptation across the continent.

  19. Whole Atmosphere Simulation of Anthropogenic Climate Change

    Science.gov (United States)

    Solomon, Stanley C.; Liu, Han-Li; Marsh, Daniel R.; McInerney, Joseph M.; Qian, Liying; Vitt, Francis M.

    2018-02-01

    We simulated anthropogenic global change through the entire atmosphere, including the thermosphere and ionosphere, using the Whole Atmosphere Community Climate Model-eXtended. The basic result was that even as the lower atmosphere gradually warms, the upper atmosphere rapidly cools. The simulations employed constant low solar activity conditions, to remove the effects of variable solar and geomagnetic activity. Global mean annual mean temperature increased at a rate of +0.2 K/decade at the surface and +0.4 K/decade in the upper troposphere but decreased by about -1 K/decade in the stratosphere-mesosphere and -2.8 K/decade in the thermosphere. Near the mesopause, temperature decreases were small compared to the interannual variation, so trends in that region are uncertain. Results were similar to previous modeling confined to specific atmospheric levels and compared favorably with available measurements. These simulations demonstrate the ability of a single comprehensive numerical model to characterize global change throughout the atmosphere.

  20. Anthropogenic mercury deposition to arctic lake sediments

    Energy Technology Data Exchange (ETDEWEB)

    Hermanson, M.H. [Westchester University, Westchester, PA (United States). Dept. of Health

    1998-01-01

    The history of atmospheric mercury inputs to remote arctic regions can be measured in lake sediment cores using lead-210 chronology. In the investigation, total mercury deposition is measured in sediments from Imitavik and Annak Lakes on the Belcher Islands in southeastern Hudson Bay, an area in the southern Canadian Arctic with no history of local industrial or agricultural sources of contamination. Both lakes received background and atmospheric inputs of mercury while Annak also received mercury from raw domestic sewage from the Hamlet of Sanikiluaq, a growing Inuit community of about 550 established in the late 1960s. Results from Imitavik show that anthropogenic mercury inputs, apparently transported through the atmosphere, began to appear in the mid-eighteenth century, and continued to the 1990s. Annak had a similar mercury history until the late 1960s when disposal of domestic sewage led to increased sediment and contaminant accumulation. The high input of mercury to Annak confirms that Sanikiluaq residents are exposed to mercury through native food sources. 39 refs., 7 figs., 3 tabs.

  1. Natural versus anthropogenic subsidence of Venice.

    Science.gov (United States)

    Tosi, Luigi; Teatini, Pietro; Strozzi, Tazio

    2013-09-26

    We detected land displacements of Venice by Persistent Scatterer Interferometry using ERS and ENVISAT C-band and TerraSAR-X and COSMO-SkyMed X-band acquisitions over the periods 1992-2010 and 2008-2011, respectively. By reason of the larger observation period, the C-band sensors was used to quantify the long-term movements, i.e. the subsidence component primarily ascribed to natural processes. The high resolution X-band satellites reveal a high effectiveness to monitor short-time movements as those induced by human activities. Interpolation of the two datasets and removal of the C-band from the X-band map allows discriminating between the natural and anthropogenic components of the subsidence. A certain variability characterizes the natural subsidence (0.9 ± 0.7 mm/yr), mainly because of the heterogeneous nature and age of the lagoon subsoil. The 2008 displacements show that man interventions are responsible for movements ranging from -10 to 2 mm/yr. These displacements are generally local and distributed along the margins of the city islands.

  2. Anthropogenic radionuclides in the Arctic Ocean. Distribution and pathways

    International Nuclear Information System (INIS)

    Josefsson, Dan

    1998-05-01

    Anthropogenic radionuclide concentrations have been determined in seawater and sediment samples collected in 1991, 1994 and 1996 in the Eurasian Arctic shelf and interior. Global fallout, releases from European reprocessing plants and the Chernobyl accident are identified as the three main sources. From measurements in the Eurasian shelf seas it is concluded that the total input of 134 Cs, 137 Cs and 90 Sr from these sources has been decreasing during the 1990's, while 129 I has increased. The main fraction of the reprocessing and Chernobyl activity found in Arctic Ocean surface layer is transported from the Barents Sea east along the Eurasian Arctic shelf seas to the Laptev Sea before entering the Nansen Basin. This inflow results in highest 137 Cs, 129 I and 90 Sr concentrations in the Arctic Ocean surface layers, and continuously decreasing concentrations with depth. Chernobyl-derived 137 Cs appeared in the central parts of the Arctic Ocean around 1991, and in the mid 1990's the fraction to total 137 Cs was approximately 30% in the entire Eurasian Arctic region. The transfer times for releases from Sellafield are estimated to be 5-7 years to the SE Barents Sea, 7-9 years to the Kara Sea, 10-11 years to the Laptev Sea and 12-14 years to the central Arctic Ocean. Global fallout is the primary source of plutonium with highest concentrations found in the Atlantic layer of the Arctic Ocean. When transported over the shallow shelf seas, particle reactive transuranic elements experience an intense scavenging. A rough estimate shows that approximately 75% of the plutonium entering the Kara and Laptev Seas are removed to the sediment. High seasonal riverine input of 239 , 240 Pu is observed near the mouths of the large Russian rivers. Sediment inventories show much higher concentrations on the shelf compared to the deep Arctic Ocean. This is primarily due to the low particle flux in the open ocean

  3. ISLSCP II Ecosystem Rooting Depths

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this study was to predict the global distribution of plant rooting depths based on data about global aboveground vegetation structure and climate....

  4. ISLSCP II Ecosystem Rooting Depths

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The goal of this study was to predict the global distribution of plant rooting depths based on data about global aboveground vegetation structure and...

  5. The Chukchi Sea zoobenthos: contemporary conditions and trends in anthropogenic influence.

    Directory of Open Access Journals (Sweden)

    Kirievskaya Dubrava

    2017-06-01

    Full Text Available The Chukchi Sea is a key region where rapid changes of the Arctic environment have been observed recently. Benthos of the Chukchi Sea is a sensitive indicator of these changes. In addition, the benthos can be used as an indicator of the anthropogenic load on the marine environment. A lot of researches have been conducted in the different parts of the Chukchi Sea. In this paper we summarized all the data collected for the last 30 years to evaluate contemporary conditions of the Chukchi Sea benthos as well as to discuss a potential response of the benthic ecosystem to the anthropogenic load. The Chukchi Sea zoobenthos is characterized by relatively high biodiversity compared to the seas of the western Arctic Ocean. The spatial distribution of zoobenthos is non-uniform. It is caused by a lot of factors: depth, bottom and sediment temperature, geochemical structure of the sediments, hydrodynamics, etc. Present environmental conditions of the Chukchi Sea biota can be considered to be close to the average long-term norms. By the reason of climate change scientists started to observe northing displacement of subarctic and temperate species of the benthic ecosystem. The Chukchi Sea is still included into the area with low anthropogenic pressure. The main potential threat for the Chukchi sea benthos results from continued oil and gas exploration and sea transport. For example, benthos around oil-wells (the Burger and the Klondike contains pollutants at a high concentration. The risk of rising anthropogenic load on the Chukchi Sea ecosystem poses the problem to additionally identify vulnerable areas of increased ecological significance for later receiving conservation status.

  6. Radiative absorption enhancement of dust mixed with anthropogenic pollution over East Asia

    Directory of Open Access Journals (Sweden)

    P. Tian

    2018-06-01

    Full Text Available The particle mixing state plays a significant yet poorly quantified role in aerosol radiative forcing, especially for the mixing of dust (mineral absorbing and anthropogenic pollution (black carbon absorbing over East Asia. We have investigated the absorption enhancement of mixed-type aerosols over East Asia by using the Aerosol Robotic Network observations and radiative transfer model calculations. The mixed-type aerosols exhibit significantly enhanced absorbing ability than the corresponding unmixed dust and anthropogenic aerosols, as revealed in the spectral behavior of absorbing aerosol optical depth, single scattering albedo, and imaginary refractive index. The aerosol radiative efficiencies for the dust, mixed-type, and anthropogenic aerosols are −101.0, −112.9, and −98.3 Wm−2 τ−1 at the bottom of the atmosphere (BOA; −42.3, −22.5, and −39.8 Wm−2 τ−1 at the top of the atmosphere (TOA; and 58.7, 90.3, and 58.5 Wm−2 τ−1 in the atmosphere (ATM, respectively. The BOA cooling and ATM heating efficiencies of the mixed-type aerosols are significantly higher than those of the unmixed aerosol types over the East Asia region, resulting in atmospheric stabilization. In addition, the mixed-type aerosols correspond to a lower TOA cooling efficiency, indicating that the cooling effect by the corresponding individual aerosol components is partially counteracted. We conclude that the interaction between dust and anthropogenic pollution not only represents a viable aerosol formation pathway but also results in unfavorable dispersion conditions, both exacerbating the regional air pollution in East Asia. Our results highlight the necessity to accurately account for the mixing state of aerosols in atmospheric models over East Asia in order to better understand the formation mechanism for regional air pollution and to assess its impacts on human health, weather, and climate.

  7. Do professional boundaries limit trust?

    Science.gov (United States)

    Smythe, Elizabeth; Hennessy, Julia; Abbott, Max; Hughes, Frances

    2018-02-01

    The present study uses stories of mental health support workers talking about their relationship with clients to wonder about how trust might be limited by the professional boundaries of nursing. The writing arose out of an appreciative inquiry study looking at the role of mental health support workers. Participants talked about how they worked with their clients. As researchers, we were struck by the depth of trust that was built between worker and client. We have brought a phenomenological lens to wonder about the nature of trust, as shown in the data. The original research sought to identify what was working well for mental health support workers. The present study brings a phenomenological interpretive approach to four stories from the discovery phase of the study, with our thinking informed by Heidegger and van Manen. Interviews were conducted with 26 mental health support workers and six stakeholders in 2012-2103. For this paper, we drew from those transcripts stories of three mental health support workers and one stakeholder. Through a process of talking together, writing, and rewriting, we wondered about the meaning within these stories, with a strong focus on how trust was enacted. We saw that mental health support workers in this study, by not carrying the boundaries of being 'professional', seemed free to grow a stronger relationship of trust which was therapeutic. We ask: Is it time to rethink how professional boundaries limit the level of trust achieved with clients to the detriment of impactful care? © 2017 Australian College of Mental Health Nurses Inc.

  8. The transformation of vegetation vertical zonality affected by anthropogenic impact in East Fennoscandia (Russia)

    Science.gov (United States)

    Sidorik, Vadim; Miulgauzen, Daria

    2017-04-01

    Ecosystems of East Fennoscandia have been affected by intensive anthropogenic influence that resulted in their significant transformation. Study of ecosystems in the framework of vegetation vertical zonality disturbance as well as its recovery allows to understand the trends of anthropogenically induced changes. The aim of the present research is the comparative analysis of vegetation vertical zonality of the two uplands in East Fennoscandia which may be considered as unaffected and affected by anthropogenic impact. The objects of key studies carried out in the north-west of Kola Peninsula in the vicinity of the Pechenganikel Mining and Metallurgical Plant are represented by ecosystems of Kalkupya (h 357 m) and Hangaslachdenvara (h 284 m) uplands. They are characterized by the similarity in sequence of altitudinal belts due to the position on the northern taiga - forest-tundra boundary. Plant communities of Kalkupya upland have no visible signs of anthropogenic influence, therefore, they can be considered as model ecosystems of the area. The sequence of altitudinal belts is the following: - up to 200 m - pine subshrub and green moss ("zonal") forest replaced by mixed pine and birch forest near the upper boundary; - 200-300 m - birch crooked subshrub wood; - above 300 m - tundra subshrub and lichen communities. Ecosystems of Hangaslachdenvara upland have been damaged by air pollution (SO2, Ni, Cu emissions) of the Pechenganikel Plant. This impact has led to plant community suppression and formation of barren lands. Besides the soil cover was significantly disturbed, especially upper horizons. Burying of soil profiles, represented by Podzols (WRB, 2015), also manifested itself in the exploited part of the area. The vegetation cover of Hangaslachdenvara upland is the following: - up to 130 m - birch and aspen subshrub and grass forest instead of pine forest ("zonal"); - 130-200 m - barren lands instead of pine forest ("zonal"); - above 200 m - barren lands instead of

  9. Administrative Area Boundaries 2 (State Boundaries), Region 9, 2010, NAVTEQ

    Data.gov (United States)

    U.S. Environmental Protection Agency — NAVTEQ Administrative Area Boundaries 2 (State Boundaries) for Region 9. There are five Administrative Area Boundaries layers (1, 2, 3, 4, 5). These layers contain...

  10. Administrative Area Boundaries 4 (City Boundaries), Region 9, 2010, NAVTEQ

    Data.gov (United States)

    U.S. Environmental Protection Agency — NAVTEQ Administrative Area Boundaries 4 (City Boundaries) for Region 9. There are five Administrative Area Boundaries layers (1, 2, 3, 4, 5). These layers contain...

  11. Local and social facets of planetary boundaries: right to nutrients

    International Nuclear Information System (INIS)

    Kahiluoto, Helena; Kuisma, Miia; Kuokkanen, Anna; Mikkilä, Mirja; Linnanen, Lassi

    2015-01-01

    Anthropogenic nutrient flows exceed the planetary boundaries. The boundaries and the current excesses vary spatially. Such variations have both an ecological and a social facet. We explored the spatial variation using a bottom-up approach. The local critical boundaries were determined through the current or accumulated flow of the preceding five years before the planetary boundary criteria were met. Finland and Ethiopia served as cases with contrasting ecology and wealth. The variation in excess depends on historical global inequities in the access to nutrients. Globally, the accumulated use per capita is 2300 kg reactive nitrogen (N r ) and 200 kg phosphorus (P). For Finland, the accumulated use per capita is 3400 kg N r and 690 kg P, whereas for Ethiopia, it is 26 kg N r and 12 kg P. The critical N boundary in Finland is currently exceeded by 40 kg cap −1 a −1 and the accumulated excess is 65 kg cap −1 a −1 , while the global current excess is 24 kg cap −1 a −1 and there is space in Ethiopia to increase even the accumulated flow. The critical P boundary is exceeded in Finland and (although less so) in Ethiopia, but for contrary reasons: (1) the excessive past inflow to the agrifood system in Finland and (2) the excessive outflow from the agrifood system triggered by deficits in inflow and waste management in Ethiopia. The critical boundaries set by Finnish marine systems are lower and those set by freshwaters are higher than the planetary boundaries downscaled per capita. The shift to dominance of internal loading in watercourses represents a tipping point. We conclude that food security within the safe boundaries requires global redistribution of nutrients in residues, soils and sediments and of rights to use nutrients. Bottom-up assessments reveal local dynamics that shed new light on the relevant boundary criteria and on estimates and remedies. (letter)

  12. Global Scale Attribution of Anthropogenic and Natural Dust Sources and their Emission Rates Based on MODIS Deep Blue Aerosol Products

    Science.gov (United States)

    Ginoux, Paul; Prospero, Joseph M.; Gill, Thomas E.; Hsu, N. Christina; Zhao, Ming

    2012-01-01

    Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Here we present a global-scale high-resolution (0.1 deg) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use. We ascribe dust sources to natural and anthropogenic (primarily agricultural) origins, calculate their respective contributions to emissions, and extensively compare these products against literature. Natural dust sources globally account for 75% of emissions; anthropogenic sources account for 25%. North Africa accounts for 55% of global dust emissions with only 8% being anthropogenic, mostly from the Sahel. Elsewhere, anthropogenic dust emissions can be much higher (75% in Australia). Hydrologic dust sources (e.g., ephemeral water bodies) account for 31% worldwide; 15% of them are natural while 85% are anthropogenic. Globally, 20% of emissions are from vegetated surfaces, primarily desert shrublands and agricultural lands. Since anthropogenic dust sources are associated with land use and ephemeral water bodies, both in turn linked to the hydrological cycle, their emissions are affected by climate variability. Such changes in dust emissions can impact climate, air quality, and human health. Improved dust emission estimates will require a better mapping of threshold wind velocities, vegetation dynamics, and surface conditions (soil moisture and land use) especially in the sensitive regions identified here, as well as improved ability to address small-scale convective processes producing dust via cold pool (haboob) events frequent in monsoon regimes.

  13. Aquatic subsidies transport anthropogenic nitrogen to riparian spiders

    Energy Technology Data Exchange (ETDEWEB)

    Akamatsu, Fumikazu, E-mail: f-akamt55@pwri.go.jp [Department of Environmental Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Toda, Hideshige [Department of Environmental Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)

    2011-05-15

    Stable nitrogen isotopic composition ({delta}{sup 15}N) of aquatic biota increases with anthropogenic N inputs such as sewage and livestock waste downstream. Increase in {delta}{sup 15}N of riparian spiders downstream may reflect the anthropogenic pollution exposure through predation on aquatic insects. A two-source mixing model based on stable carbon isotopic composition showed the greatest dependence on aquatic insects (84%) by horizontal web-building spiders, followed by intermediate (48%) and low (31%) dependence by cursorial and vertical web-building spiders, respectively. The spider body size was negatively correlated with the dietary proportion of aquatic insects and spider {delta}{sup 15}N. The aquatic subsidies transported anthropogenic N to smaller riparian spiders downstream. This transport of anthropogenic N was regulated by spider's guild designation and body size. - Highlights: > {delta}{sup 15}N of aquatic insects increases downstream with anthropogenic nitrogen inputs. > {delta}{sup 15}N of riparian spiders increases with a high dietary proportion of aquatic insects and smaller spider body size. > The aquatic subsidies transport anthropogenic nitrogen to smaller riparian spiders downstream. - Smaller spiders assimilate anthropogenic nitrogen through the predation on aquatic subsides.

  14. Aquatic subsidies transport anthropogenic nitrogen to riparian spiders

    International Nuclear Information System (INIS)

    Akamatsu, Fumikazu; Toda, Hideshige

    2011-01-01

    Stable nitrogen isotopic composition (δ 15 N) of aquatic biota increases with anthropogenic N inputs such as sewage and livestock waste downstream. Increase in δ 15 N of riparian spiders downstream may reflect the anthropogenic pollution exposure through predation on aquatic insects. A two-source mixing model based on stable carbon isotopic composition showed the greatest dependence on aquatic insects (84%) by horizontal web-building spiders, followed by intermediate (48%) and low (31%) dependence by cursorial and vertical web-building spiders, respectively. The spider body size was negatively correlated with the dietary proportion of aquatic insects and spider δ 15 N. The aquatic subsidies transported anthropogenic N to smaller riparian spiders downstream. This transport of anthropogenic N was regulated by spider's guild designation and body size. - Highlights: → δ 15 N of aquatic insects increases downstream with anthropogenic nitrogen inputs. → δ 15 N of riparian spiders increases with a high dietary proportion of aquatic insects and smaller spider body size. → The aquatic subsidies transport anthropogenic nitrogen to smaller riparian spiders downstream. - Smaller spiders assimilate anthropogenic nitrogen through the predation on aquatic subsides.

  15. Continental anthropogenic primary particle number emissions

    Science.gov (United States)

    Paasonen, Pauli; Kupiainen, Kaarle; Klimont, Zbigniew; Visschedijk, Antoon; Denier van der Gon, Hugo A. C.; Amann, Markus

    2016-06-01

    Atmospheric aerosol particle number concentrations impact our climate and health in ways different from those of aerosol mass concentrations. However, the global, current and future anthropogenic particle number emissions and their size distributions are so far poorly known. In this article, we present the implementation of particle number emission factors and the related size distributions in the GAINS (Greenhouse Gas-Air Pollution Interactions and Synergies) model. This implementation allows for global estimates of particle number emissions under different future scenarios, consistent with emissions of other pollutants and greenhouse gases. In addition to determining the general particulate number emissions, we also describe a method to estimate the number size distributions of the emitted black carbon particles. The first results show that the sources dominating the particle number emissions are different to those dominating the mass emissions. The major global number source is road traffic, followed by residential combustion of biofuels and coal (especially in China, India and Africa), coke production (Russia and China), and industrial combustion and processes. The size distributions of emitted particles differ across the world, depending on the main sources: in regions dominated by traffic and industry, the number size distribution of emissions peaks in diameters range from 20 to 50 nm, whereas in regions with intensive biofuel combustion and/or agricultural waste burning, the emissions of particles with diameters around 100 nm are dominant. In the baseline (current legislation) scenario, the particle number emissions in Europe, Northern and Southern Americas, Australia, and China decrease until 2030, whereas especially for India, a strong increase is estimated. The results of this study provide input for modelling of the future changes in aerosol-cloud interactions as well as particle number related adverse health effects, e.g. in response to tightening

  16. Multidisciplinary study on anthropogenic landslides in Nepal

    Science.gov (United States)

    Puglia, Christopher; Derron, Marc-Henri; Nicolet, Pierrick; Sudmeier-Rieux, Karen; Jaboyedoff, Michel; Devkota, Sanjay

    2013-04-01

    Nepal is a country in which shallow landslide is a frequent phenomenon. Monsoon is the main triggering factor but anthropogenic influence is often significant too. Indeed, many infrastructures, such as roads or water pipes, are not built in a rigorous way because of a lack of funds and knowledge. In the present study we examine the technical, social and economic issues of landslide management for two sites in Nepal. The first site is located in Sanusiruwari VDC (Sindhupalchock district, central Nepal) and the second one in Namadi VDC (Ramecchap district, central Nepal). Both sites are affected by landslides induced by the construction of hydropower plants. These landslides may threaten the viability of the hydropower plants. At both sites the problems are quite similar, but the first site project is a private one and the second one is a public one implemented by the United Nations Development Programme (UNDP). For both sites, bioengineering methods using Vetiver (Vetyveria zizanioides) plantations is the main stabilization measure. To follow the progression of both landslides, fieldwork observations were conducted before and after the 2012 rainy season, including photogrammetric and distancemeter acquisitions. Main issues were discussed with communities and stakeholders of the hydropower projects through interviews and participatory risk mapping. Main issues include: lack of communication between the project managers and communities leading to conflict and the lack of maintenance of the bio-engineering sites, leading to less effective Vetiver growth and slope stabilization. Comparing the landslide management (technical, social and economic) of the two projects allows to point out some specific issues within an integrated risk perspective.

  17. Continental anthropogenic primary particle number emissions

    Directory of Open Access Journals (Sweden)

    P. Paasonen

    2016-06-01

    Full Text Available Atmospheric aerosol particle number concentrations impact our climate and health in ways different from those of aerosol mass concentrations. However, the global, current and future anthropogenic particle number emissions and their size distributions are so far poorly known. In this article, we present the implementation of particle number emission factors and the related size distributions in the GAINS (Greenhouse Gas–Air Pollution Interactions and Synergies model. This implementation allows for global estimates of particle number emissions under different future scenarios, consistent with emissions of other pollutants and greenhouse gases. In addition to determining the general particulate number emissions, we also describe a method to estimate the number size distributions of the emitted black carbon particles. The first results show that the sources dominating the particle number emissions are different to those dominating the mass emissions. The major global number source is road traffic, followed by residential combustion of biofuels and coal (especially in China, India and Africa, coke production (Russia and China, and industrial combustion and processes. The size distributions of emitted particles differ across the world, depending on the main sources: in regions dominated by traffic and industry, the number size distribution of emissions peaks in diameters range from 20 to 50 nm, whereas in regions with intensive biofuel combustion and/or agricultural waste burning, the emissions of particles with diameters around 100 nm are dominant. In the baseline (current legislation scenario, the particle number emissions in Europe, Northern and Southern Americas, Australia, and China decrease until 2030, whereas especially for India, a strong increase is estimated. The results of this study provide input for modelling of the future changes in aerosol–cloud interactions as well as particle number related adverse health effects, e.g. in response

  18. Tax Unit Boundaries

    Data.gov (United States)

    Kansas Data Access and Support Center — The Statewide GIS Tax Unit boundary file was created through a collaborative partnership between the State of Kansas Department of Revenue Property Valuation...

  19. 500 Cities: City Boundaries

    Data.gov (United States)

    U.S. Department of Health & Human Services — This city boundary shapefile was extracted from Esri Data and Maps for ArcGIS 2014 - U.S. Populated Place Areas. This shapefile can be joined to 500 Cities...

  20. National Forest Boundaries

    Data.gov (United States)

    Minnesota Department of Natural Resources — This theme shows the USFS national forest boundaries in the state. This data was acquired from the GIS coordinators at both the Chippewa National Forest and the...

  1. Allegheny County Parcel Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains parcel boundaries attributed with county block and lot number. Use the Property Information Extractor for more control downloading a filtered...

  2. Boundary representation modelling techniques

    CERN Document Server

    2006-01-01

    Provides the most complete presentation of boundary representation solid modelling yet publishedOffers basic reference information for software developers, application developers and users Includes a historical perspective as well as giving a background for modern research.

  3. NM School District Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The dataset represents the boundaries of all public school districts in the state of New Mexico. The source for the data layer is the New Mexico Public Education...

  4. Site Area Boundaries

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset consists of site boundaries from multiple Superfund sites in U.S. EPA Region 8. These data were acquired from multiple sources at different times and...

  5. HUC 8 Boundaries

    Data.gov (United States)

    Kansas Data Access and Support Center — This data set is a digital hydrologic unit boundary that is at the 4-digit, 6-digit, 8-digit, and 11-digit level. The data set was developed by delineating the...

  6. State Park Statutory Boundaries

    Data.gov (United States)

    Minnesota Department of Natural Resources — Legislative statutory boundaries for sixty six state parks, six state recreation areas, and eight state waysides. These data are derived principally from DNR's...

  7. Anthropogenic effect on avalanche and debris flow activity

    Directory of Open Access Journals (Sweden)

    S. A. Sokratov

    2013-01-01

    Full Text Available The paper presents examples of the change in snow avalanches and debris flows activity due to the anthropogenic pressure on vegetation and relief. The changes in dynamical characteristics of selected snow avalanches and debris flows due to the anthropogenic activity are quantified. The conclusion is made that the anthropogenic effects on the snow avalanches and debris flows activity are more pronounced than the possible effects of the climate change. The necessity is expressed on the unavoidable changes of the natural environment as the result of a construction and of use of the constructed infrastructure to be account for in corresponding planning of the protection measures.

  8. Λ and Σ well depth

    International Nuclear Information System (INIS)

    Satoh, Eiji

    1982-01-01

    The Λ well depth was calculated by taking into account the effect of the ΛΣ conversion. Takahashi et al. obtained the separate type of potentials which described the hyperon-nucleon interaction up to p waves. Two types of the potentials among several types they obtained were used to calculate the Λ well depth. The G matrix was easily calculated, and the Λ well depth was obtained by integrating the G matrix in momentum space up to the Fermi surface. The effect of the ΛΣ conversion was given by an equation. The total Λ well depth was estimated to be 9.13 MeV and 49.36 MeV for each type of potential, respectively. It was concluded that the argument by Bodmer et al. was not correct. The Σ well depth was also calculated using the potential obtained by Takahashi et al. for I = 1/2 and the one obtained by Σ + p → Σ + p scattering data for I = 3/2. The obtained value 35.30 MeV may be overestimated, and the experimental value is expected to be in the range from 20 MeV to 30 MeV. (Ito, K.)

  9. Change in diurnal variations of meteorological variables induced by anthropogenic aerosols over the North China Plain in summer 2008

    Science.gov (United States)

    Gao, Yi; Zhang, Meigen; Liu, Xiaohong; Wang, Lili

    2016-04-01

    This study investigates the impacts of all anthropogenic aerosols and anthropogenic black carbon (BC) on the diurnal variations of meteorological variables in the atmospheric boundary layer over the North China Plain (NCP) during June to August 2008, using a coupled meteorology and chemistry model (WRF-Chem). The results of the ensemble numerical experiments show that surface air temperature decreases by about 0.6 to 1.2 K with the maximum decrease over the Beijing urban area and the southern part of Hebei province, and the surface relative humidity (RH) increases by 2-4 % owing to all anthropogenic aerosols. On the contrary, anthropogenic BC induces a small change of temperature and RH at surface. Averaged for Beijing, Tianjin, and Hebei province (BTH region) and High Particle Concentration (HPC) periods when PM2.5 surface concentration is more than 60 μg m-3 and daily AOD is more than 0.9, all anthropogenic aerosols decrease air temperature under 850 hPa and increase it between 500 and 850 hPa, while anthropogenic BC increases it for whole atmosphere. The maximum changes occur at 08:00-20:00 (local time). Aerosol-induced surface energy and diabatic heating change leads to a cooling at the surface and in the lower atmosphere and a warming in the middle troposphere at 08:00-17:00, with reversed effects at 20:00-05:00. BC cools the atmosphere at the surface and warms the atmosphere above for the whole day. As a result, the equivalent potential temperature profile change shows that the lower atmosphere is more stable at 08:00 and 14:00. All anthropogenic aerosols decrease the surface wind speed by 20-60 %, while anthropogenic BC decreases the wind speed by 10-40 % over the NCP with the maximum decrease at 08:00. The aerosol-induced stabilization of the lower atmosphere favors the accumulation of air pollutants and thus contributes to deterioration of visibility and fog-haze events.

  10. Spectrometric kidney depth measurement method

    International Nuclear Information System (INIS)

    George, P.; Soussaline, F.; Raynaud, C.

    1976-01-01

    The method proposed uses the single posterior surface measurement of the kidney radioactivity distribution. The ratio C/P of the number of scattered photons to the number of primary photons, which is a function of the tissue depth penetrated, is calculated for a given region. The parameters on which the C/P value depends are determined from studies on phantoms. On the basis of these results the kidney depth was measured on a series of 13 patients and a correlation was established between the value thus calculated and that obtained by the profile method. The reproducibility of the method is satisfactory [fr

  11. Heat flow of standard depth

    International Nuclear Information System (INIS)

    Cull, J.P.

    1981-01-01

    Secular and long-term periodic changes in surface temperature cause perturbations to the geothermal gradient which may be significant to depths of at least 1000 m, and major corrections are required to determine absolute values of heat flow from the Earth's interior. However, detailed climatic models remain contentious and estimates of error in geothermal gradients differ widely. Consequently, regions of anomalous heat flow which could contain geothermal resources may be more easily resolved by measuring relative values at a standard depth (e.g. 100 m) so that all data are subject to similar corrections. (orig./ME)

  12. Three-dimensional seismic depth migration

    Science.gov (United States)

    Zhou, Hongbo

    1998-12-01

    One-pass 3-D modeling and migration for poststack seismic data may be implemented by replacing the traditional 45sp° one-way wave equation (a third-order partial differential equation) with a pair of second and first order partial differential equations. Except for an extra correction term, the resulting second order equation has a form similar to Claerbout's 15sp° one-way wave equation, which is known to have a nearly circular horizontal impulse response. In this approach, there is no need to compensate for splitting errors. Numerical tests on synthetic data show that this algorithm has the desirable attributes of being second-order in accuracy and economical to solve. A modification of the Crank-Nicholson implementation maintains stability. Absorbing boundary conditions play an important role in one-way wave extrapolations by reducing reflections at grid edges. Clayton and Engquist's 2-D absorbing boundary conditions for one-way wave extrapolation by depth-stepping in the frequency domain are extended to 3-D using paraxial approximations of the scalar wave equation. Internal consistency is retained by incorporating the interior extrapolation equation with the absorbing boundary conditions. Numerical schemes are designed to make the proposed absorbing boundary conditions both mathematically correct and efficient with negligible extra cost. Synthetic examples illustrate the effectiveness of the algorithm for extrapolation with the 3-D 45sp° one-way wave equation. Frequency-space domain Butterworth and Chebyshev dip filters are implemented. By regrouping the product terms in the filter transfer function into summations, a cascaded (serial) Butterworth dip filter can be made parallel. A parallel Chebyshev dip filter can be similarly obtained, and has the same form as the Butterworth filter; but has different coeffcients. One of the advantages of the Chebyshev filter is that it has a sharper transition zone than that of Butterworth filter of the same order. Both

  13. 443 ANTHROPOGENIC IMPACTS ON CORAL REEFS AND THEIR ...

    African Journals Online (AJOL)

    Osondu

    Data collection methodology included household questionnaire survey, key informant interviews, participant .... Anthropogenic Impacts on Coral Reefs and Their Effect on Fishery ................Mbije & ... common along Kilwa coastline, away of large markets ... questionnaire whereas content analysis was used for analyzing ...

  14. Screening of anthropogenic compounds in polluted sediments and soils

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Leeuw, J.W. de; Leer, E.W.B. de; Schuyl, P.J.W.

    1986-01-01

    The use of flash evaporation and pyrolysis gas chromatography- mass spectrometry as a fast screening procedure for anthropogenic substances In environmental samples is demonstrated by the analysis of polluted soil and sediment samples. Polycyclic aromatic hydrocarbons, haloorganics,

  15. EVALUATION OF SIGNIFICANT ANTHROPOGENIC SOURCES OF RADIATIVELY IMPORTANT TRACE GASES

    Science.gov (United States)

    The report is an initial evaluation of significant anthropogenic sources of radiatively important trace gases. missions of greenhouse gases from human activities--including fossil fuel combustion, industrial/agricultural activities, and transportation--contribute to the increasin...

  16. Anthropogenic climate change has altered primary productivity in Lake Superior.

    Science.gov (United States)

    O'Beirne, M D; Werne, J P; Hecky, R E; Johnson, T C; Katsev, S; Reavie, E D

    2017-06-09

    Anthropogenic climate change has the potential to alter many facets of Earth's freshwater resources, especially lacustrine ecosystems. The effects of anthropogenic changes in Lake Superior, which is Earth's largest freshwater lake by area, are not well documented (spatially or temporally) and predicted future states in response to climate change vary. Here we show that Lake Superior experienced a slow, steady increase in production throughout the Holocene using (paleo)productivity proxies in lacustrine sediments to reconstruct past changes in primary production. Furthermore, data from the last century indicate a rapid increase in primary production, which we attribute to increasing surface water temperatures and longer seasonal stratification related to longer ice-free periods in Lake Superior due to anthropogenic climate warming. These observations demonstrate that anthropogenic effects have become a prominent influence on one of Earth's largest, most pristine lacustrine ecosystems.

  17. Modeling Agassiz's Desert Tortoise Population Response to Anthropogenic Stressors

    Science.gov (United States)

    Mojave Desert tortoise (Gopherus agassizii) populations are exposed to a variety of anthropogenic threats, which vary in nature, severity, and frequency. Tortoise management in conservation areas can be compromised when the relative importance of these threats is not well underst...

  18. Boundary-Layer Characteristics Over a Coastal Megacity

    Science.gov (United States)

    Melecio-Vazquez, D.; Ramamurthy, P.; Arend, M.; Moshary, F.; Gonzalez, J.

    2017-12-01

    Boundary-layer characteristics over New York City are analyzed for various local and synoptic conditions over several seasons. An array of vertical profilers, including a Doppler LiDAR, a micro-pulse LiDAR and a microwave radiometer are used to observe the structure and evolution of the boundary-layer. Additionally, an urbanized Weather Research and Forecasting (uWRF) model coupled to a high resolution landcover/land-use database is used to study the spatial variability in boundary layer characteristics. The summer daytime averaged potential temperature profile from the microwave radiometer shows the presence of a thermal internal boundary layer wherein a superadiabatic layer lies underneath a stable layer instead of a mixed-layer. Both the winter daytime and nighttime seasonal averages show that the atmosphere remains unstable near the surface and does not reach stable conditions during the nighttime. The mixing ratio seasonal averages show peaks in humidity near 200-m and 1100-m, above instrument level, which could result from sea breeze and anthropogenic sources. Ceilometer measurements show a high degree of variability in boundary layer height depending on wind direction. Comparison with uWRF results show that the model tends to overestimate convective efficiency for selected summer and winter cases and therefore shows a much deeper thermal boundary layer than the observed profiles. The model estimates a less humid atmosphere than seen in observations.

  19. Assessing the observed impact of anthropogenic climate change

    OpenAIRE

    Hansen, G; Stone, D

    2016-01-01

    © 2016 Macmillan Publishers Limited. All rights reserved. Impacts of recent regional changes in climate on natural and human systems are documented across the globe, yet studies explicitly linking these observations to anthropogenic forcing of the climate are scarce. Here we provide a systematic assessment of the role of anthropogenic climate change for the range of impacts of regional climate trends reported in the IPCC's Fifth Assessment Report. We find that almost two-thirds of the impacts...

  20. Anthropogenic noise alters bat activity levels and echolocation calls

    OpenAIRE

    Bunkley, Jessie P.; McClure, Christopher J.W.; Kleist, Nathan J.; Francis, Clinton D.; Barber, Jesse R.

    2015-01-01

    Negative impacts from anthropogenic noise are well documented for many wildlife taxa. Investigations of the effects of noise on bats however, have not been conducted outside of the laboratory. Bats that hunt arthropods rely on auditory information to forage. Part of this acoustic information can fall within the spectrum of anthropogenic noise, which can potentially interfere with signal reception and processing. Compressor stations associated with natural gas extraction produce broadband nois...

  1. Modeling water flow, depth and inundation extent over the rivers of the Contiguous US within a Catchment-based Land Surface Modeling Framework

    Science.gov (United States)

    Liu, Z.; David, C. H.; Famiglietti, J. S.

    2013-12-01

    With population growth and increasing demand of water supply, the need for integrated continental and global scale surface water dynamics simulation systems relying on both observations and models is ever increasing. In this study we characterize how accurately we can estimate river discharge, river depth and the corresponding inundation extent over the contiguous U.S. by combining observations and models. We present a continental-scale implementation of the Catchment-based Hydrological And Routing Modeling System (CHARMS) that includes an explicit representation of the river networks from a Geographic Information System (GIS) dataset. The river networks and contributing catchment boundaries of the Contiguous U.S are upscaled from the NHDPlus dataset. The average upscaled catchment size is 2773 km2 and the unique main river channel contained in each catchment consists of several river reaches of average length 1.6 km. We derive 18 sets of empirical relationship between channel dimension (bankfull depth and bankfull width) and drainage area based on USGS gauge observations to describe river dynamics for the 18 water resource regions of the NHDPlus representation of the United States. These relationships are used to separate the main river channel and floodplain. Modeled monthly and daily streamflow show reasonable agreement with gauge observations and initial results show that basins with fewer anthropogenic modifications are more accurately simulated. Modeled monthly and daily river depth and floodplain extent associated with each river reach are also explicitly estimated over the U.S., although such simulations are more challenging to validate. Our results have implications for capturing the seasonal-to-interannual dynamics of surface water in climate models. Such a continental-scale modeling framework development would, by design, facilitate the use of existing in situ observations and be suitable for integrating the upcoming NASA Surface Water and Ocean

  2. Pursuing the Depths of Knowledge

    Science.gov (United States)

    Boyles, Nancy

    2016-01-01

    Today's state literacy standards and assessments demand deeper levels of knowledge from students. But many teachers ask, "What does depth of knowledge look like on these new, more rigorous assessments? How do we prepare students for this kind of thinking?" In this article, Nancy Boyles uses a sampling of questions from the PARCC and SBAC…

  3. Role of mesoscale eddies in the global ocean uptake of anthropogenic CO2

    International Nuclear Information System (INIS)

    Zouhair, Lachkar

    2007-02-01

    Mesoscale eddies play a fundamental role in ocean dynamics particularly in the Southern Ocean. Global-scale tracer simulations are typically made at coarse resolution without explicitly modeling eddies. Here we ask what role do eddies play in ocean uptake, storage, and meridional transport of anthropogenic CO 2 , CFC-11 and bomb Δ 14 C. We made global anthropogenic transient tracer simulations in coarse-resolution, ORCA2, and eddy-permitting, ORCA05 and ORCA025, versions of the ocean modelling system NEMO. We focus on the Southern Ocean where tracer air-sea fluxes are largest. Eddies have little effect on bomb Δ 14 C uptake and storage. Yet for CFC-11 and anthropogenic CO 2 , increased eddy activity reduces southern extra-tropical uptake by 28% and 25% respectively, thereby providing better agreement with observations. It is shown that the discrepancies in the equilibration times between the three tracers determine their respective sensitivities to the model horizontal resolution. Applying Gent and McWilliams (1990) (GM) parameterization of eddies in the non-eddying version of the model does improve results, but not enough. An in-depth investigation of the mechanisms by which eddies affect the uptake of the transient tracers shows that including mesoscale eddies leads to an overall reduction in the Antarctic Intermediate Water (AAIW) ventilation, and modifies substantially the spatial distribution of their source regions. This investigation reveals also that the GM parameterization still overestimates the ventilation and the subduction of AAIW in the Indian Ocean where the simulated mixed layer is particularly deep during the winter. This work suggests that most current coarse-resolution models may overestimate the ventilation of AAIW in the Indian sector of the Southern Ocean. This study shows also that the use of the GM parameterization may be of limited utility where mixed layer is relatively deep and confirms the general need for a more adequate

  4. Grain boundary structure and properties

    International Nuclear Information System (INIS)

    Balluffi, R.W.

    1979-01-01

    An attempt is made to distinguish those fundamental aspects of grain boundaries which should be relevant to the problem of the time dependent fracture of high temperature structural materials. These include the basic phenomena which are thought to be associated with cavitation and cracking at grain boundaries during service and with the more general microstructural changes which occur during both processing and service. A very brief discussion of the current state of our knowledge of these fundamentals is given. Included are the following: (1) structure of ideal perfect boundaries; (2) defect structure of grain boundaries; (3) diffusion at grain boundaries; (4) grain boundaries as sources/sinks for point defects; (5) grain boundary migration; (6) dislocation phenomena at grain boundaries; (7) atomic bonding and cohesion at grain boundaries; (8) non-equilibrium properties of grain boundaries; and (9) techniques for studying grain boundaries

  5. Anthropogenic combustion iron as a complex climate forcer.

    Science.gov (United States)

    Matsui, Hitoshi; Mahowald, Natalie M; Moteki, Nobuhiro; Hamilton, Douglas S; Ohata, Sho; Yoshida, Atsushi; Koike, Makoto; Scanza, Rachel A; Flanner, Mark G

    2018-04-23

    Atmospheric iron affects the global carbon cycle by modulating ocean biogeochemistry through the deposition of soluble iron to the ocean. Iron emitted by anthropogenic (fossil fuel) combustion is a source of soluble iron that is currently considered less important than other soluble iron sources, such as mineral dust and biomass burning. Here we show that the atmospheric burden of anthropogenic combustion iron is 8 times greater than previous estimates by incorporating recent measurements of anthropogenic magnetite into a global aerosol model. This new estimation increases the total deposition flux of soluble iron to southern oceans (30-90 °S) by 52%, with a larger contribution of anthropogenic combustion iron than dust and biomass burning sources. The direct radiative forcing of anthropogenic magnetite is estimated to be 0.021 W m -2 globally and 0.22 W m -2 over East Asia. Our results demonstrate that anthropogenic combustion iron is a larger and more complex climate forcer than previously thought, and therefore plays a key role in the Earth system.

  6. Refinement of the bottom boundary of the INES scale

    International Nuclear Information System (INIS)

    Ferjencik, Milos

    2010-01-01

    No existing edition of the International Nuclear Events Scale (INES) Manual addresses in depth the determination of the bottom boundary of the Scale, although a need for a definition is felt. The article introduces a method for determining the INES bottom boundary applicable to pressurized water reactors. This bottom boundary is put identical with the threshold of degradation of the installation's nuclear safety assurance. A comprehensive flowchart has been developed as the main outcome of the analysis of the nuclear safety assurance violation issue. The use of this flowchart in INES classification to replace the introductory question in the General INES Rating Procedure in the INES Manual is recommended. (orig.)

  7. Impact of anthropogenic aerosols on regional climate change in Beijing, China

    Science.gov (United States)

    Zhao, B.; Liou, K. N.; He, C.; Lee, W. L.; Gu, Y.; Li, Q.; Leung, L. R.

    2015-12-01

    Anthropogenic aerosols affect regional climate significantly through radiative (direct and semi-direct) and indirect effects, but the magnitude of these effects over megacities are subject to large uncertainty. In this study, we evaluated the effects of anthropogenic aerosols on regional climate change in Beijing, China using the online-coupled Weather Research and Forecasting/Chemistry Model (WRF/Chem) with the Fu-Liou-Gu radiation scheme and a spatial resolution of 4km. We further updated this radiation scheme with a geometric-optics surface-wave (GOS) approach for the computation of light absorption and scattering by black carbon (BC) particles in which aggregation shape and internal mixing properties are accounted for. In addition, we incorporated in WRF/Chem a 3D radiative transfer parameterization in conjunction with high-resolution digital data for city buildings and landscape to improve the simulation of boundary-layer, surface solar fluxes and associated sensible/latent heat fluxes. Preliminary simulated meteorological parameters, fine particles (PM2.5) and their chemical components agree well with observational data in terms of both magnitude and spatio-temporal variations. The effects of anthropogenic aerosols, including BC, on radiative forcing, surface temperature, wind speed, humidity, cloud water path, and precipitation are quantified on the basis of simulation results. With several preliminary sensitivity runs, we found that meteorological parameters and aerosol radiative effects simulated with the incorporation of improved BC absorption and 3-D radiation parameterizations deviate substantially from simulation results using the conventional homogeneous/core-shell configuration for BC and the plane-parallel model for radiative transfer. Understanding of the aerosol effects on regional climate change over megacities must consider the complex shape and mixing state of aerosol aggregates and 3D radiative transfer effects over city landscape.

  8. Research and Development in the Anthropogenic Cryosphere

    Science.gov (United States)

    de Jong, C.; Luthe, T.; Hohenwallne, D.

    2009-04-01

    fauna, modification of local hydrological cycle and modification of local climate and atmospheric pollution. Research in mountains should balance the needs of scientists and stakeholders alike, but this requires re-orientation of mountain research into multi-disciplinary projects next to basic science. Unlike the polar regions (with exceptions like Longyearbyen, Spitzbergen), seasonal population pressure in mountains is intense, causing local problems such as water scarcity. Research in these areas therefore requires close collaboration with stakeholders. Large-scale events such as Winter Olympics that have benefited from the classical mountain cryosphere in the past are now increasingly becoming internationally competitive and independent of the natural cryospheric conditions. New ski areas are developed world-wide in zones that do not offer natural climatological conditions for maintaining ski runs. Sub-zero temperatures are used as a basis for snow-making even in those regions that do not benefit from sufficient natural snow-fall. Large-scale landscape modification results in motorway like ski runs, large snow water reservoirs and extensive housing projects on vulnerable slopes. Due to steep and remote topography, transport is often dominated by cars and increases CO2 emissions intensively at local hot spots. In future, mountain slopes that have been heavily modified for winter tourism, may rapidly become neglected zones due to rapid snowline retreat. As the summer season extends, the modifications to the cryosphere will become more and more evident. Even with positive temperatures and snow-free ground, the vegetation season will not be extensive enough to enable rapid recovery, especially at altitudes above 2000 m a.s.l and north-facing aspects. Several decades of anthropogenic modification may require several centuries of recovery to provide new economical benefits.

  9. The Bottom Boundary Layer.

    Science.gov (United States)

    Trowbridge, John H; Lentz, Steven J

    2018-01-03

    The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.

  10. The Bottom Boundary Layer

    Science.gov (United States)

    Trowbridge, John H.; Lentz, Steven J.

    2018-01-01

    The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.

  11. The Role of Anthropogenic Stratigraphy in River Restoration Projects

    Science.gov (United States)

    Evans, J. E.; Webb, L. D.

    2012-12-01

    As part of a river restoration project and removal of a low-head dam on the Ottawa River (northwestern Ohio and southeastern Michigan) in 2007, a longer-term project was initiated to assess anthropogenic changes of the Ottawa River fluvial system. A composite stratigraphic section 4.5 m in length was constructed by stratigraphic correlation from three trenches up to 2.5 m in depth and 14 vibracores up to 2.5 m in length, all within a small region (tires, intact or pieces of glass bottles, and one horizon of displaced railroad ties. Age control for the composite section is provided by 4 14C dates, 6 OSL dates, and one bottle with a date stamp. Two prominent flood horizons are indicated in multiple trenches or cores, and identified as the historic floods of 1913 and 1959. The data show the following major changes in the fluvial system over time: (1) prior to approximately 5 Ka, the river system was transporting mineral-rich sediment and formed meandering point-bar sequences approximately 1.5 m thick; (2) between approximately 5 Ka and 200 YBP, the river system was transporting organic-rich sediment (i.e., blackwater stream) bordered by riparian wetlands accumulating peat (part of the regional "Great Black Swamp" discovered by settlers from eastern North America); (3) between approximately 200 YBP and the early 1960s the river system was transporting mineral-rich sediment (i.e., brownwater stream), probably sourced from extensive land clearance for agriculture, which backfilled and overtopped the previous riparian wetlands and produced an series of thin channel fills interpreted as rapidly shifting avulsional channels; (4) since the early 1960s, sediment supply has exceeded sediment conveyance capacity, leading to vertical aggradation of approximately 1.7 m, creating the fill-terrace morphology evident today; and (5) overlapping with the previous stage, channel incision and lateral channel migration has produced a fluvial system dominated by bank erosion, logjams due

  12. Anthropogenic radionuclides in the Arctic Ocean. Distribution and pathways

    Energy Technology Data Exchange (ETDEWEB)

    Josefsson, Dan

    1998-05-01

    Anthropogenic radionuclide concentrations have been determined in seawater and sediment samples collected in 1991, 1994 and 1996 in the Eurasian Arctic shelf and interior. Global fallout, releases from European reprocessing plants and the Chernobyl accident are identified as the three main sources. From measurements in the Eurasian shelf seas it is concluded that the total input of {sup 134}Cs, {sup 137}Cs and {sup 90}Sr from these sources has been decreasing during the 1990`s, while {sup 129}I has increased. The main fraction of the reprocessing and Chernobyl activity found in Arctic Ocean surface layer is transported from the Barents Sea east along the Eurasian Arctic shelf seas to the Laptev Sea before entering the Nansen Basin. This inflow results in highest {sup 137}Cs, {sup 129}I and {sup 90}Sr concentrations in the Arctic Ocean surface layers, and continuously decreasing concentrations with depth. Chernobyl-derived {sup 137}Cs appeared in the central parts of the Arctic Ocean around 1991, and in the mid 1990`s the fraction to total {sup 137}Cs was approximately 30% in the entire Eurasian Arctic region. The transfer times for releases from Sellafield are estimated to be 5-7 years to the SE Barents Sea, 7-9 years to the Kara Sea, 10-11 years to the Laptev Sea and 12-14 years to the central Arctic Ocean. Global fallout is the primary source of plutonium with highest concentrations found in the Atlantic layer of the Arctic Ocean. When transported over the shallow shelf seas, particle reactive transuranic elements experience an intense scavenging. A rough estimate shows that approximately 75% of the plutonium entering the Kara and Laptev Seas are removed to the sediment. High seasonal riverine input of {sup 239}, {sup 240}Pu is observed near the mouths of the large Russian rivers. Sediment inventories show much higher concentrations on the shelf compared to the deep Arctic Ocean. This is primarily due to the low particle flux in the open ocean

  13. Composition and Sources of Particulate Matter Measured near Houston, TX: Anthropogenic-Biogenic Interactions

    Directory of Open Access Journals (Sweden)

    Jeffrey K. Bean

    2016-05-01

    Full Text Available Particulate matter was measured in Conroe, Texas (~60 km north of downtown Houston, Texas during the September 2013 DISCOVER-AQ campaign to determine the sources of particulate matter in the region. The measurement site is influenced by high biogenic emission rates as well as transport of anthropogenic pollutants from the Houston metropolitan area and is therefore an ideal location to study anthropogenic-biogenic interactions. Data from an Aerosol Chemical Speciation Monitor (ACSM suggest that on average 64 percent of non-refractory PM1 was organic material, including a high fraction (27%–41% of organic nitrates. There was little diurnal variation in the concentrations of ammonium sulfate; however, concentrations of organic and organic nitrate aerosol were consistently higher at night than during the day. Potential explanations for the higher organic aerosol loadings at night include changing boundary layer height, increased partitioning to the particle phase at lower temperatures, and differences between daytime and nighttime chemical processes such as nitrate radical chemistry. Positive matrix factorization was applied to the organic aerosol mass spectra measured by the ACSM and three factors were resolved—two factors representing oxygenated organic aerosol and one factor representing hydrocarbon-like organic aerosol. The factors suggest that the measured aerosol was well mixed and highly processed, consistent with the distance from the site to major aerosol sources, as well as the high photochemical activity.

  14. Intercomparison On Depth Dose Measurement

    International Nuclear Information System (INIS)

    Rohmah, N; Akhadi, M

    1996-01-01

    Intercomparation on personal dose evaluation system has been carried out between CSRSR-NAEA of Indonesia toward Standard Laboratory of JAERI (Japan) and ARL (Australia). The intercomparison was in 10 amm depth dose measurement , Hp (10), from the intercomparison result could be stated that personal depth dose measurement conducted by CSRSR was sufficiently good. Deviation of dose measurement result using personal dosemeter of TLD BG-1 type which were used by CSRSR in the intercomparison and routine photon personal dose monitoring was still in internationally agreed limit. Maximum deviation of reported doses by CSRSR compared to delivered doses for dosemeter irradiation by JAERI was -10.0 percent and by ARL was +29 percent. Maximum deviation permitted in personal dose monitoring is ± 50 percent

  15. Applications of positron depth profiling

    International Nuclear Information System (INIS)

    Hakvoort, R.A.

    1993-01-01

    In this thesis some contributions of the positron-depth profiling technique to materials science have been described. Following studies are carried out: Positron-annihilation measurements on neon-implanted steel; Void creation in silicon by helium implantation; Density of vacancy-type defects present in amorphous silicon prepared by ion implantation; Measurements of other types of amorphous silicon; Epitaxial cobalt disilicide prepared by cobalt outdiffusion. Positron-annihilation experiments on low-pressure CVD silicon-nitride films. (orig./MM)

  16. Applications of positron depth profiling

    Energy Technology Data Exchange (ETDEWEB)

    Hakvoort, R A

    1993-12-23

    In this thesis some contributions of the positron-depth profiling technique to materials science have been described. Following studies are carried out: Positron-annihilation measurements on neon-implanted steel; Void creation in silicon by helium implantation; Density of vacancy-type defects present in amorphous silicon prepared by ion implantation; Measurements of other types of amorphous silicon; Epitaxial cobalt disilicide prepared by cobalt outdiffusion. Positron-annihilation experiments on low-pressure CVD silicon-nitride films. (orig./MM).

  17. Diagnosis of boundary-layer circulations.

    Science.gov (United States)

    Beare, Robert J; Cullen, Michael J P

    2013-05-28

    Diagnoses of circulations in the vertical plane provide valuable insights into aspects of the dynamics of the climate system. Dynamical theories based on geostrophic balance have proved useful in deriving diagnostic equations for these circulations. For example, semi-geostrophic theory gives rise to the Sawyer-Eliassen equation (SEE) that predicts, among other things, circulations around mid-latitude fronts. A limitation of the SEE is the absence of a realistic boundary layer. However, the coupling provided by the boundary layer between the atmosphere and the surface is fundamental to the climate system. Here, we use a theory based on Ekman momentum balance to derive an SEE that includes a boundary layer (SEEBL). We consider a case study of a baroclinic low-level jet. The SEEBL solution shows significant benefits over Ekman pumping, including accommodating a boundary-layer depth that varies in space and structure, which accounts for buoyancy and momentum advection. The diagnosed low-level jet is stronger than that determined by Ekman balance. This is due to the inclusion of momentum advection. Momentum advection provides an additional mechanism for enhancement of the low-level jet that is distinct from inertial oscillations.

  18. Minnesota County Boundaries - lines

    Data.gov (United States)

    Minnesota Department of Natural Resources — Minnesota county boundaries derived from a combination of 1:24,000 scale PLS lines, 1:100,000 scale TIGER, 1:100,000 scale DLG, and 1:24,000 scale hydrography lines....

  19. Boundary-Object Trimming

    DEFF Research Database (Denmark)

    Bossen, Claus; Jensen, Lotte Groth; Udsen, Flemming Witt

    2014-01-01

    implementation, which also coupled the work of medical secretaries more tightly to that of other staff, and led to task drift among professions. Medical secretaries have been relatively invisible to health informatics and CSCW, and we propose the term ‘boundary-object trimming’ to foreground and conceptualize...

  20. Minnesota County Boundaries

    Data.gov (United States)

    Minnesota Department of Natural Resources — Minnesota county boundaries derived from a combination of 1:24,000 scale PLS lines, 1:100,000 scale TIGER, 1:100,000 scale DLG, and 1:24,000 scale hydrography lines....

  1. Boundaries of the universe

    CERN Document Server

    Glasby, John S

    2013-01-01

    The boundaries of space exploration are being pushed back constantly, but the realm of the partially understood and the totally unknown is as great as ever. Among other things this book deals with astronomical instruments and their application, recent discoveries in the solar system, stellar evolution, the exploding starts, the galaxies, quasars, pulsars, the possibilities of extraterrestrial life and relativity.

  2. Spatial and temporal variability in desert dust and anthropogenic pollution in Iraq, 1997-2010.

    Science.gov (United States)

    Chudnovsky, A Alexandra; Koutrakis, Petros; Kostinski, Alex; Proctor, Susan P; Garshick, Eric

    2017-01-01

    Satellite imaging has emerged as a method for monitoring regional air pollution and detecting areas of high dust concentrations. Unlike ground observations, continuous data monitoring is available with global coverage of terrestrial and atmospheric components. In this study we test the utility of different sources of satellite data to assess air pollution concentrations in Iraq. SeaWiFS and MODIS Deep Blue (DB) aerosol optical depth (AOD) products were evaluated and used to characterize the spatial and temporal pollution levels from the late 1990s through 2010. The AOD and Ångström exponent (an indicator of particle size, since smaller Ångström exponent values reflect a source that includes larger particles) were correlated on 50 × 50 km spatial resolution. Generally, AOD and Ångström exponent were inversely correlated, suggesting a significant contribution of coarse particles from dust storms to AOD maxima. Although the majority of grid cells exhibited this trend, a weaker relationship in other locations suggested an additional contribution of fine particles from anthropogenic sources. Tropospheric NO 2 densities from the OMI satellite were elevated over cities, also consistent with a contribution from anthropogenic sources. Our analysis demonstrates the use of satellite imaging data to estimate relative pollution levels and source contributions in areas of the world where direct measurements are not available. The authors demonstrated how satellite data can be used to characterize exposures to dust and to anthropogenic pollution for future health related studies. This approach is of a great potential to investigate the associations between subject-specific exposures to different pollution sources and their health effects in inaccessible regions and areas where ground monitoring is unavailable.

  3. Spatial and temporal variability in desert dust and anthropogenic pollution in Iraq, 1997–2010

    Science.gov (United States)

    Chudnovsky, A. Alexandra; Koutrakis, Petros; Kostinski, Alex; Proctor, Susan P.; Garshick, Eric

    2016-01-01

    Satellite imaging has emerged as a method for monitoring regional air pollution and detecting areas of high dust concentrations. Unlike ground observations, continuous data monitoring is available with global coverage of terrestrial and atmospheric components. In this study we test the utility of different sources of satellite data to assess air pollution concentrations in Iraq. SeaWiFS and MODIS Deep Blue (DB) aerosol optical depth (AOD) products were evaluated and used to characterize the spatial and temporal pollution levels from the late 1990s through 2010. The AOD and Ångström exponent (an indicator of particle size, since smaller Ångström exponent values reflect a source that includes larger particles) were correlated on 50 × 50 km spatial resolution. Generally, AOD and Ångström exponent were inversely correlated, suggesting a significant contribution of coarse particles from dust storms to AOD maxima. Although the majority of grid cells exhibited this trend, a weaker relationship in other locations suggested an additional contribution of fine particles from anthropogenic sources. Tropospheric NO2 densities from the OMI satellite were elevated over cities, also consistent with a contribution from anthropogenic sources. Our analysis demonstrates the use of satellite imaging data to estimate relative pollution levels and source contributions in areas of the world where direct measurements are not available. Implications The authors demonstrated how satellite data can be used to characterize exposures to dust and to anthropogenic pollution for future health related studies. This approach is of a great potential to investigate the associations between subject-specific exposures to different pollution sources and their health effects in inaccessible regions and areas where ground monitoring is unavailable. PMID:28001122

  4. Conformal boundary loop models

    International Nuclear Information System (INIS)

    Jacobsen, Jesper Lykke; Saleur, Hubert

    2008-01-01

    We study a model of densely packed self-avoiding loops on the annulus, related to the Temperley-Lieb algebra with an extra idempotent boundary generator. Four different weights are given to the loops, depending on their homotopy class and whether they touch the outer rim of the annulus. When the weight of a contractible bulk loop x≡q+q -1 element of (-2,2], this model is conformally invariant for any real weight of the remaining three parameters. We classify the conformal boundary conditions and give exact expressions for the corresponding boundary scaling dimensions. The amplitudes with which the sectors with any prescribed number and types of non-contractible loops appear in the full partition function Z are computed rigorously. Based on this, we write a number of identities involving Z which hold true for any finite size. When the weight of a contractible boundary loop y takes certain discrete values, y r ≡([r+1] q )/([r] q ) with r integer, other identities involving the standard characters K r,s of the Virasoro algebra are established. The connection with Dirichlet and Neumann boundary conditions in the O(n) model is discussed in detail, and new scaling dimensions are derived. When q is a root of unity and y=y r , exact connections with the A m type RSOS model are made. These involve precise relations between the spectra of the loop and RSOS model transfer matrices, valid in finite size. Finally, the results where y=y r are related to the theory of Temperley-Lieb cabling

  5. Coarsening of stripe patterns: variations with quench depth and scaling.

    Science.gov (United States)

    Tripathi, Ashwani K; Kumar, Deepak

    2015-02-01

    The coarsening of stripe patterns when the system is evolved from random initial states is studied by varying the quench depth ε, which is a measure of distance from the transition point of the stripe phase. The dynamics of the growth of stripe order, which is characterized by two length scales, depends on the quench depth. The growth exponents of the two length scales vary continuously with ε. The decay exponents for free energy, stripe curvature, and densities of defects like grain boundaries and dislocations also show similar variation. This implies a breakdown of the standard picture of nonequilibrium dynamical scaling. In order to understand the variations with ε we propose an additional scaling with a length scale dependent on ε. The main contribution to this length scale comes from the "pinning potential," which is unique to systems where the order parameter is spatially periodic. The periodic order parameter gives rise to an ε-dependent potential, which can pin defects like grain boundaries, dislocations, etc. This additional scaling provides a compact description of variations of growth exponents with quench depth in terms of just one exponent for each of the length scales. The relaxation of free energy, stripe curvature, and the defect densities have also been related to these length scales. The study is done at zero temperature using Swift-Hohenberg equation in two dimensions.

  6. Discriminating background from anthropogenic lead by isotopic methods

    International Nuclear Information System (INIS)

    Nelson, B.K.; O'Brien, H.E.

    1995-01-01

    The goal of this pilot project was to evaluate the practicality of using natural variations in the isotopic composition of lead to test for the presence of anthropogenic lead in soil, surface water and ground water. Complex chemical reactions in the environment may cause measured lead concentrations to be ambiguous indicators of anthropogenic lead component. The lead isotope tracer technique has the potential to identify both the presence and proportion of anthropogenic lead in the environment. The tested the lead isotope technique at Eielson Air Force Base, Alaska, on sources of suspected fuel contamination. Although the results are specific to this base, the general technique of using lead isotopes to trace the movement of anthropogenic lead is applicable to other CERCLA sites. The study had four objectives: (1) characterize the natural lead isotope composition of bedrock, stream sediment and soils; (2) characterize the isotopic composition of the contaminant lead derived from fuel; (3) evaluate the sensitivity of the isotopic method to distinguishing between anthropogenic and natural lead in soil and water samples and (4) evaluate the analytical feasibility and accuracy of the method at the Isotope Geochemistry Laboratory at the University of Washington

  7. Detecting anthropogenic climate change with an optimal fingerprint method

    International Nuclear Information System (INIS)

    Hegerl, G.C.; Storch, H. von; Hasselmann, K.; Santer, B.D.; Jones, P.D.

    1994-01-01

    We propose a general fingerprint strategy to detect anthropogenic climate change and present application to near surface temperature trends. An expected time-space-variable pattern of anthropogenic climate change (the 'signal') is identified through application of an appropriate optimally matched space-time filter (the 'fingerprint') to the observations. The signal and the fingerprint are represented in a space with sufficient observed and simulated data. The signal pattern is derived from a model-generated prediction of anthropogenic climate change. Application of the fingerprint filter to the data yields a scalar detection variable. The statistically optimal fingerprint is obtained by weighting the model-predicted pattern towards low-noise directions. A combination of model output and observations is used to estimate the noise characteristics of the detection variable, arising from the natural variability of climate in the absence of external forcing. We test then the null hypothesis that the observed climate change is part of natural climate variability. We conclude that a statistically significant externally induced warming has been observed, with the caveat of a possibly inadequate estimate of the internal climate variability. In order to attribute this warming uniquely to anthropogenic greenhouse gas forcing, more information on the climate's response to other forcing mechanisms (e.g. changes in solar radiation, volcanic or anthropogenic aerosols) and their interaction is needed. (orig./KW)

  8. Anthropogenic CO2 in the oceans estimated using transit time distributions

    International Nuclear Information System (INIS)

    Waugh, D.W.; McNeil, B.I.

    2006-01-01

    The distribution of anthropogenic carbon (Cant) in the oceans is estimated using the transit time distribution (TTD) method applied to global measurements of chlorofluorocarbon-12 (CFC12). Unlike most other inference methods, the TTD method does not assume a single ventilation time and avoids the large uncertainty incurred by attempts to correct for the large natural carbon background in dissolved inorganic carbon measurements. The highest concentrations and deepest penetration of anthropogenic carbon are found in the North Atlantic and Southern Oceans. The estimated total inventory in 1994 is 134 Pg-C. To evaluate uncertainties the TTD method is applied to output from an ocean general circulation model (OGCM) and compared the results to the directly simulated Cant. Outside of the Southern Ocean the predicted Cant closely matches the directly simulated distribution, but in the Southern Ocean the TTD concentrations are biased high due to the assumption of 'constant disequilibrium'. The net result is a TTD overestimate of the global inventory by about 20%. Accounting for this bias and other centred uncertainties, an inventory range of 94-121 Pg-C is obtained. This agrees with the inventory of Sabine et al., who applied the DeltaC* method to the same data. There are, however, significant differences in the spatial distributions: The TTD estimates are smaller than DeltaC* in the upper ocean and larger at depth, consistent with biases expected in DeltaC* given its assumption of a single parcel ventilation time

  9. Lithologic boundaries from gravity and magnetic anomalies over ...

    Indian Academy of Sciences (India)

    Pramod Kumar Yadav

    2018-03-02

    Mar 2, 2018 ... nature of causative source using Euler depth solutions and radially averaged power spectrum (RAPS). Residual anomaly maps of gravity and ... the lateral boundaries and nature of the source. It seems that the source is of ..... Goldfarb R J and Richards J P,. The Economic Geology Publishing Company, pp.

  10. The internal boundary layer — A review

    Science.gov (United States)

    Garratt, J. R.

    1990-03-01

    A review is given of relevant work on the internal boundary layer (IBL) associated with: (i) Small-scale flow in neutral conditions across an abrupt change in surface roughness, (ii) Small-scale flow in non-neutral conditions across an abrupt change in surface roughness, temperature or heat/moisture flux, (iii) Mesoscale flow, with emphasis on flow across the coastline for both convective and stably stratified conditions. The major theme in all cases is on the downstream, modified profile form (wind and temperature), and on the growth relations for IBL depth.

  11. Understanding the Dynamics of High Tech Knowledge Creation across Organizational Boundaries

    DEFF Research Database (Denmark)

    Smith, Pernille; Ulhøi, John Parm

    . Existing literature, however, offers little in-depth insight into why and how such inter-organizational collaborations often encounter difficulties in crossing these boundaries and thus in accomplishing the expected joint knowledge creation and exchange. Departing from Carlile's (2004) integrated framework...... for managing knowledge across boundaries, in this paper we identify the knowledge boundaries present in a longitudinal R&D collaboration between six organizations. We analyzed how these boundaries were partially overcome, and present a fourth knowledge boundary, which causes major challenges in the inter...

  12. Finding even more anthropogenic indicators in mildly prepared sediment samples

    DEFF Research Database (Denmark)

    Enevold, Renée; Odgaard, Bent Vad

    2016-01-01

    be worth the effort to prepare the NPP samples with as mild a preparation method as possible. We have mildly prepared NPP samples from a small forest hollow, Tårup Lund, Denmark. From the recovered NPP assemblages we attempt identifying anthropogenic indicators by comparing to the environmental information......NPPs in anthropogenic soils and archaeological samples are often numerous in types as well as in abundance. Preparing these soil samples with methods based on acid digestion holds the potential of severe bias leaving the NPP assemblages devoid of acid vulnerable NPPs. In many cases it might...... derived from sediment, pollen and macrofossil analyses. The sediment from the forest hollow encompasses environmental information from the last 6000 years, including a period of locally intense pastoral and/or agricultural activity during the Iron Age. Keywords: NPP diversity, forest hollow, anthropogenic...

  13. Environmental and anthropogenic determinants of vegetation distribution across Africa

    DEFF Research Database (Denmark)

    Greve, Michelle; Lykke, Anne Mette; Overgaard, Anne Blach

    2011-01-01

    Aim  To assess the influence of natural environmental factors and historic and current anthropogenic processes as determinants of vegetation distributions at a continental scale. Location  Africa. Methods  Boosted regression trees (BRTs) were used to model the distribution of African vegetation...... types, represented by remote-sensing-based land-cover (LC) types, as a function of environmental factors. The contribution of each predictor variable to the best models and the accuracy of all models were assessed. Subsequently, to test for anthropogenic vegetation transformation, the relationship...... between the number of BRT false presences per grid cell and human impact was evaluated using hurdle models. Finally, the relative contributions of environmental, current and historic anthropogenic factors on vegetation distribution were assessed using regression-based variation partitioning. Results...

  14. Reconciling anthropogenic climate change with observed temperature 1998-2008.

    Science.gov (United States)

    Kaufmann, Robert K; Kauppi, Heikki; Mann, Michael L; Stock, James H

    2011-07-19

    Given the widely noted increase in the warming effects of rising greenhouse gas concentrations, it has been unclear why global surface temperatures did not rise between 1998 and 2008. We find that this hiatus in warming coincides with a period of little increase in the sum of anthropogenic and natural forcings. Declining solar insolation as part of a normal eleven-year cycle, and a cyclical change from an El Nino to a La Nina dominate our measure of anthropogenic effects because rapid growth in short-lived sulfur emissions partially offsets rising greenhouse gas concentrations. As such, we find that recent global temperature records are consistent with the existing understanding of the relationship among global surface temperature, internal variability, and radiative forcing, which includes anthropogenic factors with well known warming and cooling effects.

  15. Climate Impacts From a Removal of Anthropogenic Aerosol Emissions

    Science.gov (United States)

    Samset, B. H.; Sand, M.; Smith, C. J.; Bauer, S. E.; Forster, P. M.; Fuglestvedt, J. S.; Osprey, S.; Schleussner, C.-F.

    2018-01-01

    Limiting global warming to 1.5 or 2.0°C requires strong mitigation of anthropogenic greenhouse gas (GHG) emissions. Concurrently, emissions of anthropogenic aerosols will decline, due to coemission with GHG, and measures to improve air quality. However, the combined climate effect of GHG and aerosol emissions over the industrial era is poorly constrained. Here we show the climate impacts from removing present-day anthropogenic aerosol emissions and compare them to the impacts from moderate GHG-dominated global warming. Removing aerosols induces a global mean surface heating of 0.5-1.1°C, and precipitation increase of 2.0-4.6%. Extreme weather indices also increase. We find a higher sensitivity of extreme events to aerosol reductions, per degree of surface warming, in particular over the major aerosol emission regions. Under near-term warming, we find that regional climate change will depend strongly on the balance between aerosol and GHG forcing.

  16. Isotopic fingerprints of anthropogenic molybdenum in lake sediments.

    Science.gov (United States)

    Chappaz, Anthony; Lyons, Timothy W; Gordon, Gwyneth W; Anbar, Ariel D

    2012-10-16

    We measured the molybdenum isotope compositions (δ(98)Mo) of well-dated sediment cores from two lakes in eastern Canada in an effort to distinguish between natural and anthropogenic contributions to these freshwater aquatic systems. Previously, Chappaz et al. (1) ascribed pronounced 20th-century Mo concentration enrichments in these lakes to anthropogenic inputs. δ(98)Mo values in the deeper sediments (reflecting predominantly natural Mo sources) differ dramatically between the two lakes: -0.32 ± 0.17‰ for oxic Lake Tantare and +0.64 ± 0.09‰ for anoxic Lake Vose. Sediment layers previously identified as enriched in anthropogenic Mo, however, reveal significant δ(98)Mo shifts of ± 0.3‰, resulting in isotopically heavier values of +0.05 ± 0.18‰ in Lake Tantare and lighter values of +0.31 ± 0.03‰ in Lake Vose. We argue that anthropogenic Mo modifies the isotopic composition of the recent sediments, and we determine δ(98)Mo(anthropogenic) values of 0.1 ± 0.1‰ (Lake Vose) and 0.2 ± 0.2‰ (Lake Tantare). These calculated inputs are consistent with the δ(98)Mo of molybdenite (MoS(2)) likely delivered to the lakes via smelting of porphyry copper deposits (Lake Vose) or through combustion of coal and oil also containing Mo (Lake Tantare). Our results confirm the utility of Mo isotopes as a promising fingerprint of human impacts and perhaps the specific sources of contamination. Importantly, the magnitudes of the anthropogenic inputs are large enough, relative to the natural Mo cycles in each lake, to have an impact on the microbiological communities.

  17. Grain Boundary Segregation in Metals

    CERN Document Server

    Lejcek, Pavel

    2010-01-01

    Grain boundaries are important structural components of polycrystalline materials used in the vast majority of technical applications. Because grain boundaries form a continuous network throughout such materials, their properties may limit their practical use. One of the serious phenomena which evoke these limitations is the grain boundary segregation of impurities. It results in the loss of grain boundary cohesion and consequently, in brittle fracture of the materials. The current book deals with fundamentals of grain boundary segregation in metallic materials and its relationship to the grain boundary structure, classification and other materials properties.

  18. Reactor pressure boundary materials

    International Nuclear Information System (INIS)

    Hong, Jun Hwa; Chi, S. H.; Lee, B. S.

    2002-04-01

    With a long-term operation of nuclear power plants, the component materials are degraded under severe reactor conditions such as neutron irradiation, high temperature, high pressure and corrosive environment. It is necessary to establish the reliable and practical technologies for improving and developing the component materials and for evaluating the mechanical properties. Especially, it is very important to investigate the technologies for reactor pressure boundary materials such as reactor vessel and pipings in accordance with their critical roles. Therefore, this study was focused on developing and advancing the microstructural/micro-mechanical evaluation technologies, and on evaluating the neutron irradiation characteristics and radiation effects analysis technology of the reactor pressure boundary materials, and also on establishing a basis of nuclear material property database

  19. Anthropogenic forcing dominates sea level rise since 1850

    DEFF Research Database (Denmark)

    Jevrejeva, Svetlana; Grinsted, Aslak; Moore, John

    2009-01-01

    The rate of sea level rise and its causes are topics of active debate. Here we use a delayed response statistical model to attribute the past 1000 years of sea level variability to various natural (volcanic and solar radiative) and anthropogenic (greenhouse gases and aerosols) forcings. We show...... that until 1800 the main drivers of sea level change are volcanic and solar radiative forcings. For the past 200 years sea level rise is mostly associated with anthropogenic factors. Only 4 ± 1.5 cm (25% of total sea level rise) during the 20th century is attributed to natural forcings, the remaining 14 ± 1...

  20. On Dangerous Anthropogenic Interference and Climate Change Risk (Invited)

    Science.gov (United States)

    Mann, M. E.

    2009-12-01

    The United Nations Framework Convention on Climate Change (UNFCCC) commits signatory nations (which includes all major nations including the United States) to stabilizing greenhouse gas concentrations at levels short of Dangerous Anthropogenic Interference (“ DAI”) with the climate. To properly define DAI, one must take into account issues that are not only scientific, but, economic, political, and ethical in nature. Defining DAI is furthermore complicated by the inter-generational and regionally-disaggregated nature of the risks associated with climate change. In this talk, I will explore the nature of anthropogenic climate change risks and the notion of DAI.

  1. A 3-D Model Analysis of The Impact of Asian Anthropogenic Emissions on the Sulfur Cycle Over the Pacific Ocean

    Science.gov (United States)

    Chin, Mian; Thornton, Donald; Bandy, Alan; Huebert, Barry; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The impact of anthropogenic activities on the SO2 and sulfate aerosol levels over the Pacific region is examined in the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model. We focus on the analysis of the data from the NASA Pacific Exploratory Missions (PEM) over the western North Pacific and the tropical Pacific. These missions include PEM-West A in September-October 1991, when the Asian outflow was at the minimum but the upper atmosphere was heavily influenced by the Pinatubo volcanic eruption, and PEM-West B in March-April 1994 when the Asian outflow was at the maximum, and PEM-Tropics A in August-September at a region relatively free of direct anthropogenic influences. Specifically, we will examine the relative importance of anthropogenic, volcanic and biogenic sources to the SO2 and sulfate concentrations over the Pacific, and quantify the processes controlling the distributions of SO2 and sulfate in both the boundary layer and the free troposphere. We will also assess the global impact of SO2 emission in Asia on the sulfate aerosol loading.

  2. Grain Boundary Complexions

    Science.gov (United States)

    2014-05-01

    Cantwell et al. / Acta Materialia 62 (2014) 1–48 challenging from a scientific perspective, but it can also be very technologically rewarding , given the...energy) is a competing explanation that remains to be explored. Strategies to drive the grain boundary energy toward zero have produced some success...Thompson AM, Soni KK, Chan HM, Harmer MP, Williams DB, Chabala JM, et al. J Am Ceram Soc 1997;80:373. [172] Behera SK. PhD dissertation, Materials Science

  3. Boundary-layer theory

    CERN Document Server

    Schlichting (Deceased), Hermann

    2017-01-01

    This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.

  4. Surface influence upon vertical profiles in the nocturnal boundary layer

    Science.gov (United States)

    Garratt, J. R.

    1983-05-01

    Near-surface wind profiles in the nocturnal boundary layer, depth h, above relatively flat, tree-covered terrain are described in the context of the analysis of Garratt (1980) for the unstable atmospheric boundary layer. The observations at two sites imply a surface-based transition layer, of depth z *, within which the observed non-dimensional profiles Φ M 0 are a modified form of the inertial sub-layer relation Φ _M ( {{z L}} = ( {{{1 + 5_Z } L}} ) according to Φ _M^{{0}} ˜eq ( {{{1 + 5z} L}} )exp [ { - 0.7( {{{1 - z} z}_ * } )] , where z is height above the zero-plane displacement and L is the Monin-Obukhov length. At both sites the depth z * is significantly smaller than the appropriate neutral value ( z * N ) found from the previous analysis, as might be expected in the presence of a buoyant sink for turbulent kinetic energy.

  5. The Atmospheric Boundary Layer

    Science.gov (United States)

    Garratt, J. R.

    1994-05-01

    A comprehensive and lucid account of the physics and dynamics of the lowest one to two kilometers of the Earth's atmosphere in direct contact with the Earth's surface, known as the atmospheric boundary layer (ABL). Dr. Garratt emphasizes the application of the ABL problems to numerical modeling of the climate, which makes this book unique among recent texts on the subject. He begins with a brief introduction to the ABL before leading to the development of mean and turbulence equations and the many scaling laws and theories that are the cornerstone of any serious ABL treatment. Modeling of the ABL is crucially dependent for its realism on the surface boundary conditions, so chapters four and five deal with aerodynamic and energy considerations, with attention given to both dry and wet land surfaces and the sea. The author next treats the structure of the clear-sky, thermally stratified ABL, including the convective and stable cases over homogeneous land, the marine ABL, and the internal boundary layer at the coastline. Chapter seven then extends this discussion to the cloudy ABL. This is particularly relevant to current research because the extensive stratocumulus regions over the subtropical oceans and stratus regions over the Arctic have been identified as key players in the climate system. In the final chapters, Dr. Garratt summarizes the book's material by discussing appropriate ABL and surface parameterization schemes in general circulation models of the atmosphere that are being used for climate stimulation.

  6. Regional boundaries study

    International Nuclear Information System (INIS)

    Zavatsky, S.; Phaneuf, P.; Topaz, D.; Ward, D.

    1978-02-01

    The NRC Office of Inspection and Enforcement (IE) has elected to evaluate the effectiveness and efficiency of its existing regional boundary alignment because of the anticipated future growth of nuclear power generating facilities and corresponding inspection requirements. This report documents a management study designed to identify, analyze, and evaluate alternative regional boundary configurations for the NRC/IE regions. Eight boundary configurations were chosen for evaluation. These configurations offered alternatives ranging from two to ten regions, and some included the concepts of subregional or satellite offices. Each alternative configuration was evaluated according to three major criteria: project workload, cost, and office location. Each major criterion included elements such as management control, program uniformity, disruption, costs, and coordination with other agencies. The conclusion reached was that regional configurations with regions of equal and relatively large workloads, combined with the concepts of subregional or satellite offices, may offer a significant benefit to the Office of Inspection and Enforcement and the Commission and are worthy of further study. A phased implementation plan, which is suitable to some configurations, may help mitigate the disruption created by realignment

  7. Shared care and boundaries:

    DEFF Research Database (Denmark)

    Winthereik, Brit Ross

    2008-01-01

    Purpose – The paper seeks to examine how an online maternity record involving pregnant women worked as a means to create shared maternity care. Design/methodology/approach – Ethnographic techniques have been used. The paper adopts a theoretical/methodological framework based on science and techno......Purpose – The paper seeks to examine how an online maternity record involving pregnant women worked as a means to create shared maternity care. Design/methodology/approach – Ethnographic techniques have been used. The paper adopts a theoretical/methodological framework based on science...... and technology studies. Findings – The paper shows how a version of “the responsible patient” emerges from the project which is different from the version envisioned by the project organisation. The emerging one is concerned with the boundary between primary and secondary sector care, and not with the boundary......, IT designers and project managers should attend to the specific ways in which boundaries are inevitably enacted and to the ways in which care is already shared. This will provide them with opportunities to use the potentials of new identities and concerns that emerge from changing the organisation...

  8. From Planetary Boundaries to national fair shares of the global safe operating space — How can the scales be bridged?

    NARCIS (Netherlands)

    Häyhä, Tiina; Lucas, Paul L.|info:eu-repo/dai/nl/272607444; van Vuuren, Detlef P.|info:eu-repo/dai/nl/11522016X; Cornell, Sarah E.; Hoff, Holger

    2016-01-01

    The planetary boundaries framework proposes quantitative global limits to the anthropogenic perturbation of crucial Earth system processes, and thus marks out a planetary safe operating space for human activities. Yet, decisions regarding resource use and emissions are mostly made at less aggregated

  9. Cell boundary fault detection system

    Science.gov (United States)

    Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN

    2009-05-05

    A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  10. Work-life boundary management styles of women entrepreneurs in Ethiopia: “Choice” or imposition?

    OpenAIRE

    van Engen, M.L.; Hailu Gudeta, Konjit

    2018-01-01

    Purpose The purpose of this paper is to explore the work-life boundary management experiences and challenges women entrepreneurs face in combining their work-life responsibilities. Design/methodology/approach In-depth interviews were conducted with 31 women entrepreneurs in Ethiopia using a grounded theory approach to investigate how they manage the boundaries between their work-life roles, the challenges they face and how these challenges affect their boundary management experiences. Finding...

  11. Distribution in depth of quasars

    International Nuclear Information System (INIS)

    Schmidt, M.; Green, R.F.

    1980-01-01

    The authors discuss the distribution in depth of different kinds of quasars: quasi-stellar radio sources with steep radio spectrum, those with flat radio spectrum, and optically selected quasars. All exhibit an increase of space density with distance to a different degree. The optically selected quasars, in particular, show a steep increase of surface density with magnitude. The steepness of the increase is inconsistent with a uniform distribution of quasars in the local hypothesis. In the cosmological hypothesis the co-moving space density of optically selected quasars increases by a factor of 100,000 to a redshift of 2, and by factors of 1000 and 10 for steep-spectrum and flat-spectrum radio quasars, respectively. (Auth.)

  12. Simplicial band depth for multivariate functional data

    KAUST Repository

    López-Pintado, Sara

    2014-03-05

    We propose notions of simplicial band depth for multivariate functional data that extend the univariate functional band depth. The proposed simplicial band depths provide simple and natural criteria to measure the centrality of a trajectory within a sample of curves. Based on these depths, a sample of multivariate curves can be ordered from the center outward and order statistics can be defined. Properties of the proposed depths, such as invariance and consistency, can be established. A simulation study shows the robustness of this new definition of depth and the advantages of using a multivariate depth versus the marginal depths for detecting outliers. Real data examples from growth curves and signature data are used to illustrate the performance and usefulness of the proposed depths. © 2014 Springer-Verlag Berlin Heidelberg.

  13. Anthropogenic desertification by high-albedo pollution Observations and modeling

    Science.gov (United States)

    Otterman, J.; Rosenberg, N. W.; Rosenberg, E.

    1974-01-01

    ERTS-1 MSS albedo data of Western Negev, Sinai and the Gaza strip are presented. A sharp contrast in albedo exists across the Negev-Sinai and Negev-Gaza strip borders. Anthropogenic desertification has occurred on the Arab side due to overgrazing and Bedouin agriculture, whereas natural vegetation grows much more abundantly on the Israeli side.

  14. Anthropogenic signatures of lead in the Northeast Atlantic

    NARCIS (Netherlands)

    Rusiecka, D.; Gledhill, M.; Milne, A.; Achterberg, E.P.; Annett, A.L.; Atkinson, S.; Birchill, A.; Karstensen, J.; Lohan, M.; Mariez, C.; Middag, R.; Rolison, J.M.; Tanhua, T.; Ussher, S.; Connelly, D.

    2018-01-01

    Anthropogenic activities have resulted in enhanced lead (Pb) emissions to the environment over the past century, mainly through the combustion of leaded gasoline. Here we present the first combined dissolved (DPb), labile (LpPb), and particulate (PPb) Pb data set from the Northeast Atlantic (Celtic

  15. Radiological environmental study in area to future anthropogenic transformations

    International Nuclear Information System (INIS)

    Grinnan, T.; MIller, C.R.A.

    1998-01-01

    In this work the existent relationship is identified between the data radioecologics and the geological formations to the north area Holguin with the objective to study the possible incidence that this can have in the rate environmental dose in the event of transformations anthropogenic the place

  16. Anthropogenic climate change affects meteorological drought risk in Europe

    International Nuclear Information System (INIS)

    Gudmundsson, L; Seneviratne, S I

    2016-01-01

    Drought constitutes a significant natural hazard in Europe, impacting societies and ecosystems across the continent. Climate model simulations with increasing greenhouse gas concentrations project increased drought risk in southern Europe, and on the other hand decreased drought risk in the north. Observed changes in water balance components and drought indicators resemble the projected pattern. However, assessments of possible causes of the reported regional changes have so far been inconclusive. Here we investigate whether anthropogenic emissions have altered past and present meteorological (precipitation) drought risk. For doing so we first estimate the magnitude of 20 year return period drought years that would occur without anthropogenic effects on the climate. Subsequently we quantify to which degree the occurrence probability, i.e. the risk, of these years has changed if anthropogenic climate change is accounted for. Both an observational and a climate model-based assessment suggest that it is >95% likely that human emissions have increased the probability of drought years in the Mediterranean, whereas it is >95% likely that the probability of dry years has decreased in northern Europe. In central Europe the evidence is inconclusive. The results highlight that anthropogenic climate change has already increased drought risk in southern Europe, stressing the need to develop efficient mitigation measures. (letter)

  17. Rapid Assessment of Anthropogenic Impacts of Exposed Sandy ...

    African Journals Online (AJOL)

    We applied a rapid assessment methodology to estimate the degree of human impact of exposed sandy beaches in Ghana using ghost crabs as ecological indicators. The use of size ranges of ghost crab burrows and their population density as ecological indicators to assess extent of anthropogenic impacts on beaches ...

  18. Assessing the observed impact of anthropogenic climate change

    NARCIS (Netherlands)

    Hansen, G.E.

    2015-01-01

    Assessing the observed impact of anthropogenic climate change

    Gerrit Hansen

    Global climate change is unequivocal, and greenhouse gas emissions continue rising despite international mitigation efforts. Hence whether and to what extent the impacts of human induced

  19. Impacts of atmospheric anthropogenic nitrogen on the open ocean

    NARCIS (Netherlands)

    Duce, R.A.; LaRoche, J.; Altieri, K.; Arrigo, K.R.; Baker, A.R.; Capone, D.G.; Cornell, S.; Dentener, F.; Galloway, J.; Ganeshram, R.S.; Geider, R.J.; Jickells, T.; Kuypers, M.M.; Langlois, R.; Liss, P.S.; Liu, S.; Middelburg, J.J.; Moore, C.M.; Nickovic, S.; Oschlies, A.; Pedersen, T.; Prospero, J.; Schlitzer, R.; Seitzinger, S.; Sorensen, L.L.; Uematsu, M.; Ulloa, O.; Voss, M.; Ward, B.; Zamora, L.

    2008-01-01

    Increasing quantities of atmospheric anthropogenic fixed nitrogen entering the open ocean could account for up to about a third of the ocean's external (nonrecycled) nitrogen supply and up to 3% of the annual new marine biological production, 0.3 petagram of carbon per year. This input could account

  20. Assessment of global industrial-age anthropogenic arsenic contamination.

    Science.gov (United States)

    Han, Fengxiang X; Su, Yi; Monts, David L; Plodinec, M John; Banin, Amos; Triplett, Glover E

    2003-09-01

    Arsenic, a carcinogenic trace element, threatens not only the health of millions of humans and other living organisms, but also global sustainability. We present here, for the first time, the global industrial-age cumulative anthropogenic arsenic production and its potential accumulation and risks in the environment. In 2000, the world cumulative industrial-age anthropogenic arsenic production was 4.53 million tonnes. The world-wide coal and petroleum industries accounted for 46% of global annual gross arsenic production, and their overall contribution to industrial-age gross arsenic production was 27% in 2000. Global industrial-age anthropogenic As sources (as As cumulative production) follow the order: As mining production>As generated from coal>As generated from petroleum. The potential industrial-age anthropogenic arsenic input in world arable surface in 2000 was 2.18 mg arsenic kg(-1), which is 1.2 times that in the lithosphere. The development of substitute materials for arsenic applications in the agricultural and forestry industries and controls of arsenic emissions from the coal industry may be possible strategies to significantly decrease arsenic pollution sources and dissipation rates into the environment.

  1. Environmental challenges of anthropogenic metals flows and cycles

    DEFF Research Database (Denmark)

    van der Voet, Ester; Salminen, Reijo; Eckelman, Matthew

    This report from the UNEP-hosted International Resource Panel, Environmental Risk and Challenges of Anthropogenic Metals Flows and Cycles, gives a clear picture of the potential environmental impacts of metals at different stages of the life-cycle while linking with other areas of resource use...

  2. Diversity of medicinal plants and anthropogenic threats in the ...

    African Journals Online (AJOL)

    Diversity of medicinal plants and anthropogenic threats in the Samburu Central Sub-County of Kenya. ... Biodiversity of medicinal plants and effects of human activities on availability of traditional ... There is, therefore need to adopt management strategies that enhance the conservation of these valuable natural resources.

  3. Global gridded anthropogenic emissions inventory of carbonyl sulfide

    Science.gov (United States)

    Zumkehr, Andrew; Hilton, Tim W.; Whelan, Mary; Smith, Steve; Kuai, Le; Worden, John; Campbell, J. Elliott

    2018-06-01

    Atmospheric carbonyl sulfide (COS or OCS) is the most abundant sulfur containing gas in the troposphere and is an atmospheric tracer for the carbon cycle. Gridded inventories of global anthropogenic COS are used for interpreting global COS measurements. However, previous gridded anthropogenic data are a climatological estimate based on input data that is over three decades old and are not representative of current conditions. Here we develop a new gridded data set of global anthropogenic COS sources that includes more source sectors than previously available and uses the most current emissions factors and industry activity data as input. Additionally, the inventory is provided as annually varying estimates from years 1980-2012 and employs a source specific spatial scaling procedure. We estimate a global source in year 2012 of 406 Gg S y-1 (range of 223-586 Gg S y-1), which is highly concentrated in China and is twice as large as the previous gridded inventory. Our large upward revision in the bottom-up estimate of the source is consistent with a recent top-down estimate based on air-monitoring and Antarctic firn data. Furthermore, our inventory time trends, including a decline in the 1990's and growth after the year 2000, are qualitatively consistent with trends in atmospheric data. Finally, similarities between the spatial distribution in this inventory and remote sensing data suggest that the anthropogenic source could potentially play a role in explaining a missing source in the global COS budget.

  4. Anthropogenic impacts on Costa Rican bat parasitism are sex specific.

    Science.gov (United States)

    Frank, Hannah K; Mendenhall, Chase D; Judson, Seth D; Daily, Gretchen C; Hadly, Elizabeth A

    2016-07-01

    While anthropogenic impacts on parasitism of wildlife are receiving growing attention, whether these impacts vary in a sex-specific manner remains little explored. Differences between the sexes in the effect of parasites, linked to anthropogenic activity, could lead to uneven sex ratios and higher population endangerment. We sampled 1108 individual bats in 18 different sites across an agricultural mosaic landscape in southern Costa Rica to investigate the relationships between anthropogenic impacts (deforestation and reductions in host species richness) and bat fly ectoparasitism of 35 species of Neotropical bats. Although female and male bat assemblages were similar across the deforestation gradient, bat fly assemblages tracked their hosts closely only on female bats. We found that in female hosts, parasite abundance per bat decreased with increasing bat species richness, while in male hosts, parasite abundance increased. We hypothesize the differences in the parasite-disturbance relationship are due to differences in roosting behavior between the sexes. We report a sex-specific parasite-disturbance relationship and argue that sex differences in anthropogenic impacts on wildlife parasitism could impact long-term population health and survival.

  5. Identifying the role of historical anthropogenic activities on urban soils: geochemical impact and city scale mapping

    Science.gov (United States)

    Le Guern, Cecile; Baudouin, Vivien; Conil, Pierre

    2017-04-01

    Recently, European cities have faced several changes including deindustrialization and population increase. To limit urban sprawl, urban densification is preferred. It conducts to (re)develop available areas such as brownfields. Although these areas can be attractive for housing due to their location (in proximity to the city centre or to a riverside), their soils and subsoils are often contaminated. They are therefore potentially harmful for human health and the environment, and potentially costly to remediate. Currently, in case of contamination suspicion, depth geochemical characterization of urban soil and subsoil are carried out at site scale. Nevertheless, large redevelopment project occur at quarter to city scale. It appears therefore useful to acquire the preliminary knowledge on the structure and quality of soil and subsoils, as well as on the potential sources of contamination at quarter to city scale. In the frame of the Ile de Nantes (France) redevelopment project, we considered more particularly anthropogenic deposits and former industrial activities as main sources of contamination linked to human activities. To face the low traceability of the use of anthropogenic deposits and the lack of synthesis of former industrial activities, we carried out a historical study, synthetizing the information spread in numerous archive documents to spatialize the extent of the deposits and of the former activities. In addition we developed a typology of made grounds according to their contamination potential to build a 3D geological model with a geochemical coherence. In this frame, we valorized existing borehole descriptions coming mainly from pollution diagnosis and geotechnical studies. We also developed a methodology to define urban baseline compatibility levels using the existing analytical data at depth from pollution diagnosis. These data were previously gathered in a local geodatabase towards with borehole descriptions (more than 2000 borehole descriptions

  6. Depths of Intraplate Indian Ocean Earthquakes from Waveform Modeling

    Science.gov (United States)

    Baca, A. J.; Polet, J.

    2014-12-01

    The Indian Ocean is a region of complex tectonics and anomalous seismicity. The ocean floor in this region exhibits many bathymetric features, most notably the multiple inactive fracture zones within the Wharton Basin and the Ninetyeast Ridge. The 11 April 2012 MW 8.7 and 8.2 strike-slip events that took place in this area are unique because their rupture appears to have extended to a depth where brittle failure, and thus seismic activity, was considered to be impossible. We analyze multiple intraplate earthquakes that have occurred throughout the Indian Ocean to better constrain their focal depths in order to enhance our understanding of how deep intraplate events are occurring and more importantly determine if the ruptures are originating within a ductile regime. Selected events are located within the Indian Ocean away from major plate boundaries. A majority are within the deforming Indo-Australian tectonic plate. Events primarily display thrust mechanisms with some strike-slip or a combination of the two. All events are between MW5.5-6.5. Event selections were handled this way in order to facilitate the analysis of teleseismic waveforms using a point source approximation. From these criteria we gathered a suite of 15 intraplate events. Synthetic seismograms of direct P-waves and depth phases are computed using a 1-D propagator matrix approach and compared with global teleseismic waveform data to determine a best depth for each event. To generate our synthetic seismograms we utilized the CRUST1.0 software, a global crustal model that generates velocity values at the hypocenter of our events. Our waveform analysis results reveal that our depths diverge from the Global Centroid Moment Tensor (GCMT) depths, which underestimate our deep lithosphere events and overestimate our shallow depths by as much as 17 km. We determined a depth of 45km for our deepest event. We will show a comparison of our final earthquake depths with the lithospheric thickness based on

  7. Exploring the planetary boundary for chemical pollution.

    Science.gov (United States)

    Diamond, Miriam L; de Wit, Cynthia A; Molander, Sverker; Scheringer, Martin; Backhaus, Thomas; Lohmann, Rainer; Arvidsson, Rickard; Bergman, Åke; Hauschild, Michael; Holoubek, Ivan; Persson, Linn; Suzuki, Noriyuki; Vighi, Marco; Zetzsch, Cornelius

    2015-05-01

    Rockström et al. (2009a, 2009b) have warned that humanity must reduce anthropogenic impacts defined by nine planetary boundaries if "unacceptable global change" is to be avoided. Chemical pollution was identified as one of those boundaries for which continued impacts could erode the resilience of ecosystems and humanity. The central concept of the planetary boundary (or boundaries) for chemical pollution (PBCP or PBCPs) is that the Earth has a finite assimilative capacity for chemical pollution, which includes persistent, as well as readily degradable chemicals released at local to regional scales, which in aggregate threaten ecosystem and human viability. The PBCP allows humanity to explicitly address the increasingly global aspects of chemical pollution throughout a chemical's life cycle and the need for a global response of internationally coordinated control measures. We submit that sufficient evidence shows stresses on ecosystem and human health at local to global scales, suggesting that conditions are transgressing the safe operating space delimited by a PBCP. As such, current local to global pollution control measures are insufficient. However, while the PBCP is an important conceptual step forward, at this point single or multiple PBCPs are challenging to operationalize due to the extremely large number of commercial chemicals or mixtures of chemicals that cause myriad adverse effects to innumerable species and ecosystems, and the complex linkages between emissions, environmental concentrations, exposures and adverse effects. As well, the normative nature of a PBCP presents challenges of negotiating pollution limits amongst societal groups with differing viewpoints. Thus, a combination of approaches is recommended as follows: develop indicators of chemical pollution, for both control and response variables, that will aid in quantifying a PBCP(s) and gauging progress towards reducing chemical pollution; develop new technologies and technical and social

  8. Conservation implications of anthropogenic impacts on visual communication and camouflage.

    Science.gov (United States)

    Delhey, Kaspar; Peters, Anne

    2017-02-01

    Anthropogenic environmental impacts can disrupt the sensory environment of animals and affect important processes from mate choice to predator avoidance. Currently, these effects are best understood for auditory and chemosensory modalities, and recent reviews highlight their importance for conservation. We examined how anthropogenic changes to the visual environment (ambient light, transmission, and backgrounds) affect visual communication and camouflage and considered the implications of these effects for conservation. Human changes to the visual environment can increase predation risk by affecting camouflage effectiveness, lead to maladaptive patterns of mate choice, and disrupt mutualistic interactions between pollinators and plants. Implications for conservation are particularly evident for disrupted camouflage due to its tight links with survival. The conservation importance of impaired visual communication is less documented. The effects of anthropogenic changes on visual communication and camouflage may be severe when they affect critical processes such as pollination or species recognition. However, when impaired mate choice does not lead to hybridization, the conservation consequences are less clear. We suggest that the demographic effects of human impacts on visual communication and camouflage will be particularly strong when human-induced modifications to the visual environment are evolutionarily novel (i.e., very different from natural variation); affected species and populations have low levels of intraspecific (genotypic and phenotypic) variation and behavioral, sensory, or physiological plasticity; and the processes affected are directly related to survival (camouflage), species recognition, or number of offspring produced, rather than offspring quality or attractiveness. Our findings suggest that anthropogenic effects on the visual environment may be of similar importance relative to conservation as anthropogenic effects on other sensory modalities

  9. Dual boundary spanning

    DEFF Research Database (Denmark)

    Li-Ying, Jason

    2016-01-01

    The extant literature runs short in understanding openness of innovation regarding and the different pathways along which internal and external knowledge resources can be combined. This study proposes a unique typology for outside-in innovations based on two distinct ways of boundary spanning......: whether an innovation idea is created internally or externally and whether an innovation process relies on external knowledge resources. This yields four possible types of innovation, which represent the nuanced variation of outside-in innovations. Using historical data from Canada for 1945...

  10. The lithosphere-asthenosphere boundary observed with USArray receiver functions

    Directory of Open Access Journals (Sweden)

    P. Kumar

    2012-05-01

    Full Text Available The dense deployment of seismic stations so far in the western half of the United States within the USArray project provides the opportunity to study in greater detail the structure of the lithosphere-asthenosphere system. We use the S receiver function technique for this purpose, which has higher resolution than surface wave tomography, is sensitive to seismic discontinuities, and is free from multiples, unlike P receiver functions. Only two major discontinuities are observed in the entire area down to about 300 km depth. These are the crust-mantle boundary (Moho and a negative boundary, which we correlate with the lithosphere-asthenosphere boundary (LAB, since a low velocity zone is the classical definition of the seismic observation of the asthenosphere by Gutenberg (1926. Our S receiver function LAB is at a depth of 70–80 km in large parts of westernmost North America. East of the Rocky Mountains, its depth is generally between 90 and 110 km. Regions with LAB depths down to about 140 km occur in a stretch from northern Texas, over the Colorado Plateau to the Columbia basalts. These observations agree well with tomography results in the westernmost USA and on the east coast. However, in the central cratonic part of the USA, the tomography LAB is near 200 km depth. At this depth no discontinuity is seen in the S receiver functions. The negative signal near 100 km depth in the central part of the USA is interpreted by Yuan and Romanowicz (2010 and Lekic and Romanowicz (2011 as a recently discovered mid-lithospheric discontinuity (MLD. A solution for the discrepancy between receiver function imaging and surface wave tomography is not yet obvious and requires more high resolution studies at other cratons before a general solution may be found. Our results agree well with petrophysical models of increased water content in the asthenosphere, which predict a sharp and shallow LAB also in continents (Mierdel et al., 2007.

  11. Updating default depths in the ISC bulletin

    Science.gov (United States)

    Bolton, Maiclaire K.; Storchak, Dmitry A.; Harris, James

    2006-09-01

    The International Seismological Centre (ISC) publishes the definitive global bulletin of earthquake locations. In the ISC bulletin, we aim to obtain a free depth, but often this is not possible. Subsequently, the first option is to obtain a depth derived from depth phases. If depth phases are not available, we then use the reported depth from a reputable local agency. Finally, as a last resort, we set a default depth. In the past, common depths of 10, 33, or multiples of 50 km have been assigned. Assigning a more meaningful default depth, specific to a seismic region will increase the consistency of earthquake locations within the ISC bulletin and allow the ISC to publish better positions and magnitude estimates. It will also improve the association of reported secondary arrivals to corresponding seismic events. We aim to produce a global set of default depths, based on a typical depth for each area, from well-constrained events in the ISC bulletin or where depth could be constrained using a consistent set of depth phase arrivals provided by a number of different reporters. In certain areas, we must resort to using other assumptions. For these cases, we use a global crustal model (Crust2.0) to set default depths to half the thickness of the crust.

  12. Information dynamics of boundary perception

    DEFF Research Database (Denmark)

    Kragness, Haley; Hansen, Niels Christian; Vuust, Peter

    It has long been noted that expert musicians lengthen notes at phrase boundaries in expressive performance. Recently, we have extended research on this phenomenon by showing that undergraduates with no formal musical training and children as young as 3 years lengthen phrase boundaries during self...... uncertain than low-entropy contexts. Because phrase boundaries tend to afford high-entropy continuations, thus generating uncertain expectations in the listener, one possibility is that boundary perception is directly related to entropy. In other words, it may be hypothesized that entropy underlies...... on predictive uncertainty to the timing domain, as well as potentially answer key questions relating to boundary perception in musical listening....

  13. EOP TDRs (Temperature-Depth-Recordings) Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature-depth-recorders (TDRs) were attached to commercial longline and research Cobb trawl gear to obtain absolute depth and temperature measurement during...

  14. Simplicial band depth for multivariate functional data

    KAUST Repository

    Ló pez-Pintado, Sara; Sun, Ying; Lin, Juan K.; Genton, Marc G.

    2014-01-01

    sample of curves. Based on these depths, a sample of multivariate curves can be ordered from the center outward and order statistics can be defined. Properties of the proposed depths, such as invariance and consistency, can be established. A simulation

  15. Isotopic identification of natural vs. anthropogenic lead sources in marine sediments from the inner Ria de Vigo (NW Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Iglesias, P., E-mail: palvarez@uvigo.es [Department of Marine Geosciences and Land Use Management, Faculty of Marine Sciences, University of Vigo (Spain); Laboratorio de Analisis Quimico Instrumental, C.A.C.T.I., Universidad de Vigo (Spain); Rubio, B., E-mail: brubio@uvigo.es [Department of Marine Geosciences and Land Use Management, Faculty of Marine Sciences, University of Vigo (Spain); Millos, J., E-mail: jmillos@uvigo.es [Laboratorio de Analisis Quimico Instrumental, C.A.C.T.I., Universidad de Vigo (Spain)

    2012-10-15

    San Simon Bay, the inner part of the Ria de Vigo (NW Spain), an area previously identified as highly polluted by Pb, was selected for the application of Pb stable isotope ratios as a fingerprinting tool in subtidal and intertidal sediment cores. Lead isotopic ratios were determined by inductively coupled plasma mass spectrometry on extracts from bulk samples after total acid digestion. Depth-wise profiles of {sup 206}Pb/{sup 207}Pb, {sup 206}Pb/{sup 204}Pb, {sup 207}Pb/{sup 204}Pb, {sup 208}Pb/{sup 204}Pb and {sup 208}Pb/{sup 207}Pb ratios showed, in general, an upward decrease for both intertidal and subtidal sediments as a consequence of the anthropogenic activities over the last century, or centuries. Waste channel samples from a nearby ceramic factory showed characteristic Pb stable isotope ratios different from those typical of coal and petrol. Natural isotope ratios from non-polluted samples were established for the study area, differentiating sediments from granitic or schist-gneiss sources. A binary mixing model employed on the polluted samples allowed estimating the anthropogenic inputs to the bay. These inputs represented between 25 and 98% of Pb inputs in intertidal samples, and 9-84% in subtidal samples, their contributions varying with time. Anthropogenic sources were apportioned according to a three-source model. Coal combustion-related emissions were the main anthropogenic source Pb to the bay (60-70%) before the establishment of the ceramic factory in the area (in the 1970s) which has since constituted the main source (95-100%), followed by petrol-related emissions. The Pb inputs history for the intertidal area was determined for the 20th century, and, for the subtidal area, the 19th and 20th centuries. -- Highlights: Black-Right-Pointing-Pointer Pb stable isotope ratios were applied to study Pb sources in coastal sediments. Black-Right-Pointing-Pointer Pb isotopic ratios were determined for pre-pollution and for industrial samples. Black

  16. Gaspe hole sets depth record

    Energy Technology Data Exchange (ETDEWEB)

    1970-03-09

    The deepest diamond-cored hole in the Western Hemisphere, Gulf Sunnybank No. 1 on the Gaspe Peninsula of Quebec, has been completed at a depth of 11,600 ft. This is the deepest cored hole to be drilled anywhere in search of oil and gas production, and the deepest to be drilled using a wire-line core recovery technique. The well was completed in 183 days, and was cored continuously below the surface casing which was set and cemented at 1,004 ft. After underreaming a portion of the bottom of the hole, intermediate casing was set and cemented at 8,000 ft as a safety precaution against possible high oil or gas-fluid pressure. Actual coring time, after deducting time for underreaming and casing operations, was 152 days. Because of the cost of transporting a conventional oil-drilling rig to the E. location, the 89-ft mining rig was modified for the project. The contractor was Heath and Sherwood Drilling (Western) Ltd.

  17. Estimation of total amounts of anthropogenic radionuclides in the Japan Sea

    International Nuclear Information System (INIS)

    Ito, Toshimichi; Otosaka, Shigeyoshi; Kawamura, Hideyuki

    2007-01-01

    We estimated the total amounts of anthropogenic radionuclides, consisting of 90 Sr, 137 Cs, and 239+240 Pu, in the Japan Sea for the first time based on experimental data on their concentrations in seawater and seabed sediment. The radionuclide inventories in seawater and seabed sediment at each sampling site varied depending on the water depth, with total inventories for 90 Sr, 137 Cs, and 239+240 Pu in the range of 0.52-2.8 kBq m -2 , 0.64-4.1 kBq m -2 , and 27-122 Bq m -2 , respectively. Based on the relationship between the inventories and the water depths, the total amounts in the Japan Sea were estimated to be about 1.2±0.4 PBq for 90 Sr, 1.8±0.7 PBq for 137 Cs, and 69±14 TBq for 239+240 Pu, respectively; the amount ratio, 90 Sr: 137 Cs: 239+240 Pu, was 1.0:1.6:0.059. The amounts of 90 Sr and 137 Cs in the Japan Sea were in balance with those supplied from global fallout, whereas the amount of 239+240 Pu exceeded that supplied by fallout by nearly 40%. These results suggest a preferential accumulation of the plutonium isotopes. The data used in this study were obtained through a wide-area research project, named the 'Japan Sea expeditions (phase I),' covering the Japanese and Russian exclusive economic zones. (author)

  18. Contribution of anthropogenic aerosols in direct radiative forcing and atmospheric heating rate over Delhi in the Indo-Gangetic Basin.

    Science.gov (United States)

    Srivastava, Atul K; Singh, Sachchidanand; Tiwari, S; Bisht, D S

    2012-05-01

    The present work is aimed to understand direct radiation effects due to aerosols over Delhi in the Indo-Gangetic Basin (IGB) region, using detailed chemical analysis of surface measured aerosols during the year 2007. An optically equivalent aerosol model was formulated on the basis of measured aerosol chemical compositions along with the ambient meteorological parameters to derive radiatively important aerosol optical parameters. The derived aerosol parameters were then used to estimate the aerosol direct radiative forcing at the top of the atmosphere, surface, and in the atmosphere. The anthropogenic components measured at Delhi were found to be contributing ∼ 72% to the composite aerosol optical depth (AOD(0.5) ∼ 0.84). The estimated mean surface and atmospheric forcing for composite aerosols over Delhi were found to be about -69, -85, and -78 W m(-2) and about +78, +98, and +79 W m(-2) during the winter, summer, and post-monsoon periods, respectively. The anthropogenic aerosols contribute ∼ 90%, 53%, and 84% to the total aerosol surface forcing and ∼ 93%, 54%, and 88% to the total aerosol atmospheric forcing during the above respective periods. The mean (± SD) surface and atmospheric forcing for composite aerosols was about -79 (± 15) and +87 (± 26) W m(-2) over Delhi with respective anthropogenic contributions of ∼ 71% and 75% during the overall period of observation. Aerosol induced large surface cooling, which was relatively higher during summer as compared to the winter suggesting an increase in dust loading over the station. The total atmospheric heating rate at Delhi averaged during the observation was found to be 2.42  ±  0.72 K day(-1), of which the anthropogenic fraction contributed as much as ∼ 73%.

  19. Facing Boundaries, Finding Freedom: An In-Depth Report on Iranian Journalists Working in Iran

    NARCIS (Netherlands)

    Wojcieszak, M.; Brouillette, A.; Smith, B.

    2013-01-01

    Despite extensive documentation of and attention to direct state pressure on journalists and the almost continual reissuing of "red lines" as a pretense for these media-repressive tactics, little systematic research has been done about the field of journalism in Iran. Beyond direct state

  20. Visual Discomfort and Depth-of-Field

    Directory of Open Access Journals (Sweden)

    Louise O'Hare

    2013-05-01

    Full Text Available Visual discomfort has been reported for certain visual stimuli and under particular viewing conditions, such as stereoscopic viewing. In stereoscopic viewing, visual discomfort can be caused by a conflict between accommodation and convergence cues that may specify different distances in depth. Earlier research has shown that depth-of-field, which is the distance range in depth in the scene that is perceived to be sharp, influences both the perception of egocentric distance to the focal plane, and the distance range in depth between objects in the scene. Because depth-of-field may also be in conflict with convergence and the accommodative state of the eyes, we raised the question of whether depth-of-field affects discomfort when viewing stereoscopic photographs. The first experiment assessed whether discomfort increases when depth-of-field is in conflict with coherent accommodation–convergence cues to distance in depth. The second experiment assessed whether depth-of-field influences discomfort from a pre-existing accommodation–convergence conflict. Results showed no effect of depth-of-field on visual discomfort. These results suggest therefore that depth-of-field can be used as a cue to depth without inducing discomfort in the viewer, even when cue conflicts are large.

  1. Moho vs crust-mantle boundary: Evolution of an idea

    Science.gov (United States)

    O'Reilly, Suzanne Y.; Griffin, W. L.

    2013-12-01

    The concept that the Mohorovicic Discontinuity (Moho) does not necessarily coincide with the base of the continental crust as defined by rock-type compositions was introduced in the early 1980s. This had an important impact on understanding the nature of the crust-mantle boundary using information from seismology and from deep-seated samples brought to the surface as xenoliths in magmas, or as tectonic terranes. The use of empirically-constrained P-T estimates to plot the locus of temperature vs depth for xenoliths defined a variety of geotherms depending on tectonic environment. The xenolith geotherms provided a framework for constructing lithological sections through the deep lithosphere, and revealed that the crust-mantle boundary in off-craton regions commonly is transitional over a depth range of about 5-20 km. Early seismic-reflection data showed common layering near the Moho, correlating with the petrological observation of multiple episodes of basaltic intrusion around the crust-mantle boundary. Developments in seismology, petrophysics and experimental petrology have refined interpretation of lithospheric domains. The expansion of in situ geochronology (especially zircon U-Pb ages and Hf-isotopes; Os isotopes of mantle sulfides) has defined tectonic events that affected whole crust-mantle sections, and revealed that the crust-mantle boundary can change in depth through time. However, the nature of the crust-mantle boundary in cratonic regions remains enigmatic, mainly due to lack of key xenoliths or exposed sections. The observation that the Moho may lie significantly deeper than the crust-mantle boundary has important implications for modeling the volume of the crust. Mapping the crust using seismic techniques alone, without consideration of the petrological problems, may lead to an overestimation of crustal thickness by 15-30%. This will propagate to large uncertainties in the calculation of elemental mass balances relevant to crust-formation processes

  2. Hydrologic controls on the development of equilibrium soil depths

    Science.gov (United States)

    Nicotina, L.; Tarboton, D. G.; Tesfa, T. K.; Rinaldo, A.

    2010-12-01

    The object of the present work was the study of the coevolution of runoff production and geomorphological processes and its effects on the formation of equilibrium soil depth by focusing on their mutual feedbacks. The primary goal of this work is to describe spatial patterns of soil depth resulting, under the hypothesis of dynamic equilibrium, from long-term interactions between hydrologic forcings and soil production, erosion and sediment transport processes. These processes dominate the formation of actual soil depth patterns that represent the boundary condition for water redistribution, thus this paper also proposes and attempt to set the premises for decoding their individual role and mutual interactions in shaping the hydrologic response of a catchment. The relevance of the study stems from the massive improvement in hydrologic predictions for ungauged basins that would be achieved by using directly soil depths derived from geomorphic features remotely measured and objectively manipulated. Moreover the setup of a coupled hydrologic-geomorphologic approach represents a first step into the study of such interactions and in particular of the effects of soil moisture in determining soil production functions. Hydrological processes are here described by explicitly accounting for local soil depths and detailed catchment topography from high resolution digital terrain models (DTM). Geomorphological processes are described by means of well-studied geomorphic transport laws. Soil depth is assumed, in the exponential soil production function, as a proxy for all the mechanisms that induce mechanical disruption of bedrock and it’s conversion into soil. This formulation, although empirical, has been widely used in the literature and is currently accepted. The modeling approach is applied to the semi-arid Dry Creek Experimental Watershed, located near Boise, Idaho, USA. Modeled soil depths are compared with field data obtained from an extensive survey of the catchment

  3. Can oceanic reanalyses be used to assess recent anthropogenic changes and low-frequency internal variability of upper ocean temperature?

    Energy Technology Data Exchange (ETDEWEB)

    Corre, L.; Terray, L.; Weaver, A. [Cerfacs-CNRS, Toulouse (France); Balmaseda, M. [E.C.M.W.F, Reading (United Kingdom); Ribes, A. [CNRM-GAME, Meteo France-CNRS, Toulouse (France)

    2012-03-15

    A multivariate analysis of the upper ocean thermal structure is used to examine the recent long-term changes and decadal variability in the upper ocean heat content as represented by model-based ocean reanalyses and a model-independent objective analysis. The three variables used are the mean temperature above the 14 C isotherm, its depth and a fixed depth mean temperature (250 m mean temperature). The mean temperature above the 14 C isotherm is a convenient, albeit simple, way to isolate thermodynamical changes by filtering out dynamical changes related to thermocline vertical displacements. The global upper ocean observations and reanalyses exhibit very similar warming trends (0.045 C per decade) over the period 1965-2005, superimposed with marked decadal variability in the 1970s and 1980s. The spatial patterns of the regression between indices (representative of anthropogenic changes and known modes of internal decadal variability), and the three variables associated with the ocean heat content are used as fingerprint to separate out the different contributions. The choice of variables provides information about the local heat absorption, vertical distribution and horizontal redistribution of heat, this latter being suggestive of changes in ocean circulation. The discrepancy between the objective analysis and the reanalyses, as well as the spread among the different reanalyses, are used as a simple estimate of ocean state uncertainties. Two robust findings result from this analysis: (1) the signature of anthropogenic changes is qualitatively different from those of the internal decadal variability associated to the Pacific Interdecadal Oscillation and the Atlantic Meridional Oscillation, and (2) the anthropogenic changes in ocean heat content do not only consist of local heat absorption, but are likely related with changes in the ocean circulation, with a clear shallowing of the tropical thermocline in the Pacific and Indian oceans. (orig.)

  4. Aerosol Optical Depth Over India

    Science.gov (United States)

    David, Liji Mary; Ravishankara, A. R.; Kodros, John K.; Venkataraman, Chandra; Sadavarte, Pankaj; Pierce, Jeffrey R.; Chaliyakunnel, Sreelekha; Millet, Dylan B.

    2018-04-01

    Tropospheric aerosol optical depth (AOD) over India was simulated by Goddard Earth Observing System (GEOS)-Chem, a global 3-D chemical-transport model, using SMOG (Speciated Multi-pOllutant Generator from Indian Institute of Technology Bombay) and GEOS-Chem (GC) (current inventories used in the GEOS-Chem model) inventories for 2012. The simulated AODs were 80% (SMOG) and 60% (GC) of those measured by the satellites (Moderate Resolution Imaging Spectroradiometer and Multi-angle Imaging SpectroRadiometer). There is no strong seasonal variation in AOD over India. The peak AOD values are observed/simulated during summer. The simulated AOD using SMOG inventory has particulate black and organic carbon AOD higher by a factor 5 and 3, respectively, compared to GC inventory. The model underpredicted coarse-mode AOD but agreed for fine-mode AOD with Aerosol Robotic Network data. It captured dust only over Western India, which is a desert, and not elsewhere, probably due to inaccurate dust transport and/or noninclusion of other dust sources. The calculated AOD, after dust correction, showed the general features in its observed spatial variation. Highest AOD values were observed over the Indo-Gangetic Plain followed by Central and Southern India with lowest values in Northern India. Transport of aerosols from Indo-Gangetic Plain and Central India into Eastern India, where emissions are low, is significant. The major contributors to total AOD over India are inorganic aerosol (41-64%), organic carbon (14-26%), and dust (7-32%). AOD over most regions of India is a factor of 5 or higher than over the United States.

  5. Depth to the bottom of magnetic layer in South America and its relationship to Curie isotherm, Moho depth and seismicity behavior

    Directory of Open Access Journals (Sweden)

    Javier Idárraga-García

    2018-01-01

    After comparing our results with the Moho depths reported by other authors, we have found that the Curie isotherm is deeper than Moho in most of the South American Platform (northward to ∼20°S, which is located in the stable cratonic area at the east of the Andes. This is evidence that the lithospheric mantle here is magnetic and contributes to the long wavelength magnetic signal. Also, our results support the hypothesis that the Curie isotherm may be acting as a boundary above which most of the crustal seismicity is concentrated. Below this boundary the occurrence of seismic events decreases dramatically.

  6. Is visual short-term memory depthful?

    Science.gov (United States)

    Reeves, Adam; Lei, Quan

    2014-03-01

    Does visual short-term memory (VSTM) depend on depth, as it might be if information was stored in more than one depth layer? Depth is critical in natural viewing and might be expected to affect retention, but whether this is so is currently unknown. Cued partial reports of letter arrays (Sperling, 1960) were measured up to 700 ms after display termination. Adding stereoscopic depth hardly affected VSTM capacity or decay inferred from total errors. The pattern of transposition errors (letters reported from an uncued row) was almost independent of depth and cue delay. We conclude that VSTM is effectively two-dimensional. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Challenging the Boundaries

    DEFF Research Database (Denmark)

    Nørgaard, Nina

    2004-01-01

    To many people, challenging the boundaries between the traditional disciplines in foreign language studies means doing cultural studies. The aim of this article is to pull in a different direction by suggesting how the interface between linguistics and literature may be another fertile field...... to explore in the study and teaching of foreign languages. Not only may linguistics and literature be employed to shed light on each other, the insights gained may furthermore prove useful in a broader context in our foreign language studies. The article begins with a brief introduction to literary...... linguistics in general and to Hallidayan linguistics in particular. The theoretical framework thus laid out, it is exemplified how Halliday's theory of language may be employed in the analysis of literature. The article concludes by considering the possible status of literary linguistics in a broader...

  8. Negotiating Cluster Boundaries

    DEFF Research Database (Denmark)

    Giacomin, Valeria

    2017-01-01

    Palm oil was introduced to Malay(si)a as an alternative to natural rubber, inheriting its cluster organizational structure. In the late 1960s, Malaysia became the world’s largest palm oil exporter. Based on archival material from British colonial institutions and agency houses, this paper focuses...... on the governance dynamics that drove institutional change within this cluster during decolonization. The analysis presents three main findings: (i) cluster boundaries are defined by continuous tug-of-war style negotiations between public and private actors; (ii) this interaction produces institutional change...... within the cluster, in the form of cumulative ‘institutional rounds’ – the correction or disruption of existing institutions or the creation of new ones; and (iii) this process leads to a broader inclusion of local actors in the original cluster configuration. The paper challenges the prevalent argument...

  9. Transcending Organizational Boundaries

    DEFF Research Database (Denmark)

    Kringelum, Louise Tina Brøns

    by applying the engaged scholarship approach, thereby providing a methodological contribution to both port and business model research. Emphasizing the interplay of intra- and inter-organizational business model innovation, the thesis adds insight into the roles of port authorities, business model trends......This thesis explores how processes of business model innovation can unfold in a port authority by transcending organizational boundaries through inter-organizational collaboration. The findings contribute to two fields of academic inquiry: the study of business model innovation and the study of how...... the roles of port authorities evolve. This contribution is made by combining the two fields, where the study of business model innovation is used as an analytical concept for understanding the evolution of port authorities, and where the study of port authorities is used as a contextual setting...

  10. Superfluid Boundary Layer.

    Science.gov (United States)

    Stagg, G W; Parker, N G; Barenghi, C F

    2017-03-31

    We model the superfluid flow of liquid helium over the rough surface of a wire (used to experimentally generate turbulence) profiled by atomic force microscopy. Numerical simulations of the Gross-Pitaevskii equation reveal that the sharpest features in the surface induce vortex nucleation both intrinsically (due to the raised local fluid velocity) and extrinsically (providing pinning sites to vortex lines aligned with the flow). Vortex interactions and reconnections contribute to form a dense turbulent layer of vortices with a nonclassical average velocity profile which continually sheds small vortex rings into the bulk. We characterize this layer for various imposed flows. As boundary layers conventionally arise from viscous forces, this result opens up new insight into the nature of superflows.

  11. The Plasmasphere Boundary Layer

    Directory of Open Access Journals (Sweden)

    D. L. Carpenter

    2004-12-01

    Full Text Available As an inner magnetospheric phenomenon the plasmapause region is of interest for a number of reasons, one being the occurrence there of geophysically important interactions between the plasmas of the hot plasma sheet and of the cool plasmasphere. There is a need for a conceptual framework within which to examine and discuss these interactions and their consequences, and we therefore suggest that the plasmapause region be called the Plasmasphere Boundary Layer, or PBL. Such a term has been slow to emerge because of the complexity and variability of the plasma populations that can exist near the plasmapause and because of the variety of criteria used to identify the plasmapause in experimental data. Furthermore, and quite importantly in our view, a substantial obstacle to the consideration of the plasmapause region as a boundary layer has been the longstanding tendency of textbooks on space physics to limit introductory material on the plasmapause phenomenon to zeroth order descriptions in terms of ideal MHD theory, thus implying that the plasmasphere is relatively well understood. A textbook may introduce the concept of shielding of the inner magnetosphere from perturbing convection electric fields, but attention is not usually paid to the variety of physical processes reported to occur in the PBL, such as heating, instabilities, and fast longitudinal flows, processes which must play roles in plasmasphere dynamics in concert with the flow regimes associated with the major dynamo sources of electric fields. We believe that through the use of the PBL concept in future textbook discussions of the plasmasphere and in scientific communications, much progress can be made on longstanding questions about the physics involved in the formation of the plasmapause and in the cycles of erosion and recovery of the plasmasphere.

    Key words. Magnetospheric physics (plasmasphere; plasma convection; MHD waves and instabilities

  12. The Plasmasphere Boundary Layer

    Directory of Open Access Journals (Sweden)

    D. L. Carpenter

    2004-12-01

    Full Text Available As an inner magnetospheric phenomenon the plasmapause region is of interest for a number of reasons, one being the occurrence there of geophysically important interactions between the plasmas of the hot plasma sheet and of the cool plasmasphere. There is a need for a conceptual framework within which to examine and discuss these interactions and their consequences, and we therefore suggest that the plasmapause region be called the Plasmasphere Boundary Layer, or PBL. Such a term has been slow to emerge because of the complexity and variability of the plasma populations that can exist near the plasmapause and because of the variety of criteria used to identify the plasmapause in experimental data. Furthermore, and quite importantly in our view, a substantial obstacle to the consideration of the plasmapause region as a boundary layer has been the longstanding tendency of textbooks on space physics to limit introductory material on the plasmapause phenomenon to zeroth order descriptions in terms of ideal MHD theory, thus implying that the plasmasphere is relatively well understood. A textbook may introduce the concept of shielding of the inner magnetosphere from perturbing convection electric fields, but attention is not usually paid to the variety of physical processes reported to occur in the PBL, such as heating, instabilities, and fast longitudinal flows, processes which must play roles in plasmasphere dynamics in concert with the flow regimes associated with the major dynamo sources of electric fields. We believe that through the use of the PBL concept in future textbook discussions of the plasmasphere and in scientific communications, much progress can be made on longstanding questions about the physics involved in the formation of the plasmapause and in the cycles of erosion and recovery of the plasmasphere. Key words. Magnetospheric physics (plasmasphere; plasma convection; MHD waves and instabilities

  13. Intensification of Chile-Peru upwelling under climate change: diagnosing the impact of natural and anthropogenic forcing from the IPSL-CM5 model.

    Science.gov (United States)

    Jebri, B.; Khodri, M.; Gastineau, G.; Echevin, V.; Thiria, S.

    2017-12-01

    Upwelling is critical to the biological production, acidification, and deoxygenation of the ocean's major eastern boundary current ecosystems. A conceptual hypothesis suggests that the winds that favour coastal upwelling intensify with anthropogenic global warming due to increased land-sea temperature contrast. We examine this hypothesis for the dynamics of the Peru-Chile upwelling using a set of four large ensembles of coupled, ocean-atmosphere model simulations with the IPSL model covering the 1940-2014 period. In one large ensemble we prescribe the standard CMIP5 greenhouse gas (GHG) concentrations, anthropogenic aerosol, ozone and volcanic forcings, following the historical experiments through 2005 and RCP8.5 from 2006-2014, while the other ensembles consider separately the GHG, ozone and volcanic forcings. We find evidence for intensification of upwelling-favourable winds with however little evidence of atmospheric pressure gradients in response to increasing land-sea temperature differences. Our analyses reveal poleward migration and intensification of the South Pacific Anticyclone near poleward boundaries of climatological Peruvian and Chilean upwelling zones. This contribution further investigates the physical mechanisms for the Peru-Chile upwelling intensification and the relative role of natural and anthropogenic forcings.

  14. Decadal Anthropogenic Carbon Storage Along P16 and P02

    Science.gov (United States)

    Carter, B. R.; Feely, R. A.; Talley, L. D.; Cross, J. N.; Macdonald, A. M.; Mecking, S.; Siedlecki, S. A.

    2016-02-01

    The Pacific Ocean has the largest ocean basin anthropogenic carbon (Canth) inventory due to the large size of the basin. We estimate anthropogenic carbon (Canth) concentrations and decadal storages along the meridional P16 and zonal P02 lines since the mid 90s using a modified version of the extended multiple linear regression (EMLR) technique with data from the WOCE, CLIVAR, and GO-SHIP occupations of these lines. We present our estimates and map the aragonite saturation state (ΩA) decreases and saturation horizon shoaling resulting from continued Canth storage. The average storage rate was larger along both sections during the most recent decade (2000's to 2010's) than during the previous decade (1990's to 2000's), especially along P02. Significant decadal concentration increases were found in the mixed layers, shallow thermoclines, mode waters, and portions of the intermediate water masses.

  15. Intercalibration of selected anthropogenic radionuclides for the GEOTRACES Program

    DEFF Research Database (Denmark)

    Kenna, Timothy C.; Masqué, Pere; Mas, Jose Luis

    2012-01-01

    As part of the GEOTRACES Program, six laboratories participated in an intercalibration exercise on several anthropogenic radionuclides of interest. The effort was successful for 239,240Pu activity, 240Pu/239Pu isotope ratio, and 137Cs activity measured in filtered seawater samples from the Bermuda...... Atlantic Time Series station (BATS) and a site on the continental slope of the Northeastern U.S. A limited number of analyses were reported for 237Np, 241Am, 90Sr, and 238Pu in filtered seawater. Intercalibration of any of the isotopes of interest in filtered particulate matter was unsuccessful due...... to insufficient size of the samples distributed. Methods used were based on traditional radio-counting techniques and inductively coupled plasma mass spectrometry (ICP-MS). Although the majority of analyses were performed on samples ≥ 60 L, one lab demonstrated the ability to analyze several of the anthropogenic...

  16. AMPHIBIAN COMMUNITIES IN BIOGEOCOENOSIS WITH DIFFERENT STAGES OF ANTHROPOGENIC CLYMAX

    Directory of Open Access Journals (Sweden)

    Marchenkovskaya А. А.

    2013-04-01

    Full Text Available We examined the abundance of juvenile (fingerlings and yearlings and sexually mature (3-6 years of various anurans at various biotopes with different degrees of anthropogenic influence. Population analysis has revealed that the number of juveniles in all the habitats are depended on type and level of anthropogenic influence. In all the habitats the most numerous species was synanthropic bufo viridis. In biotopes with high contamination of pollutants, only one species of amphibians - the marsh frog has populations with juveniles migrating here in the early fall. The highest number of mature individuals registered for the population of Bombina bombina, pelobates fuscus and in one biotope for hyla arborea. The populations of pelophylax ridibundus could be considered as the most balanced by number of juvenile and mature individuals.

  17. Impact of Anthropogenic Factor on Urboecological Space Development

    Directory of Open Access Journals (Sweden)

    Kuprina Tamara

    2016-01-01

    Full Text Available The article discusses the issues of the impact of the anthropogenic factor on urboecological space development. The issues are considered taking into account retrospective theoretical data to show the process of Anthropoecology development as a new branch of sociological science. At present the noosphere acquires features of anthropoecosystems having a number of parameters from the endogenous and exogenous point of view. Anthropoecology has special socio-cultural significance as considers the interaction of all actors of international space. There introduced the new branch Ecopsycology as the outer world is the reflection of the inner human world. There is a definition of the sustainability of ecological system. In the practical part of the article there is an example of academic mobility as the basis of the human potential with possible transfer into the human capital supporting by survey data. In conclusion there are recommendations on management and adaptation of the anthropogenic factor (a kind of biogenesis in modern urboecological space.

  18. Equisetum telmateia Ehrh. morphotypes related to anthropogenic habitats

    Directory of Open Access Journals (Sweden)

    Dominik Wróbel

    2011-01-01

    Full Text Available The Giant Horsetail (Equisetum telmateia is the only representative of Equisetum genus included in the list of strictly protected species. In Central and Western Europe the species is found in communities belonging to alliances: Alno-Padion and Calthion. With progressing destruction of these biotopes, one can observe the phenomenon of this species moving to the habitats extremely anthropogenic in character. Frequent and intensive observations of this phenomenon were conducted in the Jasło - Krosno Dale area in southern Poland in three anthropogenic localities. In these localities three interesting, irregular Equisetum telmateia morphotypes were found: fo. serotinum subfo. proliferum, fo. spiralis and a morphotype with branched shoot. The phenomenon of morphological plasticity of sporophytes is thought to be connected with the action of genes, which regulate the identity of developing plant organs and their distribution. These genes perform a superior part in relation to the system of growth regulators.

  19. Natural and anthropogenic radiation exposure of humans in Germany

    International Nuclear Information System (INIS)

    Koelzer, Winfried

    2016-12-01

    The contribution on natural and anthropogenic radiation exposure in Germany covers the following issues: (1) natural radiation exposure: external radiation exposure - cosmic and terrestric radiation, internal radiation exposure - primordial and cosmogenic radionuclides; radiation exposure due to sola neutrinos and geo-neutrinos. (2) Anthropogenic radiation exposure: radiation exposure in medicine, radioactivity in industrial products, radiation exposure during flights, radiation exposure due to nuclear facilities, radiation exposure due to fossil energy carriers in power generation, radiation exposure due to nuclear explosions, radiation exposure due to nuclear accidents. (3) Occupational radiation exposure in Germany: radiation monitoring with personal dosimeters in medicine and industry, dose surveillance of the aviation personal, working places with increases radiation exposure by natural radiation sources.

  20. Anthropogenic Signatures of Lead in the Northeast Atlantic

    Science.gov (United States)

    Rusiecka, D.; Gledhill, M.; Milne, A.; Achterberg, E. P.; Annett, A. L.; Atkinson, S.; Birchill, A.; Karstensen, J.; Lohan, M.; Mariez, C.; Middag, R.; Rolison, J. M.; Tanhua, T.; Ussher, S.; Connelly, D.

    2018-03-01

    Anthropogenic activities have resulted in enhanced lead (Pb) emissions to the environment over the past century, mainly through the combustion of leaded gasoline. Here we present the first combined dissolved (DPb), labile (LpPb), and particulate (PPb) Pb data set from the Northeast Atlantic (Celtic Sea) since the phasing out of leaded gasoline in Europe. Concentrations of DPb in surface waters have decreased by fourfold over the last four decades. We demonstrate that anthropogenic Pb is transported from the Mediterranean Sea over long distances (>2,500 km). Benthic DPb fluxes exceeded the atmospheric Pb flux in the region, indicating the importance of sediments as a contemporary Pb source. A strong positive correlation between DPb, PPb, and LpPb indicates a dynamic equilibrium between the phases and the potential for particles to "buffer" the DPb pool. This study provides insights into Pb biogeochemical cycling and demonstrates the potential of Pb in constraining ocean circulation patterns.

  1. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products

    Science.gov (United States)

    Ginoux, Paul; Prospero, Joseph M.; Gill, Thomas E.; Hsu, N. Christina; Zhao, Ming

    2012-09-01

    Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Here we present a global-scale high-resolution (0.1°) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use. We ascribe dust sources to natural and anthropogenic (primarily agricultural) origins, calculate their respective contributions to emissions, and extensively compare these products against literature. Natural dust sources globally account for 75% of emissions; anthropogenic sources account for 25%. North Africa accounts for 55% of global dust emissions with only 8% being anthropogenic, mostly from the Sahel. Elsewhere, anthropogenic dust emissions can be much higher (75% in Australia). Hydrologic dust sources (e.g., ephemeral water bodies) account for 31% worldwide; 15% of them are natural while 85% are anthropogenic. Globally, 20% of emissions are from vegetated surfaces, primarily desert shrublands and agricultural lands. Since anthropogenic dust sources are associated with land use and ephemeral water bodies, both in turn linked to the hydrological cycle, their emissions are affected by climate variability. Such changes in dust emissions can impact climate, air quality, and human health. Improved dust emission estimates will require a better mapping of threshold wind velocities, vegetation dynamics, and surface conditions (soil moisture and land use) especially in the sensitive regions identified here, as well as improved ability to address small-scale convective processes producing dust via cold pool (haboob) events frequent in monsoon regimes.

  2. Sinks as integrative elements of the anthropogenic metabolism

    Science.gov (United States)

    Kral, Ulrich; Brunner, Paul H.

    2015-04-01

    The anthropogenic metabolism is an open system requiring exchange of materials and energy between the anthroposphere and the environment. Material and energy flows are taken from nature and become utilized by men. After utilization, the materials either remain in the anthroposphere as recycling products, or they leave the anthroposphere as waste and emission flows. To accommodate these materials without jeopardizing human and environmental health, limited natural sinks are available; thus, man-made sinks have to be provided where natural sinks are missing or overloaded. The oral presentation (1) suggests a coherent definition of the term "sink", encompassing natural and man-made processes, (2) presents a framework to analyse and evaluate anthropogenic material flows to sinks, based on the tool substance flow analysis and impact assessment methodology, and (3) applies the framework in a case study approach for selected substances such as Copper and Lead in Vienna and Perfluorooctane sulfonate in Switzerland. Finally, the numeric results are aggregated in terms of a new indicator that specifies on a regional scale which fractions of anthropogenic material flows to sinks are acceptable. The following results are obtained: In Vienna, 99% of Cu flows to natural and man-made sinks are in accordance with accepted standards. However, the 0.7% of Cu entering urban soils and the 0.3% entering receiving waters surpass the acceptable level. In the case of Pb, 92% of all flows into sinks prove to be acceptable, but 8% are disposed of in local landfills with limited capacity. For PFOS, 96% of all flows into sinks are acceptable. 4% cannot be evaluated due to a lack of normative criteria, despite posing a risk for human health and the environment. The case studies corroborate the need and constraints of sinks to accommodate inevitable anthropogenic material flows.

  3. Responses of Surface Ozone Air Quality to Anthropogenic Nitrogen Deposition

    Science.gov (United States)

    Zhang, L.; Zhao, Y.; Tai, A. P. K.; Chen, Y.; Pan, Y.

    2017-12-01

    Human activities have substantially increased atmospheric deposition of reactive nitrogen to the Earth's surface, inducing unintentional effects on ecosystems with complex environmental and climate consequences. One consequence remaining unexplored is how surface air quality might respond to the enhanced nitrogen deposition through surface-atmosphere exchange. We combine a chemical transport model (GEOS-Chem) and a global land model (Community Land Model) to address this issue with a focus on ozone pollution in the Northern Hemisphere. We consider three processes that are important for surface ozone and can be perturbed by addition of atmospheric deposited nitrogen: emissions of biogenic volatile organic compounds (VOCs), ozone dry deposition, and soil nitrogen oxide (NOx) emissions. We find that present-day anthropogenic nitrogen deposition (65 Tg N a-1 to the land), through enhancing plant growth (represented as increases in vegetation leaf area index (LAI) in the model), could increase surface ozone from increased biogenic VOC emissions, but could also decrease ozone due to higher ozone dry deposition velocities. Meanwhile, deposited anthropogenic nitrogen to soil enhances soil NOx emissions. The overall effect on summer mean surface ozone concentrations show general increases over the globe (up to 1.5-2.3 ppbv over the western US and South Asia), except for some regions with high anthropogenic NOx emissions (0.5-1.0 ppbv decreases over the eastern US, Western Europe, and North China). We compare the surface ozone changes with those driven by the past 20-year climate and historical land use changes. We find that the impacts from anthropogenic nitrogen deposition can be comparable to the climate and land use driven surface ozone changes at regional scales, and partly offset the surface ozone reductions due to land use changes reported in previous studies. Our study emphasizes the complexity of biosphere-atmosphere interactions, which can have important

  4. Laboratory experiments on dynamics of anthropogenic ferrimagnetics in sand formations

    Czech Academy of Sciences Publication Activity Database

    Kapička, Aleš; Fialová, Hana; Petrovský, Eduard; Kodešová, R.; Kopáč, J.

    2008-01-01

    Roč. 38, Special issue (2008), s. 52-53 ISSN 1335-2806. [Paleo, Rock and Environmental Magnetism. Castle Meeting /11./. 22.06.2008-28.06.2008, Bojnice] R&D Projects: GA AV ČR IAA300120701 Institutional research plan: CEZ:AV0Z30120515 Keywords : soil pollution * dynamics of anthropogenic particles * magnetic susceptibility Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  5. Hyperspectral observation of anthropogenic and biogenic pollution in coastal zone

    Science.gov (United States)

    Lavrova, Olga; Loupian, Evgeny; Mityagina, Marina; Uvarov, Ivan

    The work presents results of anthropogenic and biogenic pollution detection in coastal zones of the Black and Caspian Seas based on satellite hyperspetral data provided by the Hyperion and HICO instruments. Techniques developed on the basis of the analysis of spectral characteristics calculated in special points were employed to address the following problems: (a) assessment of the blooming intensity of cyanobacteria and their distribution in bays of western Crimea and discrimination between anthropogenic pollutant discharge events and algae bloom; (b) detection of anthropogenic pollution in Crimean lakes utilized as industrial liquid discharge reservoirs; (c) detection of oil pollution in areas of shelf oil production in the Caspian Sea. Information values of different spectral bands and their composites were estimated in connection with the retrieval of the main sea water components: phytoplankton, suspended matter and colored organic matter, and also various anthropogenic pollutants, including oil. Software tools for thematic hyperspectral data processing in application to the investigation of sea coastal zones and internal water bodies were developed on the basis of the See the Sea geoportal created by the Space Research Institute RAS. The geoportal is focused on the study of processes in the world ocean with the emphasis on the advantages of satellite systems of observation. The tools that were introduced into the portal allow joint analysis of quasi-simultaneous satellite data, in particular data from the Hyperion, HICO, OLI Landsat-8, ETM Landsat-7 and TM Landsat-5 instruments. Results of analysis attempts combining data from different sensors are discussed. Their strong and weak points are highlighted. The study was completed with partial financial support from The Russian Foundation for Basic Research grants # 14-05-00520-a and 13-07-12017.

  6. Stable nitrogen isotopes in coastal macroalgae: Geographic and anthropogenic variability

    International Nuclear Information System (INIS)

    Viana, Inés G.; Bode, Antonio

    2013-01-01

    Growing human population adds to the natural nitrogen loads to coastal waters. Both anthropogenic and natural nitrogen is readily incorporated in new biomass, and these different nitrogen sources may be traced by the measurement of the ratio of stable nitrogen isotopes (δ 15 N). In this study δ 15 N was determined in two species of macroalgae (Ascophyllum nodosum and Fucus vesiculosus), and in nitrate and ammonium to determine the relative importance of anthropogenic versus natural sources of nitrogen along the coast of NW Spain. Both algal species and nitrogen sources showed similar isotopic enrichment for a given site, but algal δ 15 N was not related to either inorganic nitrogen concentrations or δ 15 N in the water samples. The latter suggests that inorganic nitrogen inputs are variable and do not always leave an isotopic trace in macroalgae. However, a significant linear decrease in macroalgal δ 15 N along the coast is consistent with the differential effect of upwelling. Besides this geographic variability, the influence of anthropogenic nitrogen sources is evidenced by higher δ 15 N in macroalgae from rias and estuaries compared to those from open coastal areas and in areas with more than 15 × 10 3 inhabitants in the watershed. These results indicate that, in contrast with other studies, macroalgal δ 15 N is not simply related to either inorganic nitrogen concentrations or human population size but depends on other factors as the upwelling or the efficiency of local waste treatment systems. - Highlights: ► Anthropogenic versus upwelling nitrogen effect on macroalgal δ 15 N was studied. ► The influence of populations and upwelling has not been made before on macroalgal δ 15 N. ► Natural variability has not been taken into account in most biomonitoring studies. ► Upwelling explains most of the variability in δ 15 N in macroalgae

  7. Stable nitrogen isotopes in coastal macroalgae: Geographic and anthropogenic variability

    Energy Technology Data Exchange (ETDEWEB)

    Viana, Inés G., E-mail: ines.gonzalez@co.ieo.es; Bode, Antonio

    2013-01-15

    Growing human population adds to the natural nitrogen loads to coastal waters. Both anthropogenic and natural nitrogen is readily incorporated in new biomass, and these different nitrogen sources may be traced by the measurement of the ratio of stable nitrogen isotopes (δ{sup 15}N). In this study δ{sup 15}N was determined in two species of macroalgae (Ascophyllum nodosum and Fucus vesiculosus), and in nitrate and ammonium to determine the relative importance of anthropogenic versus natural sources of nitrogen along the coast of NW Spain. Both algal species and nitrogen sources showed similar isotopic enrichment for a given site, but algal δ{sup 15}N was not related to either inorganic nitrogen concentrations or δ{sup 15}N in the water samples. The latter suggests that inorganic nitrogen inputs are variable and do not always leave an isotopic trace in macroalgae. However, a significant linear decrease in macroalgal δ{sup 15}N along the coast is consistent with the differential effect of upwelling. Besides this geographic variability, the influence of anthropogenic nitrogen sources is evidenced by higher δ{sup 15}N in macroalgae from rias and estuaries compared to those from open coastal areas and in areas with more than 15 × 10{sup 3} inhabitants in the watershed. These results indicate that, in contrast with other studies, macroalgal δ{sup 15}N is not simply related to either inorganic nitrogen concentrations or human population size but depends on other factors as the upwelling or the efficiency of local waste treatment systems. - Highlights: ► Anthropogenic versus upwelling nitrogen effect on macroalgal δ{sup 15}N was studied. ► The influence of populations and upwelling has not been made before on macroalgal δ{sup 15}N. ► Natural variability has not been taken into account in most biomonitoring studies. ► Upwelling explains most of the variability in δ{sup 15}N in macroalgae.

  8. Adaptations of lowland jungle mosses to anthropogenic environments in Guyana

    OpenAIRE

    Kuc, Marian

    2000-01-01

    Sixteen lowland jungle mosses growing in anthropogenic habitats at Santa and The Bell - Ituni localities on the Demerara River in Guyana were examined in detail with the aim of detecting any features which would indicate their adaptations to new habitats. Amounts of chlorophyll in leaf cells, protective coloration, alterations in leaf morphology, characteristics of old stems, rhizoid tomentum and fertility are considered as the most pronounced adaptive features of these species to new localit...

  9. Natural and anthropogenic {sup 236}U in environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Steier, Peter [VERA Laboratory, Fakultaet fuer Physik - Isotopenforschung, Universitaet Wien, Waehringer Strasse 17, A-1090 Wien (Austria)], E-mail: peter.steier@univie.ac.at; Bichler, Max [Atominstitut der Osterreichischen Universitaeten, Technische Universitaet Wien, Stadionallee 2, Wien A-1020 (Austria); Keith Fifield, L. [Department of Nuclear Physics, RSPhysSE, Australian National University, Canberra, ACT 0200 (Australia); Golser, Robin; Kutschera, Walter; Priller, Alfred [VERA Laboratory, Fakultaet fuer Physik - Isotopenforschung, Universitaet Wien, Waehringer Strasse 17, A-1090 Wien (Austria); Quinto, Francesca [Dipartimento di Scienze Ambientali, Seconda Universita di Napoli, via Vivaldi 43, Caserta 81100 (Italy); Richter, Stephan [Euopean Commission, Directorate-General Joint Research Centre, Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium); Srncik, Michaela [Institut fuer Anorganische Chemie, Universitaet Wien, Waehringer Strasse 42, A-1090 Wien (Austria); Terrasi, Philippo [Dipartimento di Scienze Ambientali, Seconda Universita di Napoli, via Vivaldi 43, Caserta 81100 (Italy); Wacker, Lukas [Institute for Particle Physics, HPK H25, Schafmattstrasse 20, CH-8093 Zuerich (Switzerland); Wallner, Anton [VERA Laboratory, Fakultaet fuer Physik - Isotopenforschung, Universitaet Wien, Waehringer Strasse 17, A-1090 Wien (Austria); Wallner, Gabriele [Institut fuer Anorganische Chemie, Universitaet Wien, Waehringer Strasse 42, A-1090 Wien (Austria); Wilcken, Klaus M. [Scottish Universities Environmental Research Centre, Scottish Enterprise Technology Park, East Kilbride G75 OQF (United Kingdom); Maria Wild, Eva [VERA Laboratory, Fakultaet fuer Physik - Isotopenforschung, Universitaet Wien, Waehringer Strasse 17, A-1090 Wien (Austria)

    2008-05-15

    The interaction of thermal neutrons with {sup 235}U results in fission with a probability of {approx}85% and in the formation of {sup 236}U (t{sub 1/2} = 2.3 x 10{sup 7} yr) with a probability of {approx}15%. While anthropogenic {sup 236}U is, therefore, present in spent nuclear fuel at levels of {sup 236}U/U up to 10{sup -2}, the expected natural ratios in the pre-anthropogenic environment range from 10{sup -14} to 10{sup -10}. At VERA, systematic investigations suggest a detection limit below {sup 236}U/U = 5 x 10{sup -12} for samples of 0.5 mg U, while chemistry blanks of {approx}2 x 10{sup 7} atoms {sup 236}U per sample limit the sensitivity for smaller samples. We have found natural isotopic ratios in uranium reagents separated before the onset of human nuclear activities, in uranium ores from various origins and in water from a subsurface well in Bad Gastein, Austria. Anthropogenic contamination was clearly visible in soil and rivulet samples from Salzburg, Austria, whereas river sediments from Garigliano river (Southern Italy) were close to the detection limit. Finally, our natural in-house standard Vienna-KkU was calibrated against a certified reference material (IRMM REIMEP-18 A)

  10. Attributing Changing Rates of Temperature Record Breaking to Anthropogenic Influences

    Science.gov (United States)

    King, Andrew D.

    2017-11-01

    Record-breaking temperatures attract attention from the media, so understanding how and why the rate of record breaking is changing may be useful in communicating the effects of climate change. A simple methodology designed for estimating the anthropogenic influence on rates of record breaking in a given time series is proposed here. The frequency of hot and cold record-breaking temperature occurrences is shown to be changing due to the anthropogenic influence on the climate. Using ensembles of model simulations with and without human-induced forcings, it is demonstrated that the effect of climate change on global record-breaking temperatures can be detected as far back as the 1930s. On local scales, a climate change signal is detected more recently at most locations. The anthropogenic influence on the increased occurrence of hot record-breaking temperatures is clearer than it is for the decreased occurrence of cold records. The approach proposed here could be applied in rapid attribution studies of record extremes to quantify the influence of climate change on the rate of record breaking in addition to the climate anomaly being studied. This application is demonstrated for the global temperature record of 2016 and the Central England temperature record in 2014.

  11. Distinguishing natural hydrocarbons from anthropogenic contamination in ground water

    International Nuclear Information System (INIS)

    Lesage, S.; Xu, H.; Novakowski, K.S.

    1997-01-01

    Differentiation between natural and anthropogenic sources of ground-water contamination by petroleum hydrocarbons is necessary in areas where natural hydrocarbons may be present in the subsurface. Because of the similarity in composition between natural and refined petroleum, the use of statistical techniques to discern trends is required. In this study, both multivariate plotting techniques and principal component analysis were used to investigate the origin of hydrocarbons from a variety of study sites. Ground-water and gas samples were collected from the Niagara Falls area and from three gasoline stations where leaking underground storage tanks had been found. Although soil gas surveys are used to indicate the presence of hydrocarbons, they were not useful in differentiating between natural and anthropogenic sources of contamination in ground water. Propane and pentene were found to be the most useful chemical parameters in discriminating between the natural and anthropogenic sources. These chemicals are not usually measured in investigations of ground-water contamination, yet analysis can be conducted by most environmental laboratories using conventional methods

  12. Dynamic soil properties in response to anthropogenic disturbance

    Science.gov (United States)

    Vanacker, Veerle; Ortega, Raúl

    2013-04-01

    Anthropogenic disturbance of natural vegetation can profoundly alter the physical, chemical and biological processes within soils. Rapid removal of topsoil during intense farming can result in an imbalance between soil production through chemical weathering and physical erosion, with direct implications on local biogeochemical cycling. However, the feedbacks between soil erosion, chemical weathering and biogeochemical cycling in response to anthropogenic forcing are not yet fully understood. Here, we study dynamic soil properties for a rapidly changing anthropogenic landscape, and focus on the coupling between physical erosion, soil production and soil chemical weathering. The archaeological site of Santa Maria de Melque (Toledo, Central Spain) was selected for its remarkably long occupation history dating back to the 7th century AD. As part of the agricultural complex, four retention reservoirs were built in the Early Middle Ages. The sedimentary archive was used to track the evolution in sedimentation rates and geochemical properties of the sediment. Catchment-wide soil erosion rates vary slightly between the various occupation phases (7th century-now), but are of the same magnitude as the cosmogenic nuclide-derived erosion rates. However, there exists large spatial variation in physical erosion rates that are coupled with chemical weathering intensities. The sedimentary records suggest that there are important changes in the spatial pattern of sediment source areas through time as a result of changing land use patterns

  13. Effect of coupled anthropogenic perturbations on stratospheric ozone

    International Nuclear Information System (INIS)

    Wuebbles, D.J.; Luther, F.M.; Penner, J.E.

    1992-01-01

    Since 1976 the greatest concern about potential perturbations to stratospheric ozone has been in regard to the atmospheric release of chlorofluorocarbons. Consequently, atmospheric measurements of ozone have usually been compared with model calculations in which only chlorocarbon perturbations are considered. However, in order to compare theoretical calculations with recent measurements of ozone and to project expected changes to atmospheric ozone levels over the next few decades, one must consider the effect from other perturbations as well. In this paper, the authors consider the coupling between several possible anthropogenic atmospheric perturbations. Namely, they examine the effects of past and possible future increases of chlorocarbons, CO 2 , N 2 O, and NO x . The focus of these calculations is on the potential changes in ozone due to chlorocarbon emissions, how other anthropogenic perturbations may have influenced the actual change in ozone over the last decade, and how these perturbations may influence future changes in ozone. Although calculations including future chlorocarbon emissions alone result in significant reductions in ozone, there is very little change in total ozone over the coming decades when other anthropogenic sources are included. Increasing CO 2 concentrations have the largest offsetting effect on the change in total ozone due to chlorocarbons. Owing to the necessity of considering emissions from a number of trace gases simultaneously, determining expected global-scale chemical and climatic effects is more complex than was previously recognized

  14. Airborne anthropogenic radioactivity measurements from an international radionuclide monitoring system

    International Nuclear Information System (INIS)

    Mason, L.R.; Bohner, J.D.; Williams, D.L.

    1998-01-01

    Anthropogenic radioactivity is being measured in near-real time by an international monitoring system designed to verify the Comprehensive Nuclear Test Ban Treaty. Airborne radioactivity measurements are conducted in-situ by stations that are linked to a central data processing and analysis facility. Aerosols are separated by high-volume air sampling with high-efficiency particulate filters. Radio-xenon is separated from other gases through cryogenic methods. Gamma-spectrometry is performed by high purity germanium detectors and the raw spectral data is immediately transmitted to the central facility via Internet, satellite, or modem. These highly sensitive sensors, combined with the automated data processing at the central facility, result in a system capable of measuring environmental radioactivity on the microbecquerel scale where the data is available to scientists within minutes of the field measurement. During the past year, anthropogenic radioactivity has been measured at approximately half of the stations in the current network. Sources of these measured radionuclides include nuclear power plant emissions, Chernobyl resuspension, and isotope production facilities. The ability to thoroughly characterize site-specific radionuclides, which contribute to the radioactivity of the ambient environment, will be necessary to reduce the number of false positive events. This is especially true of anthropogenic radionuclides that could lead to ambiguous analysis. (author)

  15. HESS Opinions: A planetary boundary on freshwater use is misleading

    Science.gov (United States)

    Heistermann, Maik

    2017-07-01

    In 2009, a group of prominent Earth scientists introduced the planetary boundaries (PB) framework: they suggested nine global control variables, and defined corresponding thresholds which, if crossed, could generate unacceptable environmental change. The concept builds on systems theory, and views Earth as a complex adaptive system in which anthropogenic disturbances may trigger non-linear, abrupt, and irreversible changes at the global scale, and push the Earth system outside the stable environmental state of the Holocene. While the idea has been remarkably successful in both science and policy circles, it has also raised fundamental concerns, as the majority of suggested processes and their corresponding planetary boundaries do not operate at the global scale, and thus apparently lack the potential to trigger abrupt planetary changes. This paper picks up the debate with specific regard to the planetary boundary on global freshwater use. While the bio-physical impacts of excessive water consumption are typically confined to the river basin scale, the PB proponents argue that water-induced environmental disasters could build up to planetary-scale feedbacks and system failures. So far, however, no evidence has been presented to corroborate that hypothesis. Furthermore, no coherent approach has been presented to what extent a planetary threshold value could reflect the risk of regional environmental disaster. To be sure, the PB framework was revised in 2015, extending the planetary freshwater boundary with a set of basin-level boundaries inferred from environmental water flow assumptions. Yet, no new evidence was presented, either with respect to the ability of those basin-level boundaries to reflect the risk of regional regime shifts or with respect to a potential mechanism linking river basins to the planetary scale. So while the idea of a planetary boundary on freshwater use appears intriguing, the line of arguments presented so far remains speculative and

  16. Computation of airfoil buffet boundaries

    Science.gov (United States)

    Levy, L. L., Jr.; Bailey, H. E.

    1981-01-01

    The ILLIAC IV computer has been programmed with an implicit, finite-difference code for solving the thin layer compressible Navier-Stokes equation. Results presented for the case of the buffet boundaries of a conventional and a supercritical airfoil section at high Reynolds numbers are found to be in agreement with experimentally determined buffet boundaries, especially at the higher freestream Mach numbers and lower lift coefficients where the onset of unsteady flows is associated with shock wave-induced boundary layer separation.

  17. Boundary fluxes for nonlocal diffusion

    Science.gov (United States)

    Cortazar, Carmen; Elgueta, Manuel; Rossi, Julio D.; Wolanski, Noemi

    We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition.

  18. Diversified boundaries of the firm

    OpenAIRE

    Kimura, Koichiro

    2012-01-01

    We analyze diversification of boundaries of local firms in developing countries under the economic globalization. The globalization has an aspect of homogenization of the world economy, but also has another aspect of diversification through international economic activities. Focusing on boundary-level of the firm, this article shows that the diversification from a comparison with boundaries of foreign firms in developed countries is brought by a disadvantage of technology deficit and a home a...

  19. Conformal boundaries of warped products

    DEFF Research Database (Denmark)

    Kokkendorff, Simon Lyngby

    2006-01-01

    In this note we prove a result on how to determine the conformal boundary of a type of warped product of two length spaces in terms of the individual conformal boundaries. In the situation, that we treat, the warping and conformal distortion functions are functions of distance to a base point....... The result is applied to produce examples of CAT(0)-spaces, where the conformal and ideal boundaries differ in interesting ways....

  20. Anthropogenics: human influence on global and genetic homogenization of parasite populations.

    Science.gov (United States)

    Zarlenga, Dante S; Hoberg, Eric; Rosenthal, Benjamin; Mattiucci, Simonetta; Nascetti, Giuseppe

    2014-12-01

    The distribution, abundance, and diversity of life on Earth have been greatly shaped by human activities. This includes the geographic expansion of parasites; however, measuring the extent to which humans have influenced the dissemination and population structure of parasites has been challenging. In-depth comparisons among parasite populations extending to landscape-level processes affecting disease emergence have remained elusive. New research methods have enhanced our capacity to discern human impact, where the tools of population genetics and molecular epidemiology have begun to shed light on our historical and ongoing influence. Only since the 1990s have parasitologists coupled morphological diagnosis, long considered the basis of surveillance and biodiversity studies, with state-of-the-art tools enabling variation to be examined among, and within, parasite populations. Prior to this time, populations were characterized only by phenotypic attributes such as virulence, infectivity, host range, and geographical location. The advent of genetic/molecular methodologies (multilocus allozyme electrophoresis, polymerase chain reaction-DNA [PCR-DNA] fragments analysis, DNA sequencing, DNA microsatellites, single nucleotide polymorphisms, etc.) have transformed our abilities to reveal variation among, and within, populations at local, regional, landscape, and global scales, and thereby enhanced our understanding of the biosphere. Numerous factors can affect population structure among parasites, e.g., evolutionary and ecological history, mode of reproduction and transmission, host dispersal, and life-cycle complexity. Although such influences can vary considerably among parasite taxa, anthropogenic factors are demonstrably perturbing parasite fauna. Minimal genetic structure among many geographically distinct (isolated) populations is a hallmark of human activity, hastened by geographic introductions, environmental perturbation, and global warming. Accelerating

  1. Small-scale opencast mining: an important research field for anthropogenic geomorphology

    Directory of Open Access Journals (Sweden)

    Byizigiro, R. Vaillant

    2015-12-01

    Full Text Available Artisanal and small-scale mining (A&SM is a growing economic sector in many third-world countries. This review focuses on anthropo-geomorphic factors and processes associated with small-scale opencast mining (SSOM, a form of A&SM in which near-surface ores are extracted by removing relatively thin covers of soil, bedrock or sediments. Being widespread and commonly conducted without proper planning and beyond the control of local authorities, this form of mining has potentially large impacts on landforms and landscape dynamics, often resulting in drastic consequences for the local environment and agriculture. SSOM should be regarded as a component of anthropogenic geomorphology because it involves the role of humans in creating landforms and modifying the operation of natural geomorphological processes, such as weathering, erosion, transport and deposition. By initiating new and modifying natural geomorphic processes, SSOM causes and/or accelerates geomorphic processes, resulting in various forms of land degradation. While the direct geomorphic impact of SSOM is in general easily discernible and leads to characteristic features, such as excavated pits and overburden spoil heaps, many secondary impacts are attributed to geomorphic processes triggered in the wake of the primary mining-induced landscape alterations. The magnitude of such secondary implications may well extend beyond the actual mining areas, but these effects have not been thoroughly addressed in the research so far. This review summarizes the known studies on the geomorphic impacts of SSOM operations and highlights common geomorphic processes and landforms associated with this type of anthropogenic activity, thus establishing a starting point for further in-depth research.

  2. Identifying (subsurface) anthropogenic heat sources that influence temperature in the drinking water distribution system

    Science.gov (United States)

    Agudelo-Vera, Claudia M.; Blokker, Mirjam; de Kater, Henk; Lafort, Rob

    2017-09-01

    The water temperature in the drinking water distribution system and at customers' taps approaches the surrounding soil temperature at a depth of 1 m. Water temperature is an important determinant of water quality. In the Netherlands drinking water is distributed without additional residual disinfectant and the temperature of drinking water at customers' taps is not allowed to exceed 25 °C. In recent decades, the urban (sub)surface has been getting more occupied by various types of infrastructures, and some of these can be heat sources. Only recently have the anthropogenic sources and their influence on the underground been studied on coarse spatial scales. Little is known about the urban shallow underground heat profile on small spatial scales, of the order of 10 m × 10 m. Routine water quality samples at the tap in urban areas have shown up locations - so-called hotspots - in the city, with relatively high soil temperatures - up to 7 °C warmer - compared to the soil temperatures in the surrounding rural areas. Yet the sources and the locations of these hotspots have not been identified. It is expected that with climate change during a warm summer the soil temperature in the hotspots can be above 25 °C. The objective of this paper is to find a method to identify heat sources and urban characteristics that locally influence the soil temperature. The proposed method combines mapping of urban anthropogenic heat sources, retrospective modelling of the soil temperature, analysis of water temperature measurements at the tap, and extensive soil temperature measurements. This approach provided insight into the typical range of the variation of the urban soil temperature, and it is a first step to identifying areas with potential underground heat stress towards thermal underground management in cities.

  3. The Boundary Function Method. Fundamentals

    Science.gov (United States)

    Kot, V. A.

    2017-03-01

    The boundary function method is proposed for solving applied problems of mathematical physics in the region defined by a partial differential equation of the general form involving constant or variable coefficients with a Dirichlet, Neumann, or Robin boundary condition. In this method, the desired function is defined by a power polynomial, and a boundary function represented in the form of the desired function or its derivative at one of the boundary points is introduced. Different sequences of boundary equations have been set up with the use of differential operators. Systems of linear algebraic equations constructed on the basis of these sequences allow one to determine the coefficients of a power polynomial. Constitutive equations have been derived for initial boundary-value problems of all the main types. With these equations, an initial boundary-value problem is transformed into the Cauchy problem for the boundary function. The determination of the boundary function by its derivative with respect to the time coordinate completes the solution of the problem.

  4. Analysis of turbulent boundary layers

    CERN Document Server

    Cebeci, Tuncer

    1974-01-01

    Analysis of Turbulent Boundary Layers focuses on turbulent flows meeting the requirements for the boundary-layer or thin-shear-layer approximations. Its approach is devising relatively fundamental, and often subtle, empirical engineering correlations, which are then introduced into various forms of describing equations for final solution. After introducing the topic on turbulence, the book examines the conservation equations for compressible turbulent flows, boundary-layer equations, and general behavior of turbulent boundary layers. The latter chapters describe the CS method for calculati

  5. Convection Cells in the Atmospheric Boundary Layer

    Science.gov (United States)

    Fodor, Katherine; Mellado, Juan-Pedro

    2017-04-01

    layers of the same depth, defined from the surface to the height at which the turbulent kinetic energy (TKE) is zero (in non-penetrative cases) or less than 10% of its maximum value (in penetrative cases). We find that with increasing filter width, the contribution of the filtered flow to the total TKE in the middle of the boundary layer decreases much more rapidly in the penetrative cases than in the non-penetrative cases. In particular, around 20-25% of the TKE at this height comes from small-scale turbulence with a length scale less than or equal to 15% of the boundary layer depth in the CBL, whereas in Rayleigh-Bénard convection, it is just 6-7%. This is consistent with visualisations, which show that entrainment creates additional small-scale mixing within the large-scale circulations in the CBL. Without entrainment, large-scale organisation predominates. Neither spatial nor temporal filtering are as successful at extracting superstructures in the penetrative cases as in the non-penetrative cases. Hence, these techniques depend not on the steadiness of the system, but rather on the presence of entrainment. We therefore intend to try other detection techniques, such as proper orthogonal decomposition, in order to make a rigorous assessment of which is most effective for isolating superstructures in all four cases.

  6. Lifestyle Journalism: Blurring boundaries

    DEFF Research Database (Denmark)

    From, Unni

    2013-01-01

    Lifestyle journalism has experienced enormous growth in the media over the past two decades, but scholars in the fields of journalism and communication studies have so far paid relatively little attention to a field that is still sometimes seen as "not real journalism". There is now an urgent need...... for in-depth exploration and contextualisation of this field, with its increasing relevance for 21st century consumer cultures. For the first time, this book presents a wide range of studies which have engaged with the field of lifestyle journalism in order to outline the various political, economic...... of sub-fields such as travel, music, food, health, fashion and personal technology journalism. This volume provides a fascinating account of the different facets of lifestyle journalism, and charts the way forward for a more sustained analysis of the field. This book was originally published as a special...

  7. Effects of anthropogenic silt on aquatic macroinvertebrates and abiotic variables in streams in the Brazilian Amazon

    Energy Technology Data Exchange (ETDEWEB)

    Couceiro, Sheyla Regina Marques; Hamada, Neusa [Inst. Nacional de Pesquisas da Amazonia, Coordenacao de Pesquisas em Entomologia, Manaus, AM (Brazil); Forsberg, Bruce Rider [Inst. Nacional de Pesquisas da Amazonia, Coordenacao de Pesquisas em Entomologia, Manaus, AM (Brazil); Inst. Nacional de Pesquisas da Amazonia, Coordenacao de Pesquisas em Ecologia, Manaus, AM (Brazil); Padovesi-Fonseca, Claudia [Univ. de Brasilia, Dept. de Ecologia, Brasilia, DF (Brazil)

    2010-01-15

    Purpose: While environmental risks associated with petroleum extraction such as oil spills or leaks are relatively well known, little attention has been given to the impacts of silt. The increase in petroleum exploitation in Amazonia has resulted in sediment input to aquatic systems, with impacts on their biodiversity. Here we use a combination of field measurements and statistical analyses to evaluate the impacts of anthropogenic silt derived from the construction of roads, borrow pits, and wells during the terrestrial development of gas and oil, on macroinvertebrate communities in streams of the Urucu Petroleum Province in the Central Brazilian Amazon. Material and methods: Ten impacted and nine non-impacted streams were sampled in January, April, and November of 2007. Macroinvertebrates were sampled along a 100-m continuous reach in each stream at 10-m intervals using a dip net. Abiotic variables including, a siltation index (SI), suspended inorganic sediment (SIS), sediment color index (SCI), suspend organic sediment (SOS), pH, electrical conductivity, dissolved oxygen, temperature, water velocity, channel width, and depth, were measured at three equidistant points in each stream ({proportional_to}30-m intervals). Results and discussion: SI did not differ between impacted and undisturbed streams. SIS was higher and SCI lower (more reddish) in impacted than in non-impacted streams. SCI had a positive and SIS a negative effect on both macroinvertebrate richness and density. SIS and SCI also influenced macrophyte taxonomic composition. In impacted streams, taxonomic richness and density were 1.5 times lower than in non-impacted streams. No taxon was significantly associated with impacted streams. SIS was positively correlated with SOS and electrical conductivity while SCI was negatively correlated with SOS, electrical conductivity, and pH. The lack of difference in SI between impacted and nonimpacted streams suggests that anthropogenic sediment does not accumulate

  8. Effects of future land use and ecosystem changes on boundary-layer meteorology and air quality

    Science.gov (United States)

    Tai, A. P. K.; Wang, L.; Sadeke, M.

    2017-12-01

    Land vegetation plays key roles shaping boundary-layer meteorology and air quality via various pathways. Vegetation can directly affect surface ozone via dry deposition and biogenic emissions of volatile organic compounds (VOCs). Transpiration from land plants can also influence surface temperature, soil moisture and boundary-layer mixing depth, thereby indirectly affecting surface ozone. Future changes in the distribution, density and physiology of vegetation are therefore expected to have major ramifications for surface ozone air quality. In our study, we examine two aspects of potential vegetation changes using the Community Earth System Model (CESM) in the fully coupled land-atmosphere configuration, and evaluate their implications on meteorology and air quality: 1) land use change, which alters the distribution of plant functional types and total leaf density; and 2) ozone damage on vegetation, which alters leaf density and physiology (e.g., stomatal resistance). We find that, following the RCP8.5 scenario for 2050, global cropland expansion induces only minor changes in surface ozone in tropical and subtropical regions, but statistically significant changes by up to +4 ppbv in midlatitude North America and East Asia, mostly due to higher surface temperature that enhances biogenic VOC emissions, and reduced dry deposition to a lesser degree. These changes are in turn to driven mostly by meteorological changes that include a shift from latent to sensible heat in the surface energy balance and reduced soil moisture, reflecting not only local responses but also a northward expansion of the Hadley Cell. On the other hand, ozone damage on vegetation driven by rising anthropogenic emissions is shown to induce a further enhancement of ozone by up to +6 ppbv in midlatitude regions by 2050. This reflects a strong localized positive feedback, with severe ozone damage in polluted regions generally inducing stomatal closure, which in turn reduces transpiration, increases

  9. Subring Depth, Frobenius Extensions, and Towers

    Directory of Open Access Journals (Sweden)

    Lars Kadison

    2012-01-01

    Full Text Available The minimum depth d(B,A of a subring B⊆A introduced in the work of Boltje, Danz and Külshammer (2011 is studied and compared with the tower depth of a Frobenius extension. We show that d(B,A < ∞ if A is a finite-dimensional algebra and Be has finite representation type. Some conditions in terms of depth and QF property are given that ensure that the modular function of a Hopf algebra restricts to the modular function of a Hopf subalgebra. If A⊇B is a QF extension, minimum left and right even subring depths are shown to coincide. If A⊇B is a Frobenius extension with surjective Frobenius, homomorphism, its subring depth is shown to coincide with its tower depth. Formulas for the ring, module, Frobenius and Temperley-Lieb structures are noted for the tower over a Frobenius extension in its realization as tensor powers. A depth 3 QF extension is embedded in a depth 2 QF extension; in turn certain depth n extensions embed in depth 3 extensions if they are Frobenius extensions or other special ring extensions with ring structures on their relative Hochschild bar resolution groups.

  10. Effects of anthropogenic aerosol particles on the radiation balance of the atmosphere. Einfluss anthropogener Aerosolteilchen auf den Strahlungshaushalt der Atmosphaere

    Energy Technology Data Exchange (ETDEWEB)

    Newiger, M

    1985-01-01

    The influence of aerosol particles is assessed on the basis of the changes in the climate parameters ''albedo'' and ''neutron flux''. Apart from the directly emitted particles, particles formed in the atmosphere as a result of SO/sub 2/ emissions are investigated. The model of aerosol effects on the radiation field takes account of the feedback with the microphysical parameters of the clouds. In the investigation, given particle concentrations were recalculated for three size classes using a two-dimensional transport model. The particle size distribution is described by a modified power function. Extreme-value estimates are made because the absorption capacity of anthropogenic particles is little known. A comparison of the climatic effects of anthropogenic activities shows that aerosol particles and SO/sub 2/ emissions have opposite effects on the radiation balance. (orig./PW).

  11. Collaboration in Healthcare Through Boundary Work and Boundary Objects

    DEFF Research Database (Denmark)

    Meier, Ninna

    2015-01-01

    This article contributes to our understanding of how boundary work is practiced in healthcare settings. Previous studies have shown how boundaries are constantly changing, multiple, and co-existing, and can also be relatively stable cognitive and social distinctions between individuals and groups...

  12. African boundary politics: a case of Ethiopian-Eritrean boundary ...

    African Journals Online (AJOL)

    This paper examined the boundary discord between Ethiopia and Eritrea over the region around Badme which started as a result of artificial boundaries created by the Italian imperialists. The study depicts the evolution of Italian colonialism in Ethiopia between 1936 and 1941. It exposes the differentials existing between the ...

  13. CLASSIFICATION OF ANTHROPOGENIC TRANSFORMATIONS SOILS URBOECOSYSTEMS OF DNEPROPETROVSK

    Directory of Open Access Journals (Sweden)

    YAKOVYSHYNA T.F.

    2015-12-01

    Full Text Available Raising of problem. The functioning of the city, as artificially created system of the result of the anthropogenic activity, promotes degradation and, sometimes, destruction of the environment, with change it to the technogenic replacement. First of all suffers the soil, as a basic component of any ecosystem, where the circulation of materials close, because it is a powerful biogeochemical barrier to their migration, able to deposit toxicants a long time through its protective functions. The leading role of the formation of the urban soil plays an anthropogenic factor, which is able to influence directly – the destruction of the soil profile due to construction activity and indirectly – with aerogenic or hydrogenous pollution xenobiotics contained in the emissions and discharges of the industrial enterprises; and it is determined by the type of economic use and history of area developing. The variability of using the urban soil is reflected in the soil profile and contributed to the creation of the organic-mineral layer by the mixing, mound, burial and (or contamination of the different substances on the surface. Therefore, classification of the urban soils by the anthropogenic destruction degree of the soil profile is very important scientific and practical task for the urban ecology to the achievement standards of the ecological safety of the modern city, because the restoring of their protective functions is impossible without knowledge of the morphological structure. Purpose. Classify the anthropogenical soils of city Dnipropetrovsk disturbed by the construction activities by the determining of the morphological characteristics of the soil profile structure with separation of the anthropogenic and technogenic surface formations compared to the zonal soil – ordinery chernozem. Conclusion. Within urboecosystem city Dnipropetrovsk long-term human impact to the zonal soil – chernozem led to its transformation into urbanozem witch

  14. Boundary-Layer & health

    Science.gov (United States)

    Costigliola, V.

    2010-09-01

    It has long been known that specific atmospheric processes, such as weather and longer-term climatic fluctuations, affect human health. The biometeorological literature refers to this relationship as meteorotropism, defined as a change in an organism that is correlated with a change in atmospheric conditions. Plenty of (patho)physiological functions are affected by those conditions - like the respiratory diseases - and currently it is difficult to put any limits for pathologies developed in reply. Nowadays the importance of atmospheric boundary layer and health is increasingly recognised. A number of epidemiologic studies have reported associations between ambient concentrations of air pollution, specifically particulate pollution, and adverse health effects, even at the relatively low concentrations of pollution found. Since 1995 there have been over twenty-one studies from four continents that have explicitly examined the association between ambient air pollutant mixes and daily mortality. Statistically significant and positive associations have been reported in data from various locations around the world, all with varying air pollutant concentrations, weather conditions, population characteristics and public health policies. Particular role has been given to atmospheric boundary layer processes, the impact of which for specific patient-cohort is, however, not well understood till now. Assessing and monitoring air quality are thus fundamental to improve Europe's welfare. One of current projects run by the "European Medical Association" - PASODOBLE will develop and demonstrate user-driven downstream information services for the regional and local air quality sectors by combining space-based and in-situ data with models in 4 thematic service lines: - Health community support for hospitals, pharmacies, doctors and people at risk - Public information for regions, cities, tourist industry and sporting event organizers - Compliance monitoring support on particulate

  15. Experimental Research on Boundary Shear Stress in Typical Meandering Channel

    Science.gov (United States)

    Chen, Kai-hua; Xia, Yun-feng; Zhang, Shi-zhao; Wen, Yun-cheng; Xu, Hua

    2018-06-01

    A novel instrument named Micro-Electro-Mechanical System (MEMS) flexible hot-film shear stress sensor was used to study the boundary shear stress distribution in the generalized natural meandering open channel, and the mean sidewall shear stress distribution along the meandering channel, and the lateral boundary shear stress distribution in the typical cross-section of the meandering channel was analysed. Based on the measurement of the boundary shear stress, a semi-empirical semi-theoretical computing approach of the boundary shear stress was derived including the effects of the secondary flow, sidewall roughness factor, eddy viscosity and the additional Reynolds stress, and more importantly, for the first time, it combined the effects of the cross-section central angle and the Reynolds number into the expressions. Afterwards, a comparison between the previous research and this study was developed. Following the result, we found that the semi-empirical semi-theoretical boundary shear stress distribution algorithm can predict the boundary shear stress distribution precisely. Finally, a single factor analysis was conducted on the relationship between the average sidewall shear stress on the convex and concave bank and the flow rate, water depth, slope ratio, or the cross-section central angle of the open channel bend. The functional relationship with each of the above factors was established, and then the distance from the location of the extreme sidewall shear stress to the bottom of the open channel was deduced based on the statistical theory.

  16. Short climatology of the atmospheric boundary layer using acoustic methods

    International Nuclear Information System (INIS)

    Schubert, J.F.

    1975-06-01

    A climatology of the boundary layer of the atmosphere at the Savannah River Laboratory is being compiled using acoustic methods. The atmospheric phenomenon as depicted on the facsimile recorder is classified and then placed into one of sixteen categories. After classification, the height of the boundary layer is measured. From this information, frequency tables of boundary layer height and category are created and then analyzed for the percentage of time that each category was detected by the acoustic sounder. The sounder also accurately depicts the diurnal cycle of the boundary layer and, depending on the sensitivity of the system, shows microstructure that is normally unavailable using other methods of profiling. The acoustic sounder provides a means for continuous, real time measurements of the time rate of change of the depth of the boundary layer. This continuous record of the boundary layer with its convective cells, gravity waves, inversions, and frontal system passages permits the synoptic and complex climatology of the local area to be compiled. (U.S.)

  17. Shifting boundaries in telecare

    DEFF Research Database (Denmark)

    Nickelsen, Niels Christian Mossfeldt; Elkjær, Bente

    2017-01-01

    Purpose Telecare is a growing practice defined as diagnosis, treatment and monitoring among doctors, nurses and patients, which is mediated through ICT and without face-to-face interaction. The purpose of this article is to provide empirically based knowledge about the organization of the use of ...... to clinical decision makers. The notion of ‘paradoxical accountability’ is developed to account for this dilemma. Keywords (max 8) Telecare, infrastructure, practice oriented analysis, healthcare professionals, accountability, boundaries Paper type Case study......Purpose Telecare is a growing practice defined as diagnosis, treatment and monitoring among doctors, nurses and patients, which is mediated through ICT and without face-to-face interaction. The purpose of this article is to provide empirically based knowledge about the organization of the use...... of ICT and dilemmas of this increasingly common practice in healthcare. Findings Telecare embraces new standards and possibilities for professional responsibility and accountability for nurses, but also alters the relationship between doctors and nurses. This leads to a dilemma we characterize...

  18. Coding of Depth Images for 3DTV

    DEFF Research Database (Denmark)

    Zamarin, Marco; Forchhammer, Søren

    In this short paper a brief overview of the topic of coding and compression of depth images for multi-view image and video coding is provided. Depth images represent a convenient way to describe distances in the 3D scene, useful for 3D video processing purposes. Standard approaches...... for the compression of depth images are described and compared against some recent specialized algorithms able to achieve higher compression performances. Future research directions close the paper....

  19. Convective Cold Pool Structure and Boundary Layer Recovery in DYNAMO

    Science.gov (United States)

    Savarin, A.; Chen, S. S.; Kerns, B. W.; Lee, C.; Jorgensen, D. P.

    2012-12-01

    One of the key factors controlling convective cloud systems in the Madden-Julian Oscillation (MJO) over the tropical Indian Ocean is the property of the atmospheric boundary layer. Convective downdrafts and precipitation from the cloud systems produce cold pools in the boundary layer, which can inhibit subsequent development of convection. The recovery time is the time it takes for the boundary layer to return to pre convective conditions. It may affect the variability of the convection on various time scales during the initiation of MJO. This study examines the convective cold pool structure and boundary layer recovery using the NOAA WP-3D aircraft observations, include the flight-level, Doppler radar, and GPS dropsonde data, collected during the Dynamics of MJO (DYNAMO) field campaign from November-December 2011. The depth and strength of convective cold pools are defined by the negative buoyancy, which can be computed from the dropsonde data. Convective downdraft can be affected by environmental water vapor due to entrainment. Mid-level dry air observed during the convectively suppressed phase of MJO seems to enhance convective downdraft, making the cold pools stronger and deeper. Recovery of the cold pools in the boundary layer is determined by the strength and depth of the cold pools and also the air-sea heat and moisture fluxes. Given that the water vapor and surface winds are distinct for the convectively active and suppressed phases of MJO over the Indian Ocean, the aircraft data are stratified by the two different large-scale regimes of MJO. Preliminary results show that the strength and depth of the cold pools are inversely correlated with the surrounding mid-level moisture. During the convectively suppressed phase, the recovery time is ~5-20 hours in relative weak wind condition with small air-sea fluxes. The recovery time is generally less than 6 hours during the active phase of MJO with moist mid-levels and stronger surface wind and air-sea fluxes.

  20. Addiction recovery: its definition and conceptual boundaries.

    Science.gov (United States)

    White, William L

    2007-10-01

    The addiction field's failure to achieve consensus on a definition of "recovery" from severe and persistent alcohol and other drug problems undermines clinical research, compromises clinical practice, and muddles the field's communications to service constituents, allied service professionals, the public, and policymakers. This essay discusses 10 questions critical to the achievement of such a definition and offers a working definition of recovery that attempts to meet the criteria of precision, inclusiveness, exclusiveness, measurability, acceptability, and simplicity. The key questions explore who has professional and cultural authority to define recovery, the defining ingredients of recovery, the boundaries (scope and depth) of recovery, and temporal benchmarks of recovery (when recovery begins and ends). The process of defining recovery touches on some of the most controversial issues within the addictions field.

  1. How Firms Make Boundary Decisions

    DEFF Research Database (Denmark)

    Dobrajska, Magdalena; Billinger, Stephan; Becker, Markus

    2014-01-01

    We report findings from an analysis of 234 firm boundary decisions that a manufacturing firm has made during a 10 year period. Extensive interviews with all major decision makers located both at the headquarters and subsidiaries allow us to examine (a) who was involved in each boundary decision...

  2. Cell boundary fault detection system

    Science.gov (United States)

    Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN

    2011-04-19

    An apparatus and program product determine a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  3. Nucleation of small angle boundaries

    CSIR Research Space (South Africa)

    Nabarro, FRN

    1996-12-01

    Full Text Available The internal stresses induced by the strain gradients in an array of lattice cells delineated by low-angle dislocation boundaries are partially relieved by the creation of new low-angle boundaries. This is shown to be a first-order transition...

  4. GNF Defense in Depth Update

    Energy Technology Data Exchange (ETDEWEB)

    Lingenfelter, Andrew A.; Schneider, Robert J.; Cantonwine, Paul E.; Moore, Brian; Rea, John; Crawford, Douglas C. [Global Nuclear Fuel, P.O. Box 780 M/C H25, Wilmington, NC 28402 (United States)

    2009-06-15

    Global Nuclear Fuel (GNF) has designed, fabricated, and placed into operation more than 9 million fuel rods in approximately 135 thousand assemblies. Customer satisfaction has always compelled GNF to reduce fuel rod failures (defined here as fuel rods that breach or leak in service), However, increasing success with and subsequent expectations for economic performance of nuclear reactor plants have raised broader Industry emphasis on fuel reliability. In 2005, GNF established its Defense-in-Depth (DID) Program for the purpose of focusing attention on the many aspects of fuel design, fabrication, performance, and utilization that affect fuel reliability as well as on the key methods that govern the utilization of GNF fuel. The Program is structured to address each of the identified in-service, fuel failure mechanisms. This paper provides a summary of GNF fuel performance, following previous updates. This paper will discuss recent GNF fuel reliability and channel performance, GNF2 introduction status, and methods. GNF's more recent fuel experience includes approximately 3.8 million GE11/13 (9x9) and GE12/14 (10x10) fuel rods, well over half of which are the GE12/14 design. (Those figures also include roughly 25,000 recently-introduced GNF2 fuel rods.) Reliability, expressed as annual, observed fuel failure rates (i.e., number of rods failed each year divided by the number of opportunities, or fuel rods in service), has improved for each year since 2005. The GNF fuel failure rate for years leading up to 2007 and 2008 has been on the order of 5 to 7 ppm (excluding the corrosion events of 2001-2003), and as of this writing (January 2009) the current in-service failure has decreased to around 1.5 ppm. Failures in GE14 fuel rod failures have been primarily due to debris-fretting (> 60%), with other failures being duty-related or yet undetermined. The only failure observed in GNF2 to date was a single, early-life debris failure in a bundle not equipped with GNF

  5. Depth Perception In Remote Stereoscopic Viewing Systems

    Science.gov (United States)

    Diner, Daniel B.; Von Sydow, Marika

    1989-01-01

    Report describes theoretical and experimental studies of perception of depth by human operators through stereoscopic video systems. Purpose of such studies to optimize dual-camera configurations used to view workspaces of remote manipulators at distances of 1 to 3 m from cameras. According to analysis, static stereoscopic depth distortion decreased, without decreasing stereoscopitc depth resolution, by increasing camera-to-object and intercamera distances and camera focal length. Further predicts dynamic stereoscopic depth distortion reduced by rotating cameras around center of circle passing through point of convergence of viewing axes and first nodal points of two camera lenses.

  6. ACCURACY ANALYSIS OF KINECT DEPTH DATA

    Directory of Open Access Journals (Sweden)

    K. Khoshelham

    2012-09-01

    Full Text Available This paper presents an investigation of the geometric quality of depth data obtained by the Kinect sensor. Based on the mathematical model of depth measurement by the sensor a theoretical error analysis is presented, which provides an insight into the factors influencing the accuracy of the data. Experimental results show that the random error of depth measurement increases with increasing distance to the sensor, and ranges from a few millimetres up to about 4 cm at the maximum range of the sensor. The accuracy of the data is also found to be influenced by the low resolution of the depth measurements.

  7. An Exploration of the Needling Depth in Acupuncture: The Safe Needling Depth and the Needling Depth of Clinical Efficacy

    Directory of Open Access Journals (Sweden)

    Jaung-Geng Lin

    2013-01-01

    Full Text Available Objective. To explore the existing scientific information regarding safe needling depth of acupuncture points and the needling depth of clinical efficacy. Methods. We searched the PubMed, EMBASE, Cochrane, Allied and Complementary Medicine (AMED, The National Center for Complementary and Alternative Medicine (NCCAM, and China National Knowledge Infrastructure (CNKI databases to identify relevant monographs and related references from 1991 to 2013. Chinese journals and theses/dissertations were hand searched. Results. 47 studies were recruited and divided into 6 groups by measuring tools, that is, MRI, in vivo evaluation, CT, ultrasound, dissected specimen of cadavers, and another group with clinical efficacy. Each research was analyzed for study design, definition of safe depth, and factors that would affect the measured depths. Depths of clinical efficacy were discussed from the perspective of de-qi and other clinical observations. Conclusions. Great inconsistency in depth of each point measured from different subject groups and tools exists. The definition of safe depth should be established through standardization. There is also lack of researches to compare the clinical efficacy. A well-designed clinical trial selecting proper measuring tools to decide the actual and advisable needling depth for each point, to avoid adverse effects or complications and promote optimal clinical efficacy, is a top priority.

  8. Boundary Drawing in Clinical Work

    DEFF Research Database (Denmark)

    Meier, Ninna

    The aim of this paper is to show how health care professionals temporarily dissolve and redraw boundaries in their everyday work, in order to coordinate clinical work and facilitate collaboration in patient pathways. Boundaries are social constructions that help us make sense of our complex, social...... world. In health care, formal boundaries are important distinctions that separate health care practitioners into medical specialties, professions and organizational departments. But clinical work also relies on the ability of health care practitioners to collaborate around patients in formal...... arrangements or emergent, temporary teams. Focusing on the cognitive and social boundaries we draw to establish identity and connection (to a profession, team or person) the paper shows how health care professionals can use inter-personal relationships to temporarily dismiss formal boundaries. By redrawing...

  9. Prediction of dislocation boundary characteristics

    DEFF Research Database (Denmark)

    Winther, Grethe

    Plastic deformation of both fcc and bcc metals of medium to high stacking fault energy is known to result in dislocation patterning in the form of cells and extended planar dislocation boundaries. The latter align with specific crystallographic planes, which depend on the crystallographic......) and it is found that to a large extent the dislocations screen each other’s elastic stress fields [3]. The present contribution aims at advancing the previous theoretical analysis of a boundary on a known crystallographic plane to actual prediction of this plane as well as other boundary characteristics....... Crystal plasticity calculations combined with the hypothesis that these boundaries separate domains with local differences in the slip system activity are introduced to address precise prediction of the experimentally observed boundaries. The presentation will focus on two cases from fcc metals...

  10. Mapping the global depth to bedrock for land surface modelling

    Science.gov (United States)

    Shangguan, W.; Hengl, T.; Yuan, H.; Dai, Y. J.; Zhang, S.

    2017-12-01

    Depth to bedrock serves as the lower boundary of land surface models, which controls hydrologic and biogeochemical processes. This paper presents a framework for global estimation of Depth to bedrock (DTB). Observations were extracted from a global compilation of soil profile data (ca. 130,000 locations) and borehole data (ca. 1.6 million locations). Additional pseudo-observations generated by expert knowledge were added to fill in large sampling gaps. The model training points were then overlaid on a stack of 155 covariates including DEM-based hydrological and morphological derivatives, lithologic units, MODIS surfacee reflectance bands and vegetation indices derived from the MODIS land products. Global spatial prediction models were developed using random forests and Gradient Boosting Tree algorithms. The final predictions were generated at the spatial resolution of 250m as an ensemble prediction of the two independently fitted models. The 10-fold cross-validation shows that the models explain 59% for absolute DTB and 34% for censored DTB (depths deep than 200 cm are predicted as 200 cm). The model for occurrence of R horizon (bedrock) within 200 cm does a good job. Visual comparisons of predictions in the study areas where more detailed maps of depth to bedrock exist show that there is a general match with spatial patterns from similar local studies. Limitation of the data set and extrapolation in data spare areas should not be ignored in applications. To improve accuracy of spatial prediction, more borehole drilling logs will need to be added to supplement the existing training points in under-represented areas.

  11. Wind Speed Influences on Marine Aerosol Optical Depth

    Directory of Open Access Journals (Sweden)

    Colin O'Dowd

    2010-01-01

    Full Text Available The Mulcahy (Mulcahy et al., 2008 power-law parameterization, derived at the coastal Atlantic station Mace Head, between clean marine aerosol optical depth (AOD and wind speed is compared to open ocean MODIS-derived AOD versus wind speed. The reported AOD versus wind speed (U was a function of ∼U2. The open ocean MODIS-derived AOD at 550 nm and 860 nm wavelengths, while in good agreement with the general magnitude of the Mulcahy parameterization, follows a power-law with the exponent ranging from 0.72 to 2.47 for a wind speed range of 2–18 m s−1. For the four cases examined, some MODIS cases underestimated AOD while other cases overestimated AOD relative to the Mulcahy scheme. Overall, the results from MODIS support the general power-law relationship of Mulcahy, although some linear cases were also encountered in the MODIS dataset. Deviations also arise between MODIS and Mulcahy at higher wind speeds (>15 m s−1, where MODIS-derived AOD returns lower values as compared to Mulcahy. The results also support the suggestion than wind generated sea spray, under moderately high winds, can rival anthropogenic pollution plumes advecting out into marine environments with wind driven AOD contributing to AOD values approaching 0.3.

  12. Brain response to prosodic boundary cues depends on boundary position

    Directory of Open Access Journals (Sweden)

    Julia eHolzgrefe

    2013-07-01

    Full Text Available Prosodic information is crucial for spoken language comprehension and especially for syntactic parsing, because prosodic cues guide the hearer’s syntactic analysis. The time course and mechanisms of this interplay of prosody and syntax are not yet well understood. In particular, there is an ongoing debate whether local prosodic cues are taken into account automatically or whether they are processed in relation to the global prosodic context in which they appear. The present study explores whether the perception of a prosodic boundary is affected by its position within an utterance. In an event-related potential (ERP study we tested if the brain response evoked by the prosodic boundary differs when the boundary occurs early in a list of three names connected by conjunctions (i.e., after the first name as compared to later in the utterance (i.e., after the second name. A closure positive shift (CPS — marking the processing of a prosodic phrase boundary — was elicited only for stimuli with a late boundary, but not for stimuli with an early boundary. This result is further evidence for an immediate integration of prosodic information into the parsing of an utterance. In addition, it shows that the processing of prosodic boundary cues depends on the previously processed information from the preceding prosodic context.

  13. Three-dimensional geological modelling of anthropogenic deposits at small urban sites: a case study from Sheepcote Valley, Brighton, UK.

    Science.gov (United States)

    Tame, C; Cundy, A B; Royse, K R; Smith, M; Moles, N R

    2013-11-15

    Improvements in computing speed and capacity and the increasing collection and digitisation of geological data now allow geoscientists to produce meaningful 3D spatial models of the shallow subsurface in many large urban areas, to predict ground conditions and reduce risk and uncertainty in urban planning. It is not yet clear how useful this 3D modelling approach is at smaller urban scales, where poorly characterised anthropogenic deposits (artificial/made ground and fill) form the dominant subsurface material and where the availability of borehole and other geological data is less comprehensive. This is important as it is these smaller urban sites, with complex site history, which frequently form the focus of urban regeneration and redevelopment schemes. This paper examines the extent to which the 3D modelling approach previously utilised at large urban scales can be extended to smaller less well-characterised urban sites, using a historic landfill site in Sheepcote Valley, Brighton, UK as a case study. Two 3D models were generated and compared using GSI3D™ software, one using borehole data only, one combining borehole data with local geological maps and results from a desk study (involving collation of available site data, including ground contour plans). These models clearly delimit the overall subsurface geology at the site, and allow visualisation and modelling of the anthropogenic deposits present. Shallow geophysical data collected from the site partially validate the 3D modelled data, and can improve GSI3D™ outputs where boundaries of anthropogenic deposits may not be clearly defined by surface, contour or borehole data. Attribution of geotechnical and geochemical properties to the 3D model is problematic without intrusive investigations and sampling. However, combining available borehole data, shallow geophysical methods and site histories may allow attribution of generic fill properties, and consequent reduction of urban development risk and

  14. Impact of anthropogenic aerosols on present and future climate

    International Nuclear Information System (INIS)

    Deandreis, C.

    2008-03-01

    Aerosols influence the Earth radiative budget both through their direct effect (scattering and absorption of solar radiation) and their indirect effect (impacts on cloud microphysics). The role of anthropogenic aerosol in climate change has been recognized to be significant when compared to the one of greenhouse gases. Despite many studies on this topic, the assessments of both anthropogenic aerosol radiative forcing and their impacts on meteorological variables are still very uncertain. Major reasons for these uncertainties stem from the insufficient knowledge of the emissions sources and of the processes of formation, transformation and deposition. Models used to study climate are often inadequate to study aerosol processes because of coarse spatial and temporal scales. Uncertainties due to the parameterization of the aerosol are added to the uncertainties in the representation of large scale dynamics and physical processes such as transport, hydrological cycle and radiative budget. To predict, the role of the anthropogenic aerosol impact in the future climate change, I have addressed some of these key uncertainties. In this study, I simulate interactively aerosols processes in a climate model in order to improve the estimation of their direct and indirect effects. I estimate a modification of the top of the atmosphere net flux of 60% for the present period. I also show that, for future projection, the representation of the emissions source is an other important source of error. I assess that aerosols radiative forcing differ by 40% between simulations performed with 2 different emissions inventories. These inventories are representative for a high and a low limit in term of carbonaceous aerosols emissions for the 2050 horizon. (author)

  15. Anthropogenic disturbances jeopardize biodiversity conservation within tropical rainforest reserves.

    Science.gov (United States)

    Martínez-Ramos, Miguel; Ortiz-Rodríguez, Iván A; Piñero, Daniel; Dirzo, Rodolfo; Sarukhán, José

    2016-05-10

    Anthropogenic disturbances affecting tropical forest reserves have been documented, but their ecological long-term cumulative effects are poorly understood. Habitat fragmentation and defaunation are two major anthropogenic threats to the integrity of tropical reserves. Based on a long-term (four decades) study, we document how these disturbances synergistically disrupt ecological processes and imperil biodiversity conservation and ecosystem functioning at Los Tuxtlas, the northernmost tropical rainforest reserve in the Americas. Deforestation around this reserve has reduced the reserve to a medium-sized fragment (640 ha), leading to an increased frequency of canopy-gap formation. In addition, hunting and habitat loss have caused the decline or local extinction of medium and large herbivores. Combining empirical, experimental, and modeling approaches, we support the hypothesis that such disturbances produced a demographic explosion of the long-lived (≈120 y old, maximum height of 7 m) understory palm Astrocaryum mexicanum, whose population has increased from 1,243-4,058 adult individuals per hectare in only 39 y (annual growth rate of ca 3%). Faster gap formation increased understory light availability, enhancing seed production and the growth of immature palms, whereas release from mammalian herbivory and trampling increased survival of seedlings and juveniles. In turn, the palm's demographic explosion was followed by a reduction of tree species diversity, changing forest composition, altering the relative contribution of trees to forest biomass, and disrupting litterfall dynamics. We highlight how indirect anthropogenic disturbances (e.g., palm proliferation) on otherwise protected areas threaten tropical conservation, a phenomenon that is currently eroding the planet's richest repositories of biodiversity.

  16. Detecting Anthropogenic Disturbance on Weathering and Erosion Processes

    Science.gov (United States)

    Vanacker, V.; Schoonejans, J.; Bellin, N.; Ameijeiras-Mariño, Y.; Opfergelt, S.; Christl, M.

    2014-12-01

    Anthropogenic disturbance of natural vegetation can profoundly alter the physical, chemical and biological processes within soils. Rapid removal of topsoil during intense farming can result in an imbalance between soil production through chemical weathering and physical erosion, with direct implications on local biogeochemical cycling. However, the feedback mechanisms between soil erosion, chemical weathering and biogeochemical cycling in response to anthropogenic forcing are not yet fully understood. In this paper, we analyze dynamic soil properties for a rapidly changing anthropogenic landscape in the Spanish Betic Cordillera; and focus on the coupling between physical erosion, soil production and soil chemical weathering. Modern erosion rates were quantified through analysis of sediment deposition volumes behind check dams, and represent catchment-average erosion rates over the last 10 to 50 years. Soil production rates are derived from in-situ produced 10Be nuclide concentrations, and represent long-term flux rates. In each catchment, soil chemical weathering intensities were calculated for two soil-regolith profiles. Although Southeast Spain is commonly reported as the European region that is most affected by land degradation, modern erosion rates are low (140 t ha-1 yr-1). About 50 % of the catchments are losing soils at a rate of less than 60 t km-2 yr-1. Our data show that modern erosion rates are roughly of the same magnitude as the long-term or cosmogenically-derived erosion rates in the Betic Cordillera. Soils developed on weathered metamorphic rocks have no well-developed profile characteristics, and are generally thin and stony. Nevertheless, soil chemical weathering intensities are high; and question the occurrence of past soil truncation.

  17. A tiered observational system for anthropogenic methane emissions

    Science.gov (United States)

    Duren, R. M.; Miller, C. E.; Hulley, G. C.; Hook, S. J.; Sander, S. P.

    2014-12-01

    Improved understanding of anthropogenic methane emissions is required for closing the global carbon budget and addressing priority challenges in climate policy. Several decades of top-down and bottom-up studies show that anthropogenic methane emissions are systematically underestimated in key regions and economic sectors. These uncertainties have been compounded by the dramatic rise of disruptive technologies (e.g., the transformation in the US energy system due to unconventional gas and oil production). Methane flux estimates derived from inverse analyses and aircraft-based mass balance approaches underscore the disagreement in nationally and regionally reported methane emissions as well as the possibility of a long-tail distribution in fugitive emissions spanning the US natural gas supply chain; i.e. a small number of super-emitters may be responsible for most of the observed anomalies. Other studies highlight the challenges of sectoral and spatial attribution of fugitive emissions - including the relative contributions of dairies vs oil and gas production or disentangling the contributions of natural gas transmission, distribution, and consumption or landfill emissions in complex urban environments. Limited observational data remains a foundational barrier to resolving these challenges. We present a tiered observing system strategy for persistent, high-frequency monitoring over large areas to provide remote detection, geolocation and quantification of significant anthropogenic methane emissions across cities, states, basins and continents. We describe how this would both improve confidence in methane emission estimates and expedite resolution of fugitive emissions and leaks. We summarize recent prototype field campaigns that employ multiple vantage points and measurement techniques (including NASA's CARVE and HyTES aircraft and PanFTS instrument on Mt Wilson). We share preliminary results of this tiered observational approach including examples of individual

  18. Stable nitrogen isotopes in coastal macroalgae: geographic and anthropogenic variability.

    Science.gov (United States)

    Viana, Inés G; Bode, Antonio

    2013-01-15

    Growing human population adds to the natural nitrogen loads to coastal waters. Both anthropogenic and natural nitrogen is readily incorporated in new biomass, and these different nitrogen sources may be traced by the measurement of the ratio of stable nitrogen isotopes (δ(15)N). In this study δ(15)N was determined in two species of macroalgae (Ascophyllum nodosum and Fucus vesiculosus), and in nitrate and ammonium to determine the relative importance of anthropogenic versus natural sources of nitrogen along the coast of NW Spain. Both algal species and nitrogen sources showed similar isotopic enrichment for a given site, but algal δ(15)N was not related to either inorganic nitrogen concentrations or δ(15)N in the water samples. The latter suggests that inorganic nitrogen inputs are variable and do not always leave an isotopic trace in macroalgae. However, a significant linear decrease in macroalgal δ(15)N along the coast is consistent with the differential effect of upwelling. Besides this geographic variability, the influence of anthropogenic nitrogen sources is evidenced by higher δ(15)N in macroalgae from rias and estuaries compared to those from open coastal areas and in areas with more than 15×10(3) inhabitants in the watershed. These results indicate that, in contrast with other studies, macroalgal δ(15)N is not simply related to either inorganic nitrogen concentrations or human population size but depends on other factors as the upwelling or the efficiency of local waste treatment systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Will Outer Tropical Cyclone Size Change due to Anthropogenic Warming?

    Science.gov (United States)

    Schenkel, B. A.; Lin, N.; Chavas, D. R.; Vecchi, G. A.; Knutson, T. R.; Oppenheimer, M.

    2017-12-01

    Prior research has shown significant interbasin and intrabasin variability in outer tropical cyclone (TC) size. Moreover, outer TC size has even been shown to vary substantially over the lifetime of the majority of TCs. However, the factors responsible for both setting initial outer TC size and determining its evolution throughout the TC lifetime remain uncertain. Given these gaps in our physical understanding, there remains uncertainty in how outer TC size will change, if at all, due to anthropogenic warming. The present study seeks to quantify whether outer TC size will change significantly in response to anthropogenic warming using data from a high-resolution global climate model and a regional hurricane model. Similar to prior work, the outer TC size metric used in this study is the radius in which the azimuthal-mean surface azimuthal wind equals 8 m/s. The initial results from the high-resolution global climate model data suggest that the distribution of outer TC size shifts significantly towards larger values in each global TC basin during future climates, as revealed by 1) statistically significant increase of the median outer TC size by 5-10% (p<0.05) according to a 1,000-sample bootstrap resampling approach with replacement and 2) statistically significant differences between distributions of outer TC size from current and future climate simulations as shown using two-sample Kolmogorov Smirnov testing (p<<0.01). Additional analysis of the high-resolution global climate model data reveals that outer TC size does not uniformly increase within each basin in future climates, but rather shows substantial locational dependence. Future work will incorporate the regional mesoscale hurricane model data to help focus on identifying the source of the spatial variability in outer TC size increases within each basin during future climates and, more importantly, why outer TC size changes in response to anthropogenic warming.

  20. Evaluation of sulfate aerosol optical depths over the North Atlantic and comparison with satellite observations

    International Nuclear Information System (INIS)

    Berkowitz, C.M.; Ghan, S.J.; Benkovitz, C.M.; Wagener, R.; Nemesure, S.; Schwartz, S.E.

    1993-11-01

    It has been postulated that scattering of sunlight by aerosols can significantly reduce the amount of solar energy absorbed by the climate system. Aerosol measurement programs alone cannot provide all the information needed to evaluate the radiative forcing due to anthropogenic aerosols. Thus, comprehensive global-scale aerosol models, properly validated against surface-based and satellite measurements, are a fundamental tool for evaluating the impacts of aerosols on the planetary radiation balance. Analyzed meteorological fields from the European Centre for Medium-Range Weather Forecasts are used to drive a modified version of the PNL Global Chemistry Model, applied to the atmospheric sulfur cycle. The resulting sulfate fields are used to calculate aerosol optical depths, which in turn are compared to estimates of aerosol optical depth based on satellite observations

  1. Predicting the impacts of anthropogenic disturbances on marine populations

    DEFF Research Database (Denmark)

    Nabe-Nielsen, Jacob; van Beest, Floris; Grimm, Volker

    Marine ecosystems are increasingly exposed to anthropogenic disturbances that cause animals to change behavior and move away from potential foraging grounds. Here we present a process-based modeling framework for assessing population consequences of such sub-lethal behavioral effects. It builds...... on how disturbances influence animal movements, and how this in turn affect their foraging and energetics. The animals’ tendency to move away from disturbances is directly related to the experienced noise level. The reduced foraging in noisy areas affects the animals’ energy budget, fitness...... that determine animal fitness, are expected to have high predictive power in novel environments, making them ideal tools for marine management....

  2. Study of revitalisation methods on anthropogenic soils - Stara Beta locality

    International Nuclear Information System (INIS)

    Svec, J.

    2003-01-01

    Coal mining in Krusne Mts. region is significant anthropogenic pressure. Thus it is necessary to restore land devastated by mining and to bring back its natural functions. Since 2002 locality of Stara Beta, Jan Sverma quarry hopper is being monitored. In 1992 restoration works at Stara Beta were opened. Monitoring is aimed at evaluation development of restoration processes, soil and vegetation caring. Areas where restoration works are realized represent about 60 square kilometres in Most district. The aim is to prepare necessary groundwork for methodology on caring of wood vegetation on restored areas

  3. Balance of anthropogenic radionuclides in the Japan Sea

    International Nuclear Information System (INIS)

    Tsuneyama, Teppei; Ito, Toshimichi; Otosaka, Shigeyoshi

    2007-01-01

    Concentration data of 90 Sr, 137 Cs and 239+240 Pu between 1960 and 2002 were examined to estimate the balance of anthropogenic radionuclides in water of the Japan Sea. Until 1960s, they had accumulated mainly in the upper layer of the Japan Sea. After that, the amount of the radionuclides decreased as a result of termination of global fallout and exchange of surface water. The trend turned into increase since 1980s and the amounts will continue to increase for a while. (author)

  4. Birth of a closed universe, and the anthropogenic principle

    International Nuclear Information System (INIS)

    Zel'dovich, Y.

    1981-01-01

    A scenario is proposed for the evolution of the universe, starting with the quantum birth of a closed world at a minimum in the self-consistent de Sitter cosmological solution with vacuum polarization. The closure of the universe and the permanently supercritical value of its density follow directly from a single condition: that quantum birth take place. The perturbations must be small in order that the de Sitter phase may be sufficiently prolonged to ensure a protracted Friedmann plasma-matter expansion. Thus a universe having the properties we observe may in fact have been singled out by the anthropogenic principle

  5. Stable nitrogen isotopes in coastal macroalgae: geographic and anthropogenic variability

    OpenAIRE

    González-Viana, I. (Inés); Bode, A. (Antonio)

    2013-01-01

    Proyectos ANILE (CTM2009-08396 and CTM2010-08804-E) del Plan Nacional de I+D+i y RADIALES del Instituto Español de Oceanografía (IEO). I.G.V. recibió un contrato FPI del Ministerio de Economía y Competividad Growing human population add to the natural nitrogen loads to coastal waters. As the excess nitrogen is readily incorporated in new biomass anthropogenic and natural nitrogen sources may be traced by the measurement of stable nitrogen isotopes (δ15N). In this study δ15N was dete...

  6. Depth image enhancement using perceptual texture priors

    Science.gov (United States)

    Bang, Duhyeon; Shim, Hyunjung

    2015-03-01

    A depth camera is widely used in various applications because it provides a depth image of the scene in real time. However, due to the limited power consumption, the depth camera presents severe noises, incapable of providing the high quality 3D data. Although the smoothness prior is often employed to subside the depth noise, it discards the geometric details so to degrade the distance resolution and hinder achieving the realism in 3D contents. In this paper, we propose a perceptual-based depth image enhancement technique that automatically recovers the depth details of various textures, using a statistical framework inspired by human mechanism of perceiving surface details by texture priors. We construct the database composed of the high quality normals. Based on the recent studies in human visual perception (HVP), we select the pattern density as a primary feature to classify textures. Upon the classification results, we match and substitute the noisy input normals with high quality normals in the database. As a result, our method provides the high quality depth image preserving the surface details. We expect that our work is effective to enhance the details of depth image from 3D sensors and to provide a high-fidelity virtual reality experience.

  7. A new method for depth profiling

    International Nuclear Information System (INIS)

    Chittleborough, C.W.; Chaudhri, M.A.; Rouse, J.L.

    1978-01-01

    A simple method for obtaining depth profiles of concentrations has been developed for charged particle induced nuclear reactions which produce γ-rays or neutrons. This method is particularly suitable for non-resonant reactions but is also applicable to resonant reactions and can examine the concentration of the sought nuclide throughout the entire activation depth of the incoming particles in the matrix

  8. Boundaries of dreams, boundaries of dreamers: thin and thick boundaries as a new personality measure.

    Science.gov (United States)

    Hartmann, E

    1989-11-01

    Previous work by the author and his collaborators on frequent nightmare sufferers demonstrated that these people had striking personality characteristics which could be called "thin boundaries" in a number of different senses. In order to measure thin and thick boundaries, a 145-item questionnaire, the Boundary Questionnaire, has been developed which has now been taken by over 1,000 persons. Preliminary results are presented indicating that, as predicted a priori, several new groups of nightmare sufferers and groups of art students scored usually "thin," whereas a group of naval officers had usually "thick" boundaries. Overall, thinness on the Boundary Questionnaire correlated highly positively (r = .40) with frequency of dream recall and also significantly (r = .16) with length of sleep.

  9. Structure and Composition of Mangrove Associations in Tubli Bay of Bahrain as Affected by Municipal Wastewater Discharge and Anthropogenic Sedimentation

    Directory of Open Access Journals (Sweden)

    Kholoud Abou Seedo

    2017-01-01

    Full Text Available The effects of municipal wastewater discharge and anthropogenic sedimentation on the structure and composition of gray mangrove (Avicennia marina (Forsk. Vierh. communities along Tubli Bay coastlines in Bahrain were investigated. Growth and regeneration of mangrove were measured, and its community was characterized. Sediment profile was analyzed for texture, pH, and salinity. Mangrove area covered by sand depositions was measured using Google Earth Pro. ANOVA and regression tests were employed in the analysis of the data. Results indicated that mangrove overwhelmingly dominated plant community in the study area, which was zoned by a community of other salt-tolerant species. Three main habitats exist in the study area with high similarity in their floristic composition. Species richness and the number of habitats were low due to the aridity and high sediment salinity. The dilution effect of the secondary treated wastewater had a favorable effect on height and diameters of mangrove trees. However, no differences were observed in leaf area index, basal area, and density of mangrove. The long-term accumulation of anthropogenic sedimentation had a detrimental effect on the mangrove community, expressed in swath death of mangrove trees due to root burials and formation of high topography within the community boundaries.

  10. Depth of origin of magma in eruptions.

    Science.gov (United States)

    Becerril, Laura; Galindo, Ines; Gudmundsson, Agust; Morales, Jose Maria

    2013-09-26

    Many volcanic hazard factors--such as the likelihood and duration of an eruption, the eruption style, and the probability of its triggering large landslides or caldera collapses--relate to the depth of the magma source. Yet, the magma source depths are commonly poorly known, even in frequently erupting volcanoes such as Hekla in Iceland and Etna in Italy. Here we show how the length-thickness ratios of feeder dykes can be used to estimate the depth to the source magma chamber. Using this method, accurately measured volcanic fissures/feeder-dykes in El Hierro (Canary Islands) indicate a source depth of 11-15 km, which coincides with the main cloud of earthquake foci surrounding the magma chamber associated with the 2011-2012 eruption of El Hierro. The method can be used on widely available GPS and InSAR data to calculate the depths to the source magma chambers of active volcanoes worldwide.

  11. Optimal boundary control and boundary stabilization of hyperbolic systems

    CERN Document Server

    Gugat, Martin

    2015-01-01

    This brief considers recent results on optimal control and stabilization of systems governed by hyperbolic partial differential equations, specifically those in which the control action takes place at the boundary.  The wave equation is used as a typical example of a linear system, through which the author explores initial boundary value problems, concepts of exact controllability, optimal exact control, and boundary stabilization.  Nonlinear systems are also covered, with the Korteweg-de Vries and Burgers Equations serving as standard examples.  To keep the presentation as accessible as possible, the author uses the case of a system with a state that is defined on a finite space interval, so that there are only two boundary points where the system can be controlled.  Graduate and post-graduate students as well as researchers in the field will find this to be an accessible introduction to problems of optimal control and stabilization.

  12. Boundary integral methods for unsaturated flow

    International Nuclear Information System (INIS)

    Martinez, M.J.; McTigue, D.F.

    1990-01-01

    Many large simulations may be required to assess the performance of Yucca Mountain as a possible site for the nations first high level nuclear waste repository. A boundary integral equation method (BIEM) is described for numerical analysis of quasilinear steady unsaturated flow in homogeneous material. The applicability of the exponential model for the dependence of hydraulic conductivity on pressure head is discussed briefly. This constitutive assumption is at the heart of the quasilinear transformation. Materials which display a wide distribution in pore-size are described reasonably well by the exponential. For materials with a narrow range in pore-size, the exponential is suitable over more limited ranges in pressure head. The numerical implementation of the BIEM is used to investigate the infiltration from a strip source to a water table. The net infiltration of moisture into a finite-depth layer is well-described by results for a semi-infinite layer if αD > 4, where α is the sorptive number and D is the depth to the water table. the distribution of moisture exhibits a similar dependence on αD. 11 refs., 4 figs.,

  13. Distributed Tuning of Boundary Resources

    DEFF Research Database (Denmark)

    Eaton, Ben; Elaluf-Calderwood, Silvia; Sørensen, Carsten

    2015-01-01

    in the context of a paradoxical tension between the logic of generative and democratic innovations and the logic of infrastructural control. Boundary resources play a critical role in managing the tension as a firm that owns the infrastructure can secure its control over the service system while independent...... firms can participate in the service system. In this study, we explore the evolution of boundary resources. Drawing on Pickering’s (1993) and Barrett et al.’s (2012) conceptualizations of tuning, the paper seeks to forward our understanding of how heterogeneous actors engage in the tuning of boundary...

  14. Easy boundary definition for EGUN

    International Nuclear Information System (INIS)

    Becker, R.

    1989-01-01

    The relativistic electron optics program EGUN has reached a broad distribution, and many users have asked for an easier way of boundary input. A preprocessor to EGUN has been developed that accepts polygonal input of boundary points, and offers features such as rounding off of corners, shifting and squeezing of electrodes and simple input of slanted Neumann boundaries. This preprocessor can either be used on a PC that is linked to a mainframe using the FORTRAN version of EGUN, or in connection with the version EGNc, which also runs on a PC. In any case, direct graphic response on the PC greatly facilitates the creation of correct input files for EGUN. (orig.)

  15. Easy boundary definition for EGUN

    Science.gov (United States)

    Becker, R.

    1989-06-01

    The relativistic electron optics program EGUN [1] has reached a broad distribution, and many users have asked for an easier way of boundary input. A preprocessor to EGUN has been developed that accepts polygonal input of boundary points, and offers features such as rounding off of corners, shifting and squeezing of electrodes and simple input of slanted Neumann boundaries. This preprocessor can either be used on a PC that is linked to a mainframe using the FORTRAN version of EGUN, or in connection with the version EGNc, which also runs on a PC. In any case, direct graphic response on the PC greatly facilitates the creation of correct input files for EGUN.

  16. Easy boundary definition for EGUN

    Energy Technology Data Exchange (ETDEWEB)

    Becker, R. (Frankfurt Univ. (Germany, F.R.). Inst. fuer Angewandte Physik)

    1989-06-01

    The relativistic electron optics program EGUN has reached a broad distribution, and many users have asked for an easier way of boundary input. A preprocessor to EGUN has been developed that accepts polygonal input of boundary points, and offers features such as rounding off of corners, shifting and squeezing of electrodes and simple input of slanted Neumann boundaries. This preprocessor can either be used on a PC that is linked to a mainframe using the FORTRAN version of EGUN, or in connection with the version EGNc, which also runs on a PC. In any case, direct graphic response on the PC greatly facilitates the creation of correct input files for EGUN. (orig.).

  17. Sediment mixing and accumulation rate effects on radionuclide depth profiles in Hudson estuary sediments

    International Nuclear Information System (INIS)

    Olsen, C.R.; Simpson, H.J.; Peng, T.; Bopp, R.F.; Trier, R.M.

    1981-01-01

    Measured anthropogenic radionuclide profiles in sediment cores from the Hudson River estuary were compared with profiles computed by using known input histories of radionuclides to the estuary and mixing coefficients which decreased exponentially with depth in the sediment. Observed 134 Cs sediment depth profiles were used in the mixing rate computation because reactor releases were the only significant source for this nuclide, whereas the inputs of 137 Cs and /sup 239.240/Pu to the estuary were complicated by runoff or erosion in upstream areas, in addition to direct fallout from precipitation. Our estimates for the rates of surface sediment mixing in the low salinity reach of the estuary range from 0.25 to 1 cm 2 /yr, or less. In some areas of the harbor adjacent to New York City, were fine-particle accumulation rates are generally >3 cm/yr, and often as high as 10 to 20 cm/yr, sediment mixing rates as high as 10 cm 2 /yr would have little effect on radionuclide peak distributions. Consequently, anthropogenic radionuclide maximum activities in subsurface sediments of the Hudson appear to be useful as time-stratigraphic reference levels, which can be correlated with periods of maximum radionuclide inputs for estimating rates and patterns of sediment accumulation

  18. Nuclear Renaissance in an Era of Anthropogenic Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Bird, John [Bruce Power, Box 3000 B06, Tiverton, Ontario N0G 2T0 (Canada)

    2008-07-01

    This paper substantiates the anthropogenic origin of climate change, demonstrates the resulting consequences, and thereby establishes the need for a nuclear renaissance over the next thirty years. First, the mechanisms behind the natural cycles in global warming, specifically, cycles of precession and eccentricity in Earth's orbit, as measured in ice cores, are compared to the mechanisms of anthropogenic warming, revealing the scientific basis for the observed correlation between carbon dioxide and temperature. Second, the resulting climate change is exemplified by key results from experiments performed by the author in the Arctic and at the South Geographic Pole, and the author's experience of Switzerland's costliest natural catastrophe - the flash flood of 2005. Third, although facing barriers such as research and development requirements, political will and public acceptance, the potential for nuclear power to triple to 1,000 GWe by 2050 would mitigate climate change by holding carbon dioxide concentration below 500 ppm, thereby challenging the younger nuclear generation to contribute to the most important issue facing humanity. (authors)

  19. Nuclear Renaissance in an Era of Anthropogenic Climate Change

    International Nuclear Information System (INIS)

    Bird, John

    2008-01-01

    This paper substantiates the anthropogenic origin of climate change, demonstrates the resulting consequences, and thereby establishes the need for a nuclear renaissance over the next thirty years. First, the mechanisms behind the natural cycles in global warming, specifically, cycles of precession and eccentricity in Earth's orbit, as measured in ice cores, are compared to the mechanisms of anthropogenic warming, revealing the scientific basis for the observed correlation between carbon dioxide and temperature. Second, the resulting climate change is exemplified by key results from experiments performed by the author in the Arctic and at the South Geographic Pole, and the author's experience of Switzerland's costliest natural catastrophe - the flash flood of 2005. Third, although facing barriers such as research and development requirements, political will and public acceptance, the potential for nuclear power to triple to 1,000 GWe by 2050 would mitigate climate change by holding carbon dioxide concentration below 500 ppm, thereby challenging the younger nuclear generation to contribute to the most important issue facing humanity. (authors)

  20. Benthic communities under anthropogenic pressure show resilience across the Quaternary.

    Science.gov (United States)

    Martinelli, Julieta C; Soto, Luis P; González, Jorge; Rivadeneira, Marcelo M

    2017-09-01

    The Southeast Pacific is characterized by rich upwelling systems that have sustained and been impacted by human groups for at least 12 ka. Recent fishing and aquaculture practices have put a strain on productive coastal ecosystems from Tongoy Bay, in north-central Chile. We use a temporal baseline to determine whether potential changes to community structure and composition over time are due to anthropogenic factors, natural climatic variations or both. We compiled a database ( n  = 33 194) with mollusc species abundances from the Mid-Pleistocene, Late Pleistocene, Holocene, dead shell assemblages and live-sampled communities. Species richness was not significantly different, neither were diversity and evenness indices nor rank abundance distributions. There is, however, an increase in relative abundance for the cultured scallop Argopecten , while the previously dominant clam Mulinia is locally very rare. Results suggest that impacts from both natural and anthropogenic stressors need to be better understood if benthic resources are to be preserved. These findings provide the first Pleistocene temporal baseline for the south Pacific that shows that this highly productive system has had the ability to recover from past alterations, suggesting that if monitoring and management practices continue to be implemented, moderately exploited communities from today have hopes for recovery.

  1. Sources of anthropogenic radionuclides in the environment: a review

    International Nuclear Information System (INIS)

    Hu Qinhong; Weng Jianqing; Wang Jinsheng

    2010-01-01

    Studies of radionuclides in the environment have entered a new era with the renaissance of nuclear energy and associated fuel reprocessing, geological disposal of high-level nuclear wastes, and concerns about national security with respect to nuclear non-proliferation. This work presents an overview on sources of anthropogenic radionuclides in the environment, as well as a brief discussion of salient geochemical behavior of important radionuclides. We first discuss the following major anthropogenic sources and current developments that have lead, or could potentially contribute, to the radionuclide contamination of the environment: (1) nuclear weapons program; (2) nuclear weapons testing; (3) nuclear power plants; (4) uranium mining and milling; (5) commercial fuel reprocessing; (6) geological repository of high-level nuclear wastes that include radionuclides might be released in the future, and (7) nuclear accidents. Then, we briefly summarize the inventory of radionuclides 99 Tc and 129 I, as well as geochemical behavior for radionuclides 99 Tc, 129 I, and 237 Np, because of their complex geochemical behavior, long half-lives, and presumably high mobility in the environment; biogeochemical cycling and environment risk assessment must take into account speciation of these redox-sensitive radionuclides.

  2. Influence of anthropogenic aerosol on solar radiation in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Ten Brink, H M

    1993-12-01

    Backscatter of solar radiation by aerosol and the cooling thus induced, is the single largest uncertainty factor in assessing the climate effect of the greenhouse gases. The dominant reason for the uncertainty in the aerosol effect is its local nature. Therefore it is only via localized efforts that estimates can be improved. It is the aim of the present study to better assess the amount of solar radiation intercepted by aerosol, especially that of aerosol of anthropogenic origin in Europe. The assessment is realized along three interconnected approaches. First, empirical factors stemming from measurements in the US and used in the present estimates of the reflection of solar radiation by anthropogenic aerosol are checked for their validity in the European domain. Secondly, historical data on solar flux in Europe are related to the historic trend in aerosol loading. Finally, a sophisticated aerosol and cloud (radiation) module is developed for incorporation in a climate model. The radiation module uses aerosol characteristics as measured in the field and is validated via solar radiation measurements. The concerted investigation started in January 1993. The data obtained in the first phase of the study formed the basis for the definite detailed approach and will therefore be reported in this text. 1 fig., 9 refs.

  3. Global analysis of anthropogenic debris ingestion by sea turtles.

    Science.gov (United States)

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-02-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level. © 2013 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.

  4. Revised budget for the oceanic uptake of anthropogenic carbon dioxide

    Science.gov (United States)

    Sarmiento, J.L.; Sundquist, E.T.

    1992-01-01

    TRACER-CALIBRATED models of the total uptake of anthropogenic CO2 by the world's oceans give estimates of about 2 gigatonnes carbon per year1, significantly larger than a recent estimate2 of 0.3-0.8 Gt C yr-1 for the synoptic air-to-sea CO2 influx. Although both estimates require that the global CO2 budget must be balanced by a large unknown terrestrial sink, the latter estimate implies a much larger terrestrial sink, and challenges the ocean model calculations on which previous CO2 budgets were based. The discrepancy is due in part to the net flux of carbon to the ocean by rivers and rain, which must be added to the synoptic air-to-sea CO2 flux to obtain the total oceanic uptake of anthropogenic CO2. Here we estimate the magnitude of this correction and of several other recently proposed adjustments to the synoptic air-sea CO2 exchange. These combined adjustments minimize the apparent inconsistency, and restore estimates of the terrestrial sink to values implied by the modelled oceanic uptake.

  5. Geochemical record of anthropogenic impacts on Lake Valencia, Venezuela

    International Nuclear Information System (INIS)

    Xu Yunping; Jaffe, Rudolf

    2009-01-01

    Bulk geochemical parameters and organic matter biomarkers in a short, high resolution gravity core (Lake Valencia, Venezuela) were examined to reconstruct anthropogenic impacts on the lake's conditions. During the period of ca. 1840-1990, sedimentary organic matter was characterized by high contents of total organic C (TOC) and total N (TN), low TOC/TN values as well as relatively enriched δ 13 C and δ 15 N signals, suggesting a primary autochthonous (algae and macrophytes) organic matter origin. The occurrence of large amounts of C 23 and C 25 relative to C 29 and C 31 n-alkanes indicated substantial inputs from submerged/floating macrophytes. The variations of C 32 15-keto-ol, tetrahymanol, diploptene, C 32 bishomohopanol, 2-methylhopane, dinosterol and isoarborinol concentrations over the investigated period record changes in the planktonic community structure, including Botryococcus braunii, bacteriavore ciliates, cyanobacteria, Eustigmatophytes and dinoflagellates. A principal shift occurred in the 1910s when cyanobacteria and dinoflagellates became more abundant at the expense and decline of B. braunii and Eustigmatophytes, likely related to increasing anthropogenic activity around the lake. A second shift (less obvious) occurred in the 1960s when cyanobacteria became the sole predominant planktonic class, coinciding with further deterioration of lake conditions

  6. Natural and anthropogenic hydrocarbons in the White sea ecosystem

    International Nuclear Information System (INIS)

    Nemirovskaya, I.; Shevchenko, V.; Bogunov, A.

    2006-01-01

    An investigation of aliphatic hydrocarbons (AHC) and polycyclic aromatic hydrocarbons (PAH) concentrations in the White Sea was presented. The study was conducted to determine natural and anthropogenic hydrocarbon (HC) concentrations in order to aid in future zoning plans. Hydrocarbons were extracted from samples of aerosols, ice, water, particulate matter, phyto- and zooplankton, and bottom sediments. Results of the study suggested that HC concentrations in aerosols above the White Sea were lower than in marine aerosols above the southeastern Atlantic and lower than Alkane concentrations in aerosols in the Mediterranean Sea. A study of PAH behaviour in Northern Dvina estuaries showed that the submicron fractions contained light polyarenes. Particulate matter collected in sedimentation traps was enriched in phenanthrene, fluoranthene, and pyrene. Aliphatic HC enrichment was due to the presence of phytoplankton and other microorganisms. Between 54 per cent and 85 per cent of initial organic matter was consumed during diagenesis in the bottom sediments, indicating a high rate of HC transformation. It was suggested that the majority of oil HC transported with river water is precipitated. Fluoranthene was the dominant PAH in the study, and was assumed to be caused by natural transformation of PAH composition during distant atmospheric transport. Pyrogenic contamination of the bottom sediments was attributed to an aluminium plant. It was concluded that the detection of significant amounts of HC is not direct evidence of their anthropogenic origins. 31 refs., 3 tabs., 7 figs

  7. The anthropogenic influence on carbonaceous aerosol in the European background

    Energy Technology Data Exchange (ETDEWEB)

    May, Barbara; Wagenbach, Dietmar; Hammer, Samuel (Institut fuer Umweltphysik, Univ. Heidelberg (Germany)). e-mail: barbara.may@iup.uni-heidelberg.de; Steier, Peter (VERA laboratory, Univ. of Vienna (Austria)); Puxbaum, Hans (Inst. for Chemical Technologies and Analytics, Vienna Univ. of Technology, Vienna (Austria)); Pio, Casimiro (CESAM and Dept. of Environment, Univ. of Aveiro (Portugal))

    2009-07-01

    To constrain the relatively uncertain anthropogenic impact on the organic aerosol load, radiocarbon analyses were performed on aerosol samples, collected year-round, at six non-urban sites including a maritime background and three remote mountain stations, lying on a west-east transect over Western Europe. From a crude three component model supported by TOC and levoglucosan filter data, the fossil fuel, biomass burning and biogenic TOC fraction are estimated, showing at all stations year-round, a relatively constant fossil fuel fraction of around (26 +- 6)%, a dominant biogenic contribution of on average (73 +- 7)% in summer and the continental as well as the maritime background TOC to be only about 50% biogenic. Assuming biomass burning as completely anthropogenic, the carbonaceous aerosol concentration at the mountain sites was found to have increased by a factor of up to (1.4 +- 0.2) in summer and up to (2.5 +- 1.0) in winter. This figure is significantly lower, however, than the respective TOC change since pre-industrial times seen in an Alpine ice core. Reconciling both observations would require an increase, since pre-industrial times, of the background biogenic aerosol load, which is estimated at a factor of 1.3-1.7.

  8. The anthropogenic influence on carbonaceous aerosol in the European background

    Energy Technology Data Exchange (ETDEWEB)

    May, Barbara; Wagenbach, Dietmar; Hammer, Samuel (Inst. fuer Umweltphysik, Univ. Heidelberg (Germany)). e-mail: barbara.may@iup.uni-heidelberg.de; Steier, Peter (VERA laboratory, Univ. of Vienna (Austria)); Puxbaum, Hans (Inst. for Chemical Technologies and Analytics, Vienna Univ. of Technology (Austria)); Pio, Casimiro (CESAM and Dept. of Environment, Univ. of Aveiro (Portugal))

    2008-07-01

    To constrain the relatively uncertain anthropogenic impact on the organic aerosol load, radiocarbon analyses were performed on aerosol samples, collected year-round, at six non-urban sites including a maritime background and three remote mountain stations, lying on a west-east transect over Western Europe. From a crude three component model supported by TOC and levoglucosan filter data, the fossil fuel, biomass burning and biogenic TOC fraction are estimated, showing at all stations year-round, a relatively constant fossil fuel fraction of around (26 +- 6)% , a dominant biogenic contribution of on average (73 +- 7)% in summer and the continental as well as the maritime background TOC to be only about 50% biogenic. Assuming biomass burning as completely anthropogenic, the carbonaceous aerosol concentration at the mountain sites was found to have increased by a factor of up to (1.4 +- 0.2) in summer and up to (2.5 +- 1.0) in winter. This figure is significantly lower, however, than the respective TOC change since pre-industrial times seen in an Alpine ice core. Reconciling both observations would require an increase, since pre-industrial times, of the background biogenic aerosol load, which is estimated at a factor of 1.3-1.7

  9. Anthropogenic mercury emissions from 1980 to 2012 in China.

    Science.gov (United States)

    Huang, Ying; Deng, Meihua; Li, Tingqiang; Japenga, Jan; Chen, Qianqian; Yang, Xiaoe; He, Zhenli

    2017-07-01

    China was considered the biggest contributor for airborne mercury in the world but the amount of mercury emission in effluents and solid wastes has not been documented. In this study, total national and regional mercury emission to the environment via exhaust gases, effluents and solid wastes were accounted with updated emission factors and the amount of goods produced and/or consumed. The national mercury emission in China increased from 448 to 2151 tons during the 1980-2012 period. Nearly all of the emissions were ended up as exhaust gases and solid wastes. The proportion of exhaust gases decreased with increasing share of solid wastes and effluents. Of all the anthropogenic sources, coal was the most important contributor in quantity, followed by mercury mining, gold smelting, nonferrous smelting, iron steel production, domestic wastes, and cement production, with accounting for more than 90% of the total emission. There was a big variation of regional cumulative mercury emission during 1980-2012 in China, with higher emissions occurred in eastern areas and lower values in the western and far northern regions. The biggest cumulative emission occurred in GZ (Guizhou), reaching 3974 t, while the smallest cumulative emission was lower than 10 t in XZ (Tibet). Correspondingly, mercury accumulation in soil were higher in regions with larger emissions in unit area. Therefore, it is urgent to reduce anthropogenic mercury emission and subsequent impact on ecological functions and human health. Copyright © 2017. Published by Elsevier Ltd.

  10. Natural and anthropogenic nitrogen uptake by bloom-forming macroalgae

    International Nuclear Information System (INIS)

    Thornber, Carol S.; DiMilla, Peter; Nixon, Scott W.; McKinney, Richard A.

    2008-01-01

    The frequency and duration of macroalgal blooms have increased in many coastal waters over the past several decades. We used field surveys and laboratory culturing experiments to examine the nitrogen content and δ 15 N values of Ulva and Gracilaria, two bloom-forming algal genera in Narragansett Bay, RI (USA). The northern end of this bay is densely populated with large sewage treatment plant nitrogen inputs; the southern end is more lightly populated and opens to the Atlantic Ocean. Field-collected Ulva varied in δ 15 N among sites, but with two exceptions had δ 15 N above 10 per mille , reflecting a significant component of heavy anthropogenic N. This variation was not correlated with a north-south gradient. Both Ulva and Gracilaria cultured in water from across Narragansett Bay also had high signals (δ 15 N = ∼14-17 per mille and 8-12 per mille , respectively). These results indicate that inputs of anthropogenic N can have far-reaching impacts throughout estuaries

  11. Natural and anthropogenic nitrogen uptake by bloom-forming macroalgae

    Energy Technology Data Exchange (ETDEWEB)

    Thornber, Carol S. [Department of Biological Sciences, 100 Flagg Road, University of Rhode Island, Kingston, RI 02881 (United States)], E-mail: thornber@uri.edu; DiMilla, Peter; Nixon, Scott W. [Graduate School of Oceanography, University of Rhode Island, South Ferry Road, Narragansett, RI 02881 (United States); McKinney, Richard A. [US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Drive, Narragansett, RI 02882 (United States)

    2008-02-15

    The frequency and duration of macroalgal blooms have increased in many coastal waters over the past several decades. We used field surveys and laboratory culturing experiments to examine the nitrogen content and {delta}{sup 15}N values of Ulva and Gracilaria, two bloom-forming algal genera in Narragansett Bay, RI (USA). The northern end of this bay is densely populated with large sewage treatment plant nitrogen inputs; the southern end is more lightly populated and opens to the Atlantic Ocean. Field-collected Ulva varied in {delta}{sup 15}N among sites, but with two exceptions had {delta}{sup 15}N above 10 per mille , reflecting a significant component of heavy anthropogenic N. This variation was not correlated with a north-south gradient. Both Ulva and Gracilaria cultured in water from across Narragansett Bay also had high signals ({delta}{sup 15}N = {approx}14-17 per mille and 8-12 per mille , respectively). These results indicate that inputs of anthropogenic N can have far-reaching impacts throughout estuaries.

  12. Natural and anthropogenic nitrogen uptake by bloom-forming macroalgae.

    Science.gov (United States)

    Thornber, Carol S; DiMilla, Peter; Nixon, Scott W; McKinney, Richard A

    2008-02-01

    The frequency and duration of macroalgal blooms have increased in many coastal waters over the past several decades. We used field surveys and laboratory culturing experiments to examine the nitrogen content and delta(15)N values of Ulva and Gracilaria, two bloom-forming algal genera in Narragansett Bay, RI (USA). The northern end of this bay is densely populated with large sewage treatment plant nitrogen inputs; the southern end is more lightly populated and opens to the Atlantic Ocean. Field-collected Ulva varied in delta(15)N among sites, but with two exceptions had delta(15)N above 10 per thousand, reflecting a significant component of heavy anthropogenic N. This variation was not correlated with a north-south gradient. Both Ulva and Gracilaria cultured in water from across Narragansett Bay also had high signals (delta(15)N= approximately 14-17 per thousand and 8-12 per thousand, respectively). These results indicate that inputs of anthropogenic N can have far-reaching impacts throughout estuaries.

  13. Avoiding Dangerous Anthropogenic Interference with the Climate System

    Energy Technology Data Exchange (ETDEWEB)

    Keller, K. [Department of Geosciences, Penn State, PA (United States); Hall, M. [Brookings Institution, Washington, DC (United States); Kim, Seung-Rae [Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, NJ (United States); Bradford, D.F. [Department of Economics, Princeton University, Princeton, NJ (United States); Oppenheimer, M. [Woodrow Wilson School and Department of Geosciences, Princeton University, Robertson Hall 448, Princeton, NJ, 08544 (United States)

    2005-12-01

    The UN Framework Convention on Climate Change calls for the avoidance of 'dangerous anthropogenic interference with the climate system'. Among the many plausible choices, dangerous interference with the climate system may be interpreted as anthropogenic radiative forcing causing distinct and widespread climate change impacts such as a widespread demise of coral reefs or a disintegration of the West Antarctic ice sheet. The geological record and numerical models suggest that limiting global warming below critical temperature thresholds significantly reduces the likelihood of these eventualities. Here we analyze economically optimal policies that may ensure this risk-reduction. Reducing the risk of a widespread coral reef demise implies drastic reductions in greenhouse gas emissions within decades. Virtually unchecked greenhouse gas emissions to date (combined with the inertia of the coupled natural and human systems) may have already committed future societies to a widespread demise of coral reefs. Policies to reduce the risk of a West Antarctic ice sheet disintegration allow for a smoother decarbonization of the economy within a century and may well increase consumption in the long run.

  14. Benthic communities under anthropogenic pressure show resilience across the Quaternary

    Science.gov (United States)

    Martinelli, Julieta C.; Soto, Luis P.; González, Jorge; Rivadeneira, Marcelo M.

    2017-09-01

    The Southeast Pacific is characterized by rich upwelling systems that have sustained and been impacted by human groups for at least 12 ka. Recent fishing and aquaculture practices have put a strain on productive coastal ecosystems from Tongoy Bay, in north-central Chile. We use a temporal baseline to determine whether potential changes to community structure and composition over time are due to anthropogenic factors, natural climatic variations or both. We compiled a database (n = 33 194) with mollusc species abundances from the Mid-Pleistocene, Late Pleistocene, Holocene, dead shell assemblages and live-sampled communities. Species richness was not significantly different, neither were diversity and evenness indices nor rank abundance distributions. There is, however, an increase in relative abundance for the cultured scallop Argopecten, while the previously dominant clam Mulinia is locally very rare. Results suggest that impacts from both natural and anthropogenic stressors need to be better understood if benthic resources are to be preserved. These findings provide the first Pleistocene temporal baseline for the south Pacific that shows that this highly productive system has had the ability to recover from past alterations, suggesting that if monitoring and management practices continue to be implemented, moderately exploited communities from today have hopes for recovery.

  15. Comparative cytotoxicity assessments of some manufactured and anthropogenic nanoparticulate materials

    Science.gov (United States)

    Soto, Karla Fabiola

    Due to increasing diversity of newly engineered nanoparticles, it is important to consider the hazards of these materials. Very little is known regarding the potential toxicity of relatively new nanomaterials. However, beginning with several historical accounts of nanomaterials applications---chrysotile asbestos and silver---it was assumed that these examples would provide some awareness and guidelines for future nanomaterial and nanotechnology applications, especially health effects. In this study in vitro assays were performed on a murine alveolar macrophage cell line (RAW 264.7), human alveolar macrophage cell line (THB-1), and human epithelial lung cell line (A549) to assess the comparative cytotoxicity of a wide range of manufactured (Ag, TiO2, Fe2O3, Al2O3, ZrO2, black carbon, two different types of multiwall structures and chrysotile asbestos as the toxicity standard) and anthropogenic nanoparticulates. There are several parameters of nanoparticulates that are considered to trigger an inflammatory response (particularly respiratory) or cause toxicity. These parameters include: particle size, shape, specific surface area, transition metals in particulates, and organic compounds. Therefore, a wide variety of manufactured and anthropogenic nanoparticulates having different morphologies, sizes, specific surface area and chemistries as noted were tested. To determine the nanoparticulates' size and morphology, they were characterized by transmission electron microscopy, where it was observed that the commercial multiwall carbon nanotube aggregate had an identical morphology to chrysotile asbestos and combustion-formed carbon nanotubes, i.e.; those that form from natural gas combustion. Light optical microscopy was used to determine cell morphology upon exposure to nanoparticulates as an indication of cell death. Also, the polycyclic aromatic hydrocarbon (PAH) content of the collected nanoparticulates was analyzed and correlated with cytotoxic responses. For

  16. Attribution of irreversible loss to anthropogenic climate change

    Science.gov (United States)

    Huggel, Christian; Bresch, David; Hansen, Gerrit; James, Rachel; Mechler, Reinhard; Stone, Dáithí; Wallimann-Helmer, Ivo

    2016-04-01

    The Paris Agreement (2015) under the UNFCCC has anchored loss and damage in a separate article which specifies that understanding and support should be enhanced in areas addressing loss and damage such as early warning, preparedness, insurance and resilience. Irreversible loss is a special category under loss and damage but there is still missing clarity over what irreversible loss actually includes. Many negative impacts of climate change may be handled or mitigated by existing risk management, reduction and absorption approaches. Irreversible loss, however, is thought to be insufficiently addressed by risk management. Therefore, countries potentially or actually affected by irreversible loss are calling for other measures such as compensation, which however is highly contested in international climate policy. In Paris (2015) a decision was adopted that loss and damage as defined in the respective article of the agreement does not involve compensation and liability. Nevertheless, it is likely that some sort of mechanism will eventually need to come into play for irreversible loss due to anthropogenic climate change, which might involve compensation, other forms of non-monetary reparation, or transformation. Furthermore, climate litigation has increasingly been attempted to address negative effects of climate change. In this context, attribution is important to understand the drivers of change, what counts as irreversible loss due to climate change, and, possibly, who or what is responsible. Here we approach this issue by applying a detection and attribution perspective on irreversible loss. We first analyze detected climate change impacts as assessed in the IPCC Fifth Assessment Report. We distinguish between irreversible loss in physical, biological and human systems, and accordingly identify the following candidates of irreversible loss in these systems: loss of glaciers and ice sheets, loss of subsurface ice (permafrost) and related loss of lake systems; loss

  17. Substantial nitrous oxide emissions from intertidal sediments and groundwater in anthropogenically-impacted West Falmouth Harbor, Massachusetts

    Science.gov (United States)

    Moseman-Valtierra, Serena; Kroeger, Kevin D.; Crusius, John; Baldwin, Sandy; Green, Adrian; Brooks, Thomas W.; Pugh, E.

    2015-01-01

    Large N2O emissions were observed from intertidal sediments in a coastal estuary, West Falmouth Harbor, MA, USA. Average N2O emission rates from 41 chambers during summer 2008 were 10.7 mol N2O m(-2) h(-1)±4.43 μmol N2O m(-2) h(-1) (standard error). Emissions were highest from sediments within a known wastewater plume, where a maximum N2O emission rate was 155 μmol N2O m(-2) h(-1). Intertidal N2O fluxes were positively related to porewater ammonium concentrations at 10 and 25 cm depths. In groundwater from 7 shoreline wells, dissolved N2O ranged from 488% of saturation (56 nM N2O) to more than 13000% of saturation (1529 nM N2O) and was positively related to nitrate concentrations. Fresh and brackish porewater underlying 14 chambers was also supersaturated in N2O, ranging from 2980% to 13175% of saturation. These observations support a relationship between anthropogenic nutrient loading and N2O emissions in West Falmouth Harbor, with both groundwater sources and also local N2O production within nutrient-rich, intertidal sediments in the groundwater seepage face. N2O emissions from intertidal "hotspot" in this harbor, together with estimated surface water emissions, constituted 2.4% of the average overall rate of nitrogen export from the watershed to the estuary. This suggests that N2O emissions factors from coastal ecosystems may be underestimated. Since anthropogenic nutrient loading affects estuaries worldwide, quantification of N2O dynamics is warranted in other anthropogenically-impacted coastal ecosystems.

  18. Substantial nitrous oxide emissions from intertidal sediments and groundwater in anthropogenically-impacted West Falmouth Harbor, Massachusetts.

    Science.gov (United States)

    Moseman-Valtierra, Serena; Kroeger, Kevin D; Crusius, John; Baldwin, Sandra; Green, Adrian; Brooks, T Wallace; Pugh, Emily

    2015-01-01

    Large N2O emissions were observed from intertidal sediments in a coastal estuary, West Falmouth Harbor, MA, USA. Average N2O emission rates from 41 chambers during summer 2008 were 10.7 mol N2O m(-2) h(-1)±4.43 μmol N2O m(-2) h(-1) (standard error). Emissions were highest from sediments within a known wastewater plume, where a maximum N2O emission rate was 155 μmol N2O m(-2) h(-1). Intertidal N2O fluxes were positively related to porewater ammonium concentrations at 10 and 25 cm depths. In groundwater from 7 shoreline wells, dissolved N2O ranged from 488% of saturation (56 nM N2O) to more than 13000% of saturation (1529 nM N2O) and was positively related to nitrate concentrations. Fresh and brackish porewater underlying 14 chambers was also supersaturated in N2O, ranging from 2980% to 13175% of saturation. These observations support a relationship between anthropogenic nutrient loading and N2O emissions in West Falmouth Harbor, with both groundwater sources and also local N2O production within nutrient-rich, intertidal sediments in the groundwater seepage face. N2O emissions from intertidal "hotspot" in this harbor, together with estimated surface water emissions, constituted 2.4% of the average overall rate of nitrogen export from the watershed to the estuary. This suggests that N2O emissions factors from coastal ecosystems may be underestimated. Since anthropogenic nutrient loading affects estuaries worldwide, quantification of N2O dynamics is warranted in other anthropogenically-impacted coastal ecosystems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Trace elements from the Central Pacific Mexican Shelf: Geochemical associations and anthropogenic influences

    Science.gov (United States)

    Marmolejo-Rodríguez, A. J.; Morales-Blake, A. R.; González-Chavarín, I.; Hernández-Becerril, D.; Alonso-Rodríguez, R.; Rodríguez-Palacio, M. C.; Sánchez-González, A.; Magallanes-Ordóñez, V. R.

    2017-11-01

    Baselines for major and trace elements were determined from surface sediment samples from sites located along the Central Pacific Mexican Shelf (CPMS; 16.7-20.45° N). This study area is next to the biggest harbours in Mexico, for example touristic (Puerto Vallarta and Acapulco), touristic and industrial (Manzanillo), and industrial harbours (Lázaro Cárdenas). The industrial harbours have been expanding, transporting tonnes of materials to Asia and North and South America. Oceanographic campaigns were conducted to obtain sediment from depths ranging from 56 to 159 m. The grain size was predominately fine fraction (determined for the sediments. Arsenic is enriched in the CPMS; the Normalized Enrichment Factor average (NEFAV) for As is NEFAV = 8 ± 7. However the ratio between As and Cs indicates a natural origin in the most of the sites. Cadmium, Mo, and Ag were significantly correlated with Corg enhanced precipitation of sulfide-reactive metals. Moreover, an anthropogenic influence was detected for Hg (NEFAV = 4.3 ± 1.5) and Ag (NEFAV = 8.5 ± 2.6) in the shelf near the heavily industrialized harbour of Lázaro Cárdenas.

  20. How Tightly Linked Are Pericopsis elata (Fabaceae Patches to Anthropogenic Disturbances in Southeastern Cameroon?

    Directory of Open Access Journals (Sweden)

    Nils Bourland

    2015-01-01

    Full Text Available While most past studies have emphasized the relationships between specific forest stands and edaphic factors, recent observations in Central African moist forests suggested that an increase of slash-and-burn agriculture since 3000–2000 BP (Before Present could be the main driver of the persistence of light-demanding tree species. In order to examine anthropogenic factors in the persistence of such populations, our study focused on Pericopsis elata, an endangered clustered timber species. We used a multidisciplinary approach comprised of botanical, anthracological and archaeobotanical investigations to compare P. elata patches with surrounding stands of mixed forest vegetation (“out-zones”. Charcoal samples were found in both zones, but were significantly more abundant in the soils of patches. Eleven groups of taxa were identified from the charcoals, most of them also present in the current vegetation. Potsherds were detected only inside P. elata patches and at different soil depths, suggesting a long human presence from at least 2150 to 195 BP, as revealed by our charcoal radiocarbon dating. We conclude that current P. elata patches most likely result from shifting cultivation that occurred ca. two centuries ago. The implications of our findings for the dynamics and management of light-demanding tree species are discussed.

  1. Large Scale Anthropogenic Reduction of Forest Cover in Last Glacial Maximum Europe.

    Directory of Open Access Journals (Sweden)

    Jed O Kaplan

    Full Text Available Reconstructions of the vegetation of Europe during the Last Glacial Maximum (LGM are an enigma. Pollen-based analyses have suggested that Europe was largely covered by steppe and tundra, and forests persisted only in small refugia. Climate-vegetation model simulations on the other hand have consistently suggested that broad areas of Europe would have been suitable for forest, even in the depths of the last glaciation. Here we reconcile models with data by demonstrating that the highly mobile groups of hunter-gatherers that inhabited Europe at the LGM could have substantially reduced forest cover through the ignition of wildfires. Similar to hunter-gatherers of the more recent past, Upper Paleolithic humans were masters of the use of fire, and preferred inhabiting semi-open landscapes to facilitate foraging, hunting and travel. Incorporating human agency into a dynamic vegetation-fire model and simulating forest cover shows that even small increases in wildfire frequency over natural background levels resulted in large changes in the forested area of Europe, in part because trees were already stressed by low atmospheric CO2 concentrations and the cold, dry, and highly variable climate. Our results suggest that the impact of humans on the glacial landscape of Europe may be one of the earliest large-scale anthropogenic modifications of the earth system.

  2. Simulation of the anthropogenic aerosols over South Asia and their effects on Indian summer monsoon

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Zhenming [Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Beijing (China); National Climate Center, Beijing (China); Graduate University of Chinese Academy of Sciences, Beijing (China); Kang, Shichang [Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Beijing (China); Chinese Academy of Sciences, State Key Laboratory of Cryospheric Science, Lanzhou (China); Zhang, Dongfeng [Shanxi Meteorological Bureau, Taiyuan (China); Zhu, Chunzi [Nanjing University of Information Science Technology, College of Atmospheric Science, Nanjing (China); Wu, Jia; Xu, Ying [National Climate Center, Beijing (China)

    2011-05-15

    A regional climate model coupled with a chemistry-aerosol model is employed to simulate the anthropogenic aerosols including sulfate, black carbon and organic carbon and their direct effect on climate over South Asia. The model is driven by the NCAR/NCEP re-analysis data. Multi-year simulations with half, normal and double emission fluxes are conducted. Results show that the model performs well in reproducing present climate over the region. Simulations of the aerosol optical depth and surface concentration of aerosols are also reasonable although to a less extent. The negative radiative forcing is found at the top of atmosphere and largely depended on emission concentration. Surface air temperature decreases by 0.1-0.5 C both in pre-monsoon and monsoon seasons. The range and intensity of cooling areas enlarge while aerosol emission increases. Changes in precipitation are between -25 and 25%. Different diversifications of rainfall are showed with three emission scenarios. The changes of precipitation are consistent with varieties of monsoon onset dates in pre-monsoon season. In the regions of increasing precipitation, monsoon onset is advanced and vice versa. In northeast India and Myanmar, aerosols lead the India summer monsoon onset advancing 1-2 pentads, and delaying by 1-2 pentads in central and southeast India. These changes are mainly caused by the anomaly of local Hadley circulations and enhancive precipitation. Tibetan Plateau played a crucial role in the circulation changes. (orig.)

  3. Anthropogenic effects on the subsurface thermal and groundwater environments in Osaka, Japan and Bangkok, Thailand.

    Science.gov (United States)

    Taniguchi, Makoto; Shimada, Jun; Fukuda, Yoichi; Yamano, Makoto; Onodera, Shin-ichi; Kaneko, Shinji; Yoshikoshi, Akihisa

    2009-04-15

    Anthropogenic effects in both Osaka and Bangkok were evaluated to compare the relationships between subsurface environment and the development stage of both cities. Subsurface thermal anomalies due to heat island effects were found in both cities. The Surface Warming Index (SWI), the departure depth from the steady geothermal gradient, was used as an indicator of the heat island effect. SWI increases (deeper) with the magnitude of heat island effect and the elapsed time starting from the surface warming. Distributions of subsurface thermal anomalies due to the heat island effect agreed well with the distribution of changes in air temperature due to the same process, which is described by the distribution of population density in both Osaka and Bangkok. Different time lags between groundwater depression and subsidence in the two cities was found. This is attributed to differences in hydrogeologic characters, such as porosity and hydraulic conductivity. We find that differences in subsurface degradations in Osaka and Bangkok, including subsurface thermal anomalies, groundwater depression, and land subsidence, depends on the difference of the development stage of urbanization and hydrogeological characters.

  4. Large Scale Anthropogenic Reduction of Forest Cover in Last Glacial Maximum Europe.

    Science.gov (United States)

    Kaplan, Jed O; Pfeiffer, Mirjam; Kolen, Jan C A; Davis, Basil A S

    2016-01-01

    Reconstructions of the vegetation of Europe during the Last Glacial Maximum (LGM) are an enigma. Pollen-based analyses have suggested that Europe was largely covered by steppe and tundra, and forests persisted only in small refugia. Climate-vegetation model simulations on the other hand have consistently suggested that broad areas of Europe would have been suitable for forest, even in the depths of the last glaciation. Here we reconcile models with data by demonstrating that the highly mobile groups of hunter-gatherers that inhabited Europe at the LGM could have substantially reduced forest cover through the ignition of wildfires. Similar to hunter-gatherers of the more recent past, Upper Paleolithic humans were masters of the use of fire, and preferred inhabiting semi-open landscapes to facilitate foraging, hunting and travel. Incorporating human agency into a dynamic vegetation-fire model and simulating forest cover shows that even small increases in wildfire frequency over natural background levels resulted in large changes in the forested area of Europe, in part because trees were already stressed by low atmospheric CO2 concentrations and the cold, dry, and highly variable climate. Our results suggest that the impact of humans on the glacial landscape of Europe may be one of the earliest large-scale anthropogenic modifications of the earth system.

  5. Carbon stores from a tropical seagrass meadow in the midst of anthropogenic disturbance.

    Science.gov (United States)

    Rozaimi, Mohammad; Fairoz, Mohammad; Hakimi, Tuan Mohamad; Hamdan, Nur Hidayah; Omar, Ramlan; Ali, Masni Mohd; Tahirin, Siti Aishah

    2017-06-30

    Seagrass meadows provide important carbon sequestration services but anthropogenic activities modify the natural ecosystem and inevitably lower carbon storage capacity. The tropical mixed-species meadows in the Sungai Pulai Estuary (Johor, Malaysia) are impacted by such activities. In this study, we provide baseline estimates for carbon stores analysed from sediment cores. In sediment depths up to 100cm, organic (OC) and inorganic carbon (IC) stores were 43-101MgCha -1 and 46-83MgCha -1 , respectively, and are in the lower end of global average values. The bulk of OC (53-98%) originated from seston suggesting that the meadows had low capacity to retain seagrass-derived organic matter. The species factor resulted in some variability in OC stores but did not appear to influence IC values. The low carbon stores in the meadow may be a direct result of sediment disturbances but natural biogeochemical processes are not discounted as possible causal factors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Scene depth estimation using a moving camera

    International Nuclear Information System (INIS)

    Sune, Jean-Luc

    1995-01-01

    This thesis presents a solution of the depth-from-motion problem. The movement of the monocular observer is known. We have focused our research on a direct method which avoid the optical flow estimation required by classical approaches. The direct application of this method is not exploitable. We need to define a validity domain to extract the set of image points where it is possible to get a correct depth value. Also, we use a multi-scale approach to improve the derivatives estimation. The depth estimation for a given scale is obtained by the minimisation of an energy function established in the context of statistic regularization. A fusion operator, merging the various spatial and temporal scales, has been used to estimate the final depth map. A correction-prediction schema is used to integrate the temporal information from an image sequence. The predicted depth map is considered as an additional observation and integrated in the fusion process. At each time, an error depth map is associated to the estimated depth map. (author) [fr

  7. Hydrologic controls on equilibrium soil depths

    Science.gov (United States)

    Nicótina, L.; Tarboton, D. G.; Tesfa, T. K.; Rinaldo, A.

    2011-04-01

    This paper deals with modeling the mutual feedbacks between runoff production and geomorphological processes and attributes that lead to patterns of equilibrium soil depth. Our primary goal is an attempt to describe spatial patterns of soil depth resulting from long-term interactions between hydrologic forcings and soil production, erosion, and sediment transport processes under the framework of landscape dynamic equilibrium. Another goal is to set the premises for exploiting the role of soil depths in shaping the hydrologic response of a catchment. The relevance of the study stems from the massive improvement in hydrologic predictions for ungauged basins that would be achieved by using directly soil depths derived from geomorphic features remotely measured and objectively manipulated. Hydrological processes are here described by explicitly accounting for local soil depths and detailed catchment topography. Geomorphological processes are described by means of well-studied geomorphic transport laws. The modeling approach is applied to the semiarid Dry Creek Experimental Watershed, located near Boise, Idaho. Modeled soil depths are compared with field data obtained from an extensive survey of the catchment. Our results show the ability of the model to describe properly the mean soil depth and the broad features of the distribution of measured data. However, local comparisons show significant scatter whose origins are discussed.

  8. Allegheny County Zip Code Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the zip code boundaries that lie within Allegheny County.If viewing this description on the Western Pennsylvania Regional Data Center’s open...

  9. Allegheny County School District Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the school district boundaries within Allegheny County If viewing this description on the Western Pennsylvania Regional Data Center’s open...

  10. Sublayer of Prandtl Boundary Layers

    Science.gov (United States)

    Grenier, Emmanuel; Nguyen, Toan T.

    2018-03-01

    The aim of this paper is to investigate the stability of Prandtl boundary layers in the vanishing viscosity limit {ν \\to 0} . In Grenier (Commun Pure Appl Math 53(9):1067-1091, 2000), one of the authors proved that there exists no asymptotic expansion involving one of Prandtl's boundary layer, with thickness of order {√{ν}} , which describes the inviscid limit of Navier-Stokes equations. The instability gives rise to a viscous boundary sublayer whose thickness is of order {ν^{3/4}} . In this paper, we point out how the stability of the classical Prandtl's layer is linked to the stability of this sublayer. In particular, we prove that the two layers cannot both be nonlinearly stable in L^∞. That is, either the Prandtl's layer or the boundary sublayer is nonlinearly unstable in the sup norm.

  11. Boundary Layer Control on Airfoils.

    Science.gov (United States)

    Gerhab, George; Eastlake, Charles

    1991-01-01

    A phenomena, boundary layer control (BLC), produced when visualizing the fluidlike flow of air is described. The use of BLC in modifying aerodynamic characteristics of airfoils, race cars, and boats is discussed. (KR)

  12. Recognition of boundary feedback systems

    DEFF Research Database (Denmark)

    Pedersen, Michael

    1989-01-01

    A system that has been the object of intense research is outlined. In view of that and recent progress of the theory of pseudodifferential boundary operator calculus, the author describes some features that could prove to be interesting in connection with the problems of boundary feedback stabili...... stabilizability. It is shown that it is possible to use the calculus to consider more general feedback systems in a variational setup.......A system that has been the object of intense research is outlined. In view of that and recent progress of the theory of pseudodifferential boundary operator calculus, the author describes some features that could prove to be interesting in connection with the problems of boundary feedback...

  13. HUC 8-11 Boundaries

    Data.gov (United States)

    Kansas Data Access and Support Center — This data set is a digital hydrologic unit boundary that is at the 4-digit, 6-digit, 8-digit, and 11-digit level. The data set was developed by delineating the...

  14. Analytic invariants of boundary links

    OpenAIRE

    Garoufalidis, Stavros; Levine, Jerome

    2001-01-01

    Using basic topology and linear algebra, we define a plethora of invariants of boundary links whose values are power series with noncommuting variables. These turn out to be useful and elementary reformulations of an invariant originally defined by M. Farber.

  15. County Boundaries with Shorelines (National)

    Data.gov (United States)

    Department of Transportation — County boundaries with shorelines cut in (NTAD). The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and...

  16. The laminar boundary layer equations

    CERN Document Server

    Curle, N

    2017-01-01

    Thorough introduction to boundary layer problems offers an ordered, logical presentation accessible to undergraduates. The text's careful expositions of the limitations and accuracy of various methods will also benefit professionals. 1962 edition.

  17. Hydrologic regulation of plant rooting depth.

    Science.gov (United States)

    Fan, Ying; Miguez-Macho, Gonzalo; Jobbágy, Esteban G; Jackson, Robert B; Otero-Casal, Carlos

    2017-10-03

    Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (∼1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant-water feedback pathway that may be critical to understanding plant-mediated global change.

  18. Hydrologic regulation of plant rooting depth

    Science.gov (United States)

    Fan, Ying; Miguez-Macho, Gonzalo; Jobbágy, Esteban G.; Jackson, Robert B.; Otero-Casal, Carlos

    2017-10-01

    Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (˜1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant-water feedback pathway that may be critical to understanding plant-mediated global change.

  19. Grain boundary structure and properties

    International Nuclear Information System (INIS)

    Balluffi, R.W.

    1979-05-01

    An attempt is made to distinguish those fundamental aspects of grain boundaries which should be relevant to the problem of the time dependent fracture of high temperature structural materials. These include the basic phenomena which are thought to be associated with cavitation and cracking at grain boundaries during service and with the more general microstructural changes which occur during both processing and service. A very brief discussion of the current state of knowledge of these fundamentals is given

  20. Slovenian-Croatian boundary: backgrounds of boundary-making and boundary-breaking in Istria regarding the contemporary boundary dispute

    Directory of Open Access Journals (Sweden)

    Damir Josipovič

    2012-06-01

    Full Text Available Boundary-making in Istria is an old undertaking. It has actually never ceasesed, not even today. Istrian peninsula has thus undergone substantial boundary shifts during the last couple of centuries (especially after the Venetian demise in 1797. But Istria carries its worldwide fame also due to one of probably the harshest disputes on the post-war European grounds – the Trieste territory dispute. In author's perspective, this dispute is one of the four main corner-stones of the current Slovenian-Croatian boundary dispute. The remaining three include the Kozler's boundary around Dragonja (Rokava River, the ungraspable notions of Austrian censuses in Istria, and the narratives of partisan settlements on military jurisdiction. However, there are other very important aspects which significantly shaped the development of the dispute, but we will focus at assessing the importance of the aforementioned ones. In this sense, the analysis of the effects of the outcome of the Trieste dispute and its implications to the contemporary interstate dispute is set forth. By unveiling its material and consequently its psychological effects upon the contemporary bilateral relations, its analyses simultaneously reveals backgrounds of never answered question, why Kozler's proposed linguistic boundary around Dragonja (Rokava River turned out to become a boundary of national character. Though nowadays disputed, there is absolutely no chance for both involved parties to substantially draw away from once decisively drawn line of a layman. Despite the fierce battle of words in Slovenian public media on whether should the interstate boundary be placed on Mirna (Quieto or Dragonja Rivers, it will be argued here that the actual choice of the Valley of Dragonja as a boundary is by all means Slovenian. The arguments are based on extensive analyses of cartographic materials, relevant literature, documents, and statistical data.

  1. Slovenian-Croatian boundary: backgrounds of boundary-making and boundary-breaking in Istria regarding the contemporary boundary dispute

    Directory of Open Access Journals (Sweden)

    Damir Josipovič

    2012-01-01

    Full Text Available Boundary-making in Istria is an old undertaking. It has actually never ceasesed, not even today. Istrian peninsula has thus undergone substantial boundary shifts during the last couple of centuries (especially after the Venetian demise in 1797. But Istria carries its worldwide fame also due to one of probably the harshest disputes on the post-war European grounds – the Trieste territory dispute. In author's perspective, this dispute is one of the four main corner-stones of the current Slovenian-Croatian boundary dispute. The remaining three include the Kozler's boundary around Dragonja (Rokava River, the ungraspable notions of Austrian censuses in Istria, and the narratives of partisan settlements on military jurisdiction. However, there are other very important aspects which significantly shaped the development of the dispute, but we will focus at assessing the importance of the aforementioned ones. In this sense, the analysis of the effects of the outcome of the Trieste dispute and its implications to the contemporary interstate dispute is set forth. By unveiling its material and consequently its psychological effects upon the contemporary bilateral relations, its analyses simultaneously reveals backgrounds of never answered question, why Kozler's proposed linguistic boundary around Dragonja (Rokava River turned out to become a boundary of national character. Though nowadays disputed, there is absolutely no chance for both involved parties to substantially draw away from once decisively drawn line of a layman. Despite the fierce battle of words in Slovenian public media on whether should the interstate boundary be placed on Mirna (Quieto or Dragonja Rivers, it will be argued here that the actual choice of the Valley of Dragonja as a boundary is by all means Slovenian. The arguments are based on extensive analyses of cartographic materials, relevant literature, documents, and statistical data.

  2. Removing Boundary Layer by Suction

    Science.gov (United States)

    Ackeret, J

    1927-01-01

    Through the utilization of the "Magnus effect" on the Flettner rotor ship, the attention of the public has been directed to the underlying physical principle. It has been found that the Prandtl boundary-layer theory furnishes a satisfactory explanation of the observed phenomena. The present article deals with the prevention of this separation or detachment of the flow by drawing the boundary layer into the inside of a body through a slot or slots in its surface.

  3. Tokamak plasma boundary layer model

    International Nuclear Information System (INIS)

    Volkov, T.F.; Kirillov, V.D.

    1983-01-01

    A model has been developed for the limiter layer and for the boundary region of the plasma column in a tokamak to facilitate analytic calculations of the thickness of the limiter layers, the profiles and boundary values of the temperature and the density under various conditions, and the difference between the electron and ion temperatures. This model can also be used to analyze the recycling of neutrals, the energy and particle losses to the wall and the limiter, and other characteristics

  4. Human action recognition with depth cameras

    CERN Document Server

    Wang, Jiang; Wu, Ying

    2014-01-01

    Action recognition technology has many real-world applications in human-computer interaction, surveillance, video retrieval, retirement home monitoring, and robotics. The commoditization of depth sensors has also opened up further applications that were not feasible before. This text focuses on feature representation and machine learning algorithms for action recognition from depth sensors. After presenting a comprehensive overview of the state of the art, the authors then provide in-depth descriptions of their recently developed feature representations and machine learning techniques, includi

  5. The Community Boundary De-paradoxifyed

    DEFF Research Database (Denmark)

    Dragsdahl Lauritzen, Ghita; Salomo, Søren

    2012-01-01

    . In order to improve connections and collaborations across interfaces, it is therefore necessary to improve our understanding of the community boundary construct. Existing studies of community boundaries within the user innovation literature predominantly describe boundaries as incentives for user...

  6. On the variability of sea drag in finite water depth

    Science.gov (United States)

    Toffoli, A.; Loffredo, L.; Le Roy, P.; LefèVre, J.-M.; Babanin, A. V.

    2012-11-01

    The coupling between the atmospheric boundary layer and the ocean surface in large-scale models is usually parameterized in terms of the sea drag coefficient, which is routinely estimated as a function of mean wind speed. The scatter of data around such parametric dependencies, however, is very significant and imposes a serious limitation on the forecasts and predictions that make use of sea surface drag parameterizations. The analysis of an atmospheric and wave data set collected in finite water depth at the Lake George measurement site (Australia) suggests that this variability relates to a number of parameters at the air-sea interface other than wind speed alone. In particular, results indicate that the sea drag depends on water depth and wave steepness, which make the wave profile more vertically asymmetric, and the concentration of water vapor in the air, which modifies air density and friction velocity. These dependencies are used to derive parametric functions based on the combined contribution of wind, waves and relative humidity. A standard statistical analysis confirms a substantial improvement in the prediction of the drag coefficient and sea surface roughness when additional parameters are taken into account.

  7. Life Cycle Assessment, ExternE and Comprehensive Analysis for an integrated evaluation of the environmental impact of anthropogenic activities

    Energy Technology Data Exchange (ETDEWEB)

    Pietrapertosa, F.; Cosmi, C. [National Research Council, Institute of Methodologies for Environmental Analysis C.N.R.-I.M.A.A. C.da S.Loja, I-85050 Tito Scalo (PZ) (Italy); National Research Council, National Institute for the Physics of Matter, C.N.R.-I.N.F.M. Via Cinthia, I-80126 Naples (Italy); Macchiato, M. [Federico II University, Department of Physical Sciences, Via Cinthia, I-80126 Naples (Italy); National Research Council, National Institute for the Physics of Matter, C.N.R.-I.N.F.M. Via Cinthia, I-80126 Naples (Italy); Salvia, M.; Cuomo, V. [National Research Council, Institute of Methodologies for Environmental Analysis C.N.R.-I.M.A.A. C.da S.Loja, I-85050 Tito Scalo (PZ) (Italy)

    2009-06-15

    The implementation of resource management strategies aimed at reducing the impacts of the anthropogenic activities system requires a comprehensive approach to evaluate on the whole the environmental burdens of productive processes and to identify the best recovery strategies from both an environmental and an economic point of view. In this framework, an analytical methodology based on the integration of Life Cycle Assessment (LCA), ExternE and Comprehensive Analysis was developed to perform an in-depth investigation of energy systems. The LCA methodology, largely utilised by the international scientific community for the assessment of the environmental performances of technologies, combined with Comprehensive Analysis allows modelling the overall system of anthropogenic activities, as well as sub-systems, the economic consequences of the whole set of environmental damages. Moreover, internalising external costs into partial equilibrium models, as those utilised by Comprehensive Analysis, can be useful to identify the best paths for implementing technology innovation and strategies aimed to a more sustainable energy supply and use. This paper presents an integrated application of these three methodologies to a local scale case study (the Val D'Agri area in Basilicata, Southern Italy), aimed to better characterise the environmental impacts of the energy system, with particular reference to extraction activities. The innovative methodological approach utilised takes advantage from the strength points of each methodology with an added value coming from their integration as emphasised by the main results obtained by the scenario analysis. (author)

  8. Understanding and representing the effect of wind shear on the turbulent transfer in the convective boundary layer

    NARCIS (Netherlands)

    Ronda, R.J.; Vilà-Guerau de Arellano, J.; Pino, D.

    2012-01-01

    Goal of this study is to quantify the effect of wind shear on the turbulent transport in the dry Convective Boundary Layer (CBL). Questions addressed include the effect of wind shear on the depth of the mixed layer, the effect of wind shear on the depth and structure of the capping inversion, and

  9. Quantifying anthropogenically driven morphologic changes on a barrier island: Fire Island National Seashore, New York

    Science.gov (United States)

    Kratzmann, Meredith G.; Hapke, Cheryl J.

    2012-01-01

    Beach scraping, beach replenishment, and the presence of moderate development have altered the morphology of the dune–beach system at Fire Island National Seashore, located on a barrier island on the south coast of Long Island, New York. Seventeen communities are interspersed with sections of natural, nonmodified land within the park boundary. Beach width, dune elevation change, volume change, and shoreline change were calculated from light detection and ranging (LIDAR), real-time kinematic global positioning system (RTK GPS), and beach profile data sets at two ∼4 km long study sites. Each site contains both modified (developed, replenished, and/or scraped) and nonmodified (natural) areas. The analysis spans 9 years, from 1998 to 2007, which encompasses both scraping and replenishment events at Fire Island. The objectives of this study were to quantify and compare morphological changes in modified and nonmodified zones, and to identify erosional areas within the study sites.Areas of increased volume and shoreline accretion were observed at both sites and at the western site are consistent with sand replenishment activities. The results indicate that from 1998 to 2007 locations backed by development and that employed beach scraping and/or replenishment as erosion control measures experienced more loss of volume, width, and dune elevation as compared with adjacent nonmodified areas. A detailed analysis of one specific modification, beach scraping, shows distinct morphological differences in scraped areas relative to nonscraped areas of the beach. In general, scraped areas where there is development on the dunes showed decreases in all measured parameters and are more likely to experience overwash during storm events. Furthermore, the rapid mobilization of material from the anthropogenic (scraped) dune results in increased beach accretion downcoast.National park lands are immediately adjacent to developed areas on Fire Island, and even relatively small human

  10. Shock-like structures in the tropical cyclone boundary layer

    Science.gov (United States)

    Williams, Gabriel J.; Taft, Richard K.; McNoldy, Brian D.; Schubert, Wayne H.

    2013-06-01

    This paper presents high horizontal resolution solutions of an axisymmetric, constant depth, slab boundary layer model designed to simulate the radial inflow and boundary layer pumping of a hurricane. Shock-like structures of increasing intensity appear for category 1-5 hurricanes. For example, in the category 3 case, the u>(∂u/∂r>) term in the radial equation of motion produces a shock-like structure in the radial wind, i.e., near the radius of maximum tangential wind the boundary layer radial inflow decreases from approximately 22 m s-1 to zero over a radial distance of a few kilometers. Associated with this large convergence is a spike in the radial distribution of boundary layer pumping, with updrafts larger than 22 m s-1 at a height of 1000 m. Based on these model results, it is argued that observed hurricane updrafts of this magnitude so close to the ocean surface are attributable to the dry dynamics of the frictional boundary layer rather than moist convective dynamics. The shock-like structure in the boundary layer radial wind also has important consequences for the evolution of the tangential wind and the vertical component of vorticity. On the inner side of the shock the tangential wind tendency is essentially zero, while on the outer side of the shock the tangential wind tendency is large due to the large radial inflow there. The result is the development of a U-shaped tangential wind profile and the development of a thin region of large vorticity. In many respects, the model solutions resemble the remarkable structures observed in the boundary layer of Hurricane Hugo (1989).

  11. On the elastic stiffness of grain boundaries

    International Nuclear Information System (INIS)

    Zhang Tongyi; Hack, J.E.

    1992-01-01

    The elastic softening of grain boundaries is evaluated from the starting point of grain boundary energy. Several examples are given to illustrate the relationship between boundary energy and the extent of softening. In general, a high grain boundary energy is associated with a large excess atomic volume in the boundary region. The consequent reduction in grain boundary stiffness can represent a significant fraction of that observed in bulk crystals. (orig.)

  12. Wave like signatures in aerosol optical depth and associated radiative impacts over the central Himalayan region

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, K. K.; Phanikumar, D. V.; Kumar, K.  Niranjan; Reddy, Kishore; Kotamarthi, V. R.; Newsom, Rob K.; Ouarda, Taha B. M. J.

    2015-10-01

    In this study, we present a case study on 16 October 2011 to show the first observational evidence of the influence of short period gravity waves in aerosol transport during daytime over the central Himalayan region. The Doppler lidar data has been utilized to address the daytime boundary layer evolution and related aerosol dynamics over the site. Mixing layer height is estimated by wavelet covariance transform method and found to be ~ 0.7 km, AGL. Aerosol optical depth observations during daytime revealed an asymmetry showing clear enhancement during afternoon hours as compared to forenoon. Interestingly, Fourier and wavelet analysis of vertical velocity and attenuated backscatter showed similar 50-90 min short period gravity wave signatures during afternoon hours. Moreover, our observations showed that gravity waves are dominant within the boundary layer implying that the daytime boundary layer dynamics is playing a vital role in transporting the aerosols from surface to the top of the boundary layer. Similar modulations are also evident in surface parameters like temperature, relative humidity and wind speed indicating these waves are associated with the dynamical aspects over Himalayan region. Finally, time evolution of range-23 height indicator snapshots during daytime showed strong upward velocities especially during afternoon hours implying that convective processes through short period gravity waves plays a significant role in transporting aerosols from the nearby valley region to boundary layer top over the site. These observations also establish the importance of wave induced daytime convective boundary layer dynamics in the lower Himalayan region.

  13. Dental health state of children living in different anthropogenic condition

    Directory of Open Access Journals (Sweden)

    M. A. Luchynskyі

    2015-11-01

    I. Y. Horbachevskyy Ternopil State Medical University of Ministry of Health of Ukraine, Ukraine, Ternopil (Ternopil, Maydan Voli, 1, 46001   Abstract   The purpose of the work is to study dental health of children living in conditions of combined negative impact of natural and technological factors. Materials and methods. It was performed an epidemiological dental examination of 2,551 children aged 6 to 15 years, who settled in different regions of the Precarpathians, in conditions of iodine and fluoride deficiency (plain - 1087 children, foothills - 730 and mountain - 734 children. Results. Comprehensive epidemiological studies found low levels of dental health of children living in different geochemical and anthropogenic conditions of Ivano-Frankivsk region (48,83 ± 0,36% in the general observation, that is not statistically different by regions examination, moreover girls level is lower, than that of boys in examined regions (48,14 ± 0,50 and (49,51 ± 0,52%, respectively. It was founded, that the main diseases, which contribute to the reduction of dental health in children, is dental caries and its complications and abnormalities of dentoalveolar system. It was found, that the frequency and severity of dentoalveolar abnormalities depend on anthropogenic environmental conditions: in children of plain and foothill regions, that suffer from greater anthropogenic pressure, dentoalveolar abnormalities where found in (67,99 ± 1,42 and (65,21 ± 1,76%, against (45,91 ± 1,84% in children of conditionally pure mountain region. These same children also often recorded more severe pathology – combined anomalies (24,09 ± 1,57 and (22,06 ± 1,90%, against (12,17 ± 1,78%, respectively. It was found the connection between the dentoalveolar abnormalities and the presence of caries (r = + 0,95; p <0,01 and periodontal tissue diseases (r = + 0,79; p <0,05.   Keywords: children, dental health, dentoalveolar abnormalities, dental caries, periodontal disease, hypoplasia.

  14. Anthropogenic noise alters bat activity levels and echolocation calls

    Directory of Open Access Journals (Sweden)

    Jessie P. Bunkley

    2015-01-01

    Full Text Available Negative impacts from anthropogenic noise are well documented for many wildlife taxa. Investigations of the effects of noise on bats however, have not been conducted outside of the laboratory. Bats that hunt arthropods rely on auditory information to forage. Part of this acoustic information can fall within the spectrum of anthropogenic noise, which can potentially interfere with signal reception and processing. Compressor stations associated with natural gas extraction produce broadband noise 24 hours a day, 365 days a year. With over half a million producing gas wells in the U.S. this infrastructure is a major source of noise pollution across the landscape. We conducted a ‘natural experiment’ in the second largest gas extraction field in the U.S. to investigate the potential effects of gas compressor station noise on the activity levels of the local bat assemblage. We used acoustic monitoring to compare the activity level (number of minutes in a night with a bat call of the bat assemblage at sites with compressor stations to sites lacking this infrastructure. We found that activity levels for the Brazilian free-tailed bat (Tadarida brasiliensis were 40% lower at loud compressor sites compared to quieter well pads, whereas the activity levels of four other species (Myotis californicus, M. cillolabrum, M. lucifugus, Parastrellus hesperus were not affected by noise. Furthermore, our results reveal that the assemblage of bat species emitting low frequency (35 kHz echolocation did not exhibit altered activity levels in noise. Lower activity levels of Brazilian free-tailed bats at loud sites indicate a potential reduction in habitat for this species. Additionally, a comparison of echolocation search calls produced by free-tailed bats at sites with and without compressor stations reveal that this species modifies its echolocation search calls in noise—producing longer calls with a narrower bandwidth. Call alterations might affect prey

  15. Monocular depth effects on perceptual fading.

    Science.gov (United States)

    Hsu, Li-Chuan; Kramer, Peter; Yeh, Su-Ling

    2010-08-06

    After prolonged viewing, a static target among moving non-targets is perceived to repeatedly disappear and reappear. An uncrossed stereoscopic disparity of the target facilitates this Motion-Induced Blindness (MIB). Here we test whether monocular depth cues can affect MIB too, and whether they can also affect perceptual fading in static displays. Experiment 1 reveals an effect of interposition: more MIB when the target appears partially covered by, than when it appears to cover, its surroundings. Experiment 2 shows that the effect is indeed due to interposition and not to the target's contours. Experiment 3 induces depth with the watercolor illusion and replicates Experiment 1. Experiments 4 and 5 replicate Experiments 1 and 3 without the use of motion. Since almost any stimulus contains a monocular depth cue, we conclude that perceived depth affects perceptual fading in almost any stimulus, whether dynamic or static. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Depth to Bedrock: Isopach of Unconsolidated Materials

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This vector dataset gives the approximate depth to bedrock (in feet) from Iowa's current land surface. This 50 foot isopach data was derived from the Digital...

  17. FINANCIAL DEPTH AND FINANCIAL ACCESS IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Sigit Setiawan

    2015-05-01

    Full Text Available This study is intended to analyze the current levels of financial depth and financial access in Indonesia and to analyze the factors affecting them. The analysis method used was a combination of descriptive quantitative, benchmarking, and literature reviews. The conclusion is that the financial depth in Indonesia has not shown a satisfactory level since it was the lowest, or the second lowest ranked country among the sampled countries. Meanwhile, the financial access in Indonesia is relatively better than its financial depth, especially for financial markets, in which Indonesia ranks in the lower average group. From literature reviews, it can be inferred that the main factor driving the poor financial depth in Indonesia is non-competitiveness of the institutions; whereas the driving force of poor financial access in Indonesia are geographical constraints, poverty, a high income gap, and a less than effective national financial development policy.

  18. Sputtering as a means of depth profiling

    International Nuclear Information System (INIS)

    Whitton, J.L.

    1978-01-01

    Probably the most common technique for determination of depth profiles by sputtering is that of secondary ion mass spectrometry. Many problems occur in the important step of converting the time (of sputtering) scale to a depth scale and these problems arise before the secondary ions are ejected. An attempt is made to present a comprehensive list of the effects that should be taken into consideration in the use of sputtering as a means of depth profiling. The various parameters liable to affect the depth profile measurements are listed in four sections: beam conditions; target conditions; experimental environment; and beam-target interactions. The effects are discussed and where interplay occurs, cross-reference is made and examples are provided where possible. (B.R.H.)

  19. Rand Corporation Mean Monthly Global Snow Depth

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — All available monthly snow depth climatologies were integrated by the Rand Corporation, in the early 1980s, into one global (excluding Africa and South America)...

  20. The Beryllium 7 Depth Distribution Study

    International Nuclear Information System (INIS)

    Jalal Sharib; Zainudin Othman; Dainee Nor Fardzila Ahmad Tugi

    2014-01-01

    The aim of this paper is to study the evolution of 7Be depth distribution in a soil profile. The soil samples have been collected by using plastic core in bare area in Bangi, Malaysia. Each of the soil core samples has been sectioned into 2 mm increments to a depth of 4 cm and the samples are subsequently oven dried at 45°C and gently disaggregated. The sample is passed through a < 2 mm sieve and packed into plastic pot for 7Be analysis using gamma spectrometry with a 24 hour count time. From the findings, show the 7Be depth penetration from this study decreases exponentially with depth and is confined within the top few centimeters and similar with other works been reported. The further discussion for this findings will be presented in full paper. (author)

  1. Capturing Motion and Depth Before Cinematography.

    Science.gov (United States)

    Wade, Nicholas J

    2016-01-01

    Visual representations of biological states have traditionally faced two problems: they lacked motion and depth. Attempts were made to supply these wants over many centuries, but the major advances were made in the early-nineteenth century. Motion was synthesized by sequences of slightly different images presented in rapid succession and depth was added by presenting slightly different images to each eye. Apparent motion and depth were combined some years later, but they tended to be applied separately. The major figures in this early period were Wheatstone, Plateau, Horner, Duboscq, Claudet, and Purkinje. Others later in the century, like Marey and Muybridge, were stimulated to extend the uses to which apparent motion and photography could be applied to examining body movements. These developments occurred before the birth of cinematography, and significant insights were derived from attempts to combine motion and depth.

  2. Wavefield Extrapolation in Pseudo-depth Domain

    KAUST Repository

    Ma, Xuxin

    2011-12-11

    Wave-equation based seismic migration and inversion tools are widely used by the energy industry to explore hydrocarbon and mineral resources. By design, most of these techniques simulate wave propagation in a space domain with the vertical axis being depth measured from the surface. Vertical depth is popular because it is a straightforward mapping of the subsurface space. It is, however, not computationally cost-effective because the wavelength changes with local elastic wave velocity, which in general increases with depth in the Earth. As a result, the sampling per wavelength also increases with depth. To avoid spatial aliasing in deep fast media, the seismic wave is oversampled in shallow slow media and therefore increase the total computation cost. This issue is effectively tackled by using the vertical time axis instead of vertical depth. This is because in a vertical time representation, the "wavelength" is essentially time period for vertical rays. This thesis extends the vertical time axis to the pseudo-depth axis, which features distance unit while preserving the properties of the vertical time representation. To explore the potentials of doing wave-equation based imaging in the pseudo-depth domain, a Partial Differential Equation (PDE) is derived to describe acoustic wave in this new domain. This new PDE is inherently anisotropic because the use of a constant vertical velocity to convert between depth and vertical time. Such anisotropy results in lower reflection coefficients compared with conventional space domain modeling results. This feature is helpful to suppress the low wavenumber artifacts in reverse-time migration images, which are caused by the widely used cross-correlation imaging condition. This thesis illustrates modeling acoustic waves in both conventional space domain and pseudo-depth domain. The numerical tool used to model acoustic waves is built based on the lowrank approximation of Fourier integral operators. To investigate the potential

  3. Naturalistic depth perception and binocular vision

    OpenAIRE

    Maiello, G.

    2017-01-01

    Humans continuously move both their eyes to redirect their foveae to objects at new depths. To correctly execute these complex combinations of saccades, vergence eye movements and accommodation changes, the visual system makes use of multiple sources of depth information, including binocular disparity and defocus. Furthermore, during development, both fine-tuning of oculomotor control as well as correct eye growth are likely driven by complex interactions between eye movements, accommodation,...

  4. Generators for finite depth subfactor planar algebras

    Indian Academy of Sciences (India)

    The main result of Kodiyalam and Tupurani [3] shows that a subfactor planar algebra of finite depth is singly generated with a finite presentation. If P is a subfactor planar algebra of depth k, it is shown there that a single 2k-box generates P. It is natural to ask what the smallest s is such that a single s-box generates P. While ...

  5. FINANCIAL DEPTH AND FINANCIAL ACCESS IN INDONESIA

    OpenAIRE

    Sigit Setiawan

    2015-01-01

    This study is intended to analyze the current levels of financial depth and financial access in Indonesia and to analyze the factors affecting them. The analysis method used was a combination of descriptive quantitative, benchmarking, and literature reviews. The conclusion is that the financial depth in Indonesia has not shown a satisfactory level since it was the lowest, or the second lowest ranked country among the sampled countries. Meanwhile, the financial access in Indonesia is relativel...

  6. A brain electrophysiological correlate of depth perception

    International Nuclear Information System (INIS)

    Akay, Ahmet; Celebi, Gurbuz

    2009-01-01

    To investigate brain electrical activity accompanying depth perception using random-dot stereograms. Additional experiments were conducted to ascertain the specificity of this potential to depth perception. In the present study, we performed 3 different and independent experiments on 34 subjects to establish the relationship between depth perception and its cortical electrophysiological correlate. Visual evoked potentials in response to visual stimulation by random-dot stereograms were recorded. To achieve this goal, a data acquisition and analysis system, different from common visual evoked potential recording systems, consisting of 2 personal computers, was used. One of the computers was used to generate the visual stimulus patterns and the other to record and digitally average the potentials evoked by the stimuli. This study was carried out at the Department of Biophysics of Ege University Medical School, Izmir, Turkey, from April to December, 2006. A negative potential component, which is thought to arise in association with depth perception, was recorded from the occipital region from 30 of the 34 subjects. Typically, it had a mean latency of 211.46 ms and 6.40 micron V amplitude. The negative potential is related to depth perception, as this component is present in the responses to stimulus, which carries disparity information but is absent when the stimulus is switched to no disparity information. Additional experiments also showed that the specificity of this component to depth perception becomes evident beyond doubt. (author)

  7. Total Variation Depth for Functional Data

    KAUST Repository

    Huang, Huang

    2016-11-15

    There has been extensive work on data depth-based methods for robust multivariate data analysis. Recent developments have moved to infinite-dimensional objects such as functional data. In this work, we propose a new notion of depth, the total variation depth, for functional data. As a measure of depth, its properties are studied theoretically, and the associated outlier detection performance is investigated through simulations. Compared to magnitude outliers, shape outliers are often masked among the rest of samples and harder to identify. We show that the proposed total variation depth has many desirable features and is well suited for outlier detection. In particular, we propose to decompose the total variation depth into two components that are associated with shape and magnitude outlyingness, respectively. This decomposition allows us to develop an effective procedure for outlier detection and useful visualization tools, while naturally accounting for the correlation in functional data. Finally, the proposed methodology is demonstrated using real datasets of curves, images, and video frames.

  8. Atmospheric delivery of anthropogenic bioavailable iron from mineral dust to the ocean

    OpenAIRE

    伊藤, 彰記; 時, 宗波; ITO, Akinori; SHI, Zongbo

    2015-01-01

    Atmospheric deposition of anthropogenic soluble iron (Fe) to the ocean has been suggested to modulate primary ocean productivity and thus indirectly affect the climate. A key process contributing to anthropogenic sources of soluble Fe is associated with air pollution, which acidifies Fe-containing mineral aerosols during their transport and leads to Fe transformation from insoluble to soluble forms. However, there is large uncertainty in our estimate of this anthropogenic soluble Fe. Here, we...

  9. Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean

    OpenAIRE

    伊藤, 彰記; 時, 宗波; ITO, Akinori; SHI, Zongbo

    2016-01-01

    Atmospheric deposition of anthropogenic soluble iron (Fe) to the ocean has been suggested to modulate primary ocean productivity and thus indirectly affect the climate. A key process contributing to anthropogenic sources of soluble Fe is associated with air pollution, which acidifies Fe-containing mineral aerosols during their transport and leads to Fe transformation from insoluble to soluble forms. However, there is large uncertainty in our estimate of this anthropogenic soluble Fe. In this ...

  10. Ocean Depths: The Mesopelagic and Implications for Global Warming.

    Science.gov (United States)

    Costello, Mark J; Breyer, Sean

    2017-01-09

    The mesopelagic or 'twilight zone' of the oceans occurs too deep for photosynthesis, but is a major part of the world's carbon cycle. Depth boundaries for the mesopelagic have now been shown on a global scale using the distribution of pelagic animals detected by compiling echo-soundings from ships around the world, and been used to predict the effect of global warming on regional fish production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Phosphorus in Denmark: national and regional anthropogenic flows

    DEFF Research Database (Denmark)

    Klinglmair, Manfred; Lemming, Camilla; Jensen, Lars Stoumann

    2015-01-01

    by country-wide average values. To quantify and evaluate these imbalances we integrated a country-scale and regional-scale model of the Danish anthropogenic P flows and stocks. We examine three spatial regions with regard to agriculture, as the main driver for P use, and waste management, the crucial sector......Substance flow analyses (SFA) of phosphorus (P) have been examined on a national or supra-national level in various recent studies. SFA studies of P on the country scale or larger can have limited informative value; large differences between P budgets exist within countries and are easily obscured...... for P recovery. The regions are characterised by their differences in agricultural practice, population and industrial density. We show considerable variation in P flows within the country. First, these are driven by agriculture, with mineral fertiliser inputs varying between 3 and 5 kg ha−1 yr−1...

  12. Anthropogenic influence on forest landscape in the Khumbu valley, Nepal

    Science.gov (United States)

    Lingua, Emanuele; Garbarino, Matteo; Urbinati, Carlo; Carrer, Marco

    2013-04-01

    High altitude Himalayan regions are geo-dynamically very active and very sensitive to natural and anthropogenic disturbances due to their steep slopes, variations of precipitations with elevation and short growing periods. Nonetheless, even in this remote region human pressure is often the most important factor affecting forest landscape. In the last decades the firewood demand has increased each year between September to December. The increase in the number of tourists, mountaineering, guides, porters, carpenters, lodges lead to a peak in the use of fuelwood. In order to understand anthropogenic impacts on forest, resources landscape and stand scale dynamics were analyzed in the Sagarmatha National Park (SNP) and its Buffer Zone in the Khumbu Valley (Nepal, Eastern Himalaya). Biological and historical data sources were employed, and a multi-scale approach was adopted to capture the influence of human activities on the distribution of tree species and forest structure. Stand structure and a range of environmental variables were sampled in 197 20x20 m square plots, and land use and anthropogenic variables were derived in a GIS environment (thematic maps and IKONOS, Landsat and Terra ASTER satellite images). We used multivariate statistical analyses to relate forest structure, anthropogenic influences, land uses, and topography. Fuel wood is the prime source of energy for cooking (1480-1880 Kg/person/year) and Quercus semecarpifolia, Rhododendron arboreum and Pinus wallichiana, among the others, are the most exploited species. Due to lack of sufficient energy sources deforestation is becoming a problem in the area. This might be a major threat causing soil erosion, landslides and other natural hazards. Among the 25 species of trees that were found in the Buffer Zone Community Forests of SNP, Pinus wallichiana, Lyonia ovalifolia, Quercus semecarpifolia and Rhododendron arboreum are the dominant species. The total stand density ranged from 228 to 379 tree/ha and the

  13. Psychic pathology of anthropogenic accidents at risk enterprises

    International Nuclear Information System (INIS)

    Pukhovskij, N.N.

    1993-01-01

    The literary data on the clinic and pathogenesis distinctions of traumatic and posttraumatic stress following the accidents are analyzed. The inner contradictory character of the Chernobyl NPP operators reaction to psychodraumatic situation is revealed. A number of concepts liable to discussion is given: inner contradiction of the reactions to traumatic stress on account of accidents at risk cuterprises puts forward the way for psychology evolution in process, besides, posttraumatic stress may be considered as one of the stages of such evolution; the misuse of spirits by the persons with traumatic stress appeared on account of accidents at risk enterprises puts forward the way for the subsequent evolution towards psychic degeneration; the prevailing effect of the reality denial among the personnel of the risk enterprises may form a muthcreative attitude to technical sphere and play a certain role in the emergence of anthropogenic accidents at these enterprises. 22 refs

  14. National greenhouse gas accounts: Current anthropogenic sources and sinks

    International Nuclear Information System (INIS)

    Subak, S.; Raskin, P.; Hippel, David von

    1992-01-01

    This study provides spatially disaggregated estimates of greenhouse gas emissions from the major anthropogenic sources for 145 countries. The data compilation is comprehensive in approach, including emissions from CO, CH 4 , N 2 O and ten halocarbons, in addition to CO 2 . The sources include emissions from fossil fuel production and use, cement production, halocarbons, landfills, land use changes, biomass burning, rice and livestock production and fertilizer consumption. The approach used to derive these estimates corresponds closely with the simple methodologies proposed by the Greenhouse Gas Emissions Task Force of the Intergovernmental Panel on Climate Change. The inventory includes a new estimate of greenhouse gas emissions from fossil fuel combustion based principally on data from the International Energy Agency. The research methodologies for estimating emissions from all sources is briefly described and compared with other recent studies in the literature. (112 refs.)

  15. Anthropogenic SO2/NOx committee--current status

    International Nuclear Information System (INIS)

    Benkovitz, C.M.

    1993-04-01

    Current activities of the Anthropogenic SO 2 /NO x Committee center around the compilation of Version 1 of the GEIA inventories. These inventories will be based on the GEIA-specified 1 degrees by 1 degrees grid (lower left corner at 180 degrees W/90 degrees S, west to east and south to north), reflect 1985 emissions and consist of two data sets: Version 1A inventories with annual emissions at one level and Version 1B inventories with seasonal emissions, two vertical levels (defined at 100 m) and sectoral split information. The basic information used for both versions of the GEIA inventories will be identical; i.e., emissions totals across both inventories will be the same. Work is being carried out in two complementary working groups; Carmen Benkovitz, Brookhaven National Laboratory, Upton, NY, USA heads the work on the annual inventory, Eva Voldner, Atmospheric Environment Services, Canada and Trevor Scholtz, ORTECH International, Canada, head the work on the seasonal inventory

  16. Linkage of anthropogenic aerosol to clouds and climate

    International Nuclear Information System (INIS)

    Hudson, J.G.

    1992-01-01

    This progress report describes the monitoring being done to validate a linkage of anthropogenic aerosol to clouds and climate. Equipment and findings are reported. The equipment construction called for in the original proposal has now been competed. These instruments are the high temperature processor, the data acquisition system for the direct Royco optical particle counter (OPC), and modifications to the formvar replicator. The main field effort during the past year has been the shipboard experiment SEAHUNT (Shiptrail Evolution Above High Updraft Naval Targets). There were also some laboratory and local ambient particle measurements and a surface field program on and near the California coast. The shipboard project was not anticipated in the original proposal but the laboratory and surface measurements were along the lines suggested in the original proposal

  17. Anthropogenic range contractions bias species climate change forecasts

    Science.gov (United States)

    Faurby, Søren; Araújo, Miguel B.

    2018-03-01

    Forecasts of species range shifts under climate change most often rely on ecological niche models, in which characterizations of climate suitability are highly contingent on the species range data used. If ranges are far from equilibrium under current environmental conditions, for instance owing to local extinctions in otherwise suitable areas, modelled environmental suitability can be truncated, leading to biased estimates of the effects of climate change. Here we examine the impact of such biases on estimated risks from climate change by comparing models of the distribution of North American mammals based on current ranges with ranges accounting for historical information on species ranges. We find that estimated future diversity, almost everywhere, except in coastal Alaska, is drastically underestimated unless the full historical distribution of the species is included in the models. Consequently forecasts of climate change impacts on biodiversity for many clades are unlikely to be reliable without acknowledging anthropogenic influences on contemporary ranges.

  18. A retrospect of anthropogenic radioactivity in the global marine environment

    DEFF Research Database (Denmark)

    Aarkrog, A.

    1998-01-01

    . The IAEA's IASAP study has evaluated the radiological consequences of these dumpings. In a recent international study (MARDOS) by the IAEA it was concluded that the doses to man from anthropogenic radionuclides in the marine environment are generally one to two orders of magnitude less than the doses from......Man-made radionuclides were introduced into the marine environment in the mid forties with the exploitation of nuclear fission for military purposes. Plutonium production reactors at Hanford, USA, released radioactivity to the Pacific Ocean via the Columbia River. In the former Soviet Union (FSU......) the military nuclear establishment at Cheliabinsk (later MAYAK) a few years later began direct discharging of fission products to the nearby Techa River, which is a part of the Ob river system, and the Arctic Ocean received man made radioactivity. In the 1950s, when atmospheric testing of thermonuclear weapons...

  19. Solution of moving boundary problems with implicit boundary condition

    International Nuclear Information System (INIS)

    Moyano, E.A.

    1990-01-01

    An algorithm that solves numerically a model for studying one dimensional moving boundary problems, with implicit boundary condition, is described. Landau's transformation is used, in order to work with a fixed number of nodes at each instant. Then, it is necessary to deal with a parabolic partial differential equation, whose diffusive and convective terms have variable coefficients. The partial differential equation is implicitly discretized, using Laasonen's scheme, always stable, instead of employing Crank-Nicholson sheme, as it has been done by Ferris and Hill. Fixed time and space steps (Δt, Δξ) are used, and the iteration is made with variable positions of the interface, i.e. varying δs until a boundary condition is satisfied. The model has the same features of the oxygen diffusion in absorbing tissue. It would be capable of estimating time variant radiation treatments of cancerous tumors. (Author) [es

  20. The comparative evidence for urban species sorting by anthropogenic noise.

    Science.gov (United States)

    Cardoso, Gonçalo C; Hu, Yang; Francis, Clinton D

    2018-02-01

    Anthropogenic noise is more intense at lower sound frequencies, which could decrease urban tolerance of animals with low-frequency vocalizations. Four large comparative studies tested whether anthropogenic noise filters bird species according to the sound frequencies they use and produced discrepant results. We reanalysed data from these studies to explain their different results. Urban tolerance of bird species (defined here as often occurring and breeding in cities) is very weakly related to urban preference or relative abundance (defined based on changes in population density from urban to nearby rural environments). Data on urban preference/abundance are potentially accurate for individual cities but differ among cities for the same species, whereas existing data on urban tolerance are coarser but provide a more global synthesis. Cross-species comparisons find a positive association between the sound frequency of song and urban tolerance, but not urban preference/abundance. We found that showing an association between song frequency and urban tolerance requires controlling for additional species traits that influence urban living. On the contrary, controlling for other species traits is not required to show a positive association between song frequency and use of noisy relative to quiet areas within the same type of environment. Together, comparative evidence indicates that masking by urban noise is part of a larger set of factors influencing urban living: all else being equal, species with high-frequency sounds are more likely to tolerate cities than species with low-frequency sounds, but they are not more likely to prefer, or to be more abundant in, urban than non-urban habitats.

  1. Regional modelling of anthropogenic sulphur in Southeast Asia

    Science.gov (United States)

    Engardt, M.; Leong, C. P.

    A co-operative research project between the Malaysian Meteorological Service (MMS) and the Swedish Meteorological and Hydrological Institute (SMHI) focussing on the usage of an atmospheric transport and chemistry model, has just been initiated. Here, we describe the main features of the dispersion model and discuss a first set of calculations in light of available measurements of sulphuric species in Southeast Asia. According to our results, anthropogenic sulphur concentrations and depositions are particularly high near the large cities of the region, around a metal smelter in the southern Philippines, and in a region extending from northern Vietnam into southeastern China. These areas coincide with the high-emissions regions of Southeast Asia and we tentatively conclude that regional transport of acidifying species is not as far-reaching as in the mid-latitudes. From our calculations, and from supporting measurements we conclude that most of rural Southeast Asia is not yet severely affected by anthropogenic sulphur, but given the rapid rate of economical development in this region the situation may deteriorate quickly. Areas that are particularly at risk include the large cities, northern Vietnam, most of central Thailand, most of peninsular Malaysia, eastern Sumatra and parts of Java, all of which receive total-sulphur depositions in excess of 0.5 g S m -2 yr -1. Our model simulates sulphate in precipitation in accordance with measurements, but it has a tendency to overestimate atmospheric SO 2. It remains to be investigated whether this is a problem in the model formulation or a result of unrepresentative sampling. An immediate continuation of this study should be performed with higher spatial resolution than the currently used 100×100 km 2. Other imperfections in this model study, which should be addressed in future work, include parameterised vertical transport in deep convective clouds, the influence of natural emissions (primarily from volcanoes) on the

  2. An emission inventory of sulfur from anthropogenic sources in Antarctica

    Directory of Open Access Journals (Sweden)

    S. V. Shirsat

    2009-05-01

    Full Text Available This paper presents first results of a comprehensive emission inventory of chemical species from anthropogenic activities (power generation, vehicles, ships and aircraft in Antarctica, covering the 2004–2005 period.

    The inventory is based on estimated emission rates of fuel consumption provided by some of the Antarctic research stations. Since the emission sources have different modes of operation and use a variety of fuel, the emission flux rate of chemical species is calculated by multiplying the fuel consumption value with the density of fuel and appropriate emission factors. A separate inventory is prepared for each anthropogenic emission source in Antarctica.

    Depending on the type of operation, emission rates of SO2, and BC (Black Carbon, from shipping only have been calculated using the above technique. However, only results of SO2 emissions from each source are presented here. Emission inventory maps of SO2 depicting the track/path taken by each mobile source are shown. The total annual SO2 is 158 Mg from power generation and vehicle operations, 3873 Mg from ships and 56 Mg from aircraft for 2004–2005 and these values undergo strong seasonality following the human activity in Antarctica. Though these figures are small when compared to the emissions at most other regions of the world, they are an indication that human presence in Antarctica leads to at least local pollution. The sources are mainly line and point sources and thus the local pollution potentially is relatively strong.

  3. Climate impact of anthropogenic aerosols on cirrus clouds

    Science.gov (United States)

    Penner, J.; Zhou, C.

    2017-12-01

    Cirrus clouds have a net warming effect on the atmosphere and cover about 30% of the Earth's area. Aerosol particles initiate ice formation in the upper troposphere through modes of action that include homogeneous freezing of solution droplets, heterogeneous nucleation on solid particles immersed in a solution, and deposition nucleation of vapor onto solid particles. However, the efficacy with which particles act to form cirrus particles in a model depends on the representation of updrafts. Here, we use a representation of updrafts based on observations of gravity waves, and follow ice formation/evaporation during both updrafts and downdrafts. We examine the possible change in ice number concentration from anthropogenic soot originating from surface sources of fossil fuel and biomass burning and from aircraft particles that have previously formed ice in contrails. Results show that fossil fuel and biomass burning soot aerosols with this version exert a radiative forcing of -0.15±0.02 Wm-2 while aircraft aerosols that have been pre-activated within contrails exert a forcing of -0.20±0.06 Wm-2, but it is possible to decrease these estimates of forcing if a larger fraction of dust particles act as heterogeneous ice nuclei. In addition aircraft aerosols may warm the climate if a large fraction of these particles act as ice nuclei. The magnitude of the forcing in cirrus clouds can be comparable to the forcing exerted by anthropogenic aerosols on warm clouds. This assessment could therefore support climate models with high sensitivity to greenhouse gas forcing, while still allowing the models to fit the overall historical temperature change.

  4. Establishing an anthropogenic nitrogen baseline using Native American shell middens

    Directory of Open Access Journals (Sweden)

    Autumn eOczkowski

    2016-05-01

    Full Text Available Narragansett Bay, Rhode Island, has been heavily influenced by anthropogenic nutrients for more than 200 years. Recent efforts to improve water quality have cut sewage nitrogen (N loads to this point source estuary by more than half. Given that the bay has been heavily fertilized for longer than monitoring programs have been in place, we sought additional insight into how N dynamics in the system have historically changed. To do this, we measured the N stable isotope (δ15N values in clam shells from as early as 3000 BP to the present. Samples from Native American middens were compared with those collected locally from museums, an archaeological company, and graduate student thesis projects, during a range of time periods. Overall, δ15N values in clam shells from Narragansett Bay have increased significantly over time, reflecting known patterns of anthropogenic nutrient enrichment. Pre-colonization midden shell δ15N values were significantly lower than those post-European contact. While there were no statistical differences among shells dated from the late 15th Century to 2005, there was a significant difference between 2005 and 2015 shells, which we attribute to the higher δ15N values in the effluent associated with recent sewage treatment upgrades. In contrast, the δ15N values of shells from the southern Rhode Island coast remained constant through time; while influenced by human activities, these areas are not directly influenced by point-source sewage discharge. Overall, our results show that this isotope technique for measuring δ15N values in clam shells provides useful insight into how N dynamics in coastal ecosystems have changed during thousands of years, providing managers vital historical information when setting goals for N reduction.

  5. The influence of vegetation dynamics on anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    U. Port

    2012-11-01

    Full Text Available In this study, vegetation–climate and vegetation–carbon cycle interactions during anthropogenic climate change are assessed by using the Earth System Model of the Max Planck Institute for Meteorology (MPI ESM that includes vegetation dynamics and an interactive carbon cycle. We assume anthropogenic CO2 emissions according to the RCP 8.5 scenario in the time period from 1850 to 2120. For the time after 2120, we assume zero emissions to evaluate the response of the stabilising Earth System by 2300.

    Our results suggest that vegetation dynamics have a considerable influence on the changing global and regional climate. In the simulations, global mean tree cover extends by 2300 due to increased atmospheric CO2 concentration and global warming. Thus, land carbon uptake is higher and atmospheric CO2 concentration is lower by about 40 ppm when considering dynamic vegetation compared to the static pre-industrial vegetation cover. The reduced atmospheric CO2 concentration is equivalent to a lower global mean temperature. Moreover, biogeophysical effects of vegetation cover shifts influence the climate on a regional scale. Expanded tree cover in the northern high latitudes results in a reduced albedo and additional warming. In the Amazon region, declined tree cover causes a regional warming due to reduced evapotranspiration. As a net effect, vegetation dynamics have a slight attenuating effect on global climate change as the global climate cools by 0.22 K due to natural vegetation cover shifts in 2300.

  6. Evaluation of anthropogenic influence in probabilistic forecasting of coastal change

    Science.gov (United States)

    Hapke, C. J.; Wilson, K.; Adams, P. N.

    2014-12-01

    Prediction of large scale coastal behavior is especially challenging in areas of pervasive human activity. Many coastal zones on the Gulf and Atlantic coasts are moderately to highly modified through the use of soft sediment and hard stabilization techniques. These practices have the potential to alter sediment transport and availability, as well as reshape the beach profile, ultimately transforming the natural evolution of the coastal system. We present the results of a series of probabilistic models, designed to predict the observed geomorphic response to high wave events at Fire Island, New York. The island comprises a variety of land use types, including inhabited communities with modified beaches, where beach nourishment and artificial dune construction (scraping) occur, unmodified zones, and protected national seashore. This variation in land use presents an opportunity for comparison of model accuracy across highly modified and rarely modified stretches of coastline. Eight models with basic and expanded structures were developed, resulting in sixteen models, informed with observational data from Fire Island. The basic model type does not include anthropogenic modification. The expanded model includes records of nourishment and scraping, designed to quantify the improved accuracy when anthropogenic activity is represented. Modification was included as frequency of occurrence divided by the time since the most recent event, to distinguish between recent and historic events. All but one model reported improved predictive accuracy from the basic to expanded form. The addition of nourishment and scraping parameters resulted in a maximum reduction in predictive error of 36%. The seven improved models reported an average 23% reduction in error. These results indicate that it is advantageous to incorporate the human forcing into a coastal hazards probability model framework.

  7. Variability in fluvial geomorphic response to anthropogenic disturbance

    Science.gov (United States)

    Verstraeten, Gert; Broothaerts, Nils; Van Loo, Maarten; Notebaert, Bastiaan; D'Haen, Koen; Dusar, Bert; De Brue, Hanne

    2017-10-01

    Humans have greatly impacted the processes and intensities of erosion, sediment transport and storage since the introduction of agriculture. In many regions around the world, accelerated floodplain sedimentation can be related to increases in human pressure on the environment. However, the relation between the intensity of anthropogenic disturbance and the magnitude of change in fluvial sediment dynamics is not straightforward and often non-linear. Here, we review a number of case studies from contrasting environmental settings in the European loess belt, the Eastern Mediterranean mountain ranges and the eastern USA. Detailed field-based sediment archive studies and sediment budgets covering time periods ranging from 200 to over 5000 year, as well as the use of pollen and sediment provenance techniques, show that no overarching concept of changes in floodplain sedimentation following anthropogenic disturbance can be established. Slope-channel (dis)connectivity controls the existence of thresholds or tipping points that need to be crossed before significant changes in downstream sediment dynamics are recorded following human impact. This coupling can be related to characteristics of human pressure such as its duration, intensity and spatial patterns, but also to the geomorphic and tectonic setting. Furthermore, internal feedback mechanisms, such as those between erosion and soil thickness, further complicate the story. All these factors controlling the propagation of sediment from eroding hillslopes to river channels vary between regions. Hence, only unique patterns of fluvial geomorphic response can be identified. As a result, unravelling the human impact from current-day sediment archives and predicting the impact of future human disturbances on fluvial sediment dynamics remain a major challenge. This has important implications for interpreting contemporary sediment yields as well as downstream sediment records in large floodplains, deltas and the marine

  8. Evaluation of Strip Footing Bearing Capacity Built on the Anthropogenic Embankment by Random Finite Element Method

    Science.gov (United States)

    Pieczynska-Kozlowska, Joanna

    2014-05-01

    One of a geotechnical problem in the area of Wroclaw is an anthropogenic embankment layer delaying to the depth of 4-5m, arising as a result of historical incidents. In such a case an assumption of bearing capacity of strip footing might be difficult. The standard solution is to use a deep foundation or foundation soil replacement. However both methods generate significant costs. In the present paper the authors focused their attention on the influence of anthropogenic embankment variability on bearing capacity. Soil parameters were defined on the basis of CPT test and modeled as 2D anisotropic random fields and the assumption of bearing capacity were made according deterministic finite element methods. Many repeated of the different realizations of random fields lead to stable expected value of bearing capacity. The algorithm used to estimate the bearing capacity of strip footing was the random finite element method (e.g. [1]). In traditional approach of bearing capacity the formula proposed by [2] is taken into account. qf = c'Nc + qNq + 0.5γBN- γ (1) where: qf is the ultimate bearing stress, cis the cohesion, qis the overburden load due to foundation embedment, γ is the soil unit weight, Bis the footing width, and Nc, Nq and Nγ are the bearing capacity factors. The method of evaluation the bearing capacity of strip footing based on finite element method incorporate five parameters: Young's modulus (E), Poisson's ratio (ν), dilation angle (ψ), cohesion (c), and friction angle (φ). In the present study E, ν and ψ are held constant while c and φ are randomized. Although the Young's modulus does not affect the bearing capacity it governs the initial elastic response of the soil. Plastic stress redistribution is accomplished using a viscoplastic algorithm merge with an elastic perfectly plastic (Mohr - Coulomb) failure criterion. In this paper a typical finite element mesh was assumed with 8-node elements consist in 50 columns and 20 rows. Footings width B

  9. The boundary-scan handbook

    CERN Document Server

    Parker, Kenneth P

    2016-01-01

    Aimed at electronics industry professionals, this 4th edition of the Boundary Scan Handbook describes recent changes to the IEEE1149.1 Standard Test Access Port and Boundary-Scan Architecture. This updated edition features new chapters on the possible effects of the changes on the work of the practicing test engineers and the new 1149.8.1 standard. Anyone needing to understand the basics of boundary scan and its practical industrial implementation will need this book. Provides an overview of the recent changes to the 1149.1 standard and the effect of the changes on the work of test engineers;   Explains the new IEEE 1149.8.1 subsidiary standard and applications;   Describes the latest updates on the supplementary IEEE testing standards. In particular, addresses: IEEE Std 1149.1                      Digital Boundary-Scan IEEE Std 1149.4                      Analog Boundary-Scan IEEE Std 1149.6                      Advanced I/O Testing IEEE Std 1149.8.1           �...

  10. Event boundaries and anaphoric reference.

    Science.gov (United States)

    Thompson, Alexis N; Radvansky, Gabriel A

    2016-06-01

    The current study explored the finding that parsing a narrative into separate events impairs anaphor resolution. According to the Event Horizon Model, when a narrative event boundary is encountered, a new event model is created. Information associated with the prior event model is removed from working memory. So long as the event model containing the anaphor referent is currently being processed, this information should still be available when there is no narrative event boundary, even if reading has been disrupted by a working-memory-clearing distractor task. In those cases, readers may reactivate their prior event model, and anaphor resolution would not be affected. Alternatively, comprehension may not be as event oriented as this account suggests. Instead, any disruption of the contents of working memory during comprehension, event related or not, may be sufficient to disrupt anaphor resolution. In this case, reading comprehension would be more strongly guided by other, more basic language processing mechanisms and the event structure of the described events would play a more minor role. In the current experiments, participants were given stories to read in which we included, between the anaphor and its referent, either the presence of a narrative event boundary (Experiment 1) or a narrative event boundary along with a working-memory-clearing distractor task (Experiment 2). The results showed that anaphor resolution was affected by narrative event boundaries but not by a working-memory-clearing distractor task. This is interpreted as being consistent with the Event Horizon Model of event cognition.

  11. Depth resolution and preferential sputtering in depth profiling of sharp interfaces

    International Nuclear Information System (INIS)

    Hofmann, S.; Han, Y.S.; Wang, J.Y.

    2017-01-01

    Highlights: • Interfacial depth resolution from MRI model depends on sputtering rate differences. • Depth resolution critically depends on the dominance of roughness or atomic mixing. • True (depth scale) and apparent (time scale) depth resolutions are different. • Average sputtering rate approximately yields true from apparent depth resolution. • Profiles by SIMS and XPS are different but similar to surface concentrations. - Abstract: The influence of preferential sputtering on depth resolution of sputter depth profiles is studied for different sputtering rates of the two components at an A/B interface. Surface concentration and intensity depth profiles on both the sputtering time scale (as measured) and the depth scale are obtained by calculations with an extended Mixing-Roughness-Information depth (MRI)-model. The results show a clear difference for the two extreme cases (a) preponderant roughness and (b) preponderant atomic mixing. In case (a), the interface width on the time scale (Δt(16–84%)) increases with preferential sputtering if the faster sputtering component is on top of the slower sputtering component, but the true resolution on the depth scale (Δz(16–84%)) stays constant. In case (b), the interface width on the time scale stays constant but the true resolution on the depth scale varies with preferential sputtering. For similar order of magnitude of the atomic mixing and the roughness parameters, a transition state between the two extremes is obtained. While the normalized intensity profile of SIMS represents that of the surface concentration, an additional broadening effect is encountered in XPS or AES by the influence of the mean electron escape depth which may even cause an additional matrix effect at the interface.

  12. Depth resolution and preferential sputtering in depth profiling of sharp interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, S. [Max Planck Institute for Intelligent Systems (formerly MPI for Metals Research), Heisenbergstrasse 3, D-70569 Stuttgart (Germany); Han, Y.S. [Department of Physics, Shantou University, 243 Daxue Road, Shantou, 515063 Guangdong (China); Wang, J.Y., E-mail: wangjy@stu.edu.cn [Department of Physics, Shantou University, 243 Daxue Road, Shantou, 515063 Guangdong (China)

    2017-07-15

    Highlights: • Interfacial depth resolution from MRI model depends on sputtering rate differences. • Depth resolution critically depends on the dominance of roughness or atomic mixing. • True (depth scale) and apparent (time scale) depth resolutions are different. • Average sputtering rate approximately yields true from apparent depth resolution. • Profiles by SIMS and XPS are different but similar to surface concentrations. - Abstract: The influence of preferential sputtering on depth resolution of sputter depth profiles is studied for different sputtering rates of the two components at an A/B interface. Surface concentration and intensity depth profiles on both the sputtering time scale (as measured) and the depth scale are obtained by calculations with an extended Mixing-Roughness-Information depth (MRI)-model. The results show a clear difference for the two extreme cases (a) preponderant roughness and (b) preponderant atomic mixing. In case (a), the interface width on the time scale (Δt(16–84%)) increases with preferential sputtering if the faster sputtering component is on top of the slower sputtering component, but the true resolution on the depth scale (Δz(16–84%)) stays constant. In case (b), the interface width on the time scale stays constant but the true resolution on the depth scale varies with preferential sputtering. For similar order of magnitude of the atomic mixing and the roughness parameters, a transition state between the two extremes is obtained. While the normalized intensity profile of SIMS represents that of the surface concentration, an additional broadening effect is encountered in XPS or AES by the influence of the mean electron escape depth which may even cause an additional matrix effect at the interface.

  13. MODIS Retrieval of Aerosol Optical Depth over Turbid Coastal Water

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2017-06-01

    Full Text Available We present a new approach to retrieve Aerosol Optical Depth (AOD using the Moderate Resolution Imaging Spectroradiometer (MODIS over the turbid coastal water. This approach supplements the operational Dark Target (DT aerosol retrieval algorithm that currently does not conduct AOD retrieval in shallow waters that have visible sediments or sea-floor (i.e., Class 2 waters. Over the global coastal water regions in cloud-free conditions, coastal screening leads to ~20% unavailability of AOD retrievals. Here, we refine the MODIS DT algorithm by considering that water-leaving radiance at 2.1 μm to be negligible regardless of water turbidity, and therefore the 2.1 μm reflectance at the top of the atmosphere is sensitive to both change of fine-mode and coarse-mode AODs. By assuming that the aerosol single scattering properties over coastal turbid water are similar to those over the adjacent open-ocean pixels, the new algorithm can derive AOD over these shallow waters. The test algorithm yields ~18% more MODIS-AERONET collocated pairs for six AERONET stations in the coastal water regions. Furthermore, comparison of the new retrieval with these AERONET observations show that the new AOD retrievals have equivalent or better accuracy than those retrieved by the MODIS operational algorithm’s over coastal land and non-turbid coastal water product. Combining the new retrievals with the existing MODIS operational retrievals yields an overall improvement of AOD over those coastal water regions. Most importantly, this refinement extends the spatial and temporal coverage of MODIS AOD retrievals over the coastal regions where 60% of human population resides. This expanded coverage is crucial for better understanding of impact of anthropogenic aerosol particles on coastal air quality and climate.

  14. Aerosol optical depth trend over the Middle East

    KAUST Repository

    Klingmüller, Klaus

    2016-04-22

    We use the combined Dark Target/Deep Blue aerosol optical depth (AOD) satellite product of the moderate-resolution imaging spectroradiometer (MODIS) collection 6 to study trends over the Middle East between 2000 and 2015. Our analysis corroborates a previously identified positive AOD trend over large parts of the Middle East during the period 2001 to 2012. We relate the annual AOD to precipitation, soil moisture and surface winds to identify regions where these attributes are directly related to the AOD over Saudi Arabia, Iraq and Iran. Regarding precipitation and soil moisture, a relatively small area in and surrounding Iraq turns out to be of prime importance for the AOD over these countries. Regarding surface wind speed, the African Red Sea coastal area is relevant for the Saudi Arabian AOD. Using multiple linear regression we show that AOD trends and interannual variability can be attributed to soil moisture, precipitation and surface winds, being the main factors controlling the dust cycle. Our results confirm the dust driven AOD trends and variability, supported by a decreasing MODIS-derived Ångström exponent and a decreasing AERONET-derived fine mode fraction that accompany the AOD increase over Saudi Arabia. The positive AOD trend relates to a negative soil moisture trend. As a lower soil moisture translates into enhanced dust emissions, it is not needed to assume growing anthropogenic aerosol and aerosol precursor emissions to explain the observations. Instead, our results suggest that increasing temperature and decreasing relative humidity in the last decade have promoted soil drying, leading to increased dust emissions and AOD; consequently an AOD increase is expected due to climate change.

  15. Asymptotic analysis and boundary layers

    CERN Document Server

    Cousteix, Jean

    2007-01-01

    This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general comprehensive presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows. The advantages of SCEM are discussed in comparison with the standard Method of Matched Asymptotic Expansions. In particular, for the first time, the theory of Interactive Boundary Layer is fully justified. With its chapter summaries, detailed derivations of results, discussed examples and fully worked out problems and solutions, the book is self-contained. It is written on a mathematical level accessible to graduate and post-graduate students of engineering and physics with a good knowledge in fluid mechanics. Researchers and practitioners will estee...

  16. Constraining CO2 tower measurements in an inhomogeneous area with anthropogenic emissions using a combination of car-mounted instrument campaigns, aircraft profiles, transport modeling and neural networks

    Science.gov (United States)

    Schmidt, A.; Rella, C.; Conley, S. A.; Goeckede, M.; Law, B. E.

    2013-12-01

    The NOAA CO2 observation network in Oregon has been enhanced by 3 new towers in 2012. The tallest tower in the network (270 m), located in Silverton in the Willamette Valley is affected by anthropogenic emissions from Oregon's busiest traffic routes and urban centers. In summer 2012, we conducted a measurement campaign using a car-mounted PICARRO CRDS CO2/CO analyzer. Over 3 days, the instrument was driven over 1000 miles throughout the northwestern portion of Oregon measuring the CO/ CO2 ratios on main highways, back roads in forests, agricultural sites, and Oregon's biggest urban centers. By geospatial analyses we obtained ratios of CO/ CO2 over distinct land cover types divided into 10 classes represented in the study area. Using the coupled WRF-STILT transport model we calculated the footprints of nearby CO/ CO2 observation towers for the corresponding days of mobile road measurements. Spatiotemporally assigned source areas in combination with the land use classification were then used to calculate specific ratios of CO (anthropogenic origins) and CO2 to separate the anthropogenic portion of CO2 from the mixing ratio time series measured at the tower in Silverton. The WRF modeled boundary layer heights used in out study showed some differences compared to the boundary layer heights derived from profile data of wind, temperature, and humidity measured with an airplane in August, September, and November 2012, repeatedly over 5 tower locations. A Bayesian Regularized Artificial Neural Network (BRANN) was used to correct the boundary layer height calculated with WRF with a temporal resolution of 20 minutes and a horizontal resolution of 4 km. For that purpose the BRANN was trained using height profile data from the flight campaigns and spatiotemporally corresponding meteorological data from WRF. Our analyses provide information needed to run inverse modeling of CO2 exchange in an area that is affected by sources that cannot easily be considered by biospheric models

  17. Current Challenges in Understanding and Forecasting Stable Boundary Layers over Land and Ice

    Directory of Open Access Journals (Sweden)

    Gert-Jan eSteeneveld

    2014-10-01

    Full Text Available Understanding and prediction of the stable atmospheric boundary layer is challenging. Many physical processes come into play in the stable boundary layer, i.e. turbulence, radiation, land surface coupling and heterogeneity, orographic turbulent and gravity wave drag. The development of robust stable boundary-layer parameterizations for weather and climate models is difficult because of the multiplicity of processes and their complex interactions. As a result, these models suffer from biases in key variables, such as the 2-m temperature, boundary-layer depth and wind speed. This short paper briefly summarizes the state-of-the-art of stable boundary layer research, and highlights physical processes that received only limited attention so far, in particular orographically-induced gravity wave drag, longwave radiation divergence, and the land-atmosphere coupling over a snow-covered surface. Finally, a conceptual framework with relevant processes and particularly their interactions is proposed.

  18. Radioanalytical studies of anthropogenic radionuclides in an anoxic fjord

    International Nuclear Information System (INIS)

    Roos, P.; Holm, E.

    1993-01-01

    The vertical distribution of 239+240 Pu, 238 Pu, 241 Am, 99 Tc, 137 Cs and 134 Cs has been studied in the permanently super-anoxic Framvaren fjord in southern Norway. The adjacent Helvik fjord (slightly below 14 m depth) was studied with the respect to the same radionuclides as a comparison for their distribution and levels during more normal conditions. Th was studied in both fjords as a representative for actinides in oxidation state +4. Vertical distribution of Pu, Am and Th in Framvaren all show increased concentration with depth. Complex formation with DOC is believed to be the main course for this behaviour. Increasing 232 Th with depth in sediment indicate possible remobilization of this element from the sediments. The limited water exchange between the two fjords is illustrated by the low 238 Pu/ 239+240 Pu ratio and the higher 134 Cs/ 137 Cs ratio in Framvaren fjord. Concentration of 99 Tc in Framvaren is also lower than compared to Helvik fjord. Concentration of 99 Tc in Helvik and Framvaren fjord is approximately constant with depth

  19. Ship Springing Response in Finite Water Depth

    DEFF Research Database (Denmark)

    Vidic-Perunovic, Jelena

    2012-01-01

    Second-order forces and moments are derived for the pressure integration and the momentum conservation methods. They are implemented in the time-domain boundary element code AEGIR. Both Neumann-Kelvin and double-body flow linearization are used. Good agreement is found between AEGIR’s results...

  20. TRENDS IN ESTIMATED MIXING DEPTH DAILY MAXIMUMS

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R; Amy DuPont, A; Robert Kurzeja, R; Matt Parker, M

    2007-11-12

    Mixing depth is an important quantity in the determination of air pollution concentrations. Fireweather forecasts depend strongly on estimates of the mixing depth as a means of determining the altitude and dilution (ventilation rates) of smoke plumes. The Savannah River United States Forest Service (USFS) routinely conducts prescribed fires at the Savannah River Site (SRS), a heavily wooded Department of Energy (DOE) facility located in southwest South Carolina. For many years, the Savannah River National Laboratory (SRNL) has provided forecasts of weather conditions in support of the fire program, including an estimated mixing depth using potential temperature and turbulence change with height at a given location. This paper examines trends in the average estimated mixing depth daily maximum at the SRS over an extended period of time (4.75 years) derived from numerical atmospheric simulations using two versions of the Regional Atmospheric Modeling System (RAMS). This allows for differences to be seen between the model versions, as well as trends on a multi-year time frame. In addition, comparisons of predicted mixing depth for individual days in which special balloon soundings were released are also discussed.

  1. The ocean depths: Elf's target for 1997

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Elf has long since been aware of the potential of sedimentary basins in the ocean depths. For this reason, the group has been preparing to descend to these depths for many years. Today, it is setting itself the target of being ready to optimise as from 1997 a discovery made in the depth between 400 and 1500 m of water in Africa. In the Gulf of Guinea, most of the neighbouring countries have opened up their deep sea offshore areas, in order to try to renew their reserves on the verge of the third millennium. Indeed a great similarity can be seen between the West African and the Brazilian ocean depths. In the African offshore areas, Elf has acquired or renewed eight blocks, four of which are in Nigeria, one in the Congo, one in Gabon and two in Angola. The group is also interested in the ocean depths which are now accessible in the North Sea, whether in the Norwegian (Voring and More) of British (Western Shetlands) areas. (author). 1 fig

  2. Multiscale periodicities in aerosol optical depth over India

    International Nuclear Information System (INIS)

    Ramachandran, S; Ghosh, Sayantan; Verma, Amit; Panigrahi, P K

    2013-01-01

    Aerosols exhibit periodic or cyclic variations depending on natural and anthropogenic sources over a region, which can become modulated by synoptic meteorological parameters such as winds, rainfall and relative humidity, and long-range transport. Information on periodicity and phase in aerosol properties assumes significance in prediction as well as examining the radiative and climate effects of aerosols including their association with changes in cloud properties and rainfall. Periodicity in aerosol optical depth, which is a columnar measure of aerosol distribution, is determined using continuous wavelet transform over 35 locations (capitals of states and union territories) in India. Continuous wavelet transform is used in the study because continuous wavelet transform is better suited to the extraction of the periodic and local modulations present in various frequency ranges when compared to Fourier transform. Monthly mean aerosol optical depths (AODs) from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Terra satellite at 1° × 1° resolution from January 2001 to December 2012 are used. Annual and quasi-biennial oscillations (QBOs) in AOD are evident in addition to the weak semi-annual (5–6 months) and quasi-triennial oscillations (∼40 months). The semi-annual and annual oscillations are consistent with the seasonal and yearly cycle of variations in AODs. The QBO type periodicity in AOD is found to be non-stationary while the annual period is stationary. The 40 month periodicity indicates the presence of long term correlations in AOD. The observed periodicities in MODIS Terra AODs are also evident in the ground-based AOD measurements made over Kanpur in the Indo-Gangetic Plain. The phase of the periodicity in AOD is stable in the mid-frequency range, while local disturbances in the high-frequency range and long term changes in the atmospheric composition give rise to unstable phases in the low-frequency range. The presence of phase

  3. Boundary Transgressions: An Issue In Psychotherapeutic Encounter ...

    African Journals Online (AJOL)

    Boundary transgressions tend to be conceptualized on a continuum ranging from boundary crossings to boundary violations. Boundary crossings (e.g. accepting an inexpensive holiday gift from a client, unintentionally encountering a client in public, or attending a client's special event) are described in the literature as ...

  4. Boundary Spanners as supports of social capital

    DEFF Research Database (Denmark)

    Vincenti, Gordon

    2016-01-01

    Boundary Spanners are important agenets of supporting the capacity building of local neighbourhoods and of sustainable social captial the article focuses on the skills and competnces adn role of Boundary Spanners.......Boundary Spanners are important agenets of supporting the capacity building of local neighbourhoods and of sustainable social captial the article focuses on the skills and competnces adn role of Boundary Spanners....

  5. Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific

    Science.gov (United States)

    Vay, S. A.; Woo, J.-H.; Anderson, B. E.; Thornhill, K. L.; Blake, D. R.; Westberg, D. J.; Kiley, C. M.; Avery, M. A.; Sachse, G. W.; Streets, D. G.; Tsutsumi, Y.; Nolf, S. R.

    2003-10-01

    We report here airborne measurements of atmospheric CO2 over the western North Pacific during the March-April 2001 Transport and Chemical Evolution over the Pacific (TRACE-P) mission. The CO2 spatial distributions were notably influenced by cyclogenesis-triggered transport of regionally polluted continental air masses. Examination of the CO2 to C2H2/CO ratio indicated rapid outflow of combustion-related emissions in the free troposphere below 8 km. Although the highest CO2 mixing ratios were measured within the Pacific Rim region, enhancements were also observed further east over the open ocean at locations far removed from surface sources. Near the Asian continent, discrete plumes encountered within the planetary boundary layer contained up to 393 ppmv of CO2. Coincident enhancements in the mixing ratios of C2Cl4, C2H2, and C2H4 measured concurrently revealed combustion and industrial sources. To elucidate the source distributions of CO2, an emissions database for Asia was examined in conjunction with the chemistry and 5-day backward trajectories that revealed the WNW/W sector of northeast Asia was a major contributor to these pollution events. Comparisons of NOAA/CMDL and JMA surface data with measurements obtained aloft showed a strong latitudinal gradient that peaked between 35° and 40°N. We estimated a net CO2 flux from the Asian continent of approximately 13.93 Tg C day-1 for late winter/early spring with the majority of the export (79%) occurring in the lower free troposphere (2-8 km). The apportionment of the flux between anthropogenic and biospheric sources was estimated at 6.37 Tg C day-1 and 7.56 Tg C day-1, respectively.

  6. Deciphering natural to anthropogenic control on sedimentation: the Late Holocene Magdala (Kinneret Lake, Israel) harbour hystory

    Science.gov (United States)

    Sarti, G.; Rossi, V.; Amorosi, A.; Bertoni, D.; Ribolini, A.; Sammartino, I.; Zanchetta, G.

    2012-04-01

    Using a multidisciplinary approach involving geologists, geomorphologists and archeologists, the late Holocene sedimentary succession buried beneath the ancient Magdala harbour area (Kinneret Lake, Israel) was studied, in order to highlight the strict relationships among harbour evolutive phases (e.g. foundation, siltation, abandonment), natural events (e.g. sea-level variations, climatic changes and earthquakes among the most important) and, obviously, archaeological history. Recent excavations performed within the "Magdala Project" have discovered a harbour structure with late Hellenistic-Roman mooring stones at altitudes of 208.100 m and 208.320 m bsl respectively, suggestive of a higher lake-level (about 212 m bsl) than previously hypothesized. Along the most representative sections of trenches, integrated sedimentological, micropalaeontological (benthic meiofauna and pollen) and geochemical analyses were carried out on sedimentary deposits underlying and overlying the harbour structures, to define the main depositional facies and evolution phases that took place during the last millennia. Spatial variability of coeval palaeoenvironments across the archaeological site allowed to reconstruct a comprehensive picture of the harbour complex, evidencing the occurrence of three main evolution phases, similar to those reported from several Mediterranean Sea harbour systems: 1) a pre-harbor foundation phase; 2) a sin-harbor activity phase and 3) an harbor-abandonment phase. The first phase corresponds to the development of a natural lacustrine sandy beach barren in archaeological remains and containing an ostracod fauna very similar to the one observed within the present-day lake basin at ca. 5 m water depth. The second phase was characterized by the formation of an early Hellenistic sheltered lacustrine basin, recording the first anthropogenic control exerted on coastal sedimentation by the construction of harbour structures ("anthropogenically forced sheltered basin

  7. The impact of North American anthropogenic emissions and lightning on long-range transport of trace gases and their export from the continent during summers 2002 and 2004

    KAUST Repository

    Martini, Matus

    2011-04-07

    We analyze the contribution of North American (NA) lightning and anthropogenic emissions to ozone concentrations, radiative forcing, and export fluxes from North America during summers 2002 and 2004 using the University of Maryland Chemical Transport Model (UMD-CTM) driven by GEOS-4 reanalysis. Reduced power plant emissions (NOx SIP Call) and cooler temperatures in 2004 compared to 2002 resulted in lower ambient ozone concentrations over the eastern United States. Lightning flash rates in early summer 2004 were 50% higher than 2002 over the United States. Over the North Atlantic, changes in ozone column between early summer 2002 and 2004 due to changes in lightning and meteorology exceeded the change due to emission reductions by a factor of 7. Late summer changes in lightning had a much smaller impact on ozone columns. In summer 2004, net downward radiative flux at the tropopause due to ozone produced from anthropogenic emissions ranged from 0.15 to 0.30 W m−2 across the North Atlantic, while that due to ozone produced from lightning NO emissions ranged from 0.20 to 0.50 W m−2. Enhanced lofting of polluted air followed by stronger westerly winds led to more net export of NOx, NOy, and ozone in early summer 2004 than 2002 despite reduced anthropogenic emissions. Ozone export fluxes across the eastern NA boundary due to anthropogenic emissions were factors of 1.6 and 2 larger than those due to lightning in 2004 and 2002, respectively. Doubling the NA lightning NO source increased downwind ozone enhancements due to lightning NO emissions by one third.

  8. The impact of North American anthropogenic emissions and lightning on long-range transport of trace gases and their export from the continent during summers 2002 and 2004

    KAUST Repository

    Martini, Matus; Allen, Dale J.; Pickering, Kenneth E.; Stenchikov, Georgiy L.; Richter, Andreas; Hyer, Edward J.; Loughner, Christopher P.

    2011-01-01

    We analyze the contribution of North American (NA) lightning and anthropogenic emissions to ozone concentrations, radiative forcing, and export fluxes from North America during summers 2002 and 2004 using the University of Maryland Chemical Transport Model (UMD-CTM) driven by GEOS-4 reanalysis. Reduced power plant emissions (NOx SIP Call) and cooler temperatures in 2004 compared to 2002 resulted in lower ambient ozone concentrations over the eastern United States. Lightning flash rates in early summer 2004 were 50% higher than 2002 over the United States. Over the North Atlantic, changes in ozone column between early summer 2002 and 2004 due to changes in lightning and meteorology exceeded the change due to emission reductions by a factor of 7. Late summer changes in lightning had a much smaller impact on ozone columns. In summer 2004, net downward radiative flux at the tropopause due to ozone produced from anthropogenic emissions ranged from 0.15 to 0.30 W m−2 across the North Atlantic, while that due to ozone produced from lightning NO emissions ranged from 0.20 to 0.50 W m−2. Enhanced lofting of polluted air followed by stronger westerly winds led to more net export of NOx, NOy, and ozone in early summer 2004 than 2002 despite reduced anthropogenic emissions. Ozone export fluxes across the eastern NA boundary due to anthropogenic emissions were factors of 1.6 and 2 larger than those due to lightning in 2004 and 2002, respectively. Doubling the NA lightning NO source increased downwind ozone enhancements due to lightning NO emissions by one third.

  9. Depth sensitivity of Lexan polycarbonate detector

    CERN Document Server

    Awad, E M

    1999-01-01

    The dependence of the registration sensitivity of Lexan polycarbonate with depth inside the detector was studied. Samples of Lexan from General Electric were irradiated to two long range ions. These were Ni and Au ions with a projectile energy of 0.3 and 1 GeV/n. Two independent techniques, the track-diameter technique (TDT) and the track profile technique (TPT), were used. The registration sensitivity was measured at depths of 7, 10, 15, 18, 20, 28, 35 and 40 mu m inside the detector. The results of the two techniques show that the detector sensitivity decreases gradually with the depth inside the detector. It reaches 20 % less compared to sensitivity at the surface after 40 mu m have been removed.

  10. Wavefield extrapolation in pseudo-depth domain

    KAUST Repository

    Ma, Xuxin; Alkhalifah, Tariq Ali

    2012-01-01

    Extrapolating seismic waves in Cartesian coordinate is prone to uneven spatial sampling, because the seismic wavelength tends to grow with depth, as velocity increase. We transform the vertical depth axis to a pseudo one using a velocity weighted mapping, which can effectively mitigate this wavelength variation. We derive acoustic wave equations in this new domain based on the direct transformation of the Laplacian derivatives, which admits solutions that are more accurate and stable than those derived from the kinematic transformation. The anisotropic versions of these equations allow us to isolate the vertical velocity influence and reduce its impact on modeling and imaging. The major benefit of extrapolating wavefields in pseudo-depth space is its near uniform wavelength as opposed to the normally dramatic change of wavelength with the conventional approach. Time wavefield extrapolation on a complex velocity shows some of the features of this approach.

  11. Depth sectioning using electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    D'Alfonso, A J; Findlay, S D; Allen, L J; Cosgriff, E C; Kirkland, A I; Nellist, P D; Oxley, M P

    2008-01-01

    The continued development of electron probe aberration correctors for scanning transmission electron microscopy has enabled finer electron probes, allowing atomic resolution column-by-column electron energy loss spectroscopy. Finer electron probes have also led to a decrease in the probe depth of focus, facilitating optical slicing or depth sectioning of samples. The inclusion of post specimen aberration corrected image forming lenses allows for scanning confocal electron microscopy with further improved depth resolution and selectivity. We show that in both scanning transmission electron microscopy and scanning confocal electron microscopy geometries, by performing a three dimensional raster scan through a specimen and detecting electrons scattered with a characteristic energy loss, it will be possible to determine the location of isolated impurities embedded within the bulk.

  12. Depth resolved investigations of boron implanted silicon

    Science.gov (United States)

    Sztucki, M.; Metzger, T. H.; Milita, S.; Berberich, F.; Schell, N.; Rouvière, J. L.; Patel, J.

    2003-01-01

    We have studied the depth distribution and structure of defects in boron implanted silicon (0 0 1). Silicon wafers were implanted with a boron dose of 6×10 15 ions/cm -2 at 32 keV and went through different annealing treatments. Using diffuse X-ray scattering at grazing incidence and exit angles we are able to distinguish between different kinds of defects (point defect clusters and extrinsic stacking faults on {1 1 1} planes) and to determine their depth distribution as a function of the thermal budget. Cross-section transmission electron microscopy was used to gain complementary information. In addition we have determined the strain distribution caused by the boron implantation as a function of depth from rocking curve measurements.

  13. Photodegradation of wood and depth profile analysis

    International Nuclear Information System (INIS)

    Kataoka, Y.

    2008-01-01

    Photochemical degradation is a key process of the weathering that occurs when wood is exposed outdoors. It is also a major cause of the discoloration of wood in indoor applications. The effects of sunlight on the chemical composition of wood are superficial in nature, but estimates of the depth at which photodegradation occurs in wood vary greatly from 80 microm to as much as 2540 mic rom. Better understanding of the photodegradation of wood through depth profile analysis is desirable because it would allow the development of more effective photo-protective treatments that target the surface layers of wood most susceptible to photodegradation. This paper briefly describes fundamental aspects of photodegradation of wood and reviews progress made in the field of depth profile study on the photodegradation of wood. (author)

  14. Shallow surface depth profiling with atomic resolution

    International Nuclear Information System (INIS)

    Xi, J.; Dastoor, P.C.; King, B.V.; O'Connor, D.J.

    1999-01-01

    It is possible to derive atomic layer-by-layer composition depth profiles from popular electron spectroscopic techniques, such as X-ray photoelectron spectroscopy (XPS) or Auger electron spectroscopy (AES). When ion sputtering assisted AES or XPS is used, the changes that occur during the establishment of the steady state in the sputtering process make these techniques increasingly inaccurate for depths less than 3nm. Therefore non-destructive techniques of angle-resolved XPS (ARXPS) or AES (ARAES) have to be used in this case. In this paper several data processing algorithms have been used to extract the atomic resolved depth profiles of a shallow surface (down to 1nm) from ARXPS and ARAES data

  15. Color constrains depth in da Vinci stereopsis for camouflage but not occlusion.

    Science.gov (United States)

    Wardle, Susan G; Gillam, Barbara J

    2013-12-01

    Monocular regions that occur with binocular viewing of natural scenes can produce a strong perception of depth--"da Vinci stereopsis." They occur either when part of the background is occluded in one eye, or when a nearer object is camouflaged against a background surface in one eye's view. There has been some controversy over whether da Vinci depth is constrained by geometric or ecological factors. Here we show that the color of the monocular region constrains the depth perceived from camouflage, but not occlusion, as predicted by ecological considerations. Quantitative depth was found in both cases, but for camouflage only when the color of the monocular region matched the binocular background. Unlike previous reports, depth failed even when nonmatching colors satisfied conditions for perceptual transparency. We show that placing a colored line at the boundary between the binocular and monocular regions is sufficient to eliminate depth from camouflage. When both the background and the monocular region contained vertical contours that could be fused, some observers appeared to use fusion, and others da Vinci constraints, supporting the existence of a separate da Vinci mechanism. The results show that da Vinci stereopsis incorporates color constraints and is more complex than previously assumed.

  16. Factors controlling contrail cirrus optical depth

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2009-08-01

    Full Text Available Aircraft contrails develop into contrail cirrus by depositional growth and sedimentation of ice particles and horizontal spreading due to wind shear. Factors controlling this development include temperature, ice supersaturation, thickness of ice-supersaturated layers, and vertical gradients in the horizontal wind field. An analytical microphysical cloud model is presented and validated that captures these processes. Many individual contrail cirrus are simulated that develop differently owing to the variability in the controlling factors, resulting in large samples of cloud properties that are statistically analyzed. Contrail cirrus development is studied over the first four hours past formation, similar to the ages of line-shaped contrails that were tracked in satellite imagery on regional scales. On these time scales, contrail cirrus optical depth and microphysical variables exhibit a marked variability, expressed in terms of broad and skewed probability distribution functions. Simulated mean optical depths at a wavelength of 0.55 μm range from 0.05-0.5 and a substantial fraction 20-50% of contrail cirrus stay subvisible (optical depth <0.02, depending on meteorological conditions.

    A detailed analysis based on an observational case study over the continental USA suggests that previous satellite measurements of line-shaped persistent contrails have missed about 89%, 50%, and 11% of contrails with optical depths 0-0.05, 0.05-0.1, and 0.1-0.2, respectively, amounting to 65% of contrail coverage of all optical depths. When comparing observations with simulations and when estimating the contrail cirrus climate impact, not only mean values but also the variability in optical depth and microphysical properties need to be considered.

  17. High bit depth infrared image compression via low bit depth codecs

    DEFF Research Database (Denmark)

    Belyaev, Evgeny; Mantel, Claire; Forchhammer, Søren

    2017-01-01

    images via 8 bit depth codecs in the following way. First, an input 16 bit depth image is mapped into 8 bit depth images, e.g., the first image contains only the most significant bytes (MSB image) and the second one contains only the least significant bytes (LSB image). Then each image is compressed.......264/AVC codecs, which are usually available in efficient implementations, and compare their rate-distortion performance with JPEG2000, JPEG-XT and H.265/HEVC codecs supporting direct compression of infrared images in 16 bit depth format. A preliminary result shows that two 8 bit H.264/AVC codecs can...

  18. Global anthropogenic emissions of particulate matter including black carbon

    Science.gov (United States)

    Klimont, Zbigniew; Kupiainen, Kaarle; Heyes, Chris; Purohit, Pallav; Cofala, Janusz; Rafaj, Peter; Borken-Kleefeld, Jens; Schöpp, Wolfgang

    2017-07-01

    This paper presents a comprehensive assessment of historical (1990-2010) global anthropogenic particulate matter (PM) emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10), as well as primary carbonaceous aerosols including black carbon (BC) and organic carbon (OC). The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping), presented for 25 global regions, and allocated to 0.5° × 0.5° longitude-latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global anthropogenic total, and residential combustion

  19. Global anthropogenic emissions of particulate matter including black carbon

    Directory of Open Access Journals (Sweden)

    Z. Klimont

    2017-07-01

    Full Text Available This paper presents a comprehensive assessment of historical (1990–2010 global anthropogenic particulate matter (PM emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10, as well as primary carbonaceous aerosols including black carbon (BC and organic carbon (OC. The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping, presented for 25 global regions, and allocated to 0.5°  ×  0.5° longitude–latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global

  20. Depth resolution of secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Pustovit, A.N.

    2004-01-01

    The effect of the solid body discreteness in the direction of the normal to the sample surface on the depth resolution of the secondary ion mass spectrometry method is analyzed. It is shown that for this case the dependence of the width at the semi-height of the delta profiles of the studied elements depth distribution on the energy and angle of incidence of the initial ions should have the form of the stepwise function. This is experimentally proved by the silicon-germanium delta-layers in the silicon samples [ru