WorldWideScience

Sample records for anthrax protective antigen

  1. Generation and Characterization of Human Monoclonal Antibodies Targeting Anthrax Protective Antigen following Vaccination with a Recombinant Protective Antigen Vaccine

    OpenAIRE

    Chi, Xiangyang; Li, Jianmin; Liu, Weicen; Wang, Xiaolin; Yin, Kexin; Liu, Ju; Zai, Xiaodong; Li, Liangliang; Song, Xiaohong; Zhang, Jun; Zhang, Xiaopeng; Yin, Ying; Fu, Ling; Xu, Junjie; Yu, Changming

    2015-01-01

    The anthrax protective antigen (PA) is the central component of the three-part anthrax toxin, and it is the primary immunogenic component in the approved AVA anthrax vaccine and the “next-generation” recombinant PA (rPA) anthrax vaccines. Animal models have indicated that PA-specific antibodies (AB) are sufficient to protect against infection with Bacillus anthracis. In this study, we investigated the PA domain specificity, affinity, mechanisms of neutralization, and synergistic effects of PA...

  2. Membrane Insertion by Anthrax Protective Antigen in Cultured Cells†

    OpenAIRE

    Qa'Dan, Maen; Christensen, Kenneth A; Zhang, Lei; Roberts, Thomas M.; Collier, R. John

    2005-01-01

    The enzymatic moieties of anthrax toxin enter the cytosol of mammalian cells via a pore in the endosomal membrane formed by the protective antigen (PA) moiety. Pore formation involves an acidic pH-induced conformational rearrangement of a heptameric precursor (the prepore), in which the seven 2β2-2β3 loops interact to generate a 14-strand transmembrane β-barrel. To investigate this model in vivo, we labeled PA with the fluorophore 7-nitrobenz-2-oxa-1,3-diazole (NBD) at cysteine residues intro...

  3. Rabies virus glycoprotein as a carrier for anthrax protective antigen

    International Nuclear Information System (INIS)

    Live viral vectors expressing foreign antigens have shown great promise as vaccines against viral diseases. However, safety concerns remain a major problem regarding the use of even highly attenuated viral vectors. Using the rabies virus (RV) envelope protein as a carrier molecule, we show here that inactivated RV particles can be utilized to present Bacillus anthracis protective antigen (PA) domain-4 in the viral membrane. In addition to the RV glycoprotein (G) transmembrane and cytoplasmic domains, a portion of the RV G ectodomain was required to express the chimeric RV G anthrax PA on the cell surface. The novel antigen was also efficiently incorporated into RV virions. Mice immunized with the inactivated recombinant RV virions exhibited seroconversion against both RV G and anthrax PA, and a second inoculation greatly increased these responses. These data demonstrate that a viral envelope protein can carry a bacterial protein and that a viral carrier can display whole polypeptides compared to the limited epitope presentation of previous viral systems

  4. Plant-Based Vaccine: Mice Immunized with Chloroplast-Derived Anthrax Protective Antigen Survive Anthrax Lethal Toxin Challenge

    OpenAIRE

    Koya, Vijay; Moayeri, Mahtab; Leppla, Stephen H.; Daniell, Henry

    2005-01-01

    The currently available human vaccine for anthrax, derived from the culture supernatant of Bacillus anthracis, contains the protective antigen (PA) and traces of the lethal and edema factors, which may contribute to adverse side effects associated with this vaccine. Therefore, an effective expression system that can provide a clean, safe, and efficacious vaccine is required. In an effort to produce anthrax vaccine in large quantities and free of extraneous bacterial contaminants, PA was expre...

  5. Analysis of Antibody Responses to Protective Antigen-Based Anthrax Vaccines through Use of Competitive Assays▿

    OpenAIRE

    Rebecca A Brady; Verma, Anita; Meade, Bruce D.; Burns, Drusilla L.

    2010-01-01

    The licensed anthrax vaccine and many of the new anthrax vaccines being developed are based on protective antigen (PA), a nontoxic component of anthrax toxin. For this reason, an understanding of the immune response to PA vaccination is important. In this study, we examined the antibody response elicited by PA-based vaccines and identified the domains of PA that contribute to that response in humans as well as nonhuman primates (NHPs) and rabbits, animal species that will be used to generate ...

  6. Serological Correlate of Protection in Guinea Pigs for a Recombinant Protective Antigen Anthrax Vaccine Produced from Bacillus brevis

    OpenAIRE

    Chun, Jeong-Hoon; Choi, On-Jee; Cho, Min-Hee; Hong, Kee-Jong; Seong, Won Keun; Oh, Hee-Bok; Rhie, Gi-eun

    2012-01-01

    Objective Recombinant protective antigen (rPA) is the active pharmaceutical ingredient of a second generation anthrax vaccine undergoing clinical trials both in Korea and the USA. By using the rPA produced from Bacillus brevis pNU212 expression system, correlations of serological immune response to anthrax protection efficacy were analyzed in a guinea pig model. Methods Serological responses of rPA anthrax vaccine were investigated in guinea pigs that were given single or two injections (inte...

  7. Prophylaxis and Therapy of Inhalational Anthrax by a Novel Monoclonal Antibody to Protective Antigen That Mimics Vaccine-Induced Immunity

    OpenAIRE

    Vitale, Laura; Blanset, Diann; Lowy, Israel; O'Neill, Thomas; Goldstein, Joel; Little, Stephen F.; Andrews, Gerard P.; Dorough, Gary; Taylor, Ronald K.; Keler, Tibor

    2006-01-01

    The neutralizing antibody response to the protective antigen (PA) component of anthrax toxin elicited by approved anthrax vaccines is an accepted correlate for vaccine-mediated protection against anthrax. We reasoned that a human anti-PA monoclonal antibody (MAb) selected on the basis of superior toxin neutralization activity might provide potent protection against anthrax. The fully human MAb (also referred to as MDX-1303 or Valortim) was chosen from a large panel of anti-PA human MAbs gener...

  8. Immunization of Mice with Anthrax Protective Antigen Limits Cardiotoxicity but Not Hepatotoxicity Following Lethal Toxin Challenge

    OpenAIRE

    T. Scott Devera; Prusator, Dawn K.; Joshi, Sunil K.; Ballard, Jimmy D.; Lang, Mark L.

    2015-01-01

    Protective immunity against anthrax is inferred from measurement of vaccine antigen-specific neutralizing antibody titers in serum samples. In animal models, in vivo challenges with toxin and/or spores can also be performed. However, neither of these approaches considers toxin-induced damage to specific organ systems. It is therefore important to determine to what extent anthrax vaccines and existing or candidate adjuvants can provide organ-specific protection against intoxication. We therefo...

  9. Anthrax protective antigen delivered by Salmonella enterica serovar Typhi Ty21a protects mice from a lethal anthrax spore challenge.

    Science.gov (United States)

    Osorio, Manuel; Wu, Yanping; Singh, Sunil; Merkel, Tod J; Bhattacharyya, Siba; Blake, Milan S; Kopecko, Dennis J

    2009-04-01

    Bacillus anthracis, the etiological agent of anthrax disease, is a proven weapon of bioterrorism. Currently, the only licensed vaccine against anthrax in the United States is AVA Biothrax, which, although efficacious, suffers from several limitations. This vaccine requires six injectable doses over 18 months to stimulate protective immunity, requires a cold chain for storage, and in many cases has been associated with adverse effects. In this study, we modified the B. anthracis protective antigen (PA) gene for optimal expression and stability, linked it to an inducible promoter for maximal expression in the host, and fused it to the secretion signal of the Escherichia coli alpha-hemolysin protein (HlyA) on a low-copy-number plasmid. This plasmid was introduced into the licensed typhoid vaccine strain, Salmonella enterica serovar Typhi strain Ty21a, and was found to be genetically stable. Immunization of mice with three vaccine doses elicited a strong PA-specific serum immunoglobulin G response with a geometric mean titer of 30,000 (range, 5,800 to 157,000) and lethal-toxin-neutralizing titers greater than 16,000. Vaccinated mice demonstrated 100% protection against a lethal intranasal challenge with aerosolized spores of B. anthracis 7702. The ultimate goal is a temperature-stable, safe, oral human vaccine against anthrax infection that can be self-administered in a few doses over a short period of time. PMID:19179420

  10. Advax-Adjuvanted Recombinant Protective Antigen Provides Protection against Inhalational Anthrax That Is Further Enhanced by Addition of Murabutide Adjuvant

    OpenAIRE

    Feinen, Brandon; Petrovsky, Nikolai; Verma, Anita; Tod J Merkel

    2014-01-01

    Subunit vaccines against anthrax based on recombinant protective antigen (PA) potentially offer more consistent and less reactogenic anthrax vaccines but require adjuvants to achieve optimal immunogenicity. This study sought to determine in a murine model of pulmonary anthrax infection whether the polysaccharide adjuvant Advax or the innate immune adjuvant murabutide alone or together could enhance PA immunogenicity by comparison to an alum adjuvant. A single immunization with PA plus Advax a...

  11. Study of Immunization against Anthrax with the Purified Recombinant Protective Antigen of Bacillus anthracis

    OpenAIRE

    Singh,Yogendra; Ivins, Bruce E.; Leppla, Stephen H.

    1998-01-01

    Protective antigen (PA) of anthrax toxin is the major component of human anthrax vaccine. Currently available human vaccines in the United States and Europe consist of alum-precipitated supernatant material from cultures of toxigenic, nonencapsulated strains of Bacillus anthracis. Immunization with these vaccines requires several boosters and occasionally causes local pain and edema. We previously described the biological activity of a nontoxic mutant of PA expressed in Bacillus subtilis. In ...

  12. Antigen-Specific CD4+ T Cells Recognize Epitopes of Protective Antigen following Vaccination with an Anthrax Vaccine

    OpenAIRE

    Laughlin, Elsa M.; Miller, Joseph D.; James, Eddie; Fillos, Dimitri; Ibegbu, Chris C.; Mittler, Robert S.; Akondy, Rama; Kwok, William; Ahmed, Rafi; Nepom, Gerald,

    2007-01-01

    Detection of antigen-specific CD4+ T cells is facilitated by the use of fluorescently labeled soluble peptide-major histocompatibility complex (MHC) multimers which mirror the antigen specificity of T-cell receptor recognition. We have used soluble peptide-MHC class II tetramers containing peptides from the protective antigen (PA) of Bacillus anthracis to detect circulating T cells in peripheral blood of subjects vaccinated with an anthrax vaccine. PA-specific HLA class II-restricted T lympho...

  13. Potentiation of anthrax vaccines using protective antigen-expressing viral replicon vectors.

    Science.gov (United States)

    Wang, Hai-Chao; An, Huai-Jie; Yu, Yun-Zhou; Xu, Qing

    2015-02-01

    DNA vaccines require improvement for human use because they are generally weak stimulators of the immune system in humans. The efficacy of DNA vaccines can be improved using a viral replicon as vector to administer antigen of pathogen. In this study, we comprehensively evaluated the conventional non-viral DNA, viral replicon DNA or viral replicon particles (VRP) vaccines encoding different forms of anthrax protective antigen (PA) for specific immunity and protective potency against anthrax. Our current results clearly suggested that these viral replicon DNA or VRP vaccines derived from Semliki Forest virus (SFV) induced stronger PA-specific immune responses than the conventional non-viral DNA vaccines when encoding the same antigen forms, which resulted in potent protection against challenge with the Bacillus anthracis strain A16R. Additionally, the naked PA-expressing SFV replicon DNA or VRP vaccines without the need for high doses or demanding particular delivery regimens elicited robust immune responses and afforded completely protective potencies, which indicated the potential of the SFV replicon as vector of anthrax vaccines for use in clinical application. Therefore, our results suggest that these PA-expressing SFV replicon DNA or VRP vaccines may be suitable as candidate vaccines against anthrax. PMID:25102364

  14. Combination of Two Candidate Subunit Vaccine Antigens Elicits Protective Immunity to Ricin and Anthrax Toxin in Mice

    OpenAIRE

    David J Vance; Rong, Yinghui; Brey, Robert N.; Mantis, Nicholas J.

    2014-01-01

    In an effort to develop combination vaccines for biodefense, we evaluated a ricin subunit antigen, RiVax, given in conjunction with an anthrax protective antigen, DNI. The combination led to high endpoint titer antibody response, neutralizing antibodies, and protective immunity against ricin and anthrax lethal toxin. This is a natural combination vaccine, since both antigens are recombinant subunit proteins that would be given to the same target population.

  15. Combination of two candidate subunit vaccine antigens elicits protective immunity to ricin and anthrax toxin in mice.

    Science.gov (United States)

    Vance, David J; Rong, Yinghui; Brey, Robert N; Mantis, Nicholas J

    2015-01-01

    In an effort to develop combination vaccines for biodefense, we evaluated a ricin subunit antigen, RiVax, given in conjunction with an anthrax protective antigen, DNI. The combination led to high endpoint titer antibody response, neutralizing antibodies, and protective immunity against ricin and anthrax lethal toxin. This is a natural combination vaccine, since both antigens are recombinant subunit proteins that would be given to the same target population. PMID:25475957

  16. Generation and Characterization of Human Monoclonal Antibodies Targeting Anthrax Protective Antigen following Vaccination with a Recombinant Protective Antigen Vaccine.

    Science.gov (United States)

    Chi, Xiangyang; Li, Jianmin; Liu, Weicen; Wang, Xiaolin; Yin, Kexin; Liu, Ju; Zai, Xiaodong; Li, Liangliang; Song, Xiaohong; Zhang, Jun; Zhang, Xiaopeng; Yin, Ying; Fu, Ling; Xu, Junjie; Yu, Changming; Chen, Wei

    2015-05-01

    The anthrax protective antigen (PA) is the central component of the three-part anthrax toxin, and it is the primary immunogenic component in the approved AVA anthrax vaccine and the "next-generation" recombinant PA (rPA) anthrax vaccines. Animal models have indicated that PA-specific antibodies (AB) are sufficient to protect against infection with Bacillus anthracis. In this study, we investigated the PA domain specificity, affinity, mechanisms of neutralization, and synergistic effects of PA-specific antibodies from a single donor following vaccination with the rPA vaccine. Antibody-secreting cells were isolated 7 days after the donor received a boost vaccination, and 34 fully human monoclonal antibodies (hMAb) were identified. Clones 8H6, 4A3, and 22F1 were able to neutralize lethal toxin (LeTx) both in vitro and in vivo. Clone 8H6 neutralized LeTx by preventing furin cleavage of PA in a dose-dependent manner. Clone 4A3 enhanced degradation of nicked PA, thereby interfering with PA oligomerization. The mechanism of 22F1 is still unclear. A fourth clone, 2A6, that was protective only in vitro was found to be neutralizing in vivo in combination with a toxin-enhancing antibody, 8A7, which binds to domain 3 of PA and PA oligomers. These results provide novel insights into the antibody response elicited by the rPA vaccine and may be useful for PA-based vaccine and immunotherapeutic cocktail design. PMID:25787135

  17. Anthrax Vaccine Antigen-Adjuvant Formulations Completely Protect New Zealand White Rabbits against Challenge with Bacillus anthracis Ames Strain Spores

    OpenAIRE

    Peachman, Kristina K.; Li, Qin; Matyas, Gary R.; Shivachandra, Sathish B.; Lovchik, Julie; Lyons, Rick C.; Alving, Carl R; Rao, Venigalla B.; Rao, Mangala

    2012-01-01

    In an effort to develop an improved anthrax vaccine that shows high potency, five different anthrax protective antigen (PA)-adjuvant vaccine formulations that were previously found to be efficacious in a nonhuman primate model were evaluated for their efficacy in a rabbit pulmonary challenge model using Bacillus anthracis Ames strain spores. The vaccine formulations include PA adsorbed to Alhydrogel, PA encapsulated in liposomes containing monophosphoryl lipid A, stable liposomal PA oil-in-wa...

  18. Immunization of Mice with Anthrax Protective Antigen Limits Cardiotoxicity but Not Hepatotoxicity Following Lethal Toxin Challenge

    Directory of Open Access Journals (Sweden)

    T. Scott Devera

    2015-06-01

    Full Text Available Protective immunity against anthrax is inferred from measurement of vaccine antigen-specific neutralizing antibody titers in serum samples. In animal models, in vivo challenges with toxin and/or spores can also be performed. However, neither of these approaches considers toxin-induced damage to specific organ systems. It is therefore important to determine to what extent anthrax vaccines and existing or candidate adjuvants can provide organ-specific protection against intoxication. We therefore compared the ability of Alum, CpG DNA and the CD1d ligand α-galactosylceramide (αGC to enhance protective antigen-specific antibody titers, to protect mice against challenge with lethal toxin, and to block cardiotoxicity and hepatotoxicity. By measurement of serum cardiac Troponin I (cTnI, and hepatic alanine aminotransferase (ALT, and aspartate aminotransferase (AST, it was apparent that neither vaccine modality prevented hepatic intoxication, despite high Ab titers and ultimate survival of the subject. In contrast, cardiotoxicity was greatly diminished by prior immunization. This shows that a vaccine that confers survival following toxin exposure may still have an associated morbidity. We propose that organ-specific intoxication should be monitored routinely during research into new vaccine modalities.

  19. Immunization with a Recombinant, Pseudomonas fluorescens-Expressed, Mutant Form of Bacillus anthracis-Derived Protective Antigen Protects Rabbits from Anthrax Infection

    OpenAIRE

    Reed, Matthew D.; Wilder, Julie A.; Mega, William M.; Hutt, Julie A.; Kuehl, Philip J.; Valderas, Michelle W.; Chew, Lawrence L.; Liang, Bertrand C.; Squires, Charles H.

    2015-01-01

    Protective antigen (PA), one of the components of the anthrax toxin, is the major component of human anthrax vaccine (Biothrax). Human anthrax vaccines approved in the United States and Europe consist of an alum-adsorbed or precipitated (respectively) supernatant material derived from cultures of toxigenic, non-encapsulated strains of Bacillus anthracis. Approved vaccination schedules in humans with either of these vaccines requires several booster shots and occasionally causes adverse inject...

  20. Presentation of peptides from Bacillus anthracis protective antigen on Tobacco Mosaic Virus as an epitope targeted anthrax vaccine.

    Science.gov (United States)

    McComb, Ryan C; Ho, Chi-Lee; Bradley, Kenneth A; Grill, Laurence K; Martchenko, Mikhail

    2015-11-27

    The current anthrax vaccine requires improvements for rapidly invoking longer-lasting neutralizing antibody responses with fewer doses from a well-defined formulation. Designing antigens that target neutralizing antibody epitopes of anthrax protective antigen, a component of anthrax toxin, may offer a solution for achieving a vaccine that can induce strong and long lasting antibody responses with fewer boosters. Here we report implementation of a strategy for developing epitope focused virus nanoparticle vaccines against anthrax by using immunogenic virus particles to present peptides derived from anthrax toxin previously identified in (1) neutralizing antibody epitope mapping studies, (2) toxin crystal structure analyses to identify functional regions, and (3) toxin mutational analyses. We successfully expressed two of three peptide epitopes from anthrax toxin that, in previous reports, bound antibodies that were partially neutralizing against toxin activity, discovered cross-reactivity between vaccine constructs and toxin specific antibodies raised in goats against native toxin and showed that antibodies induced by our vaccine constructs also cross-react with native toxin. While protection against intoxication in cellular and animal studies were not as effective as in previous studies, partial toxin neutralization was observed in animals, demonstrating the feasibility of using plant-virus nanoparticles as a platform for epitope defined anthrax vaccines. PMID:26514421

  1. Neutralizing antibody and functional mapping of Bacillus anthracis protective antigen-The first step toward a rationally designed anthrax vaccine.

    Science.gov (United States)

    McComb, Ryan C; Martchenko, Mikhail

    2016-01-01

    Anthrax is defined by the Centers for Disease Control and Prevention as a Category A pathogen for its potential use as a bioweapon. Current prevention treatments include Anthrax Vaccine Adsorbed (AVA). AVA is an undefined formulation of Bacillus anthracis culture supernatant adsorbed to aluminum hydroxide. It has an onerous vaccination schedule, is slow and cumbersome to produce and is slightly reactogenic. Next-generation vaccines are focused on producing recombinant forms of anthrax toxin in a well-defined formulation but these vaccines have been shown to lose potency as they are stored. In addition, studies have shown that a proportion of the antibody response against these vaccines is focused on non-functional, non-neutralizing regions of the anthrax toxin while some essential functional regions are shielded from eliciting an antibody response. Rational vaccinology is a developing field that focuses on designing vaccine antigens based on structural information provided by neutralizing antibody epitope mapping, crystal structure analysis, and functional mapping through amino acid mutations. This information provides an opportunity to design antigens that target only functionally important and conserved regions of a pathogen in order to make a more optimal vaccine product. This review provides an overview of the literature related to functional and neutralizing antibody epitope mapping of the Protective Antigen (PA) component of anthrax toxin. PMID:26611201

  2. Phase I Study of Safety and Immunogenicity of an Escherichia coli-Derived Recombinant Protective Antigen (rPA) Vaccine to Prevent Anthrax in Adults

    OpenAIRE

    Brown, Bruce K.; Josephine Cox; Anita Gillis; VanCott, Thomas C.; Mary Marovich; Mark Milazzo; Tanya Santelli Antonille; Lindsay Wieczorek; Mckee, Kelly T.; Karen Metcalfe; Mallory, Raburn M.; Deborah Birx; Polonis, Victoria R.; Merlin L Robb

    2010-01-01

    BACKGROUND: The fatal disease caused by Bacillus anthracis is preventable with a prophylactic vaccine. The currently available anthrax vaccine requires a lengthy immunization schedule, and simpler and more immunogenic options for protection against anthrax are a priority for development. In this report we describe a phase I clinical trial testing the safety and immunogenicity of an anthrax vaccine using recombinant Escherichia coli-derived, B. anthracis protective antigen (rPA). METHODOLOGY/P...

  3. Complement C3d conjugation to anthrax protective antigen promotes a rapid, sustained, and protective antibody response.

    Directory of Open Access Journals (Sweden)

    Ravi V Kolla

    Full Text Available B. anthracis is the causative agent of anthrax. Pathogenesis is primarily mediated through the exotoxins lethal factor and edema factor, which bind protective antigen (PA to gain entry into the host cell. The current anthrax vaccine (AVA, Biothrax consists of aluminum-adsorbed cell-free filtrates of unencapsulated B. anthracis, wherein PA is thought to be the principle target of neutralization. In this study, we evaluated the efficacy of the natural adjuvant, C3d, versus alum in eliciting an anti-PA humoral response and found that C3d conjugation to PA and emulsion in incomplete Freund's adjuvant (IFA imparted superior protection from anthrax challenge relative to PA in IFA or PA adsorbed to alum. Relative to alum-PA, immunization of mice with C3d-PA/IFA augmented both the onset and sustained production of PA-specific antibodies, including neutralizing antibodies to the receptor-binding portion (domain 4 of PA. C3d-PA/IFA was efficacious when administered either i.p. or s.c., and in adolescent mice lacking a fully mature B cell compartment. Induction of PA-specific antibodies by C3d-PA/IFA correlated with increased efficiency of germinal center formation and plasma cell generation. Importantly, C3d-PA immunization effectively protected mice from intranasal challenge with B. anthracis spores, and was approximately 10-fold more effective than alum-PA immunization or PA/IFA based on dose challenge. These data suggest that incorporation of C3d as an adjuvant may overcome shortcomings of the currently licensed aluminum-based vaccine, and may confer protection in the early days following acute anthrax exposure.

  4. Detection of anthrax protective antigen (PA) using europium labeled anti-PA monoclonal antibody and time-resolved fluorescence.

    Science.gov (United States)

    Stoddard, Robyn A; Quinn, Conrad P; Schiffer, Jarad M; Boyer, Anne E; Goldstein, Jason; Bagarozzi, Dennis A; Soroka, Stephen D; Dauphin, Leslie A; Hoffmaster, Alex R

    2014-06-01

    Inhalation anthrax is a rare but acute infectious disease following adsorption of Bacillus anthracis spores through the lungs. The disease has a high fatality rate if untreated, but early and correct diagnosis has a significant impact on case patient recovery. The early symptoms of inhalation anthrax are, however, non-specific and current anthrax diagnostics are primarily dependent upon culture and confirmatory real-time PCR. Consequently, there may be a significant delay in diagnosis and targeted treatment. Rapid, culture-independent diagnostic tests are therefore needed, particularly in the context of a large scale emergency response. The aim of this study was to evaluate the ability of monoclonal antibodies to detect anthrax toxin proteins that are secreted early in the course of B. anthracis infection using a time-resolved fluorescence (TRF) immunoassay. We selected monoclonal antibodies that could detect protective antigen (PA), as PA83 and also PA63 and LF in the lethal toxin complex. The assay reliable detection limit (RDL) was 6.63×10(-6)μM (0.551ng/ml) for PA83 and 2.51×10(-5)μM (1.58ng/ml) for PA63. Despite variable precision and accuracy of the assay, PA was detected in 9 out of 10 sera samples from anthrax confirmed case patients with cutaneous (n=7), inhalation (n=2), and gastrointestinal (n=1) disease. Anthrax Immune Globulin (AIG), which has been used in treatment of clinical anthrax, interfered with detection of PA. This study demonstrates a culture-independent method of diagnosing anthrax through the use of monoclonal antibodies to detect PA and LF in the lethal toxin complex. PMID:24857756

  5. Intramuscular Delivery of Adenovirus Serotype 5 Vector Expressing Humanized Protective Antigen Induces Rapid Protection against Anthrax That May Bypass Intranasally Originated Preexisting Adenovirus Immunity

    OpenAIRE

    Wu, Shipo; Zhang, Zhe; Yu, Rui; Zhang, Jun; Liu, Ying; Song, Xiaohong; YI, SHAOQIONG; Liu, Ju; Chen, Jianqin; Yin, Ying; Xu, Junjie; Hou, Lihua; Chen, Wei

    2014-01-01

    Developing an effective anthrax vaccine that can induce a rapid and sustained immune response is a priority for the prevention of bioterrorism-associated anthrax infection. Here, we developed a recombinant replication-deficient adenovirus serotype 5-based vaccine expressing the humanized protective antigen (Ad5-PAopt). A single intramuscular injection of Ad5-PAopt resulted in rapid and robust humoral and cellular immune responses in Fisher 344 rats. Animals intramuscularly inoculated with a s...

  6. Human anti-anthrax protective antigen neutralizing monoclonal antibodies derived from donors vaccinated with anthrax vaccine adsorbed

    OpenAIRE

    Sawada-Hirai, Ritsuko; Jiang, Ivy; Wang, Fei; Sun, Shu Man; Nedellec, Rebecca; Ruther, Paul; Alvarez, Alejandro; Millis, Diane; Morrow, Phillip R.; Kang, Angray S

    2004-01-01

    Background Potent anthrax toxin neutralizing human monoclonal antibodies were generated from peripheral blood lymphocytes obtained from Anthrax Vaccine Adsorbed (AVA) immune donors. The anti-anthrax toxin human monoclonal antibodies were evaluated for neutralization of anthrax lethal toxin in vivo in the Fisher 344 rat bolus toxin challenge model. Methods Human peripheral blood lymphocytes from AVA immunized donors were engrafted into severe combined immunodeficient (SCID) mice. Vaccination w...

  7. Anthrax Protective Antigen Delivered by Salmonella enterica Serovar Typhi Ty21a Protects Mice from a Lethal Anthrax Spore Challenge▿ †

    OpenAIRE

    Osorio, Manuel; Wu, Yanping; Singh, Sunil; Tod J Merkel; Bhattacharyya, Siba; Blake, Milan S.; Kopecko, Dennis J.

    2009-01-01

    Bacillus anthracis, the etiological agent of anthrax disease, is a proven weapon of bioterrorism. Currently, the only licensed vaccine against anthrax in the United States is AVA Biothrax, which, although efficacious, suffers from several limitations. This vaccine requires six injectable doses over 18 months to stimulate protective immunity, requires a cold chain for storage, and in many cases has been associated with adverse effects. In this study, we modified the B. anthracis protective ant...

  8. Vaccination of Rhesus Macaques with the Anthrax Vaccine Adsorbed Vaccine Produces a Serum Antibody Response That Effectively Neutralizes Receptor-Bound Protective Antigen In Vitro ▿

    OpenAIRE

    Clement, Kristin H.; Rudge, Thomas L.; Mayfield, Heather J.; Carlton, Lena A.; Hester, Arelis; Niemuth, Nancy A.; Sabourin, Carol L.; Brys, April M.; Quinn, Conrad P.

    2010-01-01

    Anthrax toxin (ATx) is composed of the binary exotoxins lethal toxin (LTx) and edema toxin (ETx). They have separate effector proteins (edema factor and lethal factor) but have the same binding protein, protective antigen (PA). PA is the primary immunogen in the current licensed vaccine anthrax vaccine adsorbed (AVA [BioThrax]). AVA confers protective immunity by stimulating production of ATx-neutralizing antibodies, which could block the intoxication process at several steps (binding of PA t...

  9. Immunization with a Recombinant, Pseudomonas fluorescens-Expressed, Mutant Form of Bacillus anthracis-Derived Protective Antigen Protects Rabbits from Anthrax Infection.

    Directory of Open Access Journals (Sweden)

    Matthew D Reed

    Full Text Available Protective antigen (PA, one of the components of the anthrax toxin, is the major component of human anthrax vaccine (Biothrax. Human anthrax vaccines approved in the United States and Europe consist of an alum-adsorbed or precipitated (respectively supernatant material derived from cultures of toxigenic, non-encapsulated strains of Bacillus anthracis. Approved vaccination schedules in humans with either of these vaccines requires several booster shots and occasionally causes adverse injection site reactions. Mutant derivatives of the protective antigen that will not form the anthrax toxins have been described. We have cloned and expressed both mutant (PA SNKE167-ΔFF-315-E308D and native PA molecules recombinantly and purified them. In this study, both the mutant and native PA molecules, formulated with alum (Alhydrogel, elicited high titers of anthrax toxin neutralizing anti-PA antibodies in New Zealand White rabbits. Both mutant and native PA vaccine preparations protected rabbits from lethal, aerosolized, B. anthracis spore challenge subsequent to two immunizations at doses of less than 1 μg.

  10. Human Monoclonal Anti-Protective Antigen Antibody Completely Protects Rabbits and Is Synergistic with Ciprofloxacin in Protecting Mice and Guinea Pigs against Inhalation Anthrax

    Science.gov (United States)

    Peterson, Johnny W.; Comer, Jason E.; Noffsinger, David M.; Wenglikowski, Autumn; Walberg, Kristin G.; Chatuev, Bagram M.; Chopra, Ashok K.; Stanberry, Lawrence R.; Kang, Angray S.; Scholz, Wolfgang W.; Sircar, Jagadish

    2006-01-01

    Prevention of inhalation anthrax requires early and extended antibiotic therapy, and therefore, alternative treatment strategies are needed. We investigated whether a human monoclonal antibody (AVP-21D9) to protective antigen (PA) would protect mice, guinea pigs, and rabbits against anthrax. Control animals challenged with Bacillus anthracis Ames spores by the intranasal route died within 3 to 7 days. AVP-21D9 alone provided minimal protection against anthrax in the murine model, but its efficacy was notably better in guinea pigs. When Swiss-Webster mice, challenged with five 50% lethal doses (LD50s) of anthrax spores, were given a single 16.7-mg/kg of body weight AVP-21D9 antibody dose combined with ciprofloxacin (30 mg/kg/day for 6 days) 24 h after challenge, 100% of the mice were protected for more than 30 days, while ciprofloxacin or AVP-21D9 alone showed minimal protection. Similarly, when AVP-21D9 antibody (10 to 50 mg/kg) was combined with a low, nonprotective dose of ciprofloxacin (3.7 mg/kg/day) and administered to guinea pigs for 6 days, synergistic protection against anthrax was observed. In contrast, a single dose of AVP-21D9 antibody (1, 5, 10, or 20 mg/kg) but not 0.2 mg/kg alone completely protected rabbits against challenge with 100 LD50s of B. anthracis Ames spores, and 100% of the rabbits survived rechallenge. Further, administration of AVP-21D9 (10 mg/kg) to rabbits at 0, 6, and 12 h after challenge with anthrax spores resulted in 100% survival; however, delay of antibody treatment by 24 and 48 h reduced survival to 80% and 60%, respectively. Serological analysis of sera from various surviving animals 30 days postprimary infection showed development of a species-specific PA enzyme-linked immunosorbent assay antibody titer that correlated with protection against reinfection. Taken together, the effectiveness of human anti-PA antibody alone or in combination with low ciprofloxacin levels may provide the basis for an improved strategy for

  11. Mechanistic Analysis of the Effect of Deamidation on the Immunogenicity of Anthrax Protective Antigen.

    Science.gov (United States)

    Verma, Anita; Ngundi, Miriam M; Burns, Drusilla L

    2016-05-01

    The spontaneous modification of proteins, such as deamidation of asparagine residues, can significantly affect the immunogenicity of protein-based vaccines. Using a "genetically deamidated" form of recombinant protective antigen (rPA), we have previously shown that deamidation can decrease the immunogenicity of rPA, the primary component of new-generation anthrax vaccines. In this study, we investigated the biochemical and immunological mechanisms by which deamidation of rPA might decrease the immunogenicity of the protein. We found that loss of the immunogenicity of rPA vaccine was independent of the presence of adjuvant. We assessed the effect of deamidation on the immunodominant neutralizing B-cell epitopes of rPA and found that these epitopes were not significantly affected by deamidation. In order to assess the effect of deamidation on T-cell help for antibody production elicited by rPA vaccine, we examined the ability of the wild-type and genetically deamidated forms of rPA to serve as hapten carriers. We found that when wild-type and genetically deamidated rPA were modified to similar extents with 2,4-dinitrophenyl hapten (DNP) and then used to immunize mice, higher levels of anti-DNP antibodies were elicited by wild-type DNP-rPA than those elicited by the genetically deamidated DNP-rPA, indicating that wild-type rPA elicits more T-cell help than the genetically deamidated form of the protein. These results suggest that a decrease in the ability of deamidated rPA to elicit T-cell help for antibody production is a possible contributor to its lower immunogenicity. PMID:26912784

  12. Development of antibodies to protective antigen and lethal factor components of anthrax toxin in humans and guinea pigs and their relevance to protective immunity.

    OpenAIRE

    Turnbull, P. C.; Broster, M G; Carman, J A; Manchee, R J; Melling, J

    1986-01-01

    A competitive inhibition enzyme-linked immunosorbent assay (ELISA) was developed to detect antibodies in serum to the protective antigen (PA) and lethal factor (LF) components of anthrax toxin. Current human vaccination schedules with an acellular vaccine induce predictable and lasting antibody titers to PA and, when present in the vaccine, to LF. Live spore vaccine administered to guinea pigs in a single dose conferred significantly better protection than the human vaccines (P less than 0.00...

  13. Purification of Anthrax Edema Factor from Escherichia coli and Identification of Residues Required for Binding to Anthrax Protective Antigen

    OpenAIRE

    Kumar, Praveen; Ahuja, Nidhi; Bhatnagar, Rakesh

    2001-01-01

    The structural gene for anthrax edema factor (EF) was expressed in Escherichia coli under the control of a powerful T5 promoter to yield the 89-kDa recombinant protein that reacted with anti-EF antibodies. Recombinant EF was purified to homogeneity by a two-step procedure involving metal chelate affinity chromatography and cation-exchange chromatography. From 1 liter of culture, 2.5 mg of biologically active EF was easily purified. This is the first report of purification of anthrax EF from E...

  14. Temperature-mediated recombinant anthrax protective antigen aggregate development: Implications for toxin formation and immunogenicity.

    Science.gov (United States)

    Amador-Molina, Juan C; Valerdi-Madrigal, Esther D; Domínguez-Castillo, Rocío I; Sirota, Lev A; Arciniega, Juan L

    2016-07-29

    Anthrax vaccines containing recombinant PA (rPA) as the only antigen face a stability issue: rPA forms aggregates in solution after exposure to temperatures ⩾40°C, thus losing its ability to form lethal toxin (LeTx) with Lethal Factor. To study rPA aggregation's impact on immune response, we subjected rPA to several time and temperature combinations. rPA treated at 50°C for 30min formed high mass aggregates when analyzed by gel electrophoresis and failed to form LeTx as measured by a macrophage lysis assay (MLA). Aggregated rPA-formed LeTx was about 30 times less active than LeTx containing native rPA. Mice immunized with heat-treated rPA combined with Al(OH)3 developed antibody titers about 49 times lower than mice immunized with native rPA, as measured by a Toxicity Neutralization Assay (TNA). Enzyme Linked Immunosorbent Assay (ELISA) of the same immune sera showed anti-rPA titers only 2-7 times lower than titers elicited by native rPA. Thus, rPA's ability to form LeTx correlates with its production of neutralizing antibodies, and aggregation significantly impairs the protein's antibody response. However, while these findings suggest MLA has some value as an in-process quality test for rPA in new anthrax vaccines, they also confirm the superiority of TNA for use in vaccine potency. PMID:27364097

  15. Adenoviral Expression of a Bispecific VHH-Based Neutralizing Agent That Targets Protective Antigen Provides Prophylactic Protection from Anthrax in Mice.

    Science.gov (United States)

    Moayeri, Mahtab; Tremblay, Jacqueline M; Debatis, Michelle; Dmitriev, Igor P; Kashentseva, Elena A; Yeh, Anthony J; Cheung, Gordon Y C; Curiel, David T; Leppla, Stephen; Shoemaker, Charles B

    2016-03-01

    Bacillus anthracis, the causative agent of anthrax, secretes three polypeptides, which form the bipartite lethal and edema toxins (LT and ET, respectively). The common component in these toxins, protective antigen (PA), is responsible for binding to cellular receptors and translocating the lethal factor (LF) and edema factor (EF) enzymatic moieties to the cytosol. Antibodies against PA protect against anthrax. We previously isolated toxin-neutralizing variable domains of camelid heavy-chain-only antibodies (VHHs) and demonstrated their in vivo efficacy. In this work, gene therapy with an adenoviral (Ad) vector (Ad/VNA2-PA) (VNA, VHH-based neutralizing agents) promoting the expression of a bispecific VHH-based neutralizing agent (VNA2-PA), consisting of two linked VHHs targeting different PA-neutralizing epitopes, was tested in two inbred mouse strains, BALB/cJ and C57BL/6J, and found to protect mice against anthrax toxin challenge and anthrax spore infection. Two weeks after a single treatment with Ad/VNA2-PA, serum VNA2-PA levels remained above 1 μg/ml, with some as high as 10 mg/ml. The levels were 10- to 100-fold higher and persisted longer in C57BL/6J than in BALB/cJ mice. Mice were challenged with a lethal dose of LT or spores at various times after Ad/VNA2-PA administration. The majority of BALB/cJ mice having serum VNA2-PA levels of >0.1 μg/ml survived LT challenge, and 9 of 10 C57BL/6J mice with serum levels of >1 μg/ml survived spore challenge. Our findings demonstrate the potential for genetic delivery of VNAs as an effective method for providing prophylactic protection from anthrax. We also extend prior findings of mouse strain-based differences in transgene expression and persistence by adenoviral vectors. PMID:26740390

  16. A CpG-Ficoll Nanoparticle Adjuvant for Anthrax Protective Antigen Enhances Immunogenicity and Provides Single-Immunization Protection against Inhaled Anthrax in Monkeys.

    Science.gov (United States)

    Kachura, Melissa A; Hickle, Colin; Kell, Sariah A; Sathe, Atul; Calacsan, Carlo; Kiwan, Radwan; Hall, Brian; Milley, Robert; Ott, Gary; Coffman, Robert L; Kanzler, Holger; Campbell, John D

    2016-01-01

    Nanoparticulate delivery systems for vaccine adjuvants, designed to enhance targeting of secondary lymphoid organs and activation of APCs, have shown substantial promise for enhanced immunopotentiation. We investigated the adjuvant activity of synthetic oligonucleotides containing CpG-rich motifs linked to the sucrose polymer Ficoll, forming soluble 50-nm particles (DV230-Ficoll), each containing >100 molecules of the TLR9 ligand, DV230. DV230-Ficoll was evaluated as an adjuvant for a candidate vaccine for anthrax using recombinant protective Ag (rPA) from Bacillus anthracis. A single immunization with rPA plus DV230-Ficoll induced 10-fold higher titers of toxin-neutralizing Abs in cynomolgus monkeys at 2 wk compared with animals immunized with equivalent amounts of monomeric DV230. Monkeys immunized either once or twice with rPA plus DV230-Ficoll were completely protected from challenge with 200 LD50 aerosolized anthrax spores. In mice, DV230-Ficoll was more potent than DV230 for the induction of innate immune responses at the injection site and draining lymph nodes. DV230-Ficoll was preferentially colocalized with rPA in key APC populations and induced greater maturation marker expression (CD69 and CD86) on these cells and stronger germinal center B and T cell responses, relative to DV230. DV230-Ficoll was also preferentially retained at the injection site and draining lymph nodes and produced fewer systemic inflammatory responses. These findings support the development of DV230-Ficoll as an adjuvant platform, particularly for vaccines such as for anthrax, for which rapid induction of protective immunity and memory with a single injection is very important. PMID:26608924

  17. Effect of particulate adjuvant on the anthrax protective antigen dose required for effective nasal vaccination.

    Science.gov (United States)

    Bento, Dulce; Staats, Herman F; Borges, Olga

    2015-07-17

    Successful vaccine development is dependent on the development of effective adjuvants since the poor immunogenicity of modern subunit vaccines typically requires the use of potent adjuvants and high antigen doses. In recent years, adjuvant formulations combining both immunopotentiators and delivery systems have emerged as a promising strategy to develop effective and improved vaccines. In this study we investigate if the association of the mast cell activating adjuvant compound 48/80 (C48/80) with chitosan nanoparticles would promote an antigen dose sparing effect when administered intranasally. Even though the induction of strong mucosal immunity required higher antigen doses, incorporation of C48/80 into nanoparticles provided significant dose sparing when compared to antigen and C48/80 in solution with no significant effect on serum neutralizing antibodies titers. These results suggest the potential of this novel adjuvant combination to improve the immunogenicity of a vaccine and decrease the antigen dose required for vaccination. PMID:26087299

  18. Protective Antigen-Specific Memory B Cells Persist Years after Anthrax Vaccination and Correlate with Humoral Immunity

    Directory of Open Access Journals (Sweden)

    Lori Garman

    2014-08-01

    Full Text Available Anthrax Vaccine Adsorbed (AVA generates short-lived protective antigen (PA specific IgG that correlates with in vitro toxin neutralization and protection from Bacillus anthracis challenge. Animal studies suggest that when PA-specific IgG has waned, survival after spore challenge correlates with an activation of PA-specific memory B cells. Here, we characterize the quantity and the longevity of AVA-induced memory B cell responses in humans. Peripheral blood mononuclear cells (PBMCs from individuals vaccinated ≥3 times with AVA (n = 50 were collected early (3–6 months, n = 27 or late after their last vaccination (2–5 years, n = 23, pan-stimulated, and assayed by ELISPOT for total and PA-specific memory B cells differentiated into antibody secreting cells (ASCs. PA-specific ASC percentages ranged from 0.02% to 6.25% (median: 1.57% and did not differ between early and late post-vaccination individuals. PA-specific ASC percentages correlated with plasma PA-specific IgG (r = 0.42, p = 0.03 and toxin neutralization (r = 0.52, p = 0.003 early post vaccination. PA-specific ASC percentages correlated with supernatant anti-PA both early (r = 0.60, p = 0.001 and late post vaccination (r = 0.71, p < 0.0001. These data suggest PA-specific memory B cell responses are long-lived and can be estimated after recent vaccination by the magnitude and neutralization capacity of the humoral response.

  19. Development & validation of a quantitative anti-protective antigen IgG enzyme linked immunosorbent assay for serodiagnosis of cutaneous anthrax

    Directory of Open Access Journals (Sweden)

    N Ghosh

    2015-01-01

    Full Text Available Background & objectives: Anthrax caused by Bacillus anthracis is primarily a disease of herbivorous animals, although several mammals are vulnerable to it. ELISA is the most widely accepted serodiagnostic assay for large scale surveillance of cutaneous anthrax. The aims of this study were to develop and evaluate a quantitative ELISA for determination of IgG antibodies against B. anthracis protective antigen (PA in human cutaneous anthrax cases. Methods: Quantitative ELISA was developed using the recombinant PA for coating and standard reference serum AVR801 for quantification. A total of 116 human test and control serum samples were used in the study. The assay was evaluated for its precision, accuracy and linearity. Results: The minimum detection limit and lower limit of quantification of the assay for anti-PA IgG were 3.2 and 4 µg/ml, respectively. The serum samples collected from the anthrax infected patients were found to have anti-PA IgG concentrations of 5.2 to 166.3 µg/ml. The intra-assay precision per cent CV within an assay and within an operator ranged from 0.99 to 7.4 per cent and 1.7 to 3.9 per cent, respectively. The accuracy of the assay was high with a per cent error of 6.5 - 24.1 per cent. The described assay was found to be linear between the range of 4 to 80 ng/ml (R [2] =0.9982; slope=0.9186; intercept = 0.1108. Interpretation & conclusions: The results suggested that the developed assay could be a useful tool for quantification of anti-PA IgG response in human after anthrax infection or vaccination.

  20. Comparative efficacy of Bacillus anthracis live spore vaccine and protective antigen vaccine against anthrax in the guinea pig.

    OpenAIRE

    Little, S F; Knudson, G B

    1986-01-01

    Several strains of Bacillus anthracis have been reported previously to cause fatal infection in immunized guinea pigs. In this study, guinea pigs were immunized with either a protective antigen vaccine or a live Sterne strain spore vaccine, then challenged with virulent B. anthracis strains isolated from various host species from the United States and foreign sources. Confirmation of previously reported studies (which used only protective antigen vaccines) was made with the identification of ...

  1. Phase I study of safety and immunogenicity of an Escherichia coli-derived recombinant protective antigen (rPA vaccine to prevent anthrax in adults.

    Directory of Open Access Journals (Sweden)

    Bruce K Brown

    Full Text Available BACKGROUND: The fatal disease caused by Bacillus anthracis is preventable with a prophylactic vaccine. The currently available anthrax vaccine requires a lengthy immunization schedule, and simpler and more immunogenic options for protection against anthrax are a priority for development. In this report we describe a phase I clinical trial testing the safety and immunogenicity of an anthrax vaccine using recombinant Escherichia coli-derived, B. anthracis protective antigen (rPA. METHODOLOGY/PRINCIPAL FINDINGS: A total of 73 healthy adults ages 18-40 were enrolled and 67 received 2 injections separated by 4 weeks of either buffered saline placebo, or rPA formulated with or without 704 µg/ml Alhydrogel® adjuvant in increasing doses (5, 25, 50, 100 µg of rPA. Participants were followed for one year and safety and immunologic data were assessed. Tenderness and warmth were the most common post-injection site reactions. No serious adverse events related to the vaccine were observed. The most robust humoral immune responses were observed in subjects receiving 50 µg of rPA formulated with Alhydrogel® with a geometric mean concentration of anti-rPA IgG antibodies of 283 µg/ml and a toxin neutralizing geometric 50% reciprocal geometric mean titer of 1061. The highest lymphoproliferative peak cellular response (median Lymphocyte Stimulation Index of 29 was observed in the group receiving 25 µg Alhydrogel®-formulated rPA. CONCLUSIONS/SIGNIFICANCE: The vaccine was safe, well tolerated and stimulated a robust humoral and cellular response after two doses. TRIAL REGISTRATION: ClinicalTrials.gov NCT00057525.

  2. Detection of anthrax protective antigen (PA) using europium labeled anti-PA monoclonal antibody and time-resolved fluorescence ◊

    OpenAIRE

    Stoddard, Robyn A.; Quinn, Conrad P.; Schiffer, Jarad M.; Boyer, Anne E.; GOLDSTEIN, JASON; Bagarozzi, Dennis A.; Soroka, Stephen D.; Dauphin, Leslie A.; Hoffmaster, Alex R.

    2014-01-01

    Inhalation anthrax is a rare but acute infectious disease following adsorption of Bacillus anthracis spores through the lungs. The disease has a high fatality rate if untreated, but early and correct diagnosis has a significant impact on case patient recovery. The early symptoms of inhalation anthrax are, however, non-specific and current anthrax diagnostics are primarily dependent upon culture and confirmatory real-time PCR. Consequently, there may be a significant delay in diagnosis and tar...

  3. Lethal Factor and Anti-Protective Antigen IgG Levels Associated with Inhalation Anthrax, Minnesota, USA

    OpenAIRE

    Sprenkle, Mark D.; Griffith, Jayne; Marinelli, William; Boyer, Anne E.; Quinn, Conrad P.; Pesik, Nicki T.; Hoffmaster, Alex; Keenan, Joseph; Billie A. Juni; Blaney, David D.

    2014-01-01

    Bacillus anthracis was identified in a 61-year-old man hospitalized in Minnesota, USA. Cooperation between the hospital and the state health agency enhanced prompt identification of the pathogen. Treatment comprising antimicrobial drugs, anthrax immune globulin, and pleural drainage led to full recovery; however, the role of passive immunization in anthrax treatment requires further evaluation.

  4. Mucosal priming of newborn mice with S. Typhi Ty21a expressing anthrax protective antigen (PA) followed by parenteral PA-boost induces B and T cell-mediated immunity that protects against infection bypassing maternal antibodies.

    Science.gov (United States)

    Ramirez, Karina; Ditamo, Yanina; Galen, James E; Baillie, Les W J; Pasetti, Marcela F

    2010-08-23

    The currently licensed anthrax vaccine has several limitations and its efficacy has been proven only in adults. Effective immunization of newborns and infants requires adequate stimulation of their immune system, which is competent but not fully activated. We explored the use of the licensed live attenuated S. Typhi vaccine strain Ty21a expressing Bacillus anthracis protective antigen [Ty21a(PA)] followed PA-alum as a strategy for immunizing the pediatric population. Newborn mice primed with a single dose of Ty21a(PA) exhibited high frequencies of mucosal IgA-secreting B cells and IFN-gamma-secreting T cells during the neonatal period, none of which was detected in newborns immunized with a single dose of PA-alum. Priming with Ty21a(PA) followed by PA-boost resulted in high levels of PA-specific IgG, toxin neutralizing and opsonophagocytic antibodies and increased frequency of bone marrow IgG plasma cells and memory B cells compared with repeated immunization with PA-alum alone. Robust B and T cell responses developed even in the presence of maternal antibodies. The prime-boost protected against systemic and respiratory infection. Mucosal priming with a safe and effective S. Typhi-based anthrax vaccine followed by PA-boost could serve as a practical and effective prophylactic approach to prevent anthrax early in life. PMID:20619377

  5. Protection of rhesus macaques against inhalational anthrax with a Bacillus anthracis capsule conjugate vaccine.

    Science.gov (United States)

    Chabot, Donald J; Ribot, Wilson J; Joyce, Joseph; Cook, James; Hepler, Robert; Nahas, Debbie; Chua, Jennifer; Friedlander, Arthur M

    2016-07-25

    The efficacy of currently licensed anthrax vaccines is largely attributable to a single Bacillus anthracis immunogen, protective antigen. To broaden protection against possible strains resistant to protective antigen-based vaccines, we previously developed a vaccine in which the anthrax polyglutamic acid capsule was covalently conjugated to the outer membrane protein complex of Neisseria meningitidis serotype B and demonstrated that two doses of 2.5μg of this vaccine conferred partial protection of rhesus macaques against inhalational anthrax . Here, we demonstrate complete protection of rhesus macaques against inhalational anthrax with a higher 50μg dose of the same capsule conjugate vaccine. These results indicate that B. anthracis capsule is a highly effective vaccine component that should be considered for incorporation in future generation anthrax vaccines. PMID:27329184

  6. Development of an edema factor-mediated cAMP-induction bioassay for detecting antibody-mediated neutralization of anthrax protective antigen.

    Science.gov (United States)

    Zmuda, Jonathan F; Zhang, Linyi; Richards, Terri; Pham, Quyen; Zukauskas, David; Pierre, Jennifer L; Laird, Michael W; Askins, Janine; Choi, Gil H

    2005-03-01

    Intoxication of mammalian cells by Bacillus anthracis requires the coordinate activity of three distinct bacterial proteins: protective antigen (PA), edema factor (EF), and lethal factor (LF). Among these proteins, PA has become the major focus of work on monoclonal antibodies and vaccines designed to treat or prevent anthrax infection since neither EF nor LF is capable of inducing cellular toxicity in its absence. Here, we present the development of a sensitive, precise, and biologically relevant bioassay platform capable of quantifying antibody-mediated PA neutralization. This bioassay is based on the ability of PA to bind and shuttle EF, a bacterial adenylate cyclase, into mammalian cells leading to an increase in cAMP that can be quantified using a sensitive chemiluminescent ELISA. The results of this study indicate that the cAMP-induction assay possesses the necessary performance characteristics for use as both a potency-indicating release assay in a quality control setting and as a surrogate pharmacodynamic marker for ensuring the continued bioactivity of therapeutic antibodies against PA during clinical trials. PMID:15847796

  7. Optimization, Production, and Characterization of a CpG-Oligonucleotide-Ficoll Conjugate Nanoparticle Adjuvant for Enhanced Immunogenicity of Anthrax Protective Antigen.

    Science.gov (United States)

    Milley, Bob; Kiwan, Radwan; Ott, Gary S; Calacsan, Carlo; Kachura, Melissa; Campbell, John D; Kanzler, Holger; Coffman, Robert L

    2016-05-18

    We have synthesized and characterized a novel phosphorothioate CpG oligodeoxynucleotide (CpG ODN)-Ficoll conjugated nanoparticulate adjuvant, termed DV230-Ficoll. This adjuvant was constructed from an amine-functionalized-Ficoll, a heterobifunctional linker (succinimidyl-[(N-maleimidopropionamido)-hexaethylene glycol] ester) and the CpG-ODN DV230. Herein, we describe the evaluation of the purity and reactivity of linkers of different lengths for CpG-ODN-Ficoll conjugation, optimization of linker coupling, and conjugation of thiol-functionalized CpG to maleimide-functionalized Ficoll and process scale-up. Physicochemical characterization of independently produced lots of DV230-Ficoll reveal a bioconjugate with a particle size of approximately 50 nm and covalent attachment of more than 100 molecules of CpG per Ficoll. Solutions of purified DV230-Ficoll were stable for at least 12 months at frozen and refrigerated temperatures and stability was further enhanced in lyophilized form. Compared to nonconjugated monomeric DV230, the DV230-Ficoll conjugate demonstrated improved in vitro potency for induction of IFN-α from human peripheral blood mononuclear cells and induced higher titer neutralizing antibody responses against coadministered anthrax recombinant protective antigen in mice. The processes described here establish a reproducible and robust process for the synthesis of a novel, size-controlled, and stable CpG-ODN nanoparticle adjuvant suitable for manufacture and use in vaccines. PMID:27074387

  8. Electrochemical immunosensor based on bismuth nanocomposite film and cadmium ions functionalized titanium phosphates for the detection of anthrax protective antigen toxin.

    Science.gov (United States)

    Sharma, Mukesh K; Narayanan, J; Upadhyay, Sanjay; Goel, Ajay K

    2015-12-15

    Bacillus anthracis is a bioterrorism agent classified by the Centers for Disease Control and Prevention (CDC). Herein, a novel electrochemical immunosensor for the sensitive, specific and easy detection of anthrax protective antigen (PA) toxin in picogram concentration was developed. The immunosensor consists of (i) a Nafion-multiwall carbon nanotubes-bismuth nanocomposite film modified glassy carbon electrodes (BiNPs/Nafion-MWCNTs/GCE) as a sensing platform and (ii) titanium phosphate nanoparticles-cadmium ion-mouse anti-PA antibodies (TiP-Cd(2+)-MαPA antibodies) as signal amplification tags. Scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), thermogravimmetric analysis (TGA), Fourier transform-infra red spectroscopy (FT-IR), zeta-potential analysis, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were employed to characterize the synthesized TiP nanoparticles and modified electrode surfaces. The immunosensing performance of BiNPs/Nafion-MWCNTs/GCE was evaluated based on sandwich immunoassay protocol. A square wave voltammetry (SWV) scan from -1.2 to -0.3 V in HAc-NaAc buffer solution (pH 4.6) without stripping process was performed to record the electrochemical responses at -0.75 V corresponding to high content of Cd(2+) ions loaded in TiP nanoparticles for the measurement of PA toxin. Under optimal conditions, the currents increased with increasing PA toxin concentrations in spiked human serum samples and showed a linear range from 0.1 ng/ml to 100 ng/ml. The limit of detection of developed immunosensor was found to be 50 pg/ml at S/N=3. The total time of analysis was 35 min. PMID:26148674

  9. Deletion modification enhances anthrax specific immunity and protective efficacy of a hepatitis B core particle-based anthrax epitope vaccine.

    Science.gov (United States)

    Yin, Ying; Zhang, Sheng; Cai, Chenguang; Zhang, Jun; Dong, Dayong; Guo, Qiang; Fu, Ling; Xu, Junjie; Chen, Wei

    2014-02-01

    Protective antigen (PA) is one of the major virulence factors of anthrax and is also the major constituent of the current anthrax vaccine. Previously, we found that the 2β2-2β3 loop of PA contains a dominant neutralizing epitope, the SFFD. We successfully inserted the 2β2-2β3 loop of PA into the major immunodominant region (MIR) of hepatitis B virus core (HBc) protein. The resulting fusion protein, termed HBc-N144-PA-loop2 (HBcL2), can effectively produce anthrax specific protective antibodies in an animal model. However, the protective immunity caused by HBcL2 could still be improved. In this research, we removed amino acids 79-81 from the HBc MIR of the HBcL2. This region was previously reported to be the major B cell epitope of HBc, and in keeping with this finding, we observed that the short deletion in the MIR not only diminished the intrinsic immunogenicity of HBc but also stimulated a higher titer of anthrax specific immunity. Most importantly, this deletion led to the full protection of the immunized mice against a lethal dose anthrax toxin challenge. We supposed that the conformational changes which occurred after the short deletion and foreign insertion in the MIR of HBc were the most likely reasons for the improvement in the immunogenicity of the HBc-based anthrax epitope vaccine. PMID:24054942

  10. A dually active anthrax vaccine that confers protection against both bacilli and toxins

    OpenAIRE

    Rhie, Gi-eun; Roehrl, Michael H.; Mourez, Michael; Collier, R. John; Mekalanos, John J.; Wang, Julia Y.

    2003-01-01

    Systemic anthrax is caused by unimpeded bacillar replication and toxin secretion. We developed a dually active anthrax vaccine (DAAV) that confers simultaneous protection against both bacilli and toxins. DAAV was constructed by conjugating capsular poly-γ-d-glutamic acid (PGA) to protective antigen (PA), converting the weakly immunogenic PGA to a potent immunogen, and synergistically enhancing the humoral response to PA. PGA-specific antibodies bound to encapsulated bacilli and promoted the k...

  11. In vitro binding of anthrax protective antigen on bacteriophage T4 capsid surface through Hoc-capsid interactions: A strategy for efficient display of large full-length proteins

    International Nuclear Information System (INIS)

    An in vitro binding system is described to display large full-length proteins on bacteriophage T4 capsid surface at high density. The phage T4 icosahedral capsid features 155 copies of a nonessential highly antigenic outer capsid protein, Hoc, at the center of each major capsid protein hexon. Gene fusions were engineered to express the 83-kDa protective antigen (PA) from Bacillus anthracis fused to the N-terminus of Hoc and the 130-kDa PA-Hoc protein was expressed in Escherichia coli and purified. The purified PA-Hoc was assembled in vitro on hoc - phage particles. Binding was specific, stable, and of high affinity. This defined in vitro system allowed manipulation of the copy number of displayed PA and imposed no significant limitation on the size of the displayed antigen. In contrast to in vivo display systems, the in vitro approach allows all the capsid binding sites to be occupied by the 130-kDa PA-Hoc fusion protein. The PA-T4 particles were immunogenic in mice in the absence of an adjuvant, eliciting strong PA-specific antibodies and anthrax lethal toxin neutralizing antibodies. The in vitro display on phage T4 offers a novel platform for potential construction of customized vaccines against anthrax and other infectious diseases

  12. Efficacy of a Vaccine Based on Protective Antigen and Killed Spores against Experimental Inhalational Anthrax▿ ‡

    OpenAIRE

    Gauthier, Yves P.; Tournier, Jean-Nicolas; Paucod, Jean-Charles; Corre, Jean-Philippe; Mock, Michèle; Goossens, Pierre L.; Vidal, Dominique R.

    2008-01-01

    Protective antigen (PA)-based anthrax vaccines acting on toxins are less effective than live attenuated vaccines, suggesting that additional antigens may contribute to protective immunity. Several reports indicate that capsule or spore-associated antigens may enhance the protection afforded by PA. Addition of formaldehyde-inactivated spores (FIS) to PA (PA-FIS) elicits total protection against cutaneous anthrax. Nevertheless, vaccines that are effective against cutaneous anthrax may not be so...

  13. An Adenovirus-Vectored Nasal Vaccine Confers Rapid and Sustained Protection against Anthrax in a Single-Dose Regimen

    OpenAIRE

    Zhang, Jianfeng; Jex, Edward; Feng, Tsungwei; Sivko, Gloria S.; Baillie, Leslie W.; Goldman, Stanley; Van Kampen, Kent R; Tang, De-chu C.

    2013-01-01

    Bacillus anthracis is the causative agent of anthrax, and its spores have been developed into lethal bioweapons. To mitigate an onslaught from airborne anthrax spores that are maliciously disseminated, it is of paramount importance to develop a rapid-response anthrax vaccine that can be mass administered by nonmedical personnel during a crisis. We report here that intranasal instillation of a nonreplicating adenovirus vector encoding B. anthracis protective antigen could confer rapid and sust...

  14. Influence of protein formulation and carrier solution on asymmetrical flow field-flow fractionation: a case study of the plant-produced recombinant anthrax protective antigen pp-PA83.

    Science.gov (United States)

    Palais, Caroline; Chichester, Jessica A; Manceva, Slobodanka; Yusibov, Vidadi; Arvinte, Tudor

    2015-02-01

    Asymmetrical flow field-flow fractionation (afFFF) was used to investigate the properties of a plant-produced anthrax toxin protective antigen, pp-PA83. The afFFF fractogram consisted of two main peaks with molar masses similar to the molecular mass of pp-PA83 monomer. afFFF carrier solutions strongly influenced the ratio and the intensity of the two main peaks. These differences indicate that conformation changes in the pp-PA83 molecule occurred during the afFFF analysis. Similar fractograms were obtained for different pp-PA83 formulations when the afFFF carrier solution and the protein formulation were the same (or very similar). The data show that in specific cases, afFFF could be used to study protein conformation and document the importance of studying the influence of the carrier solution on afFFF. PMID:25417936

  15. Rapid Point-of-Care Test To Detect Broad Ranges of Protective Antigen-Specific Immunoglobulin G Concentrations in Recipients of the U.S.-Licensed Anthrax Vaccine▿

    OpenAIRE

    Bienek, Diane R.; Biagini, Raymond E.; Charlton, David G.; Smith, Jerome P.; Sammons, Deborah L.; Robertson, Shirley A.

    2008-01-01

    Currently, there is no routine monitoring of an immune response to the anthrax vaccine. Simple on-site tests are needed to evaluate the antibody response of anthrax-vaccinated individuals in the Armed Forces and others at high risk. Using a prototype lateral flow assay (LFA) (R. E. Biagini, D. L. Sammons, J. P. Smith, B. A. MacKenzie, C. A. F. Striley, J. E. Snawder, S. A. Robertson, and C. P. Quinn, Clin. Vaccine Immunol. 13:541-546, 2006), we investigated the agreement between a validated a...

  16. Anthrax

    Science.gov (United States)

    ... seen in grazing animals like sheep, pigs, cattle, horses, and goats, anthrax also can occur in humans — ... or by inhaling spores (breathing them into the lungs). But anthrax is not contagious, which means that ...

  17. Passive Immunotherapy Protects against Enteric Invasion and Lethal Sepsis in a Murine Model of Gastrointestinal Anthrax

    Science.gov (United States)

    Huang, Bruce; Xie, Tao; Rotstein, David; Fang, Hui; Frucht, David M.

    2015-01-01

    The principal portal for anthrax infection in natural animal outbreaks is the digestive tract. Enteric exposure to anthrax, which is difficult to detect or prevent in a timely manner, could be exploited as an act of terror through contamination of human or animal food. Our group has developed a novel animal model of gastrointestinal (GI) anthrax for evaluation of disease pathogenesis and experimental therapeutics, utilizing vegetative Bacillus anthracis (Sterne strain) administered to A/J mice (a complement-deficient strain) by oral gavage. We hypothesized that a humanized recombinant monoclonal antibody (mAb) * that neutralizes the protective antigen (PA) component of B. anthracis lethal toxin (LT) and edema toxin (ET) could be an effective treatment. Although the efficacy of this anti-anthrax PA mAb has been shown in animal models of inhalational anthrax, its activity in GI infection had not yet been ascertained. We hereby demonstrate that passive immunotherapy with anti-anthrax PA mAb, administered at the same time as gastrointestinal exposure to B. anthracis, prevents lethal sepsis in nearly all cases (>90%), while a delay of up to forty-eight hours in treatment still greatly reduces mortality following exposure (65%). Moreover, passive immunotherapy protects against enteric invasion, associated mucosal injury and subsequent dissemination by gastrointestinal B. anthracis, indicating that it acts to prevent the initial stages of infection. * Expired raxibacumab being cycled off the Strategic National Stockpile; biological activity confirmed by in vitro assay. PMID:26426050

  18. Enhanced Immune Response to DNA Vaccine Encoding Bacillus anthracis PA-D4 Protects Mice against Anthrax Spore Challenge

    OpenAIRE

    Kim, Na Young; Chang, Dong Suk; Kim, Yeonsu; Kim, Chang Hwan; Hur, Gyeung Haeng; Yang, Jai Myung; Shin, Sungho

    2015-01-01

    Anthrax has long been considered the most probable bioweapon-induced disease. The protective antigen (PA) of Bacillus anthracis plays a crucial role in the pathogenesis of anthrax. In the current study, we evaluated the efficiency of a genetic vaccination with the fourth domain (D4) of PA, which is responsible for initial binding of the anthrax toxin to the cellular receptor. The eukaryotic expression vector was designed with the immunoglobulin M (IgM) signal sequence encoding for PA-D4, whic...

  19. 76 FR 34994 - Vaccine To Protect Children From Anthrax-Public Engagement Workshop

    Science.gov (United States)

    2011-06-15

    ... HUMAN SERVICES Vaccine To Protect Children From Anthrax--Public Engagement Workshop AGENCY: Office of... Biodefense Science Board's (NBSB) Anthrax Vaccine (AV) Working Group (WG) will hold a public engagement workshop on July 7, 2011, to discuss vaccine to protect children from anthrax. This meeting is open to...

  20. Anthrax--an overview.

    Science.gov (United States)

    Oncü, Serkan; Oncü, Selcen; Sakarya, Serhan

    2003-11-01

    Anthrax, a disease of mammals (including humans), is caused by a spore-forming Gram-positive bacilli called Bacillus anthracis. Anthrax is one of the oldest threats to humanity, and remains endemic in animals in many parts of the world. The incidence of anthrax has decreased in developed countries, but it remains a considerable health problem in developing countries. The disease is transmitted to humans by contact with sick animals or their products, such as wool, skin, meat etc. Capsular polypeptide and anthrax toxin are the principal virulence factors of B. anthracis. Anthrax toxin consists of three proteins called protective antigen, edema factor, and lethal factor, each of which is nontoxic but acts synergistically. Human anthrax has three major clinical forms: cutaneous, inhalational, and gastrointestinal. The diagnosis is easily established in cutaneous cases, characterized by black eschar. Severe intoxication and collapse during the course of bronchopneumonia or hemorrhagic enteritis should prompt suspicion of anthrax. Treatment with antibiotics is mandatory. If untreated, anthrax in all forms can lead to septicemia and death. Recently, considerable attention has been focused on the potential for B. anthracis to be used in acts of biological terrorism. The ease of laboratory production and its dissemination via aerosol led to its adoption by terrorists, as shown by recent events in the USA. A good knowledge of anthrax, its epidemiology, pathogenesis, clinical forms and potential as a biological weapon is essential for timely prevention and treatment. This review summarizes the current knowledge on anthrax. PMID:14586293

  1. A cationic lipid-formulated plasmid DNA vaccine confers sustained antibody-mediated protection against aerosolized anthrax spores

    OpenAIRE

    Hermanson, G; Whitlow, V.; Parker,S; Tonsky, K.; Rusalov, D.; Ferrari, M.; Lalor, P; Komai, M.; Mere, R.; Bell, M.; Brenneman, K; Mateczun, A.; Evans, T.; Kaslow, D.; Galloway, D

    2004-01-01

    DNA vaccines provide an attractive technology platform against bioterrorism agents due to their safety record in humans and ease of construction, testing, and manufacture. We have designed monovalent and bivalent anthrax plasmid DNA (pDNA) vaccines encoding genetically detoxified protective antigen (PA) and lethal factor (LF) proteins and tested their immunogenicity and ability to protect rabbits from an aerosolized inhalation spore challenge. Immune responses after two or three injections of...

  2. Vaccine Protection against Bacillus cereus-Mediated Respiratory Anthrax-Like Disease in Mice

    OpenAIRE

    Oh, So-Young; Maier, Hannah; Schroeder, Jay; Richter, G. Stefan; Elli, Derek; Musser, James M.; Quenee, Lauriane E.; Missiakas, Dominique M.; Schneewind, Olaf

    2013-01-01

    Bacillus cereus strains harboring a pXO1-like virulence plasmid cause respiratory anthrax-like disease in humans, particularly in welders. We developed mouse models for intraperitoneal as well as aerosol challenge with spores of B. cereus G9241, harboring pBCXO1 and pBC218 virulence plasmids. Compared to wild-type B. cereus G9241, spores with a deletion of the pBCXO1-carried protective antigen gene (pagA1) were severely attenuated, whereas spores with a deletion of the pBC218-carried protecti...

  3. Production and purification of Bacillus anthracis protective antigen

    OpenAIRE

    2005-01-01

    Protective antigen (PA) plays crucial roles in the pathogenicity and virulence of Bacillus anthracis. Animals or human immunised with the protein acquire a complete protection against the disease. In addition to vaccine, PA can also be developed into a sensitive diagnostic test for anthrax. The purpose of this study was to produce PA using a culture medium easily obtained, and to develop a simple and effective technique for purification of the protein. To produce PA, B. anthracis Sterne 34F2 ...

  4. Effect of Anthrax Immune Globulin on Response to BioThrax (Anthrax Vaccine Adsorbed) in New Zealand White Rabbits

    OpenAIRE

    Malkevich, Nina V.; Basu, Subhendu; Rudge, Thomas L.; Clement, Kristin H.; Chakrabarti, Ajoy C.; Aimes, Ronald T.; Nabors, Gary S.; Skiadopoulos, Mario H.; Ionin, Boris

    2013-01-01

    Development of anthrax countermeasures that may be used concomitantly in a postexposure setting requires an understanding of the interaction between these products. Anthrax immune globulin intravenous (AIGIV) is a candidate immunotherapeutic that contains neutralizing antibodies against protective antigen (PA), a component of anthrax toxins. We evaluated the interaction between AIGIV and BioThrax (anthrax vaccine adsorbed) in rabbits. While pharmacokinetics of AIGIV were not altered by vaccin...

  5. A Comparison of the Adaptive Immune Response between Recovered Anthrax Patients and Individuals Receiving Three Different Anthrax Vaccines

    OpenAIRE

    Thomas R. Laws; Tinatin Kuchuloria; Nazibriola Chitadze; Little, Stephen F.; Webster, Wendy M.; Debes, Amanda K; Salome Saginadze; Nikoloz Tsertsvadze; Mariam Chubinidze; Robert G Rivard; Shota Tsanava; Dyson, Edward H.; Andrew J H Simpson; Hepburn, Matthew J; Nino Trapaidze

    2016-01-01

    Several different human vaccines are available to protect against anthrax. We compared the human adaptive immune responses generated by three different anthrax vaccines or by previous exposure to cutaneous anthrax. Adaptive immunity was measured by ELISPOT to count cells that produce interferon (IFN)-γ in response to restimulation ex vivo with the anthrax toxin components PA, LF and EF and by measuring circulating IgG specific to these antigens. Neutralising activity of antisera against anthr...

  6. Short-course postexposure antibiotic prophylaxis combined with vaccination protects against experimental inhalational anthrax

    OpenAIRE

    Vietri, Nicholas J.; Purcell, Bret K; Lawler, James V; Leffel, Elizabeth K.; Rico, Pedro; Gamble, Christopher S.; Twenhafel, Nancy A; Ivins, Bruce E.; Heine, Henry S.; Sheeler, Ryan; Wright, Mary E.; Friedlander, Arthur M.

    2006-01-01

    Prevention of inhalational anthrax after Bacillus anthracis spore exposure requires a prolonged course of antibiotic prophylaxis. In response to the 2001 anthrax attack in the United States, ≈10,000 people were offered 60 days of antibiotic prophylaxis to prevent inhalational anthrax, but adherence to this regimen was poor. We sought to determine whether a short course of antibiotic prophylaxis after exposure could protect non-human primates from a high-dose spore challenge if vaccination was...

  7. Immunoassay for Capsular Antigen of Bacillus anthracis Enables Rapid Diagnosis in a Rabbit Model of Inhalational Anthrax

    OpenAIRE

    Marcellene A Gates-Hollingsworth; Perry, Mark R.; Chen, Hongjing; Needham, James; Houghton, Raymond L.; Raychaudhuri, Syamal; Mark A Hubbard; Thomas R Kozel

    2015-01-01

    Inhalational anthrax is a serious biothreat. Effective antibiotic treatment of inhalational anthrax requires early diagnosis; the further the disease has progressed, the less the likelihood for cure. Current means for diagnosis such as blood culture require several days to a result and require advanced laboratory infrastructure. An alternative approach to diagnosis is detection of a Bacillus anthracis antigen that is shed into blood and can be detected by rapid immunoassay. The goal of the st...

  8. Neutralizing Antibodies and Persistence of Immunity following Anthrax Vaccination

    OpenAIRE

    Hanson, James F.; Taft, Sarah C.; Weiss, Alison A.

    2006-01-01

    Anthrax toxin consists of protective antigen (PA) and two toxic components, lethal factor (LF) and edema factor (EF). PA binds to mammalian cellular receptors and delivers the toxic components to the cytoplasm. PA is the primary antigenic component of the current anthrax vaccine. Immunity is due to the generation of antibodies that prevent the PA-mediated internalization of LF and EF. In this study, we characterized sera obtained from vaccinated military personnel. Anthrax vaccine is administ...

  9. Immunologic Response of Unvaccinated Workers Exposed to Anthrax, Belgium

    OpenAIRE

    Wattiau, Pierre; Govaerts, Marc; Frangoulidis, Dimitrios; Fretin, David; Kissling, Esther; Van Hessche, Mieke; China, Bernard; Poncin, Martine; Pirenne, Yvo; Hanquet, Germaine

    2009-01-01

    To determine immunologic reactivity to Bacillus anthrax antigens, we conducted serologic testing of workers in a factory that performed scouring of wool and goat hair. Of 66 workers, ≈10% had circulating antibodies or T lymphocytes that reacted with anthrax protective antigen. Individual immunity varied from undetectable to high.

  10. Enhanced Immune Response to DNA Vaccine Encoding Bacillus anthracis PA-D4 Protects Mice against Anthrax Spore Challenge.

    Directory of Open Access Journals (Sweden)

    Na Young Kim

    Full Text Available Anthrax has long been considered the most probable bioweapon-induced disease. The protective antigen (PA of Bacillus anthracis plays a crucial role in the pathogenesis of anthrax. In the current study, we evaluated the efficiency of a genetic vaccination with the fourth domain (D4 of PA, which is responsible for initial binding of the anthrax toxin to the cellular receptor. The eukaryotic expression vector was designed with the immunoglobulin M (IgM signal sequence encoding for PA-D4, which contains codon-optimized genes. The expression and secretion of recombinant protein was confirmed in vitro in 293T cells transfected with plasmid and detected by western blotting, confocal microscopy, and enzyme-linked immunosorbent assay (ELISA. The results revealed that PA-D4 protein can be efficiently expressed and secreted at high levels into the culture medium. When plasmid DNA was given intramuscularly to mice, a significant PA-D4-specific antibody response was induced. Importantly, high titers of antibodies were maintained for nearly 1 year. Furthermore, incorporation of the SV40 enhancer in the plasmid DNA resulted in approximately a 15-fold increase in serum antibody levels in comparison with the plasmid without enhancer. The antibodies produced were predominantly the immunoglobulin G2 (IgG2 type, indicating the predominance of the Th1 response. In addition, splenocytes collected from immunized mice produced PA-D4-specific interferon gamma (IFN-γ. The biodistribution study showed that plasmid DNA was detected in most organs and it rapidly cleared from the injection site. Finally, DNA vaccination with electroporation induced a significant increase in immunogenicity and successfully protected the mice against anthrax spore challenge. Our approach to enhancing the immune response contributes to the development of DNA vaccines against anthrax and other biothreats.

  11. Enhanced Immune Response to DNA Vaccine Encoding Bacillus anthracis PA-D4 Protects Mice against Anthrax Spore Challenge.

    Science.gov (United States)

    Kim, Na Young; Chang, Dong Suk; Kim, Yeonsu; Kim, Chang Hwan; Hur, Gyeung Haeng; Yang, Jai Myung; Shin, Sungho

    2015-01-01

    Anthrax has long been considered the most probable bioweapon-induced disease. The protective antigen (PA) of Bacillus anthracis plays a crucial role in the pathogenesis of anthrax. In the current study, we evaluated the efficiency of a genetic vaccination with the fourth domain (D4) of PA, which is responsible for initial binding of the anthrax toxin to the cellular receptor. The eukaryotic expression vector was designed with the immunoglobulin M (IgM) signal sequence encoding for PA-D4, which contains codon-optimized genes. The expression and secretion of recombinant protein was confirmed in vitro in 293T cells transfected with plasmid and detected by western blotting, confocal microscopy, and enzyme-linked immunosorbent assay (ELISA). The results revealed that PA-D4 protein can be efficiently expressed and secreted at high levels into the culture medium. When plasmid DNA was given intramuscularly to mice, a significant PA-D4-specific antibody response was induced. Importantly, high titers of antibodies were maintained for nearly 1 year. Furthermore, incorporation of the SV40 enhancer in the plasmid DNA resulted in approximately a 15-fold increase in serum antibody levels in comparison with the plasmid without enhancer. The antibodies produced were predominantly the immunoglobulin G2 (IgG2) type, indicating the predominance of the Th1 response. In addition, splenocytes collected from immunized mice produced PA-D4-specific interferon gamma (IFN-γ). The biodistribution study showed that plasmid DNA was detected in most organs and it rapidly cleared from the injection site. Finally, DNA vaccination with electroporation induced a significant increase in immunogenicity and successfully protected the mice against anthrax spore challenge. Our approach to enhancing the immune response contributes to the development of DNA vaccines against anthrax and other biothreats. PMID:26430894

  12. Monoclonal Antibody Therapies against Anthrax

    OpenAIRE

    Zhaochun Chen; Mahtab Moayeri; Robert Purcell

    2011-01-01

    Anthrax is a highly lethal infectious disease caused by the spore-forming bacterium Bacillus anthracis. It not only causes natural infection in humans but also poses a great threat as an emerging bioterror agent. The lethality of anthrax is primarily attributed to the two major virulence factors: toxins and capsule. An extensive effort has been made to generate therapeutically useful monoclonal antibodies to each of the virulence components: protective antigen (PA), lethal factor (LF) and ede...

  13. Anthrax Spores Make an Essential Contribution to Vaccine Efficacy

    OpenAIRE

    Brossier, Fabien; Levy, Martine; Mock, Michèle

    2002-01-01

    Anthrax is caused by Bacillus anthracis, a gram-positive spore-forming bacterium. Septicemia and toxemia rapidly lead to death in infected mammal hosts. Currently used acellular vaccines against anthrax consist of protective antigen (PA), one of the anthrax toxin components. However, in experimental animals such vaccines are less protective than live attenuated strains. Here we demonstrate that the addition of formaldehyde-inactivated spores (FIS) of B. anthracis to PA elicits total protectio...

  14. Scalable purification of Bacillus anthracis protective antigen from Escherichia coli.

    Science.gov (United States)

    Gwinn, William; Zhang, Mei; Mon, Sandii; Sampey, Darryl; Zukauskas, David; Kassebaum, Corby; Zmuda, Jonathan F; Tsai, Amos; Laird, Michael W

    2006-01-01

    The anthrax toxin consists of three proteins, protective antigen (PA), lethal factor, and edema factor that are produced by the Gram-positive bacterium, Bacillus anthracis. Current vaccines against anthrax use PA as their primary component. In this study, we developed a scalable process to produce and purify multi-gram quantities of highly pure, recombinant PA (rPA) from Escherichia coli. The rPA protein was produced in a 50-L fermentor and purified to >99% purity using anion-exchange, hydrophobic interaction, and hydroxyapatite chromatography. The final yield of purified rPA from medium cell density fermentations resulted in approximately 2.7 g of rPA per kg of cell paste (approximately 270 mg/L) of highly pure, biologically active rPA protein. The results presented here exhibit the ability to generate multi-gram quantities of rPA from E. coli that may be used for the development of new anthrax vaccines and anthrax therapeutics. PMID:15935696

  15. Anthrax vaccine design: strategies to achieve comprehensive protection against spore, bacillus, and toxin

    OpenAIRE

    Roehrl, Michael H.; Wang, Jun-Xia

    2005-01-01

    The successful use of Bacillus anthracis as a lethal biological weapon has prompted renewed research interest in the development of more effective vaccines against anthrax. The disease consists of three critical components: spore, bacillus, and toxin, elimination of any of which confers at least partial protection against anthrax. Current remedies rely on postexposure antibiotics to eliminate bacilli and pre- and postexposure vaccination to target primarily toxins. Vaccines effective against ...

  16. Protection against Anthrax by Needle-Free Mucosal Immunization with Human Anthrax Vaccine

    OpenAIRE

    Zeng, Mingtao; Xu, Qingfu; Pichichero, Michael E.

    2007-01-01

    Human vaccination with BioThrax™ requires six injections followed by annual boosters. This makes it difficult for the compliance of the immunization program and underscores the need for development of a new and optimized vaccination protocol. Current research aims to demonstrate the proof of concept to develop a needle free mucosal immunization protocol using a murine anthrax model. A/J mice were immunized with BioThrax™ via an intranasal route. Sera, saliva, vaginal, and nasal washes were ev...

  17. Raxibacumab: potential role in the treatment of inhalational anthrax

    Directory of Open Access Journals (Sweden)

    Kummerfeldt CE

    2014-04-01

    Full Text Available Carlos E KummerfeldtDivision of Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, SC, USAAbstract: Anthrax is a highly contagious and potentially fatal human disease caused by Bacillus anthracis, an aerobic, Gram-positive, spore-forming rod-shaped bacterium with worldwide distribution as a zoonotic infection in herbivore animals. Bioterrorist attacks with inhalational anthrax have prompted the development of more effective treatments. Antibodies against anthrax toxin have been shown to decrease mortality in animal studies. Raxibacumab is a recombinant human monoclonal antibody developed against inhalational anthrax. The drug received approval after human studies showed its safety and animal studies demonstrated its efficacy for treatment as well as prophylaxis against inhalational anthrax. It works by preventing binding of the protective antigen component of the anthrax toxin to its receptors in host cells, thereby blocking the toxin's deleterious effects. Recently updated therapy guidelines for Bacillus anthracis recommend the use of antitoxin treatment. Raxibacumab is the first monoclonal antitoxin antibody made available that can be used with the antibiotics recommended for treatment of the disease. When exposure is suspected, raxibacumab should be given with anthrax vaccination to augment immunity. Raxibacumab provides additional protection against inhalational anthrax via a mechanism different from that of either antibiotics or active immunization. In combination with currently available and recommended therapies, raxibacumab should reduce the morbidity and mortality of inhalational anthrax.Keywords: anthrax, monoclonal antibody, protective antigen, raxibacumab

  18. A heterodimer of a VHH (variable domains of camelid heavy chain-only) antibody that inhibits anthrax toxin cell binding linked to a VHH antibody that blocks oligomer formation is highly protective in an anthrax spore challenge model.

    Science.gov (United States)

    Moayeri, Mahtab; Leysath, Clinton E; Tremblay, Jacqueline M; Vrentas, Catherine; Crown, Devorah; Leppla, Stephen H; Shoemaker, Charles B

    2015-03-01

    Anthrax disease is caused by a toxin consisting of protective antigen (PA), lethal factor, and edema factor. Antibodies against PA have been shown to be protective against the disease. Variable domains of camelid heavy chain-only antibodies (VHHs) with affinity for PA were obtained from immunized alpacas and screened for anthrax neutralizing activity in macrophage toxicity assays. Two classes of neutralizing VHHs were identified recognizing distinct, non-overlapping epitopes. One class recognizes domain 4 of PA at a well characterized neutralizing site through which PA binds to its cellular receptor. A second neutralizing VHH (JKH-C7) recognizes a novel epitope. This antibody inhibits conversion of the PA oligomer from "pre-pore" to its SDS and heat-resistant "pore" conformation while not preventing cleavage of full-length 83-kDa PA (PA83) by cell surface proteases to its oligomer-competent 63-kDa form (PA63). The antibody prevents endocytosis of the cell surface-generated PA63 subunit but not preformed PA63 oligomers formed in solution. JKH-C7 and the receptor-blocking VHH class (JIK-B8) were expressed as a heterodimeric VHH-based neutralizing agent (VNA2-PA). This VNA displayed improved neutralizing potency in cell assays and protected mice from anthrax toxin challenge with much better efficacy than the separate component VHHs. The VNA protected virtually all mice when separately administered at a 1:1 ratio to toxin and protected mice against Bacillus anthracis spore infection. Thus, our studies show the potential of VNAs as anthrax therapeutics. Due to their simple and stable nature, VNAs should be amenable to genetic delivery or administration via respiratory routes. PMID:25564615

  19. A single-dose PLGA encapsulated protective antigen domain 4 nanoformulation protects mice against Bacillus anthracis spore challenge.

    Directory of Open Access Journals (Sweden)

    Manish Manish

    Full Text Available Bacillus anthracis, the etiological agent of anthrax, is a major bioterror agent. Vaccination is the most effective prophylactic measure available against anthrax. Currently available anthrax vaccines have issues of the multiple booster dose requirement, adjuvant-associated side effects and stability. Use of biocompatible and biodegradable nanoparticles to deliver the antigens to immune cells could solve the issues associated with anthrax vaccines. We hypothesized that the delivery of a stable immunogenic domain 4 of protective antigen (PAD4 of Bacillus anthracis encapsulated in a poly (lactide-co-glycolide (PLGA--an FDA approved biocompatible and biodegradable material, may alleviate the problems of booster dose, adjuvant toxicity and stability associated with anthrax vaccines. We made a PLGA based protective antigen domain 4 nanoparticle (PAD4-NP formulation using water/oil/water solvent evaporation method. Nanoparticles were characterized for antigen content, morphology, size, polydispersity and zeta potential. The immune correlates and protective efficacy of the nanoparticle formulation was evaluated in Swiss Webster outbred mice. Mice were immunized with single dose of PAD4-NP or recombinant PAD4. The PAD4-NP elicited a robust IgG response with mixed IgG1 and IgG2a subtypes, whereas the control PAD4 immunized mice elicited low IgG response with predominant IgG1 subtype. The PAD4-NP generated mixed Th1/Th2 response, whereas PAD4 elicited predominantly Th2 response. When we compared the efficacy of this single-dose vaccine nanoformulation PAD4-NP with that of the recombinant PAD4 in providing protective immunity against a lethal challenge with Bacillus anthracis spores, the median survival of PAD4-NP immunized mice was 6 days as compared to 1 day for PAD4 immunized mice (p<0.001. Thus, we demonstrate, for the first time, the possibility of the development of a single-dose and adjuvant-free protective antigen based anthrax vaccine in the form

  20. Production and purification of Bacillus anthracis protective antigen from Escherichia coli.

    Science.gov (United States)

    Laird, Michael W; Zukauskas, David; Johnson, Kelly; Sampey, Gavin C; Olsen, Henrik; Garcia, Andy; Karwoski, Jeffrey D; Cooksey, Bridget A; Choi, Gil H; Askins, Janine; Tsai, Amos; Pierre, Jennifer; Gwinn, William

    2004-11-01

    Anthrax is caused by the gram-positive, spore-forming bacterium, Bacillus anthracis. The anthrax toxin consists of three proteins, protective antigen (PA), lethal factor, and edema factor. Current vaccines against anthrax use PA as their primary component since it confers protective immunity. In this work, we expressed soluble, recombinant PA in relatively high amounts in the periplasm of E. coli from shake flasks and bioreactors. The PA protein was purified using Q-Sepharose-HP and hydroxyapatite chromatography, and routinely found to be 96-98% pure. Yields of purified PA varied depending on the method of production; however, medium cell density fermentations resulted in approximately 370 mg/L of highly pure biologically active PA protein. These results exhibit the ability to generate gram quantities of PA from E. coli. PMID:15477093

  1. Bridging non-human primate correlates of protection to reassess the Anthrax Vaccine Adsorbed booster schedule in humans.

    Science.gov (United States)

    Schiffer, Jarad M; Chen, Ligong; Dalton, Shannon; Niemuth, Nancy A; Sabourin, Carol L; Quinn, Conrad P

    2015-07-17

    Anthrax Vaccine Adsorbed (AVA, BioThrax) is approved for use in humans as a priming series of 3 intramuscular (i.m.) injections (0, 1, 6 months; 3-IM) with boosters at 12 and 18 months, and annually thereafter for those at continued risk of infection. A reduction in AVA booster frequency would lessen the burden of vaccination, reduce the cumulative frequency of vaccine associated adverse events and potentially expand vaccine coverage by requiring fewer doses per schedule. Because human inhalation anthrax studies are neither feasible nor ethical, AVA efficacy estimates are determined using cross-species bridging of immune correlates of protection (COP) identified in animal models. We have previously reported that the AVA 3-IM priming series provided high levels of protection in non-human primates (NHP) against inhalation anthrax for up to 4 years after the first vaccination. Penalized logistic regressions of those NHP immunological data identified that anti-protective antigen (anti-PA) IgG concentration measured just prior to infectious challenge was the most accurate single COP. In the present analysis, cross-species logistic regression models of this COP were used to predict probability of survival during a 43 month study in humans receiving the current 3-dose priming and 4 boosters (12, 18, 30 and 42 months; 7-IM) and reduced schedules with boosters at months 18 and 42 only (5-IM), or at month 42 only (4-IM). All models predicted high survival probabilities for the reduced schedules from 7 to 43 months. The predicted survival probabilities for the reduced schedules were 86.8% (4-IM) and 95.8% (5-IM) at month 42 when antibody levels were lowest. The data indicated that 4-IM and 5-IM are both viable alternatives to the current AVA pre-exposure prophylaxis schedule. PMID:26072016

  2. Antibody Responses to a Spore Carbohydrate Antigen as a Marker of Nonfatal Inhalation Anthrax in Rhesus Macaques ▿

    OpenAIRE

    Saile, Elke; Boons, Geert-Jan; Buskas, Therese; Carlson, Russell W.; Kannenberg, Elmar L; Barr, John R.; Boyer, Anne E.; Gallegos-Candela, Maribel; Quinn, Conrad P.

    2011-01-01

    The Bacillus anthracis exosporium protein BclA contains an O-linked antigenic tetrasaccharide whose terminal sugar is known as anthrose (J. M. Daubenspeck et al., J. Biol. Chem. 279:30945–30953, 2004). We hypothesized that serologic responses to anthrose may have diagnostic value in confirming exposure to aerosolized B. anthracis. We evaluated the serologic responses to a synthetic anthrose-containing trisaccharide (ATS) in a group of five rhesus macaques that survived inhalation anthrax foll...

  3. A Comparison of the Adaptive Immune Response between Recovered Anthrax Patients and Individuals Receiving Three Different Anthrax Vaccines.

    Science.gov (United States)

    Laws, Thomas R; Kuchuloria, Tinatin; Chitadze, Nazibriola; Little, Stephen F; Webster, Wendy M; Debes, Amanda K; Saginadze, Salome; Tsertsvadze, Nikoloz; Chubinidze, Mariam; Rivard, Robert G; Tsanava, Shota; Dyson, Edward H; Simpson, Andrew J H; Hepburn, Matthew J; Trapaidze, Nino

    2016-01-01

    Several different human vaccines are available to protect against anthrax. We compared the human adaptive immune responses generated by three different anthrax vaccines or by previous exposure to cutaneous anthrax. Adaptive immunity was measured by ELISPOT to count cells that produce interferon (IFN)-γ in response to restimulation ex vivo with the anthrax toxin components PA, LF and EF and by measuring circulating IgG specific to these antigens. Neutralising activity of antisera against anthrax toxin was also assayed. We found that the different exposures to anthrax antigens promoted varying immune responses. Cutaneous anthrax promoted strong IFN-γ responses to all three antigens and antibody responses to PA and LF. The American AVA and Russian LAAV vaccines induced antibody responses to PA only. The British AVP vaccine produced IFN-γ responses to EF and antibody responses to all three antigens. Anti-PA (in AVA and LAAV vaccinees) or anti-LF (in AVP vaccinees) antibody titres correlated with toxin neutralisation activities. Our study is the first to compare all three vaccines in humans and show the diversity of responses against anthrax antigens. PMID:27007118

  4. A Comparison of the Adaptive Immune Response between Recovered Anthrax Patients and Individuals Receiving Three Different Anthrax Vaccines.

    Directory of Open Access Journals (Sweden)

    Thomas R Laws

    Full Text Available Several different human vaccines are available to protect against anthrax. We compared the human adaptive immune responses generated by three different anthrax vaccines or by previous exposure to cutaneous anthrax. Adaptive immunity was measured by ELISPOT to count cells that produce interferon (IFN-γ in response to restimulation ex vivo with the anthrax toxin components PA, LF and EF and by measuring circulating IgG specific to these antigens. Neutralising activity of antisera against anthrax toxin was also assayed. We found that the different exposures to anthrax antigens promoted varying immune responses. Cutaneous anthrax promoted strong IFN-γ responses to all three antigens and antibody responses to PA and LF. The American AVA and Russian LAAV vaccines induced antibody responses to PA only. The British AVP vaccine produced IFN-γ responses to EF and antibody responses to all three antigens. Anti-PA (in AVA and LAAV vaccinees or anti-LF (in AVP vaccinees antibody titres correlated with toxin neutralisation activities. Our study is the first to compare all three vaccines in humans and show the diversity of responses against anthrax antigens.

  5. A Comparison of the Adaptive Immune Response between Recovered Anthrax Patients and Individuals Receiving Three Different Anthrax Vaccines

    Science.gov (United States)

    Laws, Thomas R.; Kuchuloria, Tinatin; Chitadze, Nazibriola; Little, Stephen F.; Webster, Wendy M.; Debes, Amanda K.; Saginadze, Salome; Tsertsvadze, Nikoloz; Chubinidze, Mariam; Rivard, Robert G.; Tsanava, Shota; Dyson, Edward H.; Simpson, Andrew J. H.; Hepburn, Matthew J.; Trapaidze, Nino

    2016-01-01

    Several different human vaccines are available to protect against anthrax. We compared the human adaptive immune responses generated by three different anthrax vaccines or by previous exposure to cutaneous anthrax. Adaptive immunity was measured by ELISPOT to count cells that produce interferon (IFN)-γ in response to restimulation ex vivo with the anthrax toxin components PA, LF and EF and by measuring circulating IgG specific to these antigens. Neutralising activity of antisera against anthrax toxin was also assayed. We found that the different exposures to anthrax antigens promoted varying immune responses. Cutaneous anthrax promoted strong IFN-γ responses to all three antigens and antibody responses to PA and LF. The American AVA and Russian LAAV vaccines induced antibody responses to PA only. The British AVP vaccine produced IFN-γ responses to EF and antibody responses to all three antigens. Anti-PA (in AVA and LAAV vaccinees) or anti-LF (in AVP vaccinees) antibody titres correlated with toxin neutralisation activities. Our study is the first to compare all three vaccines in humans and show the diversity of responses against anthrax antigens. PMID:27007118

  6. Immunoassay for Capsular Antigen of Bacillus anthracis Enables Rapid Diagnosis in a Rabbit Model of Inhalational Anthrax.

    Directory of Open Access Journals (Sweden)

    Marcellene A Gates-Hollingsworth

    Full Text Available Inhalational anthrax is a serious biothreat. Effective antibiotic treatment of inhalational anthrax requires early diagnosis; the further the disease has progressed, the less the likelihood for cure. Current means for diagnosis such as blood culture require several days to a result and require advanced laboratory infrastructure. An alternative approach to diagnosis is detection of a Bacillus anthracis antigen that is shed into blood and can be detected by rapid immunoassay. The goal of the study was to evaluate detection of poly-γ-D-glutamic acid (PGA, the capsular antigen of B. anthracis, as a biomarker surrogate for blood culture in a rabbit model of inhalational anthrax. The mean time to a positive blood culture was 26 ± 5.7 h (mean ± standard deviation, whereas the mean time to a positive ELISA was 22 ± 4.2 h; P = 0.005 in comparison with blood culture. A lateral flow immunoassay was constructed for detection of PGA in plasma at concentrations of less than 1 ng PGA/ml. Use of the lateral flow immunoassay for detection of PGA in the rabbit model found that antigen was detected somewhat earlier than the earliest time point at which the blood culture became positive. The low cost, ease of use, and rapid time to result of the lateral flow immunoassay format make an immunoassay for PGA a viable surrogate for blood culture for detection of infection in individuals who have a likelihood of exposure to B. anthracis.

  7. Immunoassay for Capsular Antigen of Bacillus anthracis Enables Rapid Diagnosis in a Rabbit Model of Inhalational Anthrax.

    Science.gov (United States)

    Gates-Hollingsworth, Marcellene A; Perry, Mark R; Chen, Hongjing; Needham, James; Houghton, Raymond L; Raychaudhuri, Syamal; Hubbard, Mark A; Kozel, Thomas R

    2015-01-01

    Inhalational anthrax is a serious biothreat. Effective antibiotic treatment of inhalational anthrax requires early diagnosis; the further the disease has progressed, the less the likelihood for cure. Current means for diagnosis such as blood culture require several days to a result and require advanced laboratory infrastructure. An alternative approach to diagnosis is detection of a Bacillus anthracis antigen that is shed into blood and can be detected by rapid immunoassay. The goal of the study was to evaluate detection of poly-γ-D-glutamic acid (PGA), the capsular antigen of B. anthracis, as a biomarker surrogate for blood culture in a rabbit model of inhalational anthrax. The mean time to a positive blood culture was 26 ± 5.7 h (mean ± standard deviation), whereas the mean time to a positive ELISA was 22 ± 4.2 h; P = 0.005 in comparison with blood culture. A lateral flow immunoassay was constructed for detection of PGA in plasma at concentrations of less than 1 ng PGA/ml. Use of the lateral flow immunoassay for detection of PGA in the rabbit model found that antigen was detected somewhat earlier than the earliest time point at which the blood culture became positive. The low cost, ease of use, and rapid time to result of the lateral flow immunoassay format make an immunoassay for PGA a viable surrogate for blood culture for detection of infection in individuals who have a likelihood of exposure to B. anthracis. PMID:25942409

  8. A single immunization with a dry powder anthrax vaccine protects rabbits against lethal aerosol challenge

    OpenAIRE

    Klas, S.D.; Petrie, C.R.; Warwood, S.J.; Williams, M S; Olds, C.L.; Stenz, J.P.; Cheff, A.M.; Hinchcliffe, M.; Richardson, C.; Wimer, S.

    2008-01-01

    Here we confirm that intranasal (IN) dry powder anthrax vaccine formulations are able to protect rabbits against aerosol challenge 9 weeks after a single immunization. The optimum dose of rPA in our dry powder anthrax vaccine formulation in rabbits was experimentally determined to be 150 μg and therefore was chosen as the target dose for all subsequent experiments. Rabbits received a single dose of either 150 μg rPA, 150 μg rPA + 150 μg of a conjugated 10-mer peptide representing the B. anthr...

  9. Anthrax - past, present and future

    Directory of Open Access Journals (Sweden)

    Madle-Samardžija Nadežda D.

    2002-01-01

    Full Text Available History Anthrax has been known since ancient times. Besides some references in the Old Testament, there is evidence of plagues in ancient Egypt, as well as descriptions of the disease by the Roman poet Virgil. Etiology Anthrax is caused by Bacillus anthracis, unmovable, aerobic, gram-positive rods. It forms spores, which can survive for years in the environment. Pathogenesis Capsular polypeptide and anthrax toxin are the principal virulence factors of Bacillus anthracis. Anthrax toxin consists of three proteins called protective antigen, edema factor, and lethal factor. It is thought that the inflammatory mediator - lethal factor is stored within the macrophage during the early stage of infection. It is rapidly released in large amounts into the blood stream and once the threshold for lysis is reached, it may be the cause of sudden death. Epidemiology Grass-eating animals are usually infected by the bacilli from grass and ground. The disease is transmitted to people by contact with the sick animals or their products, such as wool skin, meat etc. Clinical features Two clinical forms exist: outer cutaneous and inner, including inhalation and gastrointestinal anthrax. While cutaneous anthrax is easily cured, the inner forms have high mortality rates. Diagnosis and differential diagnosis The diagnosis is easily established in cutaneous cases, characterized by black eschar. Severe intoxication and collapse during the course of bronchopneumonia or hemorrhagic enteritis should arise suspicion of anthrax. Therapy Hospitalization of patients is mandatory. Bacillus anthracis is susceptible to a number of antibiotics, including penicillin, erythromycin tetracyclines, cephalosporins etc. Prevention General veterinary prevention including vaccination of livestock and control of products is very important. The vaccine consists of anthrax bacillus that is attenuated. The endangered population, such as animal workers and military personnel should be vaccinated

  10. Soluble Expression and Characterization of Biologically Active Bacillus anthracis Protective Antigen in Escherichia coli

    OpenAIRE

    Nagendra Suryanarayana; Vanlalhmuaka,; Bharti Mankere; Monika Verma; Kulanthaivel Thavachelvam; Urmil Tuteja

    2016-01-01

    Bacillus anthracis secretory protein protective antigen (PA) is primary candidate for subunit vaccine against anthrax. Attempts to obtain large quantity of PA from Escherichia coli expression system often result in the formation of insoluble inclusion bodies. Therefore, it is always better to produce recombinant proteins in a soluble form. In the present study, we have obtained biologically active recombinant PA in small scale E. coli shake culture system using three different expression cons...

  11. Non-canonical effects of anthrax toxins on hematopoiesis: implications for vaccine development

    OpenAIRE

    Liu, Katherine; Wong, Elaine W.; Schutzer, Steven E.; Connell, Nancy D.; Upadhyay, Alok; Bryan, Margarette; Rameshwar, Pranela

    2008-01-01

    Anthrax receptor (ATR) shares similarities with molecules relevant to hematopoiesis. This suggests that anthrax proteins might bind to these mimicking molecules and exert nonspecific hematopoietic effects. The hematopoietic system is the site of immune cell development in the adult. As such, ATR ligand, protective antigen (PA) and the other anthrax proteins, lethal factor (LF), edema factor (EF), could be significant to hematopoietic responses against Bacillus anthracis infection. Since hemat...

  12. Recombinant HSA-CMG2 Is a Promising Anthrax Toxin Inhibitor

    OpenAIRE

    Liangliang Li; Qiang Guo; Ju Liu; Jun Zhang; Ying Yin; Dayong Dong; Ling Fu; Junjie Xu; Wei Chen

    2016-01-01

    Anthrax toxin is the major virulence factor produced by Bacillus anthracis. Protective antigen (PA) is the key component of the toxin and has been confirmed as the main target for the development of toxin inhibitors. The inhibition of the binding of PA to its receptor, capillary morphogenesis protein-2 (CMG2), can effectively block anthrax intoxication. The recombinant, soluble von Willebrand factor type A (vWA) domain of CMG2 (sCMG2) has demonstrated potency against anthrax toxin. However, t...

  13. The Control of Anthrax Disease: Diagnosis, Vaccination and Investigation

    Directory of Open Access Journals (Sweden)

    Rahmat Setya Adji

    2006-12-01

    Full Text Available Anthrax is a bacterial disease caused by Bacillus anthracis attacking both animal and human (zoonosis . The disease is normally associated with domestic livestock such as sheep, goats, and cattle, but humans are also infected due to exposure or comsuming infected animals . The control of anthrax in humans and animals involves developing a diagnostic method for B. anthracis detection and confirmation of anthrax, prevention by vaccines, and disease investigation . Rapid and more accurate diagnosis techniques for anthrax should be developed for improving the conventional method used in Indonesia . Vaccines are effective against anthrax . Current anthrax vaccine used in Indonesia is spores vaccine produced from a non-encapsulated, toxigenic. Sterne strain 34F2 of B. anthracis . The use of this vaccine occasionally causes local pain, necroses at the inoculation site, subcutaneous oedema and occasionally death of the animal . Several vaccines have been developed recently such as sub unit vaccine, anthrax vaccine absorbed (AVA, that contains a protective antigen (PA component of the anthrax toxin as the major protective immunogen and is usually used in humans. In endemic areas of anthrax, outbreaks still routinely occur almost yearly . Monitoring of the epidemiological patterns of the disease has to be carried out by field investigation .

  14. A plant-produced protective antigen vaccine confers protection in rabbits against a lethal aerosolized challenge with Bacillus anthracis Ames spores

    OpenAIRE

    Chichester, Jessica A.; Manceva, Slobodanka D; Rhee, Amy; Coffin, Megan V.; Musiychuk, Konstantin; Mett, Vadim; Shamloul, Moneim; Norikane, Joey; Streatfield, Stephen J.; Yusibov, Vidadi

    2013-01-01

    The potential use of Bacillus anthracis as a bioterrorism weapon threatens the security of populations globally, requiring the immediate availability of safe, efficient and easily delivered anthrax vaccine for mass vaccination. Extensive research efforts have been directed toward the development of recombinant subunit vaccines based on protective antigen (PA), the principal virulence factor of B. anthracis. Among the emerging technologies for the production of these vaccine antigens is our la...

  15. Frequency and Domain Specificity of Toxin-Neutralizing Paratopes in the Human Antibody Response to Anthrax Vaccine Adsorbed▿

    OpenAIRE

    Reason, Donald; Liberato, Justine; Sun, Jinying; Keitel, Wendy; Zhou, Jianhui

    2009-01-01

    Protective antigen (PA) is the cell surface recognition unit of the binary anthrax toxin system and the primary immunogenic component in both the current and proposed “next-generation” anthrax vaccines. Several studies utilizing animal models have indicated that PA-specific antibodies, acquired by either active or passive immunization, are sufficient to protect against infection with Bacillus anthracis. To investigate the human antibody response to anthrax immunization, we have established a ...

  16. An efficient fusion protein system for expression ofBacillus anthracis protective antigen as immunogenic and diagnostic antigen

    Institute of Scientific and Technical Information of China (English)

    Vahid Bagheri; Hossein Motamedi; Masoud Reza Seifiabad Shapouri

    2010-01-01

    Objective:To produce high quantities of recombinant protective antigen (rPA) for human vaccine and diagnosis.Methods: ThePAgene was amplified byPCR with pXO1 plasmid as template. ThePCR product was cloned into pMAL-c2X vector using theBamHI andSalI restriction enzymes. The recombinant plasmid was transformed intoEscherichia coliDH5α strain and then screened for transformation. The expression of protective antigen was analyzed bySDS-PAGE and Western blotting after isopropyl β-D-thiogalactopyranoside(IPTG) induction.Results:The full-length PA gene (2.2kb) was cloned into pMAL vector system. The recombinant vector was confirmed by restriction enzyme andPCRanalysis. The expression of cytoplasmic maltose-binding protein-protective (MBP-P) antigen fusion protein was detected bySDS-PAGE and Western blotting, and obtained a125 kDa protein band, which was similar to expected size of fusion protein.Conclusions: This expression system can be used in the high production of rPA. After purification and immunization studies, the purified rPA may be used in the development of the human recombinant anthrax vaccine and also in diagnosis of anthrax disease.

  17. Preparation and Evaluation of Human-Murine Chimeric Antibody against Protective Antigen of Bacillus anthracis

    Directory of Open Access Journals (Sweden)

    Lina Hao

    2014-10-01

    Full Text Available The aim of this research is to develop a human/murine chimeric Fab antibody which neutralizes the anthrax toxin, protective antigen (PA. The chimeric Fab was constructed using variable regions of murine anti-PA monoclonal antibody in combination with constant regions of human IgG. The chimeric PA6-Fab was expressed in E. coli. BL21 and evaluated by ELISA and co-immunoprecipitation- mass spectra. The potency of PA6-Fab to neutralize LeTx was examined in J774A.1 cell viability in vitro and in Fisher 344 rats in vivo. The PA6-Fab did not have domain similarity corresponding to the current anti PA mAbs, but specifically bound to anthrax PA at an affinity of 1.76 nM, and was able to neutralize LeTx in vitro and protected 56.9% cells at 20 μg/mL against anthrax LeTx. One hundred μg PA6-Fab could neutralize 300 μg LeTx in vivo. The PA6-Fab has potential as a therapeutic mAb for treatment of anthrax.

  18. CpG Oligodeoxynucleotides Adsorbed onto Polylactide-Co-Glycolide Microparticles Improve the Immunogenicity and Protective Activity of the Licensed Anthrax Vaccine

    OpenAIRE

    Xie, Hang; Gursel, Ihsan; Ivins, Bruce E.; Singh, Manmohan; O'Hagan, Derek T.; Ulmer, Jeffrey B.; Klinman, Dennis M.

    2005-01-01

    To reduce the biothreat posed by anthrax, efforts are under way to improve the protection afforded by vaccination. This work examines the ability of immunostimulatory CpG oligodeoxynucleotides (ODN) adsorbed onto cationic polylactide-co-glycolide (PLG) microparticles (CpG ODN-PLG) to accelerate and boost the protective immunity elicited by Anthrax Vaccine Adsorbed (AVA, the licensed human anthrax vaccine). The results indicate that coadministering CpG ODN-PLG with AVA induces a stronger and f...

  19. Advances in alfalfa mosaic virus-mediated expression of anthrax antigen in planta

    International Nuclear Information System (INIS)

    Plant viruses show great potential for production of pharmaceuticals in plants. Such viruses can harbor a small antigenic peptide(s) as a part of their coat proteins (CP) and elicit an antigen-specific immune response. Here, we report the high yield and consistency in production of recombinant alfalfa mosaic virus (AlMV) particles for specific presentation of the small loop 15 amino acid epitope from domain-4 of the Bacillus anthracis protective antigen (PA-D4s). The epitope was inserted immediately after the first 25 N-terminal amino acids of AlMV CP to retain genome activation and binding of CP to viral RNAs. Recombinant AlMV particles were efficiently produced in tobacco, easily purified for immunological analysis, and exhibited extended stability and systemic proliferation in planta. Intraperitional injections of mice with recombinant plant virus particles harboring the PA-D4s epitope elicited a distinct immune response. Western blotting and ELISA analysis showed that sera from immunized mice recognized both native PA antigen and the AlMV CP

  20. Advances in alfalfa mosaic virus-mediated expression of anthrax antigen in planta.

    Science.gov (United States)

    Brodzik, R; Bandurska, K; Deka, D; Golovkin, M; Koprowski, H

    2005-12-16

    Plant viruses show great potential for production of pharmaceuticals in plants. Such viruses can harbor a small antigenic peptide(s) as a part of their coat proteins (CP) and elicit an antigen-specific immune response. Here, we report the high yield and consistency in production of recombinant alfalfa mosaic virus (AlMV) particles for specific presentation of the small loop 15 amino acid epitope from domain-4 of the Bacillus anthracis protective antigen (PA-D4s). The epitope was inserted immediately after the first 25 N-terminal amino acids of AlMV CP to retain genome activation and binding of CP to viral RNAs. Recombinant AlMV particles were efficiently produced in tobacco, easily purified for immunological analysis, and exhibited extended stability and systemic proliferation in planta. Intraperitional injections of mice with recombinant plant virus particles harboring the PA-D4s epitope elicited a distinct immune response. Western blotting and ELISA analysis showed that sera from immunized mice recognized both native PA antigen and the AlMV CP. PMID:16236249

  1. Detection of Anthrax Toxin in the Serum of Animals Infected with Bacillus anthracis by Using Engineered Immunoassays

    OpenAIRE

    Mabry, Robert; Brasky, Kathleen; Geiger, Robert; Carrion, Ricardo; Hubbard, Gene B; Leppla, Stephen; Patterson, Jean L.; Georgiou, George; Iverson, B L

    2006-01-01

    Several strategies that target anthrax toxin are being developed as therapies for infection by Bacillus anthracis. Although the action of the tripartite anthrax toxin has been extensively studied in vitro, relatively little is known about the presence of toxins during an infection in vivo. We developed a series of sensitive sandwich enzyme-linked immunosorbent assays (ELISAs) for detection of both the protective antigen (PA) and lethal factor (LF) components of the anthrax exotoxin in serum. ...

  2. Recent Developments in Anti-dotes Against Anthrax.

    Science.gov (United States)

    Dhasmana, Neha; Singh, Lalit K; Bhaduri, Asani; Misra, Richa; Singh, Yogendra

    2014-01-01

    The etiologic agent of disease anthrax, Bacillus anthracis, causes recurrent outbreaks among the livestock and intermittent infections in humans across the world. Controlling animal infections by vaccination can minimize the incidence of disease in humans. Prevention of anthrax in occupationally exposed personnel is achieved through vaccination with either live spores or precipitates of culture supernatants from attenuated strains of B. anthracis. However, anthrax vaccination of the large human population is impractical as well as inappropriate. Broad-range antibiotics like amoxicillin, ciprofloxacin, clindamycin, streptomycin, and penicillin G are recommended for the treatment of human anthrax infections, but the threat of antibiotic resistant strains always remains. Moreover, in the absence of any specific symptom (s) during early infection, the diagnosis of anthrax is delayed causing elevated levels of anthrax toxin component which could be fatal. For these reasons, there is a need to develop new antimicrobial agents against virulent B. anthracis to effectively combat this fatal pathogen. Over the last two decades, extensive studies have been carried out to develop specific inhibitors against virulence factors of B. anthracis such as capsule, protective antigen, lethal factor and edema factor. Research has also been focused in developing inhibitors of anthrax toxin receptors (including the use of receptor decoys) and host furin endoproteases which are required for activation of toxin. This review highlights the recent progress made in developing the diverse countermeasures for anthrax infections targeting B. anthracis virulence factors and their counterparts in host. PMID:25174439

  3. Anthrax vaccination strategies

    OpenAIRE

    Cybulski, Robert J.; Sanz, Patrick; O'Brien, Alison D.

    2009-01-01

    The biological attack conducted through the U.S. postal system in 2001 broadened the threat posed by anthrax from one pertinent mainly to soldiers on the battlefield to one understood to exist throughout our society. The expansion of the threatened population placed greater emphasis on the reexamination of how we vaccinate against Bacillus anthracis. The currently-licensed Anthrax Vaccine, Adsorbed (AVA) and Anthrax Vaccine, Precipitated (AVP) are capable of generating a protective immune res...

  4. Antibody responses to a spore carbohydrate antigen as a marker of nonfatal inhalation anthrax in rhesus macaques.

    Science.gov (United States)

    Saile, Elke; Boons, Geert-Jan; Buskas, Therese; Carlson, Russell W; Kannenberg, Elmar L; Barr, John R; Boyer, Anne E; Gallegos-Candela, Maribel; Quinn, Conrad P

    2011-05-01

    The Bacillus anthracis exosporium protein BclA contains an O-linked antigenic tetrasaccharide whose terminal sugar is known as anthrose (J. M. Daubenspeck et al., J. Biol. Chem. 279:30945-30953, 2004). We hypothesized that serologic responses to anthrose may have diagnostic value in confirming exposure to aerosolized B. anthracis. We evaluated the serologic responses to a synthetic anthrose-containing trisaccharide (ATS) in a group of five rhesus macaques that survived inhalation anthrax following exposure to B. anthracis Ames spores. Two of five animals (RM2 and RM3) were treated with ciprofloxacin starting at 48 hours postexposure and two (RM4 and RM5) at 72 h postexposure; one animal (RM1) was untreated. Infection was confirmed by blood culture and detection of anthrax toxin lethal factor (LF) in plasma. Anti-ATS IgG responses were determined at 14, 21, 28, and 35 days postexposure, with preexposure serum as a control. All animals, irrespective of ciprofloxacin treatment, mounted a specific, measurable anti-ATS IgG response. The earliest detectable responses were on days 14 (RM1, RM2, and RM5), 21 (RM4), and 28 (RM3). Specificity of the anti-ATS responses was demonstrated by competitive-inhibition enzyme immunoassay (CIEIA), in which a 2-fold (wt/wt) excess of carbohydrate in a bovine serum albumin (BSA) conjugate of the oligosaccharide (ATS-BSA) effected >94% inhibition, whereas a structural analog lacking the 3-hydroxy-3-methyl-butyryl moiety at the C-4" of the anthrosyl residue had no inhibition activity. These data suggest that anti-ATS antibody responses may be used to identify aerosol exposure to B. anthracis spores. The anti-ATS antibody responses were detectable during administration of ciprofloxacin. PMID:21389148

  5. Quantitative Determination of Lethal Toxin Proteins in Culture Supernatant of Human Live Anthrax Vaccine Bacillus anthracis A16R

    OpenAIRE

    Zai, Xiaodong; Zhang, Jun; Liu, Ju; Liu,Jie; Li, Liangliang; Yin, Ying; Fu, Ling; Xu, Junjie; Chen, Wei

    2016-01-01

    Bacillus anthracis (B. anthracis) is the etiological agent of anthrax affecting both humans and animals. Anthrax toxin (AT) plays a major role in pathogenesis. It includes lethal toxin (LT) and edema toxin (ET), which are formed by the combination of protective antigen (PA) and lethal factor (LF) or edema factor (EF), respectively. The currently used human anthrax vaccine in China utilizes live-attenuated B. anthracis spores (A16R; pXO1+, pXO2−) that produce anthrax toxin but cannot produce t...

  6. A Viral Nanoparticle with Dual Function as an Anthrax Antitoxin and Vaccine

    OpenAIRE

    Darly J Manayani; Diane Thomas; Dryden, Kelly A; Vijay Reddy; Marc E Siladi; Marlett, John M; Rainey, G. Jonah A.; Pique, Michael E.; Heather M Scobie; Mark Yeager; Young, John A. T.; Marianne Manchester; Anette Schneemann

    2007-01-01

    Author Summary Anthrax is caused by the spore-forming, Gram-positive bacterium Bacillus anthracis. The toxic effects of B. anthracis are predominantly due to an AB-type toxin made up of the receptor-binding subunit protective antigen (PA) and two enzymatic subunits called lethal factor and edema factor. Protective immunity to B. anthracis infection is conferred by antibodies against PA, which is the primary component of the current anthrax vaccine. Although the vaccine is safe and effective, ...

  7. Analysis of Defined Combinations of Monoclonal Antibodies in Anthrax Toxin Neutralization Assays and Their Synergistic Action

    OpenAIRE

    Ngundi, Miriam M.; Meade, Bruce D.; Little, Stephen F.; Quinn, Conrad P.; Corbett, Cindi R; Brady, Rebecca A.; Burns, Drusilla L.

    2012-01-01

    Antibodies against the protective antigen (PA) component of anthrax toxin play an important role in protection against disease caused by Bacillus anthracis. In this study, we examined defined combinations of PA-specific monoclonal antibodies for their ability to neutralize anthrax toxin in cell culture assays. We observed additive, synergistic, and antagonistic effects of the antibodies depending on the specific antibody combination examined and the specific assay used. Synergistic toxin-neut...

  8. Roles of Anthrax Toxin Receptor 2 in Anthrax Toxin Membrane Insertion and Pore Formation

    Directory of Open Access Journals (Sweden)

    Jianjun Sun

    2016-01-01

    Full Text Available Interaction between bacterial toxins and cellular surface receptors is an important component of the host-pathogen interaction. Anthrax toxin protective antigen (PA binds to the cell surface receptor, enters the cell through receptor-mediated endocytosis, and forms a pore on the endosomal membrane that translocates toxin enzymes into the cytosol of the host cell. As the major receptor for anthrax toxin in vivo, anthrax toxin receptor 2 (ANTXR2 plays an essential role in anthrax toxin action by providing the toxin with a high-affinity binding anchor on the cell membrane and a path of entry into the host cell. ANTXR2 also acts as a molecular clamp by shifting the pH threshold of PA pore formation to a more acidic pH range, which prevents premature pore formation at neutral pH before the toxin reaches the designated intracellular location. Most recent studies have suggested that the disulfide bond in the immunoglobulin (Ig-like domain of ANTXR2 plays an essential role in anthrax toxin action. Here we will review the roles of ANTXR2 in anthrax toxin action, with an emphasis on newly updated knowledge.

  9. Combining Anthrax Vaccine and Therapy: a Dominant-Negative Inhibitor of Anthrax Toxin Is Also a Potent and Safe Immunogen for Vaccines

    OpenAIRE

    Aulinger, Benedikt A.; Roehrl, Michael H.; Mekalanos, John J.; Collier, R. John; Wang, Julia Y.

    2005-01-01

    Anthrax is caused by the unimpeded growth of Bacillus anthracis in the host and the secretion of toxins. The currently available vaccine is based on protective antigen (PA), a central component of anthrax toxin. Vaccination with PA raises no direct immune response against the bacilli and, being a natural toxin component, PA might be hazardous when used immediately following exposure to B. anthracis. Thus, we have sought to develop a vaccine or therapeutic agent that is safe and eliminates bot...

  10. The Early Humoral Immune Response to Bacillus anthracis Toxins in Patients Infected with Cutaneous Anthrax

    OpenAIRE

    Doganay, Mehmet; Brenneman, Karen E.; Akmal, Arya; Goldman, Stanley; Galloway, Darrell R.; Mateczun, Alfred J; Cross, Alan S.; Baillie, Leslie W.

    2011-01-01

    Bacillus anthracis, the causative agent of anthrax, elaborates a tripartite toxin composed of two enzymatically active subunits, lethal factor (LF) and edema factor (EF) which, when associated with a cell-binding component, protective antigen (PA), form lethal toxin (LT) and edema toxin (ET), respectively. In this preliminary study we characterised the toxin-specific antibody responses observed in 17 individuals infected with cutaneous anthrax. The majority of the toxin-specific antibody resp...

  11. Anthrax: Symptoms

    Science.gov (United States)

    ... arms, or hands Inhalation anthrax symptoms can include: Fever and chills Chest Discomfort Shortness of breath Confusion or dizziness ... tiredness Body aches Gastrointestinal anthrax symptoms can include: Fever and chills Swelling of neck or neck glands Sore throat ...

  12. Quantitative Determination of Lethal Toxin Proteins in Culture Supernatant of Human Live Anthrax Vaccine Bacillus anthracis A16R.

    Science.gov (United States)

    Zai, Xiaodong; Zhang, Jun; Liu, Ju; Liu, Jie; Li, Liangliang; Yin, Ying; Fu, Ling; Xu, Junjie; Chen, Wei

    2016-03-01

    Bacillus anthracis (B. anthracis) is the etiological agent of anthrax affecting both humans and animals. Anthrax toxin (AT) plays a major role in pathogenesis. It includes lethal toxin (LT) and edema toxin (ET), which are formed by the combination of protective antigen (PA) and lethal factor (LF) or edema factor (EF), respectively. The currently used human anthrax vaccine in China utilizes live-attenuated B. anthracis spores (A16R; pXO1+, pXO2-) that produce anthrax toxin but cannot produce the capsule. Anthrax toxins, especially LT, have key effects on both the immunogenicity and toxicity of human anthrax vaccines. Thus, determining quantities and biological activities of LT proteins expressed by the A16R strain is meaningful. Here, we explored LT expression patterns of the A16R strain in culture conditions using another vaccine strain Sterne as a control. We developed a sandwich ELISA and cytotoxicity-based method for quantitative detection of PA and LF. Expression and degradation of LT proteins were observed in culture supernatants over time. Additionally, LT proteins expressed by the A16R and Sterne strains were found to be monomeric and showed cytotoxic activity, which may be the main reason for side effects of live anthrax vaccines. Our work facilitates the characterization of anthrax vaccines components and establishment of a quality control standard for vaccine production which may ultimately help to ensure the efficacy and safety of the human anthrax vaccine A16R. PMID:26927174

  13. A Chimeric Protein That Functions as both an Anthrax Dual-Target Antitoxin and a Trivalent Vaccine▿

    OpenAIRE

    Wu, Gaobing; Hong, Yuzhi; Guo, Aizhen; Feng, Chunfang; Cao, Sha; Zhang, Cheng-Cai; Shi, Ruiping; Tan, Yadi; Liu, Ziduo

    2010-01-01

    Effective measures for the prophylaxis and treatment of anthrax are still required for counteracting the threat posed by inhalation anthrax. In this study, we first demonstrated that the chimeric protein LFn-PA, created by fusing the protective antigen (PA)-binding domain of lethal factor (LFn) to PA, retained the functions of the respective molecules. On the basis of this observation, we attempted to develop an antitoxin that targets the binding of lethal factor (LF) and/or edema factor (EF)...

  14. Recombinant HSA-CMG2 Is a Promising Anthrax Toxin Inhibitor.

    Science.gov (United States)

    Li, Liangliang; Guo, Qiang; Liu, Ju; Zhang, Jun; Yin, Ying; Dong, Dayong; Fu, Ling; Xu, Junjie; Chen, Wei

    2016-01-01

    Anthrax toxin is the major virulence factor produced by Bacillus anthracis. Protective antigen (PA) is the key component of the toxin and has been confirmed as the main target for the development of toxin inhibitors. The inhibition of the binding of PA to its receptor, capillary morphogenesis protein-2 (CMG2), can effectively block anthrax intoxication. The recombinant, soluble von Willebrand factor type A (vWA) domain of CMG2 (sCMG2) has demonstrated potency against anthrax toxin. However, the short half-life of sCMG2 in vivo is a disadvantage for its development as a new anthrax drug. In the present study, we report that HSA-CMG2, a protein combining human serum albumin (HSA) and sCMG2, produced in the Pichia pastoris expression system prolonged the half-life of sCMG2 while maintaining PA binding ability. The IC50 of HSA-CMG2 is similar to those of sCMG2 and CMG2-Fc in in vitro toxin neutralization assays, and HSA-CMG2 completely protects rats from lethal doses of anthrax toxin challenge; these same challenge doses exceed sCMG2 at a sub-equivalent dose ratio and overwhelm CMG2-Fc. Our results suggest that HSA-CMG2 is a promising inhibitor of anthrax toxin and may contribute to the development of novel anthrax drugs. PMID:26805881

  15. Recombinant HSA-CMG2 Is a Promising Anthrax Toxin Inhibitor

    Directory of Open Access Journals (Sweden)

    Liangliang Li

    2016-01-01

    Full Text Available Anthrax toxin is the major virulence factor produced by Bacillus anthracis. Protective antigen (PA is the key component of the toxin and has been confirmed as the main target for the development of toxin inhibitors. The inhibition of the binding of PA to its receptor, capillary morphogenesis protein-2 (CMG2, can effectively block anthrax intoxication. The recombinant, soluble von Willebrand factor type A (vWA domain of CMG2 (sCMG2 has demonstrated potency against anthrax toxin. However, the short half-life of sCMG2 in vivo is a disadvantage for its development as a new anthrax drug. In the present study, we report that HSA-CMG2, a protein combining human serum albumin (HSA and sCMG2, produced in the Pichia pastoris expression system prolonged the half-life of sCMG2 while maintaining PA binding ability. The IC50 of HSA-CMG2 is similar to those of sCMG2 and CMG2-Fc in in vitro toxin neutralization assays, and HSA-CMG2 completely protects rats from lethal doses of anthrax toxin challenge; these same challenge doses exceed sCMG2 at a sub-equivalent dose ratio and overwhelm CMG2-Fc. Our results suggest that HSA-CMG2 is a promising inhibitor of anthrax toxin and may contribute to the development of novel anthrax drugs.

  16. Oropharyngeal Anthrax

    OpenAIRE

    TAŞ, Abdullah; YAĞIZ, Recep; Gürcan, Şaban; KARAOĞLU, Deniz

    2008-01-01

    Aims: To report a rare case of oropharyngeal anthrax. Materials and Methods: A case report of oropharyngeal anthrax is presented together with the related world literature. Results: A 70-year-old female patient with respiratory distress and extensive swelling of neck, soft palate and uvula is presented. There was ecchymosis on the neck circumferentially. Bacillus anthracis grew in the blood culture. The patient died of toxemia and sepsis. Conclusions: Oropharyngeal anthrax is the least c...

  17. Anthrax infection.

    Science.gov (United States)

    Sweeney, Daniel A; Hicks, Caitlin W; Cui, Xizhong; Li, Yan; Eichacker, Peter Q

    2011-12-15

    Bacillus anthracis infection is rare in developed countries. However, recent outbreaks in the United States and Europe and the potential use of the bacteria for bioterrorism have focused interest on it. Furthermore, although anthrax was known to typically occur as one of three syndromes related to entry site of (i.e., cutaneous, gastrointestinal, or inhalational), a fourth syndrome including severe soft tissue infection in injectional drug users is emerging. Although shock has been described with cutaneous anthrax, it appears much more common with gastrointestinal, inhalational (5 of 11 patients in the 2001 outbreak in the United States), and injectional anthrax. Based in part on case series, the estimated mortalities of cutaneous, gastrointestinal, inhalational, and injectional anthrax are 1%, 25 to 60%, 46%, and 33%, respectively. Nonspecific early symptomatology makes initial identification of anthrax cases difficult. Clues to anthrax infection include history of exposure to herbivore animal products, heroin use, or clustering of patients with similar respiratory symptoms concerning for a bioterrorist event. Once anthrax is suspected, the diagnosis can usually be made with Gram stain and culture from blood or surgical specimens followed by confirmatory testing (e.g., PCR or immunohistochemistry). Although antibiotic therapy (largely quinolone-based) is the mainstay of anthrax treatment, the use of adjunctive therapies such as anthrax toxin antagonists is a consideration. PMID:21852539

  18. Anthrax Spores under a microscope

    Science.gov (United States)

    2003-01-01

    Anthrax spores are inactive forms of Bacillus anthracis. They can survive for decades inside a spore's tough protective coating; they become active when inhaled by humans. A result of NASA- and industry-sponsored research to develop small greenhouses for space research is the unique AiroCide TiO2 system that kills anthrax spores and other pathogens.

  19. Anthrax Remembered

    Centers for Disease Control (CDC) Podcasts

    2015-08-03

    Dr. John Jernigan and Dr. D. Peter Drotman recall the 2001 anthrax attacks and rapid publication of the landmark paper reporting the initial cases of inhalational anthrax.  Created: 8/3/2015 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 8/3/2015.

  20. Naturally acquired antibodies to Bacillus anthracis protective antigen in vultures of southern Africa

    Directory of Open Access Journals (Sweden)

    P. C.B. Turnbull

    2008-08-01

    Full Text Available TURNBULLP, P.C.B. DIEKMANNM,M., KILIAN, J.W., VERSFELDW, W.,DE VOS, V., ARNTZENL, L.,WOLTER, K., BARTELS, P. & KOTZE, A. 2008.N aturally acquired antibodies to Bacillusa nthracisp rotective antigeni n vultureso f southern Africa. Onderstepoort Journal of Veterinary Research, T5:95-102 Sera from 19 wild caught vultures in northern Namibia and 15 (12 wild caught and three captive bred but with minimal histories in North West Province, South Africa, were examined by an enzyme-linked immunosorbenats say( ELISAf or antibodiesto the Bacillus anthracis toxin protective antigen (PA. As assessed from the baseline established with a control group of ten captive reared vultures with well-documented histories, elevated titres were found in 12 of the 19 (63% wild caught Namibian birds as compared with none of the 15 South African ones. There was a highly significant difference between the Namibian group as a hole and the other groups (P < 0.001 and no significant difference between the South African and control groups (P > 0.05. Numbers in the Namibian group were too small to determine any significances in species-, sex- or age-related differences within the raw data showing elevated titres in four out of six Cape Vultures, Gyps coprotheress, six out of ten Whitebacked Vultures, Gyps africanus, and one out of three Lappet-faced Vultures, Aegypiust racheliotus, or in five of six males versus three of seven females, and ten of 15 adults versus one of four juveniles. The results are in line with the available data on the incidence of anthrax in northern Namibia and South Africa and the likely contact of the vultures tested with anthrax carcasses. lt is not known whether elevated titre indicates infection per se in vultures or absorption of incompletely digested epitopes of the toxin or both. The results are discussed in relation to distances travelled by vultures as determined by new tracking techniques, how serology can reveal anthrax activity in an area and

  1. Venezuelan Equine Encephalitis Virus-Vectored Vaccines Protect Mice against Anthrax Spore Challenge

    OpenAIRE

    Lee, John S.; Hadjipanayis, Angela G.; Welkos, Susan L.

    2003-01-01

    Anthrax, a disease usually associated with herbivores, is caused by the bacterium Bacillus anthracis. The current vaccine licensed for human use requires a six-dose primary series and yearly boosters and causes reactogenicity in up to 30% of vaccine recipients. A minimally reactogenic vaccine requiring fewer inoculations is warranted. Venezuelan equine encephalitis (VEE) virus has been configured for use as a vaccine vector for a wide variety of immunogens. The VEE vaccine vector is composed ...

  2. Advances in the development of next-generation anthrax vaccines.

    Science.gov (United States)

    Friedlander, Arthur M; Little, Stephen F

    2009-11-01

    Anthrax, a disease of herbivores, only rarely infects humans. However, the threat of using Bacillus anthracis, the causative agent, to intentionally produce disease has been the impetus for development of next-generation vaccines. Two licensed vaccines have been available for human use for several decades. These are composed of acellular culture supernatants containing the protective antigen (PA) component of the anthrax toxins. In this review we summarize the various approaches used to develop improved vaccines. These efforts have included the use of PA with newer adjuvants and delivery systems, including bacterial and viral vectors and DNA vaccines. Attempts to broaden the protection afforded by PA-based vaccines have focused on adding other B. anthracis components, including spore and capsule antigens. PMID:19837282

  3. Tumor Targeting and Drug Delivery by Anthrax Toxin.

    Science.gov (United States)

    Bachran, Christopher; Leppla, Stephen H

    2016-01-01

    Anthrax toxin is a potent tripartite protein toxin from Bacillus anthracis. It is one of the two virulence factors and causes the disease anthrax. The receptor-binding component of the toxin, protective antigen, needs to be cleaved by furin-like proteases to be activated and to deliver the enzymatic moieties lethal factor and edema factor to the cytosol of cells. Alteration of the protease cleavage site allows the activation of the toxin selectively in response to the presence of tumor-associated proteases. This initial idea of re-targeting anthrax toxin to tumor cells was further elaborated in recent years and resulted in the design of many modifications of anthrax toxin, which resulted in successful tumor therapy in animal models. These modifications include the combination of different toxin variants that require activation by two different tumor-associated proteases for increased specificity of toxin activation. The anthrax toxin system has proved to be a versatile system for drug delivery of several enzymatic moieties into cells. This highly efficient delivery system has recently been further modified by introducing ubiquitin as a cytosolic cleavage site into lethal factor fusion proteins. This review article describes the latest developments in this field of tumor targeting and drug delivery. PMID:27376328

  4. Role of Toxin Functional Domains in Anthrax Pathogenesis

    OpenAIRE

    Brossier, Fabien; Weber-Levy, Martine; Mock, Michele; SIRARD, Jean-Claude

    2000-01-01

    We investigated the role of the functional domains of anthrax toxins during infection. Three proteins produced by Bacillus anthracis, the protective antigen (PA), the lethal factor (LF), and the edema factor (EF), combine in pairs to produce the lethal (PA+LF) and edema (PA+EF) toxins. A genetic strategy was developed to introduce by allelic exchange specific point mutations or in-frame deletions into B. anthracis toxin genes, thereby impairing either LF metalloprotease or EF adenylate cyclas...

  5. Expression and Purification of the Bacillus anthracis Protective Antigen Receptor-binding Domain

    Institute of Scientific and Technical Information of China (English)

    葛猛; 徐俊杰; 李冰; 董大勇; 宋小红; 郭强; 赵剑; 陈薇

    2004-01-01

    The aim of this study is to express the receptor-binding domain of Bacillus anthracis protective antigen in E. coli. Signal sequence of the outer membrane protein A (OmpA) of E. coli was attached to the 5' end of the gene encoding protective antigen receptor-binding domain (the 4th domain of PA, PALM). The plasmid carrying the fusion gene was then transformed into E. coli and induced to express recombinant PAlM by IFFG. The recombinant protein was purified by chromatography and then identified by N-terrainal sequencing and Western blot. The recombinant protein, about 10% of the total bacterial protein in volume, was secreted to the periplasmic space of the cell. After a purification procedure including ionexchange chromatography and gel filtration, about 10 mg of homogenous recombinant PAD4 was obtained from 1 L culture. Data from N-terminal sequencing suggested that the amino acid sequence of recombinant PAD4 was identical with its natural counterpart. And the result of Western blot showed the recombinant protein could bind with anti-PA serum from rabbit. High level secreted expression of PAD4 was obtained in E. coli. The results reported here are parts of a continuing research to evaluate PAD4 as a potential drug for anthrax therapy or a candidate of new vaccine.

  6. Cloning, expression and purification of binding domains of lethal factor and protective antigen of Bacillus anthracis in Escherichia coli and evaluation of their related murine antibody.

    Science.gov (United States)

    Rezaee, Mehdi; Honari, Hossein; Kooshk, Mohammad Reza Ashrafi

    2014-01-01

    Anthrax is common disease between human and animals caused by Bacillus anthracis. The cell binding domain of protective antigen (PAD4) and the binding domain of lethal factor (LFD1) have high immunogenicity potential and always were considered as a vaccine candidate against anthrax. The aims of this study are cloning and expressing of PAD4 and LFD1 in Escherichia coli, purification of the recombinant proteins and determination of their immunogenicity through evaluating of the relative produced polyclonal antibodies in mice. PAD4 and LFD1 genes were cloned in pET28a(+) vector and expressed in E. coli Bl21(DE3)PlysS. Expression and purification of the two recombinant proteins were confirmed by SDS-PAGE and Western blotting techniques. The PAD4 and LFD1 were purified using Ni(+)-NTA affinity chromatography (95-98 %), yielding 37.5 and 45 mg/l of culture, respectively. The antigens were injected three times into mice and production of relative antibodies was evaluated by ELISA test. The results showed that both PAD4 and LFD1 are immunogenic, but LFD1 has higher potential to stimulate Murine immune system. With regard to the high level of LFD1 and PAD4 expression and also significant increment in produced polyclonal antibodies, these recombinant proteins can be considered as a recombinant vaccine candidate against anthrax. PMID:24430302

  7. Characterization of a multi-component anthrax vaccine designed to target the initial stages of infection as well as toxaemia

    OpenAIRE

    Cote, C. K.; Kaatz, L.; Reinhardt, J.; Bozue, J.; Tobery, S. A.; Bassett, A. D.; Sanz, P; Darnell, S C; Alem, F.; O’Brien, A.D.; Welkos, S. L.

    2012-01-01

    Current vaccine approaches to combat anthrax are effective; however, they target only a single protein [the protective antigen (PA) toxin component] that is produced after spore germination. PA production is subsequently increased during later vegetative cell proliferation. Accordingly, several aspects of the vaccine strategy could be improved. The inclusion of spore-specific antigens with PA could potentially induce protection to initial stages of the disease. Moreover, adding other epitopes...

  8. Non-Replicating Adenovirus-Vectored Anthrax Vaccine

    International Nuclear Information System (INIS)

    As bioterrorism is emerging as a national threat, it is urgent to develop a new generation of anthrax vaccines that can be rapidly produced and mass administered in an emergency setting. We have demonstrated that protective immunity against anthrax spores could be elicited in mice by intranasal administration of a non-replicating human adenovirus serotype 5 (Ad5)-derived vector encoding Bacillus anthracis protective antigen (PA) in a single-dose regimen. The potency of an Ad5 vector encoding PA was remarkably enhanced by codon optimization of the PA gene to match the tRNA pool found in human cells. This nasal vaccine can be mass-administered by non-medical personnel during a bioterrorist attack. In addition, replication-competent adenovirus (RCA)-free Ad5-vectored anthrax vaccines can be mass produced in PER.C6 cells in serum-free wave bioreactors and purified by column chromatography to meet a surge in demand. The non-replicating nature of this new generation of anthrax vaccine ensures an excellent safety profile for vaccines and the environment.(author)

  9. Progress and novel strategies in vaccine development and treatment of anthrax.

    Science.gov (United States)

    Chitlaru, Theodor; Altboum, Zeev; Reuveny, Shaul; Shafferman, Avigdor

    2011-01-01

    The lethal anthrax disease is caused by spores of the gram-positive Bacillus anthracis, a member of the cereus group of bacilli. Although the disease is very rare in the Western world, development of anthrax countermeasures gains increasing attention due to the potential use of B. anthracis spores as a bio-terror weapon. Protective antigen (PA), the non-toxic subunit of the bacterial secreted exotoxin, fulfills the role of recognizing a specific receptor and mediating the entry of the toxin into the host target cells. PA elicits a protective immune response and represents the basis for all current anthrax vaccines. Anti-PA neutralizing antibodies are useful correlates for protection and for vaccine efficacy evaluation. Post exposure anti-toxemic and anti-bacteremic prophylactic treatment of anthrax requires prolonged antibiotic administration. Shorter efficient postexposure treatments may require active or passive immunization, in addition to antibiotics. Although anthrax is acknowledged as a toxinogenic disease, additional factors, other than the bacterial toxin, may be involved in the virulence of B. anthracis and may be needed for the long-lasting protection conferred by PA immunization. The search for such novel factors is the focus of several high throughput genomic and proteomic studies that are already leading to identification of novel targets for therapeutics, for vaccine candidates, as well as biomarkers for detection and diagnosis. PMID:21198675

  10. Expression and refolding of the protective antigen of Bacillus anthracis: A model for high-throughput screening of antigenic recombinant protein refolding.

    Science.gov (United States)

    Pavan, María Elisa; Pavan, Esteban Enrique; Cairó, Fabián Martín; Pettinari, María Julia

    2016-01-01

    Bacillus anthracis protective antigen (PA) is a well known and relevant immunogenic protein that is the basis for both anthrax vaccines and diagnostic methods. Properly folded antigenic PA is necessary for these applications. In this study a high level of PA was obtained in recombinant Escherichia coli. The protein was initially accumulated in inclusion bodies, which facilitated its efficient purification by simple washing steps; however, it could not be recognized by specific antibodies. Refolding conditions were subsequently analyzed in a high-throughput manner that enabled nearly a hundred different conditions to be tested simultaneously. The recovery of the ability of PA to be recognized by antibodies was screened by dot blot using a coefficient that provided a measure of properly refolded protein levels with a high degree of discrimination. The best refolding conditions resulted in a tenfold increase in the intensity of the dot blot compared to the control. The only refolding additive that consistently yielded good results was L-arginine. The statistical analysis identified both cooperative and negative interactions between the different refolding additives. The high-throughput approach described in this study that enabled overproduction, purification and refolding of PA in a simple and straightforward manner, can be potentially useful for the rapid screening of adequate refolding conditions for other overexpressed antigenic proteins. PMID:26777581

  11. Analysis of defined combinations of monoclonal antibodies in anthrax toxin neutralization assays and their synergistic action.

    Science.gov (United States)

    Ngundi, Miriam M; Meade, Bruce D; Little, Stephen F; Quinn, Conrad P; Corbett, Cindi R; Brady, Rebecca A; Burns, Drusilla L

    2012-05-01

    Antibodies against the protective antigen (PA) component of anthrax toxin play an important role in protection against disease caused by Bacillus anthracis. In this study, we examined defined combinations of PA-specific monoclonal antibodies for their ability to neutralize anthrax toxin in cell culture assays. We observed additive, synergistic, and antagonistic effects of the antibodies depending on the specific antibody combination examined and the specific assay used. Synergistic toxin-neutralizing antibody interactions were examined in more detail. We found that one mechanism that can lead to antibody synergy is the bridging of PA monomers by one antibody, with resultant bivalent binding of the second antibody. These results may aid in optimal design of new vaccines and antibody therapies against anthrax. PMID:22441391

  12. Combinations of various CpG motifs cloned into plasmid backbone modulate and enhance protective immunity of viral replicon DNA anthrax vaccines.

    Science.gov (United States)

    Yu, Yun-Zhou; Ma, Yao; Xu, Wen-Hui; Wang, Shuang; Sun, Zhi-Wei

    2015-08-01

    DNA vaccines are generally weak stimulators of the immune system. Fortunately, their efficacy can be improved using a viral replicon vector or by the addition of immunostimulatory CpG motifs, although the design of these engineered DNA vectors requires optimization. Our results clearly suggest that multiple copies of three types of CpG motifs or combinations of various types of CpG motifs cloned into a viral replicon vector backbone with strong immunostimulatory activities on human PBMC are efficient adjuvants for these DNA vaccines to modulate and enhance protective immunity against anthrax, although modifications with these different CpG forms in vivo elicited inconsistent immune response profiles. Modification with more copies of CpG motifs elicited more potent adjuvant effects leading to the generation of enhanced immunity, which indicated a CpG motif dose-dependent enhancement of antigen-specific immune responses. Notably, the enhanced and/or synchronous adjuvant effects were observed in modification with combinations of two different types of CpG motifs, which provides not only a contribution to the knowledge base on the adjuvant activities of CpG motifs combinations but also implications for the rational design of optimal DNA vaccines with combinations of CpG motifs as "built-in" adjuvants. We describe an efficient strategy to design and optimize DNA vaccines by the addition of combined immunostimulatory CpG motifs in a viral replicon DNA plasmid to produce strong immune responses, which indicates that the CpG-modified viral replicon DNA plasmid may be desirable for use as vector of DNA vaccines. PMID:25265876

  13. Antibiotics Cure Anthrax in Animal Models▿

    OpenAIRE

    Weiss, Shay; Kobiler, David; Levy, Haim; Pass, Avi; Ophir, Yakir; Rothschild, Nili; Tal, Arnon; Schlomovitz, Josef; Altboum, Zeev

    2011-01-01

    Respiratory anthrax, in the absence of early antibiotic treatment, is a fatal disease. This study aimed to test the efficiency of antibiotic therapy in curing infected animals and those sick with anthrax. Postexposure prophylaxis (24 h postinfection [p.i.]) of guinea pigs infected intranasally with Bacillus anthracis Vollum spores with doxycycline, ofloxacin, imipenem, and gentamicin conferred protection. However, upon termination of treatment, the animals died from respiratory anthrax. Combi...

  14. DNA encoding individual mycobacterial antigens protects mice against tuberculosis

    Directory of Open Access Journals (Sweden)

    C.L. Silva

    1999-02-01

    Full Text Available Over the last few years, some of our experiments in which mycobacterial antigens were presented to the immune system as if they were viral antigens have had a significant impact on our understanding of protective immunity against tuberculosis. They have also markedly enhanced the prospects for new vaccines. We now know that individual mycobacterial protein antigens can confer protection equal to that from live BCG vaccine in mice. A critical determinant of the outcome of immunization appears to be the degree to which antigen-specific cytotoxic T cells are generated by the immune response. Our most recent studies indicate that DNA vaccination is an effective way to establish long-lasting cytotoxic T cell memory and protection against tuberculosis.

  15. Intranasal immunization with protective antigen of Bacillus anthracis induces a long-term immunological memory response.

    Science.gov (United States)

    Woo, Sun-Je; Kang, Seok-Seong; Park, Sung-Moo; Yang, Jae Seung; Song, Man Ki; Yun, Cheol-Heui; Han, Seung Hyun

    2015-10-01

    Although intranasal vaccination has been shown to be effective for the protection against inhalational anthrax, establishment of long-term immunity has yet to be achieved. Here, we investigated whether intranasal immunization with recombinant protective antigen (rPA) of Bacillus anthracis induces immunological memory responses in the mucosal and systemic compartments. Intranasal immunization with rPA plus cholera toxin (CT) sustained PA-specific antibody responses for 6 months in lung, nasal washes, and vaginal washes as well as serum. A significant induction of PA-specific memory B cells was observed in spleen, cervical lymph nodes (CLNs) and lung after booster immunization. Furthermore, intranasal immunization with rPA plus CT remarkably generated effector memory CD4(+) T cells in the lung. PA-specific CD4(+) T cells preferentially increased the expression of Th1- and Th17-type cytokines in lung, but not in spleen or CLNs. Collectively, the intranasal immunization with rPA plus CT promoted immunologic memory responses in the mucosal and systemic compartments, providing long-term immunity. PMID:26278659

  16. Anthrax toxin receptor 2-dependent lethal toxin killing in vivo.

    Directory of Open Access Journals (Sweden)

    Heather M Scobie

    2006-10-01

    Full Text Available Anthrax toxin receptors 1 and 2 (ANTXR1 and ANTXR2 have a related integrin-like inserted (I domain which interacts with a metal cation that is coordinated by residue D683 of the protective antigen (PA subunit of anthrax toxin. The receptor-bound metal ion and PA residue D683 are critical for ANTXR1-PA binding. Since PA can bind to ANTXR2 with reduced affinity in the absence of metal ions, we reasoned that D683 mutant forms of PA might specifically interact with ANTXR2. We show here that this is the case. The differential ability of ANTXR1 and ANTXR2 to bind D683 mutant PA proteins was mapped to nonconserved receptor residues at the binding interface with PA domain 2. Moreover, a D683K mutant form of PA that bound specifically to human and rat ANTXR2 mediated killing of rats by anthrax lethal toxin, providing strong evidence for the physiological importance of ANTXR2 in anthrax disease pathogenesis.

  17. Anthrax - blood test

    Science.gov (United States)

    ... The best test for diagnosing anthrax is a culture of affected tissue or blood. Alternative Names Anthrax serology test; Antibody test for anthrax; Serologic test for B anthracis Images Blood test Bacillus anthracis References Hall GS, Woods GL. Medical bacteriology. ...

  18. Examination of serological memory in rabbits injected with Bacillus anthracis protective antigen adsorbed to Alhydrogel

    Directory of Open Access Journals (Sweden)

    Stephen F. Little

    2015-01-01

    Full Text Available Serological memory after inoculation of protective antigen (PA combined with Alhydrogel adjuvant (PA/Alhydrogel was examined in New Zealand white rabbits, an animal model for anthrax. A threshold dose of 0.1 μg of PA/Alhydrogel was identified which resulted in an ELISA titer 2 weeks after a primary immunization of only 0.168 μg anti-PA IgG per ml and a toxin-neutralizing antibody titer (TNA ED50 of 1.8 (n = 40. A significant increase in anti-PA IgG and TNA ED50 titers were measured (p < 0.0001 2 weeks after a booster immunization with 0.1 μg of PA/Alhydrogel at 14 days (n = 10; 40.9 μg anti-PA IgG per ml; 522 TNA ED50 and 28 days (n = 10; 63.8 μg anti-PA IgG per ml; 501 TNA ED50. At this threshold dose of PA/Alhydrogel, protection against an aerosol exposure to Bacillus anthracis Ames spores improved as the booster immunization was administered from 4 days (40% survival, to 8 days (50% survival, and to 12 days (80% survival before challenge. The partial protection of rabbits, even in the absence of protective antibody titers (0.9 μg anti-PA IgG per ml and 26 TNA ED50 when the booster immunization was administered 4 days before challenge, suggested a protective potential for serologic memory.

  19. Soluble Expression and Characterization of Biologically Active Bacillus anthracis Protective Antigen in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Nagendra Suryanarayana

    2016-01-01

    Full Text Available Bacillus anthracis secretory protein protective antigen (PA is primary candidate for subunit vaccine against anthrax. Attempts to obtain large quantity of PA from Escherichia coli expression system often result in the formation of insoluble inclusion bodies. Therefore, it is always better to produce recombinant proteins in a soluble form. In the present study, we have obtained biologically active recombinant PA in small scale E. coli shake culture system using three different expression constructs. The PA gene was cloned in expression vectors bearing trc, T5, and T7 promoters and transformed into their respective E. coli hosts. The growth conditions were optimized to obtain maximum expression of PA in soluble form. The expression construct PA-pET32c in DE3-pLysS E. coli host resulted in a maximum production of soluble PA (15 mg L−1 compared to other combinations. Purified PA was subjected to trypsin digestion and binding assay with lethal factor to confirm the protein’s functionality. Biological activity was confirmed by cytotoxicity assay on J774.1 cells. Balb/c mice were immunized with PA and the immunogenicity was tested by ELISA and toxin neutralization assay. This study highlights the expression of soluble and biologically active recombinant PA in larger quantity using simpler E. coli production platform.

  20. Soluble Expression and Characterization of Biologically Active Bacillus anthracis Protective Antigen in Escherichia coli.

    Science.gov (United States)

    Suryanarayana, Nagendra; Vanlalhmuaka; Mankere, Bharti; Verma, Monika; Thavachelvam, Kulanthaivel; Tuteja, Urmil

    2016-01-01

    Bacillus anthracis secretory protein protective antigen (PA) is primary candidate for subunit vaccine against anthrax. Attempts to obtain large quantity of PA from Escherichia coli expression system often result in the formation of insoluble inclusion bodies. Therefore, it is always better to produce recombinant proteins in a soluble form. In the present study, we have obtained biologically active recombinant PA in small scale E. coli shake culture system using three different expression constructs. The PA gene was cloned in expression vectors bearing trc, T5, and T7 promoters and transformed into their respective E. coli hosts. The growth conditions were optimized to obtain maximum expression of PA in soluble form. The expression construct PA-pET32c in DE3-pLysS E. coli host resulted in a maximum production of soluble PA (15 mg L(-1)) compared to other combinations. Purified PA was subjected to trypsin digestion and binding assay with lethal factor to confirm the protein's functionality. Biological activity was confirmed by cytotoxicity assay on J774.1 cells. Balb/c mice were immunized with PA and the immunogenicity was tested by ELISA and toxin neutralization assay. This study highlights the expression of soluble and biologically active recombinant PA in larger quantity using simpler E. coli production platform. PMID:26966576

  1. Anthrax Infection

    OpenAIRE

    Sweeney, Daniel A.; Caitlin W. Hicks; Cui, Xizhong; Li, Yan; Eichacker, Peter Q.

    2011-01-01

    Bacillus anthracis infection is rare in developed countries. However, recent outbreaks in the United States and Europe and the potential use of the bacteria for bioterrorism have focused interest on it. Furthermore, although anthrax was known to typically occur as one of three syndromes related to entry site of (i.e., cutaneous, gastrointestinal, or inhalational), a fourth syndrome including severe soft tissue infection in injectional drug users is emerging. Although shock has been described ...

  2. Cellular and Physiological Effects of Anthrax Exotoxin and Its Relevance to Disease

    OpenAIRE

    Lowe, David E.; Glomski, Ian J.

    2012-01-01

    Bacillus anthracis, the causative agent of anthrax, secretes a tri-partite exotoxin that exerts pleiotropic effects on the host. The purification of the exotoxin components, protective antigen, lethal factor, and edema factor allowed the rapid characterization of their physiologic effects on the host. As molecular biology matured, interest focused on the molecular mechanisms and cellular alterations induced by intoxication. Only recently have researchers begun to connect molecular and cellula...

  3. Human monoclonal antibodies against anthrax lethal factor and protective antigen act independently to protect against Bacillus anthracis infection and enhance endogenous immunity to anthrax

    NARCIS (Netherlands)

    Albrecht, Mark T.; Li, Han; Williamson, E. Diane; LeButt, Chris S.; Flick-Smith, Helen C.; Quinn, Conrad P.; Westra, Hans; Galloway, Darrell; Mateczun, Alfred; Goldman, Stanley; Groen, Herman; Baillie, Les W. J.

    2007-01-01

    The unpredictable nature of bioterrorism and the absence of real-time detection systems have highlighted the need for an efficient postexposure therapy for Bacillus anthracis infection. One approach is passive immunization through the administration of antibodies that mitigate the biological action

  4. Selection of protective antigens in Lawsonia intracellularis by reverse vaccinology

    DEFF Research Database (Denmark)

    Vadekær, Dorte Fink; Lundegaard, Claus; Riber, Ulla;

    Lawsonia intracellularis is a bacterial pathogen that infects intestinal epithelial cells in pigs. This causes proliferative enteropathy, which is characterized by diarrhea and reduced growth, and L. intracellularis infection is one of the main reasons for antibiotic treatment of production pigs in...... protection against L. intracellularis. To this end, a reverse vaccinology approach was applied: the entire L. intracellularis genome encoding 1340 proteins was screened in silico using bioinformatics tools to identify potential protein antigens. Advanced software algorithms predicted 150 secreted and outer...

  5. Proteomics study of anthrax lethal toxin-treated murine macrophages.

    Science.gov (United States)

    Kuhn, Jeffrey F; Hoerth, Patric; Hoehn, Silvia T; Preckel, Tobias; Tomer, Kenneth B

    2006-04-01

    The anthrax lethal toxin (LeTx) is composed of two proteins, protective antigen and lethal factor, which bind and enter the cell through a host receptor termed the anthrax toxin receptor (ATR). In the cell, LeTx targets p38, part of the MAP kinase signaling pathway. The toxin appears to initiate an apoptotic pathway in infected cells, indicating additional downstream targets of the toxin. We have applied a proteomics approach to investigate these downstream targets and the affected processes. In this study we have used an improved strategy for fractionation based on protein pI, off-gel electrophoresis, employed in conjunction with relative quantitation using the mass labeling approach. In our survey, 67 proteins were observed and quantified from the cytosol of RAW 264.7 cells with respect to control versus toxin-treated cells. Many of these proteins are involved in the oxidative stress response, as well as apoptosis, and thus likely to be relevant to the effects of anthrax in infected cells. Our results indicate that the tumor necrosis factor-alpha-mediated pathway is compromised in intoxicated cells. The knowledge of such changes and the pathways leading to the changes should be of great value in understanding and combating this disease. PMID:16609935

  6. In silico design of smart binders to anthrax PA

    Science.gov (United States)

    Sellers, Michael; Hurley, Margaret M.

    2012-06-01

    The development of smart peptide binders requires an understanding of the fundamental mechanisms of recognition which has remained an elusive grail of the research community for decades. Recent advances in automated discovery and synthetic library science provide a wealth of information to probe fundamental details of binding and facilitate the development of improved models for a priori prediction of affinity and specificity. Here we present the modeling portion of an iterative experimental/computational study to produce high affinity peptide binders to the Protective Antigen (PA) of Bacillus anthracis. The result is a general usage, HPC-oriented, python-based toolkit based upon powerful third-party freeware, which is designed to provide a better understanding of peptide-protein interactions and ultimately predict and measure new smart peptide binder candidates. We present an improved simulation protocol with flexible peptide docking to the Anthrax Protective Antigen, reported within the context of experimental data presented in a companion work.

  7. Anthrax: an update

    OpenAIRE

    Kamal, SM; Rashid, AKM M; Bakar, MA; Ahad, MA

    2011-01-01

    Anthrax is a zoonotic disease caused by Bacillus anthracis. It is potentially fatal and highly contagious disease. Herbivores are the natural host. Human acquire the disease incidentally by contact with infected animal or animal products. In the 18th century an epidemic destroyed approximately half of the sheep in Europe. In 1900 human inhalational anthrax occured sporadically in the United States. In 1979 an outbreak of human anthrax occured in Sverdlovsk of Soviet Union. Anthrax continued t...

  8. EXPRESSION OF BACILLUS ANTHRACIS PROTECTIVE ANTIGEN IN VACCINE STRAIN BRUCELLA ABORTUS RB51

    OpenAIRE

    Poff, Sherry Ann

    1997-01-01

    Bacillus anthracis is a facultative intracellular bacterial pathogen that can cause cutaneous, gastrointestinal or respiratory disease in many vertebrates, including humans. Commercially available anthrax vaccines for immunization of humans are of limited duration and do not protect against the respiratory form of the disease. Brucella abortus is a facultative intracellular bacterium that causes chronic infection in animals and humans. As with other intracellular pathogens, cell mediated im...

  9. Mechanism of Lethal Toxin Neutralization by a Human Monoclonal Antibody Specific for the PA20 Region of Bacillus anthracis Protective Antigen

    Directory of Open Access Journals (Sweden)

    Jessica Camacho

    2011-08-01

    Full Text Available The primary immunogenic component of the currently approved anthrax vaccine is the protective antigen (PA unit of the binary toxin system. PA-specific antibodies neutralize anthrax toxins and protect against infection. Recent research has determined that in humans, only antibodies specific for particular determinants are capable of effecting toxin neutralization, and that the neutralizing epitopes recognized by these antibodies are distributed throughout the PA monomer. The mechanisms by which the majority of these epitopes effect neutralization remain unknown. In this report we investigate the process by which a human monoclonal antibody specific for the amino-terminal domain of PA neutralizes lethal toxin in an in vitro assay of cytotoxicity, and find that it neutralizes LT by blocking the requisite cleavage of the amino-terminal 20 kD portion of the molecule (PA20 from the remainder of the PA monomer. We also demonstrate that the epitope recognized by this human monoclonal does not encompass the 166RKKR169 furin recognition sequence in domain 1 of PA.

  10. How to weaponize anthrax?

    OpenAIRE

    Dizer, Ufuk; Levent KENAR; ORTATATLI, Mesut; Karayılanoğlu, Turan

    2013-01-01

    Anthrax, a zoonotic disease caused by  Bacillusanthracis, occurs in domesticated and wild animals-primarily herbivores. Humans usually become infectedby contact with infected animals or their products.Anthrax is so easy to obtain that it could be weaponizedfor biological warfare if a laboratory area of 5 m2  isowned with 10.000$.Key words: Anthrax, weapon, spore, Bacillus anthracis

  11. Anthrax Toxin-Expressing Bacillus cereus Isolated from an Anthrax-Like Eschar.

    Science.gov (United States)

    Marston, Chung K; Ibrahim, Hisham; Lee, Philip; Churchwell, George; Gumke, Megan; Stanek, Danielle; Gee, Jay E; Boyer, Anne E; Gallegos-Candela, Maribel; Barr, John R; Li, Han; Boulay, Darbi; Cronin, Li; Quinn, Conrad P; Hoffmaster, Alex R

    2016-01-01

    Bacillus cereus isolates have been described harboring Bacillus anthracis toxin genes, most notably B. cereus G9241, and capable of causing severe and fatal pneumonias. This report describes the characterization of a B. cereus isolate, BcFL2013, associated with a naturally occurring cutaneous lesion resembling an anthrax eschar. Similar to G9241, BcFL2013 is positive for the B. anthracis pXO1 toxin genes, has a multi-locus sequence type of 78, and a pagA sequence type of 9. Whole genome sequencing confirms the similarity to G9241. In addition to the chromosome having an average nucleotide identity of 99.98% when compared to G9241, BcFL2013 harbors three plasmids with varying homology to the G9241 plasmids (pBCXO1, pBC210 and pBFH_1). This is also the first report to include serologic testing of patient specimens associated with this type of B. cereus infection which resulted in the detection of anthrax lethal factor toxemia, a quantifiable serum antibody response to protective antigen (PA), and lethal toxin neutralization activity. PMID:27257909

  12. Identification of two new protective pre-erythrocytic malaria vaccine antigen candidates

    Directory of Open Access Journals (Sweden)

    Patterson Noelle

    2011-03-01

    Full Text Available Abstract Background Despite years of effort, a licensed malaria vaccine is not yet available. One of the obstacles facing the development of a malaria vaccine is the extensive heterogeneity of many of the current malaria vaccine antigens. To counteract this antigenic diversity, an effective malaria vaccine may need to elicit an immune response against multiple malaria antigens, thereby limiting the negative impact of variability in any one antigen. Since most of the malaria vaccine antigens that have been evaluated in people have not elicited a protective immune response, there is a need to identify additional protective antigens. In this study, the efficacy of three pre-erythrocytic stage malaria antigens was evaluated in a Plasmodium yoelii/mouse protection model. Methods Mice were immunized with plasmid DNA and vaccinia virus vectors that expressed one, two or all three P. yoelii vaccine antigens. The immunized mice were challenged with 300 P. yoelii sporozoites and evaluated for subsequent infection. Results Vaccines that expressed any one of the three antigens did not protect a high percentage of mice against a P. yoelii challenge. However, vaccines that expressed all three antigens protected a higher percentage of mice than a vaccine that expressed PyCSP, the most efficacious malaria vaccine antigen. Dissection of the multi-antigen vaccine indicated that protection was primarily associated with two of the three P. yoelii antigens. The protection elicited by a vaccine expressing these two antigens exceeded the sum of the protection elicited by the single antigen vaccines, suggesting a potential synergistic interaction. Conclusions This work identifies two promising malaria vaccine antigen candidates and suggests that a multi-antigen vaccine may be more efficacious than a single antigen vaccine.

  13. Towards a human oral vaccine for anthrax: the utility of a Salmonella Typhi Ty21a-based prime-boost immunization strategy.

    Science.gov (United States)

    Baillie, Leslie W J; Rodriguez, Ana L; Moore, Stephen; Atkins, Helen S; Feng, Chiguang; Nataro, James P; Pasetti, Marcela F

    2008-11-11

    We previously demonstrated the ability of an orally administered attenuated Salmonella enterica serovar Typhimurium strain expressing the protective antigen (PA) of Bacillus anthracis to confer protection against lethal anthrax aerosol spore challenge [Stokes MG, Titball RW, Neeson BN, et al. Oral administration of a Salmonella enterica-based vaccine expressing Bacillus anthracis protective antigen confers protection against aerosolized B. anthracis. Infect Immun 2007;75(April (4)):1827-34]. To extend the utility of this approach to humans we constructed variants of S. enterica serovar Typhi Ty21a, an attenuated typhoid vaccine strain licensed for human use, which expressed and exported PA via two distinct plasmid-based transport systems: the Escherichia coli HlyA haemolysin and the S. Typhi ClyA export apparatus. Murine immunogenicity studies confirmed the ability of these constructs, especially Ty21a expressing the ClyA-PA fusion protein, to stimulate strong PA-specific immune responses following intranasal immunization. These responses were further enhanced by a subsequent boost with either parenterally delivered recombinant PA or the licensed US human alum-adsorbed anthrax vaccine (AVA). Anthrax toxin neutralizing antibody responses using this prime-boost regimen were rapid, vigorous and broad in nature. The results of this study demonstrate the feasibility of employing a mucosal prime with a licensed Salmonella Typhi vaccine strain followed by a parenteral protein boost to stimulate rapid protective immunity against anthrax. PMID:18805452

  14. Crystallization and preliminary X-ray analysis of the vWA domain of human anthrax toxin receptor 1

    International Nuclear Information System (INIS)

    The vWA domain of human anthrax toxin receptor 1 was overexpressed in E. coli, purified and crystallized. Diffraction data were collected to 1.8 Å resolution. The Gram-positive spore-forming bacterium Bacillus anthracis causes anthrax by secreting anthrax toxin, which consists of protective antigen (PA), lethal factor and oedema factor. Binding of PA to receptors triggers the multi-step process of anthrax toxin entry into target cells. Two distinct cellular receptors, ANTXR1 (also known as tumour endothelial marker 8; TEM8) and ANTXR2 (also known as capillary morphogenesis protein 2; CMG2), for anthrax toxin have been identified. Although the crystal structure of the extracellular von Willebrand factor A (vWA) domain of CMG2 has been reported, the difference between the vWA domains of TEM8 and CMG2 remains unclear because there are no structural data for the TEM8 vWA domain. In this report, the TEM8 vWA domain was expressed, purified and crystallized. X-ray diffraction data were collected to 1.8 Å resolution from a single crystal, which belonged to space group P1 with unit-cell parameters a = 65.9, b = 66.1, c = 74.4 Å, α = 63.7, β = 88.2, γ = 59.9°

  15. Total Force Anthrax Vaccine Immunization Program: Controversy and Conflagration

    OpenAIRE

    Corrigan, Shara L.

    2001-01-01

    Washington, D.C. has perceived the threat of anthrax from any of several hostile parties. The offer of protection comes in the form of the Anthrax Vaccine Immunization Program (“AVIPâ€). On 18 May 1998, Secretary of Defense William S. Cohen signed the Total Force Immunization Directive to provide the Anthrax Vaccine Adsorbed (“AVAâ€) to all active and reserve Armed Forces members over a period of seven years. The question of whether ...

  16. Radiolabelled parasite antigens as tools for diagnosis and identification of protective antigens

    International Nuclear Information System (INIS)

    Radiolabelling specific compartments and molecules of parasites provides a valuable tool for establishing parasite antigen-host response systems with utility and/or importance in protection, diagnosis and pathology. The combined immunological, biochemical and molecular biological expertise currently available forms a sufficient basis for a relatively logical and effective programme directed towards the ultimate eradication of tropical diseases. The organization of carefully selected and clinically well characterized sera and patients, representing the range of commonly occurring parasitic infections, would be of great practical value in the pursuance of this goal. (author)

  17. Anthrax of the lower eyelid

    OpenAIRE

    Koçer, Ugur; Aksoy, Hasan Mete; Tiftikcioglu, Yigit Özer; Aksoy, Berna

    2003-01-01

    Because cutaneous anthrax, caused by Bacillus anthracis, is rare in developed countries, sporadic cases of anthrax may easily be overlooked because the diagnosis is often difficult to make. Lower eyelid involvement of anthrax is rare in clinical practice.

  18. Towards a human oral vaccine for anthrax: the utility of a Salmonella Typhi Ty21a-based prime boost immunization strategy

    OpenAIRE

    Baillie, Leslie W.J.; Rodriguez, Ana L.; Moore, Stephen; Atkins, Helen S.; Feng, Chiguang; James P Nataro; Marcela F. Pasetti

    2008-01-01

    We previously demonstrated the ability of an orally administered attenuated Salmonella enterica serovar Typhimurium strain expressing the protective antigen (PA) of Bacillus anthracis to confer protection against lethal anthrax aerosol spore challenge [1]. To extend the utility of this approach to humans we constructed variants of S. enterica serovar Typhi Ty21a, an attenuated typhoid vaccine strain licensed for human use, which expressed and exported PA via two distinct plasmid-based transpo...

  19. Noncapsulated toxinogenic Bacillus anthracis presents a specific growth and dissemination pattern in naive and protective antigen-immune mice.

    Science.gov (United States)

    Glomski, Ian J; Corre, Jean-Philippe; Mock, Michèle; Goossens, Pierre L

    2007-10-01

    Bacillus anthracis is a spore-forming bacterium that causes anthrax. B. anthracis has three major virulence factors, namely, lethal toxin, edema toxin, and a poly-gamma-D-glutamic acid capsule. The toxins modulate host immune responses, and the capsule inhibits phagocytosis. With the goal of increasing safety, decreasing security concerns, and taking advantage of mammalian genetic tools and reagents, mouse models of B. anthracis infection have been developed using attenuated bacteria that produce toxins but no capsule. While these models have been useful in studying both toxinogenic infections and antitoxin vaccine efficacy, we questioned whether eliminating the capsule changed bacterial growth and dissemination characteristics. Thus, the progression of infection by toxinogenic noncapsulated B. anthracis was analyzed and compared to that by previously reported nontoxinogenic capsulated bacteria, using in vivo bioluminescence imaging. The influence of immunization with the toxin component protective antigen (PA) on the development of infection was also examined. The toxinogenic noncapsulated bacteria were initially confined to the cutaneous site of infection. Bacteria then progressed to the draining lymph nodes and, finally, late in the infection, to the lungs, kidneys, and frequently the gastrointestinal tract. There was minimal colonization of the spleen. PA immunization reduced bacterial growth from the outset and limited infection to the site of inoculation. These in vivo observations show that dissemination by toxinogenic noncapsulated strains differs markedly from that by nontoxinogenic capsulated strains. Additionally, PA immunization counters bacterial growth and dissemination in vivo from the onset of infection. PMID:17635863

  20. Bacillus anthracis Protective Antigen Kinetics in Inhalation Spore-Challenged Untreated or Levofloxacin/ Raxibacumab-Treated New Zealand White Rabbits

    Directory of Open Access Journals (Sweden)

    Cecil Chen

    2013-01-01

    Full Text Available Inhaled Bacillus anthracis spores germinate and the subsequent vegetative growth results in bacteremia and toxin production. Anthrax toxin is tripartite: the lethal factor and edema factor are enzymatic moieties, while the protective antigen (PA binds to cell receptors and the enzymatic moieties. Antibiotics can control B. anthracis bacteremia, whereas raxibacumab binds PA and blocks lethal toxin effects. This study assessed plasma PA kinetics in rabbits following an inhaled B. anthracis spore challenge. Additionally, at 84 h post-challenge, 42% of challenged rabbits that had survived were treated with either levofloxacin/placebo or levofloxacin/raxibacumab. The profiles were modeled using a modified Gompertz/second exponential growth phase model in untreated rabbits, with added monoexponential PA elimination in treated rabbits. Shorter survival times were related to a higher plateau and a faster increase in PA levels. PA elimination half-lives were 10 and 19 h for the levofloxacin/placebo and levofloxacin/raxibacumab groups, respectively, with the difference attributable to persistent circulating PA-raxibacumab complex. PA kinetics were similar between untreated and treated rabbits, with one exception: treated rabbits had a plateau phase nearly twice as long as that for untreated rabbits. Treated rabbits that succumbed to disease had higher plateau PA levels and shorter plateau duration than surviving treated rabbits.

  1. Human Monoclonal Antibody AVP-21D9 to Protective Antigen Reduces Dissemination of the Bacillus anthracis Ames Strain from the Lungs in a Rabbit Model▿

    Science.gov (United States)

    Peterson, Johnny W.; Comer, Jason E.; Baze, Wallace B.; Noffsinger, David M.; Wenglikowski, Autumn; Walberg, Kristin G.; Hardcastle, Jason; Pawlik, Jennifer; Bush, Kathryn; Taormina, Joanna; Moen, Scott; Thomas, John; Chatuev, Bagram M.; Sower, Laurie; Chopra, Ashok K.; Stanberry, Lawrence R.; Sawada, Ritsuko; Scholz, Wolfgang W.; Sircar, Jagadish

    2007-01-01

    Dutch-belted and New Zealand White rabbits were passively immunized with AVP-21D9, a human monoclonal antibody to protective antigen (PA), at the time of Bacillus anthracis spore challenge using either nasal instillation or aerosol challenge techniques. AVP-21D9 (10 mg/kg) completely protected both rabbit strains against lethal infection with Bacillus anthracis Ames spores, regardless of the inoculation method. Further, all but one of the passively immunized animals (23/24) were completely resistant to rechallenge with spores by either respiratory challenge method at 5 weeks after primary challenge. Analysis of the sera at 5 weeks after primary challenge showed that residual human anti-PA levels decreased by 85 to 95%, but low titers of rabbit-specific anti-PA titers were also measured. Both sources of anti-PA could have contributed to protection from rechallenge. In a subsequent study, bacteriological and histopathology analyses revealed that B. anthracis disseminated to the bloodstream in some naïve animals as early as 24 h postchallenge and increased in frequency with time. AVP-21D9 significantly reduced the dissemination of the bacteria to the bloodstream and to various organs following infection. Examination of tissue sections from infected control animals, stained with hematoxylin-eosin and the Gram stain, showed edema and/or hemorrhage in the lungs and the presence of bacteria in mediastinal lymph nodes, with necrosis and inflammation. Tissue sections from infected rabbits dosed with AVP-21D9 appeared comparable to corresponding tissues from uninfected animals despite lethal challenge with B. anthracis Ames spores. Concomitant treatment with AVP-21D9 at the time of challenge conferred complete protection in the rabbit inhalation anthrax model. Early treatment increased the efficacy progressively and in a dose-dependent manner. Thus, AVP-21D9 could offer an adjunct or alternative clinical treatment regimen against inhalation anthrax. PMID:17452469

  2. Human monoclonal antibody AVP-21D9 to protective antigen reduces dissemination of the Bacillus anthracis Ames strain from the lungs in a rabbit model.

    Science.gov (United States)

    Peterson, Johnny W; Comer, Jason E; Baze, Wallace B; Noffsinger, David M; Wenglikowski, Autumn; Walberg, Kristin G; Hardcastle, Jason; Pawlik, Jennifer; Bush, Kathryn; Taormina, Joanna; Moen, Scott; Thomas, John; Chatuev, Bagram M; Sower, Laurie; Chopra, Ashok K; Stanberry, Lawrence R; Sawada, Ritsuko; Scholz, Wolfgang W; Sircar, Jagadish

    2007-07-01

    Dutch-belted and New Zealand White rabbits were passively immunized with AVP-21D9, a human monoclonal antibody to protective antigen (PA), at the time of Bacillus anthracis spore challenge using either nasal instillation or aerosol challenge techniques. AVP-21D9 (10 mg/kg) completely protected both rabbit strains against lethal infection with Bacillus anthracis Ames spores, regardless of the inoculation method. Further, all but one of the passively immunized animals (23/24) were completely resistant to rechallenge with spores by either respiratory challenge method at 5 weeks after primary challenge. Analysis of the sera at 5 weeks after primary challenge showed that residual human anti-PA levels decreased by 85 to 95%, but low titers of rabbit-specific anti-PA titers were also measured. Both sources of anti-PA could have contributed to protection from rechallenge. In a subsequent study, bacteriological and histopathology analyses revealed that B. anthracis disseminated to the bloodstream in some naïve animals as early as 24 h postchallenge and increased in frequency with time. AVP-21D9 significantly reduced the dissemination of the bacteria to the bloodstream and to various organs following infection. Examination of tissue sections from infected control animals, stained with hematoxylin-eosin and the Gram stain, showed edema and/or hemorrhage in the lungs and the presence of bacteria in mediastinal lymph nodes, with necrosis and inflammation. Tissue sections from infected rabbits dosed with AVP-21D9 appeared comparable to corresponding tissues from uninfected animals despite lethal challenge with B. anthracis Ames spores. Concomitant treatment with AVP-21D9 at the time of challenge conferred complete protection in the rabbit inhalation anthrax model. Early treatment increased the efficacy progressively and in a dose-dependent manner. Thus, AVP-21D9 could offer an adjunct or alternative clinical treatment regimen against inhalation anthrax. PMID:17452469

  3. A viral nanoparticle with dual function as an anthrax antitoxin and vaccine.

    Directory of Open Access Journals (Sweden)

    Darly J Manayani

    2007-10-01

    Full Text Available The recent use of Bacillus anthracis as a bioweapon has stimulated the search for novel antitoxins and vaccines that act rapidly and with minimal adverse effects. B. anthracis produces an AB-type toxin composed of the receptor-binding moiety protective antigen (PA and the enzymatic moieties edema factor and lethal factor. PA is a key target for both antitoxin and vaccine development. We used the icosahedral insect virus Flock House virus as a platform to display 180 copies of the high affinity, PA-binding von Willebrand A domain of the ANTXR2 cellular receptor. The chimeric virus-like particles (VLPs correctly displayed the receptor von Willebrand A domain on their surface and inhibited lethal toxin action in in vitro and in vivo models of anthrax intoxication. Moreover, VLPs complexed with PA elicited a potent toxin-neutralizing antibody response that protected rats from anthrax lethal toxin challenge after a single immunization without adjuvant. This recombinant VLP platform represents a novel and highly effective, dually-acting reagent for treatment and protection against anthrax.

  4. Anthrax edema toxin differentially regulates lipopolysaccharide-induced monocyte production of tumor necrosis factor alpha and interleukin-6 by increasing intracellular cyclic AMP.

    OpenAIRE

    Hoover, D L; Friedlander, A M; Rogers, L.C.; Yoon, I. K.; Warren, R L; Cross, A S

    1994-01-01

    Bacillus anthracis exotoxins mediate most of the symptomatology of severe anthrax. In addition to a clinical syndrome reminiscent of septic shock, which may be mediated by cytokines produced by macrophages stimulated with lethal toxin, infected patients show profound edema at sites of infection. Edema is mediated by edema toxin (ET), which comprises of a binding molecule, protective antigen, and an active moiety, edema factor, which possesses intrinsic adenylyl cyclase activity. Intracellular...

  5. Biochip for the Detection of Bacillus anthracis Lethal Factor and Therapeutic Agents against Anthrax Toxins.

    Science.gov (United States)

    Silin, Vitalii; Kasianowicz, John J; Michelman-Ribeiro, Ariel; Panchal, Rekha G; Bavari, Sina; Robertson, Joseph W F

    2016-01-01

    Tethered lipid bilayer membranes (tBLMs) have been used in many applications, including biosensing and membrane protein structure studies. This report describes a biosensor for anthrax toxins that was fabricated through the self-assembly of a tBLM with B. anthracis protective antigen ion channels that are both the recognition element and electrochemical transducer. We characterize the sensor and its properties with electrochemical impedance spectroscopy and surface plasmon resonance. The sensor shows a sensitivity similar to ELISA and can also be used to rapidly screen for molecules that bind to the toxins and potentially inhibit their lethal effects. PMID:27348008

  6. Antigen

    Science.gov (United States)

    An antigen is any substance that causes your immune system to produce antibodies against it. This means your immune ... and is trying to fight it off. An antigen may be a substance from the environment, such ...

  7. Protective efficacy of vaccination with Neospora caninum multiple recombinant antigens against experimental Neospora caninum infection

    OpenAIRE

    Cho, Jung-Hwa; Chung, Woo-Suk; Song, Kyoung-Ju; Na, Byoung-kuk; Kang, Seung-Won; Song, Chul-Yong; Kim, Tong-Soo

    2005-01-01

    Protective efficacy of vaccination with Neospora caninum multiple recombinant antigens against N. caninum infection was evaluated in vitro and in vivo. Two major immunodominant surface antigens (NcSAG1 and NcSRS2) and two dense granule proteins (NcDG1 and NcDG2) of N. caninum tachyzoites were expressed in E. coli, respectively. An in vitro neutralization assay using polyclonal antisera raised against each recombinant antigen showed inhibitory effects on the invasion of N. caninum tachyzoites ...

  8. A novel mechanism for antibody-based anthrax toxin neutralization: inhibition of prepore-to-pore conversion.

    Science.gov (United States)

    Mechaly, Adva; Levy, Haim; Epstein, Eyal; Rosenfeld, Ronit; Marcus, Hadar; Ben-Arie, Einat; Shafferman, Avigdor; Ordentlich, Arie; Mazor, Ohad

    2012-09-21

    Protective antigen (PA), a key component of anthrax toxin, mediates the entry of lethal factor (LF) or edema factor (EF) through a membranal pore into target cells. We have previously reported the isolation and chimerization of cAb29, an anti-PA monoclonal antibody that effectively neutralizes anthrax toxin in an unknown mechanism. The aim of this study was to elucidate the neutralizing mechanism of this antibody in vitro and to test its ability to confer post-exposure protection against anthrax in vivo. By systematic evaluation of the steps taking place during the PA-based intoxication process, we found that cAb29 did not interfere with the initial steps of intoxication, namely its ability to bind to the anthrax receptor, the consecutive proteolytic cleavage to PA(63), oligomerization, prepore formation, or LF binding. However, the binding of cAb29 to the prepore prevented its pH-triggered transition to the transmembranal pore, thus preventing the last step of intoxication, i.e. the translocation of LF/EF into the cell. Epitope mapping, using a phage display peptide library, revealed that cAb29 binds the 2α(1) loop in domain 2 of PA, a loop that undergoes major conformational changes during pore formation. In vivo, we found that 100% of anthrax-infected rabbits survived when treated with cAb29 12 h after exposure. In conclusion, these experiments demonstrate that cAb29 exerts its potent neutralizing activity in a unique manner by blocking the prepore-to-pore conversion process. PMID:22869370

  9. Anthrax undervalued zoonosis

    OpenAIRE

    Fasanella, Antonio; Galante, Domenico; Garofolo, Giuliano; Jones, Martin Hugh

    2010-01-01

    Abstract Anthrax is a non-contagious disease, known since ancient times but it became a matter of global public interest after the bioterrorist attacks in the U.S.A. during the autumn of 2001. The concern of politicians and civil authorities everywhere towards this emergency necessitated a significant research effort and the prevention of new bioterrorist acts. But anthrax is primarily a disease that affects livestock and wildlife; its distribution is worldwide; and it can represen...

  10. Pediatric Anthrax Clinical Management

    OpenAIRE

    Bradley, John S.; Peacock, Georgina; Krug, Steven E.; Bower, William A.; Cohn, Amanda C.; Meaney-Delman, Dana; Pavia, Andrew T.

    2014-01-01

    Anthrax is a zoonotic disease caused by Bacillus anthracis, which has multiple routes of infection in humans, manifesting in different initial presentations of disease. Because B anthracis has the potential to be used as a biological weapon and can rapidly progress to systemic anthrax with high mortality in those who are exposed and untreated, clinical guidance that can be quickly implemented must be in place before any intentional release of the agent. This document provides clinical guidanc...

  11. Proteome-wide antigen discovery of novel protective vaccine candidates against Staphylococcus aureus infection

    DEFF Research Database (Denmark)

    Rasmussen, Karina Juhl; Mattsson, Andreas Holm; Pilely, Katrine;

    2016-01-01

    is an urgent need to institute non-antimicrobial measures, such as vaccination, against the spread of MRSA. With the aim of finding new protective antigens for vaccine development, this study used a proteome-wide in silico antigen prediction platform to screen the proteome of S. aureus strain MRSA252...

  12. Anthrax - past, present and future

    OpenAIRE

    Madle-Samardžija Nadežda D.; Turkulov Vesna S.; Vukadinov Jovan S.; Čanak Grozdana J.; Doder Radoslava Ž.; Sević Siniša Đ.

    2002-01-01

    History Anthrax has been known since ancient times. Besides some references in the Old Testament, there is evidence of plagues in ancient Egypt, as well as descriptions of the disease by the Roman poet Virgil. Etiology Anthrax is caused by Bacillus anthracis, unmovable, aerobic, gram-positive rods. It forms spores, which can survive for years in the environment. Pathogenesis Capsular polypeptide and anthrax toxin are the principal virulence factors of Bacillus anthracis. Anthrax toxin consist...

  13. Cutaneous anthrax cases leading compartment syndrome

    OpenAIRE

    Emine Parlak; Ali Aydın; Mehmet Parlak

    2013-01-01

    Bacillus anthracis is the causative agent of anthrax. Anthrax is a zoonotic disease with three clinical forms. Clinical forms are skin, gastrointestinal and inhalational anthrax. Cutaneous anthrax is 95% of the cases. Cutaneous anthrax frequently defines itself. Clinical presentation of anthrax may be severe and complicated in some cases. There may seem complications like meningitis, septic shock and compartment syndrome. Compartment Syndrome is a rare complication of cutaneous anthrax ...

  14. Diagnostic performance characteristics of a rapid field test for anthrax in cattle.

    Science.gov (United States)

    Muller, Janine; Gwozdz, Jacek; Hodgeman, Rachel; Ainsworth, Catherine; Kluver, Patrick; Czarnecki, Jill; Warner, Simone; Fegan, Mark

    2015-07-01

    Although diagnosis of anthrax can be made in the field with a peripheral blood smear, and in the laboratory with bacterial culture or molecular based tests, these tests require either considerable experience or specialised equipment. Here we report on the evaluation of the diagnostic sensitivity and specificity of a simple and rapid in-field diagnostic test for anthrax, the anthrax immunochromatographic test (AICT). The AICT detects the protective antigen (PA) component of the anthrax toxin present within the blood of an animal that has died from anthrax. The test provides a result in 15min and offers the advantage of avoiding the necessity for on-site necropsy and subsequent occupational risks and environmental contamination. The specificity of the test was determined by testing samples taken from 622 animals, not infected with Bacillus anthracis. Diagnostic sensitivity was estimated on samples taken from 58 animals, naturally infected with B. anthracis collected over a 10-year period. All samples used to estimate the diagnostic sensitivity and specificity of the AICT were also tested using the gold standard of bacterial culture. The diagnostic specificity of the test was estimated to be 100% (99.4-100%; 95% CI) and the diagnostic sensitivity was estimated to be 93.1% (83.3-98.1%; 95% CI) (Clopper-Pearson method). Four samples produced false negative AICT results. These were among 9 samples, all of which tested positive for B. anthracis by culture, where there was a time delay between collection and testing of >48h and/or the samples were collected from animals that were >48h post-mortem. A statistically significant difference (Ptest) was found between the ability of the AICT to detect PA in samples from culture positive animals tested >48h post-mortem 5 of 9 Se=56% (21-86.3%; 95% CI) (Clopper-Pearson method). Based upon these results a post hoc cut-off for use of the AICT of 48h post-mortem was applied, Se=100% (92.8-100%; 95% CI) and Sp=100% (99.4-100%; 95% CI

  15. Acceleration of epithelial cell syndecan-1 shedding by anthrax hemolytic virulence factors

    Directory of Open Access Journals (Sweden)

    Chandhoke Vikas

    2006-02-01

    Full Text Available Abstract Background It has been recently reported that major pathogens Staphylococcus aureus and Pseudomonas aeruginosa accelerate a normal process of cell surface syndecan-1 (Synd1 ectodomain shedding as a mechanism of host damage due to the production of shedding-inducing virulence factors. We tested if acceleration of Synd1 shedding takes place in vitro upon treatment of epithelial cells with B. anthracis hemolysins, as well as in vivo during anthrax infection in mice. Results The isolated anthrax hemolytic proteins AnlB (sphingomyelinase and AnlO (cholesterol-binding pore-forming factor, as well as ClnA (B. cereus homolog of B. anthracis phosphatidyl choline-preferring phospholipase C cause accelerated shedding of Synd1 and E-cadherin from epithelial cells and compromise epithelial barrier integrity within a few hours. In comparison with hemolysins in a similar range of concentrations, anthrax lethal toxin (LT also accelerates shedding albeit at slower rate. Individual components of LT, lethal factor and protective antigen are inactive with regard to shedding. Inhibition experiments favor a hypothesis that activities of tested bacterial shedding inducers converge on the stimulation of cytoplasmic tyrosine kinases of the Syk family, ultimately leading to activation of cellular sheddase. Both LT and AnlO modulate ERK1/2 and p38 MAPK signaling pathways, while JNK pathway seems to be irrelevant to accelerated shedding. Accelerated shedding of Synd1 also takes place in DBA/2 mice challenged with Bacillus anthracis (Sterne spores. Elevated levels of shed ectodomain are readily detectable in circulation after 24 h. Conclusion The concerted acceleration of shedding by several virulence factors could represent a new pathogenic mechanism contributing to disruption of epithelial or endothelial integrity, hemorrhage, edema and abnormal cell signaling during anthrax infection.

  16. Anthrax toxins induce shock in rats by depressed cardiac ventricular function.

    Directory of Open Access Journals (Sweden)

    Linley E Watson

    Full Text Available Anthrax infections are frequently associated with severe and often irreversible hypotensive shock. The isolated toxic proteins of Bacillus anthracis produce a non-cytokine-mediated hypotension in rats by unknown mechanisms. These observations suggest the anthrax toxins have direct cardiovascular effects. Here, we characterize these effects. As a first step, we administered systemically anthrax lethal toxin (LeTx and edema toxin (EdTx to cohorts of three to twelve rats at different doses and determined the time of onset, degree of hypotension and mortality. We measured serum concentrations of the protective antigen (PA toxin component at various time points after infusion. Peak serum levels of PA were in the microg/mL range with half-lives of 10-20 minutes. With doses that produced hypotension with delayed lethality, we then gave bolus intravenous infusions of toxins to groups of four to six instrumented rats and continuously monitored blood pressure by telemetry. Finally, the same doses used in the telemetry experiments were given to additional groups of four rats, and echocardiography was performed pretreatment and one, two, three and twenty-four hours post-treatment. LeTx and EdTx each produced hypotension. We observed a doubling of the velocity of propagation and 20% increases in left ventricular diastolic and systolic areas in LeTx-treated rats, but not in EdTx-treated rats. EdTx-but not LeTx-treated rats showed a significant increase in heart rate. These results indicate that LeTx reduced left ventricular systolic function and EdTx reduced preload. Uptake of toxins occurs readily into tissues with biological effects occurring within minutes to hours of serum toxin concentrations in the microg/mL range. LeTx and EdTx yield an irreversible shock with subsequent death. These findings should provide a basis for the rational design of drug interventions to reduce the dismal prognosis of systemic anthrax infections.

  17. Production of Functionally Active and Immunogenic Non-Glycosylated Protective Antigen from Bacillus anthracis in Nicotiana benthamiana by Co-Expression with Peptide-N-Glycosidase F (PNGase F) of Flavobacterium meningosepticum.

    Science.gov (United States)

    Mamedov, Tarlan; Chichester, Jessica A; Jones, R Mark; Ghosh, Ananya; Coffin, Megan V; Herschbach, Kristina; Prokhnevsky, Alexey I; Streatfield, Stephen J; Yusibov, Vidadi

    2016-01-01

    Bacillus anthracis has long been considered a potential biological warfare agent, and therefore, there is a need for a safe, low-cost and highly efficient anthrax vaccine with demonstrated long-term stability for mass vaccination in case of an emergency. Many efforts have been made towards developing an anthrax vaccine based on recombinant protective antigen (rPA) of B. anthracis, a key component of the anthrax toxin, produced using different expression systems. Plants represent a promising recombinant protein production platform due to their relatively low cost, rapid scalability and favorable safety profile. Previous studies have shown that full-length rPA produced in Nicotiana benthamiana (pp-PA83) is immunogenic and can provide full protection against lethal spore challenge; however, further improvement in the potency and stability of the vaccine candidate is necessary. PA of B. anthracis is not a glycoprotein in its native host; however, this protein contains potential N-linked glycosylation sites, which can be aberrantly glycosylated during expression in eukaryotic systems including plants. This glycosylation could affect the availability of certain key epitopes either due to masking or misfolding of the protein. Therefore, a non-glycosylated form of pp-PA83 was engineered and produced in N. benthamiana using an in vivo deglycosylation approach based on co-expression of peptide-N-glycosidase F (PNGase F) from Flavobacterium meningosepticum. For comparison, versions of pp-PA83 containing point mutations in six potential N-glycosylation sites were also engineered and expressed in N. benthamiana. The in vivo deglycosylated pp-PA83 (pp-dPA83) was shown to have in vitro activity, in contrast to glycosylated pp-PA83, and to induce significantly higher levels of toxin-neutralizing antibody responses in mice compared with glycosylated pp-PA83, in vitro deglycosylated pp-PA83 or the mutated versions of pp-PA83. These results suggest that pp-dPA83 may offer advantages

  18. Clinical findings in children with cutaneous anthrax in eastern Turkey.

    Science.gov (United States)

    Akbayram, Sinan; Doğan, Murat; Akgün, Cihangir; Peker, Erdal; Bektaş, M Selçuk; Kaya, Avni; Caksen, Hüseyin; Oner, Ahmet Faik

    2010-01-01

    Anthrax is a zoonosis produced by Bacillus anthracis. The aim of this study was to evaluate the clinical findings, therapy, and outcome in children with cutaneous anthrax (CA). Data on age, gender, occupation, clinical symptoms and findings, location and type of lesions, clinical history, laboratory findings, treatment, and outcome were recorded from patients' medical records, retrospectively. The study included 65 patients between 1 month and 18 years old (9.0±4.0 years), 37 patients (56.9%) were male and 28 (43.1%) were female. Most of the patients (89.1%) were admitted in summer and autumn (panthrax edema was noted in 36 (55.3%) patients, anthrax pustule in 27 (41.5%), and anthrax edema and anthrax pustule in two (3%) patients. Gram staining and culture was positive for B. anthracis in 35 (53.8%) patients, and only Gram staining was positive in 10 (15.4%) patients. In the remaining 20 (30.8%) patients, the diagnosis was made by clinical findings. Because the anthrax outbreak in Turkey was associated with slaughtering or milking of ill cows, sheep, or goats, and handling raw meat without taking any protective measures, persons in the community must be educated about using personal protective equipment during slaughtering of animals and handling of meat and skins. PMID:21083757

  19. Gastrointestinal anthrax: clinical experience in 5 cases

    OpenAIRE

    Maddah, Ghodratollah; ABDOLLAHI, ABBAS; Katebi, Mehrdad

    2013-01-01

    Background: Bacillus anthracis may usually cause three forms of anthrax: inhalation, gastrointestinal and cutaneous. The gastrointestinal (GI) anthrax develops after eating contaminated meat. Thus, in this paper were report 5 cases of intestinal anthrax.

  20. Anthrax Vaccine: What You Need to Know

    Science.gov (United States)

    ... vis 1 What is anthrax? Anthrax is a serious disease that can affect both animals and humans. It ... a severe allergic reaction. Anthrax is a very serious disease, and the risk of serious harm from the ...

  1. MHC Class II and Non-MHC Class II Genes Differentially Influence Humoral Immunity to Bacillus anthracis Lethal Factor and Protective Antigen

    Directory of Open Access Journals (Sweden)

    Judith A. James

    2012-12-01

    Full Text Available Anthrax Lethal Toxin consists of Protective Antigen (PA and Lethal Factor (LF, and current vaccination strategies focus on eliciting antibodies to PA. In human vaccination, the response to PA can vary greatly, and the response is often directed toward non-neutralizing epitopes. Variable vaccine responses have been shown to be due in part to genetic differences in individuals, with both MHC class II and other genes playing roles. Here, we investigated the relative contribution of MHC class II versus non-MHC class II genes in the humoral response to PA and LF immunization using three immunized strains of inbred mice: A/J (H-2k at the MHC class II locus, B6 (H-2b, and B6.H2k (H-2k. IgG antibody titers to LF were controlled primarily by the MHC class II locus, whereas IgG titers to PA were strongly influenced by the non-MHC class II genetic background. Conversely, the humoral fine specificity of reactivity to LF appeared to be controlled primarily through non-MHC class II genes, while the specificity of reactivity to PA was more dependent on MHC class II. Common epitopes, reactive in all strains, occurred in both LF and PA responses. These results demonstrate that MHC class II differentially influences humoral immune responses to LF and PA.

  2. Two capsular polysaccharides enable Bacillus cereus G9241 to cause anthrax-like disease

    OpenAIRE

    Oh, So-Young; Budzik, Jonathan M.; Garufi, Gabriella; Schneewind, Olaf

    2011-01-01

    Bacillus cereus G9241 causes an anthrax-like respiratory illness in humans, however the molecular mechanisms of disease pathogenesis are not known. Genome sequencing identified two putative virulence plasmids proposed to provide for anthrax toxin (pBCXO1) and/or capsule expression (pBC218). We report here that B. cereus G9241 causes anthrax-like disease in immune-competent mice, which is dependent on each of the two virulence plasmids. pBCXO1 encodes pagA1, the homolog of anthrax protective a...

  3. Requirements for anthrax toxin entry into cells

    OpenAIRE

    Ryan, Patricia Lynn

    2010-01-01

    Bacillus anthracis secretes a harmful exotoxin called anthrax toxin. Anthrax toxin has deleterious effects on several host cell types and is a significant contributor to anthrax pathogenesis. Toxin-deleted strains of B. anthracis are highly attenuated and many of the symptoms of anthrax can be replicated with anthrax toxin alone. Anthrax toxin is an AB-type toxin with two catalytic A moieties. PA, the B moiety, is responsible for receptor binding, pore formation and translocation of the catal...

  4. CUTANEOUS ANTHRAX: A CASE REPORT

    OpenAIRE

    Gargi; Indrani; Pratip Kumar; Samidul Hoque

    2013-01-01

    Bacillus anthracis is the causative agent of Anthrax. The aim was to detect the presence of Bacillus anthracis in a case of suspected Cu taneous Anthrax in a 30 year old male who had history of handling a sick cow and noticed a painless ulcer on his palm 4 days later . Microbiological investigations revealed the presence of Bacillus anthracis . A diagnosis of Cutaneous Anthrax was made and th e concerned authority was immediately notified

  5. Antigen-binding site protection during radiolabeling leads to a higher immunoreactive fraction

    International Nuclear Information System (INIS)

    It is generally accepted that the immunointegrity of an antibody (Ab) depends on the preservation of its antigen-binding sites. Our goal was to radiolabel an antibody at several iodine:antibody molar ratios under conditions protecting its combining site and to compare its immunoreactive fraction (IRF) and electrophoretic mobility with those of the same antibody radiolabeled without protection. The data indicate that an antibody radiolabeled while its antigen-binding site is occupied by its antigen had the same IRF, regardless of the number of iodine atoms per antibody molecule. On the other hand, even at an I:Ab ratio of 1:1, the IRF of the same antibody radiolabeled without protection was lower than that of a protected one and decreased with increasing I:Ab ratios. In addition, the iodination of these Ab changes their electrophoretic mobility; however, when the Ab is labeled in the protected state, the degree of change is less. The binding of an antibody to its antigen prior to radiolabeling, therefore, enhances its immuno-integrity and prevents major conformational changes as reflected by electrophoresis

  6. Subdominant outer membrane antigens in anaplasma marginale: conservation, antigenicity, and protective capacity using recombinant protein

    Science.gov (United States)

    Anaplasma marginale is a tick-borne rickettsial pathogen of cattle with a worldwide distribution. Currently a safe and efficacious vaccine is unavailable. Outer membrane protein (OMP) extracts or a well- defined surface protein complex reproducibly induce protective immunity. However, there are seve...

  7. Anthrax of the eyelids.

    OpenAIRE

    Amraoui, A.; Tabbara, K F; Zaghloul, K

    1992-01-01

    Anthrax is a disease caused by Bacillus anthracis. The disease affects primarily herbivores including sheep, cattle, horses, and other domestic animals. Humans may rarely be affected. We examined one male and two female patients with a localised itchy erythematous papule of the eyelid. A necrotising ulcer formed in each of the three cases resulting in a black lesion. Scraping in each case showed Gram positive rods and culture grew Bacillus anthracis. All three patients responded to the intrav...

  8. Anthrax Lethal Toxin and the Induction of CD4 T Cell Immunity

    Directory of Open Access Journals (Sweden)

    Daniel M. Altmann

    2012-10-01

    Full Text Available Bacillus anthracis secretes exotoxins which act through several mechanisms including those that can subvert adaptive immunity with respect both to antigen presenting cell and T cell function. The combination of Protective Antigen (PA and Lethal Factor (LF forming Lethal Toxin (LT, acts within host cells to down-regulate the mitogen activated protein kinase (MAPK signaling cascade. Until recently the MAPK kinases were the only known substrate for LT; over the past few years it has become evident that LT also cleaves Nlrp1, leading to inflammasome activation and macrophage death. The predicted downstream consequences of subverting these important cellular pathways are impaired antigen presentation and adaptive immunity. In contrast to this, recent work has indicated that robust memory T cell responses to B. anthracis antigens can be identified following natural anthrax infection. We discuss how LT affects the adaptive immune response and specifically the identification of B. anthracis epitopes that are both immunogenic and protective with the potential for inclusion in protein sub-unit based vaccines.

  9. Passive protection by polyclonal antibodies against Bacillus anthracis infection in guinea pigs.

    OpenAIRE

    Little, S F; Ivins, B E; Fellows, P F; Friedlander, A M

    1997-01-01

    The protective effects of polyclonal antisera produced by injecting guinea pigs with protective antigen (PA), the chemical anthrax vaccine AVA, or Sterne spore vaccine, as well as those of toxin-neutralizing monoclonal antibodies (MAbs) produced against PA, lethal factor, and edema factor, were examined in animals infected with Bacillus anthracis spores. Only the anti-PA polyclonal serum significantly protected the guinea pigs from death, with 67% of infected animals surviving. Although none ...

  10. Anthrax: a disease in waiting?

    OpenAIRE

    Doganay, L; Welsby, P.D.

    2006-01-01

    Anthrax was a relatively unknown disease in the Western world until 2001, when spores were maliciously mailed in the US, causing five deaths. The mortality of the disease, the stability of its spores and the subsequent lack of person‐to‐person spread make anthrax an attractive biological weapon for terrorists with a desire for targeted mass destruction.

  11. Self-Adjuvanting Bacterial Vectors Expressing Pre-Erythrocytic Antigens Induce Sterile Protection against Malaria

    Directory of Open Access Journals (Sweden)

    Elke eBergmann-Leitner

    2013-07-01

    Full Text Available Genetically inactivated, Gram-negative bacteria that express malaria vaccine candidates represent a promising novel self-adjuvanting vaccine approach. Antigens expressed on particulate bacterial carriers not only target directly to antigen-presenting cells but also provide a strong danger signal thus circumventing the requirement for potent extraneous adjuvants. E. coli expressing malarial antigens resulted in the induction of either Th1 or Th2 biased responses that were dependent on both antigen and sub-cellular localization. Some of these constructs induced higher quality humoral responses compared to recombinant protein and most importantly they were able to induce sterile protection against sporozoite challenge in a murine model of malaria. In light of these encouraging results, two major Plasmodium falciparum pre-erythrocytic malaria vaccine targets, the Cell-Traversal protein for Ookinetes and Sporozoites (CelTOS fused to the Maltose-binding protein in the periplasmic space and the Circumsporozoite Protein (CSP fused to the Outer membrane protein A in the outer membrane were expressed in a clinically relevant, attenuated Shigella strain (Shigella flexneri 2a. This type of live attenuated vector has previously undergone clinical investigations as a vaccine against shigellosis. Using this novel delivery platform for malaria, we find that vaccination with the whole organism represents an effective vaccination alternative that induces protective efficacy against sporozoite challenge. Shigella GeMI-Vax expressing malaria targets warrant further evaluation to determine their full potential as a dual disease, multivalent, self-adjuvanting vaccine system, against both shigellosis and malaria.

  12. Mucosal immunization with attenuated Salmonella Typhi expressing anthrax PA83 primes monkeys for accelerated serum antibody responses to parenteral PA83 vaccine

    OpenAIRE

    Galen, James E.; Chinchilla, Magaly; Marcela F. Pasetti; Wang, Jin Yuan; Zhao, LiCheng; Arciniega-Martinez, Ivonne; Silverman, David J.; Levine, Myron M.

    2009-01-01

    Salmonella enterica serovar Typhi vaccine strain CVD 908-htrA was genetically engineered for stable plasmid-based expression of protective antigen of anthrax toxin (PA83) fused with the export protein ClyA (ClyA-PA83). The priming potential of CVD 908-htrA expressing ClyA-PA83 was assessed in 12 rhesus and 20 cynomolgus macaques immunized mucosally (intranasally) on days 0 and 14. A parenteral boost with purified PA83 plus alum was given to rhesus macaques on days 42 and 225; cynomolgus monke...

  13. Peptide- and proton-driven allosteric clamps catalyze anthrax toxin translocation across membranes.

    Science.gov (United States)

    Das, Debasis; Krantz, Bryan A

    2016-08-23

    Anthrax toxin is an intracellularly acting toxin in which sufficient information is available regarding the structure of its transmembrane channel, allowing for detailed investigation of models of translocation. Anthrax toxin, comprising three proteins-protective antigen (PA), lethal factor (LF), and edema factor-translocates large proteins across membranes. Here we show that the PA translocase channel has a transport function in which its catalytic active sites operate allosterically. We find that the phenylalanine clamp (ϕ-clamp), the known conductance bottleneck in the PA translocase, gates as either a more closed state or a more dilated state. Thermodynamically, the two channel states have >300-fold different binding affinities for an LF-derived peptide. The change in clamp thermodynamics requires distant α-clamp and ϕ-clamp sites. Clamp allostery and translocation are more optimal for LF peptides with uniform stereochemistry, where the least allosteric and least efficiently translocated peptide had a mixed stereochemistry. Overall, the kinetic results are in less agreement with an extended-chain Brownian ratchet model but, instead, are more consistent with an allosteric helix-compression model that is dependent also on substrate peptide coil-to-helix/helix-to-coil cooperativity. PMID:27506790

  14. Anthrax toxin receptor 2 determinants that dictate the pH threshold of toxin pore formation.

    Directory of Open Access Journals (Sweden)

    Heather M Scobie

    Full Text Available The anthrax toxin receptors, ANTXR1 and ANTXR2, act as molecular clamps to prevent the protective antigen (PA toxin subunit from forming pores until exposure to low pH. PA forms pores at pH approximately 6.0 or below when it is bound to ANTXR1, but only at pH approximately 5.0 or below when it is bound to ANTXR2. Here, structure-based mutagenesis was used to identify non-conserved ANTXR2 residues responsible for this striking 1.0 pH unit difference in pH threshold. Residues conserved between ANTXR2 and ANTXR1 that influence the ANTXR2-associated pH threshold of pore formation were also identified. All of these residues contact either PA domain 2 or the neighboring edge of PA domain 4. These results provide genetic evidence for receptor release of these regions of PA as being necessary for the protein rearrangements that accompany anthrax toxin pore formation.

  15. Functions of phenylalanine residues within the beta-barrel stem of the anthrax toxin pore.

    Directory of Open Access Journals (Sweden)

    Jie Wang

    Full Text Available BACKGROUND: A key step of anthrax toxin action involves the formation of a protein-translocating pore within the endosomal membrane by the Protective Antigen (PA moiety. Formation of this transmembrane pore by PA involves interaction of the seven 2beta2-2beta3 loops of the heptameric precursor to generate a 14-strand transmembrane beta barrel. METHODOLOGY/PRINCIPAL FINDINGS: We examined the effects on pore formation, protein translocation, and cytotoxicity, of mutating two phenylalanines, F313 and F314, that lie at the tip the beta barrel, and a third one, F324, that lies part way up the barrel. CONCLUSIONS/SIGNIFICANCE: Our results show that the function of these phenylalanine residues is to mediate membrane insertion and formation of stable transmembrane channels. Unlike F427, a key luminal residue in the cap of the pore, F313, F314, and F324 do not directly affect protein translocation through the pore. Our findings add to our knowledge of structure-function relationships of a key virulence factor of the anthrax bacillus.

  16. Identification of protective and broadly conserved vaccine antigens from the genome of extraintestinal pathogenic Escherichia coli.

    Science.gov (United States)

    Moriel, Danilo Gomes; Bertoldi, Isabella; Spagnuolo, Angela; Marchi, Sara; Rosini, Roberto; Nesta, Barbara; Pastorello, Ilaria; Corea, Vanja A Mariani; Torricelli, Giulia; Cartocci, Elena; Savino, Silvana; Scarselli, Maria; Dobrindt, Ulrich; Hacker, Jörg; Tettelin, Hervé; Tallon, Luke J; Sullivan, Steven; Wieler, Lothar H; Ewers, Christa; Pickard, Derek; Dougan, Gordon; Fontana, Maria Rita; Rappuoli, Rino; Pizza, Mariagrazia; Serino, Laura

    2010-05-18

    Extraintestinal pathogenic Escherichia coli (ExPEC) are a common cause of disease in both mammals and birds. A vaccine to prevent such infections would be desirable given the increasing antibiotic resistance of these bacteria. We have determined the genome sequence of ExPEC IHE3034 (ST95) isolated from a case of neonatal meningitis and compared this to available genome sequences of other ExPEC strains and a few nonpathogenic E. coli. We found 19 genomic islands present in the genome of IHE3034, which are absent in the nonpathogenic E. coli isolates. By using subtractive reverse vaccinology we identified 230 antigens present in ExPEC but absent (or present with low similarity) in nonpathogenic strains. Nine antigens were protective in a mouse challenge model. Some of them were also present in other pathogenic non-ExPEC strains, suggesting that a broadly protective E. coli vaccine may be possible. The gene encoding the most protective antigen was detected in most of the E. coli isolates, highly conserved in sequence and found to be exported by a type II secretion system which seems to be nonfunctional in nonpathogenic strains. PMID:20439758

  17. Anthrax lethal and edema toxins in anthrax pathogenesis

    OpenAIRE

    Liu, Shihui; Moayeri, Mahtab; Leppla, Stephen H.

    2014-01-01

    The pathophysiological effects resulting from many bacterial diseases are caused by exotoxins released by the bacteria. Bacillus anthracis, a spore-forming bacterium, is such a pathogen, causing anthrax through a combination of bacterial infection and toxemia. B. anthracis causes natural infection in humans and animals and has been a top bioterrorism concern since the 2001 anthrax attacks in the USA. The exotoxins secreted by B. anthracis use CMG2 as the major toxin receptor and play essentia...

  18. Stable Dry Powder Formulation for Nasal Delivery of Anthrax Vaccine

    OpenAIRE

    Wang, Sheena H.; Kirwan, Shaun M.; Abraham, Soman N.; Staats, Herman F.; Hickey, Anthony J.

    2011-01-01

    There is a current biodefense interest in protection against Anthrax. Here we developed a new generation of stable and effective anthrax vaccine. We studied the immune response elicited by rPA delivered intranasally with a novel mucosal adjuvant, a mast cell activator Compound 48/80. The vaccine formulation was prepared in a powder form by spray-freeze-drying (SFD) under optimized conditions to produce particles with a target size of D50=25μm, suitable for delivery to the rabbit nasal cavity....

  19. Revisiting the Concept of Targeting Only Bacillus anthracis Toxins as a Treatment for Anthrax.

    Science.gov (United States)

    Glinert, Itai; Bar-David, Elad; Sittner, Assa; Weiss, Shay; Schlomovitz, Josef; Ben-Shmuel, Amir; Mechaly, Adva; Altboum, Zeev; Kobiler, David; Levy, Haim

    2016-08-01

    Protective antigen (PA)-based vaccines are effective in preventing the development of fatal anthrax disease both in humans and in relevant animal models. The Bacillus anthracis toxins lethal toxin (lethal factor [LF] plus PA) and edema toxin (edema factor [EF] plus PA) are essential for the establishment of the infection, as inactivation of these toxins results in attenuation of the pathogen. Since the toxins reach high toxemia levels at the bacteremic stages of the disease, the CDC's recommendations include combining antibiotic treatment with antitoxin (anti-PA) immunotherapy. We demonstrate here that while treatment with a highly potent neutralizing monoclonal antibody was highly efficient as postexposure prophylaxis treatment, it failed to protect rabbits with any detectable bacteremia (≥10 CFU/ml). In addition, we show that while PA vaccination was effective against a subcutaneous spore challenge, it failed to protect rabbits against systemic challenges (intravenous injection of vegetative bacteria) with the wild-type Vollum strain or a toxin-deficient mutant. To test the possibility that additional proteins, which are secreted by the bacteria under pathogenicity-stimulating conditions in vitro, may contribute to the vaccine's potency, we immunized rabbits with a secreted protein fraction from a toxin-null mutant. The antiserum raised against the secreted fraction reacts with the bacteria in an immunofluorescence assay. Immunization with the secreted protein fraction did not protect the rabbits against a systemic challenge with the fully pathogenic bacteria. Full protection was obtained only by a combined vaccination with PA and the secreted protein fraction. Therefore, these results indicate that an effective antiserum treatment in advanced stages of anthrax must include toxin-neutralizing antibodies in combination with antibodies against bacterial cell targets. PMID:27270276

  20. Feasibility of asymmetrical flow field-flow fractionation as a method for detecting protective antigen by direct recognition of size-increased target-captured nanoprobes.

    Science.gov (United States)

    Shin, Kayeong; Choi, Jaeyeong; Cho, Jun-Haeng; Yoon, Moon-Young; Lee, Seungho; Chung, Hoeil

    2015-11-27

    Asymmetrical flow field-flow fractionation (AF4) was evaluated as a potential analytical method for detection of a protective antigen (PA), an Anthrax biomarker. The scheme was based on the recognition of altered AF4 retention through the generation of the size-increased Au nanoparticle probes as a result of PA binding, in which a PA-selective peptide was conjugated on the probe surface. In the visible absorption-based AF4 fractograms, the band position shifted to a longer retention time as the PA concentration increased due to the presence of probe bound with PAs. The shift was insignificant when the concentration was relatively low at 84.3pM. To improve sensitivity, two separate probes conjugated with two different peptides able to bind on different PA epitopes were used together. The band shift then became distinguishable even at 84.3pM of PA sample. The formation of larger PA-probe inter-connected species using the dual-probe system was responsible for the enhanced band shift. In parallel, the feasibility of surface-enhanced Raman scattering (SERS) as a potential AF4 detection method was also evaluated. In the off-line SERS fractogram constructed using fractions collected during AF4 separation, a band shift was also observed for the 84.3pM PA sample, and the band intensity was higher when using the dual-probe system. The combination of AF4 and SERS is promising for the detection of PA and will become a potential tool if the reproducibility of SERS measurement is improved. PMID:26482872

  1. Evaluation of Immunogenicity and Efficacy of Anthrax Vaccine Adsorbed for Postexposure Prophylaxis

    OpenAIRE

    Ionin, Boris; Hopkins, Robert J; Pleune, Brett; Sivko, Gloria S.; Reid, Frances M.; Clement, Kristin H.; Rudge, Thomas L.; Stark, Gregory V.; Innes, Alison; Sari, Suha; Guina, Tina; Howard, Cris; Smith, Jeffrey; Swoboda, M. Lisa; Vert-Wong, Ekaterina

    2013-01-01

    Antimicrobials administered postexposure can reduce the incidence or progression of anthrax disease, but they do not protect against the disease resulting from the germination of spores that may remain in the body after cessation of the antimicrobial regimen. Such additional protection may be achieved by postexposure vaccination; however, no anthrax vaccine is licensed for postexposure prophylaxis (PEP). In a rabbit PEP study, animals were subjected to lethal challenge with aerosolized Bacill...

  2. Delivery of a multivalent scrambled antigen vaccine induces broad spectrum immunity and protection against tuberculosis.

    Science.gov (United States)

    West, Nicholas P; Thomson, Scott A; Triccas, James A; Medveczky, C Jill; Ramshaw, Ian A; Britton, Warwick J

    2011-10-13

    The development of effective anti-Tuberculosis (TB) vaccines is an important step towards improved control of TB in high burden countries. Subunit vaccines are advantageous in terms of safety, particularly in the context of high rates of HIV co-infection, but they must contain sufficient Mycobacterium tuberculosis antigens to stimulate immunity in genetically diverse human populations. We have used a novel approach to develop a synthetic scrambled antigen vaccine (TB-SAVINE), comprised of overlapping, recombined peptides from four M. tuberculosis proteins, Ag85B, ESAT-6, PstS3 and Mpt83, each of which is immunogenic and protective against experimental TB. This polyvalent TB-SAVINE construct stimulated CD4 and CD8T cell responses against the individual proteins and M. tuberculosis in C57BL/6 and Balb/c mice, when delivered as DNA, Fowl Pox Virus or Vaccinia Virus vaccines. In addition, the DNA-TBS vaccine induced protective immunity against pulmonary M. tuberculosis infection in C57BL/6 mice. Co-immunization of Balb/c mice with virally expressed TBS and HIV1-SAVINE vaccine stimulated strong T cell responses to both the M. tuberculosis and HIV proteins, indicating no effects of antigenic competition. Further development of this TB-SAVINE vaccine expressing components from multiple M. tuberculosis proteins may prove an effective vaccine candidate against TB, which could potentially form part of a safe, combined preventative strategy together with HIV immunisations. PMID:21846485

  3. Enzyme-Linked Immunosorbent Assay Employing a Recombinant Antigen for Detection of Protective Antibody against Swine Erysipelas

    OpenAIRE

    Imada, Yumiko; Mori, Yasuyuki; Daizoh, Masaji; Kudoh, Kazuma; Sakano, Tetsuya

    2003-01-01

    The specificities and sensitivities of five recombinant proteins of the surface protective antigen (SpaA) of Erysipelothrix rhusiopathiae were examined by indirect enzyme-linked immunosorbent assay (ELISA) with the aim of developing a reliable serological test for the detection of protective antibody against E. rhusiopathiae. Fully mature protein and the N-terminal 416 amino acids (SpaA416) showed sufficient antigenicities, and further examination was done with SpaA416 because of its higher y...

  4. Identification and characterization of Rhipicephalus (Boophilus) microplus candidate protective antigens for the control of cattle tick infestations

    OpenAIRE

    Almazan, C.; Lagunes, R.; Villar, M.; Canales, M.; R Rosario-Cruz; Jongejan, F; de la Fuente, J.

    2009-01-01

    The cattle ticks, Rhipicephalus (Boophilus) spp., affect cattle production in tropical and subtropical regions of the world. Tick vaccines constitute a cost-effective and environmentally friendly alternative to tick control. The recombinant Rhipicephalus microplus Bm86 antigen has been shown to protect cattle against tick infestations. However, variable efficacy of Bm86-based vaccines against geographic tick strains has encouraged the research for additional tick-protective antigens. Herein, ...

  5. Identification of an OmpW homologue in Burkholderia pseudomallei, a protective vaccine antigen against melioidosis.

    Science.gov (United States)

    Casey, William T; Spink, Natasha; Cia, Felipe; Collins, Cassandra; Romano, Maria; Berisio, Rita; Bancroft, Gregory J; McClean, Siobhán

    2016-05-17

    Burkholderia pseudomallei is the causative agent of melioidosis, which is associated with a range of clinical manifestations, including sepsis and fatal pneumonia and is endemic in Southeast Asia and Northern Australia. Treatment can be challenging and control of infection involves prolonged antibiotic therapy, yet there are no approved vaccines available to prevent infection. Our aim was to develop and assess the potential of a prophylactic vaccine candidate targeted against melioidosis. The identified candidate is the 22kDa outer membrane protein, OmpW. We previously demonstrated that this protein was immunoprotective in mouse models of Burkholderia cepacia complex (Bcc) infections. We cloned Bp_ompW in Escherichia coli, expressed and purified the protein. Endotoxin free protein administered with SAS adjuvant protected Balb/C mice (75% survival) relative to controls (25% survival) (p<0.05). A potent serological response was observed with IgG2a to IgG1 ratio of 6.0. Furthermore C57BL/6 mice were protected for up to 80 days against a lethal dose of B. pseudomallei and surpassed the efficacy of the live attenuated 2D2 positive control. BpompW is homologous across thirteen sequenced B. pseudomallei strains, indicating that it should be broadly protective against B. pseudomallei. In conclusion, we have demonstrated that BpOmpW is able to induce protective immunity against melioidosis and is likely to be an effective vaccine antigen, possibly in combination with other subunit antigens. PMID:27091689

  6. The circumsporozoite protein is an immunodominant protective antigen in irradiated sporozoites.

    Science.gov (United States)

    Kumar, Kota Arun; Sano, Gen-ichiro; Boscardin, Silvia; Nussenzweig, Ruth S; Nussenzweig, Michel C; Zavala, Fidel; Nussenzweig, Victor

    2006-12-14

    Malaria infection starts when mosquitoes inject sporozoites into the skin. The parasites enter the blood stream and make their way to the liver where they develop into the exo-erythrocytic forms (EEFs). Immunization with irradiated sporozoites (IrSp) leads to robust protection against malaria infection in rodents, monkeys and humans by eliciting antibodies to circumsporozoite protein (CS) that inhibit sporozoite infectivity, and T cells that destroy the EEFs. To study the role of non-CS antigens in protection, we produced CS transgenic mice that were tolerant to CS T-cell epitopes. Here we show that in the absence of T-cell-dependent immune responses to CS, protection induced by immunization with two doses of IrSp was greatly reduced. Thus, although hundreds of other Plasmodium genes are expressed in sporozoites and EEFs, CS is a dominant protective antigen. Nevertheless, sterile immunity could be obtained by immunization of CS transgenics with three doses of IrSp. PMID:17151604

  7. Intravacuolar Membranes Regulate CD8 T Cell Recognition of Membrane-Bound Toxoplasma gondii Protective Antigen.

    Science.gov (United States)

    Lopez, Jodie; Bittame, Amina; Massera, Céline; Vasseur, Virginie; Effantin, Grégory; Valat, Anne; Buaillon, Célia; Allart, Sophie; Fox, Barbara A; Rommereim, Leah M; Bzik, David J; Schoehn, Guy; Weissenhorn, Winfried; Dubremetz, Jean-François; Gagnon, Jean; Mercier, Corinne; Cesbron-Delauw, Marie-France; Blanchard, Nicolas

    2015-12-15

    Apicomplexa parasites such as Toxoplasma gondii target effectors to and across the boundary of their parasitophorous vacuole (PV), resulting in host cell subversion and potential presentation by MHC class I molecules for CD8 T cell recognition. The host-parasite interface comprises the PV limiting membrane and a highly curved, membranous intravacuolar network (IVN) of uncertain function. Here, using a cell-free minimal system, we dissect how membrane tubules are shaped by the parasite effectors GRA2 and GRA6. We show that membrane association regulates access of the GRA6 protective antigen to the MHC I pathway in infected cells. Although insertion of GRA6 in the PV membrane is key for immunogenicity, association of GRA6 with the IVN limits presentation and curtails GRA6-specific CD8 responses in mice. Thus, membrane deformations of the PV regulate access of antigens to the MHC class I pathway, and the IVN may play a role in immune modulation. PMID:26628378

  8. Genomic copy number variants: evidence for association with antibody response to anthrax vaccine adsorbed.

    Directory of Open Access Journals (Sweden)

    Michael I Falola

    Full Text Available BACKGROUND: Anthrax and its etiologic agent remain a biological threat. Anthrax vaccine is highly effective, but vaccine-induced IgG antibody responses vary widely following required doses of vaccinations. Such variation can be related to genetic factors, especially genomic copy number variants (CNVs that are known to be enriched among genes with immunologic function. We have tested this hypothesis in two study populations from a clinical trial of anthrax vaccination. METHODS: We performed CNV-based genome-wide association analyses separately on 794 European Americans and 200 African-Americans. Antibodies to protective antigen were measured at week 8 (early response and week 30 (peak response using an enzyme-linked immunosorbent assay. We used DNA microarray data (Affymetrix 6.0 and two CNV detection algorithms, hidden markov model (PennCNV and circular binary segmentation (GeneSpring to determine CNVs in all individuals. Multivariable regression analyses were used to identify CNV-specific associations after adjusting for relevant non-genetic covariates. RESULTS: Within the 22 autosomal chromosomes, 2,943 non-overlapping CNV regions were detected by both algorithms. Genomic insertions containing HLA-DRB5, DRB1 and DQA1/DRA genes in the major histocompatibility complex (MHC region (chromosome 6p21.3 were moderately associated with elevated early antibody response (β = 0.14, p = 1.78×10(-3 among European Americans, and the strongest association was observed between peak antibody response and a segmental insertion on chromosome 1, containing NBPF4, NBPF5, STXMP3, CLCC1, and GPSM2 genes (β = 1.66, p = 6.06×10(-5. For African-Americans, segmental deletions spanning PRR20, PCDH17 and PCH68 genes on chromosome 13 were associated with elevated early antibody production (β = 0.18, p = 4.47×10(-5. Population-specific findings aside, one genomic insertion on chromosome 17 (containing NSF, ARL17 and LRRC37A genes was associated

  9. Cutaneous anthrax cases leading compartment syndrome

    Directory of Open Access Journals (Sweden)

    Emine Parlak

    2013-12-01

    Full Text Available Bacillus anthracis is the causative agent of anthrax. Anthrax is a zoonotic disease with three clinical forms. Clinical forms are skin, gastrointestinal and inhalational anthrax. Cutaneous anthrax is 95% of the cases. Cutaneous anthrax frequently defines itself. Clinical presentation of anthrax may be severe and complicated in some cases. There may seem complications like meningitis, septic shock and compartment syndrome. Compartment Syndrome is a rare complication of cutaneous anthrax and it is life threatening. Physicians working in the endemic area should be aware of this form. In this study, three cases were shown which developed compartment syndrome following cutaneous anthrax. J Microbiol Infect Dis 2013;3(4: 214-217

  10. Development of a Sterne-Based Complement Fixation Test to Monitor the Humoral Response Induced by Anthrax Vaccines.

    Science.gov (United States)

    Adone, Rosanna; Sali, Michela; Francia, Massimiliano; Iatarola, Michela; Donatiello, Adelia; Fasanella, Antonio

    2016-01-01

    Anthrax is a zoonotic disease caused by Bacillus anthracis spore-forming bacterium. Since it is primarily a disease of animals, the control in animals, and humans depend on the prevention in livestock, principally cattle, sheep, and goats. Most veterinary vaccines utilize the toxigenic, uncapsulated (pXO1+/pXO2-) B. anthracis strain 34F2 which affords protection through the production of neutralizing antibodies directed to the toxin components Protective Antigen (PA), Lethal Factor (LF), and Edema Factor (EF). The titration of specific antibodies in sera of vaccinated animals is crucial to evaluate the efficacy of the vaccination and to obtain epidemiological information for an effective anthrax surveillance. In this study, we developed a Sterne-based Complement Fixation Test (CFT) to detect specific antibodies induced in animals vaccinated with Sterne 34F2. We assessed its efficacy in laboratory animals and under field conditions by monitoring the humoral response induced by vaccination in cattle. The results indicated that the Sterne-based CFT is able to correctly identify vaccinated animals. It proved to be a very sensitive and specific test. Moreover, the Sterne-based CFT offers many benefits with regard to costs, standardization and reproducibility of the assay procedure. PMID:26858700

  11. Scaffolded Antigens in Yeast Cell Particle Vaccines Provide Protection against Systemic Polyoma Virus Infection.

    Science.gov (United States)

    Tipper, Donald J; Szomolanyi-Tsuda, Eva

    2016-01-01

    Background. U65, a self-aggregating peptide scaffold, traps fused protein antigens in yeast cells. Conversion to Yeast Cell Particle (YCP) vaccines by partial removal of surface mannoproteins exposes β-glucan, mediating efficient uptake by antigen-presenting cells (APCs). YCP vaccines are inexpensive, capable of rapid large-scale production and have potential for both parenteral and oral use. Results. YCP processing by alkaline hydrolysis exposes up to 20% of the glucan but converts scaffolded antigen and internal yeast proteins into a common aggregate, preventing selective yeast protein removal. For U65-green fluorescent protein (GFP) or U65-Apolipoprotein A1 (ApoA1) subcutaneous vaccines, maximal IgG responses in mice required 10% glucan exposure. IgG responses to yeast proteins were 5-fold lower. Proteolytic mannoprotein removal produced YCPs with only 6% glucan exposure, insufficiently porous for selective removal of even native yeast proteins. Vaccine efficacy was reduced 10-fold. Current YCP formulations, therefore, are not suitable for human use but have considerable potential for use in feed animal vaccines. Significantly, a YCP vaccine expressing a GFP fusion to VP1, the murine polyoma virus major capsid protein, after either oral or subcutaneous administration, protected mice against an intraperitoneal polyoma virus challenge, reducing viral DNA levels in spleen and liver by >98%. PMID:27213160

  12. Scaffolded Antigens in Yeast Cell Particle Vaccines Provide Protection against Systemic Polyoma Virus Infection

    Directory of Open Access Journals (Sweden)

    Donald J. Tipper

    2016-01-01

    Full Text Available Background. U65, a self-aggregating peptide scaffold, traps fused protein antigens in yeast cells. Conversion to Yeast Cell Particle (YCP vaccines by partial removal of surface mannoproteins exposes β-glucan, mediating efficient uptake by antigen-presenting cells (APCs. YCP vaccines are inexpensive, capable of rapid large-scale production and have potential for both parenteral and oral use. Results. YCP processing by alkaline hydrolysis exposes up to 20% of the glucan but converts scaffolded antigen and internal yeast proteins into a common aggregate, preventing selective yeast protein removal. For U65-green fluorescent protein (GFP or U65-Apolipoprotein A1 (ApoA1 subcutaneous vaccines, maximal IgG responses in mice required 10% glucan exposure. IgG responses to yeast proteins were 5-fold lower. Proteolytic mannoprotein removal produced YCPs with only 6% glucan exposure, insufficiently porous for selective removal of even native yeast proteins. Vaccine efficacy was reduced 10-fold. Current YCP formulations, therefore, are not suitable for human use but have considerable potential for use in feed animal vaccines. Significantly, a YCP vaccine expressing a GFP fusion to VP1, the murine polyoma virus major capsid protein, after either oral or subcutaneous administration, protected mice against an intraperitoneal polyoma virus challenge, reducing viral DNA levels in spleen and liver by >98%.

  13. Scaffolded Antigens in Yeast Cell Particle Vaccines Provide Protection against Systemic Polyoma Virus Infection

    Science.gov (United States)

    Tipper, Donald J.; Szomolanyi-Tsuda, Eva

    2016-01-01

    Background. U65, a self-aggregating peptide scaffold, traps fused protein antigens in yeast cells. Conversion to Yeast Cell Particle (YCP) vaccines by partial removal of surface mannoproteins exposes β-glucan, mediating efficient uptake by antigen-presenting cells (APCs). YCP vaccines are inexpensive, capable of rapid large-scale production and have potential for both parenteral and oral use. Results. YCP processing by alkaline hydrolysis exposes up to 20% of the glucan but converts scaffolded antigen and internal yeast proteins into a common aggregate, preventing selective yeast protein removal. For U65-green fluorescent protein (GFP) or U65-Apolipoprotein A1 (ApoA1) subcutaneous vaccines, maximal IgG responses in mice required 10% glucan exposure. IgG responses to yeast proteins were 5-fold lower. Proteolytic mannoprotein removal produced YCPs with only 6% glucan exposure, insufficiently porous for selective removal of even native yeast proteins. Vaccine efficacy was reduced 10-fold. Current YCP formulations, therefore, are not suitable for human use but have considerable potential for use in feed animal vaccines. Significantly, a YCP vaccine expressing a GFP fusion to VP1, the murine polyoma virus major capsid protein, after either oral or subcutaneous administration, protected mice against an intraperitoneal polyoma virus challenge, reducing viral DNA levels in spleen and liver by >98%.

  14. Immunological Correlates for Protection against Intranasal Challenge of Bacillus anthracis Spores Conferred by a Protective Antigen-Based Vaccine in Rabbits

    OpenAIRE

    Weiss, Shay; Kobiler, David; Levy, Haim; Marcus, Hadar; Pass, Avi; Rothschild, Nili; Altboum, Zeev

    2006-01-01

    Correlates between immunological parameters and protection against Bacillus anthracis infection in animals vaccinated with protective antigen (PA)-based vaccines could provide surrogate markers to evaluate the putative protective efficiency of immunization in humans. In previous studies we demonstrated that neutralizing antibody levels serve as correlates for protection in guinea pigs (S. Reuveny et al., Infect. Immun. 69:2888-2893, 2001; H. Marcus et al., Infect. Immun. 72:3471-3477, 2004). ...

  15. Ether lipid vesicle-based antigens impart protection against experimental listeriosis

    Directory of Open Access Journals (Sweden)

    Ansari MA

    2012-06-01

    Full Text Available Mairaj Ahmed Ansari,1 Swaleha Zubair,2 Saba Tufail,1 Ejaj Ahmad,1 Mohsin Raza Khan,1 Zainuddin Quadri,1 Mohammad Owais,11Interdisciplinary Biotechnology Unit, 2Women's College, Aligarh Muslim University, Aligarh, UP, IndiaBackground: Incidence of food-borne infections from Listeria monocytogenes, a parasite that has adapted intracellular residence to avoid antibody onslaught, has increased dramatically in the past few years. The apparent lack of an effective vaccine that is capable of evoking the desired cytotoxic T cell response to obliterate this intracellular pathogen has encouraged the investigation of alternate prophylactic strategies. It should also be noted that Archaebacteria (Archae lipid-based adjuvants enhance the efficacy of subunit vaccines. In the present study, the adjuvant properties of archaeosomes (liposomes prepared from total polar lipids of archaebacteria, Halobacterium salinarum combined with immunogenic culture supernatant antigens of L. monocytogenes have been exploited in designing a vaccine candidate against experimental listeriosis in murine model.Methods: Archaeosome-entrapped secretory protein antigens (SAgs of L. monocytogenes were evaluated for their immunological responses and tendency to deplete bacterial burden in BALB/c mice challenged with sublethal listerial infection. Various immunological studies involving cytokine profiling, lymphocyte proliferation assay, detection of various surface markers (by flowcytometric analysis, and antibody isotypes (by enzyme-linked immunosorbent assay were used for establishing the vaccine potential of archaeosome-entrapped secretory proteins.Results: Immunization schedule involving archaeosome-encapsulated SAgs resulted in upregulation of Th1 cytokine production along with boosted memory in BALB/c mice. It also showed protective effect by reducing listerial burden in various vital organs (liver and spleen of the infected mice. However, the soluble form of the antigens (SAgs

  16. Protective efficacy of bacterial membranes containing surface-exposed BM95 antigenic peptides for the control of cattle tick infestations.

    Science.gov (United States)

    Canales, Mario; Labruna, Marcelo B; Soares, João F; Prudencio, Carlos R; de la Fuente, José

    2009-12-01

    The Rhipicephalus (Boophilus) microplus BM86 and BM95 glycoproteins are homologous proteins that protect cattle against tick infestations. In this study, we demonstrated that the recombinant chimeric protein comprising tick BM95 immunogenic peptides fused to the A. marginale MSP1a N-terminal region for presentation on the Escherichia coli membrane was protective against R. microplus infestations in rabbits. This system provides a novel and simple approach for the production of tick protective antigens by surface display of antigenic protein chimera on live E. coli and suggests the possibility of using recombinant bacterial membrane fractions for vaccination against cattle tick infestations. PMID:19835826

  17. Identifying protective Streptococcus pyogenes vaccine antigens recognized by both B and T cells in human adults and children

    DEFF Research Database (Denmark)

    Mortensen, Rasmus; Nissen, Thomas Nørrelykke; Fredslund, Sine;

    2016-01-01

    No commercial vaccine exists against Group A streptococci (GAS; Streptococcus pyogenes) and only little is known about anti-GAS protective immunity. In our effort to discover new protective vaccine candidates, we selected 21 antigens based on an in silico evaluation. These were all well...

  18. Developing Peptide Mimotopes of Capsular Polysaccharides and Lipopolysaccharides Protective Antigens of Pathogenic Burkholderia Bacteria.

    Science.gov (United States)

    Guo, Pengfei; Zhang, Jing; Tsai, Shien; Li, Bingjie; Lo, Shyh-Ching

    2016-06-01

    Burkholderia pseudomallei (BP) and Burkholderia mallei (BM) are two species of pathogenic Burkholderia bacteria. Our laboratory previously identified four monoclonal antibodies (MAbs) that reacted against Burkholderia capsular polysaccharides (PS) and lipopolysaccharides (LPS) and effectively protected against a lethal dose of BP/BM infections in mice. In this study, we used phage display panning against three different phage peptide libraries to select phage clones specifically recognized by each of the four protective MAbs. After sequencing a total of 179 candidate phage clones, we examined in detail six selected phage clones carrying different peptide inserts for the specificity of binding by the respective target MAbs. Chemically synthesized peptides corresponding to those displayed by the six phage clones were conjugated to keyhole limpet hemocyanin carrier protein and tested for their binding specificity to the respective protective MAbs. The study revealed that four of the six peptides, all derived from the library displaying dodecapeptides, functioned well as "mimotopes" of Burkholderia PS and LPS as demonstrated by a high degree of specific competition against the binding of three protective MAbs to BP and BM. Our results suggest that the four selected peptide mimics corresponding to PS/LPS protective antigens of BP and BM could potentially be developed into peptide vaccines against pathogenic Burkholderia bacteria. PMID:27328059

  19. Effect of particulation on the immunogenic and protective properties of the recombinant Bm86 antigen expressed in Pichia pastoris.

    Science.gov (United States)

    García-García, J C; Montero, C; Rodríguez, M; Soto, A; Redondo, M; Valdés, M; Méndez, L; de la Fuente, J

    1998-02-01

    The recombinant Bm86 tick antigen expressed in Pichia pastoris is obtained in a highly particulated form, as a distinguish feature of this expression system. This particulated protein, the active principle of the recombinant vaccine Gavac against the cattle tick, have shown high immunogenic and protective properties, probably associated with its own characteristics. To evaluate the effects of particulation on the properties of Bm86, three groups of calves were immunized with particulated or non-particulated recombinant Bm86 and the anti-Bm86 antibody response determined. Animals were challenged with a controlled tick infestation and the protective capacities of both proteins assessed. Humoral immune response and protection in cattle vaccinated with the particulated antigen were higher. These experiments suggested that particulation of the Bm86 expressed in P. pastoris is an important feature for the protective properties of the antigen in vaccine preparations. PMID:9607058

  20. Enhanced protective efficacy of a chimeric form of the schistosomiasis vaccine antigen Sm-TSP-2.

    Directory of Open Access Journals (Sweden)

    Mark S Pearson

    Full Text Available The large extracellular loop of the Schistosoma mansoni tetraspanin, Sm-TSP-2, when fused to a thioredoxin partner and formulated with Freund's adjuvants, has been shown to be an efficacious vaccine against murine schistosomiasis. Moreover, Sm-TSP-2 is uniquely recognised by IgG(1 and IgG(3 from putatively resistant individuals resident in S. mansoni endemic areas in Brazil. In the present study, we expressed Sm-TSP-2 at high yield and in soluble form in E. coli without the need for a solubility enhancing fusion partner. We also expressed in E. coli a chimera called Sm-TSP-2/5B, which consisted of Sm-TSP-2 fused to the immunogenic 5B region of the hookworm aspartic protease and vaccine antigen, Na-APR-1. Sm-TSP-2 formulated with alum/CpG showed significant reductions in adult worm and liver egg burdens in two separate murine schistosomiasis challenge studies. Sm-TSP-2/5B afforded significantly greater protection than Sm-TSP-2 alone when both antigens were formulated with alum/CpG. The enhanced protection obtained with the chimeric fusion protein was associated with increased production of anti-Sm-TSP-2 antibodies and IL-4, IL-10 and IFN-γ from spleen cells of vaccinated animals. Sera from 666 individuals from Brazil who were infected with S. mansoni were screened for potentially deleterious IgE responses to Sm-TSP-2. Anti-Sm-TSP-2 IgE to this protein was not detected (also shown previously for Na-APR-1, suggesting that the chimeric antigen Sm-TSP-2/5B could be used to safely and effectively vaccinate people in areas where schistosomes and hookworms are endemic.

  1. Enhanced protective efficacy of a chimeric form of the schistosomiasis vaccine antigen Sm-TSP-2.

    Science.gov (United States)

    Pearson, Mark S; Pickering, Darren A; McSorley, Henry J; Bethony, Jeffrey M; Tribolet, Leon; Dougall, Annette M; Hotez, Peter J; Loukas, Alex

    2012-01-01

    The large extracellular loop of the Schistosoma mansoni tetraspanin, Sm-TSP-2, when fused to a thioredoxin partner and formulated with Freund's adjuvants, has been shown to be an efficacious vaccine against murine schistosomiasis. Moreover, Sm-TSP-2 is uniquely recognised by IgG(1) and IgG(3) from putatively resistant individuals resident in S. mansoni endemic areas in Brazil. In the present study, we expressed Sm-TSP-2 at high yield and in soluble form in E. coli without the need for a solubility enhancing fusion partner. We also expressed in E. coli a chimera called Sm-TSP-2/5B, which consisted of Sm-TSP-2 fused to the immunogenic 5B region of the hookworm aspartic protease and vaccine antigen, Na-APR-1. Sm-TSP-2 formulated with alum/CpG showed significant reductions in adult worm and liver egg burdens in two separate murine schistosomiasis challenge studies. Sm-TSP-2/5B afforded significantly greater protection than Sm-TSP-2 alone when both antigens were formulated with alum/CpG. The enhanced protection obtained with the chimeric fusion protein was associated with increased production of anti-Sm-TSP-2 antibodies and IL-4, IL-10 and IFN-γ from spleen cells of vaccinated animals. Sera from 666 individuals from Brazil who were infected with S. mansoni were screened for potentially deleterious IgE responses to Sm-TSP-2. Anti-Sm-TSP-2 IgE to this protein was not detected (also shown previously for Na-APR-1), suggesting that the chimeric antigen Sm-TSP-2/5B could be used to safely and effectively vaccinate people in areas where schistosomes and hookworms are endemic. PMID:22428079

  2. Airing Out Anthrax

    Science.gov (United States)

    2002-01-01

    The AiroCide TiO2 is an air-purifier that kills 93.3 percent of airborne pathogens that pass through it, including Bacillus anthraci, more commonly known as anthrax. It is essentially a spinoff of KES Science & Technology, Inc.'s Bio-KES system, a highly effective device used by the produce industry for ethylene gas removal to aid in preserving the freshness of fruits, vegetables, and flowers. The TiO2-based ethylene removal technology that is incorporated into the company's AiroCide TiO2 and Bio-KES products was first integrated into a pair of plant-growth chambers known as ASTROCULTURE(TM) and ADVANCED ASTROCULTURE(TM). Both chambers have housed commercial plant growth experiments in space on either the Space Shuttle or the International Space Station. The AiroCide TiO2 also has a proven record of destroying 98 percent of other airborne pathogens, such as microscopic dust mites, molds, and fungi. Moreover, the device is a verified killer of Influenza A (flu), E. coli, Staphylococcus aureas, Streptococcus pyogenes, and Mycoplasma pneumoniae, among many other harmful viruses.

  3. Heterosubtypic protection against pathogenic human and avian influenza viruses via in vivo electroporation of synthetic consensus DNA antigens.

    Directory of Open Access Journals (Sweden)

    Dominick J Laddy

    Full Text Available BACKGROUND: The persistent evolution of highly pathogenic avian influenza (HPAI highlights the need for novel vaccination techniques that can quickly and effectively respond to emerging viral threats. We evaluated the use of optimized consensus influenza antigens to provide broad protection against divergent strains of H5N1 influenza in three animal models of mice, ferrets, and non-human primates. We also evaluated the use of in vivo electroporation to deliver these vaccines to overcome the immunogenicity barrier encountered in larger animal models of vaccination. METHODS AND FINDINGS: Mice, ferrets and non-human primates were immunized with consensus plasmids expressing H5 hemagglutinin (pH5HA, N1 neuraminidase (pN1NA, and nucleoprotein antigen (pNP. Dramatic IFN-gamma-based cellular immune responses to both H5 and NP, largely dependent upon CD8+ T cells were seen in mice. Hemaggutination inhibition titers classically associated with protection (>1:40 were seen in all species. Responses in both ferrets and macaques demonstrate the ability of synthetic consensus antigens to induce antibodies capable of inhibiting divergent strains of the H5N1 subtype, and studies in the mouse and ferret demonstrate the ability of synthetic consensus vaccines to induce protection even in the absence of such neutralizing antibodies. After challenge, protection from morbidity and mortality was seen in mice and ferrets, with significant reductions in viral shedding and disease progression seen in vaccinated animals. CONCLUSIONS: By combining several consensus influenza antigens with in vivo electroporation, we demonstrate that these antigens induce both protective cellular and humoral immune responses in mice, ferrets and non-human primates. We also demonstrate the ability of these antigens to protect from both morbidity and mortality in a ferret model of HPAI, in both the presence and absence of neutralizing antibody, which will be critical in responding to the

  4. The use of anthrax and orthopox therapeutic antibodies from human origin in biodefense

    International Nuclear Information System (INIS)

    It is impossible to protect whole nations from the effects of bioterrorism by preventive vaccination; there are too many possible agents, costs would be exorbitantly high, and the health risks associated with complex mass vaccination programs would be unacceptable. Adequate protection, however, could be provided via a combination of rapid detection and diagnosis and the treatment of those exposed with drugs which would be beneficial in all stages of disease. Monoclonal antibodies, preferably from human origin to prevent severe complications, which neutralize or block the pathological effects of biological agents, are the optimal candidates to be deployed in case of biological warfare or a bioterrorist event. The human body is one of the better and most suitably equipped places for the generation of monoclonal antibodies which are to be used effectively in humans for treatment. Such antibodies will be of optimal physiological specificity, affinity, and pharmacological properties. In addition, the chances on severe adverse effects and cross-reactivity with human tissues will be slim. Therefore the human immune response is used by the Dutch company IQ Therapeutics, a spin-off of the Groningen University, as a basis for selecting the antibodies. People, immunised against or infected with the agent in question, donate blood cells voluntarily, which are used to generate fully human monoclonal antibodies. In this way effective therapeutics against the protective antigen (PA) and lethal factor (LF) toxin components of Bacillus anthracis are developed and currently antibodies against orthopox viruses are generated as well from donors, which have been immunized with vaccinia. Other projects are the development of therapeutic antibodies for MRSA (antibiotics resistant Staphylococcus aureus) and Enterococcus spp. Both human antibodies against the anthrax toxin components are efficacious in vitro and in pre- and post-exposure settings in mice and rabbits. The anti-LF antibody

  5. A recombinant raccoon poxvirus vaccine expressing both Yersinia pestis F1 and truncated V antigens protects animals against lethal plague.

    Science.gov (United States)

    Rocke, Tonie E.; Kingstad-Bakke, B; Berlier, W; Osorio, J.E.

    2014-01-01

    In previous studies, we demonstrated in mice and prairie dogs that simultaneous administration of two recombinant raccoon poxviruses (rRCN) expressing Yersinia pestis antigens (F1 and V307-a truncated version of the V protein) provided superior protection against plague challenge compared to individual single antigen constructs. To reduce costs of vaccine production and facilitate implementation of a sylvatic plague vaccine (SPV) control program for prairie dogs, a dual antigen construct is more desirable. Here we report the construction and characterization of a novel RCN-vectored vaccine that simultaneously expresses both F1 and V307 antigens. This dual antigen vaccine provided similar levels of protection against plague in both mice and prairie dogs as compared to simultaneous administration of the two single antigen constructs and was also shown to protect mice against an F1 negative strain of Y. pestis.. The equivalent safety, immunogenicity and efficacy profile of the dual RCN-F1/V307 construct warrants further evaluation in field efficacy studies in sylvatic plague endemic areas.

  6. A Recombinant Raccoon Poxvirus Vaccine Expressing both Yersinia pestis F1 and Truncated V Antigens Protects Animals against Lethal Plague.

    Science.gov (United States)

    Rocke, Tonie E; Kingstad-Bakke, Brock; Berlier, Willy; Osorio, Jorge E

    2014-01-01

    In previous studies, we demonstrated in mice and prairie dogs that simultaneous administration of two recombinant raccoon poxviruses (rRCN) expressing Yersinia pestis antigens (F1 and V307-a truncated version of the V protein) provided superior protection against plague challenge compared to individual single antigen constructs. To reduce costs of vaccine production and facilitate implementation of a sylvatic plague vaccine (SPV) control program for prairie dogs, a dual antigen construct is more desirable. Here we report the construction and characterization of a novel RCN-vectored vaccine that simultaneously expresses both F1 and V307 antigens. This dual antigen vaccine provided similar levels of protection against plague in both mice and prairie dogs as compared to simultaneous administration of the two single antigen constructs and was also shown to protect mice against an F1 negative strain of Y. pestis. The equivalent safety, immunogenicity and efficacy profile of the dual RCN-F1/V307 construct warrants further evaluation in field efficacy studies in sylvatic plague endemic areas. PMID:26344891

  7. A Recombinant Raccoon Poxvirus Vaccine Expressing both Yersinia pestis F1 and Truncated V Antigens Protects Animals against Lethal Plague

    Directory of Open Access Journals (Sweden)

    Tonie E. Rocke

    2014-10-01

    Full Text Available In previous studies, we demonstrated in mice and prairie dogs that simultaneous administration of two recombinant raccoon poxviruses (rRCN expressing Yersinia pestis antigens (F1 and V307—a truncated version of the V protein provided superior protection against plague challenge compared to individual single antigen constructs. To reduce costs of vaccine production and facilitate implementation of a sylvatic plague vaccine (SPV control program for prairie dogs, a dual antigen construct is more desirable. Here we report the construction and characterization of a novel RCN-vectored vaccine that simultaneously expresses both F1 and V307 antigens. This dual antigen vaccine provided similar levels of protection against plague in both mice and prairie dogs as compared to simultaneous administration of the two single antigen constructs and was also shown to protect mice against an F1 negative strain of Y. pestis. The equivalent safety, immunogenicity and efficacy profile of the dual RCN-F1/V307 construct warrants further evaluation in field efficacy studies in sylvatic plague endemic areas.

  8. Identification and characterization of Rhipicephalus (Boophilus) microplus candidate protective antigens for the control of cattle tick infestations.

    Science.gov (United States)

    Almazán, Consuelo; Lagunes, Rodolfo; Villar, Margarita; Canales, Mario; Rosario-Cruz, Rodrigo; Jongejan, Frans; de la Fuente, José

    2010-01-01

    The cattle ticks, Rhipicephalus (Boophilus) spp., affect cattle production in tropical and subtropical regions of the world. Tick vaccines constitute a cost-effective and environmentally friendly alternative to tick control. The recombinant Rhipicephalus microplus Bm86 antigen has been shown to protect cattle against tick infestations. However, variable efficacy of Bm86-based vaccines against geographic tick strains has encouraged the research for additional tick-protective antigens. Herein, we describe the analysis of R. microplus glutathione-S transferase, ubiquitin (UBQ), selenoprotein W, elongation factor-1 alpha, and subolesin (SUB) complementary DNAs (cDNAs) by RNA interference (RNAi) in R. microplus and Rhipicephalus annulatus. Candidate protective antigens were selected for vaccination experiments based on the effect of gene knockdown on tick mortality, feeding, and fertility. Two cDNA clones encoding for UBQ and SUB were used for cattle vaccination and infestation with R. microplus and R. annulatus. Control groups were immunized with recombinant Bm86 or adjuvant/saline. The highest vaccine efficacy for the control of tick infestations was obtained for Bm86. Although with low immunogenic response, the results with the SUB vaccine encourage further investigations on the use of recombinant subolesin alone or in combination with other antigens for the control of cattle tick infestations. The UBQ peptide showed low immunogenicity, and the results of the vaccination trial were inconclusive to assess the protective efficacy of this antigen. These experiments showed that RNAi could be used for the selection of candidate tick-protective antigens. However, vaccination trials are necessary to evaluate the effect of recombinant antigens in the control of tick infestations, a process that requires efficient recombinant protein production and formulation systems. PMID:19943063

  9. Radiologic findings of the anthrax: focus on alimentary anthrax

    International Nuclear Information System (INIS)

    To evaluate the radiologic findings of alimentary anthrax. 19 patients with alimentary anthrax, which was caused by ingestion of contaminated beef, were included in this study. The diagnosis was made by demonstration of Bacillus anthracis in smear and culture of the contaminated meat. We evaluated the clinical manifestations and the findings of thoracic, abdominal radiographs, cervical, abdominal ultrasonograms and abdominal CT scans. Out of the 19 patients with the alimentary infection, 9 had oropharyngeal form, 18 had abdominal form and 8 had combination of oropharyngeal and abdominal form. The patients had general symptoms and signs such as fever, chill, myalgia. Clinical symptoms and signs were sore throat, throat injection, throat ulcer and patch in oropharyngeal form, and nausea, vomiting abdominal pain, diarrhea, and gross GI bleeding in abdominal form. Radiologic findings included enlarged cervical lymph nodes (36%) in oropharyngeal form, and paralytic ileus (26%), ascites (26%), hepatomegaly (21%), enlarged mesenteric lymph nodes (26%), small bowel wall thickening (5%) in abdominal form. In two patients, late complications occurred as intestinal obstruction due to ileal stricture with perforation, and inflammatory changes of pelvic cavity due to ileovesical fistula. Radiologic findings of alimentary anthrax are difficult in differentiation from those of other inflammatory bowel disease, but those radiologic findings with clinical manifestations may be helpful in diagnosis and evaluation of disease process in patients with alimentary anthrax

  10. Control of tick infestations in cattle vaccinated with bacterial membranes containing surface-exposed tick protective antigens.

    Science.gov (United States)

    Almazán, Consuelo; Moreno-Cantú, Orlando; Moreno-Cid, Juan A; Galindo, Ruth C; Canales, Mario; Villar, Margarita; de la Fuente, José

    2012-01-01

    Vaccines containing the Rhipicephalus (Boophilus) microplus BM86 and BM95 antigens protect cattle against tick infestations. Tick subolesin (SUB), elongation factor 1a (EF1a) and ubiquitin (UBQ) are new candidate protective antigens for the control of cattle tick infestations. Previous studies showed that R. microplus BM95 immunogenic peptides fused to the Anaplasma marginale major surface protein (MSP) 1a N-terminal region (BM95-MSP1a) for presentation on the Escherichia coli membrane were protective against R. microplus infestations in rabbits. In this study, we extended these results by expressing SUB-MSP1a, EF1a-MSP1a and UBQ-MSP1a fusion proteins on the E. coli membrane using this system and demonstrating that bacterial membranes containing the chimeric proteins BM95-MSP1a and SUB-MSP1a were protective (>60% vaccine efficacy) against experimental R. microplus and Rhipicephalus annulatus infestations in cattle. This system provides a novel, simple and cost-effective approach for the production of tick protective antigens by surface display of antigenic protein chimera on the E. coli membrane and demonstrates the possibility of using recombinant bacterial membrane fractions in vaccine preparations to protect cattle against tick infestations. PMID:22085549

  11. Intravacuolar Membranes Regulate CD8 T Cell Recognition of Membrane-Bound Toxoplasma gondii Protective Antigen

    Directory of Open Access Journals (Sweden)

    Jodie Lopez

    2015-12-01

    Full Text Available Apicomplexa parasites such as Toxoplasma gondii target effectors to and across the boundary of their parasitophorous vacuole (PV, resulting in host cell subversion and potential presentation by MHC class I molecules for CD8 T cell recognition. The host-parasite interface comprises the PV limiting membrane and a highly curved, membranous intravacuolar network (IVN of uncertain function. Here, using a cell-free minimal system, we dissect how membrane tubules are shaped by the parasite effectors GRA2 and GRA6. We show that membrane association regulates access of the GRA6 protective antigen to the MHC I pathway in infected cells. Although insertion of GRA6 in the PV membrane is key for immunogenicity, association of GRA6 with the IVN limits presentation and curtails GRA6-specific CD8 responses in mice. Thus, membrane deformations of the PV regulate access of antigens to the MHC class I pathway, and the IVN may play a role in immune modulation.

  12. Cancer testis antigen vaccination affords long-term protection in a murine model of ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Maurizio Chiriva-Internati

    Full Text Available Sperm protein (Sp17 is an attractive target for ovarian cancer (OC vaccines because of its over-expression in primary as well as in metastatic lesions, at all stages of the disease. Our studies suggest that a Sp17-based vaccine can induce an enduring defense against OC development in C57BL/6 mice with ID8 cells, following prophylactic and therapeutic treatments. This is the first time that a mouse counterpart of a cancer testis antigen (Sp17 was shown to be expressed in an OC mouse model, and that vaccination against this antigen significantly controlled tumor growth. Our study shows that the CpG-adjuvated Sp17 vaccine overcomes the issue of immunologic tolerance, the major barrier to the development of effective immunotherapy for OC. Furthermore, this study provides a better understanding of OC biology by showing that Th-17 cells activation and contemporary immunosuppressive T-reg cells inhibition is required for vaccine efficacy. Taken together, these results indicate that prophylactic and therapeutic vaccinations can induce long-standing protection against OC and delay tumor growth, suggesting that this strategy may provide additional treatments of human OC and the prevention of disease onset in women with a family history of OC.

  13. The role of Plasmodium falciparum variant surface antigens in protective immunity and vaccine development

    DEFF Research Database (Denmark)

    Hviid, Lars

    2010-01-01

    There is substantial immuno-epidemiological evidence that the parasite-encoded, so-called variant surface antigens (VSAs), such as PfEMP1 on the surface of infected erythrocytes (IEs) are important-in some cases probably decisive determinants of clinical outcome of P. falciparum malaria. The...... evidence is increasingly being underpinned by specific molecular understanding of the pathogenic processes involved. Pregnancy-associated malaria (PAM) caused by placenta-sequestering IEs expressing the PfEMP1 variant VAR2CSA is a particularly striking example of this. These findings have raised hopes that...... development of PfEMP1-based vaccines to protect specifically against severe malaria syndromes-in particular PAM-is feasible. This review summarizes the evidence that VSAs are important targets of NAI, discusses why VSA-based vaccines might be feasible despite the extensive intra- and interclonal variation of...

  14. Gene cloning, expression and immunogenicity of the protective antigen subolesin in Dermacentor silvarum.

    Science.gov (United States)

    Hu, Yonghong; Zeng, Hua; Zhang, Jincheng; Wang, Duo; Li, Dongming; Zhang, Tiantian; Yang, Shujie; Liu, Jingze

    2014-02-01

    Subolesin (4D8), the ortholog of insect akirins, is a highly conserved protective antigen and thus has the potential for development of a broad-spectrum vaccine against ticks and mosquitoes. To date, no protective antigens have been characterized nor tested as candidate vaccines against Dermacentor silvarum bites and transmission of associated pathogens. In this study, we cloned the open reading frame (ORF) of D. silvarum 4D8 cDNA (Ds4D8), which consisted of 498 bp encoding 165 amino acid residues. The results of sequence alignments and phylogenetic analysis demonstrated that D. silvarum 4D8 (Ds4D8) is highly conserved showing more than 81% identity of amino acid sequences with those of other hard ticks. Additionally, Ds4D8 containing restriction sites was ligated into the pET-32(a+) expression vector and the recombinant plasmid was transformed into Escherichia coli rosetta. The recombinant Ds4D8 (rDs4D8) was induced by isopropyl β-D-thiogalactopyranoside (IPTG) and purified using Ni affinity chromatography. The SDS-PAGE results showed that the molecular weight of rDs4D8 was 40 kDa, which was consistent with the expected molecular mass considering 22 kDa histidine-tagged thioredoxin (TRX) protein from the expression vector. Western blot results showed that rabbit anti-D. silvarum serum recognized the expressed rDs4D8, suggesting an immune response against rDs4D8. These results provided the basis for developing a candidate vaccine against D. silvarum ticks and transmission of associated pathogens. PMID:24623890

  15. CD71 targeting boosts immunogenicity of sublingually delivered influenza haemagglutinin antigen and protects against viral challenge in mice.

    Science.gov (United States)

    Mann, Jamie F S; Tregoning, John S; Aldon, Yoann; Shattock, Robin J; McKay, Paul F

    2016-06-28

    The delivery of vaccines to the sublingual mucosa is an attractive prospect due to the ease and acceptability of such an approach. However, novel adjuvant and delivery approaches are required to optimally vaccinate at this site. We have previously shown that conjugation of protein antigen to the iron transport molecule, transferrin, can significantly enhance mucosal immune responses. We tested whether conjugating influenza haemagglutinin to transferrin could improve the immune response to sublingually delivered antigen. Transferrin conjugated haemagglutinin induced a significant antibody and T cell response in both naïve animals and previously immunized animals. The immune response generated was able to protect mice against influenza virus challenge. Sublingually administered antigen dispersed more widely through the gastro-intestinal tract than intranasally delivered antigen and transferrin conjugation had a more marked effect on sublingually delivered antigen than intranasal immunisation. From these studies we conclude that transferrin conjugation of antigen is effective at boosting immune responses to sublingually delivered antigen and may be an attractive approach for influenza vaccines, particularly when mass campaigns are required. PMID:27094605

  16. Marked enhancement of the immune response to BioThrax® (Anthrax Vaccine Adsorbed) by the TLR9 agonist CPG 7909 in healthy volunteers.

    Science.gov (United States)

    Rynkiewicz, Dianna; Rathkopf, Melinda; Sim, Iain; Waytes, A Thomas; Hopkins, Robert J; Giri, Lallan; DeMuria, Deborah; Ransom, Janet; Quinn, James; Nabors, Gary S; Nielsen, Carl J

    2011-08-26

    Immunization with BioThrax(®) (Anthrax Vaccine Adsorbed) is a safe and effective means of preventing anthrax. Animal studies have demonstrated that the addition of CpG DNA adjuvants to BioThrax can markedly increase the immunogenicity of the vaccine, increasing both serum anti-protective antigen (PA) antibody and anthrax toxin-neutralizing antibody (TNA) concentrations. The immune response to CpG-adjuvanted BioThrax in animals was not only stronger, but was also more rapid and led to higher levels of protection in spore challenge models. The B-class CpG DNA adjuvant CPG 7909, a 24-base synthetic, single-strand oligodeoxynucleotide, was evaluated for its safety profile and adjuvant properties in a Phase 1 clinical trial. A double-blind study was performed in which 69 healthy subjects, age 18-45 years, were randomized to receive three doses of either: (1) BioThrax alone, (2) 1 mg of CPG 7909 alone or (3) BioThrax plus 1 mg of CPG 7909, all given intramuscularly on study days 0, 14 and 28. Subjects were monitored for IgG to PA by ELISA and for TNA titers through study day 56 and for safety through month 6. CPG 7909 increased the antibody response by 6-8-fold at peak, and accelerated the response by 3 weeks compared to the response seen in subjects vaccinated with BioThrax alone. No serious adverse events related to study agents were reported, and the combination was considered to be reasonably well tolerated. The marked acceleration and enhancement of the immune response seen by combining BioThrax and CPG 7909 offers the potential to shorten the course of immunization and reduce the time to protection, and may be particularly useful in the setting of post-exposure prophylaxis. PMID:21624418

  17. Limitations of plasmid vaccines to complex viruses: selected myxoma virus antigens as DNA vaccines were not protective.

    Science.gov (United States)

    Adams, Mathew M; van Leeuwen, Barbara H; Kerr, Peter J

    2004-11-25

    Myxoma virus, a poxvirus of the genus Leporipoxvirus, is the causative agent of the disease myxomatosis which is highly lethal in European rabbits (Oryctolagus cuniculus). Current vaccines to protect against myxomatosis are either attenuated live strains of the virus or the antigenically related rabbit fibroma virus. We examined the immune response of outbred domestic rabbits to the individual myxoma virus antigens M055R, M073R, M115L and M121R, delivered as DNA vaccines co-expressing rabbit interleukin-2 or interleukin-4. M115L and M121R were also delivered simultaneously. None of the vaccine constructs were able to protect the rabbits from disease or reduce mortality after challenge with virulent myxoma virus, despite induction of antigen-specific cell-mediated and humoral immune responses. PMID:15531037

  18. Anthrax Vaccine: A Dilemma for Homeland Security

    OpenAIRE

    Rempfer, Thomas L.

    2009-01-01

    This article appeared in Homeland Security Affairs (May 2009), v.5 no.2 Past problems with the Department of Defense anthrax vaccine currently impact Department of Homeland Security and the Department of Health and Human Services policy. Following the 2001 anthrax letter attacks, those departments included the old anthrax vaccine in the Strategic National Stockpile. This article explores the Department of Defense'۪s experience with the vaccine, enumerating past safety, efficacy, regulatory...

  19. Tumor-associated antigens identified by mRNA expression profiling induce protective anti-tumor immunity

    DEFF Research Database (Denmark)

    Mathiassen, Søren; Lauemøller, S L; Ruhwald, Morten;

    2001-01-01

    to identify TAA, mice were immunized with mixtures of peptides representing putative cytotoxic T cell epitopes derived from one of the gene products. Indeed, such immunized mice were partially protected against subsequent tumor challenge. Despite being immunized with bona fide self antigens, no...

  20. Protection against heterologous infection by using cross antigenicity between schistosoma mansoni and fasciola hepatica

    International Nuclear Information System (INIS)

    Fasciola hepatica is the causative agent of fasciolosis in many areas in America, Europe, Africa, Asia and Australia. There is an urgent need for improved methods to control the parasite's transmission. The present study is parasitological, immunological (interleukine-1β and interleukine-6) and histopathological investigations on the immunizing effect of cross antigenicity between S. mansoni and F. hepatica against schistosomiasis and fasciolosis in mice. Parasitological study showed that vaccination with irradiated cercariae of S. mansoni or vaccination by F. hepatica whole worm extract (FhWWE) before challenged with encysted metacercariae of F. hepatica or cercariae of S. mansoni played a significant control on the parasitic infection manifested by a remarkable reduction in the means of worm count. Assessment of IL-1β and IL-6 in sera of the experimental groups showed that there are cross reactivity between fasciola / schistosoma and its relation to cross protection. Histopathological examination of vaccinated mice livers showed protection against parasite maturation and liver damage after challenged, as compared to mice infected only without vaccination

  1. IL-13 Production by Regulatory T Cells Protects Against Experimental Autoimmune Encephalomyelitis (EAE) Independent of Auto-Antigen1

    OpenAIRE

    Ochoa-Repáraz, Javier; Rynda, Agnieszka; Ascón, Miguel A.; YANG, Xinghong; Kochetkova, Irina; Riccardi, Carol; Callis, Gayle; Trunkle, Theresa; Pascual, David W.

    2008-01-01

    Treatment with an anti-inflammatory Salmonella vaccine expressing enterotoxigenic E. coli colonization factor antigen 1 (CFA/I) proved effective in stimulating protective, potent CD25+ CD4+ T (Treg) cells in susceptible mice challenged with experimental autoimmune encephalomyelitis (EAE). Since the Salmonella vector was considerably less protective, we questioned whether altering the fimbrial subunit expression to resemble conventional Salmonella expression may impact Treg cell potency. The S...

  2. Identification of peptide sequences as a measure of Anthrax vaccine stability during storage.

    Science.gov (United States)

    Whiting, Gail; Wheeler, Jun X; Rijpkema, Sjoerd

    2014-01-01

    The UK anthrax vaccine is an alum precipitate of a sterile filtrate of Bacillus anthracis Sterne culture (AVP). An increase in shelf life of AVP from 3 to 5 years prompted us to investigate the in vivo potency and the antigen content of 12 batches with a shelf life of 6.4 to 9.9 years and one bulk with a shelf life of 23.8 years. All batches, except for a 9.4-year-old batch, passed the potency test. Mass spectrometry (MS) and in-gel difference 2-dimensional gel electrophoresis (DIGE) were used to examine antigens of the pellet and supernatant of AVP. The pellet contained proteins with a MW in excess of 15 kDa. DIGE of desorbed proteins from the pellet revealed that with aging, 19 spots showed a significant change in size or intensity, a sign of protein degradation. MS identified 21 proteins including protective antigen (PA), enolase, lethal factor (LF), nucleoside diphosphate kinase, edema factor, and S-layer proteins. Fifteen proteins were detected for the first time including metabolic enzymes, iron binding proteins, and manganese dependent superoxide dismutase (MnSOD). The supernatant contained131 peptide sequences. Peptides representing septum formation inhibitor protein and repeat domain protein were most abundant. Five proteins were shared with the pellet: 2,3,4,5-tetrahydropyridine-6-dicarboxylate N-succinyltransferase, enolase, LF, MnSOD, and PA. The number of peptide sequences increased with age. Peptides from PA and LF appeared once batches exceeded their shelf life by 2 and 4 years, respectively. In conclusion, changes in antigen content resulting from decay or desorption only had a limited effect on in vivo potency of AVP. The presence of PA and LF peptides in the supernatant can inform on the age and stability of AVP. PMID:24637775

  3. IgG subclass and heavy chain domains contribute to binding and protection by mAbs to the poly γ-D-glutamic acid capsular antigen of Bacillus anthracis.

    Directory of Open Access Journals (Sweden)

    Maria Hovenden

    Full Text Available Bacterial capsules are common targets for antibody-mediated immunity. The capsule of Bacillus anthracis is unusual among capsules because it is composed of a polymer of poly-γ-d-glutamic acid (γdPGA. We previously generated murine IgG3 monoclonal antibodies (mAbs to γdPGA that were protective in a murine model of pulmonary anthrax. IgG3 antibodies are characteristic of the murine response to polysaccharide antigens. The goal of the present study was to produce subclass switch variants of the γdPGA mAbs (IgG3 → IgG1 → IgG2b → IgG2a and assess the contribution of subclass to antibody affinity and protection. Subclass switch antibodies had identical variable regions but differed in their heavy chains. The results showed that a switch from the protective IgG3 to IgG1, IgG2b or IgG2a was accompanied by i a loss of protective activity ii a change in mAb binding to the capsular matrix, and iii a loss of affinity. These results identify a role for the heavy chain constant region in mAb binding. Hybrid mAbs were constructed in which the CH1, CH2 or CH3 heavy chain constant domains from a non-protective, low binding IgG2b mAb were swapped into the protective IgG3 mAb. The IgG3 mAb that contained the CH1 domain from IgG2b showed no loss of affinity or protection. In contrast, swapping the CH2 or CH3 domains from IgG2b into IgG3 produced a reduction in affinity and a loss of protection. These studies identify a role for the constant region of IgG heavy chains in affinity and protection against an encapsulated bacterial pathogen.

  4. Antibody to a conserved antigenic target is protective against diverse prokaryotic and eukaryotic pathogens.

    Science.gov (United States)

    Cywes-Bentley, Colette; Skurnik, David; Zaidi, Tanweer; Roux, Damien; Deoliveira, Rosane B; Garrett, Wendy S; Lu, Xi; O'Malley, Jennifer; Kinzel, Kathryn; Zaidi, Tauqeer; Rey, Astrid; Perrin, Christophe; Fichorova, Raina N; Kayatani, Alexander K K; Maira-Litràn, Tomas; Gening, Marina L; Tsvetkov, Yury E; Nifantiev, Nikolay E; Bakaletz, Lauren O; Pelton, Stephen I; Golenbock, Douglas T; Pier, Gerald B

    2013-06-11

    Microbial capsular antigens are effective vaccines but are chemically and immunologically diverse, resulting in a major barrier to their use against multiple pathogens. A β-(1→6)-linked poly-N-acetyl-d-glucosamine (PNAG) surface capsule is synthesized by four proteins encoded in genetic loci designated intercellular adhesion in Staphylococcus aureus or polyglucosamine in selected Gram-negative bacterial pathogens. We report that many microbial pathogens lacking an identifiable intercellular adhesion or polyglucosamine locus produce PNAG, including Gram-positive, Gram-negative, and fungal pathogens, as well as protozoa, e.g., Trichomonas vaginalis, Plasmodium berghei, and sporozoites and blood-stage forms of Plasmodium falciparum. Natural antibody to PNAG is common in humans and animals and binds primarily to the highly acetylated glycoform of PNAG but is not protective against infection due to lack of deposition of complement opsonins. Polyclonal animal antibody raised to deacetylated glycoforms of PNAG and a fully human IgG1 monoclonal antibody that both bind to native and deacetylated glycoforms of PNAG mediated complement-dependent opsonic or bactericidal killing and protected mice against local and/or systemic infections by Streptococcus pyogenes, Streptococcus pneumoniae, Listeria monocytogenes, Neisseria meningitidis serogroup B, Candida albicans, and P. berghei ANKA, and against colonic pathology in a model of infectious colitis. PNAG is also a capsular polysaccharide for Neisseria gonorrhoeae and nontypable Hemophilus influenzae, and protects cells from environmental stress. Vaccination targeting PNAG could contribute to immunity against serious and diverse prokaryotic and eukaryotic pathogens, and the conserved production of PNAG suggests that it is a critical factor in microbial biology. PMID:23716675

  5. Immune Responses Induced by the Leishmania (Leishmania) donovani A2 Antigen, but Not by the LACK Antigen, Are Protective against Experimental Leishmania (Leishmania) amazonensis Infection

    OpenAIRE

    Coelho, Eduardo Antonio Ferraz; TAVARES Carlos Alberto Pereira; Carvalho, Fernando Aécio de Amorim; Chaves, Karina Figueiredo; Teixeira, Kadima Nayara; Rodrigues, Rafaela Chitarra; Charest, Hugues; Matlashewski, Greg; Gazzinelli, Ricardo Tostes; Fernandes, Ana Paula

    2003-01-01

    Leishmania amazonensis is one of the major etiologic agents of a broad spectrum of clinical forms of leishmaniasis and has a wide geographical distribution in the Americas, which overlaps with the areas of transmission of many other Leishmania species. The LACK and A2 antigens are shared by various Leishmania species. A2 was previously shown to induce a potent Th1 immune response and protection against L. donovani infection in BALB/c mice. LACK is effective against L. major infection, but no ...

  6. Oculocutaneous anthrax: detection and treatment

    Directory of Open Access Journals (Sweden)

    Sarada David

    2010-07-01

    Full Text Available Sarada David1, Jayanthi Peter1, Renu Raju2, P Padmaja2, Promila Mohanraj21Department of Ophthalmology, Schell Eye Hospital, Christian Medical College Hospital, Vellore, India; 2Department of Microbiology, Christian Medical College Hospital, Vellore, IndiaAbstract: Anthrax, a zoonotic disease that primarily affects herbivores, has received recent attention as a potential agent of bioterrorism. We report a patient who presented with a 4-day history of pain, watering and difficulty in opening the left upper and lower eyelids, and fever. Clinical examination revealed brawny nonpitting edema with serosanguinous discharge. The history of the death of his sheep 1 week prior to the illness provided the clue to the diagnosis. Although standard cultures of the blood and the serous fluid from the lesion were negative, probably as a result of prior treatment, the diagnosis of cutaneous anthrax was made by a polymerase chain reaction (PCR test of the serous fluid. Serial photographs demonstrating resolution of the lesion with appropriate antibiotic therapy are presented.Keywords: anthrax, polymerase chain reaction, treatment

  7. Anthrax lethal factor as an immune target in humans and transgenic mice and the impact of HLA polymorphism on CD4+ T cell immunity.

    Directory of Open Access Journals (Sweden)

    Stephanie Ascough

    2014-05-01

    Full Text Available Bacillus anthracis produces a binary toxin composed of protective antigen (PA and one of two subunits, lethal factor (LF or edema factor (EF. Most studies have concentrated on induction of toxin-specific antibodies as the correlate of protective immunity, in contrast to which understanding of cellular immunity to these toxins and its impact on infection is limited. We characterized CD4+ T cell immunity to LF in a panel of humanized HLA-DR and DQ transgenic mice and in naturally exposed patients. As the variation in antigen presentation governed by HLA polymorphism has a major impact on protective immunity to specific epitopes, we examined relative binding affinities of LF peptides to purified HLA class II molecules, identifying those regions likely to be of broad applicability to human immune studies through their ability to bind multiple alleles. Transgenics differing only in their expression of human HLA class II alleles showed a marked hierarchy of immunity to LF. Immunogenicity in HLA transgenics was primarily restricted to epitopes from domains II and IV of LF and promiscuous, dominant epitopes, common to all HLA types, were identified in domain II. The relevance of this model was further demonstrated by the fact that a number of the immunodominant epitopes identified in mice were recognized by T cells from humans previously infected with cutaneous anthrax and from vaccinated individuals. The ability of the identified epitopes to confer protective immunity was demonstrated by lethal anthrax challenge of HLA transgenic mice immunized with a peptide subunit vaccine comprising the immunodominant epitopes that we identified.

  8. Analysis of protective antigen peptide binding motifs using bacterial display technology

    Science.gov (United States)

    Sarkes, Deborah A.; Dorsey, Brandi L.; Stratis-Cullum, Dimitra N.

    2015-05-01

    In today's fast-paced world, a new biological threat could emerge at any time, necessitating a prompt, reliable, inexpensive detection reagent in each case. Combined with magnetic-activated cell sorting (MACS), bacterial display technology makes it possible to isolate selective, high affinity peptide reagents in days to weeks. Utilizing the eCPX display scaffold is also a rapid way to screen potential peptide reagents. Peptide affinity reagents for protective antigen (PA) of the biothreat Bacillus anthracis were previously discovered using bacterial display. Bioinformatics analysis resulted in the consensus sequence WXCFTC. Additionally, we have discovered PA binding peptides with a WW motif, one of which, YGLHPWWKNAPIGQR, can pull down PA from 1% human serum. The strength of these two motifs combined, to obtain a WWCFTC consensus, is assessed here using Fluorescence Activated Cell Sorting (FACS). While monitoring binding to PA, overall expression of the display scaffold was assessed using the YPet Mona expression control tag (YPet), and specificity was assessed by binding to Streptavidin R-Phycoerythrin (SAPE). The importance of high YPet binding is highlighted as many of the peptides in one of the three replicate experiments fell below our 80% binding threshold. We demonstrate that it is preferable to discard this experiment, due to questionable expression of the peptide itself, than to try to normalize for relative expression. The peptides containing the WWCFTC consensus were of higher affinity and greater specificity than the peptides containing the WW consensus alone, validating further investigation to optimize known PA binders.

  9. Anthrax vaccine associated deaths in miniature horses

    OpenAIRE

    Wobeser, Bruce K.

    2015-01-01

    During a widespread anthrax outbreak in Canada, miniature horses were vaccinated using a live spore anthrax vaccine. Several of these horses died from an apparent immune-mediated vasculitis temporally associated with this vaccination. During the course of the outbreak, other miniature horses from different regions with a similar vaccination history, clinical signs, and necropsy findings were found.

  10. Anthrax vaccine associated deaths in miniature horses.

    Science.gov (United States)

    Wobeser, Bruce K

    2015-04-01

    During a widespread anthrax outbreak in Canada, miniature horses were vaccinated using a live spore anthrax vaccine. Several of these horses died from an apparent immune-mediated vasculitis temporally associated with this vaccination. During the course of the outbreak, other miniature horses from different regions with a similar vaccination history, clinical signs, and necropsy findings were found. PMID:25829553

  11. Treatment of Anthrax Disease Frequently Asked Questions

    Energy Technology Data Exchange (ETDEWEB)

    Judd, Kathleen S.; Young, Joan E.; Lesperance, Ann M.; Malone, John D.

    2010-05-14

    This document provides a summary of Frequently Asked Questions (FAQs) on the treatment of anthrax disease caused by a wide-area release of Bacillus anthracis spores as an act bioterrorism. These FAQs are intended to provide the public health and medical community, as well as others, with guidance and communications to support the response and long-term recovery from an anthrax event.

  12. Mimotope-based vaccines of Leishmania infantum antigens and their protective efficacy against visceral leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Lourena Emanuele Costa

    Full Text Available BACKGROUND: The development of cost-effective prophylactic strategies to prevent leishmaniasis has become a high-priority. The present study has used the phage display technology to identify new immunogens, which were evaluated as vaccines in the murine model of visceral leishmaniasis (VL. Epitope-based immunogens, represented by phage-fused peptides that mimic Leishmania infantum antigens, were selected according to their affinity to antibodies from asymptomatic and symptomatic VL dogs' sera. METHODOLOGY/MAIN FINDINGS: Twenty phage clones were selected after three selection cycles, and were evaluated by means of in vitro assays of the immune stimulation of spleen cells derived from naive and chronically infected with L. infantum BALB/c mice. Clones that were able to induce specific Th1 immune response, represented by high levels of IFN-γ and low levels of IL-4 were selected, and based on their selectivity and specificity, two clones, namely B10 and C01, were further employed in the vaccination protocols. BALB/c mice vaccinated with clones plus saponin showed both a high and specific production of IFN-γ, IL-12, and GM-CSF after in vitro stimulation with individual clones or L. infantum extracts. Additionally, these animals, when compared to control groups (saline, saponin, wild-type phage plus saponin, or non-relevant phage clone plus saponin, showed significant reductions in the parasite burden in the liver, spleen, bone marrow, and paws' draining lymph nodes. Protection was associated with an IL-12-dependent production of IFN-γ, mainly by CD8+ T cells, against parasite proteins. These animals also presented decreased parasite-mediated IL-4 and IL-10 responses, and increased levels of parasite-specific IgG2a antibodies. CONCLUSIONS/SIGNIFICANCE: This study describes two phage clones that mimic L. infantum antigens, which were directly used as immunogens in vaccines and presented Th1-type immune responses, and that significantly reduced the

  13. Three rare cases of anthrax arising from the same source

    OpenAIRE

    Babamahmoodi, F.; F. Aghabarari; A.Arjmand; Ashrafi, G H

    2006-01-01

    Anthrax is an acute bacterial infection caused by Bacillus anthracis. Humans become infected under natural conditions by contact with infected animals or contaminated animal products. About 95% of human anthrax is cutaneous and 5% respiratory. Gastrointestinal anthrax is very rare, and has been reported in less than 1% of all cases. Anthrax meningitis is a rare complication of any of the other three forms of disease. We report three rare cases of anthrax (gastrointestinal, oropharyngeal and m...

  14. HEPA/vaccine plan for indoor anthrax remediation.

    Science.gov (United States)

    Wein, Lawrence M; Liu, Yifan; Leighton, Terrance J

    2005-01-01

    We developed a mathematical model to compare 2 indoor remediation strategies in the aftermath of an outdoor release of 1.5 kg of anthrax spores in lower Manhattan. The 2 strategies are the fumigation approach used after the 2001 postal anthrax attack and a HEPA/vaccine plan, which relies on HEPA vacuuming, HEPA air cleaners, and vaccination of reoccupants. The HEPA/vaccine approach leads to few anthrax cases among reoccupants if applied to all but the most heavily contaminated buildings, and recovery is much faster than under the decades-long fumigation plan. Only modest environmental sampling is needed. A surge capacity of 10,000 to 20,000 Hazmat workers is required to perform remediation within 6 to 12 months and to avoid permanent mass relocation. Because of the possibility of a campaign of terrorist attacks, serious consideration should be given to allowing or encouraging voluntary self-service cleaning of lightly contaminated rooms by age-appropriate, vaccinated, partially protected (through masks or hoods) reoccupants or owners. PMID:15705325

  15. In vivo persistence and protective efficacy of the bacille Calmette Guerin vaccine overexpressing the HspX latency antigen

    OpenAIRE

    Spratt, Joanne M.; Britton, Warwick J; Triccas, James A.

    2010-01-01

    New strategies to control infection with Mycobacterium tuberculosis, the causative agent of tuberculosis, are urgently required, particularly in areas where acquired immunodeficiencies are prevalent. In this report we have determined if modification of the current tuberculosis vaccine, Mycobacterium bovis BCG, to constitutively express the mycobacterial HspX latency antigen altered its protective effect against challenge with virulent M. tuberculosis. Overexpression of M. tuberculosis HspX in...

  16. Effective antiprotease-antibiotic treatment of experimental anthrax

    Directory of Open Access Journals (Sweden)

    MacAfee Rebecca

    2005-04-01

    Full Text Available Abstract Background Inhalation anthrax is characterized by a systemic spread of the challenge agent, Bacillus anthracis. It causes severe damage, including multiple hemorrhagic lesions, to host tissues and organs. It is widely believed that anthrax lethal toxin secreted by proliferating bacteria is a major cause of death, however, the pathology of intoxication in experimental animals is drastically different from that found during the infectious process. In order to close a gap between our understanding of anthrax molecular pathology and the most prominent clinical features of the infectious process we undertook bioinformatic and experimental analyses of potential proteolytic virulence factors of B. anthracis distinct from lethal toxin. Methods Secreted proteins (other than lethal and edema toxins produced by B. anthracis were tested for tissue-damaging activity and toxicity in mice. Chemical protease inhibitors and rabbit immune sera raised against B. anthracis proteases were used to treat mice challenged with B. anthracis (Sterne spores. Results B. anthracis strain delta Ames (pXO1-, pXO2- producing no lethal and edema toxins secrets a number of metalloprotease virulence factors upon cultivation under aerobic conditions, including those with hemorrhagic, caseinolytic and collagenolytic activities, belonging to M4 and M9 thermolysin and bacterial collagenase families, respectively. These factors are directly toxic to DBA/2 mice upon intratracheal administration at 0.5 mg/kg and higher doses. Chemical protease inhibitors (phosphoramidon and 1, 10-phenanthroline, as well as immune sera against M4 and M9 proteases of B. anthracis, were used to treat mice challenged with B. anthracis (Sterne spores. These substances demonstrate a substantial protective efficacy in combination with ciprofloxacin therapy initiated as late as 48 h post spore challenge, compared to the antibiotic alone. Conclusion Secreted proteolytic enzymes are important pathogenic

  17. Intranasal vaccination with adjuvant-free S. aureus antigens effectively protects mice against experimental sepsis.

    Science.gov (United States)

    Stegmiller, Nataly Pescinalli; Barcelos, Estevão Carlos; Leal, Janine Miranda; Covre, Luciana Polaco; Donatele, Dirlei Molinari; de Matos Guedes, Herbet Leonel; Cunegundes, Marco Cesar; Rodrigues, Rodrigo Ribeiro; Gomes, Daniel Cláudio Oliviera

    2016-06-24

    Staphylococcus aureus (S. aureus) is a Gram-positive coccal bacterium comprising part of the human skin, nares and gastrointestinal tract normal microbiota. It is also an important cause of nosocomial/community-acquired infections in humans and animals, which can cause a diverse array of infections, including sepsis, which is a progressive systemic inflammation response syndrome that is frequently fatal. The emergence of drug-resistant strains and the high toxicity of the treatments used for these infections point out the need to develop an effective, inexpensive and safe vaccine that can be used prophylactically. In this work, we used an experimental sepsis model to evaluate the effectiveness of whole antigens from S. aureus (SaAg) given by the intranasal route to induce protective immunity against S. aureus infection in mice. BALB/c mice were vaccinated via intranasal or intramuscular route with two doses of SaAg, followed by biocompatibility and immunogenicity evaluations. Vaccinated animals did not show any adverse effects associated with the vaccine, as determined by transaminase and creatinine measurements. Intranasal, but not intramuscular vaccination with SaAg led to a significant reduction in IL-10 production and was associated with increased level of IFN-γ and NO. SaAg intranasal vaccination was able to prime cellular and humoral immune responses and inducing a higher proliferation index and increased production of specific IgG1/IgG2, which contributed to decrease the bacterial load in both liver and the spleen and improve survival during sepsis. These findings present the first evidence of the effectiveness of whole Ag intranasal-based vaccine administration, which expands the vaccination possibilities against S. aureus infection. PMID:27091687

  18. O-antigen protects gram-negative bacteria from histone killing.

    Directory of Open Access Journals (Sweden)

    Catherine Chaput

    Full Text Available Beyond their traditional role of wrapping DNA, histones display antibacterial activity to Gram-negative and -positive bacteria. To identify bacterial components that allow survival to a histone challenge, we selected resistant bacteria from homologous Escherichia coli libraries that harbor plasmids carrying pieces of the chromosome in different sizes. We identified genes required for exopolysaccharide production and for the synthesis of the polysaccharide domain of the lipopolysaccharide, called O-antigen. Indeed, O-antigen and exopolysaccharide conferred further resistance to histones. Notably, O-antigen also conferred resistance to histones in the pathogens Shigella flexneri and Klebsiella pneumoniae.

  19. Protective Effect of Vaccination with a Combination of Recombinant Surface Antigen 1 and Interleukin-12 against Toxoplasmosis in Mice

    OpenAIRE

    Letscher-Bru, Valerie; Villard, Odile; Risse, Bernhard; Zauke, Michael; Klein, Jean-Paul; Kien, Truong T.

    1998-01-01

    We studied the immune response induced in mice by recombinant Toxoplasma gondii surface antigen 1 (rSAG1) protein, alone or combined with interleukin-12 (IL-12) as an adjuvant, and the protective effect against toxoplasmosis. Immunization with rSAG1 alone induced a specific humoral type 2 immunity and did not protect the animals from infection. In contrast, immunization with rSAG1 plus IL-12 redirected humoral and cellular immunity toward a type 1 pattern and reduced the brain parasite load b...

  20. Anthrax--update on diagnosis and management.

    Science.gov (United States)

    Dutta, T K; Sujatha, S; Sahoo, R K

    2011-09-01

    Human anthrax is difficult to contain. This is primarily because it is a zoonotic disease and the disease has never been contained in the livestock of India due to lack of adequate vaccination facilities. Animal anthrax is very common in many parts of India. The problem of anthrax is further compounded by lack of awareness on the part of village folk who unwittingly handle the hide and share the dead animal meat and this causes cutaneous and gastrointestinal forms of anthrax respectively. Hemorrhagic meningitis and pulmonary anthrax, the other forms of anthrax, carry a risk of nearly cent percent mortality. Characteristic gram positive rods abundantly found in the smear of the cerebrospinal fluid, blood etc. make diagnosis certain in most of the cases. Resistance to penicillin, the drug of choice, now being occasionally reported, may become a confounding factor while attempting successful control of the disease. Other antibiotics which are found to be very effective are doxycycline and ciprofloxacin. Fear of use of anthrax spores as a biological weapon has also given a new dimension to the problem. PMID:22334971

  1. Scaffolded Antigens in Yeast Cell Particle Vaccines Provide Protection against Systemic Polyoma Virus Infection

    OpenAIRE

    Tipper, Donald J.; Szomolanyi-Tsuda, Eva

    2016-01-01

    Background. U65, a self-aggregating peptide scaffold, traps fused protein antigens in yeast cells. Conversion to Yeast Cell Particle (YCP) vaccines by partial removal of surface mannoproteins exposes β-glucan, mediating efficient uptake by antigen-presenting cells (APCs). YCP vaccines are inexpensive, capable of rapid large-scale production and have potential for both parenteral and oral use. Results. YCP processing by alkaline hydrolysis exposes up to 20% of the glucan but converts scaffolde...

  2. The Critical Role of Pathology in the Investigation of Bioterrorism-Related Cutaneous Anthrax

    OpenAIRE

    Shieh, Wun-Ju; Guarner, Jeannette; Paddock, Christopher; Greer, Patricia; Tatti, Kathleen; Fischer, Marc; Layton, Marci; Philips, Michael; Bresnitz, Eddy; Quinn, Conrad P.; Popovic, Tanja; Perkins, Bradley A.; Zaki, Sherif R.

    2003-01-01

    Cutaneous anthrax is a rare zoonotic disease in the United States. The clinical diagnosis traditionally has been established by conventional microbiological methods, such as culture and gram staining. However, these methods often yield negative results when patients have received antibiotics. During the bioterrorism event of 2001, we applied two novel immunohistochemical assays that can detect Bacillus anthracis antigens in skin biopsy samples even after prolonged antibiotic treatment. These ...

  3. Anthrax Meningitis - Report Of An Autopsied Case

    Directory of Open Access Journals (Sweden)

    Mahadevan A

    1999-01-01

    Full Text Available Anthrax is a rare cause of hemorrhagic meningitis in man. This report illustrates the characteristic hemorrhagic manifestations in the brain of a patient dying of anthrax meningitis secondary to overwhelming bacteremia. Gross examination of the brain revealed a thick dense subarachnoid hemorrhage with numerous petechial hemorrhages in the cortex. Histologically, meningoencephalitis with vascular necrosis, edema, perivascular cortical hemorrhages and clumps of Gram positive bacilli in the vascular lumen and invading vessel wall were the salient features. The anthrax bacillus was isolated from CSF and brain tissue and further its pathogenecity was confirmed by animal inoculation.

  4. Co-administration of certain DNA vaccine combinations expressing different H5N1 influenza virus antigens can be beneficial or detrimental to immune protection.

    Science.gov (United States)

    Patel, Ami; Gray, Michael; Li, Yan; Kobasa, Darwyn; Yao, Xiaojian; Kobinger, Gary P

    2012-01-11

    Achieving broad-spectrum immunity against emerging zoonotic viruses such as avian influenza H5N1 and other possible pandemic viruses will require generation of cross-protective immune responses. Strong antibody responses generated against the H5HA protein are protective, however, antigenic variation between diverging isolates can interfere with virus neutralization. The current study investigates co-administration of an H5 HA DNA vaccine with other variable and conserved influenza antigens (NA, NP, and M2). All antigens were derived from the A/Hanoi/30408/2005 (H5N1) virus and the contribution towards overall protection and immune activation was assessed against lethal homologous and heterologous challenges. An (HA+NA) combination afforded the best protection against homologous challenge and (HA+NP) was comparable to HA alone against heterologous A/Hong Kong/483/1997 challenge. Interestingly, combining all four H5 antigens at a single site did not improve protection against matched challenge and unexpectedly reduced survival by 30% against a heterologous challenge. Survival was also significantly decreased against heterologous challenge following combination of (HA+NP) with an unrelated antigen. Although there were no significant changes in antibody titres, significantly lower T-cell responses were detected against all antigens except HA in each combination. Co-administration of the vaccines at different injection sites restored T-cell responses but did not improve overall protection. Similar observations were also recorded following combination of HA and NP antigens using two different adenovirus-based backbones. Overall, the data suggest that co-administering certain H5N1 antigens offer better or comparable protection to HA alone, however, combining extra antigens may be unnecessary and lead to unfavourable immune responses. PMID:22119588

  5. Immunostimulatory complexes containing Eimeria tenella antigens and low toxicity plant saponins induce antibody response and provide protection from challenge in broiler chickens.

    Science.gov (United States)

    Berezin, V E; Bogoyavlenskyi, A P; Khudiakova, S S; Alexuk, P G; Omirtaeva, E S; Zaitceva, I A; Tustikbaeva, G B; Barfield, R C; Fetterer, R H

    2010-01-20

    Immunostimulating complexes (ISCOMs) are unique multimolecular structures formed by encapsulating antigens, lipids and triterpene saponins and are one of the most successful antigen delivery systems for microbial antigens. In the current study, both the route of administration and the antigen concentration of ISCOMs, containing Eimeria tenella antigens and saponins from native plants, were evaluated in their ability to stimulate humoral immunity and to protect chickens against a challenge infection with E. tenella. Broiler chickens were immunized with ISCOM preparations containing E. tenella antigens and the purified saponins Gg6, Ah6 and Gp7 isolated from Glycyrrhiza glabra, Aesculus hippocastanum and Gipsophila paniculata, respectively. The effects of the route of administration, dose of antigen and type of saponin used for construction of ISCOMs were evaluated for ability to stimulate serum IgG and IgM and to protect chickens against a homologous challenge. A single intranasal immunization was the most effective route for administering ISCOMs although the in ovo route was also quite effective. Dose titration experiments demonstrated efficacy after single immunization with various ISCOM doses but maximum effects were observed when ISCOMs contain 5-10mug antigen. Immunization of birds by any of the three routes with E. tenella antigens alone or antigens mixed with alum hydroxide adjuvant resulted in lower serum antibody and reduced protection to challenge relative to immunization with ISCOMs. Overall the results of this study confirm that significant immunostimulation and protection to challenge are achieved by immunization of chickens with ISCOMs containing purified saponins and native E. tenella antigens and suggest that ISCOMs may be successfully used to develop a safe and effective vaccine for prevention of avian coccidiosis. PMID:19879050

  6. Bidirectional effect of Wnt signaling antagonist DKK1 on the modulation of anthrax toxin uptake.

    Science.gov (United States)

    Qian, LiLi; Cai, ChangZu; Yuan, PengFei; Jeong, Sun-Young; Yang, XiaoZhou; Dealmeida, Venita; Ernst, James; Costa, Michael; Cohen, Stanley N; Wei, WenSheng

    2014-05-01

    LRP6, a co-receptor for the morphogen Wnt, aids endocytosis of anthrax complexes. Here we report that Dickkopf1 (DKK1) protein, a secreted LRP6 ligand and antagonist, is also a modulator of anthrax toxin sensitivity. shRNA-mediated gene silencing or TALEN-mediated gene knockout of DKK1 reduced sensitivity of cells to PA-dependent hybrid toxins. However, unlike the solely inhibitory effect on Wnt signaling, the effects of DKK1 overexpression on anthrax toxicity were bidirectional, depending on its endogenous expression and cell context. Fluorescence microscopy and biochemical analyses showed that DKK1 facilitates internalization of anthrax toxins and their receptors, an event mediated by DKK1-LRP6-Kremen2 complex. Monoclonal antibodies against DKK1 provided dose-dependent protection to macrophages from killing by anthrax lethal toxin (LT). Our discovery that DKK1 forms ternary structure with LRP6 and Kremen2 in promoting PA-mediated toxin internalization provides a paradigm for bacterial exploitation of mechanisms that host cells use to internalize signaling proteins. PMID:24671437

  7. Protection of Mice with a Divalent Tuberculosis DNA Vaccine Encoding Antigens Ag85B and MPT64

    Institute of Scientific and Technical Information of China (English)

    Xia TIAN; Hong CAI; Yu-Xian ZHU

    2004-01-01

    DNA vaccine may be a promising tool for controlling tuberculosis development. However,vaccines encoding single antigens of mycobacterium did not produce protective effect as BCG did. In the present study, we evaluated the immunogenicity and protective efficacy of a divalent DNA vaccine encoding two immunodominant antigens Ag85B and MPT64 of Mycobacterium tuberculosis. We found that both humoral and Th1-type (high IFN-γ, low IL-4) cellular responses obtained from the divalent DNA vaccine group were significantly higher than that conferred by BCG. RT-PCR results showed that antigens were expressed differentially in various organs in divalent DNA vaccine group. The survival rate for mice treated with the divalent DNA vaccine after challenging with high doses of virulent M. tuberculosis H37Rv was significantly higher than that of the BCG group or any of the single DNA vaccine group. Significant differences were also found between the single and divalent DNA vaccinated mice in terms of body, spleen and lung weight. Bacterial loading decreased about 2000-fold in lungs and about 100-fold in spleens of divalent DNA vaccinated mice when compared with that of the control group. We conclude that our divalent DNA vaccine may be a better choice for controlling tuberculosis disease in animals.

  8. Delivery of Non-Native Cargo into Mammalian Cells Using Anthrax Lethal Toxin.

    Science.gov (United States)

    Rabideau, Amy E; Pentelute, Bradley Lether

    2016-06-17

    The intracellular delivery of peptide and protein therapeutics is a major challenge due to the plasma membrane, which acts as a barrier between the extracellular environment and the intracellular milieu. Over the past two decades, a nontoxic PA/LFN delivery platform derived from anthrax lethal toxin has been developed for the transport of non-native cargo into the cytosol of cells in order to understand the translocation process through a protective antigen (PA) pore and to probe intracellular biological functions. Enzyme-mediated ligation using sortase A and native chemical ligation are two facile methods used to synthesize these non-native conjugates, inaccessible by recombinant technology. Cargo molecules that translocate efficiently include enzymes from protein toxins, antibody mimic proteins, and peptides of varying lengths and non-natural amino acid compositions. The PA pore has been found to effectively convey over 30 known cargos other than native lethal factor (LF; i.e., non-native) with diverse sequences and functionalities on the LFN transporter protein. All together these studies demonstrated that non-native cargos must adopt an unfolded or extended conformation and contain a suitable charge composition in order to efficiently pass through the PA pore. This review provides insight into design parameters for the efficient delivery of new cargos using PA and LFN. PMID:27055654

  9. In vivo dynamics of active edema and lethal factors during anthrax.

    Science.gov (United States)

    Rougeaux, Clémence; Becher, François; Ezan, Eric; Tournier, Jean-Nicolas; Goossens, Pierre L

    2016-01-01

    Lethal and edema toxins are critical virulence factors of Bacillus anthracis. However, little is known about their in vivo dynamics of production during anthrax. In this study, we unraveled for the first time the in vivo kinetics of production of the toxin components EF (edema factor) and LF (lethal factor) during cutaneous infection with a wild-type toxinogenic encapsulated strain in immuno-competent mice. We stratified the asynchronous infection process into defined stages through bioluminescence imaging (BLI), while exploiting sensitive quantitative methods by measuring the enzymatic activity of LF and EF. LF was produced in high amounts, while EF amounts steadily increased during the infectious process. This led to high LF/EF ratios throughout the infection, with variations between 50 to a few thousands. In the bloodstream, the early detection of active LF and EF despite the absence of bacteria suggests that they may exert long distance effects. Infection with a strain deficient in the protective antigen toxin component enabled to address its role in the diffusion of LF and EF within the host. Our data provide a picture of the in vivo complexity of the infectious process. PMID:26996161

  10. Gamma irradiated antigen extracts improves the immune response and protection in experimental toxoplasmosis

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Andrea da; Galisteo Junior, Andres Jimenez; Andrade Junior, Heitor Franco de, E-mail: andreacosta@usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Medicina Tropical; Zorgi, Nahiara Estevez [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Ciencias Biomedicas; Nascimento, Nanci do [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    We aimed to use ionizing radiation on soluble extracts of T. gondii tachyzoites (AgTg) and tested the ability of these extracts to induce immunity in BALB/c mice against a challenge. T. gondii RH strain AgTg was irradiated with Co-60 at 0.25 to 4 kGy and were affected after 1 kGy, as evidenced by a progressive high molecular weight protein aggregates and no loss in antigenicity, as detected by immunoblotting, except after 4kGy. BALB/c mice were immunized with biweekly doses of 03 s.c. native or irradiated AgTg without adjuvants; the anti-T.gondii IgG production was detected by ELISA, and higher levels and avidity were detected in mice immunized with 1.5 kGy AgTg compared to controls (p<0.05). Mice immunized with native AgTg exhibited spleen CD19{sup +} B, CD3{sup +}CD4{sup +} or CD3{sup +}CD8{sup +} T cell proliferation levels of 5%, while 1.5 kGy-immunized mice exhibited spleen cell proliferation levels of 12.2%, primarily for CD19{sup +} or CD3{sup +}CD8{sup +} lymphocytes and less evidently for CD3{sup +}CD4{sup +} (8.8%) helper T lymphocytes. All cells from control mice showed little to no proliferation when stimulated with AgTg. These cells secreted more IFN-γ in the 1.5 kGy AgTg-immunized group (p<0.05). BALB/c mice immunized with 1.5 kGy and challenged with different strains of T. gondii were partially protected, as evidenced by survival after RH virulent strain challenge (p<0.0001) but also after ME-49 strain challenge: the brain cyst numbers (p<0.05) and the levels of T. gondii DNA measured by real-time PCR (p<0.05) decreased compared to non-immunized controls. (author)

  11. Gamma irradiated antigen extracts improves the immune response and protection in experimental toxoplasmosis

    International Nuclear Information System (INIS)

    We aimed to use ionizing radiation on soluble extracts of T. gondii tachyzoites (AgTg) and tested the ability of these extracts to induce immunity in BALB/c mice against a challenge. T. gondii RH strain AgTg was irradiated with Co-60 at 0.25 to 4 kGy and were affected after 1 kGy, as evidenced by a progressive high molecular weight protein aggregates and no loss in antigenicity, as detected by immunoblotting, except after 4kGy. BALB/c mice were immunized with biweekly doses of 03 s.c. native or irradiated AgTg without adjuvants; the anti-T.gondii IgG production was detected by ELISA, and higher levels and avidity were detected in mice immunized with 1.5 kGy AgTg compared to controls (p<0.05). Mice immunized with native AgTg exhibited spleen CD19+ B, CD3+CD4+ or CD3+CD8+ T cell proliferation levels of 5%, while 1.5 kGy-immunized mice exhibited spleen cell proliferation levels of 12.2%, primarily for CD19+ or CD3+CD8+ lymphocytes and less evidently for CD3+CD4+ (8.8%) helper T lymphocytes. All cells from control mice showed little to no proliferation when stimulated with AgTg. These cells secreted more IFN-γ in the 1.5 kGy AgTg-immunized group (p<0.05). BALB/c mice immunized with 1.5 kGy and challenged with different strains of T. gondii were partially protected, as evidenced by survival after RH virulent strain challenge (p<0.0001) but also after ME-49 strain challenge: the brain cyst numbers (p<0.05) and the levels of T. gondii DNA measured by real-time PCR (p<0.05) decreased compared to non-immunized controls. (author)

  12. ELISA to study antibody responses to anthrax vaccine in cattle, sheep and goats

    International Nuclear Information System (INIS)

    An ELISA based on tri-partite toxin partially purified from Bacillus anthracis was used to determine the antibody responses of groups of cattle, sheep and goats after anthrax vaccination. All species produced detectable increases in antibody titres after vaccination with the order being cattle>sheep>goats. A second vaccination induced variable anamnestic responses depending on the species or time (6 or 22 weeks) after the primary dose. Large differences were observed between individual animals with respect to the antibody induced by the 2 vaccine doses. This observation, together with differences in vaccine quality and apparent immunogenicity may affect efficient control of anthrax outbreaks. ELISA provided a convenient method of determining the relative contribution of these factors to the protection afforded by anthrax vaccination programs. (author). 10 refs, 3 figs, 2 tabs

  13. Recombinant Forms of Leishmania amazonensis Excreted/Secreted Promastigote Surface Antigen (PSA Induce Protective Immune Responses in Dogs.

    Directory of Open Access Journals (Sweden)

    Elodie Petitdidier

    2016-05-01

    Full Text Available Preventive vaccination is a highly promising strategy for interrupting leishmaniasis transmission that can, additionally, contribute to elimination. A vaccine formulation based on naturally excreted secreted (ES antigens was prepared from L. infantum promastigote culture supernatant. This vaccine achieved successful results in Phase III trials and was licensed and marketed as CaniLeish. We recently showed that newly identified ES promastigote surface antigen (PSA, from both viable promastigotes and axenically-grown amastigotes, represented the major constituent and the highly immunogenic antigen of L. infantum and L. amazonensis ES products. We report here that three immunizations with either the recombinant ES LaPSA-38S (rPSA or its carboxy terminal part LaPSA-12S (Cter-rPSA, combined with QA-21 as adjuvant, confer high levels of protection in naive L. infantum-infected Beagle dogs, as checked by bone marrow parasite absence in respectively 78.8% and 80% of vaccinated dogs at 6 months post-challenge. The parasite burden in infected vaccinated dogs was significantly reduced compared to placebo group, as measured by q-PCR. Moreover, our results reveal humoral and cellular immune response clear-cut differences between vaccinated and control dogs. An early increase in specific IgG2 antibodies was observed in rPSA/QA-21- and Cter-rPSA/QA-21-immunized dogs only. They were found functionally active in vitro and were highly correlated with vaccine protection. In vaccinated protected dogs, IFN-γ and NO productions, as well as anti-leishmanial macrophage activity, were increased. These data strongly suggest that ES PSA or its carboxy-terminal part, in recombinant forms, induce protection in a canine model of zoonotic visceral leishmaniasis by inducing a Th1-dominant immune response and an appropriate specific antibody response. These data suggest that they could be considered as important active components in vaccine candidates.

  14. List of Contractors to Support Anthrax Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Judd, Kathleen S.; Lesperance, Ann M.

    2010-05-14

    This document responds to a need identified by private sector businesses for information on contractors that may be qualified to support building remediation efforts following a wide-area anthrax release.

  15. Anthrax, fairly undetected in Papua New Guinea

    Directory of Open Access Journals (Sweden)

    Johnson Makaen

    2015-07-01

    Full Text Available Anthrax is caused by the organism Bacillus anthracis. The organism is globally occurring and epidemics are reported the world over. It is an important infectious disease of domestic animals and can survive harsh conditions that would otherwise be drastic for other microorganisms. To date, no outbreak has been reported in the Pacific Island region except Australia and New Zealand where B. anthracis has been isolated from livestock. Papua New Guinea has had sporadic (reported instances of anthrax outbreak, but has not been scientifically established. It is still unclear if the anthrax causing organism is present in the environment or wildlife in the country. It remains to be so until scientific evidence becomes available. This article aims to review scientific evidence of anthrax in the country.

  16. Monoclonal antibodies to the distinct antigenic sites on glycoproteins C and B and their protective abilities in herpes simplex virus infection

    International Nuclear Information System (INIS)

    The relative importance of the humoral immune response to various antigenic sites on the glycoproteins C and B (gC, gB) of herpes simplex virus (HSV) was evaluated in BALB/c and DBA/2 mice passively immunized with monoclonal antibodies (MoAbs) and then challenged with lethal dose of infectious virus. Eight MoAbs to three topographically distinct antigenic sites on gC and eight MoAbs to two distinct antigenic sites on gB were selected. The results indicated that any antigenic site on gC and gB contains epitopes for the protective immunity. However, individual MoAbs to different epitopes of the same antigenic site (i.e. antigenic site III on gC, and antigenic site II on gB) varied extremely in their protective ability. The protection did not correlate with the virus neutralization in vitro whereas it correlated significantly with the immune cytolysis in the presence of complement. The information about protective epitopes is essential for understanding the immunology of HSV infection at molecular level and may have implications for the design of HSV vaccine. (authors)

  17. Ensuring a Consistent Supply of Anthrax Vaccine

    OpenAIRE

    Gelfand, Rebecca A.

    2002-01-01

    During the recent anthrax attacks, the country's supply of anthrax vaccine was dangerously low. The reasons for this were (1) the failure of the FDA, the Defense Department, and its contractor, BioPort Corporation, to plan adequately to ensure the production of a consistent supply of the vaccine in accordance with the FDA regulatory process; and (2) the reliance of the Defense Department on a single private supplier of the vaccine with serious financial problems. Careful planning should be em...

  18. Anthrax Meningitis - Report Of An Autopsied Case

    OpenAIRE

    Mahadevan A; Panda K. M; Khanna N; Swamy H S; Yasha T. C

    1999-01-01

    Anthrax is a rare cause of hemorrhagic meningitis in man. This report illustrates the characteristic hemorrhagic manifestations in the brain of a patient dying of anthrax meningitis secondary to overwhelming bacteremia. Gross examination of the brain revealed a thick dense subarachnoid hemorrhage with numerous petechial hemorrhages in the cortex. Histologically, meningoencephalitis with vascular necrosis, edema, perivascular cortical hemorrhages and clumps of Gram positive bacilli in the v...

  19. The Ins and Outs of Anthrax Toxin.

    Science.gov (United States)

    Friebe, Sarah; van der Goot, F Gisou; Bürgi, Jérôme

    2016-03-01

    Anthrax is a severe, although rather rare, infectious disease that is caused by the Gram-positive, spore-forming bacterium Bacillus anthracis. The infectious form is the spore and the major virulence factors of the bacterium are its poly-γ-D-glutamic acid capsule and the tripartite anthrax toxin. The discovery of the anthrax toxin receptors in the early 2000s has allowed in-depth studies on the mechanisms of anthrax toxin cellular entry and translocation from the endocytic compartment to the cytoplasm. The toxin generally hijacks the endocytic pathway of CMG2 and TEM8, the two anthrax toxin receptors, in order to reach the endosomes. From there, the pore-forming subunit of the toxin inserts into endosomal membranes and enables translocation of the two catalytic subunits. Insertion of the pore-forming unit preferentially occurs in intraluminal vesicles rather than the limiting membrane of the endosome, leading to the translocation of the enzymatic subunits in the lumen of these vesicles. This has important consequences that will be discussed. Ultimately, the toxins reach the cytosol where they act on their respective targets. Target modification has severe consequences on cell behavior, in particular on cells of the immune system, allowing the spread of the bacterium, in severe cases leading to host death. Here we will review the literature on anthrax disease with a focus on the structure of the toxin, how it enters cells and its immunological effects. PMID:26978402

  20. Cloning and Characterization of Surface-Localized α-Enolase of Streptococcus iniae, an Effective Protective Antigen in Mice

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2015-06-01

    Full Text Available Streptococcus iniae is a major fish pathogen that can also cause human bacteremia, cellulitis and meningitis. Screening for and identification of protective antigens plays an important role in developing therapies against S. iniae infections. In this study, we indicated that the α-enolase of S. iniae was not only distributed in the cytoplasm and associated to cell walls, but was also secreted to the bacterial cell surface. The functional identity of the purified recombinant α-enolase protein was verified by its ability to catalyze the conversion of 2-phosphoglycerate (2-PGE to phosphoenolpyruvate (PEP, and both the recombinant and native proteins interacted with human plasminogen. The rabbit anti-rENO serum blockade assay shows that α-enolase participates in S. iniae adhesion to and invasion of BHK-21 cells. In addition, the recombinant α-enolase can confer effective protection against S. iniae infection in mice, which suggests that α-enolase has potential as a vaccine candidate in mammals. We conclude that S. iniae α-enolase is a moonlighting protein that also associates with the bacterial outer surface and functions as a protective antigen in mice.

  1. The role of Plasmodium falciparum variant surface antigens in protective immunity and vaccine development

    DEFF Research Database (Denmark)

    Hviid, Lars

    2010-01-01

    There is substantial immuno-epidemiological evidence that the parasite-encoded, so-called variant surface antigens (VSAs) such as PfEMP1 on the surface of infected erythrocytes (IEs) are important-in some cases probably decisive-determinants of clinical outcome of P. falciparum malaria. The evide...

  2. Immunogenicity and Protective Efficacy of a Novel Recombinant BCG Strain Overexpressing Antigens Ag85A and Ag85B

    OpenAIRE

    Chun Wang; Ruiling Fu; Xionglin Fan; Chunwei Shi; Jia Lu; Xindong Teng; Lingxia Chen; Kun Tan; Zhenhua Chen

    2012-01-01

    Recombinant Bacillus Calmette-Guérin (rBCG) strain is the promising vaccine candidate for tuberculosis (TB) prevention, which aims at providing more enduring and enhanced protection than the parental BCG vaccine. In this study, three rBCG strains overexpressing immunodominant antigens Ag85B (rBCG::85B), Ag85A (rBCG::85A), or both (rBCG::AB) of Mycobacterium tuberculosis were constructed, respectively. rBCG strains showed higher level of overexpression of Ag85A and/or Ag85B proteins than BCG c...

  3. An Antibody Screen of a Plasmodium vivax Antigen Library Identifies Novel Merozoite Proteins Associated with Clinical Protection.

    Directory of Open Access Journals (Sweden)

    Camila T França

    2016-05-01

    Full Text Available Elimination of Plasmodium vivax malaria would be greatly facilitated by the development of an effective vaccine. A comprehensive and systematic characterization of antibodies to P. vivax antigens in exposed populations is useful in guiding rational vaccine design.In this study, we investigated antibodies to a large library of P. vivax entire ectodomain merozoite proteins in 2 Asia-Pacific populations, analysing the relationship of antibody levels with markers of current and cumulative malaria exposure, and socioeconomic and clinical indicators. 29 antigenic targets of natural immunity were identified. Of these, 12 highly-immunogenic proteins were strongly associated with age and thus cumulative lifetime exposure in Solomon Islanders (P<0.001-0.027. A subset of 6 proteins, selected on the basis of immunogenicity and expression levels, were used to examine antibody levels in plasma samples from a population of young Papua New Guinean children with well-characterized individual differences in exposure. This analysis identified a strong association between reduced risk of clinical disease and antibody levels to P12, P41, and a novel hypothetical protein that has not previously been studied, PVX_081550 (IRR 0.46-0.74; P<0.001-0.041.These data emphasize the benefits of an unbiased screening approach in identifying novel vaccine candidate antigens. Functional studies are now required to establish whether PVX_081550 is a key component of the naturally-acquired protective immune response, a biomarker of immune status, or both.

  4. Anthrax

    Science.gov (United States)

    ... phase which can withstand extreme heat, cold, and drought, without nutrients or air. When environmental conditions are ... immune response—innate immunity—aims more generally to combat a wide range of microbial invaders and likely ...

  5. Molecular determinants for a cardiovascular collapse in anthrax

    OpenAIRE

    Brojatsch, Jurgen; Casadevall, Arturo; Goldman, David L.

    2014-01-01

    Bacillus anthracis releases two bipartite proteins, lethal toxin and edema factor, that contribute significantly to the progression of anthrax-associated shock. As blocking the anthrax toxins prevents disease, the toxins are considered the main virulence factors of the bacterium. The anthrax bacterium and the anthrax toxins trigger multiorgan failure associated with enhanced vascular permeability, hemorrhage and cardiac dysfunction in animal challenge models. A recent study using mice that ei...

  6. Bioterrorism-Related Anthrax Surveillance, Connecticut, September–December, 2001

    OpenAIRE

    Williams, Alcia A.; Parashar, Umesh D.; Adrian STOICA; Ridzon, Renee; Kirschke, David L.; Meyer, Richard F.; McClellan, Jennifer; Fischer, Marc; Nelson, Randy; Cartter, Matt; Hadler, James L; Jernigan, John A.; Mast, Eric E.; Swerdlow, David L.; ,

    2002-01-01

    On November 19, 2001, a case of inhalational anthrax was identified in a 94-year-old Connecticut woman, who later died. We conducted intensive surveillance for additional anthrax cases, which included collecting data from hospitals, emergency departments, private practitioners, death certificates, postal facilities, veterinarians, and the state medical examiner. No additional cases of anthrax were identified. The absence of additional anthrax cases argued against an intentional environmental ...

  7. Cutaneous Anthrax in an Unestimated Area of Body

    OpenAIRE

    Guclu, Ertugrul; Tuna, Nazan; Karabay, Oguz

    2012-01-01

    Ertugrul Guclu, Nazan Tuna, Oguz Karabay Anthrax is a zoonotic disease caused by Bacillus anthracis. cutaneous anthrax is the most commonly seen form of anthrax. Skin lesions usually occur on the most exposed areas of the body, such as the face, neck, hand or upper extremity. The aim of this paper is to report a case of cutaneous anthrax form which was occurred on an unexpected area of the body of a slaughter-house worker.

  8. Anthrax: has the clinical milieu changed since 2001?

    OpenAIRE

    Adalja, Amesh A.

    2012-01-01

    Since the anthrax attacks of 2001 (Amerithrax), several important improvements in the knowledge of Bacillus anthracis and the clinical condition it causes have occurred. While much remains to be known about the optimal management of anthrax patients, several approaches that were not widely utilized, available, or known in 2001 would be used in the treatment of critically ill anthrax patients in 2012.Keywords: Anthrax; bioterrorism(Published: 16 July 2012)Citation: Journal of Community Hospita...

  9. Vivotif--a 'magic shield' for protection against typhoid fever and delivery of heterologous antigens.

    Science.gov (United States)

    Gentschev, Ivaylo; Spreng, Simone; Sieber, Heike; Ures, Jose; Mollet, Fabian; Collioud, Andre; Pearman, Jon; Griot-Wenk, Monika E; Fensterle, Joachim; Rapp, Ulf R; Goebel, Werner; Rothen, Simon A; Dietrich, Guido

    2007-01-01

    The attenuated Salmonella typhi strain Ty21a is the main constituent of Vivotif, the only attenuated live oral vaccine against typhoid fever. In comparison with antibiotics, the 'magic bullets' which Paul Ehrlich was striving for to treat infectious diseases, this vaccine should be viewed as a 'magic shield', because rather than treating typhoid fever after the infection has started, immunisation with this vaccine strain prevents infection and disease by the induction of specific immune responses. Ty21a is also an attractive carrier for the delivery of heterologous antigens. Recently, we successfully used Ty21a for antigen delivery via the haemolysin secretion system of Escherichia coli, which allows efficient protein secretion from the carrier bacteria. PMID:17347563

  10. Identification of a LolC Homologue in Burkholderia pseudomallei, a Novel Protective Antigen for Melioidosis▿

    OpenAIRE

    Harland, David N; Chu, Karen; Haque, Ashraful; Nelson, Michelle; Walker, Nicola J.; Sarkar-Tyson, Mitali; Atkins, Timothy P.; Moore, Benjamin; Brown, Katherine A.; Bancroft, Gregory; Titball, Richard W.; Atkins, Helen S.

    2007-01-01

    Melioidosis is an emerging disease of humans in Southeast Asia and tropical Australia. The bacterium causing this disease, Burkholderia pseudomallei, is also considered a bioterrorism agent, and as yet there is no licensed vaccine for preventing B. pseudomallei infection. In this study, we evaluated selected proteins (LolC, PotF, and OppA) of the ATP-binding cassette systems of B. pseudomallei as candidate vaccine antigens. Nonmembrane regions of the B. pseudomallei proteins were expressed an...

  11. Protective effect of intranasal immunization with Neospora caninum membrane antigens against murine neosporosis established through the gastrointestinal tract.

    Science.gov (United States)

    Ferreirinha, Pedro; Dias, Joana; Correia, Alexandra; Pérez-Cabezas, Begoña; Santos, Carlos; Teixeira, Luzia; Ribeiro, Adília; Rocha, António; Vilanova, Manuel

    2014-02-01

    Neospora caninum is an Apicomplexa parasite that in the last two decades was acknowledged as the main pathogenic agent responsible for economic losses in the cattle industry. In the present study, the effectiveness of intranasal immunization with N. caninum membrane antigens plus CpG adjuvant was assessed in a murine model of intragastrically established neosporosis. Immunized mice presented a lower parasitic burden in the brain on infection with 5 × 10(7) tachyzoites, showing that significant protection was achieved by this immunization strategy. Intestinal IgA antibodies raised by immunization markedly agglutinated live N. caninum tachyzoites whereas previous opsonization with IgG antibodies purified from immunized mice sera reduced parasite survival within macrophage cells. Although an IgG1 : IgG2a ratio parasite-specific mucosal and circulating antibodies have a protective role against this parasitic infection. PMID:24128071

  12. Identification of protective pneumococcal T(H17 antigens from the soluble fraction of a killed whole cell vaccine.

    Directory of Open Access Journals (Sweden)

    Kristin L Moffitt

    Full Text Available Mucosal or parenteral immunization with a killed unencapsulated pneumococcal whole cell antigen (WCA with an adjuvant protects mice from colonization by a T(H17 CD4+ cell-mediated mechanism. Using preparative SDS gels, we separated the soluble proteins that compose the WCA in order to identify fractions that were immunogenic and protective. We screened these fractions for their ability to stimulate IL-17A secretion from splenocytes obtained from mice immunized with WCA and adjuvant. We identified 12 proteins within the stimulatory fractions by mass spectrometry; these proteins were then cloned, recombinantly expressed and purified using an Escherichia coli expression system. The ability of these proteins to induce IL-17A secretion was then evaluated by stimulation of mouse splenocytes. Of the four most stimulatory proteins, three were protective in a mouse pneumococcal serotype 6B colonization model. This work thus describes a method for identifying immunogenic proteins from the soluble fraction of pneumococcus and shows that several of the proteins identified protect mice from colonization when used as mucosal vaccines. We propose that, by providing protection against pneumococcal colonization, one or more of these proteins may serve as components of a multivalent pneumococcal vaccine.

  13. 9 CFR 113.66 - Anthrax Spore Vaccine-Nonencapsulated.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Anthrax Spore Vaccine-Nonencapsulated... REQUIREMENTS Live Bacterial Vaccines § 113.66 Anthrax Spore Vaccine—Nonencapsulated. Anthrax Spore Vaccine... in 9 CFR 113.64 and the requirements in this paragraph. Any serial or subserial found...

  14. No protection in chickens immunized by the oral or intra-muscular immunization route with Ascaridia galli soluble antigen.

    Science.gov (United States)

    Andersen, Janne Pleidrup; Norup, Liselotte R; Dalgaard, Tina S; Rothwell, Lisa; Kaiser, Pete; Permin, Anders; Schou, Torben W; Fink, Dorte R; Jungersen, Gregers; Sørensen, Poul; Juul-Madsen, Helle R

    2013-01-01

    In chickens, the nematode Ascaridia galli is found with prevalences of up to 100% causing economic losses to farmers. No avian nematode vaccines have yet been developed and detailed knowledge about the chicken immune response towards A. galli is therefore of great importance. The objective of this study was to evaluate the induction of protective immune responses to A. galli soluble antigen by different immunization routes. Chickens were immunized with a crude extract of A. galli via an oral or intra-muscular route using cholera toxin B subunit as adjuvant and subsequently challenged with A. galli. Only chickens immunized via the intra-muscular route developed a specific A. galli antibody response. Frequencies of γδ T cells in spleen were higher 7 days after the first immunization in both groups but only significantly so in the intra-muscularly immunized group. In addition, systemic immunization had an effect on both Th1 and Th2 cytokines in caecal tonsils and Meckel's diverticulum. Thus both humoral and cellular immune responses are inducible by soluble A. galli antigen, but in this study no protection against the parasite was achieved. PMID:23718808

  15. Keeping the Air Clean and Safe: An Anthrax Smoke Detector

    Science.gov (United States)

    2005-01-01

    Scientists at work in the Planetary Protection division at NASA s Jet Propulsion Laboratory (JPL) sterilize everything before blasting it to the Red Planet. They take great pains to ensure that all spacecraft are void of bacterial life, especially the microscopic bacteria that can live hundreds of years in their spore states. No one is quite sure what Earthly germs would do on Mars, but scientists agree that it is safest to keep the Martian terrain as undisturbed as possible. Errant Earth germs would also render useless the instruments placed on exploration rovers to look for signs of life, as the life that they registered would be life that came with them from Earth. A team at JPL, headed by Dr. Adrian Ponce, developed a bacterial spore-detection system that uses a simple and robust chemical reaction that visually alerts Planetary Protection crews. It is a simple air filter that traps micron-sized bacterial spores and then submits them to the chemical reaction. When the solution is then viewed under an ultraviolet light, the mixture will glow green if it is contaminated by bacteria. Scientists can then return to the scrubbing and cleaning stages of the sterilization process to remove these harmful bacteria. The detection system is the space-bound equivalent of having your hands checked for cleanliness before being allowed to the table; and although intended to keep terrestrial germs from space, this technology has awesome applications here on Mother Earth. The bacterial spore-detection unit can recognize anthrax and other harmful, spore-forming bacteria and alert people of the impending danger. As evidenced in the anthrax mailings of fall 2001 in the United States, the first sign of anthrax exposure was when people experienced flu-like symptoms, which unfortunately, can take as much as a week to develop after contamination. Anthrax cost 5 people their lives and infected 19 others; and the threat of bioterrorism became a routine concern, with new threats popping up

  16. Noncapsulated Toxinogenic Bacillus anthracis Presents a Specific Growth and Dissemination Pattern in Naive and Protective Antigen-Immune Mice▿

    OpenAIRE

    Glomski, Ian J.; Corre, Jean-Philippe; Mock, Michèle; Goossens, Pierre L

    2007-01-01

    Bacillus anthracis is a spore-forming bacterium that causes anthrax. B. anthracis has three major virulence factors, namely, lethal toxin, edema toxin, and a poly-γ-d-glutamic acid capsule. The toxins modulate host immune responses, and the capsule inhibits phagocytosis. With the goal of increasing safety, decreasing security concerns, and taking advantage of mammalian genetic tools and reagents, mouse models of B. anthracis infection have been developed using attenuated bacteria that produce...

  17. Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1.

    Directory of Open Access Journals (Sweden)

    Kimberley D Seed

    2012-09-01

    Full Text Available The Vibrio cholerae lipopolysaccharide O1 antigen is a major target of bacteriophages and the human immune system and is of critical importance for vaccine design. We used an O1-specific lytic bacteriophage as a tool to probe the capacity of V. cholerae to alter its O1 antigen and identified a novel mechanism by which this organism can modulate O antigen expression and exhibit intra-strain heterogeneity. We identified two phase variable genes required for O1 antigen biosynthesis, manA and wbeL. manA resides outside of the previously recognized O1 antigen biosynthetic locus, and encodes for a phosphomannose isomerase critical for the initial step in O1 antigen biosynthesis. We determined that manA and wbeL phase variants are attenuated for virulence, providing functional evidence to further support the critical role of the O1 antigen for infectivity. We provide the first report of phase variation modulating O1 antigen expression in V. cholerae, and show that the maintenance of these phase variable loci is an important means by which this facultative pathogen can generate the diverse subpopulations of cells needed for infecting the host intestinal tract and for escaping predation by an O1-specific phage.

  18. Efficacy and immunogenicity of single-dose AdVAV intranasal anthrax vaccine compared to anthrax vaccine absorbed in an aerosolized spore rabbit challenge model.

    Science.gov (United States)

    Krishnan, Vyjayanthi; Andersen, Bo H; Shoemaker, Christine; Sivko, Gloria S; Tordoff, Kevin P; Stark, Gregory V; Zhang, Jianfeng; Feng, Tsungwei; Duchars, Matthew; Roberts, M Scot

    2015-04-01

    AdVAV is a replication-deficient adenovirus type 5-vectored vaccine expressing the 83-kDa protective antigen (PA83) from Bacillus anthracis that is being developed for the prevention of disease caused by inhalation of aerosolized B. anthracis spores. A noninferiority study comparing the efficacy of AdVAV to the currently licensed Anthrax Vaccine Absorbed (AVA; BioThrax) was performed in New Zealand White rabbits using postchallenge survival as the study endpoint (20% noninferiority margin for survival). Three groups of 32 rabbits were vaccinated with a single intranasal dose of AdVAV (7.5 × 10(7), 1.5 × 10(9), or 3.5 × 10(10) viral particles). Three additional groups of 32 animals received two doses of either intranasal AdVAV (3.5 × 10(10) viral particles) or intramuscular AVA (diluted 1:16 or 1:64) 28 days apart. The placebo group of 16 rabbits received a single intranasal dose of AdVAV formulation buffer. All animals were challenged via the inhalation route with a targeted dose of 200 times the 50% lethal dose (LD50) of aerosolized B. anthracis Ames spores 70 days after the initial vaccination and were followed for 3 weeks. PA83 immunogenicity was evaluated by validated toxin neutralizing antibody and serum anti-PA83 IgG enzyme-linked immunosorbent assays (ELISAs). All animals in the placebo cohort died from the challenge. Three of the four AdVAV dose cohorts tested, including two single-dose cohorts, achieved statistical noninferiority relative to the AVA comparator group, with survival rates between 97% and 100%. Vaccination with AdVAV also produced antibody titers with earlier onset and greater persistence than vaccination with AVA. PMID:25673303

  19. Dose of Incorporated Immunodominant Antigen in Recombinant BCG Impacts Modestly on Th1 Immune Response and Protective Efficiency against Mycobacterium tuberculosis in Mice

    Directory of Open Access Journals (Sweden)

    Hui Ma

    2014-01-01

    Full Text Available One approach for improving BCG efficacy is to utilize BCG as vehicle to develop recombinant BCG (rBCG strains overexpressing Mycobacterium tuberculosis (M. tb antigens. Also expression level of a candidate antigen should impact the final T cell responses conferred by rBCG. In this study, based on our previously constructed differential expression system, we developed two rBCG strains overexpressing M. tb chimeric antigen Ag856A2 (coding a recombinant ag85a with 2 copies of esat-6 inserted at Acc I site of ag85a at differential levels under the control of the subtly modified furA promoters. These two rBCG strains were used to vaccinate C57BL/6 mice and exploit dose of incorporated antigen in rBCG to optimize immune response and protective efficiency against M. tb challenge in mouse model. The results showed that rBCG strains overexpressing Ag856A2 at differential levels induced different antigen-specific IFN-γ production and comparable number of M. tb-specific CD4 T cells expressing IL-2. M. tb challenge experiment showed that rBCG strains afforded enhanced but comparable immune protection characterized by reduced bacillary load, lung pathology, and inflammation. These results suggested that the dose of antigens incorporated in rBCG can impact T cell immune responses but imposed no significantly differential protective efficacies.

  20. Induction of protective immunity against Schistosoma mansoni infection by antigens purified from PIII, a fraction of adult worm, associated to the downregulation of granuloma formation

    Directory of Open Access Journals (Sweden)

    Gustavson Shauma

    1998-01-01

    Full Text Available This study was performed in order to define Schistosoma mansoni antigens able to function as modulator agents in BALB/c mice granulomatous hypersensitivity to parasite egg. The antigens P-24, P-35 and P-97 were purified by affinity chromatography from a fraction of S. mansoni adult worm antigenic preparation, denominated PIII, involved in the inhibition of granulomatous response to eggs. Immunization of mice with these antigens, in the presence of Corynebacterium parvum and Al(OH3 as adjuvant, induced a significant protection degree against challenge infection, as observed by the decrease on worm burden recovered from portal system. In vitro blastogenesis assays revealed that purified antigens were able to induce significant proliferation of spleen cells from S. mansoni-infected mice. This protection was correlated to significant decrease in granuloma size induced by PIII. From these results, we concluded that PIII preparation contains antigens capable of mediating protective anti-parasite immunity and down-regulating granulomatous hypersensitivity to S. mansoni eggs.

  1. Identification of broadly conserved cross-species protective Leishmania antigen and its responding CD4+ T cells.

    Science.gov (United States)

    Mou, Zhirong; Li, Jintao; Boussoffara, Thouraya; Kishi, Hiroyuki; Hamana, Hiroshi; Ezzati, Peyman; Hu, Chuanmin; Yi, Weijing; Liu, Dong; Khadem, Forough; Okwor, Ifeoma; Jia, Ping; Shitaoka, Kiyomi; Wang, Shufeng; Ndao, Momar; Petersen, Christine; Chen, Jianping; Rafati, Sima; Louzir, Hechmi; Muraguchi, Atsushi; Wilkins, John A; Uzonna, Jude E

    2015-10-21

    There is currently no clinically effective vaccine against leishmaniasis because of poor understanding of the antigens that elicit dominant T cell immunity. Using proteomics and cellular immunology, we identified a dominant naturally processed peptide (PEPCK335-351) derived from Leishmania glycosomal phosphoenolpyruvate carboxykinase (PEPCK). PEPCK was conserved in all pathogenic Leishmania, expressed in glycosomes of promastigotes and amastigotes, and elicited strong CD4(+) T cell responses in infected mice and humans. I-A(b)-PEPCK335-351 tetramer identified protective Leishmania-specific CD4(+) T cells at a clonal level, which comprised ~20% of all Leishmania-reactive CD4(+) T cells at the peak of infection. PEPCK335-351-specific CD4(+) T cells were oligoclonal in their T cell receptor usage, produced polyfunctional cytokines (interleukin-2, interferon-γ, and tumor necrosis factor), and underwent expansion, effector activities, contraction, and stable maintenance after lesion resolution. Vaccination with PEPCK peptide, DNA expressing full-length PEPCK, or rPEPCK induced strong durable cross-species protection in both resistant and susceptible mice. The effectiveness and durability of protection in vaccinated mice support the development of a broadly cross-species protective vaccine against different forms of leishmaniasis by targeting PEPCK. PMID:26491077

  2. Cutaneous anthrax on an unexpected area of body

    OpenAIRE

    Ertuğrul Güçlü; Nazan Tuna; Oğuz Karabay

    2012-01-01

    Anthrax is a zoonotic disease caused by Bacillus anthracis. Cutaneous anthrax is the most commonly seen form of anthrax.Skin lesions usually occur on the most exposed areas of the body, such as the face, neck, hand or upper extremity.The aim of this paper is to report a case of cutaneous anthrax form which was occurred on an unexpected area of thebody of a slaughter-house worker. J Microbiol Infect Dis 2012;2(4): 163-164Key words: Anthrax, Bacillus anthracis, cutaneous

  3. High antibody titer against apical membrane antigen-1 is required to protect against malaria in the Aotus model.

    Directory of Open Access Journals (Sweden)

    Sheetij Dutta

    Full Text Available A Plasmodium falciparum 3D7 strain Apical Membrane Antigen-1 (AMA1 vaccine, formulated with AS02(A adjuvant, slowed parasite growth in a recent Phase 1/2a trial, however sterile protection was not observed. We tested this AS02(A, and a Montanide ISA720 (ISA formulation of 3D7 AMA1 in Aotus monkeys. The 3D7 parasite does not invade Aotus erythrocytes, hence two heterologous strains, FCH/4 and FVO, were used for challenge, FCH/4 AMA1 being more homologous to 3D7 than FVO AMA1. Following three vaccinations, the monkeys were challenged with 50,000 FCH/4 or 10,000 FVO parasites. Three of the six animals in the AMA+ISA group were protected against FCH/4 challenge. One monkey did not become parasitemic, another showed only a short period of low level parasitemia that self-cured, and a third animal showed a delay before exhibiting its parasitemic phase. This is the first protection shown in primates with a recombinant P. falciparum AMA1 without formulation in Freund's complete adjuvant. No animals in the AMA+AS02(A group were protected, but this group exhibited a trend towards reduced growth rate. A second group of monkeys vaccinated with AMA+ISA vaccine was not protected against FVO challenge, suggesting strain-specificity of AMA1-based protection. Protection against FCH/4 strain correlated with the quantity of induced antibodies, as the protected animals were the only ones to have in vitro parasite growth inhibitory activity of >70% at 1:10 serum dilution; immuno-fluorescence titers >8,000; ELISA titers against full-length AMA1 >300,000 and ELISA titer against AMA1 domains1+2 >100,000. A negative correlation between log ELISA titer and day 11 cumulative parasitemia (Spearman rank r = -0.780, p value = 0.0001, further confirmed the relationship between antibody titer and protection. High titers of cross-strain inhibitory antibodies against AMA1 are therefore critical to confer solid protection, and the Aotus model can be used to down-select future AMA1

  4. An Antibody Screen of a Plasmodium vivax Antigen Library Identifies Novel Merozoite Proteins Associated with Clinical Protection

    Science.gov (United States)

    França, Camila T.; Hostetler, Jessica B.; Sharma, Sumana; White, Michael T.; Lin, Enmoore; Kiniboro, Benson; Waltmann, Andreea; Darcy, Andrew W.; Li Wai Suen, Connie S. N.; Siba, Peter; King, Christopher L.; Rayner, Julian C.; Fairhurst, Rick M.; Mueller, Ivo

    2016-01-01

    Background Elimination of Plasmodium vivax malaria would be greatly facilitated by the development of an effective vaccine. A comprehensive and systematic characterization of antibodies to P. vivax antigens in exposed populations is useful in guiding rational vaccine design. Methodology/Principal Findings In this study, we investigated antibodies to a large library of P. vivax entire ectodomain merozoite proteins in 2 Asia-Pacific populations, analysing the relationship of antibody levels with markers of current and cumulative malaria exposure, and socioeconomic and clinical indicators. 29 antigenic targets of natural immunity were identified. Of these, 12 highly-immunogenic proteins were strongly associated with age and thus cumulative lifetime exposure in Solomon Islanders (P<0.001–0.027). A subset of 6 proteins, selected on the basis of immunogenicity and expression levels, were used to examine antibody levels in plasma samples from a population of young Papua New Guinean children with well-characterized individual differences in exposure. This analysis identified a strong association between reduced risk of clinical disease and antibody levels to P12, P41, and a novel hypothetical protein that has not previously been studied, PVX_081550 (IRR 0.46–0.74; P<0.001–0.041). Conclusion/Significance These data emphasize the benefits of an unbiased screening approach in identifying novel vaccine candidate antigens. Functional studies are now required to establish whether PVX_081550 is a key component of the naturally-acquired protective immune response, a biomarker of immune status, or both. PMID:27182597

  5. Evaluation of cutaneous Anthrax in fifty Cases

    OpenAIRE

    Mardani, M.

    2001-01-01

    SummaryBackground and purpose: Anthrax is a zoon otic disease common between animals and man which is caused by a gram positive spore forming bacillus, known as Bacillus Anthracis.This disease is still one of the causes of health problems in developing countries.Chahar Mahal Bakhtyari state is one of the agricultural and animal breeding centers of Iran and annually many of the human and animals die of this disease.Materials and Methods: A study done on so Cutaneous anthrax patients at infecti...

  6. Cloning and characterization of a potentially protective chitinase-like recombinant antigen from Wuchereria bancrofti.

    OpenAIRE

    N. Raghavan; Freedman, D O; Fitzgerald, P C; Unnasch, T R; Ottesen, E A; Nutman, T B

    1994-01-01

    While there is no direct evidence demonstrating the existence of protective immunity to Wuchereria bancrofti infection in humans, the presence of individuals, in populations in areas where infection is endemic, with no clinical evidence of past or current infection despite appreciable exposure to the infective larvae, suggests that protective immunity to filarial parasites may occur naturally. Earlier work indicated that such putatively immune individuals generated antibodies to a 43-kDa anti...

  7. Cloning,expression,and protective immunity in mice of a gene encoding the diagnostic antigen P-29 of Echinococcus granulosus

    Institute of Scientific and Technical Information of China (English)

    Zhiyun Shi; Yana Wang; Zongji Li; Zhaoyu Li; Yang Bo; Rui Ma; Wei Zhao

    2009-01-01

    Taeniid tapeworm Echinococcus granulosus is the causative agent of Echinococcosis,an important zoonosis with worldwide distribution.In this study,a diagnostic antigen P-29 was cloned from E.granulosus and expressed in Escherichia coli.Sequence analysis showed that EgP-29 contains 717-bp open reading frame and encodes a protein of 238 amino acid residues with a predicted molecular weight of 27.1 kDa.The recombinant EgP-29(rEgP-29)could be recognized with antimice sera in Western blotting.The specific antibody was detected by enzyme-linked immunosorbent assay.Mice vaccinated with rEgP-29 and challenged intraperitoneally with E.granulosus protoscoleces revealed significant protective immunity of 96.6%(P<0.05),compared with the control group.Thus,rEgP-29protein is a promising candidate for an effective vaccine to prevent secondary echinococcosis.

  8. Multiple antigens of Yersinia pestis delivered by live recombinant attenuated Salmonella vaccine strains elicit protective immunity against plague.

    Science.gov (United States)

    Sanapala, Shilpa; Rahav, Hannah; Patel, Hetal; Sun, Wei; Curtiss, Roy

    2016-05-01

    Based on our improved novel Salmonella vaccine delivery platform, we optimized the recombinant attenuated Salmonella typhimurium vaccine (RASV) χ12094 to deliver multiple Yersinia pestis antigens. These included LcrV196 (amino acids, 131-326), Psn encoded on pYA5383 and F1 encoded in the chromosome, their synthesis did not cause adverse effects on bacterial growth. Oral immunization with χ12094(pYA5383) simultaneously stimulated high antibody titers to LcrV, Psn and F1 in mice and presented complete protection against both subcutaneous (s.c.) and intranasal (i.n.) challenges with high lethal doses of Y. pestis CO92. Moreover, no deaths or other disease symptoms were observed in SCID mice orally immunized with χ12094(pYA5383) over a 60-day period. Therefore, the trivalent S. typhimurium-based live vaccine shows promise for a next-generation plague vaccine. PMID:27060051

  9. Partial Protection of Mice against Trypanosoma cruzi after Immunizing with the TcY 72 Antigenic Preparation

    Directory of Open Access Journals (Sweden)

    Yara M Gomes

    1999-03-01

    Full Text Available A 72 kDa Trypanosoma cruzi glycoprotein recognized by the 164C11 monoclonal antibody (IgM isotype was purified by preparative electrophoresis. The antigenic preparation obtained, named TcY 72, was used to immunize C57Bl/10 mice. The following results were observed after immunization: (1 induction of higher titres of IgG than IgM antibodies, as evaluated by indirect immunofluorescence; (2 significant DTH after injection of epimastigotes in mice footpads; (3 peak parasitemia in immunized mice was significantly reduced and animals were negative by 13 days post-infection, although the mice still succumb to infection; (4 the phenotypic analysis of spleen cell populations showed a decrease in the CD4/CD8 ratio in immunized mice. Taken as a whole, these findings indicate that TcY 72 is immunogenic and potentially important for protective immunity.

  10. An Outbreak Of Human Anthrax : A Report Of 15 Cases Of Cutaneous Anthrax

    OpenAIRE

    Thappa Devinder Mohan; Dave Shriya; Karthikeyan Kaliaperumal; Gupta Shally

    2000-01-01

    Anthrax, a zoonotic illness of herbivorous animals has caused epidemics in livestock and in man since antiquity. In India, the disease continues to be endemic, resulting in a few sporadic cases and outbreaks in human population. Such an outbreak was noted at our institute. Clinical and laboratory data of 15 cases of cutaneous anthrax recorded between July 1998 to June 2000 at the Department of Dermatology and STD. JIPMER hospital, Pondicherry was reviewed. There were 8 males and 7 females in ...

  11. Secretion of protective antigens by tissue-stage nematode larvae revealed by proteomic analysis and vaccination-induced sterile immunity.

    Science.gov (United States)

    Hewitson, James P; Ivens, Al C; Harcus, Yvonne; Filbey, Kara J; McSorley, Henry J; Murray, Janice; Bridgett, Stephen; Ashford, David; Dowle, Adam A; Maizels, Rick M

    2013-08-01

    Gastrointestinal nematode parasites infect over 1 billion humans, with little evidence for generation of sterilising immunity. These helminths are highly adapted to their mammalian host, following a developmental program through successive niches, while effectively down-modulating host immune responsiveness. Larvae of Heligmosomoides polygyrus, for example, encyst in the intestinal submucosa, before emerging as adult worms into the duodenal lumen. Adults release immunomodulatory excretory-secretory (ES) products, but mice immunised with adult H. polygyrus ES become fully immune to challenge infection. ES products of the intestinal wall 4th stage (L4) larvae are similarly important in host-parasite interactions, as they readily generate sterile immunity against infection, while released material from the egg stage is ineffective. Proteomic analyses of L4 ES identifies protective antigen targets as well as potential tissue-phase immunomodulatory molecules, using as comparators the adult ES proteome and a profile of H. polygyrus egg-released material. While 135 proteins are shared between L4 and adult ES, 72 are L4 ES-specific; L4-specific proteins correspond to those whose transcription is restricted to larval stages, while shared proteins are generally transcribed by all life cycle forms. Two protein families are more heavily represented in the L4 secretome, the Sushi domain, associated with complement regulation, and the ShK/SXC domain related to a toxin interfering with T cell signalling. Both adult and L4 ES contain extensive but distinct arrays of Venom allergen/Ancylostoma secreted protein-Like (VAL) members, with acetylcholinesterases (ACEs) and apyrase APY-3 particularly abundant in L4 ES. Serum antibodies from mice vaccinated with L4 and adult ES react strongly to the VAL-1 protein and to ACE-1, indicating that these two antigens represent major vaccine targets for this intestinal nematode. We have thus defined an extensive and novel repertoire of H

  12. Secretion of protective antigens by tissue-stage nematode larvae revealed by proteomic analysis and vaccination-induced sterile immunity.

    Directory of Open Access Journals (Sweden)

    James P Hewitson

    2013-08-01

    Full Text Available Gastrointestinal nematode parasites infect over 1 billion humans, with little evidence for generation of sterilising immunity. These helminths are highly adapted to their mammalian host, following a developmental program through successive niches, while effectively down-modulating host immune responsiveness. Larvae of Heligmosomoides polygyrus, for example, encyst in the intestinal submucosa, before emerging as adult worms into the duodenal lumen. Adults release immunomodulatory excretory-secretory (ES products, but mice immunised with adult H. polygyrus ES become fully immune to challenge infection. ES products of the intestinal wall 4th stage (L4 larvae are similarly important in host-parasite interactions, as they readily generate sterile immunity against infection, while released material from the egg stage is ineffective. Proteomic analyses of L4 ES identifies protective antigen targets as well as potential tissue-phase immunomodulatory molecules, using as comparators the adult ES proteome and a profile of H. polygyrus egg-released material. While 135 proteins are shared between L4 and adult ES, 72 are L4 ES-specific; L4-specific proteins correspond to those whose transcription is restricted to larval stages, while shared proteins are generally transcribed by all life cycle forms. Two protein families are more heavily represented in the L4 secretome, the Sushi domain, associated with complement regulation, and the ShK/SXC domain related to a toxin interfering with T cell signalling. Both adult and L4 ES contain extensive but distinct arrays of Venom allergen/Ancylostoma secreted protein-Like (VAL members, with acetylcholinesterases (ACEs and apyrase APY-3 particularly abundant in L4 ES. Serum antibodies from mice vaccinated with L4 and adult ES react strongly to the VAL-1 protein and to ACE-1, indicating that these two antigens represent major vaccine targets for this intestinal nematode. We have thus defined an extensive and novel

  13. Periorbital cellulitis due to cutaneous anthrax.

    Science.gov (United States)

    Gilliland, Grant; Starks, Victoria; Vrcek, Ivan; Gilliland, Connor

    2015-12-01

    Virgil's plague of the ancient world, Bacillus anthracis, is rare in developed nations. Unfortunately rural communities across the globe continue to be exposed to this potentially lethal bacterium. Herein we report a case of periorbital cutaneous anthrax infection in a 3-year-old girl from the rural area surrounding Harare, Zimbabwe with a brief review of the literature. PMID:25763844

  14. Multi-antigen vaccines based on complex adenovirus vectors induce protective immune responses against H5N1 avian influenza viruses.

    Science.gov (United States)

    Holman, David H; Wang, Danher; Raja, Nicholas U; Luo, Min; Moore, Kevin M; Woraratanadharm, Jan; Mytle, Nutan; Dong, John Y

    2008-05-19

    There are legitimate concerns that the highly pathogenic H5N1 avian influenza virus could adapt for human-to-human transmission and cause a pandemic similar to the 1918 "Spanish flu" that killed 50 million people worldwide. We have developed pandemic influenza vaccines by incorporating multiple antigens from both avian and Spanish influenza viruses into complex recombinant adenovirus vectors. In vaccinated mice, these vaccines induced strong humoral and cellular immune responses against pandemic influenza virus antigens, and protected vaccinated mice against lethal H5N1 virus challenge. These results indicate that this multi-antigen, broadly protective vaccine may serve as a safer and more effective approach than traditional methods for development of a pandemic influenza vaccine. PMID:18395306

  15. Cloning and expression of a protective antigen from the cattle tick Boophilus microplus.

    OpenAIRE

    Rand, K N; Moore, T.; Sriskantha, A; Spring, K; Tellam, R; P. Willadsen; Cobon, G S

    1989-01-01

    Glycoproteins located on the luminal surface of the plasma membrane of tick gut epithelial cells, when used to vaccinate cattle, are capable of stimulating an immune response that protects cattle against subsequent tick infestation. One such tick gut glycoprotein, designated Bm86, has been purified to homogeneity and the amino acid sequences of peptide fragments generated by endoproteinase Lys-C digestion have been determined. We report here the isolation and characterization of a cDNA that e...

  16. Antigenicity and protective effects of type 3 pneumococcal polysaccharide in rats.

    OpenAIRE

    Hodges, G R; Worley, S E; Degener, C E; Clark, G M

    1980-01-01

    The response to type 3 pneumococcal polysaccharide vaccination, the protective effect of type 3 pneumococcal polysaccharide vaccination, and the ability of hemagglutinating antibody to type 3 pneumococcal polysaccharide to cross the blood-brain barrier were studied in rats. Hemagglutinating antibody response to vaccination with type 3 pneumococcal polysaccharide was found to be dependent on the dose and route of inoculation. Intraperitoneal vaccination with type 3 pneumococcal polysaccharide ...

  17. Immunogenicity and Protection Efficacy of Subunit-based Smallpox Vaccines Using Variola Major Antigens

    OpenAIRE

    Sakhatskyy, Pavlo; Wang, Shixia; Zhang, Chuanyou; Chou, Te-Hui; Kishko, Michael; Lu, Shan

    2007-01-01

    The viral strain responsible for smallpox infection is variola major (VARV). As a result of the successful eradication of smallpox with the vaccinia virus (VACV), the general population is no longer required to receive a smallpox vaccine, and will have no protection against smallpox. This lack of immunity is a concern due to the potential for use of smallpox as a biological weapon. Considerable progress has been made in the development of subunit-based smallpox vaccines resulting from the ide...

  18. Unique Inflammatory Mediators and Specific IgE Levels Distinguish Local from Systemic Reactions after Anthrax Vaccine Adsorbed Vaccination.

    Science.gov (United States)

    Garman, Lori; Smith, Kenneth; Muns, Emily E; Velte, Cathy A; Spooner, Christina E; Munroe, Melissa E; Farris, A Darise; Nelson, Michael R; Engler, Renata J M; James, Judith A

    2016-08-01

    Although the U.S. National Academy of Sciences concluded that anthrax vaccine adsorbed (AVA) has an adverse event (AE) profile similar to those of other adult vaccines, 30 to 70% of queried AVA vaccinees report AEs. AEs appear to be correlated with certain demographic factors, but the underlying immunologic pathways are poorly understood. We evaluated a cohort of 2,421 AVA vaccinees and found 153 (6.3%) reported an AE. Females were more likely to experience AEs (odds ratio [OR] = 6.0 [95% confidence interval {CI} = 4.2 to 8.7]; P vaccinated 2 to 12 months prior to plasma sample collection (n = 75), individuals with LLRs (n = 33) had higher protective-antigen (PA)-specific IgE levels than matched, unaffected vaccinated individuals (n = 50; P vaccinated individuals. IP-10 was also elevated in sera of individuals who developed LLRs (P vaccine-specific IgE response and IP-10, whereas SRs demonstrate increased systemic inflammation without a skewed cytokine profile. PMID:27280620

  19. Negative Regulation of TGFβ Signaling by Stem Cell Antigen-1 Protects against Ischemic Acute Kidney Injury.

    Directory of Open Access Journals (Sweden)

    Troy D Camarata

    Full Text Available Acute kidney injury, often caused by an ischemic insult, is associated with significant short-term morbidity and mortality, and increased risk of chronic kidney disease. The factors affecting the renal response to injury following ischemia and reperfusion remain to be clarified. We found that the Stem cell antigen-1 (Sca-1, commonly used as a stem cell marker, is heavily expressed in renal tubules of the adult mouse kidney. We evaluated its potential role in the kidney using Sca-1 knockout mice submitted to acute ischemia reperfusion injury (IRI, as well as cultured renal proximal tubular cells in which Sca-1 was stably silenced with shRNA. IRI induced more severe injury in Sca-1 null kidneys, as assessed by increased expression of Kim-1 and Ngal, rise in serum creatinine, abnormal pathology, and increased apoptosis of tubular epithelium, and persistent significant renal injury at day 7 post IRI, when recovery of renal function in control animals was nearly complete. Serum creatinine, Kim-1 and Ngal were slightly but significantly elevated even in uninjured Sca-1-/- kidneys. Sca-1 constitutively bound both TGFβ receptors I and II in cultured normal proximal tubular epithelial cells. Its genetic loss or silencing lead to constitutive TGFβ receptor-mediated activation of canonical Smad signaling even in the absence of ligand and to KIM-1 expression in the silenced cells. These studies demonstrate that by normally repressing TGFβ-mediated canonical Smad signaling, Sca-1 plays an important in renal epithelial cell homeostasis and in recovery of renal function following ischemic acute kidney injury.

  20. Recombinant Adenovirus Delivery of Calreticulin-ESAT-6 Produces an Antigen-Specific Immune Response but no Protection Against a Mycobacterium Tuberculosis Challenge

    NARCIS (Netherlands)

    Esparza-Gonzalez, S. C.; Troy, A.; Troudt, J.; Loera-Arias, M. J.; Villatoro Hernandez, Julio; Torres-Lopez, E.; Ancer-Rodriguez, J.; Gutierrez-Puente, Y.; Munoz-Maldonado, G.; Saucedo-Cardenas, O.; Montes-de-Oca-Luna, R.; Izzo, A.

    2012-01-01

    Bacillus CalmetteGuerin (BCG) has failed to efficaciously control the worldwide spread of the disease. New vaccine development targets virulence antigens of Mycobacterium tuberculosis that are deleted in Mycobacterium bovis BCG. Immunization with ESAT-6 and CFP10 provides protection against M. tuber

  1. Subdominant antigens in bacterial vaccines: Am779 is subdominant in the anaplasma marginale outer membrane vaccine but does not associate with protective immunity

    Science.gov (United States)

    Identification of specific antigens responsible for the ability of complex immunogens to induce protection is a major goal in development of bacterial vaccines. Much of the investigation has focused on highly abundant and highly immunodominant outer membrane proteins. Recently however, genomic and p...

  2. Role of the α Clamp in the Protein Translocation Mechanism of Anthrax Toxin.

    Science.gov (United States)

    Brown, Michael J; Thoren, Katie L; Krantz, Bryan A

    2015-10-01

    Membrane-embedded molecular machines are utilized to move water-soluble proteins across these barriers. Anthrax toxin forms one such machine through the self-assembly of its three component proteins--protective antigen (PA), lethal factor, and edema factor. Upon endocytosis into host cells, acidification of the endosome induces PA to form a membrane-inserted channel, which unfolds lethal factor and edema factor and translocates them into the host cytosol. Translocation is driven by the proton motive force, composed of the chemical potential, the proton gradient (ΔpH), and the membrane potential (Δψ). A crystal structure of the lethal toxin core complex revealed an "α clamp" structure that binds to substrate helices nonspecifically. Here, we test the hypothesis that, through the recognition of unfolding helical structure, the α clamp can accelerate the rate of translocation. We produced a synthetic PA mutant in which an α helix was crosslinked into the α clamp to block its function. This synthetic construct impairs translocation by raising a yet uncharacterized translocation barrier shown to be much less force dependent than the known unfolding barrier. We also report that the α clamp more stably binds substrates that can form helices than those, such as polyproline, that cannot. Hence, the α clamp recognizes substrates by a general shape-complementarity mechanism. Substrates that are incapable of forming compact secondary structure (due to the introduction of a polyproline track) are severely deficient for translocation. Therefore, the α clamp and its recognition of helical structure in the translocating substrate play key roles in the molecular mechanism of protein translocation. PMID:26344833

  3. Bm86 antigen induces a protective immune response against Boophilus microplus following DNA and protein vaccination in sheep.

    Science.gov (United States)

    De Rose, R; McKenna, R V; Cobon, G; Tennent, J; Zakrzewski, H; Gale, K; Wood, P R; Scheerlinck, J P; Willadsen, P

    1999-11-30

    Vaccination of sheep with a plasmid bearing the full length gene for the tick antigen Bm86 either alone or co-administered with plasmid carrying the ovine genes for the cytokines, granulocyte and macrophage colony stimulating factor (GM-CSF) or interleukin (IL)-1beta induced a relatively low level of protection against subsequent tick infestation. This tick damage reached statistical significance only for the groups which were vaccinated with plasmid encoding for Bm86, co-administered with plasmid encoding for ovine GM-CSF. Antibody titres measured against Bm86 were also low in all groups injected with the Bm86 DNA vaccine. Antibody production and anti-tick effect were significantly less than that achieved by two vaccinations with recombinant Bm86 protein. In all cases only a low level of antigen-specific stimulation of peripheral blood lymphocytes was recorded, as measured either by the incorporation of tritiated thymidine or the release of IFN-gamma. Injection of DNA encoding for Bm86, either alone or with co-administered cytokine genes, did however prime for a strong subsequent antibody response following a single injection of recombinant Bm86 protein in adjuvant. Antibody production nevertheless appeared to be slightly less effective than following two vaccinations with recombinant protein. The persistence of antibody following vaccination was the same regardless of the method of primary sensitization. In all cases the half-life of the antibody response was approximately 40-50 days indicating that, in contrast to results reported in mice, DNA vaccination in sheep did not result in sustained antibody production. PMID:10587297

  4. Histamine release factor from Dermanyssus gallinae (De Geer): characterization and in vitro assessment as a protective antigen.

    Science.gov (United States)

    Bartley, Kathryn; Nisbet, Alasdair J; Offer, Jill E; Sparks, Nicholas H C; Wright, Harry W; Huntley, John F

    2009-03-01

    A cDNA encoding a 174-amino-acid orthologue of a tick histamine release factor (HRF) was identified from the haematophagous poultry red mite Dermanyssus gallinae. The predicted D. gallinae HRF protein (Dg-HRF-1) sequence is highly conserved with the tick HRFs (identity 52-54%) and to a lesser degree with translationally controlled tumour proteins (TCTP) from mammals and other invertebrates (range 38-47%). Phylogenetically, Dg-HRF-1 partitions with the tick HRF clade suggesting a shared linage and potentially similar function(s). A recombinant Dg-HRF-1 protein (rDg-HRF-1) was produced and shown to induce degranulation of rat peritoneal mast cells in vitro, confirming conservation of the histamine-releasing function in D. gallinae. Polyclonal antibodies were generated in rabbits and hens to rDg-HRF-1. Western blotting demonstrated that native Dg-HRF is a soluble protein and immunohistochemical staining of mite sections revealed that the distribution of Dg-HRF, although ubiquitous, is more common in mite reproductive, digestive and synganglion tissues. A survey of hens housed continuously in a mite-infested commercial poultry unit failed to identify IgY specific for recombinant or native Dg-HRF, indicating that Dg-HRF is not exposed to the host during infestation/feeding and may therefore have potential as a vaccine using the concealed antigen approach. To test the protective capability of rDg-HRF-1, fresh heparinised chicken blood was enriched with yolk-derived anti-Dg-HRF IgY antibodies and fed to semi-starved mites using an in vitro feeding system. A statistically significant increase in mortality was shown (P=0.004) in mites fed with anti-Dg-HRF IgY after just one blood meal. The work presented here demonstrates, to our knowledge for the first time, the feasibility of vaccinating hens with recombinant D. gallinae antigens to control mite infestation and the potential of rDg-HRF-1 as a vaccine antigen. PMID:18938170

  5. Identification of peptide sequences as a measure of Anthrax vaccine stability during storage

    OpenAIRE

    Whiting, Gail; Wheeler, Jun X.; Rijpkema, Sjoerd

    2014-01-01

    The UK anthrax vaccine is an alum precipitate of a sterile filtrate of Bacillus anthracis Sterne culture (AVP). An increase in shelf life of AVP from 3 to 5 years prompted us to investigate the in vivo potency and the antigen content of 12 batches with a shelf life of 6.4 to 9.9 years and one bulk with a shelf life of 23.8 years. All batches, except for a 9.4-year-old batch, passed the potency test. Mass spectrometry (MS) and in-gel difference 2-dimensional gel electrophoresis (DIGE) were use...

  6. Media exposure to bioterrorism: stress and the anthrax attacks.

    Science.gov (United States)

    Dougall, Angela Liegey; Hayward, Michele C; Baum, Andrew

    2005-01-01

    This study examined media exposure and adjustment to anthrax bioterrorism attacks and the terrorist attacks on 9/11 in a sample of 300 people who lived distant from the attacks. Measures of direct and indirect exposure to terrorism, perceived risk of anthrax exposure, psychological distress, and outlook were assessed at 2 to 3 months and at 8 months after the first reported anthrax attack. Initial anthrax media exposure was a powerful predictor of distress, whereas subsequent anthrax media exposure only predicted negative changes in outlook over time. Perceived risk of anthrax exposure predicted distress and outlook but did not appear to mediate the effects of media exposure. Determining the nature and consequences of media exposure to threatening and frightening events like terrorism will help predict and manage response to future bioterrorism. PMID:15899708

  7. Oral delivery of the Sj23LHD-GST antigen by Salmonella typhimurium type III secretion system protects against Schistosoma japonicum infection in mice.

    Directory of Open Access Journals (Sweden)

    Guo Chen

    2011-09-01

    Full Text Available BACKGROUND: Schistosomiasis japonica is a zoonotic parasitic disease and oral vaccine delivery system would be benefit for prevention of this disease. Although attenuated salmonella has been used as an antigen expression vector for oral vaccine development, the membrane-bound vacuoles in which bacteria reside hinders the presentation of expressed heterologous antigens to the major histocompatibility complex (MHC molecules. The present work used an attenuated Salmonella typhimurium strain VNP20009 to secretory expression of Sj23LHDGST bivalent antigen from Schistosoma japonicum and tested the protective efficacy against S. japonicum infection in orally immunized mice. METHODOLOGY/PRINCIPAL FINDINGS: Promoters (nirB or pagC were used to express the antigen (Sj23LHDGST and the Salmonella type III or α-hemolysin secretion system was employed to secrete it. The immunoblotting analysis and fluorescent microscopy revealed that the antigen was effectively expressed and delivered to the cytosol of macrophages in vitro. Among recombinant vaccine strains, an engineered VNP20009 which expressed the antigen by nirB promoter and secreted it through type III secretion system (nirB-sopE(1-104-Sj23LHD-GST efficiently protected against S. japonicum infection in a mouse model. This strain elicited a predominantly IgG(2a antibody response and a markedly increase in the production of IL-12 and IFN-γ. The flow cytometric analysis demonstrated that this strain caused T cell activation as evidenced by significantly increased expression of CD44 and CD69. CONCLUSION/SIGNIFICANCE: Oral delivery of antigen by nirB-driven Salmonella typhimurium type III secretion system is a novel, safe, inexpensive, efficient and convenient approach for schistosome vaccine development.

  8. Anthrax: a continuing concern in the era of bioterrorism

    OpenAIRE

    Riedel, Stefan

    2005-01-01

    Anthrax, a potentially fatal infection, is a virulent and highly contagious disease. It is caused by a gram-positive, toxigenic, spore-forming bacillus: Bacillus anthracis. For centuries, anthrax has caused disease in animals and, although uncommonly, in humans throughout the world. Descriptions of this naturally occurring disease begin in antiquity. Anthrax is primarily a disease of herbivores, which are infected by ingestion of spores from the soil. With the advent of modern microbiology, P...

  9. The Control of Anthrax Disease: Diagnosis, Vaccination and Investigation

    OpenAIRE

    Rahmat Setya Adji; Lily Natalia

    2006-01-01

    Anthrax is a bacterial disease caused by Bacillus anthracis attacking both animal and human (zoonosis) . The disease is normally associated with domestic livestock such as sheep, goats, and cattle, but humans are also infected due to exposure or comsuming infected animals . The control of anthrax in humans and animals involves developing a diagnostic method for B. anthracis detection and confirmation of anthrax, prevention by vaccines, and disease investigation . Rapid and more accurate diagn...

  10. A MATHEMATICAL SIMULATION OF THE INFLAMMATORY RESPONSE TO ANTHRAX INFECTION

    OpenAIRE

    Kumar, Rukmini; Chow, Carson C; Bartels, John D.; Clermont, Gilles; Vodovotz, Yoram

    2008-01-01

    Bacillus anthracis (anthrax) can trigger an acute inflammatory response that results in multisystem organ failure and death. Previously, we developed a mathematical model of acute inflammation after gram-negative infection that had been matched qualitatively to literature data. We modified the properties of the invading bacteria in that model to those specific to B. anthracis and simulated the host response to anthrax infection. We simulated treatment strategies against anthrax in a genetical...

  11. Meningoencephalitis due to anthrax: CT and MR findings

    Energy Technology Data Exchange (ETDEWEB)

    Yildirim, Hanefi; Koc, Mustafa; Murat, Ayse [Firat University, Department of Radiology, Elazig (Turkey); Kabakus, Nimet; Incekoey Girgin, Feyza [Firat University, Department of Paediatric Neurology, Elazig (Turkey)

    2006-11-15

    Anthrax is primarily a disease of herbivores, but it also causes cutaneous, respiratory and gastrointestinal infections in humans. Bacillus anthracis is an uncommon cause of meningitis and generally produces a haemorrhagic meningoencephalitis. We present the CT and MR findings of anthrax meningoencephalitis due to the cutaneous form of anthrax in a 12-year-old boy. They showed focal intracerebral haemorrhage with leptomeningeal enhancement. (orig.)

  12. Meningoencephalitis due to anthrax: CT and MR findings

    International Nuclear Information System (INIS)

    Anthrax is primarily a disease of herbivores, but it also causes cutaneous, respiratory and gastrointestinal infections in humans. Bacillus anthracis is an uncommon cause of meningitis and generally produces a haemorrhagic meningoencephalitis. We present the CT and MR findings of anthrax meningoencephalitis due to the cutaneous form of anthrax in a 12-year-old boy. They showed focal intracerebral haemorrhage with leptomeningeal enhancement. (orig.)

  13. A Small Cutaneous Anthrax Epidemic in Eastern Turkey

    OpenAIRE

    Gülaçtı, Umut; ÜSTÜN, Cemal; ERDOĞAN, Mehmet Özgür

    2012-01-01

    Objectives: This study aims to investigate an epidemic of cutaneous anthrax in Tunceli Province, Eastern Turkey. Materials and methods: Seven cases with cutaneous anthrax, admitted to emergency room, were diagnosed and followed at Elazig Harput State Hospital in August 2011. The possible sources of epidemic and clinical characteristics of the patients were evaluated. Results: The mean age of seven cases with cutaneous anthrax was 34.1±8 years, of whom four were male and thr...

  14. The host response to anthrax lethal toxin: unexpected observations

    OpenAIRE

    Prince, Alice S.

    2003-01-01

    Bacillus anthracis, the causative agent of anthrax, is believed to induce disease and death in humans in an endotoxic shock–like manner. A comprehensive study of the effects of anthrax toxin in mice demonstrates that toxin-induced death is mediated not by cytokine release, as previously thought, but by hypoxia-induced liver failure. The study strongly suggests that the therapies developed for treatment of cytokine-mediated septic shock will not be appropriate for the treatment of anthrax.

  15. A Case of Fatal Gastrointestinal Anthrax in North Eastern Iran

    OpenAIRE

    Seyed Ahmad Hashemi; Amir Azimian; Sara Nojumi; Tahereh Garivani; Saghar Safamanesh; Majid Ghafouri

    2015-01-01

    Background. Bacillus species are aerobic or facultative anaerobic, gram-positive, or gram-variable spore-forming rods. They are ubiquitous in the environmental sources. Bacillus anthracis may usually cause three forms of anthrax: inhalation, gastrointestinal, and cutaneous. The gastrointestinal (GI) anthrax develops after eating contaminated meat. In this paper we report septic intestinal anthrax. Case Presentation. We report an isolation of Bacillus anthracis from blood culture of patient wi...

  16. A case report of inhalation anthrax acquired naturally

    OpenAIRE

    Azarkar, Zohreh; Zare Bidaki, Majid

    2016-01-01

    Background Anthrax is a zoonotic occupational disease caused by Bacillus anthracis, a rod-shaped immobile aerobic gram-positive bacteria with spore. Anthrax occurs in humans randomly and with low frequency. Most cases of anthrax are acquired through contact with infected animals or contaminated animal products. This old disease became particularly important since 2001 that the biological spores were exploited in America. Depending on the transmission method of the disease, clinical manifestat...

  17. Glycan elongation beyond the mucin associated Tn antigen protects tumor cells from immune-mediated killing

    DEFF Research Database (Denmark)

    Madsen, Caroline B; Lavrsen, Kirstine; Steentoft, Catharina; Vester-Christensen, Malene B; Clausen, Henrik; Wandall, Hans H; Pedersen, Anders Elm

    2013-01-01

    recognized as cancer associated truncated glycans, and are expressed in many adenocarcinomas, e.g. breast- and pancreatic cancer cells. To investigate the role of the cancer associated glycan truncations in immune-mediated killing we created glyco-engineered breast- and pancreatic cancer cells expressing...... and pancreatic cancer cell lines T47D and Capan-1 increases sensitivity to both NK cell mediated antibody-dependent cellular-cytotoxicity (ADCC) and cytotoxic T lymphocyte (CTL)-mediated killing. In addition, we investigated the association between total cell surface expression of MUC1/MUC16 and NK or...... CTL mediated killing, and observed an inverse correlation between MUC16/MUC1 expression and the sensitivity to ADCC and CTL-mediated killing. Together, these data suggest that up-regulation of membrane bound mucins protects cells from immune mediated killing, and that particular glycosylation steps...

  18. Anthrax as an example of the One Health concept.

    Science.gov (United States)

    Bengis, R G; Frean, J

    2014-08-01

    Anthrax is a peracute, acute or subacute multispecies bacterial infection that occurs on many continents. It is one of the oldest infectious diseases known; the biblical fifth and sixth plagues (Exodus chapters 7 to 9) that affected first livestock and then humans were probably anthrax. From the earliest historical records until development of an effective vaccine midway through the 20th Century, anthrax was one of the foremost causes of uncontrolled mortality in cattle, sheep, goats, horses and pigs, with 'spill over' into humans, worldwide. With the development of the Sterne spore vaccine, a sharp decline in anthrax outbreaks in livestock occurred during the 1930-1980 era. There were successful national vaccination programmes in many countries during this period, complemented by the liberal use of antibiotics and the implementation of quarantine regulations and carcass disposal. However, a resurgence of this disease in livestock has been reported recently in some regions, where complacency and a false sense of security have hindered vaccination programmes. The epidemiology of anthrax involves an environmental component, as well as livestock, wildlife and human components. This makes anthrax an ideal example for discussion in the One Health context. Many outbreaks of anthrax in wildlife are undetected or unreported, owing to surveillance inadequacies and difficulties. Human disease is generally acquired accidentally during outbreaks of anthrax in domestic livestock and wildlife. The exception is deliberate targeting of humans with anthrax in the course of biowarfare or bioterrorism. PMID:25707186

  19. Human anthrax as a re-emerging disease.

    Science.gov (United States)

    Doganay, Mehmet; Demiraslan, Hayati

    2015-01-01

    Anthrax is primarily a disease of herbivores and the etiological agent is B. anthracis which is a gram-positive, aerobic, spore-forming, and rod shaped bacterium. Bacillus anthracis spores are highly resistant to heat, pressure, ultraviolet and ionizing radiation, chemical agents and disinfectants. For these reasons, B. anthracis spores are an attractive choice as biological agents for the use of bioweapon and/or bioterrorism. Soil is the main reservoir for the infectious agent. The disease most commonly affects wild and domestic mammals. Human are secondarily infected by contact with infected animals and contaminated animal products or directly expose to B. anthracis spores. Anthrax occurs worldwide. This infection is still endemic or hyperendemic in both animals and humans in some part of areas of the world; particularly in Middle East, West Africa, Central Asia, some part of India, South America. However, some countries are claiming free of anthrax, and anthrax has become a re-emerging disease in western countries with the intentional outbreak. Currently, anthrax is classified according to its setting as (1) naturally occurring anthrax, (2) bioterrorism-related anthrax. Vast majority of human anthrax are occurring as naturally occurring anthrax in the world. It is also a threaten disease for western countries. The aim of this paper is to review the relevant patents, short historical perspective, microbiological and epidemiological features, clinical presentations and treatment. PMID:25851429

  20. The ecology of anthrax spores: tough but not invincible.

    OpenAIRE

    Dragon, D C; Rennie, R P

    1995-01-01

    Bacillus anthracis is the causative agent of anthrax, a serious and often fatal disease of wild and domestic animals. Central to the persistence of anthrax in an area is the ability of B. anthracis to form long-lasting, highly resistant spores. Understanding the ecology of anthrax spores is essential if one hopes to control epidemics. Studies on the ecology of anthrax have found a correlation between the disease and specific soil factors, such as alkaline pH, high moisture, and high organic c...

  1. First Autochthonous Coinfected Anthrax in an Immunocompetent Patient

    OpenAIRE

    Parvaneh Afshar; Mohammad Taghi Hedayati; Narges Aslani; Sadegh Khodavaisy; Farhang Babamahmoodi; Mohammad Reza Mahdavi; Somayeh Dolatabadi; Hamid Badali

    2015-01-01

    Cutaneous anthrax has a mortality rate of 20% if no antibacterial treatment is applied. The clinical manifestations of cutaneous anthrax are obviously striking, but coinfection may produce atypical lesions and mask the clinical manifestations and proper laboratory diagnosis. Anthrax is known to be more common in the Middle East and Iran is one of the countries in which the zoonotic form of anthrax may still be encountered. We report a case of a 19-years-old male who used to apply Venetian cer...

  2. Enhanced and durable protective immune responses induced by a cocktail of recombinant BCG strains expressing antigens of multistage of Mycobacterium tuberculosis.

    Science.gov (United States)

    Liang, Jinping; Teng, Xindong; Yuan, Xuefeng; Zhang, Ying; Shi, Chunwei; Yue, Tingting; Zhou, Lei; Li, Jianrong; Fan, Xionglin

    2015-08-01

    Although Bacillus Calmette-Guérin (BCG) vaccine confers protection from Mycobacterium tuberculosis infection in children, its immune protection gradually wanes over time, and consequently leads to an inability to prevent the reactivation of latent infection of M. tuberculosis. Therefore, improving BCG for better control of tuberculosis (TB) is urgently needed. We thus hypothesized that recombinant BCG overexpressing immunodominant antigens expressed at different growth stages of M. tuberculosis could provide a more comprehensive protection against primary and latent M. tuberculosis infection. Here, a novel cocktail of recombinant BCG (rBCG) strains, namely ABX, was produced by combining rBCG::85A, rBCG::85B, and rBCG::X, which overexpressed respective multistage antigens Ag85A, Ag85B, and HspX of M. tuberculosis. Our results showed that ABX was able to induce a stronger immune protection than individual rBCGs or BCG against primary TB infection in C57BL/6 mice. Mechanistically, the immune protection was attributed to stronger antigen-specific CD4(+) Th1 responses, higher numbers of IFN-γ(+) CD4(+) TEM and IL-2(+) CD8(+) TCM cells elicited by ABX. These findings thus provide a novel strategy for the improvement of BCG efficacy and potentially a promising prophylactic TB vaccine candidate, warranting further investigation. PMID:25974877

  3. Protective immune mechanisms against pre-erythrocytic forms of Plasmodium berghei depend on the target antigen

    Directory of Open Access Journals (Sweden)

    Elke S. Bergmann-Leitner

    2014-01-01

    Full Text Available Pre-erythrocytic malaria vaccines are believed to either stop the injected sporozoites from reaching the liver or to direct cellular immune responses towards eliminating infected hepatocytes. The present study reveals for the first time the anatomical sites at which these immune mechanisms act against the malaria parasites. To determine the mechanisms leading to protection mediated by two previously characterized vaccines against either the circumsporozoite protein (CSP or the cell traversal protein for ookinetes and sporozoites (CelTOS, mice were immunized and subsequently challenged by subcutaneous injection of salivary gland sporozoites of luciferase-transgenic Plasmodium berghei parasites. The In Vivo Imaging System (IVIS was used to identify the anatomical site where the vaccine-induced immune response eliminates sporozoites after injection. The data demonstrate that CSP-based immunity acts at the site of infection (skin whereas CelTOS-based immunity is only partially efficient in the skin and allows reduced levels of liver infection that can be subsequently cleared. The results of this study challenge assumptions regarding CSP-mediated immune mechanisms and call into question the validity of some commonly used assays to evaluate anti-CSP immune responses. The knowledge of the mechanism and events leading to infection or immune defense will guide supportive treatment with drugs or combination therapies and thus accelerate the development of effective antimalarial strategies.

  4. Extracted protective antigen of Bordetella pertussis. I. Preparation and properties of the solubilized surface of components.

    Science.gov (United States)

    Helting, T B; Blackkolb, F

    1981-04-01

    Bordetella pertussis microorganisms were treated with several extracting agents followed by ultracentrifugation to remove particulate matter. Analysis of the resulting supernatants by SDS gel electrophoresis showed one major component after simple salt extraction, and much more complex, although consistent pattern following detergent treatment. The yield of the solubilized protein in detergent extracts exceeded by far the values recorded for salt extracts. In order to prevent irreversible precipitation of the solubilized proteins upon removal of the denaturing agent, a novel procedure was developed. After extraction with urea-salt, the solubilized material was absorbed on a mineral carrier prior to the separation of the denaturing agent. The resulting absorbed vaccine was highly potent in the mouse-protection test, whereas the toxic reactions, elicited upon injection into experimental animals, were reduced in the comparison to the starting material. This diminished reactogenic potential was accompanied by the partial loss of the leukocytosis-promiting factor, whose activity was greatly diminished by urea-salt at alkaline pH-values. The procedure described may be applied to large-scale processing of Bordetella persussis microorganisms. Clinical trials now in progress should confirm or rebut the thesis that increased tolerability of the product, inferred from animal experiments, is reflected by fewer adverse reactions in humans. In the former case, the detergent extract vaccine may constitute a realistic alternative to conventional whole-cell vaccines against whooping-cough. PMID:6266198

  5. Enhanced early innate and T cell-mediated responses in subjects immunized with Anthrax Vaccine Adsorbed Plus CPG 7909 (AV7909).

    Science.gov (United States)

    Minang, Jacob T; Inglefield, Jon R; Harris, Andrea M; Lathey, Janet L; Alleva, David G; Sweeney, Diane L; Hopkins, Robert J; Lacy, Michael J; Bernton, Edward W

    2014-11-28

    NuThrax™ (Anthrax Vaccine Adsorbed with CPG 7909 Adjuvant) (AV7909) is in development. Samples obtained in a phase Ib clinical trial were tested to confirm biomarkers of innate immunity and evaluate effects of CPG 7909 (PF-03512676) on adaptive immunity. Subjects received two intramuscular doses of commercial BioThrax(®) (Anthrax Vaccine Adsorbed, AVA), or two intramuscular doses of one of four formulations of AV7909. IP-10, IL-6, and C-reactive protein (CRP) levels were elevated 24-48 h after administration of AV7909 formulations, returning to baseline by Day 7. AVA (no CPG 7909) resulted in elevated IL-6 and CRP, but not IP-10. Another marker of CpG, transiently decreased absolute lymphocyte counts (ALCs), correlated with transiently increased IP-10. Cellular recall responses to anthrax protective antigen (PA) or PA peptides were assessed by IFN-γ ELISpot assay performed on cryopreserved PBMCs obtained from subjects prior to immunization and 7 days following the second immunization (study day 21). One-half of subjects that received AV7909 with low-dose (0.25mg/dose) CPG 7909 possessed positive Day 21 T cell responses to PA. In contrast, positive T cell responses occurred at an 11% average rate (1/9) for AVA-treated subjects. Differences in cellular responses due to dose level of CPG 7909 were not associated with differences in humoral anti-PA IgG responses, which were elevated for recipients of AV7909 compared to recipients of AVA. Serum markers at 24 or 48 h (i.e. % ALC decrease, or increase in IL-6, IP-10, or CRP) correlated with the humoral (antibody) responses 1 month later, but did not correlate with cellular ELISpot responses. In summary, biomarkers of early responses to CPG 7909 were confirmed, and adding a CpG adjuvant to a vaccine administered twice resulted in increased T cell effects relative to vaccine alone. Changes in early biomarkers correlated with subsequent adaptive humoral immunity but not cellular immunity. PMID:24530403

  6. Immunogenicity and protective efficacy of recombinant Modified Vaccinia virus Ankara candidate vaccines delivering West Nile virus envelope antigens.

    Science.gov (United States)

    Volz, Asisa; Lim, Stephanie; Kaserer, Martina; Lülf, Anna; Marr, Lisa; Jany, Sylvia; Deeg, Cornelia A; Pijlman, Gorben P; Koraka, Penelope; Osterhaus, Albert D M E; Martina, Byron E; Sutter, Gerd

    2016-04-01

    West Nile virus (WNV) cycles between insects and wild birds, and is transmitted via mosquito vectors to horses and humans, potentially causing severe neuroinvasive disease. Modified Vaccinia virus Ankara (MVA) is an advanced viral vector for developing new recombinant vaccines against infectious diseases and cancer. Here, we generated and evaluated recombinant MVA candidate vaccines that deliver WNV envelope (E) antigens and fulfil all the requirements to proceed to clinical testing in humans. Infections of human and equine cell cultures with recombinant MVA demonstrated efficient synthesis and secretion of WNV envelope proteins in mammalian cells non-permissive for MVA replication. Prime-boost immunizations in BALB/c mice readily induced circulating serum antibodies binding to recombinant WNV E protein and neutralizing WNV in tissue culture infections. Vaccinations in HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice elicited WNV E-specific CD8+ T cell responses. Moreover, the MVA-WNV candidate vaccines protected C57BL/6 mice against lineage 1 and lineage 2 WNV infection and induced heterologous neutralizing antibodies. Thus, further studies are warranted to evaluate these recombinant MVA-WNV vaccines in other preclinical models and use them as candidate vaccine in humans. PMID:26939903

  7. A dual TLR agonist adjuvant enhances the immunogenicity and protective efficacy of the tuberculosis vaccine antigen ID93.

    Directory of Open Access Journals (Sweden)

    Mark T Orr

    Full Text Available With over eight million cases of tuberculosis each year there is a pressing need for the development of new vaccines against Mycobacterium tuberculosis. Subunit vaccines consisting of recombinant proteins are an attractive vaccine approach due to their inherent safety compared to attenuated live vaccines and the uniformity of manufacture. Addition of properly formulated TLR agonist-containing adjuvants to recombinant protein vaccines enhances the antigen-specific CD4(+ T cell response characterized by IFN-γ and TNF, both of which are critical for the control of TB. We have developed a clinical stage vaccine candidate consisting of a recombinant fusion protein ID93 adjuvanted with the TLR4 agonist GLA-SE. Here we examine whether ID93+GLA-SE can be improved by the addition of a second TLR agonist. Addition of CpG containing DNA to ID93+GLA-SE enhanced the magnitude of the multi-functional TH1 response against ID93 characterized by co-production of IFN-γ, TNF, and IL-2. Addition of CpG also improved the protective efficacy of ID93+GLA-SE. Finally we demonstrate that this adjuvant synergy between GLA and CpG is independent of TRIF signaling, whereas TRIF is necessary for the adjuvant activity of GLA-SE in the absence of CpG.

  8. Immunogenicity and protective role of antigenic regions from five outer membrane proteins of Flavobacterium columnare in grass carp Ctenopharyngodon idella

    Science.gov (United States)

    Luo, Zhang; Liu, Zhixin; Fu, Jianping; Zhang, Qiusheng; Huang, Bei; Nie, Pin

    2016-02-01

    Flavobacterium columnare causes columnaris disease in freshwater fish. In the present study, the antigenic regions of five outer membrane proteins (OMPs), including zinc metalloprotease, prolyl oligopeptidase, thermolysin, collagenase and chondroitin AC lyase, were bioinformatically analyzed, fused together, and then expressed as a recombinant fusion protein in Escherichia coli. The expressed protein of 95.6 kDa, as estimated by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was consistent with the molecular weight deduced from the amino acid sequence. The purified recombinant protein was used to vaccinate the grass carp, Ctenopharyngodon idella. Following vaccination of the fish their IgM antibody levels were examined, as was the expression of IgM, IgD and IgZ immunoglobulin genes and other genes such as MHC Iα and MHC IIβ, which are also involved in adaptive immunity. Interleukin genes (IL), including IL-1β, IL-8 and IL-10, and type I and type II interferon (IFN) genes were also examined. At 3 and 4 weeks post-vaccination (wpv), significant increases in IgM antibody levels were observed in the fish vaccinated with the recombinant fusion protein, and an increase in the expression levels of IgM, IgD and IgZ genes was also detected following the vaccinations, thus indicating that an adaptive immune response was induced by the vaccinations. Early increases in the expression levels of IL and IFN genes were also observed in the vaccinated fish. At four wpv, the fish were challenged with F. columnare, and the vaccinated fish showed a good level of protection against this pathogen, with 39% relative percent survival (RPS) compared with the control group. It can be concluded, therefore, that the five OMPs, in the form of a recombinant fusion protein vaccine, induced an immune response in fish and protection against F. columnare.

  9. Anthrax, fairly undetected in Papua New Guinea

    OpenAIRE

    Johnson Makaen; Lydia Tasi

    2015-01-01

    Anthrax is caused by the organism Bacillus anthracis. The organism is globally occurring and epidemics are reported the world over. It is an important infectious disease of domestic animals and can survive harsh conditions that would otherwise be drastic for other microorganisms. To date, no outbreak has been reported in the Pacific Island region except Australia and New Zealand where B. anthracis has been isolated from livestock. Papua New Guinea has had sporadic (reported) instances of anth...

  10. Anthrax phylogenetic structure in Northern Italy

    Directory of Open Access Journals (Sweden)

    Corrò Michela

    2011-07-01

    Full Text Available Abstract Background Anthrax has almost disappeared from mainland Europe, except for the Mediterranean region where cases are still reported. In Central and South Italy, anthrax is enzootic, but in the North there are currently no high risk areas, with only sporadic cases having been registered in the last few decades. Regional genetic and molecular characterizations of anthrax in these regions are still lacking. To investigate the potential molecular diversity of Bacillus anthracis in Northern Italy, canonical Single nucleotide polymorphism (canSNP and Multilocus variable number tandem repeat analysis (MLVA genotyping was performed against all isolates from animal outbreaks registered in the last twenty years in the region. Findings Six B. anthracis strains were analyzed. The canSNP analysis indicates the presence of three sublineages/subgroups each of which belong to one of the 12 worldwide CanSNP genotypes: B.Br.CNEVA (3 isolates, A.Br.005/006 (1 isolates and A.008/009 (2 isolate. The latter is the dominant canSNP genotype in Italy. The 15-loci MLVA analysis revealed five different genotypes among the isolates. Conclusions The major B branch and the A.Br.005/006 were recovered in the Northeast region. The genetic structure of anthrax discovered in this area differs from the rest of the country, suggesting the presence of a separate and independent B. anthracis molecular evolution niche. Although the isolates analyzed in this study are limited in quantity and representation, these results indicate that B. anthracis genetic diversity changes around the Alps.

  11. An Outbreak Of Human Anthrax : A Report Of 15 Cases Of Cutaneous Anthrax

    Directory of Open Access Journals (Sweden)

    Thappa Devinder Mohan

    2000-01-01

    Full Text Available Anthrax, a zoonotic illness of herbivorous animals has caused epidemics in livestock and in man since antiquity. In India, the disease continues to be endemic, resulting in a few sporadic cases and outbreaks in human population. Such an outbreak was noted at our institute. Clinical and laboratory data of 15 cases of cutaneous anthrax recorded between July 1998 to June 2000 at the Department of Dermatology and STD. JIPMER hospital, Pondicherry was reviewed. There were 8 males and 7 females in our series of 15, with a mean age of 20.3 years (range 11 months to 56 years. The children (10 outnumbered the adults (5. In most of the cases (9 there was history of death of cattle, sheep or goat in the house or in the neighbourhood. The commonest site of cutaneous anthrax was face (7 cases. Regional lymphadenitis occurred in one case and systemic features like fever in four cases. Majority of our cases responded favourably to crystalline penicillin. Smear taken from the vesicle fluid and eschar demonstrated typical large and thick Gram positive bacilli singly or in short chains. The organism could be cultured from cutaneous lesion in six cases only and blood culture was positive for Bacillus anthracis in one case. Cutaneous anthrax is the commonest form of human anthrax. There is increasing evidence to suggest that files and mosquitoes play a role in the transmission of Bacillus anthracis to human beings. Since 20% of untreated cases of cutaneous anthrax develop bacteraemia which leads to rapid death, it is important that the disease is recognized and treated earnestly.

  12. [PERSPECTIVES OF DEVELOPMENT OF LIVE RECOMBINANT ANTHRAX VACCINES BASED ON OPPORTUNISTIC AND APATHOGENIC MICROORGANISMS].

    Science.gov (United States)

    Popova, P Yu; Mikshis, N I

    2016-01-01

    Live genetic engineering anthrax vaccines on the platform of avirulent and probiotic micro-organisms are a safe and adequate alternative to preparations based on attenuated Bacillus anthracis strains. Mucosal application results in a direct contact of the vaccine preparations with mucous membranes in those organs arid tissues of the macro-organisms, that are exposed to the pathogen in the first place, resulting in a development of local and systemic immune response. Live recombinant anthrax vaccines could be used both separately as well as in a prime-boost immunization scheme. The review focuses on immunogenic and protective properties of experimental live genetic engineering prearations, created based on members of geni of Salmonella, Lactobacillus and adenoviruses. PMID:27029122

  13. Synergistic effect of silencing the expression of tick protective antigens 4D8 and Rs86 in Rhipicephalus sanguineus by RNA interference.

    Science.gov (United States)

    de la Fuente, José; Almazán, Consuelo; Naranjo, Victoria; Blouin, Edmour F; Kocan, Katherine M

    2006-07-01

    Tick proteins have been shown to be useful for the development of vaccines which reduce tick infestations. Potential tick protective antigens have been identified and characterized, in part, by use of RNA interference (RNAi). RNAi allows for analysis of gene function by characterizing the impact of loss of gene expression on tick physiology. Herein, we used RNAi in Rhipicephalus sanguineus to evaluate gene functions of two tick protective antigens, 4D8 and Rs86, the homologue of Bm86, on tick infestation, feeding and oviposition. Silencing of 4D8 alone resulted in decreased tick attachment, survival, feeding and oviposition. Although the effect of Rs86 RNAi was less pronounced, silencing of this gene also reduced tick weight and oviposition. Most notably, simultaneous silencing of 4D8 and Rs86 by RNAi resulted in a synergistic effect in which tick survival, attachment, feeding, weight and oviposition were profoundly reduced. Microscopic evaluation of tick tissues revealed that guts from dual injected ticks were distended with epithelial cells sparsely distributed along the basement membrane. These results demonstrated the synergistic effect of the silencing expression of two tick protective genes. Inclusion of multiple tick protective antigens may, therefore, enhance the efficacy of tick vaccines. PMID:16518610

  14. Transcriptional Stimulation of Anthrax Toxin Receptors by Anthrax Edema Toxin and Bacillus anthracis Sterne Spore

    OpenAIRE

    Xu, Qingfu; Hesek, Eric D.; Zeng, Mingtao

    2007-01-01

    We used quantitative real-time RT-PCR to not only investigate the mRNA levels of anthrax toxin receptor 1 (ANTXR1) and 2 (ANTXR2) in the murine J774A.1 macrophage cells and different tissues of mice, but also evaluate the effect of anthrax edema toxin and Bacillus anthracis Sterne spores on the expression of mRNA of these receptors. The mRNA transcripts of both receptors was detected in J774A.1 cells and mouse tissues such as the lung, heart, kidney, spleen, stomach, jejunum, brain, skeleton ...

  15. Vaccination with BM86, subolesin and akirin protective antigens for the control of tick infestations in white tailed deer and red deer.

    Science.gov (United States)

    Carreón, Diana; de la Lastra, José M Pérez; Almazán, Consuelo; Canales, Mario; Ruiz-Fons, Francisco; Boadella, Mariana; Moreno-Cid, Juan A; Villar, Margarita; Gortázar, Christian; Reglero, Manuel; Villarreal, Ricardo; de la Fuente, José

    2012-01-01

    Red deer (Cervus elaphus) and white-tailed deer (Odocoileus virginianus) are hosts for different tick species and tick-borne pathogens and play a role in tick dispersal and maintenance in some regions. These factors stress the importance of controlling tick infestations in deer and several methods such as culling and acaricide treatment have been used. Tick vaccines are a cost-effective alternative for tick control that reduced cattle tick infestations and tick-borne pathogens prevalence while reducing the use of acaricides. Our hypothesis is that vaccination with vector protective antigens can be used for the control of tick infestations in deer. Herein, three experiments were conducted to characterize (1) the antibody response in red deer immunized with recombinant BM86, the antigen included in commercial tick vaccines, (2) the antibody response and control of cattle tick infestations in white-tailed deer immunized with recombinant BM86 or tick subolesin (SUB) and experimentally infested with Rhipicephalus (Boophilus) microplus, and (3) the antibody response and control of Hyalomma spp. and Rhipicephalus spp. field tick infestations in red deer immunized with mosquito akirin (AKR), the SUB ortholog and candidate protective antigen against different tick species and other ectoparasites. The results showed that deer produced an antibody response that correlated with the reduction in tick infestations and was similar to other hosts vaccinated previously with these antigens. The overall vaccine efficacy was similar between BM86 (E=76%) and SUB (E=83%) for the control of R. microplus infestations in white-tailed deer. The field trial in red deer showed a 25-33% (18-40% when only infested deer were considered) reduction in tick infestations, 14-20 weeks after the first immunization. These results demonstrated that vaccination with vector protective antigens could be used as an alternative method for the control of tick infestations in deer to reduce tick populations

  16. Prior infection with influenza virus but not vaccination leaves a long-term immunological imprint that intensifies the protective efficacy of antigenically drifted vaccine strains.

    Science.gov (United States)

    Kim, Jin Hyang; Liepkalns, Justine; Reber, Adrian J; Lu, Xiuhua; Music, Nedzad; Jacob, Joshy; Sambhara, Suryaprakash

    2016-01-20

    The role of pre-existing immunity for influenza vaccine responses is of great importance for public health, and thus has been studied in various contexts, yet the impact of differential priming on vaccine responses in the midst of antigenic drift remains to be elucidated. To address this with antigenically related viruses, mice were first primed by either infection or immunization with A/Puerto Rico/8/34 (PR8) virus, then immunized with whole-inactivated A/Fort Monmouth/1/47 (FM1) virus. The ensuing vaccine responses and the protective efficacy of FM1 were superior in PR8 infection-primed mice compared to PR8 immunization-primed or unprimed mice. Increased FM1-specific Ab responses of PR8 infection-primed mice also broadened cross-reactivity against contemporary as well as antigenically more drifted strains. Further, prior infection heightened the protective efficacy of antigenically distant strains, such as A/Brisbane/59/2006 infection followed by immunization with split pandemic H1N1 vaccine (A/California/07/2009). Therefore, influenza infection is a significant priming event that intensifies future vaccine responses against drift strains. PMID:26706277

  17. Protection induced by Plasmodium falciparum MSP1(42 is strain-specific, antigen and adjuvant dependent, and correlates with antibody responses.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Lyon

    Full Text Available Vaccination with Plasmodium falciparum MSP1(42/complete Freund's adjuvant (FA followed by MSP1(42/incomplete FA is the only known regimen that protects Aotus nancymaae monkeys against infection by erythrocytic stage malaria parasites. The role of adjuvant is not defined; however complete FA cannot be used in humans. In rodent models, immunity is strain-specific. We vaccinated Aotus monkeys with the FVO or 3D7 alleles of MSP1(42 expressed in Escherichia coli or with the FVO allele expressed in baculovirus (bv combined with complete and incomplete FA, Montanide ISA-720 (ISA-720 or AS02A. Challenge with FVO strain P. falciparum showed that suppression of cumulative day 11 parasitemia was strain-specific and could be induced by E. coli expressed MSP1(42 in combination with FA or ISA-720 but not with AS02A. The coli42-FVO antigen induced a stronger protective effect than the bv42-FVO antigen, and FA induced a stronger protective effect than ISA-720. ELISA antibody (Ab responses at day of challenge (DOC were strain-specific and correlated inversely with c-day 11 parasitemia (r = -0.843. ELISA Ab levels at DOC meeting a titer of at least 115,000 ELISA Ab units identified the vaccinees not requiring treatment (noTx with a true positive rate of 83.3% and false positive rate of 14.3 %. Correlation between functional growth inhibitory Ab levels (GIA and cumulative day 11 parasitemia was weaker (r = -0.511, and was not as predictive for a response of noTx. The lowest false positive rate for GIA was 30% when requiring a true positive rate of 83.3%. These inhibition results along with those showing that antigen/FA combinations induced a stronger protective immunity than antigen/ISA-720 or antigen/AS02 combinations are consistent with protection as ascribed to MSP1-specific cytophilic antibodies. Development of an effective MSP1(42 vaccine against erythrocytic stage P. falciparum infection will depend not only on antigen quality, but also upon the selection of

  18. Absence of Mycoplasma Contamination in the Anthrax Vaccine

    OpenAIRE

    Hart, Mary Kate; Del Giudice, Richard A.; Korch, George W.

    2002-01-01

    Mycoplasma contamination of the licensed anthrax vaccine administered to military personnel has been suggested as a possible cause of Persian Gulf illness. Vaccine samples tested by nonmilitary laboratories were negative for viable mycoplasma and mycoplasma DNA and did not support its survival. Mycoplasma contamination of anthrax vaccine should not be considered a possible cause of illness.

  19. Two anthrax cases with soft tissue infection, severe oedema and sepsis in Danish heroin users

    DEFF Research Database (Denmark)

    Russell, Lene; Pedersen, Michael; Jensen, Andreas V;

    2013-01-01

    Anthrax had become extremely rare in Europe, but in 2010 an outbreak of anthrax among heroin users in Scotland increased awareness of contaminated heroin as a source of anthrax. We present the first two Danish cases of injectional anthrax and discuss the clinical presentations, which included both...

  20. Vaccination with replication-deficient recombinant adenoviruses encoding the main surface antigens of toxoplasma gondii induces immune response and protection against infection in mice.

    Science.gov (United States)

    Caetano, Bráulia C; Bruña-Romero, Oscar; Fux, Blima; Mendes, Erica A; Penido, Marcus L O; Gazzinelli, Ricardo T

    2006-04-01

    We have generated recombinant adenoviruses encoding three genetically modified surface antigens (SAGs) of the parasite Toxoplasma gondii, that is, AdSAG1, AdSAG2, and AdSAG3. Modifications included the removal of their glycosylphosphatidylinositol (GPI) anchoring motifs and, in some cases, the exchange of the native signal peptide for influenza virus hemagglutinin signal sequence. Adenovirus immunization of BALB/c mice elicited potent antibody responses against each protein, displaying a significant bias toward a helper T cell type 1 (Th1) profile in animals vaccinated with AdSAG1. Furthermore, the presence of parasite-specific IFN-gamma-producing T cells was analyzed by proliferation assays and enzyme-linked immunospot assays in the same animals. Splenocytes from immunized mice secreted IFN-gamma after in vitro stimulation with tachyzoite lysate antigen or with a fraction enriched for membrane-purified GPI-anchored proteins (F3) from the T. gondii tachyzoite surface. Epitopes recognized by CD8+ T cells were identified in SAG1 and SAG3, but not SAG2, sequences, although this protein also induced a specific response. We also tested the capacity of the immune responses detected to protect mice against a challenge with live T. gondii parasites. Although no protection was observed against tachyzoites of the highly virulent RH strain, a significant reduction in cyst loads in the brain was observed in animals challenged with the P-Br strain. Thus, up to 80% of the cysts were eliminated from animals vaccinated with a mixture of the three recombinant viruses. Because adenoviruses seemed capable of inducing Th1-biased protective immune responses against T. gondii antigens, other parasite antigens should be tested alone or in combination with those described here to further develop a protective vaccine against toxoplasmosis. PMID:16610929

  1. Whole recombinant Pichia pastoris expressing HPV16 L1 antigen is superior in inducing protection against tumor growth as compared to killed transgenic Leishmania

    OpenAIRE

    Bolhassani, Azam; Muller, Martin; Roohvand, Farzin; Motevalli, Fatemeh; Agi, Elnaz; Shokri, Mehdi; Rad, Mahdieh Motamedi; Hosseinzadeh, Sahar

    2015-01-01

    The development of an efficient vaccine against high-risk HPV types can reduce the incidence rates of cervical cancer by generating anti-tumor protective responses. Traditionally, the majority of prophylactic viral vaccines are composed of live, attenuated or inactivated viruses. Among them, the design of an effective and low-cost vaccine is critical. Inactivated vaccines especially heat-killed yeast cells have emerged as a promising approach for generating antigen-specific immunotherapy. Rec...

  2. Oral Immunization with Recombinant Mycobacterium smegmatis Expressing the Outer Membrane Protein 26-Kilodalton Antigen Confers Prophylactic Protection against Helicobacter pylori Infection ▿ †

    OpenAIRE

    Lü, Lin; Zeng, Han-qing; Wang, Pi-Long; Shen, Wei; Xiang, Ting-xiu; Mei, Zhe-chuan

    2011-01-01

    Helicobacter pylori infection is prevalent worldwide and results in chronic gastritis, which may lead to gastric mucosa-associated lymphoid tissue lymphoma and gastric cancer. We have previously reported that oral immunization with recombinant Mycobacterium smegmatis expressing the H. pylori outer membrane protein 26-kilodalton (Omp26) antigen affords therapeutic protection against H. pylori infection in mice. In the present study, we investigated the prophylactic effects of this vaccine cand...

  3. Immunoelectrophoretic analysis, toxicity, and kinetics of in vitro production of the protective antigen and lethal factor components of Bacillus anthracis toxin.

    OpenAIRE

    Ezzell, J W; Ivins, B E; Leppla, S H

    1984-01-01

    The kinetics of Bacillus anthracis toxin production in culture and its lethal activity in rats, mice, and guinea pigs were investigated. Lethal toxin activity was produced in vitro throughout exponential growth at essentially identical rates in both encapsulated virulent and nonencapsulated avirulent strains. The two toxin proteins which produce lethality when in combination, lethal factor (LF) and protective antigen (PA), could be quantitated directly from culture fluids by rocket immunoelec...

  4. Description of the pupae of Anthrax oedipus oedipus Fabricius and Anthrax oedipus aquilus Marston (Diptera, Bombyliidae, Anthracinae)

    OpenAIRE

    Carlos José Einicker Lamas; Márcia Souto Couri

    1999-01-01

    The pupae of Anthrax oedipus oedipus Fabricius, 1805 and Anthrax oedipus aquilus Marston, 1970 are described and illustrated. Eleven species of four Hymenoptera families (Apidae, Eumenidae, Megachilidae and Sphecidae) are recorded as hosts of the immature stages of A. o. oedipus and A. o. aquilus.

  5. Description of the pupae of Anthrax oedipus oedipus Fabricius and Anthrax oedipus aquilus Marston (Diptera, Bombyliidae, Anthracinae

    Directory of Open Access Journals (Sweden)

    Carlos José Einicker Lamas

    1999-01-01

    Full Text Available The pupae of Anthrax oedipus oedipus Fabricius, 1805 and Anthrax oedipus aquilus Marston, 1970 are described and illustrated. Eleven species of four Hymenoptera families (Apidae, Eumenidae, Megachilidae and Sphecidae are recorded as hosts of the immature stages of A. o. oedipus and A. o. aquilus.

  6. Immobilization antigen vaccine adjuvanted by parasitic heat shock protein 70C confers high protection in fish against cryptocaryonosis.

    Science.gov (United States)

    Josepriya, T A; Chien, Kuo-Hsuan; Lin, Hsin-Yun; Huang, Han-Ning; Wu, Chang-Jer; Song, Yen-Ling

    2015-08-01

    The immobilization antigen (iAg) has been demonstrated as a protective immunogen against Cryptocaryon irritans infection. In this study, C-terminal domain of heat shock protein 70 cloned from C. irritans (Hsp70C) was tested for its immuno-stimulatory effects. The iAg and Hsp70C cDNAs were constructed independently in secretory forms and were encapsulated in chitosan nanoparticles. In the first immunization trial, grouper fingerlings orally intubated with iAg and iAg:Hsp70C presented 96% and 100% relative percent survival (RPS), respectively, after a lethal challenge. In the second trial, both iAg and iAg:Hsp70C groups showed 100% RPS and the skin trophont burden was significantly lowered. The iAg:Hsp70C still provides a significantly high protection of 51% RPS at 49 days post immunization, when an even more serious lethal infection occurs. RT-qPCR results showed that Hsp70C could up-regulate the expression of i) T cell markers: Cluster of Differentiation 8 alpha (CD8α) and CD4, ii) cytokine genes: Interferon gamma (IFNγ), Tumor Necrosis Factor alpha (TNFα) and Interleukin 12 p40 (IL-12/P40), iii) antibody genes: Immunoglobulin M heavy chain (IgMH) and IgTH, and iv) major histocompatibility complex (MHC-I & MHC-II), in the spleen of iAg:Hsp70C group. Furthermore, significantly high levels of iAg-specific IgM was detected in skin mucus which efficiently immobilized live theronts in iAg- and iAg:Hsp70C-immunized fish at 5 weeks post immunization. Hsp70C significantly increased the number of nonspecific CD8(+) skin leucocytes which exerted cytotoxicity against theronts, although cytotoxic activity showed no difference among the various groups. Because of this complementary cooperation of cellular and humoral immune responses, Hsp70C enhances the efficacy of iAg vaccine and constrains C. irritans infection. In view of the severe loss caused by cryptocaryonosis, application of this parasitic vaccine in farmed and ornamental fish, is worthy to be considered. PMID

  7. Vaccination focusing immunity on conserved antigens protects mice and ferrets against virulent H1N1 and H5N1 influenza A viruses.

    Science.gov (United States)

    Price, Graeme E; Soboleski, Mark R; Lo, Chia-Yun; Misplon, Julia A; Pappas, Claudia; Houser, Katherine V; Tumpey, Terrence M; Epstein, Suzanne L

    2009-11-01

    Immunization against conserved virus components induces broad, heterosubtypic protection against diverse influenza A viruses, providing a strategy for controlling unexpected outbreaks or pandemics until strain-matched vaccines become available. This study characterized immunization to nucleoprotein (NP) and matrix 2 (M2) by DNA priming followed by parenteral or mucosal boosting in mice and ferrets. DNA vaccination followed by boosting with antigen-matched recombinant adenovirus (rAd) or cold-adapted (ca) influenza virus provided robust protection against virulent H1N1 and H5N1 challenges. Compared to other boosts, mucosal rAd induced stronger IgA responses, more virus-specific activated T-cells in the lung, and better protection against morbidity following challenge even eight months post-boost. In ferrets, both mucosal and parenteral rAd boosting protected from lethal H5N1 challenge. These findings demonstrate potent protection by vaccination highly focused on conserved antigens and identify immune response measures in mice that differed among vaccinations and correlated with outcome. PMID:19729082

  8. Recent developments in the understanding and use of anthrax vaccine adsorbed: achieving more with less.

    Science.gov (United States)

    Schiffer, Jarad M; McNeil, Michael M; Quinn, Conrad P

    2016-09-01

    Anthrax Vaccine Adsorbed (AVA, BioThrax™) is the only Food and Drug Administration (FDA) approved vaccine for the prevention of anthrax in humans. Recent improvements in pre-exposure prophylaxis (PrEP) use of AVA include intramuscular (IM) administration and simplification of the priming series to three doses over 6 months. Administration IM markedly reduced the frequency, severity and duration of injection site reactions. Refinement of animal models for inhalation anthrax, identification of immune correlates of protection and cross-species modeling have created opportunities for reductions in the PrEP booster schedule and were pivotal in FDA approval of a post-exposure prophylaxis (PEP) indication. Clinical and nonclinical studies of accelerated PEP schedules and divided doses may provide prospects for shortening the PEP antimicrobial treatment period. These data may assist in determining feasibility of expanded coverage in a large-scale emergency when vaccine demand may exceed availability. Enhancements to the AVA formulation may broaden the vaccine's PEP application. PMID:26942655

  9. Parenteral Administration of Capsule Depolymerase EnvD Prevents Lethal Inhalation Anthrax Infection.

    Science.gov (United States)

    Negus, David; Vipond, Julia; Hatch, Graham J; Rayner, Emma L; Taylor, Peter W

    2015-12-01

    Left untreated, inhalation anthrax is usually fatal. Vegetative forms of Bacillus anthracis survive in blood and tissues during infection due to elaboration of a protective poly-γ-D-glutamic acid (PDGA) capsule that permits uncontrolled bacterial growth in vivo, eventually leading to overwhelming bacillosis and death. As a measure to counter threats from multidrug-resistant strains, we are evaluating the prophylactic and therapeutic potential of the PDGA depolymerase EnvD, a stable and potent enzyme which rapidly and selectively removes the capsule from the surface of vegetative cells. Repeated intravenous administration of 10 mg/kg recombinant EnvD (rEnvD) to mice infected with lethal doses of B. anthracis Ames spores by inhalation prevented the emergence of symptoms of anthrax and death; all animals survived the 5-day treatment period, and 70% survived to the end of the 14-day observation period. In contrast to results in sham-treated animals, the lungs and spleen of rEnvD-dosed animals were free of gross pathological changes. We conclude that rEnvD has potential as an agent to prevent the emergence of inhalation anthrax in infected animals and is likely to be effective against drug-resistant forms of the pathogen. PMID:26438506

  10. In vitro evaluation, biodistribution and scintigraphic imaging in mice of radiolabeled anthrax toxins

    Energy Technology Data Exchange (ETDEWEB)

    Dadachova, Ekaterina [Department of Nuclear Medicine, Albert Einstein College of Medicine, Bronx, NY 10461 (United States); Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461 (United States)], E-mail: edadacho@aecom.yu.edu; Rivera, Johanna [Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461 (United States); Revskaya, Ekaterina [Department of Nuclear Medicine, Albert Einstein College of Medicine, Bronx, NY 10461 (United States); Nakouzi, Antonio [Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461 (United States); Cahill, Sean M. [Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461 (United States); Blumenstein, Michael [Department of Chemistry and Biochemistry, Hunter College and the Graduate School of the City University of New York, NY 10021 (United States); Xiao, Hui [Laboratory for Macromolecular Analysis and Proteomics, Albert Einstein College of Medicine, Bronx, NY 10461 (United States); Rykunov, Dmitry [Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461 (United States); Casadevall, Arturo [Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461 (United States); Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461 (United States)

    2008-10-15

    Introduction: There is a lot of interest towards creating therapies and vaccines for Bacillus anthracis, a bacterium which causes anthrax in humans and which spores can be made into potent biological weapons. Systemic injection of lethal factor (LF), edema factor (EF) and protective antigen (PA) in mice produces toxicity, and this protocol is commonly used to investigate the efficacy of specific antibodies in passive protection and vaccine studies. Availability of toxins labeled with imageable radioisotopes would allow to demonstrate their tissue distribution after intravenous injection at toxin concentration that are below pharmacologically significant to avoid masking by toxic effects. Methods: LF, EF and PA were radiolabeled with {sup 188}Re and {sup 99m}Tc, and their performance in vitro was evaluated by macrophages and Chinese hamster ovary cells toxicity assays and by binding to macrophages. Scintigraphic imaging and biodistribution of intravenously (IV) injected {sup 99m}Tc-and {sup 123}I-labeled toxins was performed in BALB/c mice. Results: Radiolabeled toxins preserved their biological activity. Scatchard-type analysis of the binding of radiolabeled PA to the J774.16 macrophage-like cells revealed 6.6x10{sup 4} binding sites per cell with a dissociation constant of 6.7 nM. Comparative scintigraphic imaging of mice injected intravenously with either {sup 99m}Tc-or {sup 123}I-labeled PA, EF and LF toxins demonstrated similar biodistribution patterns with early localization of radioactivity in the liver, spleen, intestines and excretion through kidneys. The finding of renal excretion shortly after IV injection strongly suggests that toxins are rapidly degraded which could contribute to the variability of mouse toxigenic assays. Biodistribution studies confirmed that all three toxins concentrated in the liver and the presence of high levels of radioactivity again implied rapid degradation in vivo. Conclusions: The availability of {sup 188}Re and {sup 99m

  11. In vitro evaluation, biodistribution and scintigraphic imaging in mice of radiolabeled anthrax toxins

    International Nuclear Information System (INIS)

    Introduction: There is a lot of interest towards creating therapies and vaccines for Bacillus anthracis, a bacterium which causes anthrax in humans and which spores can be made into potent biological weapons. Systemic injection of lethal factor (LF), edema factor (EF) and protective antigen (PA) in mice produces toxicity, and this protocol is commonly used to investigate the efficacy of specific antibodies in passive protection and vaccine studies. Availability of toxins labeled with imageable radioisotopes would allow to demonstrate their tissue distribution after intravenous injection at toxin concentration that are below pharmacologically significant to avoid masking by toxic effects. Methods: LF, EF and PA were radiolabeled with 188Re and 99mTc, and their performance in vitro was evaluated by macrophages and Chinese hamster ovary cells toxicity assays and by binding to macrophages. Scintigraphic imaging and biodistribution of intravenously (IV) injected 99mTc-and 123I-labeled toxins was performed in BALB/c mice. Results: Radiolabeled toxins preserved their biological activity. Scatchard-type analysis of the binding of radiolabeled PA to the J774.16 macrophage-like cells revealed 6.6x104 binding sites per cell with a dissociation constant of 6.7 nM. Comparative scintigraphic imaging of mice injected intravenously with either 99mTc-or 123I-labeled PA, EF and LF toxins demonstrated similar biodistribution patterns with early localization of radioactivity in the liver, spleen, intestines and excretion through kidneys. The finding of renal excretion shortly after IV injection strongly suggests that toxins are rapidly degraded which could contribute to the variability of mouse toxigenic assays. Biodistribution studies confirmed that all three toxins concentrated in the liver and the presence of high levels of radioactivity again implied rapid degradation in vivo. Conclusions: The availability of 188Re and 99mTc-labeled PA, LF and EF toxins allowed us to confirm the

  12. A Case of Fatal Gastrointestinal Anthrax in North Eastern Iran

    Directory of Open Access Journals (Sweden)

    Seyed Ahmad Hashemi

    2015-01-01

    Full Text Available Background. Bacillus species are aerobic or facultative anaerobic, gram-positive, or gram-variable spore-forming rods. They are ubiquitous in the environmental sources. Bacillus anthracis may usually cause three forms of anthrax: inhalation, gastrointestinal, and cutaneous. The gastrointestinal (GI anthrax develops after eating contaminated meat. In this paper we report septic intestinal anthrax. Case Presentation. We report an isolation of Bacillus anthracis from blood culture of patient with intestinal anthrax. Bacillus anthracis was isolated from a blood culture of a 34-year-old man who had a history of severe abdominal pain, bloody diarrhea, nausea, vomiting, fever, sweating, and lethargy within 4 to 5 days after eating the meat of domestic goat. He had evidence of severe infection and septic shock and did not respond to treatments and subsequently expired 9 hours after hospitalization. Conclusion. Gastrointestinal anthrax is characterized by rapid onset, fever, and septicemia. Rapid diagnosis and prompt initiation of antibiotic therapy can help in survival. Most of previous cases of septicemic anthrax were related to injection drug users but, in our case, septicemia occurred after gastrointestinal anthrax.

  13. A case of fatal gastrointestinal anthrax in north eastern iran.

    Science.gov (United States)

    Hashemi, Seyed Ahmad; Azimian, Amir; Nojumi, Sara; Garivani, Tahereh; Safamanesh, Saghar; Ghafouri, Majid

    2015-01-01

    Background. Bacillus species are aerobic or facultative anaerobic, gram-positive, or gram-variable spore-forming rods. They are ubiquitous in the environmental sources. Bacillus anthracis may usually cause three forms of anthrax: inhalation, gastrointestinal, and cutaneous. The gastrointestinal (GI) anthrax develops after eating contaminated meat. In this paper we report septic intestinal anthrax. Case Presentation. We report an isolation of Bacillus anthracis from blood culture of patient with intestinal anthrax. Bacillus anthracis was isolated from a blood culture of a 34-year-old man who had a history of severe abdominal pain, bloody diarrhea, nausea, vomiting, fever, sweating, and lethargy within 4 to 5 days after eating the meat of domestic goat. He had evidence of severe infection and septic shock and did not respond to treatments and subsequently expired 9 hours after hospitalization. Conclusion. Gastrointestinal anthrax is characterized by rapid onset, fever, and septicemia. Rapid diagnosis and prompt initiation of antibiotic therapy can help in survival. Most of previous cases of septicemic anthrax were related to injection drug users but, in our case, septicemia occurred after gastrointestinal anthrax. PMID:25918652

  14. Induction of protective T-helper 1 immune responses against Echinococcus granulosus in mice by a multi-T-cell epitope antigen based on five proteins

    Directory of Open Access Journals (Sweden)

    Majid Esmaelizad

    2013-06-01

    Full Text Available In this study, we designed an experiment to predict a potential immunodominant T-cell epitope and evaluate the protectivity of this antigen in immunised mice. The T-cell epitopes of the candidate proteins (EgGST, EgA31, Eg95, EgTrp and P14-3-3 were detected using available web-based databases. The synthesised DNA was subcloned into the pET41a+ vector and expressed in Escherichia coli as a fusion to glutathione-S-transferase protein (GST. The resulting chimeric protein was then purified by affinity chromatography. Twenty female C57BL/6 mice were immunised with the antigen emulsified in Freund's adjuvant. Mouse splenocytes were then cultured in Dulbecco's Modified Eagle's Medium in the presence of the antigen. The production of interferon-γ was significantly higher in the immunised mice than in the control mice (> 1,300 pg/mL, but interleukin (IL-10 and IL-4 production was not statistically different between the two groups. In a challenge study in which mice were infected with 500 live protoscolices, a high protectivity level (99.6% was demonstrated in immunised BALB/C mice compared to the findings in the control groups [GST and adjuvant (Adj ]. These results demonstrate the successful application of the predicted T-cell epitope in designing a vaccine against Echinococcus granulosus in a mouse model.

  15. Long-lived antigen-induced IgM plasma cells demonstrate somatic mutations and contribute to long-term protection.

    Science.gov (United States)

    Bohannon, Caitlin; Powers, Ryan; Satyabhama, Lakshmipriyadarshini; Cui, Ang; Tipton, Christopher; Michaeli, Miri; Skountzou, Ioanna; Mittler, Robert S; Kleinstein, Steven H; Mehr, Ramit; Lee, Francis Eun-Yun; Sanz, Ignacio; Jacob, Joshy

    2016-01-01

    Long-lived plasma cells are critical to humoral immunity as a lifelong source of protective antibodies. Antigen-activated B cells-with T-cell help-undergo affinity maturation within germinal centres and persist as long-lived IgG plasma cells in the bone marrow. Here we show that antigen-specific, induced IgM plasma cells also persist for a lifetime. Unlike long-lived IgG plasma cells, which develop in germinal centres and then home to the bone marrow, IgM plasma cells are primarily retained within the spleen and can develop even in the absence of germinal centres. Interestingly, their expressed IgV loci exhibit somatic mutations introduced by the activation-induced cytidine deaminase (AID). However, these IgM plasma cells are probably not antigen-selected, as replacement mutations are spread through the variable segment and not enriched within the CDRs. Finally, antibodies from long-lived IgM plasma cells provide protective host immunity against a lethal virus challenge. PMID:27270306

  16. Protective immunity induced in mice by F8.1 and F8.2 antigens purified from Schistosoma mansoni eggs

    Directory of Open Access Journals (Sweden)

    Claudia Campra Ferreira

    1998-01-01

    Full Text Available Schistosoma mansoni soluble egg antigens (SEA were fractionated by isoelectric focusing, resulting in 20 components, characterized by pH, absorbance and protein concentration. The higher absorbance fractions were submitted to electrophoresis, and fraction 8 (F8 presented a specific pattern of bands on its isoelectric point. Protein 3 was observed only on F8, and so, it was utilized to rabbit immunization, in order to evaluate its capacity of inducing protective immunity. IgG antibodies from rabbit anti-F8 serum were coupled to Sepharose, and used to obtain the specific antigen by affinity chromatography. This antigen, submitted to electrophoresis, presented two proteic bands (F8.1 and F8.2, which were transferred to nitrocellulose membrane (PVDF and sequenciated. The homology of F8.2 to known proteins was determined using the Basic Local Alignment Search Tool program (BLASTp. Significant homologies were obtained for the rabbit cytosolic Ca2+ uptake inhibitor, and for the bird a1-proteinase inhibitor. Immunization of mice with F8.1 and F8.2, in the presence of Corynebacterium parvum and Al(OH3 as adjuvant, induced a significant protection degree against challenge infection, as observed by the decrease on worm burden recovered from portal system.

  17. HEPA/Vaccine Plan for Indoor Anthrax Remediation

    OpenAIRE

    Lawrence M Wein; Liu, Yifan; Leighton, Terrance J.

    2005-01-01

    We developed a mathematical model to compare 2 indoor remediation strategies in the aftermath of an outdoor release of 1.5 kg of anthrax spores in lower Manhattan. The 2 strategies are the fumigation approach used after the 2001 postal anthrax attack and a HEPA/vaccine plan, which relies on HEPA vacuuming, HEPA air cleaners, and vaccination of reoccupants. The HEPA/vaccine approach leads to few anthrax cases among reoccupants if applied to all but the most heavily contaminated buildings, and ...

  18. Cutaneous anthrax of the hand: Some clinical observations

    OpenAIRE

    Tuncali Dogan; Akbuga Unzile; Aslan Gurcan

    2004-01-01

    CONTEXT: Anthrax is a very rare disease in Europe and the United States. AIM: A case of cutaneous anthrax of the hand with a wide skin defect is presented and some clinical observations highlighted. CASE REPORT: A 56-year-old male patient with cutaneous anthrax attended our infectious diseases department with a swelling up to the upper arm. An urgent fasciotomy was undertaken with a diagnosis of compartment syndrome. A black eschar had formed on the dorsal surface of the hand. A superficial t...

  19. Immunochemical characterization and purification of Sm-97 a Schistosoma manosin antigen monospecifically recognized by antibodies from mice protectively immunized with a nonliving vaccine

    International Nuclear Information System (INIS)

    Mice protected against Shistosoma mansoni infection by intradermal (i.d.) vaccination with nonliving schistosomula or soluble extracts of larval or adult schistosomes (SCHLARP and SWAP, respectively) produce antibodies that react by Western blot analysis with one antigen of M/sub r/ (x 10-3) 97 in SWAP prepared in the presence of protease inhibitors and two antigens of M/sub r/ (x 10-3) 95 and 78 in SWAP prepared in their absence. Vaccine antibodies also immunoprecipitated a single 97k molecule, with a pI of 5.5, from detergent extracts of [35S]methionine-labeled schistosomes. Three hybridomas, produced from spleen cells of i.d. immunized mice, all recognized both the 95k/78k doublet and one 97k antigen, indicating that the two lower M/sub r/ components are degradation products of the same 97k molecule. 125I-concanavalin a bound weakly to purified Sm-97, indicating that this antigen is minimally glycosylated. Competitive radioimmunoassays performed with 125I-labeled monoclonal antibodies and purified antigen defined at least two distinct epitopes on Sm-97. Antibodies from i.d. vaccinated mice recognized both monoclonal antibody-defined epitopes, whereas anti-Sm-97 antibodies in chronic infection sera recognized neither. Finally, purified Sm-97 was shown to elicit delayed-type hypersensitivity in i.d. vaccinated mice, suggesting that this molecule is also capable of evoking cell-mediated responses, a finding consistent with its proposed function as a vaccine immunogen

  20. 炭疽疫苗与钩体疫苗联合免疫效果分析%Efficacy of simultaneous immunization of anthrax vaccine and leptospira vaccine

    Institute of Scientific and Technical Information of China (English)

    王亚玉; 张景霞; 李东力; 闫永平

    2011-01-01

    目的 评价炭疽疫苗和钩体疫苗进行联合免疫的有效性,为人群联合接种提供理论依据.方法 96只昆明鼠按分层随机分组的方法分为6组,每组16只,雌雄各半.将单独接种确定的每种疫苗的最佳免疫剂量(炭疽疫苗1/10、钩体疫苗1/5的人用剂量)进行联合接种,同时组合两种疫苗最佳剂量的临近剂量组(炭疽疫苗1/20、1/40,钩体疫苗1/3的人用剂量)进行联合接种,采用ELISA方法检测炭疽特异性抗体,MAT法检测钩体各型特异性抗体.结果 疫苗接种后,小鼠能够对各剂量产生免疫反应,抗- PA IgG抗体的最高平均抗体滴度为1:504,抗芽孢IgG抗体的最高平均抗体滴度为1∶513.炭疽疫苗各个剂量组间抗体水平存在统计学差异(P<0.05);流感伤寒型抗体的最高平均抗体滴度为1∶231,秋季型抗体的最高平均抗体滴度为1∶610,钩体疫苗各型抗体各个剂量组间无统计学差异(P>0.05).结论 炭疽疫苗与钩体疫苗联合接种以炭疽疫苗人用剂量的1/10和钩体疫苗的人用剂量的1/5配伍最佳.%Objective To evaluate the efficacy of the simultaneous immunization of anthrax vaccine and leptospira vaccine with animal experiment for the further use in large population. Methods Ninety-six mice were randomly divided into 6 groups and the number of male and female was equal. The mice were injected subcutaneously with different doses of the two vaccines. A combination of 1/10,1/20,and 1/40 dose of live attenuated anthrax vaccine and 1/5 and 1/3 dose of leptospira vaccine were administered to 5 groups and 1 group was employed as blank control. Blood samples were collected from tail vein every week for detecting the specific anti-protective antigen (PA) IgG and antibody of spore by indirect enzyme-linked immunosorbent assay (ELIS A) and the specific agglutinating antibody of leptospira vaccine by darkfield microscope agglutination test (MAT). Results IgG was induced in the mice

  1. Host immunity in the protective response to nasal immunization with a pneumococcal antigen associated to live and heat-killed Lactobacillus casei

    Directory of Open Access Journals (Sweden)

    Vintiñi Elisa O

    2011-08-01

    Full Text Available Abstract Background At present, available pneumococcal vaccines have failed to eradicate infections caused by S. pneumoniae. Search for effective vaccine continues and some serotype independent pneumococcal proteins are considered as candidates for the design of new vaccines, especially a mucosal vaccine, since pneumococci enter the body through mucosal surfaces. Selection of the appropriate adjuvant is important for mucosal vaccines, and lactic acid bacteria (LAB with immunostimulant properties are promissory candidates. In this work, we assessed the adjuvant effect of a probiotic strain, Lactobacillus casei (L. casei, when nasally administered with a pneumococcal antigen (pneumococcal protective protein A: PppA for the prevention of pneumococcal infection. Adjuvanticity of both live (LcV and heat-killed (LcM was evaluated and humoral and cellular antigen-specific immune response was assessed in mucosal and systemic compartments. The potential mechanisms induced by nasal immunization were discussed. Results Nasal immunization of young mice with PppA+LcV and PppA+LcM induced anti-PppA IgA and IgG antibodies in mucosal and systemic compartments and levels of these specific antibodies remained high even at day 45 after the 3rd Immunization (3rd I. These results were correlated with IL-4 induction by the mixture of antigen plus LcV and LcM. Also, PppA+Lc (V and M induced stimulation of Th1 and Th17 cells involved in the defence against pneumococci. The protection against pneumococcal respiratory challenge at day 30 after the 3rd I showed that PppA+LcV and PppA+LcM immunizations significantly reduced pathogen counts in nasal lavages while prventing their passage into lung and blood. Survival of mice immunized with the co-application of PppA plus LcV and LcM was significantly higher than in mice immunized with PppA alone and control mice when intraperitoneal challenge was performed. No significant differences between the treatments involving LcV and

  2. Immunological dynamics in response to two anthrax vaccines in mice

    Institute of Scientific and Technical Information of China (English)

    L(U) Jin; HE Rui; DONG Mei; ZHANG LiangYan; WANG XiLiang

    2008-01-01

    In order to understand the variation of humoral and cellular immune responses to A16R live spore and AVA vaccine and to identify efficient immunological parameters for the early evaluation of post immu-nization in mice, we dynamically monitored the antibody production and cellular responses after the vaccination of Balb/C mice with the anthrax vaccines. The results show that both anti-AVA and anti-Spore antibodies were detectable in the A16R live spore vaccinated group while high titers of anti-AVA antibodies but not anti-Spore antibodies existed in the AVA-immunized group, IgG1 and IgG2 were the major subtypes of IgG in both of the two groups. However, the IgG2a level was significantly higher in the A16R group than in the AVA group. At the cellular level, responses of antigen-specific TH2, TH1 and plasma cells were detected. The peripheral TH2 responses could be seen on day 5 after vac-cination, and remained at a high level throughout the experiment (from day 5 post primary immuniza-tion to day 60 post the tertiary immunization); the TH1 responses to A16R vaccine appeared on day 5, while the responses to AVA could only be detected by day 7 after the secondary immunization; a low level of TH1 responses could be observed at the end of the experiment. Antigen-specific plasma cells could be found in the peripheral blood of both the immunized groups, however, the responses in the A16R group appeared earlier, lasted longer, and shown an ascending tendency until the end of the ex-periment when the plasma cell responses in the AVA group were reduced to a very low level. The re-sults suggest that the multiple antigen containing A16R live spore vaccine induces better immune re-sponses than AVA. Combined with serum antibody titers, TH2, TH1 and plasma cell responses could be used as immunological parameters for the evaluation of vaccine efficacy, These findings may afford new insight into the early evaluation of vaccination as well as being a powerful strategy for vaccine

  3. Immunological dynamics in response to two anthrax vaccines in mice

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to understand the variation of humoral and cellular immune responses to A16R live spore and AVA vaccine and to identify efficient immunological parameters for the early evaluation of post immu- nization in mice, we dynamically monitored the antibody production and cellular responses after the vaccination of Balb/C mice with the anthrax vaccines. The results show that both anti-AVA and anti-Spore antibodies were detectable in the A16R live spore vaccinated group while high titers of anti-AVA antibodies but not anti-Spore antibodies existed in the AVA-immunized group. IgG1 and IgG2 were the major subtypes of IgG in both of the two groups. However, the IgG2a level was significantly higher in the A16R group than in the AVA group. At the cellular level, responses of antigen-specific TH2, TH1 and plasma cells were detected. The peripheral TH2 responses could be seen on day 5 after vac- cination, and remained at a high level throughout the experiment (from day 5 post primary immuniza- tion to day 60 post the tertiary immunization); the TH1 responses to A16R vaccine appeared on day 5, while the responses to AVA could only be detected by day 7 after the secondary immunization; a low level of TH1 responses could be observed at the end of the experiment. Antigen-specific plasma cells could be found in the peripheral blood of both the immunized groups, however, the responses in the A16R group appeared earlier, lasted longer, and shown an ascending tendency until the end of the ex- periment when the plasma cell responses in the AVA group were reduced to a very low level. The re- sults suggest that the multiple antigen containing A16R live spore vaccine induces better immune re- sponses than AVA. Combined with serum antibody titers, TH2, TH1 and plasma cell responses could be used as immunological parameters for the evaluation of vaccine efficacy. These findings may afford new insight into the early evaluation of vaccination as well as being a powerful strategy for

  4. Local active gingival immunization by a 3,800-molecular-weight streptococcal antigen in protection against dental caries.

    OpenAIRE

    Lehner, T.; Mehlert, A; Caldwell, J

    1986-01-01

    Local gingival immunization was attempted in an effort to confine the immune response to the oral cavity and bypass the systemic immune response. A low-molecular-weight (3.8K) streptococcal antigen (SA) I/II was applied 10 times over a period of 1 year to the gingival crevices of rhesus monkeys. The antigen was maintained in situ by means of silicone rubber appliances. Serial examinations over a period of 1 year showed that topical gingival immunization with the 3.8K SA results in a significa...

  5. Protection of mice against Japanese encephalitis virus group II strain infections by combinations of monoclonal antibodies to different antigenic domains on glycoprotein E

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Gupta

    2012-01-01

    Full Text Available A combination of at least three hemagglutination- inhibition-positive (HAI and virus-specific (Hs monoclonal antibodies (MAbs to glycoprotein E (gpE of Japanese encephalitis virus (JEV fully protected (100% mice against JEV strain 733913 infections (group 1. However, these representative epitopes are reported to have been lost on JEV group II strains. In the present study, therefore, the protective effect of various combinations of anti-gpE MAbs representing antigenic epitopes other than Hs was studied on mice infections with JEV group II strains: JEV strains 641686 and 691004. MAbs used in the protective experiments were characterized as HAI-negative virus-specific (NHs and HAI-positive flavivirus cross-reactive (Hx. Additionally, one of the Hs MAbs (MAb Hs-3 was included in the experiments. Mice were first administered single MAbs or their combinations intraperitoneally and 24 h later, infected with the virus intracerebrally. Protection rates of 70-75% were obtained with a combination of four MAbs: MAbs NHs-1, Hx-1, Hx-3 and Hs-3. However, protection rates of only 20-40% were obtained with three MAbs but none was observed with single or two MAbs. There was, however, a substantial increase in mice survival. The protective effect of several combinations of anti-gpE MAbs representing different antigenic epitopes might be due to the enhancement of binding within the same group and also between different MAb groups. The present results indicate that NHs and Hx epitopes should be incorporated with three Hs epitopes in a JEV vaccine that would have an added advantage, particularly in the flaviviral endemic areas with JEV strain variations.

  6. Humoral and Cell-Mediated Immune Responses to Alternate Booster Schedules of Anthrax Vaccine Adsorbed in Humans.

    Science.gov (United States)

    Quinn, Conrad P; Sabourin, Carol L; Schiffer, Jarad M; Niemuth, Nancy A; Semenova, Vera A; Li, Han; Rudge, Thomas L; Brys, April M; Mittler, Robert S; Ibegbu, Chris C; Wrammert, Jens; Ahmed, Rafi; Parker, Scott D; Babcock, Janiine; Keitel, Wendy; Poland, Gregory A; Keyserling, Harry L; El Sahly, Hana; Jacobson, Robert M; Marano, Nina; Plikaytis, Brian D; Wright, Jennifer G

    2016-04-01

    Protective antigen (PA)-specific antibody and cell-mediated immune (CMI) responses to annual and alternate booster schedules of anthrax vaccine adsorbed (AVA; BioThrax) were characterized in humans over 43 months. Study participants received 1 of 6 vaccination schedules: a 3-dose intramuscular (IM) priming series (0, 1, and 6 months) with a single booster at 42 months (4-IM); 3-dose IM priming with boosters at 18 and 42 months (5-IM); 3-dose IM priming with boosters at 12, 18, 30, and 42 months (7-IM); the 1970 licensed priming series of 6 doses (0, 0.5, 1, 6, 12, and 18 months) and two annual boosters (30 and 42 months) administered either subcutaneously (SQ) (8-SQ) or IM (8-IM); or saline placebo control at all eight time points. Antibody response profiles included serum anti-PA IgG levels, subclass distributions, avidity, and lethal toxin neutralization activity (TNA). CMI profiles included frequencies of gamma interferon (IFN-γ)- and interleukin 4 (IL-4)-secreting cells and memory B cells (MBCs), lymphocyte stimulation indices (SI), and induction of IFN-γ, IL-2, IL-4, IL-6, IL-1β, and tumor necrosis factor alpha (TNF-α) mRNA. All active schedules elicited high-avidity PA-specific IgG, TNA, MBCs, and T cell responses with a mixed Th1-Th2 profile and Th2 dominance. Anti-PA IgG and TNA were highly correlated (e.g., month 7,r(2)= 0.86,Pvaccination. CMI responses to the 3-dose IM priming remained elevated up to 43 months. (This study has been registered at ClinicalTrials.gov under registration no. NCT00119067.). PMID:26865594

  7. Antibodies to variant antigens on the surfaces of infected erythrocytes are associated with protection from malaria in Ghanaian children

    DEFF Research Database (Denmark)

    Dodoo, D; Staalsoe, T; Giha, H;

    2001-01-01

    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a variant antigen expressed on the surface of infected erythrocytes. Each parasite genome contains about 40 PfEMP1 genes, but only 1 PfEMP1 gene is expressed at a given time. PfEMP1 serves as a parasite-sequestering ligand to endoth...

  8. Screen-printed fluorescent sensors for rapid and sensitive anthrax biomarker detection

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Inkyu; Oh, Wan-Kyu; Jang, Jyongsik, E-mail: jsjang@plaza.snu.ac.kr

    2013-05-15

    Highlights: •We fabricated flexible anthrax sensors with a simple screen-printing method. •The sensors selectively detected B. anthracis biomarker. •The sensors provide the visible alarm against anthrax attack. -- Abstract: Since the 2001 anthrax attacks, efforts have focused on the development of an anthrax detector with rapid response and high selectivity and sensitivity. Here, we demonstrate a fluorescence sensor for detecting anthrax biomarker with high sensitivity and selectivity using a screen-printing method. A lanthanide–ethylenediamine tetraacetic acid complex was printed on a flexible polyethersulfone film. Screen-printing deposition of fluorescent detecting moieties produced fluorescent patterns that acted as a visual alarm against anthrax.

  9. Screen-printed fluorescent sensors for rapid and sensitive anthrax biomarker detection

    International Nuclear Information System (INIS)

    Highlights: •We fabricated flexible anthrax sensors with a simple screen-printing method. •The sensors selectively detected B. anthracis biomarker. •The sensors provide the visible alarm against anthrax attack. -- Abstract: Since the 2001 anthrax attacks, efforts have focused on the development of an anthrax detector with rapid response and high selectivity and sensitivity. Here, we demonstrate a fluorescence sensor for detecting anthrax biomarker with high sensitivity and selectivity using a screen-printing method. A lanthanide–ethylenediamine tetraacetic acid complex was printed on a flexible polyethersulfone film. Screen-printing deposition of fluorescent detecting moieties produced fluorescent patterns that acted as a visual alarm against anthrax

  10. Cutaneous anthrax in an unusual location: case report.

    Science.gov (United States)

    Sari, Tugba; Koruk, Suda Tekin

    2015-12-01

    Cutaneous anthrax is well known, unlike anthrax of the lumbar region, which is not reported elsewhere. We present a case of anthrax of the lumbar region in a 50-year-old man. The infection was characterised by a wide, black eschar and oedema on an erythematous ground. After isolation of the Gram-positive bacilli from the skin lesions, prompt antibiotic treatment (intravenous sulbactam-ampicillin 1.5 g every six hours) was initiated. Following eradication of the bacilli after 14 days of antibiotic treatment, a split-thickness skin graft was applied. A diagnosis of anthrax depends on clinical suspicion. Early diagnosis, antibiotic and surgical treatment can facilitate the treatment and prevent development of complications. PMID:26700091

  11. Identification of anthrax-specific signature sequence from Bacillus anthracis

    Science.gov (United States)

    Rastogi, Vipin K.; Cheng, Tu-chen

    2001-08-01

    The primary objective was to identify and clone novel chromosomal DNA fragments for use as B. anthracis-specific markers. Towards this goal, 300 random primers (RAPD technology, randomly amplified polymorphic DNA) were screened to identify polymorphic loci on the anthrax chromosome. Five such DNA fragments uniquely amplifying from anthrax chromosome were identified and isolated. These fragments were cloned in pCR vector and sequenced. Database (genebank) analysis of one of the cloned probe, VRTC899, revealed the presence of specific chromosomal DNA probe, Ba813 from anthrax. This prove also contains flanking DNA with no homology to known sequences. Availability of signature DNA probes for detection of antrax-causing agent in environmental samples is critical for field application of DNA-based sensor technologies. In conclusion, we have demonstrated application of RAPD technology for identification of anthrax-specific signature sequences. This strategy can be extended to identify signature sequences from other BW agents.

  12. Expression of H5 hemagglutinin vaccine antigen in common duckweed (Lemna minor) protects against H5N1 high pathogenicity avian influenza virus challenge in immunized chickens.

    Science.gov (United States)

    Bertran, Kateri; Thomas, Colleen; Guo, Xuan; Bublot, Michel; Pritchard, Nikki; Regan, Jeffrey T; Cox, Kevin M; Gasdaska, John R; Dickey, Lynn F; Kapczynski, Darrell R; Swayne, David E

    2015-07-01

    A synthetic hemagglutinin (HA) gene from the highly pathogenic avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1) (Indo/03) was expressed in aquatic plant Lemna minor (rLemna-HA). In Experiment 1, efficacy of rLemna-HA was tested on birds immunized with 0.2μg or 2.3 μg HA and challenged with 10(6) mean chicken embryo infectious doses (EID50) of homologous virus strain. Both dosages of rLemna-HA conferred clinical protection and dramatically reduced viral shedding. Almost all the birds immunized with either dosage of rLemna-HA elicited HA antibody titers against Indo/03 antigen, suggesting an association between levels of anti-Indo/03 antibodies and protection. In Experiment 2, efficacy of rLemna-HA was tested on birds immunized with 0.9 μg or 2.2 μg HA and challenged with 10(6) EID50 of heterologous H5N1 virus strains A/chicken/Vietnam/NCVD-421/2010 (VN/10) or A/chicken/West Java/PWT-WIJ/2006 (PWT/06). Birds challenged with VN/10 exhibited 100% survival regardless of immunization dosage, while birds challenged with PWT/06 had 50% and 30% mortality at 0.9 μg HA and 2.2 μg HA, respectively. For each challenge virus, viral shedding titers from 2.2 μg HA vaccinated birds were significantly lower than those from 0.9μg HA vaccinated birds, and titers from both immunized groups were in turn significantly lower than those from sham vaccinated birds. Even if immunized birds elicited HA titers against the vaccine antigen Indo/03, only the groups challenged with VN/10 developed humoral immunity against the challenge antigen. None (rLemna-HA 0.9 μg HA) and 40% (rLemna-HA 2.2 μg HA) of the immunized birds challenged with PWT/06 elicited pre-challenge antibody titers, respectively. In conclusion, Lemna-expressed HA demonstrated complete protective immunity against homologous challenge and suboptimal protection against heterologous challenge, the latter being similar to results from inactivated whole virus vaccines. Transgenic duckweed-derived HA could be a

  13. Gene silencing of the tick protective antigens, Bm86, Bm91 and subolesin, in the one-host tick Boophilus microplus by RNA interference

    OpenAIRE

    Nijhof, A. M.; Taoufik, A.; de la Fuente, M.R.; Kocan, K M; de Vries, E; Jongejan, F

    2007-01-01

    The use of RNA interference (RNAi) to assess gene function has been demonstrated in several three-host tick species but adaptation of RNAi to the one-host tick, Boophilus microplus, has not been reported. We evaluated the application of RNAi in B. microplus and the effect of gene silencing on three tick-protective antigens: Bm86, Bm91 and subolesin. Gene-specific double-stranded (dsRNA) was injected into two tick stages, freshly molted unfed and engorged females, and specific gene silencing w...

  14. Antibodies to variable Plasmodium falciparum-infected erythrocyte surface antigens are associated with protection from novel malaria infections

    DEFF Research Database (Denmark)

    Giha, H A; Staalsoe, T; Dodoo, D;

    2000-01-01

    In areas of unstable transmission malaria affects all age groups, but the malaria incidence is lower in adults compared to children and teenagers. Under such conditions subclinical Plasmodium falciparum infections are common and some infections are controlled, because blood parasitaemia is...... susceptible and protected individuals. Together, the results indicate that pre-existing anti-PfEMP1 antibodies can reduce the risk of contracting clinical malaria when challenged by novel parasite clones expressing homologous, but not heterologous variable surface antigens. The results also confirm that...

  15. Public Response to an Anthrax Attack: A Multiethnic Perspective

    OpenAIRE

    SteelFisher, Gillian K; Blendon, Robert J.; Brulé, Amanda S.; Ben-Porath, Eran N.; Ross, Laura J.; Atkins, Bret M.

    2012-01-01

    The 2001 anthrax attacks emphasized the need to develop outreach that would more effectively support racial/ethnic minority populations during a bioterrorism incident. Given the importance of antibiotic prophylaxis in a future anthrax attack, it should be a priority to better support racial/ethnic minorities in mass dispensing programs. To examine the needs and perspectives of racial/ethnic minorities, this study used a nationally representative poll of 1,852 adults, including 1,240 whites, 2...

  16. Effective antiprotease-antibiotic treatment of experimental anthrax

    OpenAIRE

    MacAfee Rebecca; Weinstein Raymond S; Hopkins Svetlana; Popova Taissia G; Popov Serguei G; Fryxell Karl J; Chandhoke Vikas; Bailey Charles; Alibek Ken

    2005-01-01

    Abstract Background Inhalation anthrax is characterized by a systemic spread of the challenge agent, Bacillus anthracis. It causes severe damage, including multiple hemorrhagic lesions, to host tissues and organs. It is widely believed that anthrax lethal toxin secreted by proliferating bacteria is a major cause of death, however, the pathology of intoxication in experimental animals is drastically different from that found during the infectious process. In order to close a gap between our un...

  17. Human Anthrax Transmission at the Urban–Rural Interface, Georgia

    OpenAIRE

    Kracalik, Ian; Malania, Lile; Imnadze, Paata; Blackburn, Jason K.

    2015-01-01

    Human anthrax has increased dramatically in Georgia and was recently linked to the sale of meat in an urban market. We assessed epidemiological trends and risk factors for human anthrax at the urban–rural interface. We reviewed epidemiologic records (2000–2012) that included the place of residence (classified as urban, peri-urban, or rural), age, gender, and self-reported source of infection (handling or processing animal by-products and slaughtering or butchering livestock). To estimate risk...

  18. Raxibacumab: potential role in the treatment of inhalational anthrax

    OpenAIRE

    Kummerfeldt, Carlos

    2014-01-01

    Carlos E KummerfeldtDivision of Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, SC, USAAbstract: Anthrax is a highly contagious and potentially fatal human disease caused by Bacillus anthracis, an aerobic, Gram-positive, spore-forming rod-shaped bacterium with worldwide distribution as a zoonotic infection in herbivore animals. Bioterrorist attacks with inhalational anthrax have prompted the development of more effective treatments. Anti...

  19. [Anthrax meningoencephalitis: a case report and review of Turkish literature].

    Science.gov (United States)

    Metan, Gökhan; Uysal, Burcu; Coşkun, Ramazan; Perçin, Duygu; Doğanay, Mehmet

    2009-10-01

    The incidence of anthrax is decreasing in Turkey, however, it is still endemic in some regions of the country. Although central nervous system involvement is rare in cases with anthrax, high mortality rates are significant. Here, we report a 46-years old woman who was anthrax meningoencephalitis. The patient was from Yozgat located in Central Anatolia, Turkey. Her history revealed that following peeling the skin of sheeps and consuming their meat a week ago, a lesion developed in her left forearm and she had been treated with penicilin G with the diagnosis of cutaneous anthrax in a local health center. The patient was admitted to the emergency room of our hospital due to increased headache and loss of conciousness and diagnosed as anthrax meningitis. Crytallized penicilin G (24 MU/day IV) and vancomycin (2 g/day IV) were initiated. The macroscopy of cerebrospinal fluid (CSF) sample was haemorrhagic, white blood cell count was 40/mm3 (80% of neutrophil) and Gram staining of CSF yielded abundant gram-positive bacilli. The diagnosis was confirmed by the isolation of Bacillus anthracis from CSF culture. Although the isolate was susceptible to penicillin and dexamethasone was added to the treatment, the patient died. Review of the Turkish literature revealed seven cases of anthrax with central nervous system involvement between 1980-2008. One of the patients was an 11-years old boy and the others were adults aged between 19 and 64 years. The source of the infection was skin in four patients and inhalation in one patient. The most common findings in all of the patients were inhabitance in rural area, haemorrhagic CSF and loss of all patients despite appropriate antibiotic therapy. In conclusion, anthrax meningitis and meningoencephalitis should be considered in the differential diagnosis of haemorrhagic meningitis in areas where anthrax is endemic and high rate of mortality despite appropriate therapy should always be kept in mind. PMID:20084923

  20. DNA-Launched Alphavirus Replicons Encoding a Fusion of Mycobacterial Antigens Acr and Ag85B Are Immunogenic and Protective in a Murine Model of TB Infection.

    Science.gov (United States)

    Dalmia, Neha; Klimstra, William B; Mason, Carol; Ramsay, Alistair J

    2015-01-01

    There is an urgent need for effective prophylactic measures against Mycobacterium tuberculosis (Mtb) infection, particularly given the highly variable efficacy of Bacille Calmette-Guerin (BCG), the only licensed vaccine against tuberculosis (TB). Most studies indicate that cell-mediated immune responses involving both CD4+ and CD8+ T cells are necessary for effective immunity against Mtb. Genetic vaccination induces humoral and cellular immune responses, including CD4+ and CD8+ T-cell responses, against a variety of bacterial, viral, parasitic and tumor antigens, and this strategy may therefore hold promise for the development of more effective TB vaccines. Novel formulations and delivery strategies to improve the immunogenicity of DNA-based vaccines have recently been evaluated, and have shown varying degrees of success. In the present study, we evaluated DNA-launched Venezuelan equine encephalitis replicons (Vrep) encoding a novel fusion of the mycobacterial antigens α-crystallin (Acr) and antigen 85B (Ag85B), termed Vrep-Acr/Ag85B, for their immunogenicity and protective efficacy in a murine model of pulmonary TB. Vrep-Acr/Ag85B generated antigen-specific CD4+ and CD8+ T cell responses that persisted for at least 10 wk post-immunization. Interestingly, parenterally administered Vrep-Acr/Ag85B also induced T cell responses in the lung tissues, the primary site of infection, and inhibited bacterial growth in both the lungs and spleens following aerosol challenge with Mtb. DNA-launched Vrep may, therefore, represent an effective approach to the development of gene-based vaccines against TB, particularly as components of heterologous prime-boost strategies or as BCG boosters. PMID:26317509

  1. DNA-Launched Alphavirus Replicons Encoding a Fusion of Mycobacterial Antigens Acr and Ag85B Are Immunogenic and Protective in a Murine Model of TB Infection.

    Directory of Open Access Journals (Sweden)

    Neha Dalmia

    Full Text Available There is an urgent need for effective prophylactic measures against Mycobacterium tuberculosis (Mtb infection, particularly given the highly variable efficacy of Bacille Calmette-Guerin (BCG, the only licensed vaccine against tuberculosis (TB. Most studies indicate that cell-mediated immune responses involving both CD4+ and CD8+ T cells are necessary for effective immunity against Mtb. Genetic vaccination induces humoral and cellular immune responses, including CD4+ and CD8+ T-cell responses, against a variety of bacterial, viral, parasitic and tumor antigens, and this strategy may therefore hold promise for the development of more effective TB vaccines. Novel formulations and delivery strategies to improve the immunogenicity of DNA-based vaccines have recently been evaluated, and have shown varying degrees of success. In the present study, we evaluated DNA-launched Venezuelan equine encephalitis replicons (Vrep encoding a novel fusion of the mycobacterial antigens α-crystallin (Acr and antigen 85B (Ag85B, termed Vrep-Acr/Ag85B, for their immunogenicity and protective efficacy in a murine model of pulmonary TB. Vrep-Acr/Ag85B generated antigen-specific CD4+ and CD8+ T cell responses that persisted for at least 10 wk post-immunization. Interestingly, parenterally administered Vrep-Acr/Ag85B also induced T cell responses in the lung tissues, the primary site of infection, and inhibited bacterial growth in both the lungs and spleens following aerosol challenge with Mtb. DNA-launched Vrep may, therefore, represent an effective approach to the development of gene-based vaccines against TB, particularly as components of heterologous prime-boost strategies or as BCG boosters.

  2. Identification of a Protein Subset of the Anthrax Spore Immunome in Humans Immunized with the Anthrax Vaccine Adsorbed Preparation

    OpenAIRE

    Kudva, Indira T.; Griffin, Robert W.; Garren, Jeonifer M.; Calderwood, Stephen B.; John, Manohar

    2005-01-01

    We identified spore targets of Anthrax Vaccine Adsorbed (AVA)-induced immunity in humans by screening recombinant clones of a previously generated, limited genomic Bacillus anthracis Sterne (pXO1+, pXO2−) expression library of putative spore surface (spore-associated [SA]) proteins with pooled sera from human adults immunized with AVA (immune sera), the anthrax vaccine currently approved for use by humans in the United States. We identified 69 clones that reacted specifically with pooled immu...

  3. The evaluation of clinical and laboratory findings of 63 inpatient with cutaneous anthrax: Characteristics of cutaneous anthrax in Turkey

    OpenAIRE

    Hatice Uce Özkol; Sevdegül Karadaş; Mahmut Sünnetçioğlu; Mehmet Reşat Ceylan; Ömer Çalka; Hüseyin Güdücüoğlu

    2014-01-01

    Background and Design: Despite a very uncommon disease in developed countries, cutaneous anthrax (CA) is currently endemic in our countries. In this study, we aimed to bring out characteristic of anthrax of Turkey by comparing our results and the other CA reports in Turkey. Materials and Methods: Sixty three inpatients with CA between October 2009 and December 2012 were investigated retrospectively. All patients were diagnosed CA by clinical finding and/or microbiological examination. The dem...

  4. Antigenicity and protective efficacy of a Leishmania amastigote-specific protein, member of the super-oxygenase family, against visceral leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Vivian T Martins

    Full Text Available BACKGROUND: The present study aimed to evaluate a hypothetical Leishmania amastigote-specific protein (LiHyp1, previously identified by an immunoproteomic approach performed in Leishmania infantum, which showed homology to the super-oxygenase gene family, attempting to select a new candidate antigen for specific serodiagnosis, as well as to compose a vaccine against VL. METHODOLOGY/PRINCIPAL FINDINGS: The LiHyp1 DNA sequence was cloned; the recombinant protein (rLiHyp1 was purified and evaluated for its antigenicity and immunogenicity. The rLiHyp1 protein was recognized by antibodies from sera of asymptomatic and symptomatic animals with canine visceral leishmaniasis (CVL, but presented no cross-reactivity with sera of dogs vaccinated with Leish-Tec, a Brazilian commercial vaccine; with Chagas' disease or healthy animals. In addition, the immunogenicity and protective efficacy of rLiHyp1 plus saponin was evaluated in BALB/c mice challenged subcutaneously with virulent L. infantum promastigotes. rLiHyp1 plus saponin vaccinated mice showed a high and specific production of IFN-γ, IL-12, and GM-CSF after in vitro stimulation with the recombinant protein. Immunized and infected mice, as compared to the control groups (saline and saponin, showed significant reductions in the number of parasites found in the liver, spleen, bone marrow, and in the paws' draining lymph nodes. Protection was associated with an IL-12-dependent production of IFN-γ, produced mainly by CD4 T cells. In these mice, a decrease in the parasite-mediated IL-4 and IL-10 response could also be observed. CONCLUSIONS/SIGNIFICANCE: The present study showed that this Leishmania oxygenase amastigote-specific protein can be used for a more sensitive and specific serodiagnosis of asymptomatic and symptomatic CVL and, when combined with a Th1-type adjuvant, can also be employ as a candidate antigen to develop vaccines against VL.

  5. New Developments in Vaccines, Inhibitors of Anthrax Toxins, and Antibiotic Therapeutics for Bacillus anthracis

    OpenAIRE

    Beierlein, J.M.; Anderson, A. C.

    2011-01-01

    Bacillus anthracis, the causative agent responsible for anthrax infections, poses a significant biodefense threat. There is a high mortality rate associated with untreated anthrax infections; specifically, inhalation anthrax is a particularly virulent form of infection with mortality rates close to 100%, even with aggressive treatment. Currently, a vaccine is not available to the general public and few antibiotics have been approved by the FDA for the treatment of inhalation anthrax. With the...

  6. Factors associated with repeated outbreak of anthrax in Bangladesh: qualitative and quantitative study

    OpenAIRE

    Jayedul Hassan; Md. Murshidul Ahsan; Md. Bahanur Rahman; Shah Md. Ziqrul Haq Chowdhury; Md. Shafiullah Parvej; KHM Nazmul Hussain Nazir

    2015-01-01

    Anthrax, caused by Bacillus anthracis is an acute, febrile disease of warm blooded animals including humans. Social norms and poverty in addition to climatic factors such as soil conditions, seasons of year, ambient temperature and rainfall influence the persistence of the B. anthracis and anthrax outbreaks. The present study was designed to reveal the factors influencing the repeated outbreak of anthrax in Bangladesh. Considering the previous outbreaks of anthrax, Sirajganj, Bogra, Kushtia, ...

  7. A Vectored Measles Virus Induces Hepatitis B Surface Antigen Antibodies While Protecting Macaques against Measles Virus Challenge▿

    OpenAIRE

    del Valle, Jorge Reyes; Devaux, Patricia; Hodge, Gregory; Wegner, Nicholas J.; McChesney, Michael B.; Cattaneo, Roberto

    2007-01-01

    Hepatitis B virus (HBV) acute and chronic infections remain a major worldwide health problem. Towards developing an anti-HBV vaccine with single-dose scheme potential, we engineered infectious measles virus (MV) genomic cDNAs with a vaccine strain background and expression vector properties. Hepatitis B surface antigen (HBsAg) expression cassettes were inserted into this cDNA and three MVs expressing HBsAg at different levels generated. All vectored MVs, which secrete HBsAg as subviral partic...

  8. Cardiac-specific catalase overexpression rescues anthrax lethal toxin-induced cardiac contractile dysfunction: role of oxidative stress and autophagy

    Directory of Open Access Journals (Sweden)

    Kandadi Machender R

    2012-11-01

    Full Text Available Abstract Background Lethal and edema toxins secreted by Bacillus anthracis during anthrax infection were found to incite serious cardiovascular complications. However, the underlying mechanisms in anthrax lethal toxin-induced cardiac anomalies remain unknown. This study was designed to evaluate the impact of antioxidant enzyme catalase in anthrax lethal toxin-induced cardiomyocyte contractile dysfunction. Methods Wild type (WT and cardiac-specific catalase overexpression mice were challenged with lethal toxin (2 μg/g, intraperotineally (i.p.. Cardiomyocyte contractile and intracellular Ca2+ properties were assessed 18 h later using an IonOptix edge-detection system. Proteasome function was assessed using chymotrypsin-like and caspase-like activities. GFP-LC3 puncta and Western blot analysis were used to evaluate autophagy and protein ubiquitination. Results Lethal toxin exposure suppressed cardiomyocyte contractile function (suppressed peak shortening, maximal velocity of shortening/re-lengthening, prolonged duration of shortening/re-lengthening, and impaired intracellular Ca2+ handling, the effects of which were alleviated by catalase. In addition, lethal toxin triggered autophagy, mitochondrial and ubiquitin-proteasome defects, the effects of which were mitigated by catalase. Pretreatment of cardiomyocytes from catalase mice with the autophagy inducer rapamycin significantly attenuated or ablated catalase-offered protection against lethal toxin-induced cardiomyocyte dysfunction. On the other hand, the autophagy inhibitor 3-MA ablated or significantly attenuated lethal toxin-induced cardiomyocyte contractile anomalies. Conclusions Our results suggest that catalase is protective against anthrax lethal toxin-induced cardiomyocyte contractile and intracellular Ca2+ anomalies, possibly through regulation of autophagy and mitochondrial function.

  9. Immunostimulatory complexes containing Eimeria tenella antigens and low toxicity plant saponins induce antibody response and provide protection from challenge in broiler chickens

    Science.gov (United States)

    Immunostimulating complexes (ISCOMs) are unique multimolecular structures formed by encapsulating antigens, lipids and triterpene saponins and are one of the most successful antigen delivery systems for microbial antigens. In the current study, both the route of administration and the antigen conce...

  10. Detergent Stabilized Nanopore Formation Kinetics of an Anthrax Protein

    Science.gov (United States)

    Peterson, Kelby

    2015-03-01

    This summer research project funded through the Society of Physics Students Internship Program and The National Institute of Standards and Technology focused on optimization of pore formation of Protective Antigen protein secreted by Bacillus Anthraces. This experiment analyzes the use of N-tetradecylphosphocholine (FOS-14 Detergent) to stabilize the water soluble protein, protective antigen protein (PA63) to regulate the kinetics of pore formation in a model bilayer lipid membrane. The FOS-14 Detergent was tested under various conditions to understand its impact on the protein pore formation. The optimization of this channel insertion is critical in preparing samples of oriented for neutron reflectometry that provide new data to increase the understanding of the protein's structure.

  11. Novel 6xHis tagged foot-and-mouth disease virus vaccine bound to nanolipoprotein adjuvant via metal ions provides antigenic distinction and effective protective immunity.

    Science.gov (United States)

    Rai, Devendra K; Segundo, Fayna Diaz-San; Schafer, Elizabeth; Burrage, Thomas G; Rodriguez, Luis L; de Los Santos, Teresa; Hoeprich, Paul D; Rieder, Elizabeth

    2016-08-01

    Here, we engineered two FMD viruses with histidine residues inserted into or fused to the FMDV capsid. Both 6xHis viruses exhibited growth kinetics, plaque morphologies and antigenic characteristics similar to wild-type virus. The 6xHis tag allowed one-step purification of the mutant virions by Co(2+) affinity columns. Electron microscopy and biochemical assays showed that the 6xHis FMDVs readily assembled into antigen: adjuvant complexes in solution, by conjugating with Ni(2+)-chelated nanolipoprotein and monophosphoryl lipid A adjuvant (MPLA:NiNLP). Animals Immunized with the inactivated 6xHis-FMDV:MPLA:NiNLP vaccine acquired enhanced protective immunity against FMDV challenge compared to virions alone. Induction of anti-6xHis and anti-FMDV neutralizing antibodies in the immunized animals could be exploited in the differentiation of vaccinated from infected animals needed for the improvement of FMD control measures. The novel marker vaccine/nanolipid technology described here has broad applications for the development of distinctive and effective immune responses to other pathogens of importance. PMID:27209448

  12. The Leishmania HSP20 Is Antigenic during Natural Infections, but, as DNA Vaccine, It does not Protect BALB/c Mice against Experimental L. amazonensis Infection

    Directory of Open Access Journals (Sweden)

    Ana M. Montalvo-Álvarez

    2008-01-01

    Full Text Available Protozoa of the genus Leishmania are causative agents of leishmaniasis, an important health problem in both human and veterinary medicine. Here, we describe a new heat shock protein (HSP in Leishmania, belonging to the small HSP (sHSP family in kinetoplastids. The protein is highly conserved in different Leishmania species, showing instead significant divergence with sHSP's from other organisms. The humoral response elicited against this protein during Leishmania infection has been investigated in natural infected humans and dogs, and in experimentally infected hamsters. Leishmania HSP20 is a prominent antigen for canine hosts; on the contrary, the protein seems to be a poor antigen for human immune system. Time-course analysis of appearance of anti-HSP20 antibodies in golden hamsters indicated that these antibodies are produced at late stages of the infection, when clinical symptoms of disease are patent. Finally, the protective efficacy of HSP20 was assessed in mice using a DNA vaccine approach prior to challenge with Leishmania amazonensis.

  13. Tumor-associated antigens identified by mRNA expression profiling induce protective anti-tumor immunity

    DEFF Research Database (Denmark)

    Mathiassen, S; Lauemøller, S L; Ruhwald, M;

    2001-01-01

    clinical signs of autoimmune reactions were observed. Thus, it appears possible to evaluate the entire metabolism of any given tumor and use this information rationally to identify multiple epitopes of value in the generation of tumor-specific immunotherapy. We expect that human tumors express similar......Defined tumor-associated antigens (TAA) are attractive targets for anti-tumor immunotherapy. Here, we describe a novel genome-wide approach to identify multiple TAA from any given tumor. A panel of transplantable thymomas was established from an inbred p53-/- mouse strain. The resulting tumors were...... examined for gene expression by mRNA microarray scanning. This analysis revealed heterogeneity of the tumors in agreement with the assumption that they represent different tumorigenic events. Several genes were overexpressed in one or more of the tumors. To examine whether overexpressed genes might be used...

  14. Key epitopes on the ESAT-6 antigen recognized in mice during the recall of protective immunity to Mycobacterium tuberculosis.

    Science.gov (United States)

    Brandt, L; Oettinger, T; Holm, A; Andersen, A B; Andersen, P

    1996-10-15

    The recall of long-lived immunity in a mouse model of tuberculosis (TB) is defined as an accelerated accumulation of reactive T cells in the target organs. We have recently identified Ag 85B and a 6-kilodalton early secretory antigenic target, designated ESAT-6, as key antigenic targets recognized by these cells. In the present study, preferential recognition of the ESAT-6 Ag during the recall of immunity was found to be shared by five of six genetically different strains of mice. Overlapping peptides spanning the sequence of ESAT-6 were used to map two T cell epitopes on this molecule. One epitope recognized in the context of H-2b,d was located in the N-terminal part of the molecule, whereas an epitope recognized in the context of H-2a,k covered amino acids 51 to 60. Shorter versions of the N-terminal epitope allowed the precise definition of a 13-amino acid core sequence recognized in the context of H-2b. The peptide covering the N-terminal epitope was immunogenic, and a T cell response with the same fine specificity as that induced during TB infection was generated by immunization with the peptide in IFA. In the C57BL/6j strain, this single epitope was recognized by an exceedingly high frequency of splenic T cells (approximately 1:1000), representing 25 to 35% of the total culture filtrate-reactive T cells recruited to the site of infection during the first phase of the recall response. These findings emphasize the relevance of this Ag in the immune response to TB and suggest that immunologic recognition in the first phase of infection is a highly restricted event dominated by a limited number of T cell clones. PMID:8871652

  15. Variant surface antigen-specific IgG and protection against clinical consequences of pregnancy-associated Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Staalsoe, Trine; Shulman, Caroline E; Bulmer, Judith N;

    2004-01-01

    BACKGROUND: Pregnancy-associated malaria caused by Plasmodium falciparum adherence to chondroitin sulfate A in the placental intervillous space is a major cause of low birthweight and maternal anaemia in areas of endemic P falciparum transmission. Adhesion-blocking antibodies that specifically...... recognise parasite-encoded variant surface antigens (VSA) are associated with resistance to pregnancy-associated malaria. We looked for a possible relation between VSA-specific antibody concentrations, placental infection, and protection from low birthweight and maternal anaemia. METHODS: We used flow...... cytometry to measure VSA-specific IgG concentrations in plasma samples taken during child birth from 477 Kenyan women selected from a cohort of 910 women on the basis of HIV-1 status, gravidity, and placental histology. We measured VSA expressed by one placental P falciparum isolate and two isolates...

  16. Protection Induced by Simultaneous Subcutaneous and Endobronchial Vaccination with BCG/BCG and BCG/Adenovirus Expressing Antigen 85A against Mycobacterium bovis in Cattle.

    Science.gov (United States)

    Dean, Gillian S; Clifford, Derek; Whelan, Adam O; Tchilian, Elma Z; Beverley, Peter C L; Salguero, Francisco J; Xing, Zhou; Vordermeier, Hans M; Villarreal-Ramos, Bernardo

    2015-01-01

    The incidence of bovine tuberculosis (bTB) in the GB has been increasing since the 1980s. Immunisation, alongside current control measures, has been proposed as a sustainable measure to control bTB. Immunisation with Mycobacterium bovis bacillus Calmette-Guerin (BCG) has been shown to protect against bTB. Furthermore, much experimental data indicates that pulmonary local immunity is important for protection against respiratory infections including Mycobacterium tuberculosis and that pulmonary immunisation is highly effective. Here, we evaluated protection against M. bovis, the main causative agent of bTB, conferred by BCG delivered subcutaneously, endobronchially or by the new strategy of simultaneous immunisation by both routes. We also tested simultaneous subcutaneous immunisation with BCG and endobronchial delivery of a recombinant type 5 adenovirus expressing mycobacterial antigen 85A. There was significantly reduced visible pathology in animals receiving the simultaneous BCG/BCG or BCG/Ad85 treatment compared to naïve controls. Furthermore, there were significantly fewer advanced microscopic granulomata in animals receiving BCG/Ad85A compared to naive controls. Thus, combining local and systemic immunisation limits the development of pathology, which in turn could decrease bTB transmission. PMID:26544594

  17. Immunization with pre-erythrocytic antigen CelTOS from Plasmodium falciparum elicits cross-species protection against heterologous challenge with Plasmodium berghei.

    Directory of Open Access Journals (Sweden)

    Elke S Bergmann-Leitner

    Full Text Available BACKGROUND: The Plasmodium protein Cell-traversal protein for ookinetes and sporozoites (CelTOS plays an important role in cell traversal of host cells in both, mosquito and vertebrates, and is required for successful malaria infections. CelTOS is highly conserved among the Plasmodium species, suggesting an important functional role across all species. Therefore, targeting the immune response to this highly conserved protein and thus potentially interfering with its biological function may result in protection against infection even by heterologous species of Plasmodium. METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis, we developed a recombinant codon-harmonized P. falciparum CelTOS protein that can be produced to high yields in the E. coli expression system. Inbred Balb/c and outbred CD-1 mice were immunized with various doses of the recombinant protein adjuvanted with Montanide ISA 720 and characterized using in vitro and in vivo analyses. CONCLUSIONS/SIGNIFICANCE: Immunization with PfCelTOS resulted in potent humoral and cellular immune responses and most importantly induced sterile protection against a heterologous challenge with P. berghei sporozoites in a proportion of both inbred and outbred mice. The biological activity of CelTOS-specific antibodies against the malaria parasite is likely linked to the impairment of sporozoite motility and hepatocyte infectivity. The results underscore the potential of this antigen as a pre-erythrocytic vaccine candidate and demonstrate for the first time a malaria vaccine that is cross-protective between species.

  18. Factors associated with repeated outbreak of anthrax in Bangladesh: qualitative and quantitative study

    Directory of Open Access Journals (Sweden)

    Jayedul Hassan

    2015-06-01

    Full Text Available Anthrax, caused by Bacillus anthracis is an acute, febrile disease of warm blooded animals including humans. Social norms and poverty in addition to climatic factors such as soil conditions, seasons of year, ambient temperature and rainfall influence the persistence of the B. anthracis and anthrax outbreaks. The present study was designed to reveal the factors influencing the repeated outbreak of anthrax in Bangladesh. Considering the previous outbreaks of anthrax, Sirajganj, Bogra, Kushtia, Tangail and Mymensingh districts of Bangladesh were selected for this study. To elucidate the factors, qualitative data relating to the animal management, knowledge and behavior of the people; and quantitative data relating to soil conditions, ambient temperature and rainfall were acquired, and analyzed critically. Based on the outbreak histories, a year was divided into two seasons, anthrax prone season (May-November and anthrax dry season (December-April. Anthrax spores could be isolated from 11.67% (n=14/120 of the soil samples collected from the study areas. The present study revealed that poor knowledge, lack of awareness, improper carcass disposal, inadequate vaccination, high Ca content and moisture in the soil along with high ambient temperature and rainfall during the anthrax prone season were the possible influencing factors of repeated outbreaks of anthrax in the study areas. Intensive propaganda to create public awareness of anthrax together with proper vaccination may reduce anthrax outbreaks in Bangladesh.

  19. The Anthrax Vaccine Immunization Program: History, Controversy and Legal Issues

    OpenAIRE

    D'Annunzio, Michael

    2000-01-01

    This paper documents the issues that make the AVIP so controversial. It summarizes the current knowledge about the safety and efficacy of the anthrax vaccine, including the vaccine manufacturer’s history with FDA regulators. It summarizes the analysis that led DoD to balance the risks and benefits of the anthrax vaccine in favor of universal, mandatory vaccination. It includes a description of DoD efforts to achieve successful implementation of the program, as well as the s...

  20. Micromotors to capture and destroy anthrax simulant spores.

    Science.gov (United States)

    Orozco, Jahir; Pan, Guoqing; Sattayasamitsathit, Sirilak; Galarnyk, Michael; Wang, Joseph

    2015-03-01

    Towards addressing the need for detecting and eliminating biothreats, we describe a micromotor-based approach for screening, capturing, isolating and destroying anthrax simulant spores in a simple and rapid manner with minimal sample processing. The B. globilli antibody-functionalized micromotors can recognize, capture and transport B. globigii spores in environmental matrices, while showing non-interactions with excess of non-target bacteria. Efficient destruction of the anthrax simulant spores is demonstrated via the micromotor-induced mixing of a mild oxidizing solution. The new micromotor-based approach paves a way to dynamic multifunctional systems that rapidly recognize, isolate, capture and destroy biological threats. PMID:25622851

  1. Blood stage malaria vaccine eliciting high antigen-specific antibody concentrations confers no protection to young children in Western Kenya.

    Directory of Open Access Journals (Sweden)

    Bernhards R Ogutu

    Full Text Available OBJECTIVE: The antigen, falciparum malaria protein 1 (FMP1, represents the 42-kDa C-terminal fragment of merozoite surface protein-1 (MSP-1 of the 3D7 clone of P. falciparum. Formulated with AS02 (a proprietary Adjuvant System, it constitutes the FMP1/AS02 candidate malaria vaccine. We evaluated this vaccine's safety, immunogenicity, and efficacy in African children. METHODS: A randomised, double-blind, Phase IIb, comparator-controlled trial.The trial was conducted in 13 field stations of one mile radii within Kombewa Division, Nyanza Province, Western Kenya, an area of holoendemic transmission of P. falciparum. We enrolled 400 children aged 12-47 months in general good health.Children were randomised in a 1ratio1 fashion to receive either FMP1/AS02 (50 microg or Rabipur(R rabies vaccine. Vaccinations were administered on a 0, 1, and 2 month schedule. The primary study endpoint was time to first clinical episode of P. falciparum malaria (temperature >/=37.5 degrees C with asexual parasitaemia of >/=50,000 parasites/microL of blood occurring between 14 days and six months after a third dose. Case detection was both active and passive. Safety and immunogenicity were evaluated for eight months after first immunisations; vaccine efficacy (VE was measured over a six-month period following third vaccinations. RESULTS: 374 of 400 children received all three doses and completed six months of follow-up. FMP1/AS02 had a good safety profile and was well-tolerated but more reactogenic than the comparator. Geometric mean anti-MSP-1(42 antibody concentrations increased from1.3 microg/mL to 27.3 microg/mL in the FMP1/AS02 recipients, but were unchanged in controls. 97 children in the FMP1/AS02 group and 98 controls had a primary endpoint episode. Overall VE was 5.1% (95% CI: -26% to +28%; p-value = 0.7. CONCLUSIONS: FMP1/AS02 is not a promising candidate for further development as a monovalent malaria vaccine. Future MSP-1(42 vaccine development should focus

  2. A method to identify protein antigens of Dermanyssus gallinae for the protection of birds from poultry mites.

    Science.gov (United States)

    Makert, Gustavo R; Vorbrüggen, Susanne; Krautwald-Junghanns, Maria-Elisabeth; Voss, Matthias; Sohn, Kai; Buschmann, Tilo; Ulbert, Sebastian

    2016-07-01

    The poultry red mite (PRM) Dermanyssus gallinae causes high economic losses and is among the most important parasites in poultry farming worldwide. Different chemical, physical, and biological strategies try to control the expansion of PRM. However, effective solutions to this problem still have to be found. Here, we present a method for the development of an immunological control strategy, based on the identification of mite protein antigens which elicit antibodies with anti-mite activity in the immunized chicken. Hens were immunized with different PRM protein extracts formulated with two different adjuvants, and IgY-antibodies were isolated from the eggs. A PRM in vitro feeding assay which used chicken blood spiked with these IgY-preparations was used to detect antibodies which caused PRM mortality. In vitro feeding of mites with IgY isolated from hens immunized with PRM extract formulated with one of the adjuvants showed a statistically significant increase in the mortality as compared to control mites. After the separation of total PRM extracts in two-dimensional gels, several protein spots were recognized by such IgY preparations. Ten protein spots were subjected to mass spectrometry (MS/MS) for the identification of the corresponding proteins. Complete protein sequences were deduced from genomic and transcriptomic assemblies derived from high throughput sequencing of total PRM DNA and RNA. The results may contribute to the development of an immunological control strategy of D. gallinae. PMID:27026505

  3. Bordetella pertussis filamentous hemagglutinin: evaluation as a protective antigen and colonization factor in a mouse respiratory infection model.

    OpenAIRE

    Kimura, A; Mountzouros, K T; Relman, D.A.; Falkow, S; Cowell, J L

    1990-01-01

    Filamentous hemagglutinin (FHA) is a cell surface protein of Bordetella pertussis which functions as an adhesin for this organism. It is a component of many new acellular pertussis vaccines. The proposed role of FHA in immunity to pertussis is based on animal studies which have produced some conflicting results. To clarify this situation, we reexamined the protective activity of FHA in an adult mouse respiratory infection model. Four-week-old BALB/c mice were immunized with one or two doses o...

  4. Protective human leucocyte antigen haplotype, HLA-DRB1*01-B*14, against chronic Chagas disease in Bolivia.

    Directory of Open Access Journals (Sweden)

    Florencia del Puerto

    Full Text Available BACKGROUND: Chagas disease, caused by the flagellate parasite Trypanosoma cruzi affects 8-10 million people in Latin America. The mechanisms that underlie the development of complications of chronic Chagas disease, characterized primarily by pathology of the heart and digestive system, are not currently understood. To identify possible host genetic factors that may influence the clinical course of Chagas disease, Human Leucocyte Antigen (HLA regional gene polymorphism was analyzed in patients presenting with differing clinical symptoms. METHODOLOGY: Two hundred and twenty nine chronic Chagas disease patients in Santa Cruz, Bolivia, were examined by serological tests, electrocardiogram (ECG, and Barium enema colon X-ray. 31.4% of the examinees showed ECG alterations, 15.7% megacolon and 58.1% showed neither of them. A further 62 seropositive megacolon patients who had undergone colonectomy due to acute abdomen were recruited. We analyzed their HLA genetic polymorphisms (HLA-A, HLA-B, MICA, MICB, DRB1 and TNF-alpha promoter region mainly through Sequence based and LABType SSO typing test using LUMINEX Technology. PRINCIPAL FINDINGS: The frequencies of HLA-DRB1*01 and HLA-B*14:02 were significantly lower in patients suffering from megacolon as well as in those with ECG alteration and/or megacolon compared with a group of patients with indeterminate symptoms. The DRB1*0102, B*1402 and MICA*011 alleles were in strong Linkage Disequilibrium (LD, and the HLA-DRB1*01-B*14-MICA*011 haplotype was associated with resistance against chronic Chagas disease. CONCLUSIONS: This is the first report of HLA haplotype association with resistance to chronic Chagas disease.

  5. IgG2 antibodies against a clinical grade Plasmodium falciparum CSP vaccine antigen associate with protection against transgenic sporozoite challenge in mice.

    Directory of Open Access Journals (Sweden)

    Robert Schwenk

    Full Text Available The availability of a highly purified and well characterized circumsporozoite protein (CSP is essential to improve upon the partial success of recombinant CSP-based malaria vaccine candidates. Soluble, near full-length, Plasmodium falciparum CSP vaccine antigen (CS/D was produced in E. coli under bio-production conditions that comply with current Good Manufacturing Practices (cGMP. A mouse immunogenicity study was conducted using a stable oil-in-water emulsion (SE of CS/D in combination with the Toll-Like Receptor 4 (TLR4 agonist Glucopyranosyl Lipid A (GLA/SE, or one of two TLR7/8 agonists: R848 (un-conjugated or 3M-051 (covalently conjugated. Compared to Alum and SE, GLA/SE induced higher CS/D specific antibody response in Balb/c mice. Subclass analysis showed higher IgG2:IgG1 ratio of GLA/SE induced antibodies as compared to Alum and SE. TLR synergy was not observed when soluble R848 was mixed with GLA/SE. Antibody response of 3M051 formulations in Balb/c was similar to GLA/SE, except for the higher IgG2:IgG1 ratio and a trend towards higher T cell responses in 3M051 containing groups. However, no synergistic enhancement of antibody and T cell response was evident when 3M051 conjugate was mixed with GLA/SE. In C57Bl/6 mice, CS/D adjuvanted with 3M051/SE or GLA/SE induced higher CSP repeat specific titers compared to SE. While, 3M051 induced antibodies had high IgG2c:IgG1 ratio, GLA/SE promoted high levels of both IgG1 and IgG2c. GLA/SE also induced more potent T-cell responses compared to SE in two independent C57/BL6 vaccination studies, suggesting a balanced and productive T(H1/T(H2 response. GLA and 3M-051 similarly enhanced the protective efficacy of CS/D against challenge with a transgenic P. berghei parasite and most importantly, high levels of cytophilic IgG2 antibodies were associated with protection in this model. Our data indicated that the cGMP-grade, soluble CS/D antigen combined with the TLR4-containing adjuvant GLA/SE warrants

  6. IgG2 Antibodies against a Clinical Grade Plasmodium falciparum CSP Vaccine Antigen Associate with Protection against Transgenic Sporozoite Challenge in Mice

    Science.gov (United States)

    Schwenk, Robert; Nikki, Jennifer; Rein, Lisa; Spaccapelo, Roberta; Crisanti, Andrea; Wightman, Paul D.; Ockenhouse, Christian F.; Dutta, Sheetij

    2014-01-01

    The availability of a highly purified and well characterized circumsporozoite protein (CSP) is essential to improve upon the partial success of recombinant CSP-based malaria vaccine candidates. Soluble, near full-length, Plasmodium falciparum CSP vaccine antigen (CS/D) was produced in E. coli under bio-production conditions that comply with current Good Manufacturing Practices (cGMP). A mouse immunogenicity study was conducted using a stable oil-in-water emulsion (SE) of CS/D in combination with the Toll-Like Receptor 4 (TLR4) agonist Glucopyranosyl Lipid A (GLA/SE), or one of two TLR7/8 agonists: R848 (un-conjugated) or 3M-051 (covalently conjugated). Compared to Alum and SE, GLA/SE induced higher CS/D specific antibody response in Balb/c mice. Subclass analysis showed higher IgG2:IgG1 ratio of GLA/SE induced antibodies as compared to Alum and SE. TLR synergy was not observed when soluble R848 was mixed with GLA/SE. Antibody response of 3M051 formulations in Balb/c was similar to GLA/SE, except for the higher IgG2:IgG1 ratio and a trend towards higher T cell responses in 3M051 containing groups. However, no synergistic enhancement of antibody and T cell response was evident when 3M051 conjugate was mixed with GLA/SE. In C57Bl/6 mice, CS/D adjuvanted with 3M051/SE or GLA/SE induced higher CSP repeat specific titers compared to SE. While, 3M051 induced antibodies had high IgG2c:IgG1 ratio, GLA/SE promoted high levels of both IgG1 and IgG2c. GLA/SE also induced more potent T-cell responses compared to SE in two independent C57/BL6 vaccination studies, suggesting a balanced and productive TH1/TH2 response. GLA and 3M-051 similarly enhanced the protective efficacy of CS/D against challenge with a transgenic P. berghei parasite and most importantly, high levels of cytophilic IgG2 antibodies were associated with protection in this model. Our data indicated that the cGMP-grade, soluble CS/D antigen combined with the TLR4-containing adjuvant GLA/SE warrants further

  7. Core-linked LPS expression of Shigella dysenteriae serotype 1 O-antigen in live Salmonella Typhi vaccine vector Ty21a: preclinical evidence of immunogenicity and protection.

    Science.gov (United States)

    Xu, De Qi; Cisar, John O; Osorio, Manuel; Wai, Tint T; Kopecko, Dennis J

    2007-08-14

    Shigella dysenteriae serotype 1 (S. dysenteriae 1) causes severe shigellosis that is typically associated with high mortality. Antibodies against Shigella serotype-specific O-polysaccharide (O-Ps) have been shown to be host protective. In this study, the rfb locus and the rfp gene with their cognate promoter regions were PCR-amplified from S. dysenteriae 1, cloned, and sequenced. Deletion analysis showed that eight rfb ORFs plus rfp are necessary for biosynthesis of this O-Ps. A tandemly-linked rfb-rfp gene cassette was cloned into low copy plasmid pGB2 to create pSd1. Avirulent Salmonella enterica serovar Typhi (S. Typhi) Ty21a harboring pSd1 synthesized S. Typhi 9, 12 LPS as well as typical core-linked S. dysenteriae 1 LPS. Animal immunization studies showed that Ty21a (pSd1) induces protective immunity against high stringency challenge with virulent S. dysenteriae 1 strain 1617. These data further demonstrate the utility of S. Typhi Ty21a as a live, bacterial vaccine delivery system for heterologous O-antigens, supporting the promise of a bifunctional oral vaccine for prevention of shigellosis and typhoid fever. PMID:17629369

  8. Space Technology to Device that Destroys Pathogens Such As Anthrax

    Science.gov (United States)

    2002-01-01

    This is a photo of a technician at KES Science and Technology Inc., in Kernesaw, Georgia, assembling the AiroCide Ti02, an anthrax-killing device about the size of a small coffee table. The anthrax-killing air scrubber, AiroCide Ti02, is a tabletop-size metal box that bolts to office ceilings or walls. Its fans draw in airborne spores and airflow forces them through a maze of tubes. Inside, hydroxyl radicals (OH-) attack and kill pathogens. Most remaining spores are destroyed by high-energy ultraviolet photons. Building miniature greenhouses for experiments on the International Space Station has led to the invention of this device that annihilates anthrax, a bacteria that can be deadly when inhaled. The research enabling the invention started at the University of Wisconsin's (Madison) Center for Space Automation and Robotics (WCSAR), one of 17 NASA Commercial Space Centers. A special coating technology used in this anthrax-killing invention is also being used inside WCSAR-built plant growth units on the International Space Station. This commercial research is managed by the Space Product Development Program at the Marshall Space Flight Center.

  9. Cutaneous anthrax of the hand: Some clinical observations

    Directory of Open Access Journals (Sweden)

    Tuncali Dogan

    2004-01-01

    Full Text Available CONTEXT: Anthrax is a very rare disease in Europe and the United States. AIM: A case of cutaneous anthrax of the hand with a wide skin defect is presented and some clinical observations highlighted. CASE REPORT: A 56-year-old male patient with cutaneous anthrax attended our infectious diseases department with a swelling up to the upper arm. An urgent fasciotomy was undertaken with a diagnosis of compartment syndrome. A black eschar had formed on the dorsal surface of the hand. A superficial tangential escharectomy was performed. RESULTS: Viable fibrous tissue, about 4 to 5 mm in thickness over the extensor tendons, was found under the eschar. At the postoperative 2-year follow-up, remarkable healing was observed via skin grafting. CONCLUSIONS: Hand surgeons should be cautious against the compartment syndrome that may accompany cutaneous anthrax of the hand. A consistent viable fibrous tissue can be found below the eschar. The mechanism for the involvement of the hand dorsum needs further concern.

  10. Anthrax Toxin Delivers a One-Two Punch

    OpenAIRE

    Bradley, Kenneth A; LeVine, Steven M

    2010-01-01

    Although identified as a major Bacillus anthracis virulence factor over 50 years ago, defining the physiologically relevant targets of anthrax toxin has been challenging. Liu et al. demonstrate that intoxication of myeloid-derived cells contributes to establishing infection, but is not required for mortality resulting from high toxin concentrations associated with end-stage disease.

  11. Phage displaying peptides mimic schistosoma antigenic epitopes selected by rat natural antibodies and protective immunity induced by their immunization in mice

    Institute of Scientific and Technical Information of China (English)

    Min Wang; Xin-Yuan Yi; Xian-Ping Li; Dong-Ming Zhou; McReynolds Larry; Xian-Fang Zeng

    2005-01-01

    AIM: To obtain the short peptides mimic antigenic epitopes selected by rat natural antibodies to schistosomes, and to explore their immunoprotection against schistosomiasis in mice.METHODS: Adults worm antigens (AWA) were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and enzyme-linked transferred immunoblotting methods with normal SD rat sera (NRS). The killing effects on schistosomula with fresh and heat-inactivated sera from SD rats were observed. Then the purified IgG from sera of SD rats was used to biopan a phage random peptide library and 20 randomly selected positive clones were detected by ELISA and 2 of them were sequenced.Sixty female mice were immunized thrice with positive phage clones (0, 2nd, 4th wk). Each mouse was challenged with 40 cercariae, and all mice were killed 42 d after challenge. The worms and the liver eggs were counted. RESULTS: NRS could specifically react to the molecules of 75 000, 47 000, 34 500 and 23 000 of AWA. Sera from SD rats showed that the mortality rate of schistosomula was 76.2%, and when the sera were heat-inactivated in vitro, the mortality rate was decreased to 41.0% after being cultured for 48 h. The specific phages bound to IgG were enriched about 300-folds after three rounds of biopanning. Twenty clones were detected by ELISA, 19 of them bound to the specific IgG of rat sera. Immunization with these epitopes was carried out in mice. Compared with the control groups, the mixture of two mimic peptides could induce 34.9% (P = 0.000) worm reduction and 67.6% (P = 0.000) total liver egg reduction in mice. Two different mimic peptides could respectively induce 31.0% (P = 0.001), 14.5% (P = 0.074) worm reduction and 61.2% (P = 0.000), 35.7% (P = 0.000) total liver egg reduction. The specific antibody could be induced by immunization of the mimic peptides, and the antibody titer in immunized mice reached more than 1:6 400 as detected by ELISA.CONCLUSION: Specific peptides mimic antigenic

  12. [Four cases of cutaneous anthrax in Diyarbakir, Turkey].

    Science.gov (United States)

    Turhanoğlu, Nezire Mine; Bayındır Bilman, Fulya; Kutlu Yürüker, Safiye

    2013-07-01

    Anthrax which is a rare disease in developed countries, is still a serious public health problem in countries like Turkey where livestock is common. In this report, four cases of cutaneous anthrax detected in Kirkira village of Diyarbakir, Southeast Anatolia, Turkey, were presented. Three female and one male patients were admitted to our hospital with the complaints of skin lesions and high fever lasting for 10 days. Their history indicated that they injured their fingers during slaughtering of a dead cow meat. All patients had irregular edged necrotic vesiculobullous lesions on the erythematous and edematous base on their hand fingers, developed in 1 week following the contact. There was no systemic finding and the laboratory findings were within normal limits. Typical bamboo cane shaped gram-positive bacilli were observed on the Gram stained smears prepared from the vesicular lesions. Aerobic cultures in blood agar media revealed typical R type colonies, gray in color, creased, granulated and 2-3 mm in diameter within 24 hours of incubation. In one patient although the lesion was typical and characteristic gram-positive bacilli were detected in the Gram stained smears, no growth was seen in the cultures. The isolates (n= 3) were identified as Bacillus anthracis by conventional microbiological methods, and also confirmed by Vitek 2 (BioMerieux, France) automated identification system. Antibiotic susceptibility tests were performed by disc diffusion method according to the CLSI guidelines. The isolates were found susceptible to penicillin G, ampicillin, erythromycin, amikacin, chloramphenicol, tetracycline, vancomycin and ciprofloxacin. All of the patients were treated successfully with penicillin or ciprofloxacin accompanied by topical wound care. In the last years several case series of anthrax were reported especially from the East and Southeastern Anatolia regions of Turkey. These four cutaneous anthrax cases from Diyarbakir, Turkey were reported to withdraw

  13. Selection of glutamate-rich protein long synthetic peptides for vaccine development: antigenicity and relationship with clinical protection and immunogenicity.

    Science.gov (United States)

    Theisen, M; Dodoo, D; Toure-Balde, A; Soe, S; Corradin, G; Koram, K K; Kurtzhals, J A; Hviid, L; Theander, T; Akanmori, B; Ndiaye, M; Druilhe, P

    2001-09-01

    Antibodies against three long synthetic peptides (LSPs) derived from the glutamate-rich protein (GLURP) of Plasmodium falciparum were analyzed in three cohorts from Liberia, Ghana, and Senegal. Two overlapping LSPs, LR67 and LR68, are derived from the relatively conserved N-terminal nonrepeat region (R0), and the third, LR70, is derived from the R2 repeat region. A high prevalence of antibody responses to each LSP was observed in all three areas of endemic infection. Levels of cytophilic immunoglobulin G (IgG) antibodies against both GLURP regions were significantly correlated with protection from clinical P. falciparum malaria. Protected children from the Ghana cohort possessed predominantly IgG1 antibodies against the nonrepeat epitope and IgG3 antibodies against the repeat epitope. T-cell proliferation responses, studied in the cohort from Senegal, revealed that T-helper-cell epitopes were confined to the nonrepeat region. When used as immunogens, the LR67 and LR68 peptides elicited strong IgG responses in outbred mice and LR67 also induced antibodies in mice of different H-2 haplotypes, confirming the presence of T-helper-cell epitopes in these constructs. Mouse antipeptide antisera recognized parasite proteins as determined by immunofluorescence and immunoblotting. This indicates that synthetic peptides derived from relatively conserved epitopes of GLURP might serve as useful immunogens for vaccination against P. falciparum malaria. PMID:11500389

  14. Age-dependent association between IgG2 and IgG3 subclasses to Pf332-C231 antigen and protection from malaria, and induction of protective antibodies by sub-patent malaria infections, in Daraweesh

    DEFF Research Database (Denmark)

    Giha, Hayder A; Nasr, Amre; Iriemenam, Nnaemeka C;

    2010-01-01

    The certainty of the protective role of acquired immunity in malaria is the major drive for malaria vaccine development. In this study, we measured the levels of total IgG and IgG subclasses to four candidate malaria vaccine antigens; MSP2-3D7, MSP2-FC27, AMA-1 and Pf332-C231, in plasma obtained.......211, p=0.014, respectively), and also with age (CC - 0.311, p<0.001). Unexpectedly, equal levels of Pf332-C231 antibodies were induced by both patent and sub-patent infections regardless of the number of previous malaria episodes (1-7). Combining the correlation analysis with a multi-linear regression...

  15. Vaccination with Replication Deficient Adenovectors Encoding YF-17D Antigens Induces Long-Lasting Protection from Severe Yellow Fever Virus Infection in Mice.

    Science.gov (United States)

    Bassi, Maria R; Larsen, Mads A B; Kongsgaard, Michael; Rasmussen, Michael; Buus, Søren; Stryhn, Anette; Thomsen, Allan R; Christensen, Jan P

    2016-02-01

    The live attenuated yellow fever vaccine (YF-17D) has been successfully used for more than 70 years. It is generally considered a safe vaccine, however, recent reports of serious adverse events following vaccination have raised concerns and led to suggestions that even safer YF vaccines should be developed. Replication deficient adenoviruses (Ad) have been widely evaluated as recombinant vectors, particularly in the context of prophylactic vaccination against viral infections in which induction of CD8+ T-cell mediated immunity is crucial, but potent antibody responses may also be elicited using these vectors. In this study, we present two adenobased vectors targeting non-structural and structural YF antigens and characterize their immunological properties. We report that a single immunization with an Ad-vector encoding the non-structural protein 3 from YF-17D could elicit a strong CD8+ T-cell response, which afforded a high degree of protection from subsequent intracranial challenge of vaccinated mice. However, full protection was only observed using a vector encoding the structural proteins from YF-17D. This vector elicited virus-specific CD8+ T cells as well as neutralizing antibodies, and both components were shown to be important for protection thus mimicking the situation recently uncovered in YF-17D vaccinated mice. Considering that Ad-vectors are very safe, easy to produce and highly immunogenic in humans, our data indicate that a replication deficient adenovector-based YF vaccine may represent a safe and efficient alternative to the classical live attenuated YF vaccine and should be further tested. PMID:26886513

  16. BoHV-4-Based Vector Single Heterologous Antigen Delivery Protects STAT1(-/- Mice from Monkeypoxvirus Lethal Challenge.

    Directory of Open Access Journals (Sweden)

    Valentina Franceschi

    2015-06-01

    Full Text Available Monkeypox virus (MPXV is the etiological agent of human (MPX. It is an emerging orthopoxvirus zoonosis in the tropical rain forest of Africa and is endemic in the Congo-basin and sporadic in West Africa; it remains a tropical neglected disease of persons in impoverished rural areas. Interaction of the human population with wildlife increases human infection with MPX virus (MPXV, and infection from human to human is possible. Smallpox vaccination provides good cross-protection against MPX; however, the vaccination campaign ended in Africa in 1980, meaning that a large proportion of the population is currently unprotected against MPXV infection. Disease control hinges on deterring zoonotic exposure to the virus and, barring that, interrupting person-to-person spread. However, there are no FDA-approved therapies against MPX, and current vaccines are limited due to safety concerns. For this reason, new studies on pathogenesis, prophylaxis and therapeutics are still of great interest, not only for the scientific community but also for the governments concerned that MPXV could be used as a bioterror agent. In the present study, a new vaccination strategy approach based on three recombinant bovine herpesvirus 4 (BoHV-4 vectors, each expressing different MPXV glycoproteins, A29L, M1R and B6R were investigated in terms of protection from a lethal MPXV challenge in STAT1 knockout mice. BoHV-4-A-CMV-A29LgD106ΔTK, BoHV-4-A-EF1α-M1RgD106ΔTK and BoHV-4-A-EF1α-B6RgD106ΔTK were successfully constructed by recombineering, and their capacity to express their transgene was demonstrated. A small challenge study was performed, and all three recombinant BoHV-4 appeared safe (no weight-loss or obvious adverse events following intraperitoneal administration. Further, BoHV-4-A-EF1α-M1RgD106ΔTK alone or in combination with BoHV-4-A-CMV-A29LgD106ΔTK and BoHV-4-A-EF1α-B6RgD106ΔTK, was shown to be able to protect, 100% alone and 80% in combination, STAT1(-/- mice

  17. BoHV-4-Based Vector Single Heterologous Antigen Delivery Protects STAT1(-/-) Mice from Monkeypoxvirus Lethal Challenge.

    Science.gov (United States)

    Franceschi, Valentina; Parker, Scott; Jacca, Sarah; Crump, Ryan W; Doronin, Konstantin; Hembrador, Edguardo; Pompilio, Daniela; Tebaldi, Giulia; Estep, Ryan D; Wong, Scott W; Buller, Mark R; Donofrio, Gaetano

    2015-06-01

    Monkeypox virus (MPXV) is the etiological agent of human (MPX). It is an emerging orthopoxvirus zoonosis in the tropical rain forest of Africa and is endemic in the Congo-basin and sporadic in West Africa; it remains a tropical neglected disease of persons in impoverished rural areas. Interaction of the human population with wildlife increases human infection with MPX virus (MPXV), and infection from human to human is possible. Smallpox vaccination provides good cross-protection against MPX; however, the vaccination campaign ended in Africa in 1980, meaning that a large proportion of the population is currently unprotected against MPXV infection. Disease control hinges on deterring zoonotic exposure to the virus and, barring that, interrupting person-to-person spread. However, there are no FDA-approved therapies against MPX, and current vaccines are limited due to safety concerns. For this reason, new studies on pathogenesis, prophylaxis and therapeutics are still of great interest, not only for the scientific community but also for the governments concerned that MPXV could be used as a bioterror agent. In the present study, a new vaccination strategy approach based on three recombinant bovine herpesvirus 4 (BoHV-4) vectors, each expressing different MPXV glycoproteins, A29L, M1R and B6R were investigated in terms of protection from a lethal MPXV challenge in STAT1 knockout mice. BoHV-4-A-CMV-A29LgD106ΔTK, BoHV-4-A-EF1α-M1RgD106ΔTK and BoHV-4-A-EF1α-B6RgD106ΔTK were successfully constructed by recombineering, and their capacity to express their transgene was demonstrated. A small challenge study was performed, and all three recombinant BoHV-4 appeared safe (no weight-loss or obvious adverse events) following intraperitoneal administration. Further, BoHV-4-A-EF1α-M1RgD106ΔTK alone or in combination with BoHV-4-A-CMV-A29LgD106ΔTK and BoHV-4-A-EF1α-B6RgD106ΔTK, was shown to be able to protect, 100% alone and 80% in combination, STAT1(-/-) mice against

  18. A case of septicaemic anthrax in an intravenous drug user

    Directory of Open Access Journals (Sweden)

    Hodgson Heather

    2011-01-01

    Full Text Available Abstract Background In 2000, Ringertz et al described the first case of systemic anthrax caused by injecting heroin contaminated with anthrax. In 2008, there were 574 drug related deaths in Scotland, of which 336 were associated with heroin and or morphine. We report a rare case of septicaemic anthrax caused by injecting heroin contaminated with anthrax in Scotland. Case Presentation A 32 year old intravenous drug user (IVDU, presented with a 12 hour history of increasing purulent discharge from a chronic sinus in his left groin. He had a tachycardia, pyrexia, leukocytosis and an elevated C-reactive protein (CRP. He was treated with Vancomycin, Clindamycin, Ciprofloxacin, Gentamicin and Metronidazole. Blood cultures grew Bacillus anthracis within 24 hours of presentation. He had a computed tomography (CT scan and magnetic resonance imagining (MRI of his abdomen, pelvis and thighs performed. These showed inflammatory change relating to the iliopsoas and an area of necrosis in the adductor magnus. He underwent an exploration of his left thigh. This revealed chronically indurated subcutaneous tissues with no evidence of a collection or necrotic muscle. Treatment with Vancomycin, Ciprofloxacin and Clindamycin continued for 14 days. Negative Pressure Wound Therapy (NPWT device was applied utilising the Venturi™ wound sealing kit. Following 4 weeks of treatment, the wound dimensions had reduced by 77%. Conclusions Although systemic anthrax infection is rare, it should be considered when faced with severe cutaneous infection in IVDU patients. This case shows that patients with significant bacteraemia may present with no signs of haemodynamic compromise. Prompt recognition and treatment with high dose IV antimicrobial therapy increases the likelihood of survival. The use of simple wound therapy adjuncts such as NPWT can give excellent wound healing results.

  19. First Autochthonous Coinfected Anthrax in an Immunocompetent Patient

    Directory of Open Access Journals (Sweden)

    Parvaneh Afshar

    2015-01-01

    Full Text Available Cutaneous anthrax has a mortality rate of 20% if no antibacterial treatment is applied. The clinical manifestations of cutaneous anthrax are obviously striking, but coinfection may produce atypical lesions and mask the clinical manifestations and proper laboratory diagnosis. Anthrax is known to be more common in the Middle East and Iran is one of the countries in which the zoonotic form of anthrax may still be encountered. We report a case of a 19-years-old male who used to apply Venetian ceruse on his skin. Venetian ceruse (also known as Spirits of Saturn is an old cosmetic product used for skin whitening traditionally made from sheep’s spinal cord. The patient referred to the Referral Laboratory, Mazandaran University of Medical Sciences, Sari, Iran, with atypical dermatosis, pronounced pain, and oedema of the affected tissue. It was confirmed by both conventional and molecular analysis that culture was a mixture of Bacillus anthracis and Trichophyton interdigitale. The patient was initially treated with ceftriaxone (1000 mg/day for two weeks, gentamicin (1.5–2 mg/kg/day, terbinafine (200 mg/week for one month, and 1% clotrimazole cream (5 weeks two times per day which resulted in gradual improvement. No relapse could be detected after one-year follow-up. Anthrax infection might present a broader spectrum of symptoms than expected by clinicians. These unfamiliar characteristics may lead to delayed diagnosis, inadequate treatment, and higher mortality rate. Clinicians need to be aware of this issue in order to have successful management over this infection.

  20. First Autochthonous Coinfected Anthrax in an Immunocompetent Patient.

    Science.gov (United States)

    Afshar, Parvaneh; Hedayati, Mohammad Taghi; Aslani, Narges; Khodavaisy, Sadegh; Babamahmoodi, Farhang; Mahdavi, Mohammad Reza; Dolatabadi, Somayeh; Badali, Hamid

    2015-01-01

    Cutaneous anthrax has a mortality rate of 20% if no antibacterial treatment is applied. The clinical manifestations of cutaneous anthrax are obviously striking, but coinfection may produce atypical lesions and mask the clinical manifestations and proper laboratory diagnosis. Anthrax is known to be more common in the Middle East and Iran is one of the countries in which the zoonotic form of anthrax may still be encountered. We report a case of a 19-years-old male who used to apply Venetian ceruse on his skin. Venetian ceruse (also known as Spirits of Saturn) is an old cosmetic product used for skin whitening traditionally made from sheep's spinal cord. The patient referred to the Referral Laboratory, Mazandaran University of Medical Sciences, Sari, Iran, with atypical dermatosis, pronounced pain, and oedema of the affected tissue. It was confirmed by both conventional and molecular analysis that culture was a mixture of Bacillus anthracis and Trichophyton interdigitale. The patient was initially treated with ceftriaxone (1000 mg/day for two weeks), gentamicin (1.5-2 mg/kg/day), terbinafine (200 mg/week for one month), and 1% clotrimazole cream (5 weeks) two times per day which resulted in gradual improvement. No relapse could be detected after one-year follow-up. Anthrax infection might present a broader spectrum of symptoms than expected by clinicians. These unfamiliar characteristics may lead to delayed diagnosis, inadequate treatment, and higher mortality rate. Clinicians need to be aware of this issue in order to have successful management over this infection. PMID:26451148

  1. 旋毛虫成虫抗原的免疫保护性研究进展%Advances in study on protective immunity of Trichinella spiralis adult worm antigen

    Institute of Scientific and Technical Information of China (English)

    马鸣旺; 申丽洁

    2008-01-01

    The advances in study on protective immunity of Trichinella spiralis adult WOlln antigen were reviewed in this paper.Acording to the comparison of the three antigens of Trichinella spiralis,adult worm anti-gens can produce stronger protective immunity, which may serve as an important candidate of the vaccine a-gainst trichinellosis.With DNA recombination technology to clone the gene of the strong protective antigens of a-duh worm and to express them in vitro are important ways to get the vaccine against trichinellosis.%该文介绍了旋毛虫成虫抗原免疫保护性研究的进展.通过比较三期抗原的免疫保护性,表明旋毛虫成虫抗原具有较强的免疫保护作用,该抗原可能是研制旋毛虫病疫苗的重要候选抗原.利用DNA重组技术将保护性强的成虫抗原的基因克隆并在体外表达,将是获得旋毛虫病疫苗抗原的重要方法.

  2. Systemic but not mucosal immunity induced by AVA prevents inhalational anthrax

    OpenAIRE

    Klinman, Dennis M.; Currie, Debra; Lee, Gloria; Grippe, Vanessa; Merkel, Tod

    2007-01-01

    Improved vaccines and adjuvants are being developed to reduce the threat posed by a terrorist attack involving aerosolized anthrax spores. Nevertheless, uncertainty persists concerning the relative benefits of inducing mucosal vs systemic immunity to host survival following inhalational exposure to anthrax spores. This work examines the effect of delivering the licensed human vaccine (Anthrax Vaccine Adsorbed, AVA) combined with a CpG oligodeoxynucleotide (ODN) adjuvant intraperitoneally or i...

  3. Anthrax vaccine as a component of the strategic national stockpile: a dilemma for Homeland Security

    OpenAIRE

    Rempfer, Thomas L.

    2009-01-01

    CHDS State/Local The author explains how past problems with the Defense Department anthrax vaccine currently affect Department of Homeland Security and Department of Health and Human Services policy. The departments included the BioThrax® anthrax vaccine in the Strategic National Stockpile following the 2001 anthrax letter attacks. According to the Federal Bureau of Investigation, the vaccine's "failing" status possibly motivated the letter attacks to create demand for the vaccine. This ...

  4. Anti-toxin antibodies in prophylaxis and treatment of inhalation anthrax

    OpenAIRE

    Schneemann, Anette; Manchester, Marianne

    2009-01-01

    The CDC recommend 60 days of oral antibiotics combined with a three-dose series of the anthrax vaccine for prophylaxis after potential exposure to aerosolized Bacillus anthracis spores. The anthrax vaccine is currently not licensed for anthrax postexposure prophylaxis and has to be made available under an Investigational New Drug protocol. Postexposure prophylaxis based on antibiotics can be problematic in cases where the use of antibiotics is contraindicated. Furthermore, there is a concern ...

  5. Evaluation of the House Fly Musca domestica as a Mechanical Vector for an Anthrax

    OpenAIRE

    Fasanella, Antonio; Scasciamacchia, Silvia; Garofolo, Giuliano; Giangaspero, Annunziata; Tarsitano, Elvira; Adone, Rosanna

    2010-01-01

    Anthrax is a disease of human beings and animals caused by the encapsulated, spore-forming, Bacillus anthracis. The potential role of insects in the spread of B. anthracis to humans and domestic animals during an anthrax outbreak has been confirmed by many studies. Among insect vectors, the house fly Musca domestica is considered a potential agent for disease transmission. In this study, laboratory-bred specimens of Musca domestica were infected by feeding on anthrax-infected rabbit carcass o...

  6. Endemic Gastrointestinal Anthrax in 1960s Lebanon: Clinical Manifestations and Surgical Findings

    OpenAIRE

    Kanafani, Zeina A.; Ghossain, Antoine; Sharara, Ala I.; Hatem, Joseph M.; Kanj, Souha S.

    2003-01-01

    Anthrax is an ancient disease caused by the gram-positive Bacillus anthracis; recently, it has gained much attention because of its potential use in biologic warfare. Anthrax infection occurs in three forms: cutaneous, inhalational, and gastrointestinal. The last type results from ingestion of poorly cooked contaminated meat. Intestinal anthrax was widely known in Lebanon in the 1960s, when a series of >100 cases were observed in the Bekaa Valley. We describe some of these cases, introduce th...

  7. Anthrax lethal toxin induces cell death-independent permeability in zebrafish vasculature

    OpenAIRE

    Bolcome, Robert E.; Sullivan, Sarah E.; Zeller, René; Barker, Adam P.; Collier, R. John; Chan, Joanne

    2008-01-01

    Vascular dysfunction has been reported in human cases of anthrax, in mammalian models of Bacillus anthracis, and in animals injected with anthrax toxin proteins. To examine anthrax lethal toxin effects on intact blood vessels, we developed a zebrafish model that permits in vivo imaging and evaluation of vasculature and cardiovascular function. Vascular defects monitored in hundreds of embryos enabled us to define four stages of phenotypic progression leading to circulatory dysfunction. We dem...

  8. Periocular cutaneous anthrax in Jimma Zone, Southwest Ethiopia: a case series

    OpenAIRE

    Gelaw, Yeshigeta; Asaminew, Tsedeke

    2013-01-01

    Background Anthrax is a zoonotic disease caused by Bacillus anthracis. Naturally occurring human infection is rare and is generally the result of contact with anthrax-infected animals or animal products. Case presentation We examined three patients who had contact with presumed anthrax-infected animal and/or its product and presented with preseptal cellulitis with a localized itchy erythematous papule of the eyelid and non-pitting periorbital edema, followed by ulceration and dark eschar form...

  9. Surveillance for Anthrax Cases Associated with Contaminated Letters, New Jersey, Delaware, and Pennsylvania, 2001

    OpenAIRE

    Tan, Christina G.; Sandhu, Hardeep S.; Crawford, Dana C.; Redd, Stephen C.; Beach, Michael J.; Buehler, James; Bresnitz, Eddy A.; Pinner, Robert W.; Bell, Beth P; ,

    2002-01-01

    In October 2001, two inhalational anthrax and four cutaneous anthrax cases, resulting from the processing of Bacillus anthracis–containing envelopes at a New Jersey mail facility, were identified. Subsequently, we initiated stimulated passive hospital-based and enhanced passive surveillance for anthrax-compatible syndromes. From October 24 to December 17, 2001, hospitals reported 240,160 visits and 7,109 intensive-care unit admissions in the surveillance area (population 6.7 million persons)....

  10. Myosin-cross-reactive antigen (MCRA) protein from Bifidobacterium breve is a FAD-dependent fatty acid hydratase which has a function in stress protection

    LENUS (Irish Health Repository)

    Rosberg-Cody, Eva

    2011-02-17

    Abstract Background The aim of this study was to determine the catalytic activity and physiological role of myosin-cross-reactive antigen (MCRA) from Bifidobacterium breve NCIMB 702258. MCRA from B. breve NCIMB 702258 was cloned, sequenced and expressed in heterologous hosts (Lactococcus and Corynebacterium) and the recombinant proteins assessed for enzymatic activity against fatty acid substrates. Results MCRA catalysed the conversion of palmitoleic, oleic and linoleic acids to the corresponding 10-hydroxy fatty acids, but shorter chain fatty acids were not used as substrates, while the presence of trans-double bonds and double bonds beyond the position C12 abolished hydratase activity. The hydroxy fatty acids produced were not metabolised further. We also found that heterologous Lactococcus and Corynebacterium expressing MCRA accumulated increasing amounts of 10-HOA and 10-HOE in the culture medium. Furthermore, the heterologous cultures exhibited less sensitivity to heat and solvent stresses compared to corresponding controls. Conclusions MCRA protein in B. breve can be classified as a FAD-containing double bond hydratase, within the carbon-oxygen lyase family, which may be catalysing the first step in conjugated linoleic acid (CLA) production, and this protein has an additional function in bacterial stress protection.

  11. Expression, purification, and characterization of protective MPT64 antigen protein and identification of its multimers isolated from nontoxic Mycobacterium tuberculosis H37Ra.

    Science.gov (United States)

    Chu, Teng-Ping J; Yuann, Jeu-Ming P

    2011-05-01

    MPT64, a secreted protein of Mycobacterium tuberculosis (MTB), stimulates the immune reactions within cells and is a protective antigen that is lost by the bacilli Calmette-Guérin (BCG) vaccine during propagation. To minimize the toxicity caused by MTB, we used the MPT64 gene encoded by nontoxic H37Ra MTB to carry out genetic expansion via polymerase chain reaction and gene clone MPT64. The plasmid DNA encoded MPT64 was expressed at 20°C for 22 H, and a large quantity of MPT64 was obtained. In the absence of urea, MPT64 multimers with subunits being covalently connected via disulfide bonds were detected by Western blot showing strong protein-protein interactions, as evidenced by the formation of MPT64 tetramers. Finally, with urea of decreasing concentrations, we refolded MPT64 purified in the presence of urea and determined its secondary structures using circular dichroism. MPT64 was found to contain 2.2% α-helix, 50.9% β-sheet, 19.5% turn, and 27.4% random coil. The molecular weight of MPT64 was determined by a matrix-assisted laser desorption ionization-time of flight mass spectrometer and found to be 23,497 Da, very close to the theoretical molecular weight of MPT64. The results presented here provide a sound basis for future biochemical and biophysical studies of MPT64 or any other proteins encoded by nontoxic H37Ra MTB. PMID:21679242

  12. Gene silencing of the tick protective antigens, Bm86, Bm91 and subolesin, in the one-host tick Boophilus microplus by RNA interference.

    Science.gov (United States)

    Nijhof, Ard M; Taoufik, Amar; de la Fuente, José; Kocan, Katherine M; de Vries, Erik; Jongejan, Frans

    2007-05-01

    The use of RNA interference (RNAi) to assess gene function has been demonstrated in several three-host tick species but adaptation of RNAi to the one-host tick, Boophilus microplus, has not been reported. We evaluated the application of RNAi in B. microplus and the effect of gene silencing on three tick-protective antigens: Bm86, Bm91 and subolesin. Gene-specific double-stranded (dsRNA) was injected into two tick stages, freshly molted unfed and engorged females, and specific gene silencing was confirmed by real time PCR. Gene silencing occurred in injected unfed females after they were allowed to feed. Injection of dsRNA into engorged females caused gene silencing in the subsequently oviposited eggs and larvae that hatched from these eggs, but not in adults that developed from these larvae. dsRNA injected into engorged females could be detected by quantitative real-time RT-PCR in eggs 14 days from the beginning of oviposition, demonstrating that unprocessed dsRNA was incorporated in the eggs. Eggs produced by engorged females injected with subolesin dsRNA were abnormal, suggesting that subolesin may play a role in embryonic development. The injection of dsRNA into engorged females to obtain gene-specific silencing in eggs and larvae is a novel method which can be used to study gene function in tick embryogenesis. PMID:17196597

  13. Evaluation of the house fly Musca domestica as a mechanical vector for an anthrax.

    Directory of Open Access Journals (Sweden)

    Antonio Fasanella

    Full Text Available Anthrax is a disease of human beings and animals caused by the encapsulated, spore-forming, Bacillus anthracis. The potential role of insects in the spread of B. anthracis to humans and domestic animals during an anthrax outbreak has been confirmed by many studies. Among insect vectors, the house fly Musca domestica is considered a potential agent for disease transmission. In this study, laboratory-bred specimens of Musca domestica were infected by feeding on anthrax-infected rabbit carcass or anthrax contaminated blood, and the presence of anthrax spores in their spots (faeces and vomitus was microbiologically monitored. It was also evaluated if the anthrax spores were able to germinate and replicate in the gut content of insects. These results confirmed the role of insects in spreading anthrax infection. This role, although not major, given the huge size of fly populations often associated with anthrax epidemics in domestic animals, cannot be neglected from an epidemiological point of view and suggest that fly control should be considered as part of anthrax control programs.

  14. Integrated MOSFET-Embedded-Cantilever-Based Biosensor Characteristic for Detection of Anthrax Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa, Salwa [University of Tennessee, Knoxville (UTK); Lee, Ida [ORNL; Islam, Syed K [University of Tennessee, Knoxville (UTK); Eliza, Sazia A. [University of Tennessee, Knoxville (UTK); Shekhawat, Gajendra [Northwestern University, Evanston; Dravid, Vinayak [Northwestern University, Evanston; Tulip, Fahmida S [ORNL

    2011-01-01

    In this work, MOSFET-embedded cantilevers are configured as microbial sensors for detection of anthrax simulants, Bacillus thuringiensis. Anthrax simulants attached to the chemically treated gold-coated cantilever cause changes in the MOSFET drain current due to the bending of the cantilever which indicates the detection of anthrax simulant. Electrical properties of the anthrax simulant are also responsible for the change in the drain current. The test results suggest a detection range of 10 L of stimulant test solution (a suspension population of 1.3 107 colony-forming units/mL diluted in 40% ethanol and 60% deionized water) with a linear response of 31 A/ L.

  15. Confirmation of Bacillus anthracis from flesh-eating flies collected during a West Texas anthrax season.

    Science.gov (United States)

    Blackburn, Jason K; Curtis, Andrew; Hadfield, Ted L; O'Shea, Bob; Mitchell, Mark A; Hugh-Jones, Martin E

    2010-07-01

    This case study confirms the interaction between necrophilic flies and white-tailed deer, Odocoileus virginianus, during an anthrax outbreak in West Texas (summer 2005). Bacillus anthracis was identified by culture and PCR from one of eight pooled fly collections from deer carcasses on a deer ranch with a well-documented history of anthrax. These results provide the first known isolation of B. anthracis from flesh-eating flies associated with a wildlife anthrax outbreak in North America and are discussed in the context of wildlife ecology and anthrax epizootics. PMID:20688697

  16. Antigenicity, Immunogenicity and Protective Efficacy of Three Proteins Expressed in the Promastigote and Amastigote Stages of Leishmania infantum against Visceral Leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Vivian Tamietti Martins

    Full Text Available In the present study, two Leishmania infantum hypothetical proteins present in the amastigote stage, LiHyp1 and LiHyp6, were combined with a promastigote protein, IgE-dependent histamine-releasing factor (HRF; to compose a polyproteins vaccine to be evaluated against L. infantum infection. Also, the antigenicity of the three proteins was analyzed, and their use for the serodiagnosis of canine visceral leishmaniasis (CVL was evaluated. The LiHyp1, LiHyp6, and HRF DNA coding sequences were cloned in prokaryotic expression vectors and the recombinant proteins were purified. When employed in ELISA assays, all proteins were recognized by sera from visceral leishmaniasis (VL dogs, and presented no cross-reactivity with either sera from dogs vaccinated with a Brazilian commercial vaccine, or sera of Trypanosoma cruzi-infected or Ehrlichia canis-infected animals. In addition, the antigens were not recognized by antibodies from non-infected animals living in endemic or non-endemic areas for leishmaniasis. The immunogenicity and protective efficacy of the three proteins administered in the presence of saponin, individually or in combination (composing a polyproteins vaccine, were evaluated in a VL murine model: BALB/c mice infected with L. infantum. Spleen cells from mice inoculated with the individual proteins or with the polyproteins vaccine plus saponin showed a protein-specific production of IFN-γ, IL-12, and GM-CSF after an in vitro stimulation, which was maintained after infection. These animals presented significant reductions in the parasite burden in different evaluated organs, when compared to mice inoculated with saline or saponin. The decrease in parasite burden was associated with an IL-12-dependent production of IFN-γ against parasite total extracts (produced mainly by CD4+ T cells, correlated to the induction of parasite proteins-driven NO production. Mice inoculated with the recombinant protein-based vaccines showed also high levels of

  17. Cytoskeleton as an Emerging Target of Anthrax Toxins

    Directory of Open Access Journals (Sweden)

    Jean-Nicolas Tournier

    2012-02-01

    Full Text Available Bacillus anthracis, the agent of anthrax, has gained virulence through its exotoxins produced by vegetative bacilli and is composed of three components forming lethal toxin (LT and edema toxin (ET. So far, little is known about the effects of these toxins on the eukaryotic cytoskeleton. Here, we provide an overview on the general effects of toxin upon the cytoskeleton architecture. Thus, we shall discuss how anthrax toxins interact with their receptors and may disrupt the interface between extracellular matrix and the cytoskeleton. We then analyze what toxin molecular effects on cytoskeleton have been described, before discussing how the cytoskeleton may help the pathogen to corrupt general cell processes such as phagocytosis or vascular integrity.

  18. Risk factors associated with anthrax in cattle on smallholdings

    DEFF Research Database (Denmark)

    Biswas, P. K.; Islam, Md Zohorul; Shil, S. K.;

    2012-01-01

    analysed by matched-pair analysis and multivariable conditional logistic regression. Feeding animals with uprooted and unwashed grass [odds ratio (OR) 41·2, 95% confidence interval (CI) 3·7-458·8, P=0·003], and feeding water hyacinth (Eichhornia crassipes) (OR 22·2, 95% CI 1·2-418·7, P=0·039) were...... independent risk factors for anthrax in cattle....

  19. Economic Impacts of a Wide Area Release of Anthrax

    Energy Technology Data Exchange (ETDEWEB)

    Judd, Kathleen S.; Olson, Jarrod; Stein, Steven L.; Lesperance, Ann M.

    2009-05-29

    This analysis explores economic impacts that might result from a wide-area release of anthrax. The intent is not to provide a quantitative analysis of such a disaster, but to: 1. Define the general categories of economic impacts that the region should be concerned about; and, 2. Explore what types of private sector businesses or industries, if any, may have the greatest impact on speeding the economic recovery of the region.

  20. Anthrax: A disease of biowarfare and public health importance

    OpenAIRE

    Goel, Ajay Kumar

    2015-01-01

    Bioterrorism has received a lot of attention in the first decade of this century. Biological agents are considered attractive weapons for bioterrorism as these are easy to obtain, comparatively inexpensive to produce and exhibit widespread fear and panic than the actual potential of physical damage. Bacillus anthracis (B. anthracis), the etiologic agent of anthrax is a Gram positive, spore forming, non-motile bacterium. This is supposed to be one of the most potent BW agents because its spore...

  1. Swab Protocol for Rapid Laboratory Diagnosis of Cutaneous Anthrax

    OpenAIRE

    Dauphin, Leslie A.; Marston, Chung K.; Bhullar, Vinod; Baker, Daniel; Rahman, Mahmudur; Hossain, M. Jahangir; Chakraborty, Apurba; Khan, Salah Uddin; Hoffmaster, Alex R.

    2012-01-01

    The clinical laboratory diagnosis of cutaneous anthrax is generally established by conventional microbiological methods, such as culture and directly straining smears of clinical specimens. However, these methods rely on recovery of viable Bacillus anthracis cells from swabs of cutaneous lesions and often yield negative results. This study developed a rapid protocol for detection of B. anthracis on clinical swabs. Three types of swabs, flocked-nylon, rayon, and polyester, were evaluated by 3 ...

  2. SNR analysis: molecular investigation of an anthrax epidemic

    Directory of Open Access Journals (Sweden)

    Adone Rosanna

    2010-02-01

    Full Text Available Abstract Background In Italy, anthrax is endemic but occurs sporadically. During the summer of 2004, in the Pollino National Park, Basilicata, Southern Italy, an anthrax epidemic consisting of 41 outbreaks occurred; it claimed the lives of 124 animals belonging to different mammal species. This study is a retrospective molecular epidemiological investigation carried out on 53 isolates collected during the epidemic. A 25-loci Multiple Locus VNTR Analysis (MLVA MLVA was initially performed to define genetic relationships, followed by an investigation of genetic diversity between epidemic strains through Single Nucleotide Repeat (SNR analysis. Results 53 Bacillus anthracis strains were isolated. The 25-loci MLVA analysis identified all of them as belonging to a single genotype, while the SNR analysis was able to detect the existence of five subgenotypes (SGTs, allowing a detailed epidemic investigation. SGT-1 was the most frequent (46/53; SGTs 2 (4/53, 3 (1/53 4 (1/53 and 5 (1/53 were detected in the remaining seven isolates. Conclusions The analysis revealed the prevalent spread, during this epidemic, of a single anthrax clone. SGT-1 - widely distributed across the epidemic area and present throughout the period in question - may, thus, be the ancestral form. SGTs 2, 3 and 4 differed from SGT-1 at only one locus, suggesting that they could have evolved directly from the latter during the course of this epidemic. SGT-5 differed from the other SGTs at 2-3 loci. This isolate, thus, appears to be more distantly related to SGT-1 and may not be a direct descendant of the lineage responsible for the majority of cases in this epidemic. These data confirm the importance of molecular typing and subtyping methods for in-depth epidemiological analyses of anthrax epidemics.

  3. Anthrax control and research, with special reference to national programme development in Africa: memorandum from a WHO meeting.

    OpenAIRE

    1994-01-01

    The prevalence of anthrax in both animal and human populations has been increasing in Africa. It was therefore appropriate for this WHO meeting to be convened in an endemic area of the Western Province of Zambia in 1992. The participants reviewed anthrax epidemiology and control in some African countries, elaborated national anthrax control and research programmes in Africa, discussed international cooperation and work plans, and elaborated recommendations for anthrax control in Africa. The d...

  4. Human Anthrax Transmission at the Urban-Rural Interface, Georgia.

    Science.gov (United States)

    Kracalik, Ian; Malania, Lile; Imnadze, Paata; Blackburn, Jason K

    2015-12-01

    Human anthrax has increased dramatically in Georgia and was recently linked to the sale of meat in an urban market. We assessed epidemiological trends and risk factors for human anthrax at the urban-rural interface. We reviewed epidemiologic records (2000-2012) that included the place of residence (classified as urban, peri-urban, or rural), age, gender, and self-reported source of infection (handling or processing animal by-products and slaughtering or butchering livestock). To estimate risk, we used a negative binomial regression. The average incidence per 1 million population in peri-urban areas (24.5 cases) was > 2-fold higher compared with rural areas and > 3-fold higher compared with urban area. Risk from handling or purchasing meat was nearly 2-fold higher in urban areas and > 4-fold higher in peri-urban areas compared with rural area. Our findings suggest a high risk of anthrax in urban and peri-urban areas likely as a result of spillover from contaminated meat and animal by-products. Consumers should be warned to purchase meat only from licensed merchants. PMID:26438026

  5. 9 CFR 309.7 - Livestock affected with anthrax; cleaning and disinfection of infected livestock pens and driveways.

    Science.gov (United States)

    2010-01-01

    ... other official designated by the area supervisor. No anthrax vaccine (live organisms) shall be used on... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Livestock affected with anthrax... INSPECTION § 309.7 Livestock affected with anthrax; cleaning and disinfection of infected livestock pens...

  6. Trichinella spiralis: intranasal immunization with attenuated Salmonella enterica carrying a gp43 antigen-derived 30mer epitope elicits protection in BALB/c mice.

    Science.gov (United States)

    Pompa-Mera, E N; Yépez-Mulia, L; Ocaña-Mondragón, A; García-Zepeda, E A; Ortega-Pierres, G; González-Bonilla, C R

    2011-12-01

    Trichinellosis is a public health problem and is considered an emergent/re-emergent disease in various countries. The etiological agent of trichinellosis is the nematode Trichinella, which infects domestic animals such as pigs and horses, as well as wild animals and humans. A veterinary vaccine could be an option to control the disease in domestic animals. Although several vaccine candidates have shown promising results, a vaccine against trichinellosis remains unavailable to date. Attenuated Salmonella strains are especially attractive live vectors because they elicit mucosal immunity, which is known to be important for the control of Trichinella spiralis infection at the intestinal level and can be administered by oral or intranasal routes. In this study, the autotransporter ShdA was used to display, on the surface of the Salmonella enterica serovar Typhimurium SL3261, the 210-239 amino acid epitope, (designated as Ag30) derived from the 43 kDa glycoprotein of T. spiralis muscle larvae. The fusion protein elicited antibodies in BALB/c mice that were able to recognize the native epitope on the surface of T. spiralis muscle larvae. Mice immunized by intranasal route with the recombinant Salmonella induced a protective immune response against the T. spiralis challenge, reducing by 61.83% the adult burden at day eight postinfection. This immune response was characterized by the induction of antigen-specific IgG1 and of IL-5 production. This study demonstrates the usefulness of Salmonella as a carrier of nematode epitopes providing a surface display system for intestinal parasite vaccine applications. PMID:21907709

  7. Prime-boost bacillus Calmette-Guérin vaccination with lentivirus-vectored and DNA-based vaccines expressing antigens Ag85B and Rv3425 improves protective efficacy against Mycobacterium tuberculosis in mice.

    Science.gov (United States)

    Xu, Ying; Yang, Enzhuo; Wang, Jianguang; Li, Rui; Li, Guanghua; Liu, Guoyuan; Song, Na; Huang, Qi; Kong, Cong; Wang, Honghai

    2014-10-01

    To prevent the global spread of tuberculosis (TB), more effective vaccines and vaccination strategies are urgently needed. As a result of the success of bacillus Calmette-Guérin (BCG) in protecting children against miliary and meningeal TB, the majority of individuals will have been vaccinated with BCG; hence, boosting BCG-primed immunity will probably be a key component of future vaccine strategies. In this study, we compared the ability of DNA-, protein- and lentiviral vector-based vaccines that express the antigens Ag85B and Rv3425 to boost the effects of BCG in the context of immunity and protection against Mycobacterium tuberculosis in C57BL/6 mice. Our results demonstrated that prime-boost BCG vaccination with a lentiviral vector expressing the antigens Ag85B and Rv3425 significantly enhanced immune responses, including T helper type 1 and CD8(+) cytotoxic T lymphocyte responses, compared with DNA- and protein-based vaccines. However, lentivirus-vectored and DNA-based vaccines greatly improved the protective efficacy of BCG against M. tuberculosis, as indicated by a lack of weight loss and significantly reduced bacterial loads and histological damage in the lung. Our study suggests that the use of lentiviral or DNA vaccines containing the antigens Ag85B and Rv3425 to boost BCG is a good choice for the rational design of an efficient vaccination strategy against TB. PMID:24773322

  8. Chloroplast-Derived Vaccine Antigens and Biopharmaceuticals: Expression, Folding, Assembly and Functionality

    OpenAIRE

    Chebolu, S.; Daniell, H

    2009-01-01

    Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance, and multi-gene expression in a single transformation event. Oral delivery is facilitated by hyperexpression of vaccine antigens against cholera, tetanus, anthrax, plague, or canine parvovirus (4%–31% of total soluble protein, TSP) in transgenic chloroplasts (leaves) or non-green plastids (carrots, tomato) as well as the availability of antib...

  9. Whole genome protein microarrays for serum profiling of immunodominant antigens of Bacillus anthracis

    Directory of Open Access Journals (Sweden)

    Karen Elizabeth Kempsell

    2015-08-01

    Full Text Available A commercial Bacillus anthracis (Anthrax whole genome protein microarray has been used to identify immunogenic Anthrax proteins using sera from groups of donors with (a confirmed B. anthracis naturally acquired cutaneous infection, (b confirmed B. anthracis intravenous drug use-acquired infection (c occupational exposure in a wool-sorters factory (d humans and rabbits vaccinated with the UK Anthrax protein vaccine and compared to naïve unexposed controls. Anti-IAP responses were observed for both IgG and IgA in the challenged groups; however the anti-IAP IgG response was more evident in the vaccinated group and the anti-IAP IgA response more evident in the B. anthracis-infected groups. Infected individuals appeared somewhat suppressed for their general IgG response, compared with other challenged groups.Immunogenic protein antigens were identified in all groups, some of which were shared between groups whilst others were specific for individual groups. The toxin proteins were immunodominant in all vaccinated, infected or other challenged groups. However a number of other chromosomally-located and plasmid encoded open reading frames were also recognised by infected or exposed groups in comparison to controls. Some of these antigens e.g. BA4182 are not recognised by vaccinated individuals, suggesting that there are proteins more specifically expressed by live Anthrax spores in vivo and are not currently found in the UK licensed Anthrax Vaccine (AVP. These may perhaps be preferentially expressed during infection and represent expression of alternative pathways in the B. anthracis ‘infectome’. These may make highly attractive candidates for diagnostic and vaccine biomarker development as they may be more specifically associated with the infectious phase of the pathogen. A number of B. anthracis small hypothetical protein targets have been synthesised, tested in mouse immunogenicity studies and validated in parallel using human sera from the

  10. Randomized, double-blind, active-controlled study evaluating the safety and immunogenicity of three vaccination schedules and two dose levels of AV7909 vaccine for anthrax post-exposure prophylaxis in healthy adults.

    Science.gov (United States)

    Hopkins, Robert J; Kalsi, Gurdyal; Montalvo-Lugo, Victor M; Sharma, Mona; Wu, Yukun; Muse, Derek D; Sheldon, Eric A; Hampel, Frank C; Lemiale, Laurence

    2016-04-19

    AV7909 vaccine being developed for post-exposure prophylaxis of anthrax disease may require fewer vaccinations and reduced amount of antigen to achieve an accelerated immune response over BioThrax(®) (Anthrax Vaccine Adsorbed). A phase 2, randomized, double-blind, BioThrax vacccine-controlled study was conducted to evaluate the safety and immunogenicity of three intramuscular vaccination schedules and two dose levels of AV7909 in 168 healthy adults. Subjects were randomized at a 4:3:2:4:2 ratio to 5 groups: (1) AV7909 on Days 0/14; (2) AV7909 on Days 0/28; (3) AV7909 on Days 0/14/28; (4) half dose AV7909 on Days 0/14/28; and (5) BioThrax vaccine on Days 0/14/28. Vaccinations in all groups were well tolerated. The incidences of adverse events (AEs) were 79% for AV7909 subjects and 65% for BioThrax subjects; 92% of AV7909 subjects and 87% of BioThrax subjects having AEs reported Grade 1-2 AEs. No serious AEs were assessed as potentially vaccine-related, and no AEs of potential autoimmune etiology were reported. There was no discernible pattern indicative of a safety concern across groups in the incidence or severity of reactogenicity events. Groups 2-4 achieved success for the primary endpoint, demonstrated by a lower 95% confidence limit of the percentage of subjects with protective toxin neutralizing antibody NF50 values (≥0.56) to be ≥40% at Day 63. Group 1 marginally missed the criterion (lower bound 95% confidence limit of 39.5%). Immune responses were above this threshold for Groups 1, 3 and 4 at Day 28 and all groups at Day 42. Further study of an AV7909 two-dose schedule given 2 weeks apart is warranted in light of the favorable tolerability profile and immunogenicity response relative to three doses of BioThrax vaccine, as well as preliminary data from nonclinical studies indicating similar immune responses correlate with higher survival for AV7909 than BioThrax vaccine. PMID:26979136

  11. 9 CFR 311.10 - Anaplasmosis, anthrax, babesiosis, bacillary hemoglobinuria in cattle, blackleg, bluetongue...

    Science.gov (United States)

    2010-01-01

    ... condemned: (1) Anthrax. (2) Blackleg. (3) Unhealed vaccine lesions (vaccinia). (4) Strangles. (5) Purpura... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Anaplasmosis, anthrax, babesiosis... inflammatory lameness, extensive fistula, and unhealed vaccine lesions. 311.10 Section 311.10 Animals...

  12. Anthracimycin, a potent anthrax antibiotic from a marine-derived actinomycete.

    Science.gov (United States)

    Jang, Kyoung Hwa; Nam, Sang-Jip; Locke, Jeffrey B; Kauffman, Christopher A; Beatty, Deanna S; Paul, Lauren A; Fenical, William

    2013-07-22

    Licensed to kill: A new antibiotic, anthracimycin (see scheme), produced by a marine-derived actinomycete in saline culture, shows significant activity toward Bacillus anthracis, the bacterial pathogen responsible for anthrax infections. Chlorination of anthracimycin gives a dichloro derivative that retains activity against Gram-positive bacteria, such as anthrax, but also shows activity against selected Gram-negative bacteria. PMID:23776159

  13. Influence of body weight on response of Fischer 344 rats to anthrax lethal toxin.

    OpenAIRE

    Ivins, B E; Ristroph, J D; Nelson, G O

    1989-01-01

    Groups of Fischer 344 rats were injected intravenously with Bacillus anthracis culture supernatant containing crude anthrax toxin. Times to death of rats given identical toxin preparations varied directly with the weights of the rats (P = 0.0001). In contrast to previous reports, the data indicate that rat weight must be taken into account during in vivo assays of anthrax lethal toxin activity.

  14. Cloning and Expression of Fusion Genes of Domain A-1 Protective Antigen of Bacillus Anthracis and Shigella Enterotoxin B Subunit (Stxb In E. Coil

    Directory of Open Access Journals (Sweden)

    AH ahmadi

    2015-02-01

    Conclusion: The findings of the current study revealed that this antigen can be raised as an anti-cancer and recombinant vaccine candidate against types of Shigella, Escherichia coli and Bacillus anthracis which can be due to such factors as identification of antigen(PA by antibody PA20, its apoptosis induction properties, property of immunogenicity, adjuvant and delivery of STxB protein and high expression levels of Gb3 in human cancer cells.

  15. Towards a universal vaccine for avian influenza: protective efficacy of modified Vaccinia virus Ankara and Adenovirus vaccines expressing conserved influenza antigens in chickens challenged with low pathogenic avian influenza virus.

    Science.gov (United States)

    Boyd, Amy C; Ruiz-Hernandez, Raul; Peroval, Marylene Y; Carson, Connor; Balkissoon, Devanand; Staines, Karen; Turner, Alison V; Hill, Adrian V S; Gilbert, Sarah C; Butter, Colin

    2013-01-11

    Current vaccines targeting surface proteins can drive antigenic variation resulting either in the emergence of more highly pathogenic viruses or of antigenically distinct viruses that escape control by vaccination and thereby persist in the host population. Influenza vaccines typically target the highly mutable surface proteins and do not provide protection against heterologous challenge. Vaccines which induce immune responses against conserved influenza epitopes may confer protection against heterologous challenge. We report here the results of vaccination with recombinant modified Vaccinia virus Ankara (MVA) and Adenovirus (Ad) expressing a fusion construct of nucleoprotein and matrix protein (NP+M1). Prime and boost vaccination regimes were trialled in different ages of chicken and were found to be safe and immunogenic. Interferon-γ (IFN-γ) ELISpot was used to assess the cellular immune response post secondary vaccination. In ovo Ad prime followed by a 4 week post hatch MVA boost was identified as the most immunogenic regime in one outbred and two inbred lines of chicken. Following vaccination, one inbred line (C15I) was challenged with low pathogenic avian influenza (LPAI) H7N7 (A/Turkey/England/1977). Birds receiving a primary vaccination with Ad-NP+M1 and a secondary vaccination with MVA-NP+M1 exhibited reduced cloacal shedding as measured by plaque assay at 7 days post infection compared with birds vaccinated with recombinant viruses containing irrelevant antigen. This preliminary indication of efficacy demonstrates proof of concept in birds; induction of T cell responses in chickens by viral vectors containing internal influenza antigens may be a productive strategy for the development of vaccines to induce heterologous protection against influenza in poultry. PMID:23200938

  16. Clinical features and nursing of cutaneous anthrax patients%皮肤炭疽患者的临床特征与护理

    Institute of Scientific and Technical Information of China (English)

    阴嘉微

    2014-01-01

    Objective To explore proper nursing interventions for cutaneous anthrax patients. Methods According to clinic features of the patients with cutaneous anthrax, sterilized insulation, individual protection, proper disposal of patients’wounded part, excreta and applications, as well as mental counseling and health education, were used to observe whether these interventions could enhance patients’recovery and prevent hospital infection. Results By using the above-mentioned methods all 13 cutaneous anthrax patients recovered quickly and no hospital infection incidents took place. Conclusion Proper nursing interventions can prevent hospital infection and promote recovery.%目的:探索适合皮肤炭疽患者的护理措施。方法针对皮肤炭疽的临床特点,应用消毒隔离、个人防护,对患者患处、排泄物和应用物处理,并经心理疏导、健康教育,观察是否可促进患者康复及杜绝医院内感染。结果13例皮肤炭疽患者经上述处理后未发生院内交叉感染,全部痊愈出院。结论适宜的护理措施可防止皮肤炭疽患者医院内感染,促进疾病的康复。

  17. Cross-protective potential of a novel monoclonal antibody directed against antigenic site B of the hemagglutinin of influenza A viruses.

    Directory of Open Access Journals (Sweden)

    Reiko Yoshida

    2009-03-01

    Full Text Available The hemagglutinin (HA of influenza A viruses has been classified into sixteen distinct subtypes (H1-H16 to date. The HA subtypes of influenza A viruses are principally defined as serotypes determined by neutralization or hemagglutination inhibition tests using polyclonal antisera to the respective HA subtypes, which have little cross-reactivity to the other HA subtypes. Thus, it is generally believed that the neutralizing antibodies are not broadly cross-reactive among HA subtypes. In this study, we generated a novel monoclonal antibody (MAb specific to HA, designated MAb S139/1, which showed heterosubtypic cross-reactive neutralization and hemagglutination inhibition of influenza A viruses. This MAb was found to have broad reactivity to many other viruses (H1, H2, H3, H5, H9, and H13 subtypes in enzyme-linked immunosorbent assays. We further found that MAb S139/1 showed neutralization and hemagglutination-inhibition activities against particular strains of H1, H2, H3, and H13 subtypes of influenza A viruses. Mutant viruses that escaped neutralization by MAb S139/1 were selected from the A/Aichi/2/68 (H3N2, A/Adachi/2/57 (H2N2, and A/WSN/33 (H1N1 strains, and sequence analysis of the HA genes of these escape mutants revealed amino acid substitutions at positions 156, 158, and 193 (H3 numbering. A molecular modeling study showed that these amino acids were located on the globular head of the HA and formed a novel conformational epitope adjacent to the receptor-binding domain of HA. Furthermore, passive immunization of mice with MAb S139/1 provided heterosubtypic protection. These results demonstrate that MAb S139/1 binds to a common antigenic site shared among a variety of HA subtypes and neutralizes viral infectivity in vitro and in vivo by affecting viral attachment to cells. The present study supports the notion that cross-reactive antibodies play some roles in heterosubtypic immunity against influenza A virus infection, and underscores the

  18. Relationship between liver disorders and protection against Eimeria stiedai infection in rabbits immunized with soluble antigens from the bile of infected rabbits.

    Science.gov (United States)

    Hanada, S; Omata, Y; Umemoto, Y; Kobayashi, Y; Furuoka, H; Matsui, T; Maeda, R; Saito, A

    2003-02-13

    Soluble antigens exist in the bile of rabbits infected with Eimeria stiedai (E. stiedai) in the acute phase, and rabbits immunized with the antigens show resistance against the infection. In this study, the liver function of rabbits immunized either with the soluble antigens or PBS were examined following the parasite challenge. Rabbits immunized with PBS shed a number of oocysts and showed an increase in r-glutamyltransferase (GGT) activity and a decrease in blood Indocyanine green (ICG) clearance. However, rabbits immunized with the soluble antigens shed a lower number of oocysts and showed a transient increase of alanine-aminotransferase (ALT) activity on Day 8 post-challenge (p.c.). The blood Indocyanine green clearance of the rabbits showed no change throughout the experiment. By histopathological observation of the liver, a number of merozoites were found in the biliary ducts on Day 8 post-challenge in the non-immunized rabbits. In contrast, a number of lymphocytes and neutrophilic leukocytes assembled around the biliary ducts of the immunized rabbits, but few parasites were found there on Day 8 post-challenge. These results suggest that the soluble antigens stimulate local immune reactions, for example around the biliary ducts, resulting in elimination of the parasite's development. PMID:12531300

  19. Swab protocol for rapid laboratory diagnosis of cutaneous anthrax.

    Science.gov (United States)

    Dauphin, Leslie A; Marston, Chung K; Bhullar, Vinod; Baker, Daniel; Rahman, Mahmudur; Hossain, M Jahangir; Chakraborty, Apurba; Khan, Salah Uddin; Hoffmaster, Alex R

    2012-12-01

    The clinical laboratory diagnosis of cutaneous anthrax is generally established by conventional microbiological methods, such as culture and directly straining smears of clinical specimens. However, these methods rely on recovery of viable Bacillus anthracis cells from swabs of cutaneous lesions and often yield negative results. This study developed a rapid protocol for detection of B. anthracis on clinical swabs. Three types of swabs, flocked-nylon, rayon, and polyester, were evaluated by 3 extraction methods, the swab extraction tube system (SETS), sonication, and vortex. Swabs were spiked with virulent B. anthracis cells, and the methods were compared for their efficiency over time by culture and real-time PCR. Viability testing indicated that the SETS yielded greater recovery of B. anthracis from 1-day-old swabs; however, reduced viability was consistent for the 3 extraction methods after 7 days and nonviability was consistent by 28 days. Real-time PCR analysis showed that the PCR amplification was not impacted by time for any swab extraction method and that the SETS method provided the lowest limit of detection. When evaluated using lesion swabs from cutaneous anthrax outbreaks, the SETS yielded culture-negative, PCR-positive results. This study demonstrated that swab extraction methods differ in their efficiency of recovery of viable B. anthracis cells. Furthermore, the results indicated that culture is not reliable for isolation of B. anthracis from swabs at ≥ 7 days. Thus, we recommend the use of the SETS method with subsequent testing by culture and real-time PCR for diagnosis of cutaneous anthrax from clinical swabs of cutaneous lesions. PMID:23035192

  20. Decontamination of Anthrax spores in critical infrastructure and critical assets.

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, Raymond M.; Crown, Kevin K.; Tucker, Mark David; Hankins, Matthew Granholm

    2010-05-01

    Decontamination of anthrax spores in critical infrastructure (e.g., subway systems, major airports) and critical assets (e.g., the interior of aircraft) can be challenging because effective decontaminants can damage materials. Current decontamination methods require the use of highly toxic and/or highly corrosive chemical solutions because bacterial spores are very difficult to kill. Bacterial spores such as Bacillus anthracis, the infectious agent of anthrax, are one of the most resistant forms of life and are several orders of magnitude more difficult to kill than their associated vegetative cells. Remediation of facilities and other spaces (e.g., subways, airports, and the interior of aircraft) contaminated with anthrax spores currently requires highly toxic and corrosive chemicals such as chlorine dioxide gas, vapor- phase hydrogen peroxide, or high-strength bleach, typically requiring complex deployment methods. We have developed a non-toxic, non-corrosive decontamination method to kill highly resistant bacterial spores in critical infrastructure and critical assets. A chemical solution that triggers the germination process in bacterial spores and causes those spores to rapidly and completely change to much less-resistant vegetative cells that can be easily killed. Vegetative cells are then exposed to mild chemicals (e.g., low concentrations of hydrogen peroxide, quaternary ammonium compounds, alcohols, aldehydes, etc.) or natural elements (e.g., heat, humidity, ultraviolet light, etc.) for complete and rapid kill. Our process employs a novel germination solution consisting of low-cost, non-toxic and non-corrosive chemicals. We are testing both direct surface application and aerosol delivery of the solutions. A key Homeland Security need is to develop the capability to rapidly recover from an attack utilizing biological warfare agents. This project will provide the capability to rapidly and safely decontaminate critical facilities and assets to return them to

  1. Predicting Disease Risk, Identifying Stakeholders, and Informing Control Strategies: A Case Study of Anthrax in Montana.

    Science.gov (United States)

    Morris, Lillian R; Blackburn, Jason K

    2016-06-01

    Infectious diseases that affect wildlife and livestock are challenging to manage and can lead to large-scale die-offs, economic losses, and threats to human health. The management of infectious diseases in wildlife and livestock is made easier with knowledge of disease risk across space and identifying stakeholders associated with high-risk landscapes. This study focuses on anthrax, caused by the bacterium Bacillus anthracis, risk to wildlife and livestock in Montana. There is a history of anthrax in Montana, but the spatial extent of disease risk and subsequent wildlife species at risk are not known. Our objective was to predict the potential geographic distribution of anthrax risk across Montana, identify wildlife species at risk and their distributions, and define stakeholders. We used an ecological niche model to predict the potential distribution of anthrax risk. We overlaid susceptible wildlife species distributions and land ownership delineations on our risk map. We found that there was an extensive region across Montana predicted as potential anthrax risk. These potentially risky landscapes overlapped the ranges of all 6 ungulate species considered in the analysis and livestock grazing allotments, and this overlap was on public and private land for all species. Our findings suggest that there is the potential for a multi-species anthrax outbreak on multiple landscapes across Montana. Our potential anthrax risk map can be used to prioritize landscapes for surveillance and for implementing livestock vaccination programs. PMID:27169560

  2. Phylogenetic Characteristics of Anthrax Outbreaks in Liaoning Province, China, 2001-2015.

    Science.gov (United States)

    Mao, Lingling; Zhang, Enmin; Wang, Zijiang; Li, Yan; Zhou, Hang; Liu, Xuesheng; Zhang, Huijuan; Cai, Hong; Liang, Xudong; Sun, Yingwei; Zhang, Zhikai; Li, Wei; Yao, Wenqing; Wei, Jianchun

    2016-01-01

    Anthrax is a continuous threat in China, especially in rural regions. In July 2015, an anthrax outbreak occurred in Xifeng County, Liaoning Province. A total of 10 cutaneous anthrax cases were reported, with 210 people under medical observation. In this study, the general characteristics of human anthrax outbreak occurred in Liaoning Province were described, and all cases were caused by butchering and contacting sick animal. Meanwhile, the phylogenetic relationship between outbreak-related isolates/samples of the year 2015 and previous Bacillus anthracis strains was analyzed by means of canonical single nucleotide polymorphisms (canSNP), multiple-locus variable-number tandem repeat analysis (MLVA) with 15 markers and single-nucleotide repeats (SNR) analysis. There are two canSNP subgroups found in Liaoning, A.Br.001/002 and A.Br.Ames, and a total of six MLVA 15 genotypes and five SNR genotypes were observed. The strain collected from anthrax outbreak in Xifeng County in 2015 was classified as A.Br.001/002 subgroup and identified as MLVA15-29 genotype, with same SNR profile (CL10: 17, CL12: 15, CL33: 29, and CL35: 13). So we conclude that the same clone of B.anthracis caused the anthrax outbreak in Xifeng County in 2015, and this clone is different to previous isolates. Strengthening public health education in China is one of the most important measures to prevent and control anthrax. PMID:27299730

  3. Risk practices for animal and human anthrax in Bangladesh: an exploratory study

    Directory of Open Access Journals (Sweden)

    Md. Saiful Islam

    2013-11-01

    Full Text Available Introduction: From August 2009 to October 2010, International Centre for Diarrheal Disease Research, Bangladesh and the Institute of Epidemiology, Disease Control and Research together investigated 14 outbreaks of anthrax which included 140 animal and 273 human cases in 14 anthrax-affected villages. Our investigation objectives were to explore the context in which these outbreaks occurred, including livestock rearing practices, human handling of sick and dead animals, and the anthrax vaccination program. Methods: Field anthropologists used qualitative data-collection tools, including 15 hours of unstructured observations, 11 key informant interviews, 32 open-ended interviews, and 6 group discussions in 5 anthrax-affected villages. Results: Each cattle owner in the affected communities raised a median of six ruminants on their household premises. The ruminants were often grazed in pastures and fed supplementary rice straw, green grass, water hyacinth, rice husk, wheat bran, and oil cake; lactating cows were given dicalcium phosphate. Cattle represented a major financial investment. Since Islamic law forbids eating animals that die from natural causes, when anthrax-infected cattle were moribund, farmers often slaughtered them on the household premises while they were still alive so that the meat could be eaten. Farmers ate the meat and sold it to neighbors. Skinners removed and sold the hides from discarded carcasses. Farmers discarded the carcasses and slaughtering waste into ditches, bodies of water, or open fields. Cattle in the affected communities did not receive routine anthrax vaccine due to low production, poor distribution, and limited staffing for vaccination. Conclusion: Slaughtering anthrax-infected animals and disposing of butchering waste and carcasses in environments where ruminants live and graze, combined with limited vaccination, provided a context that permitted repeated anthrax outbreaks in animals and humans. Because of strong

  4. Detection of anthrax toxin genetic sequences by the solid phase oligo-probes

    Directory of Open Access Journals (Sweden)

    K C Addanki

    2011-01-01

    Full Text Available Purpose: There is an urgent need to detect a rapid field-based test to detect anthrax. We have developed a rapid, highly sensitive DNA-based method to detect the anthrax toxin lethal factor gene located in pXO1, which is necessary for the pathogenicity of Bacillus anthracis. Materials and Methods: We have adopted the enzyme-linked immunosorbent assay (ELISA so that instead of capturing antibodies we capture the DNA of the target sequence by a rapid oligo-based hybridization and then detect the captured DNA with another oligoprobe that binds to a different motif of the captured DNA sequences at a dissimilar location. We chose anthrax lethal factor endopeptidase sequences located in pXO1 and used complementary oligoprobe, conjugated with biotin, to detect the captured anthrax specific sequence by the streptavidin-peroxidase-based colorimetric assay. Result: Our system can detect picomoles (pMoles of anthrax (approximately 33 spores of anthrax and is >1000 times more sensitive than the current ELISA, which has a detection range of 0.1 to 1.0 ng/mL. False positive results can be minimized when various parameters and the colour development steps are optimized. Conclusion: Our results suggest that this assay can be adapted for the rapid detection of minuscule amounts of the anthrax spores that are aerosolized in the case of a bioterrorism attack. This detection system does not require polymerase chain reaction (PCR step and can be more specific than the antibody method. This method can also detect genetically engineered anthrax. Since, the antibody method is so specific to the protein epitope that bioengineered versions of anthrax may not be detected.

  5. Neutralizing Activity of Vaccine-Induced Antibodies to Two Bacillus anthracis Toxin Components, Lethal Factor and Edema Factor▿

    OpenAIRE

    Taft, Sarah C.; Weiss, Alison A.

    2007-01-01

    Anthrax vaccine adsorbed (AVA; BioThrax), the current FDA-licensed human anthrax vaccine, contains various amounts of the three anthrax toxin components, protective antigen (PA), lethal factor (LF), and edema factor (EF). While antibody to PA is sufficient to mediate protection against anthrax in animal models, it is not known if antibodies to LF or EF contribute to protection in humans. Toxin-neutralizing activity was evaluated in sera from AVA-vaccinated volunteers, all of whom had antibody...

  6. Induction of mucosal immune responses and protection of cattle against direct-contact challenge by intranasal delivery with foot-and-mouth disease virus antigen mediated by nanoparticles

    Directory of Open Access Journals (Sweden)

    Pan L

    2014-12-01

    a double dose of Chi-Tre-Inactivated nanoparticles and animals immunized by intranasal route three times with Chi-Tre-Inactivated nanoparticles (P<0.05. FMDV-specific IgA antibodies in serum showed a similar pattern. All animals immunized by intranasal route developed low levels of detectable IgG in serum at 10 dpv. Following stimulation with FMDV, the highest levels of proliferation were observed in splenocytes harvested from Chi-PLGA-DNA-immunized animals, followed by proliferation of cells harvested from Chi-Tre-Inactivated nanoparticle-immunized animals (P<0.05. Higher protection rates were associated with the highest sIgA antibody responses induced in the Chi-PLGA-DNA nanoparticle-immunized group. Only one animal was clinically affected with mild signs after 7 days of contact challenge, after a delay of 2–3 days compared with the clinically affected negative-control group. Of the five animals directly challenged that were vaccinated by intranasal route with a double dose of Chi-Tre-Inactivated, four were clinically infected; however, the degree of severity of disease in this group was lower than in control cattle. The number of viral RNA copies in nasal swabs from the vaccinated, severely infected group was significantly higher than in swabs from the vaccinated, clinically protected group. These data suggested that intranasal delivery of Chi-PLGA-DNA nanoparticles resulted in higher levels of mucosal, systemic, and cell-mediated immunity than did of Chi-Tre-Inactivated nanoparticles. In conclusion, although intranasal delivery with FMDV antigen mediated by nanoparticles did not provide complete clinical protection, it reduced disease severity and virus excretion and delayed clinical symptoms. Chi-PLGA-DNA nanoparticle vaccines have potential as a nasal delivery system for vaccines. Keywords: FMDV, nanoparticles, chitosan, trehalose, poly(lactic-co-glycolic acid, PLGA

  7. Intranasal Immunization with Influenza Virus-Like Particles Containing Membrane-Anchored Cholera Toxin B or Ricin Toxin B Enhances Adaptive Immune Responses and Protection against an Antigenically Distinct Virus

    Science.gov (United States)

    Ji, Xianliang; Ren, Zhiguang; Xu, Na; Meng, Lingnan; Yu, Zhijun; Feng, Na; Sang, Xiaoyu; Li, Shengnan; Li, Yuanguo; Wang, Tiecheng; Zhao, Yongkun; Wang, Hualei; Zheng, Xuexing; Jin, Hongli; Li, Nan; Yang, Songtao; Cao, Jinshan; Liu, Wensen; Gao, Yuwei; Xia, Xianzhu

    2016-01-01

    Vaccination is the most effective means to prevent influenza virus infection, although current approaches are associated with suboptimal efficacy. Here, we generated virus-like particles (VLPs) composed of the hemagglutinin (HA), neuraminidase (NA) and matrix protein (M1) of A/Changchun/01/2009 (H1N1) with or without either membrane-anchored cholera toxin B (CTB) or ricin toxin B (RTB) as molecular adjuvants. The intranasal immunization of mice with VLPs containing membrane-anchored CTB or RTB elicited stronger humoral and cellular immune responses when compared to mice immunized with VLPs alone. Administration of VLPs containing CTB or RTB significantly enhanced virus-specific systemic and mucosal antibody responses, hemagglutination inhibiting antibody titers, virus neutralizing antibody titers, and the frequency of virus-specific IFN-γ and IL-4 secreting splenocytes. VLPs with and without CTB or RTB conferred complete protection against lethal challenge with a mouse-adapted homologous virus. When challenged with an antigenically distinct H1N1 virus, all mice immunized with VLPs containing CTB or RTB survived whereas mice immunized with VLPs alone showed only partial protection (80% survival). Our results suggest that membrane-anchored CTB and RTB possess strong adjuvant properties when incorporated into an intranasally-delivered influenza VLP vaccine. Chimeric influenza VLPs containing CTB or RTB may represent promising vaccine candidates for improved immunological protection against homologous and antigenically distinct influenza viruses. PMID:27110810

  8. Phytomonas serpens, a tomato parasite, shares antigens with Trypanosoma cruzi that are recognized by human sera and induce protective immunity in mice.

    Science.gov (United States)

    Breganó, José Wander; Picão, Renata Cristina; Graça, Viviane Krominski; Menolli, Rafael Andrade; Itow Jankevicius, Shiduca; Pinge Filho, P; Jankevicius, José Vítor

    2003-12-01

    The immune cross-reactivity between Trypanosoma cruzi, the protozoan that causes Chagas' disease, and Phytomonas serpens, a trypanosomatid that infects tomatoes, was studied. Sera from patients with Chagas' disease presented a strong reactivity with P. serpens antigens by conventional serological assays such as indirect immunofluorescence (IIF) and direct agglutination test (DAT), confirmed after cross-absorption experiments. The results show that this protozoan is highly immunogenic and that rabbit and mouse hyperimmune serum raised against T. cruzi or P. serpens was able to recognize both T. cruzi and P. serpens antigens in immunofluorescence and agglutination assays. The antigenic cross-reactivity between T. cruzi and P. serpens was also demonstrated in vivo. BALB/c mice immunized by the intraperitoneal or oral route with P. serpens and later challenged with a lethal inoculum of T. cruzi blood forms showed a significant decrease in parasitemia and increase in survival compared to controls. A practical implication of these findings is that the ingestion by humans or animals of living plant trypanosomatids present in naturally infected edible fruits could potentially prime the immune response to T. cruzi antigens and interfere with the development of T. cruzi infection. PMID:14642311

  9. Novel 6xHis tagged foot-and-mouth disease virus vaccine bound to nanolipoprotein adjuvant via metal ions provides antigenic distinction and effective protective immunity

    Science.gov (United States)

    Here, we engineered two FMD viruses and histidine residues inserted into or fused to the FMDV capsid. Both 6xHis viruses exhibited growth kinetics, plaque morphologies and antigenic characteristics similar to wild-type virus. The 6xHis tag allowed one-step purification of the mutant virions by Co2...

  10. Montanide ISA 71 VG adjuvant enhances antibody and cell-ediated immune responses to profilin subunit antigen vaccination and promotes protection against Eimeria acervulina and Eimeria tenella

    Science.gov (United States)

    The present study was conducted to investigate the immunoenhancing effects of ISA 71 VG adjuvant on profilin subunit antigen vaccination. Broiler chickens were immunized subcutaneously with a purified Eimeria acervulina recombinant profilin protein, either alone or mixed with ISA 71 VG, and host imm...

  11. Anthrax Vaccine Induced Antibodies Provide Cross-Species Prediction of Survival to Aerosol Challenge

    OpenAIRE

    Fay, Michael P.; Follmann, Dean A.; Lynn, Freyja; Schiffer, Jarad M.; Stark, Greg; Kohberge, Robert; Quinn, Conrad P.; Nuzum, Edwin O.

    2012-01-01

    Because clinical trials to assess the efficacy of vaccines against anthrax are not ethical or feasible, licensure for new anthrax vaccines will likely involve the Food and Drug Administration’s “Animal Rule,” a set of regulations that allow approval of products based on efficacy data only in animals combined with immunogenicity and safety data in animals and humans. US government sponsored animal studies have shown anthrax vaccine efficacy in a variety of settings. We examined data from 21 of...

  12. Investigation of Anthrax Cases in North-East China, 2010-2014

    OpenAIRE

    Wei Zhou; Yang Sun; Lingwei Zhu; Bo Zhou; Jun Liu; Xue Ji; Xiaofeng Wang; Nan Wang; Guibo Gu; Shuzhang Feng; Jun Qian; Xuejun Guo

    2015-01-01

    We determined the genotypes of seven Bacillus anthracis strains that were recovered from nine anthrax outbreaks in North-East China from 2010 to 2014, and two approved vaccine strains that are currently in use in China. The causes of these cases were partly due to local farmers being unaware of the presence of anthrax, and butchers with open wounds having direct contact with anthrax-contaminated meat products. The genotype of five of the seven recovered strains was A.Br.001/002 sub-lineage, w...

  13. Cases of cutaneous anthrax in eastern Turkey: The reports of three cases

    OpenAIRE

    Karadaş, Sevdegül; GÖNÜLLÜ, Hayriye; CEYLAN, Mehmet Reşat; ESMER, Fatih; EBİNÇ, Senar

    2015-01-01

    Anthrax is an acute disease caused by the bacterium Bacillus anthracis. This bacteria can form dormant endospores. When spores are inhaled, ingested, or come into contact with a skin lesion on a host, they may become reactivated multiply and rapidly. B. anthracis bacterial spores are soil-borne. Because of their long lifespan, spores are present globally and remain at the burial sites of animals killed by anthrax for many decades. Diseased animals can spread anthrax to humans, either by direc...

  14. Anthrax among heroin users in Europe possibly caused by same Bacillus anthracis strain since 2000

    OpenAIRE

    Grunow, R; Klee, SR; Beyer, W; George, M.; D. Grunow; Barduhn, A; Klar, S; D. Jacob; Elschner, M.; Sandven, Per; Kjerulf, A; Jensen, JS; Cai, W; Zimmermann, R; Schaade, L.

    2013-01-01

    Injection anthrax was described first in 2000 in a heroin-injecting drug user in Norway. New anthrax cases among heroin consumers were detected in the United Kingdom (52 cases) and Germany (3 cases) in 2009-10. In June 2012, a fatal case occurred in Regensburg, Bavaria. As of December 2012, 13 cases had been reported in this new outbreak from Germany, Denmark, France and the United Kingdom. We analysed isolates from 2009-10 and 2012 as well as from the first injection anthrax case in Norway i...

  15. Capillary morphogenesis protein-2 is the major receptor mediating lethality of anthrax toxin in vivo

    OpenAIRE

    Liu, Shihui; Crown, Devorah; Miller-Randolph, Sharmina; Moayeri, Mahtab; Wang, Hailun; Hu, Haijing; Morley, Thomas; Leppla, Stephen H.

    2009-01-01

    Anthrax toxin, a major virulence factor of Bacillus anthracis, gains entry into target cells by binding to either of 2 von Willebrand factor A domain-containing proteins, tumor endothelium marker-8 (TEM8) and capillary morphogenesis protein-2 (CMG2). The wide tissue expression of TEM8 and CMG2 suggest that both receptors could play a role in anthrax pathogenesis. To explore the roles of TEM8 and CMG2 in normal physiology, as well as in anthrax pathogenesis, we generated TEM8- and CMG2-null mi...

  16. Identification and validation of a linear protective neutralizing epitope in the β-pore domain of alpha toxin.

    Directory of Open Access Journals (Sweden)

    Jon Oscherwitz

    Full Text Available The plethora of virulence factors associated with Staphylococcus aureus make this bacterium an attractive candidate for a molecularly-designed epitope-focused vaccine. This approach, which necessitates the identification of neutralizing epitopes for incorporation into a vaccine construct, is being evaluated for pathogens where conventional approaches have failed to elicit protective humoral responses, like HIV-1 and malaria, but may also hold promise for pathogens like S. aureus, where the elicitation of humoral immunity against multiple virulence factors may be required for development of an effective vaccine. Among the virulence factors employed by S. aureus, animal model and epidemiological data suggest that alpha toxin, a multimeric β-pore forming toxin like protective antigen from Bacillus anthracis, is particularly critical, yet no candidate neutralizing epitopes have been delineated in alpha toxin to date. We have previously shown that a linear determinant in the 2β2-2β3 loop of the pore forming domain of B. anthracis protective antigen is a linear neutralizing epitope. Antibody against this site is highly potent for neutralizing anthrax lethal toxin in vitro and for protection of rabbits in vivo from virulent B. anthracis. We hypothesized that sequences in the β-pore of S. aureus alpha toxin that share structural and functional homology to β-pore sequences in protective antigen would contain a similarly critical neutralizing epitope. Using an in vivo mapping strategy employing peptide immunogens, an optimized in vitro toxin neutralization assay, and an in vivo dermonecrosis model, we have now confirmed the presence of this epitope in alpha toxin, termed the pore neutralizing determinant. Antibody specific for this determinant neutralizes alpha toxin in vitro, and is highly effective for mitigating dermonecrosis and bacterial growth in a mouse model of S. aureus USA300 skin infection. The delineation of this linear neutralizing

  17. Whole Genome Analysis of Injectional Anthrax Identifies Two Disease Clusters Spanning More Than 13 Years

    Directory of Open Access Journals (Sweden)

    Paul Keim

    2015-11-01

    Lay Person Interpretation: Injectional anthrax has been plaguing heroin drug users across Europe for more than 10 years. In order to better understand this outbreak, we assessed genomic relationships of all available injectional anthrax strains from four countries spanning a >12 year period. Very few differences were identified using genome-based analysis, but these differentiated the isolates into two distinct clusters. This strongly supports a hypothesis of at least two separate anthrax spore contamination events perhaps during the drug production processes. Identification of two events would not have been possible from standard epidemiological analysis. These comprehensive data will be invaluable for classifying future injectional anthrax isolates and for future geographic attribution.

  18. Genome Sequence of Bacillus anthracis Strain Stendal, Isolated from an Anthrax Outbreak in Cattle in Germany

    OpenAIRE

    Antwerpen, Markus; Elschner, Mandy; Gaede, Wolfgang; Schliephake, Annette; Grass, Gregor; Tomaso, Herbert

    2016-01-01

    In July 2012, an anthrax outbreak occurred among cattle in northern Germany resulting in ten losses. Here, we report the draft genome sequence of Bacillus anthracis strain Stendal, isolated from one of the diseased cows.

  19. Genome Sequence of Bacillus anthracis Strain Stendal, Isolated from an Anthrax Outbreak in Cattle in Germany.

    Science.gov (United States)

    Antwerpen, Markus; Elschner, Mandy; Gaede, Wolfgang; Schliephake, Annette; Grass, Gregor; Tomaso, Herbert

    2016-01-01

    In July 2012, an anthrax outbreak occurred among cattle in northern Germany resulting in ten losses. Here, we report the draft genome sequence ofBacillus anthracisstrain Stendal, isolated from one of the diseased cows. PMID:27056225

  20. Role of Escherichia coli type 1 pilus in colonization of porcine ileum and its protective nature as a vaccine antigen in controlling colibacillosis.

    OpenAIRE

    Jayappa, H G; Goodnow, R. A.; Geary, S. J.

    1985-01-01

    This study was designed to evaluate the role of Escherichia coli type 1 pili in adherence of the organism to porcine small intestines and the efficacy of pili as a vaccine antigen in controlling neonatal colibacillosis. Our results demonstrated that an E. coli phase cloned to express type 1 pili readily attached to the small intestines of colostrum-deprived newborn pigs. Immunofluorescent staining of intestine sections revealed the presence of E. coli expressing type 1 pili only on the brush ...