WorldWideScience

Sample records for anthracis dihydrofolate reductase

  1. Reduction of Folate by Dihydrofolate Reductase from Thermotoga maritima

    NARCIS (Netherlands)

    Loveridge, E Joel; Hroch, Lukas; Hughes, Robert L; Williams, Thomas; Davies, Rhidian L; Angelastro, Antonio; Luk, Louis Y P; Maglia, Giovanni; Allemann, Rudolf K

    2017-01-01

    Mammalian dihydrofolate reductases (DHFR) catalyse the reduction of folate more efficiently than the equivalent bacterial enzymes, despite typically having similar efficiencies for the reduction of their natural substrate dihydrofolate. In contrast, we show here that DHFR from the hyperthermophilic

  2. Interactions between inhibitors of dihydrofolate reductase.

    Science.gov (United States)

    Bowden, K; Hall, A D; Birdsall, B; Feeney, J; Roberts, G C

    1989-03-01

    The binding of substrates and inhibitors to dihydrofolate reductase was studied by steady-state kinetics and high-field 1H-n.m.r. spectroscopy. A series of 5-substituted 2,4-diaminopyrimidines were examined and were found to be 'tightly binding' inhibitors of the enzyme (Ki less than 10(-9) M). Studies on the binding of 4-substituted benzenesulphonamides and benzenesulphonic acids also established the existence of a 'sulphonamide-binding site' on the enzyme. Subsequent n.m.r. experiments showed that there are two binding sites for the sulphonamides on the enzyme, one of which overlaps the coenzyme (NADPH) adenine-ring-binding site. An examination of the pH-dependence of the binding of sulphonamides to the enzyme indicated the influence of an ionizable group on the enzyme that was not directly involved in the sulphonamide binding. The change in pKa value from 6.7 to 7.2 observed on sulphonamide binding suggests the involvement of a histidine residue, which could be histidine-28.

  3. DIHYDROFOLATE REDUCTASE AS A VERSATILE DRUG TARGET IN HEALTHCARE

    Directory of Open Access Journals (Sweden)

    Naira Rashid

    2016-09-01

    Full Text Available Dihydrofolate reductase is one of the important enzymes for thymidylate and purine synthesis. It has been used as a drug target for treatment of various diseases. A large number of pharmaceutical drugs have been designed to inhibit the activity of dihydrofolate reductase. However, over the period of time some organisms have developed resistance against some of these drugs. There is also a chance of cross reactivity for these drugs, as they may target the dihydrofolate reductase enzyme of other organisms. Although using NMR spectroscopy, phylogenetic sequence analysis, comparative sequence analysis between dihydrofolate enzymes of various organisms and molecular modeling studies, a lot has been unraveled about the difference in the structure of this enzyme in various organisms, yet there is a need for deeper understanding of these differences so as to design drugs that are specific to their targets and reduce the chance for cross reactivity. The dihydrofolate enzyme can also be explored for treatment of various other diseases that are associated with the folate cycle.

  4. Bioinformatic analysis of dihydrofolate reductase predicted in the ...

    African Journals Online (AJOL)

    ... 5 alpha helices and 8 beta-strands. Twelve binding site residues were predicted in KCA1_1610 relative to the template protein 2zzaA in protein database (PDB). The predicted structure of KCA1_1610 dihydrofolate reductase can serve as a new template as an addition to structural genomics and generation of models for ...

  5. Dihydrofolate reductase: A potential drug target in trypanosomes and leishmania

    Science.gov (United States)

    Zuccotto, Fabio; Martin, Andrew C. R.; Laskowski, Roman A.; Thornton, Janet M.; Gilbert, Ian H.

    1998-05-01

    Dihydrofolate reductase has successfully been used as a drug target in the area of anti-cancer, anti-bacterial and anti-malarial chemotherapy. Little has been done to evaluate it as a drug target for treatment of the trypanosomiases and leishmaniasis. A crystal structure of Leishmania major dihydrofolate reductase has been published. In this paper, we describe the modelling of Trypanosoma cruzi and Trypanosoma brucei dihydrofolate reductases based on this crystal structure. These structures and models have been used in the comparison of protozoan, bacterial and human enzymes in order to highlight the different features that can be used in the design of selective anti-protozoan agents. Comparison has been made between residues present in the active site, the accessibility of these residues, charge distribution in the active site, and the shape and size of the active sites. Whilst there is a high degree of similarity between protozoan, human and bacterial dihydrofolate reductase active sites, there are differences that provide potential for selective drug design. In particular, we have identified a set of residues which may be important for selective drug design and identified a larger binding pocket in the protozoan than the human and bacterial enzymes.

  6. Expression and site-directed mutagenesis of human dihydrofolate reductase

    Energy Technology Data Exchange (ETDEWEB)

    Prendergast, N.J.; Delcamp, T.J.; Smith, P.L.; Freisheim, J.H.

    1988-05-17

    A procaryotic high-level expression vector for human dihydrofolate reductase has been constructed and the protein characterized as a first step toward structure-function studies of this enzyme. A vector bearing the tac promoter, four synthetic oligodeoxynucleotides, and a restriction fragment from the dihydrofolate reductase cDNA were ligated in a manner which optimized the transcriptional and translational frequency of the enzyme mRNA. The reductase, comprising ca. 17% of the total soluble protein in the host bacteria, was purified to apparent homogeneity as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and characterized by amino acid composition, partial amino acid sequence, and steady-sate kinetic analysis. This expression vector has been used as a template for double-stranded plasmid DNA site-specific mutagenesis. Functional studies on a Cys-6 ..-->.. Ser-6 mutant enzyme support the contention that Cys-6 is obligatory for organomercurial activation of human dihydrofolate reductase. The Ser-6 mutant enzyme was not activated to any extent following a 24-h incubation with p-(hydroxymercuri)benzoate and nicotinamide adenine dinucleotide phosphate (reduced) (NADPH), whereas the k/sub cat/ for Cys-6 reductase increased 2-fold under identical conditions. The specific activities of the Cys-6 and Ser-6 enzymes were virtually identical as determined by methotrexate titration as were the K/sub m/ values for both dihydrofolate and NADPH. The Ser-6 mutant showed a decreased temperature stability and was more sensitive to inactivation by ..cap alpha..-chymotrypsin when compared to the wild-type enzyme. These results suggest that the Ser-6 mutant reductase is conformationally altered relative to the Cys-6 native enzyme.

  7. A second target of benzamide riboside: dihydrofolate reductase.

    Science.gov (United States)

    Roussel, Breton; Johnson-Farley, Nadine; Kerrigan, John E; Scotto, Kathleen W; Banerjee, Debabrata; Felczak, Krzysztof; Pankiewicz, Krzysztof W; Gounder, Murugesan; Lin, HongXia; Abali, Emine Ercikan; Bertino, Joseph R

    2012-11-01

    Dihydrofolate reductase (DHFR) is an essential enzyme involved in de novo purine and thymidine biosynthesis. For several decades, selective inhibition of DHFR has proven to be a potent therapeutic approach in the treatment of various cancers including acute lymphoblastic leukemia, non-Hodgkin's lymphoma, osteogenic sarcoma, carcinoma of the breast, and head and neck cancer. Therapeutic success with DHFR inhibitor methotrexate (MTX) has been compromised in the clinic, which limits the success of MTX treatment by both acquired and intrinsic resistance mechanisms. We report that benzamide riboside (BR), via anabolism to benzamide adenine dinucleotide (BAD) known to potently inhibit inosine monophosphate dehydrogenase (IMPDH), also inhibits cell growth through a mechanism involving downregulation of DHFR protein. Evidence to support this second site of action of BR includes the finding that CCRF-CEM/R human T-cell lymphoblasic leukemia cells, resistant to MTX as a consequence of gene amplification and overexpression of DHFR, are more resistant to BR than are parental cells. Studies of the mechanism by which BR lowers DHFR showed that BR, through its metabolite BAD, reduced NADP and NADPH cellular levels by inhibiting nicotinamide adenine dinucleotide kinase (NADK). As consequence of the lack of NADPH, DHFR was shown to be destabilized. We suggest that, inhibition of NADK is a new approach to downregulate DHFR and to inhibit cell growth.

  8. Identification and characterization of an inborn error of metabolism caused by dihydrofolate reductase deficiency

    NARCIS (Netherlands)

    Banka, S.; Blom, H.J.; Walter, J.; Aziz, M.; Urquhart, J.; Clouthier, C.M.; Rice, G.I.; Brouwer, A.P.M. de; Hilton, E.; Vassallo, G.; Will, A.; Smith, D.E.; Smulders, Y.M.; Wevers, R.A.; Steinfeld, R.; Heales, S.; Crow, Y.J.; Pelletier, J.N.; Jones, S.; Newman, W.G.

    2011-01-01

    Dihydrofolate reductase (DHFR) is a critical enzyme in folate metabolism and an important target of antineoplastic, antimicrobial, and antiinflammatory drugs. We describe three individuals from two families with a recessive inborn error of metabolism, characterized by megaloblastic anemia and/or

  9. CLONING AND MOLECULAR ANALYSIS OF THE DIHYDROFOLATE-REDUCTASE GENE FROM LACTOCOCCUS-LACTIS

    NARCIS (Netherlands)

    LESZCZYNSKA, K; BOLHUIS, A; LEENHOUTS, K; VENEMA, G; CEGLOWSKI, P

    The Lactococcus lactis gene encoding trimethoprim resistance has been cloned and expressed in Escherichia coli and Bacillus subtilis. Several lines of evidence indicate that the cloned gene encodes dihydrofolate reductase (DHFR). (i) It fully complements the fol ''null'' mutation in E. coli. (ii)

  10. Molecular Characteristics and Serodiagnostic Potential of Dihydrofolate Reductase from Echinococcus granulosus

    OpenAIRE

    Xingju Song; Dandan Hu; Min Yan; Yu Wang; Ning Wang; Xiaobin Gu; Guangyou Yang

    2017-01-01

    The larval stage of Echinococcus granulosus causes cystic echinococcosis (CE), a neglected tropical disease that leads to morbidity and mortality in humans and livestock worldwide. Here, we identified and characterized dihydrofolate reductase (Eg-DHFR) from E. granulosus, and evaluated its potential as a diagnostic antigen for sheep CE. Comparison between mammalian (host) DHFR and Eg-DHFR indicates that 45.7% of the 35 active site residues are different. Immunolocalisation analysis showed tha...

  11. A DFT-based QSAR study on inhibition of human dihydrofolate reductase.

    Science.gov (United States)

    Karabulut, Sedat; Sizochenko, Natalia; Orhan, Adnan; Leszczynski, Jerzy

    2016-11-01

    Diaminopyrimidine derivatives are frequently used as inhibitors of human dihydrofolate reductase, for example in treatment of patients whose immune system are affected by human immunodeficiency virus. Forty-seven dicyclic and tricyclic potential inhibitors of human dihydrofolate reductase were analyzed using the quantitative structure-activity analysis supported by DFT-based and DRAGON-based descriptors. The developed model yielded an RMSE deviation of 1.1 a correlation coefficient of 0.81. The prediction set was characterized by R 2 =0.60 and RMSE=3.59. Factors responsible for inhibition process were identified and discussed. The resulting model was validated via cross validation and Y-scrambling procedure. From the best model, we found several mass-related descriptors and Sanderson electronegativity-related descriptors that have the best correlations with the investigated inhibitory concentration. These descriptors reflect results from QSAR studies based on characteristics of human dihydrofolate reductase inhibitors. Copyright © 2016. Published by Elsevier Inc.

  12. [Comparison of Physico-chemical Aspects between E. coli and Human Dihydrofolate Reductase: an Equilibrium Unfolding Study].

    Science.gov (United States)

    Thapliyal, Charu; Jain, Neha; Chaudhuri, Pratima

    2015-01-01

    A protein, differing in origin, may exhibit variable physicochemical behaviour, difference in sequence homology, fold and function. Thus studying structure-function relationship of proteins from altered sources is meaningful in the sense that it may give rise to comparative aspects of their sequence-structure-function relationship. Dihydrofolate reductase is an enzyme involved in cell cycle regulation. It is a significant enzyme as.a target for developing anticancer drugs. Hence, detailed understanding of structure-function relationships of wide variants of the enzyme dihydrofolate reductase would be important for developing an inhibitor or an antagonist against the enzyme involved in the cellular developmental processes. In this communication, we have reported the comparative structure-function relationship between E. coli and human dihydrofolate reductase. The differences in the unfolding behaviour of these two proteins have been investigated to understand various properties of these two proteins like relative' stability differences and variation in conformational changes under identical denaturing conditions. The equilibrium unfolding mechanism of dihydrofolate reductase proteins using guanidine hydrochloride as a denaturant in the presence of various types of osmolytes has been monitored using loss in enzymatic activity, intrinsic tryptophan fluorescence and an extrinsic fluorophore 8-anilino-1-naphthalene-sulfonic acid as probes. It has been observed that osmolytes, such as 1M sucrose, and 30% glycerol, provided enhanced stability to both variants of dihydrofolate reductase. Their level of stabilisation has been observed to be dependent on intrinsic protein stability. It was observed that 100 mM proline does not show any 'significant stabilisation to either of dihydrofolate reductases. In the present study, it has been observed that the human protein is relatively less stable than the E.coli counterpart.

  13. Synthesis and characterization of potent inhibitors of Trypanosoma cruzi dihydrofolate reductase

    Energy Technology Data Exchange (ETDEWEB)

    Schormann, Norbert; Velu, Sadanandan E.; Murugesan, Srinivasan; Senkovich, Olga; Walker, Kiera; Chenna, Bala C.; Shinkre, Bidhan; Desai, Amar; Chattopadhyay, Debasish (UAB)

    2010-09-17

    Dihydrofolate reductase (DHFR) of the parasite Trypanosoma cruzi (T. cruzi) is a potential target for developing drugs to treat Chagas disease. We have undertaken a detailed structure-activity study of this enzyme. We report here synthesis and characterization of six potent inhibitors of the parasitic enzyme. Inhibitory activity of each compound was determined against T. cruzi and human DHFR. One of these compounds, ethyl 4-(5-[(2,4-diamino-6-quinazolinyl)methyl]amino-2-methoxyphenoxy)butanoate (6b) was co-crystallized with the bifunctional dihydrofolate reductase-thymidylate synthase enzyme of T. cruzi and the crystal structure of the ternary enzyme:cofactor:inhibitor complex was determined. Molecular docking was used to analyze the potential interactions of all inhibitors with T. cruzi DHFR and human DHFR. Inhibitory activities of these compounds are discussed in the light of enzyme-ligand interactions. Binding affinities of each inhibitor for the respective enzymes were calculated based on the experimental or docked binding mode. An estimated 60-70% of the total binding energy is contributed by the 2,4-diaminoquinazoline scaffold.

  14. /sup 13/C NMR evidence of the slow exchange of tryptophans in dihydrofolate reductase between stable conformations

    Energy Technology Data Exchange (ETDEWEB)

    London, R.E. (Univ. of California, Los Alamos, NM); Groff, J.P.; Blakley, R.L.

    1979-01-01

    /sup 13/C NMR spectra are reported for dihydrofolate reductase of Streptococcus faecium labeled with (..gamma..-/sup 13/C)tryptophan. Two of the four tryptophans generate unusual resonances indicating slow exchange of the residues between alternative stable conformations. Since 3', 5'-dichloromethotrexate sharpens two of the resonances, it apparently locks the corresponding residues into one conformation.

  15. Role of Lysine-54 in determining cofactor specificity and binding in human dihydrofolate reductase

    International Nuclear Information System (INIS)

    Huang, Shaoming; Tan, Xuehai; Thompson, P.D.; Freisheim, J.H.; Appleman, J.R.; Blakley, R.L.; Sheridan, R.P.; Venkataraghavan, R.

    1990-01-01

    Lysine-54 of human dihydrofolate reductase (hDHFR) appears to be involved in the interaction with the 2'-phosphate of NADPH and is conserved as a basic residue in other species. Studies have suggested that in Lactobacillus casei dihydrofolate reductase Arg-43, the homologous residue at this position, plays an important role in the binding of NADPH and in the differentiation of K m values for NADPH and NADH. A Lys-54 to Gln-54 mutant (K54Q) of hDHFR has been constructed by oligodeoxynucleotide-directed mutagenesis in order to study the role of Lys-54 in differentiating K m and k cat values for NADPH and NADH as well as in other functions of hDHFR. The purpose of this paper is to delineate in quantitative terms the magnitude of the effect of the Lys-54 to Gln-54 replacement on the various kinetic parameters of hDHFR. Such quantitative effects cannot be predicted solely on the basis of X-ray structures. The ratio of K m (NADH)/K m (NADPH) decreases from 69 in the wild-type enzyme to 4.7 in the K54Q enzyme, suggesting that Lys-54, among other interactions between protein side-chain residues and the 2'-phosphate, makes a major contribution in terms of binding energy and differentiation of K m values for NADPH and NADH. Agents at concentrations that show activating effects on the wild-type enzyme such as potassium chloride and urea all inactivate the K54Q enzyme. There appear to be no gross conformational differences between wild-type and K54Q enzyme molecules as judged by competitive ELISA using peptide-specific antibodies against human dihydrofolate reductase and from protease susceptibility studies on both wild-type and K54Q mutant enzymes. The pH-rate profiles using NADPH for K54Q and wild-type enzymes show divergences at certain pH values, suggesting the possibility of alteration(s) in the steps of the catalytic pathway for the K54Q enzyme

  16. Antimicrobial activities of dihydrofolate reductase inhibitors, used singly or in combination with dapsone, against Mycobacterium ulcerans.

    Science.gov (United States)

    Dhople, A M

    2001-01-01

    Development of new treatments against Mycobacterium ulcerans infection has become crucial because of its wide-scale prevalence throughout the world. The effects of dihydrofolate reductase inhibitors, used either singly or in combination with dapsone against M. ulcerans were evaluated in vitro. When used singly, epiroprim was the most potent, with MICs between 0.5 and 1.0 mg/L, while trimethoprim was totally ineffective. The MICs of K-130 and brodimoprim ranged from 1.0-2.0 mg/L for the former to 2.0-16.0 mg/L for the latter. When combined with dapsone, synergic effects were observed with epiroprim. These results indicate the great potential of epiroprim in treating M. ulcerans infections.

  17. Identification and characterization of an inborn error of metabolism caused by dihydrofolate reductase deficiency.

    Science.gov (United States)

    Banka, Siddharth; Blom, Henk J; Walter, John; Aziz, Majid; Urquhart, Jill; Clouthier, Christopher M; Rice, Gillian I; de Brouwer, Arjan P M; Hilton, Emma; Vassallo, Grace; Will, Andrew; Smith, Desirée E C; Smulders, Yvo M; Wevers, Ron A; Steinfeld, Robert; Heales, Simon; Crow, Yanick J; Pelletier, Joelle N; Jones, Simon; Newman, William G

    2011-02-11

    Dihydrofolate reductase (DHFR) is a critical enzyme in folate metabolism and an important target of antineoplastic, antimicrobial, and antiinflammatory drugs. We describe three individuals from two families with a recessive inborn error of metabolism, characterized by megaloblastic anemia and/or pancytopenia, severe cerebral folate deficiency, and cerebral tetrahydrobiopterin deficiency due to a germline missense mutation in DHFR, resulting in profound enzyme deficiency. We show that cerebral folate levels, anemia, and pancytopenia of DHFR deficiency can be corrected by treatment with folinic acid. The characterization of this disorder provides evidence for the link between DHFR and metabolism of cerebral tetrahydrobiopterin, which is required for the formation of dopamine, serotonin, and norepinephrine and for the hydroxylation of aromatic amino acids. Moreover, this relationship provides insight into the role of folates in neurological conditions, including depression, Alzheimer disease, and Parkinson disease. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  18. A transgenic Neospora caninum strain based on mutations of the dihydrofolate reductase-thymidylate synthase gene.

    Science.gov (United States)

    Pereira, Luiz Miguel; Baroni, Luciana; Yatsuda, Ana Patrícia

    2014-03-01

    Neospora caninum is an Apicomplexa parasite related to abortion and losses of fertility in cattle. The amenability of Toxoplasma gondii and Plasmodium to genetic manipulation offers several tools to determine the invasion and replication processes, which support posterior strategies related to the combat of these diseases. For Plasmodium the use of pyrimethamine as an auxiliary drug on malaria treatment has been affected by the rise of resistant strains and the analyses on Dihydrofolate reductase-thymidylate synthase (DHFR-TS) gene indicated several point mutations. In this work we developed a method for stable insertion of genes based on resistance to pyrimethamine. For that, the coding sequence of NcDHFR-TS (Dihydrofolate reductase-thymidylate synthase) was point mutated in two amino acids, generating DHFRM2M3. The DHFRM2M3 flanked by the promoter and 3'UTR of Ncdhfr-ts (Ncdhfr-DHFRM2M3) conferred resistance to pyrimethamine after transfection. For illustration of stability and expression, the cassette Ncdhfr-DHFRM2M3 was ligated to the reporter gene Lac-Z (β-galactosidase enzyme) controlled by the N. caninum tubulin promoter and was transfected and selected in N. caninum. The cassette was integrated into the genome and the selected tachyzoites expressed Lac-Z, allowing the detection of tachyzoites by the CPRG reaction and X-gal precipitation. The obtainment of transgenic N. caninum resistant to pyrimethamine confirms the effects on DHFR-TS among the Apicomplexa members and will support future approaches on pholate inhibitors for N. caninum prophylaxis. The construction of stable tachyzoites based on vectors with N. caninum promoters initiates the molecular manipulation of this parasite independently of T. gondii. Copyright © 2014. Published by Elsevier Inc.

  19. Dihydrofolate reductase and dihydropteroate synthase genotypes associated with in vitro resistance of Plasmodium falciparum to pyrimethamine, trimethoprim, sulfadoxine, and sulfamethoxazole

    DEFF Research Database (Denmark)

    Khalil, Insaf; Rønn, Anita M; Alifrangis, Michael

    2003-01-01

    A total of 70 Plasmodium falciparum isolates were tested in vitro against pyrimethamine (PYR), trimethoprim (TRM), sulfadoxine (SDX), and sulfamethoxazole (SMX), and their dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genotypes were determined. dhfr genotypes correlated with ...... the cultures....

  20. Dihydrofolate reductase as a model for studies of enzyme dynamics and catalysis [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Amnon Kohen

    2015-12-01

    Full Text Available Dihydrofolate reductase from Escherichia coli (ecDHFR serves as a model system for investigating the role of protein dynamics in enzyme catalysis. We discuss calculations predicting a network of dynamic motions that is coupled to the chemical step catalyzed by this enzyme. Kinetic studies testing these predictions are presented, and their potential use in better understanding the role of these dynamics in enzyme catalysis is considered. The cumulative results implicate motions across the entire protein in catalysis.

  1. Dynamics of Immobilized and Native Escherichia coli Dihydrofolate Reductase by Quasielastic Neutron Scattering. Biophysical Journal

    Energy Technology Data Exchange (ETDEWEB)

    Tehei, M [University of Waikato, New Zealand; Smith, Jeremy C [ORNL; Monk, C [University of Waikato, New Zealand; Olliver, J [Institut Laue-Langevin (ILL); Oettl, M [University of Waikato, New Zealand; Kurkal-Siebert, V [University of Heidelberg; Finney, J.L. [University College, London; Daniel, R. M. [University of Waikato, New Zealand

    2005-10-01

    The internal dynamics of native and immobilized Escherichia coli dihydrofolate reductase (DHFR) have been examined using incoherent quasielastic neutron scattering. These results reveal no difference between the high frequency vibration mean-square displacement of the native and the immobilized E. coli DHFR. However, length-scale-dependent, picosecond dynamical changes are found. On longer length scales, the dynamics are comparable for both DHFR samples. On shorter length scales, the dynamics is dominated by local jump motions over potential barriers. The residence time for the protons to stay in a potential well is {tau}=7.95{+-}1.02ps for the native DHFR and {tau}=20.36{+-}1.80ps for the immobilized DHFR. The average height of the potential barrier to the local motions is increased in the immobilized DHFR, and may increase the activation energy for the activity reaction, decreasing the rate as observed experimentally. These results suggest that the local motions on the picosecond timescale may act as a lubricant for those associated with DHFR activity occurring on a slower millisecond timescale. Experiments indicate a significantly slower catalytic reaction rate for the immobilized E. coli DHFR. However, the immobilization of the DHFR is on the exterior of the enzyme and essentially distal to the active site, thus this phenomenon has broad implications for the action of drugs distal to the active site.

  2. Fitness trade-offs in the evolution of dihydrofolate reductase and drug resistance in Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Marna S Costanzo

    Full Text Available Patterns of emerging drug resistance reflect the underlying adaptive landscapes for specific drugs. In Plasmodium falciparum, the parasite that causes the most serious form of malaria, antifolate drugs inhibit the function of essential enzymes in the folate pathway. However, a handful of mutations in the gene coding for one such enzyme, dihydrofolate reductase, confer drug resistance. Understanding how evolution proceeds from drug susceptibility to drug resistance is critical if new antifolate treatments are to have sustained usefulness.We use a transgenic yeast expression system to build on previous studies that described the adaptive landscape for the antifolate drug pyrimethamine, and we describe the most likely evolutionary trajectories for the evolution of drug resistance to the antifolate chlorcycloguanil. We find that the adaptive landscape for chlorcycloguanil is multi-peaked, not all highly resistant alleles are equally accessible by evolution, and there are both commonalities and differences in adaptive landscapes for chlorcycloguanil and pyrimethamine.Our findings suggest that cross-resistance between drugs targeting the same enzyme reflect the fitness landscapes associated with each particular drug and the position of the genotype on both landscapes. The possible public health implications of these findings are discussed.

  3. Evidence for two interconverting protein isomers in the methotrexate complex of dihydrofolate reductase from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Falzone, C.J.; Benkovic, S.J. (Pennsylvania State Univ., University Park (United States)); Wright, P.E. (Research Inst. of Scripps Clinic, La Jolla, CA (United States))

    1991-02-26

    Two-dimensional {sup 1}H NMR methods and a knowledge of the X-ray crystal structure have been used to make resonance assignments for the amino acid side chains of dihydrofolate reductase from Escherichia coli complexed with methotrexate. The H7 proton on the pteridine ring of methotrexate was found to have NOEs to the methyl protons of Leu-28 which were assigned by using the L28F mutant. These NOEs indicated that the orientation of the methotrexate pteridine ring is similar in both solution and crystal structures. During the initial assignment process, it became evident that many of the resonances in this complex, unlike those of the folate complex, are severally broadened or doubled. The observation of two distinct sets of resonances in a ratio of approximately 2:1 was attributed to the presence of two protein isomers. Many of the side chains with clearly doubled resonances were located in the {beta}-sheet and the active site. Preliminary studies on the apoprotein also revealed doubled resonances in the absence of the inhibitor, indicating the existence of the protein isomers prior to methotrexate binding. In contrast to the methotrexate complex, the binary complex with folate and the ternary MTX-NADPH-DHFR complex presented a single enzyme form. These results are proposed to reflect the ability of folate and NADPH to bind predominantly to one protein isomer.

  4. Chemical Ligation and Isotope Labeling to Locate Dynamic Effects during Catalysis by Dihydrofolate Reductase.

    Science.gov (United States)

    Luk, Louis Y P; Ruiz-Pernía, J Javier; Adesina, Aduragbemi S; Loveridge, E Joel; Tuñón, Iñaki; Moliner, Vincent; Allemann, Rudolf K

    2015-07-27

    Chemical ligation has been used to alter motions in specific regions of dihydrofolate reductase from E. coli and to investigate the effects of localized motional changes on enzyme catalysis. Two isotopic hybrids were prepared; one with the mobile N-terminal segment containing heavy isotopes ((2) H, (13) C, (15) N) and the remainder of the protein with natural isotopic abundance, and the other one with only the C-terminal segment isotopically labeled. Kinetic investigations indicated that isotopic substitution of the N-terminal segment affected only a physical step of catalysis, whereas the enzyme chemistry was affected by protein motions from the C-terminal segment. QM/MM studies support the idea that dynamic effects on catalysis mostly originate from the C-terminal segment. The use of isotope hybrids provides insights into the microscopic mechanism of dynamic coupling, which is difficult to obtain with other studies, and helps define the dynamic networks of intramolecular interactions central to enzyme catalysis. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  5. A Rapid Analysis of Variations in Conformational Behavior during Dihydrofolate Reductase Catalysis.

    Science.gov (United States)

    Hughes, Robert L; Johnson, Luke A; Behiry, Enas M; Loveridge, E Joel; Allemann, Rudolf K

    2017-04-18

    Protein flexibility is central to enzyme catalysis, yet it remains challenging both to predict conformational behavior on the basis of analysis of amino acid sequence and protein structure and to provide the necessary breadth of experimental support to any such predictions. Here a generic and rapid procedure for identifying conformational changes during dihydrofolate reductase (DHFR) catalysis is described. Using DHFR from Escherichia coli (EcDHFR), selective side-chain 13 C labeling of methionine and tryptophan residues is shown to be sufficient to detect the closed-to-occluded conformational transition that follows the chemical step in the catalytic cycle, with clear chemical shift perturbations found for both methionine methyl and tryptophan indole groups. In contrast, no such perturbations are seen for the DHFR from the psychrophile Moritella profunda, where the equivalent conformational change is absent. Like EcDHFR, Salmonella enterica DHFR shows experimental evidence of a large-scale conformational change following hydride transfer that relies on conservation of a key hydrogen bonding interaction between the M20 and GH loops, directly comparable to the closed-to-occluded conformational change observed in EcDHFR. For the hyperthermophile Thermotoga maritima, no chemical shift perturbations were observed, suggesting that no major conformational change occurs during the catalytic cycle. In spite of their conserved tertiary structures, DHFRs display variations in conformational sampling that occurs concurrently with catalysis.

  6. Proteolytic and partial sequencing studies of the bifunctional dihydrofolate reductase-thymidylate synthase from Daucus carota.

    Science.gov (United States)

    Cella, R; Carbonera, D; Orsi, R; Ferri, G; Iadarola, P

    1991-06-01

    The bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) of Daucus carota has been further characterized as regards molecular weight, amino acid composition, protease digestion and microsequencing of proteolytic peptides. Data reported in this paper demonstrate that the carrot protein has a calculated Mr of 124,000 thus indicating that, contrarily to what has previously been suggested, it occurs as a dimer of identical subunits. Results of partial amino acid microsequencing show the presence of sequences highly homologous with those of the active sites of both DHFR and TS from other organisms confirming, at the structural level, the bifunctional nature of the carrot protein. As in the case of Leishmania tropica DHFR-TS, incubation of the carrot protein with V8 protease led to a rapid loss of TS activity while retaining that of DHFR. However the pattern of proteolysis did not allow to establish whether the sequence of domains is DHFR-TS as in Leishmania, or vice versa. Low homology of other amino acid sequences, as judged by computer analysis, and absence of common epitopes indicate an apparent divergence between carrot and leishmanian proteins.

  7. Molecular Characteristics and Serodiagnostic Potential of Dihydrofolate Reductase from Echinococcus granulosus.

    Science.gov (United States)

    Song, Xingju; Hu, Dandan; Yan, Min; Wang, Yu; Wang, Ning; Gu, Xiaobin; Yang, Guangyou

    2017-03-31

    The larval stage of Echinococcus granulosus causes cystic echinococcosis (CE), a neglected tropical disease that leads to morbidity and mortality in humans and livestock worldwide. Here, we identified and characterized dihydrofolate reductase (Eg-DHFR) from E. granulosus, and evaluated its potential as a diagnostic antigen for sheep CE. Comparison between mammalian (host) DHFR and Eg-DHFR indicates that 45.7% of the 35 active site residues are different. Immunolocalisation analysis showed that native Eg-DHFR was widely distributed in all life-cycle stages of E. granulosus. Recombinant Eg-DHFR (rEg-DHFR) showed typical DHFR enzymatic parameters towards substrate, and was very sensitive to inhibition by methotrexate (IC 50  = 27.75 ± 1.03 nM) and aminopterin (IC 50  = 63.67 ± 6.76 nM). However, inhibition of DHFR exhibited little protoscolicidal effect in vitro. As there is no reliable method to monitor sheep CE, the immunogenicity of rEg-DHFR was detected, and we developed an indirect ELISA (iELISA) for CE serodiagnosis. The iELISA exhibited diagnostic specificity of 89.58%, diagnostic sensitivity of 95.83%, and the diagnostic accuracy was 91.67% compared with necropsy. Cross-reactivity assay showed analytical specificity of 85.7%. These suggest that rEg-DHFR is an effective antigen for the diagnosis of sheep CE.

  8. Nuclear magnetic resonance studies on bacterial dihydrofolate reductase containing (methyl-/sup 13/C)methionine

    Energy Technology Data Exchange (ETDEWEB)

    Blakley, R.L.; Cocco, L.; London, R.E.; Walker, T.E.; Matwiyoff, N.A.

    1978-06-13

    (methyl-/sup 13/C)Methionine has been incorporated with high efficiency by Streptococcus faecium var. Durans strain A into dihydrofolate reductase isoenzyme 2. In the /sup 13/C NMR spectrum of the purified enzyme the resonances corresponding to the seven methionine residues are partially resolved into three composite peaks. Denaturation with urea collapses these into a single peak centered at 15.32 ppm, whereas the resonance of free methionine is at 15.04 ppm. Spectra of the free enzyme, its complex with methotrexate, and its complex with methotrexate and reduced nicotinamide adenine dinucleotide phosphate (NADPH) have been simulated, permitting more accurate estimates of line widths and nuclear Overhauser enhancement (NOE) values. These, together with the T/sub 1/ values, cannot be explained solely by the effects of macromolecular tumbling and very rapid rotation of the methionine methyl group about its axis. A model assuming, in addition, the occurrence of free rotation about the methionine CH/sub 2/-S bond is also unsatisfactory, and it is concluded that internal rotation about the CH/sub 2/-S bond is highly restricted so that the methyl group oscillates through a relatively narrow angular range. Complex formation with NADPH produced rather small changes in the spectrum of the native enzyme, probably due to conformational transitions in the enzyme. However, NADP/sup +/ produced several changes,including movement of one resonance downfield by at least 1.7 ppM.

  9. The Tail Wagging the Dog: Insights into Catalysis in R67 Dihydrofolate Reductase

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, Ganesh K [ORNL; Agarwal, Pratul K [ORNL

    2010-01-01

    Plasmid-encoded R67 dihydrofolate reductase (DHFR) catalyzes a hydride transfer reaction between substrate dihydrofolate (DHF) and its cofactor, nicotinamide adenine dinucleotide phosphate (NADPH). R67 DHFR is a homotetramer that exhibits numerous characteristics of a primitive enzyme, including promiscuity in binding of substrate and cofactor, formation of nonproductive complexes, and the absence of a conserved acid in its active site. Furthermore, R67's active site is a pore, which is mostly accessible by bulk solvent. This study uses a computational approach to characterize the mechanism of hydride transfer. Not surprisingly, NADPH remains fixed in one-half of the active site pore using numerous interactions with R67. Also, stacking between the nicotinamide ring of the cofactor and the pteridine ring of the substrate, DHF, at the hourglass center of the pore, holds the reactants in place. However, large movements of the p-aminobenzoylglutamate tail of DHF occur in the other half of the pore because of ion pair switching between symmetry-related K32 residues from two subunits. This computational result is supported by experimental results that the loss of these ion pair interactions (located >13 {angstrom} from the center of the pore) by addition of salt or in asymmetric K32M mutants leads to altered enzyme kinetics [Hicks, S. N., et al. (2003) Biochemistry 42, 10569-10578; Hicks, S. N., et al. (2004) J. Biol. Chem. 279, 46995?47002]. The tail movement at the edge of the active site, coupled with the fixed position of the pteridine ring in the center of the pore, leads to puckering of the pteridine ring and promotes formation of the transition state. Flexibility coupled to R67 function is unusual as it contrasts with the paradigm that enzymes use increased rigidity to facilitate attainment of their transition states. A comparison with chromosomal DHFR indicates a number of similarities, including puckering of the nicotinamide ring and changes in the DHF tail

  10. Coupling of protein motions and hydrogen transfer during catalysis by Escherichia coli dihydrofolate reductase.

    Science.gov (United States)

    Swanwick, Richard S; Maglia, Giovanni; Tey, Lai-hock; Allemann, Rudolf K

    2006-02-15

    The enzyme DHFR (dihydrofolate reductase) catalyses hydride transfer from NADPH to, and protonation of, dihydrofolate. The physical basis of the hydride transfer step catalysed by DHFR from Escherichia coli has been studied through the measurement of the temperature dependence of the reaction rates and the kinetic isotope effects. Single turnover experiments at pH 7.0 revealed a strong dependence of the reaction rates on temperature. The observed relatively large difference in the activation energies for hydrogen and deuterium transfer led to a temperature dependence of the primary kinetic isotope effects from 3.0+/-0.2 at 5 degrees C to 2.2+/-0.2 at 40 degrees C and an inverse ratio of the pre-exponential factors of 0.108+/-0.04. These results are consistent with theoretical models for hydrogen transfer that include contributions from quantum mechanical tunnelling coupled with protein motions that actively modulate the tunnelling distance. Previous work had suggested a coupling of a remote residue,Gly121, with the kinetic events at the active site. However, pre-steady-state experiments at pH 7.0 with the mutant G121V-DHFR, in which Gly121 was replaced with valine, revealed that the chemical mechanism of DHFR catalysis was robust to this replacement. The reduced catalytic efficiency of G121V-DHFR was mainly a consequence of the significantly reduced pre-exponential factors, indicating the requirement for significant molecular reorganization during G121V-DHFR catalysis. In contrast, steady-state measurements at pH 9.5, where hydride transfer is rate limiting, revealed temperature-independent kinetic isotope effects between 15 and 35 degrees C and a ratio of the pre-exponential factors above the semi-classical limit, suggesting a rigid active site configuration from which hydrogen tunnelling occurs. The mechanism by which hydrogen tunnelling in DHFR is coupled with the environment appears therefore to be sensitive to pH.

  11. Dihydrofolate Reductase and Thymidylate Synthase Transgenes Resistant to Methotrexate Interact to Permit Novel Transgene Regulation.

    Science.gov (United States)

    Rushworth, David; Mathews, Amber; Alpert, Amir; Cooper, Laurence J N

    2015-09-18

    Methotrexate (MTX) is an anti-folate that inhibits de novo purine and thymidine nucleotide synthesis. MTX induces death in rapidly replicating cells and is used in the treatment of multiple cancers. MTX inhibits thymidine synthesis by targeting dihydrofolate reductase (DHFR) and thymidylate synthase (TYMS). The use of MTX to treat cancer also causes bone marrow suppression and inhibits the immune system. This has led to the development of an MTX-resistant DHFR, DHFR L22F, F31S (DHFR(FS)), to rescue healthy cells. 5-Fluorouracil-resistant TYMS T51S, G52S (TYMS(SS)) is resistant to MTX and improves MTX resistance of DHFR(FS) in primary T cells. Here we find that a known mechanism of MTX-induced increase in DHFR expression persists with DHFR(FS) and cis-expressed transgenes. We also find that TYMS(SS) expression of cis-expressed transgenes is similarly decreased in an MTX-inducible manner. MTX-inducible changes in DHFR(FS) and TYMS(SS) expression changes are lost when both genes are expressed together. In fact, expression of the DHFR(FS) and TYMS(SS) cis-expressed transgenes becomes correlated. These findings provide the basis for an unrecognized post-transcriptional mechanism that functionally links expression of DHFR and TYMS. These findings were made in genetically modified primary human T cells and have a clear potential for use in clinical applications where gene expression needs to be regulated by drug or maintained at a specific expression level. We demonstrate a potential application of this system in the controlled expression of systemically toxic cytokine IL-12. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Probing the electrostatics of active site microenvironments along the catalytic cycle for Escherichia coli dihydrofolate reductase.

    Science.gov (United States)

    Liu, C Tony; Layfield, Joshua P; Stewart, Robert J; French, Jarrod B; Hanoian, Philip; Asbury, John B; Hammes-Schiffer, Sharon; Benkovic, Stephen J

    2014-07-23

    Electrostatic interactions play an important role in enzyme catalysis by guiding ligand binding and facilitating chemical reactions. These electrostatic interactions are modulated by conformational changes occurring over the catalytic cycle. Herein, the changes in active site electrostatic microenvironments are examined for all enzyme complexes along the catalytic cycle of Escherichia coli dihydrofolate reductase (ecDHFR) by incorporation of thiocyanate probes at two site-specific locations in the active site. The electrostatics and degree of hydration of the microenvironments surrounding the probes are investigated with spectroscopic techniques and mixed quantum mechanical/molecular mechanical (QM/MM) calculations. Changes in the electrostatic microenvironments along the catalytic environment lead to different nitrile (CN) vibrational stretching frequencies and (13)C NMR chemical shifts. These environmental changes arise from protein conformational rearrangements during catalysis. The QM/MM calculations reproduce the experimentally measured vibrational frequency shifts of the thiocyanate probes across the catalyzed hydride transfer step, which spans the closed and occluded conformations of the enzyme. Analysis of the molecular dynamics trajectories provides insight into the conformational changes occurring between these two states and the resulting changes in classical electrostatics and specific hydrogen-bonding interactions. The electric fields along the CN axes of the probes are decomposed into contributions from specific residues, ligands, and solvent molecules that make up the microenvironments around the probes. Moreover, calculation of the electric field along the hydride donor-acceptor axis, along with decomposition of this field into specific contributions, indicates that the cofactor and substrate, as well as the enzyme, impose a substantial electric field that facilitates hydride transfer. Overall, experimental and theoretical data provide evidence for

  13. Effect of gamma rays at the dihydrofolate reductase locus: deletions and inversions

    International Nuclear Information System (INIS)

    Urlaub, G.; Mitchell, P.J.; Kas, E.; Chasin, L.A.; Funanage, V.L.; Myoda, T.T.; Hamlin, J.

    1986-01-01

    A series 11 gamma-ray-induced mutants at the dihydrofolate reductase (dhfr) locus in Chinese hamster ovary cells has been examined for the types of DNA sequence change brought about by this form of ionizing radiation. All 11 mutants were found to have suffered major structural changes affecting the dhfr gene. In eight of the mutants, all or part of the dhfr gene has been deleted. The extent of these deletions was examined in seven of these mutants and, for comparison, in two deletion mutants that were induced by UV irradiation. For this purpose, probes from an overlapping set of cosmids that span 210 kb of DNA in this region were used. Three of seven gamma-ray-induced mutants and one UV-induced mutant were shown to have deleted the entire 210-kb region. In the remaining mutants, endpoints ranging from within the dhfr gene to 100 kb downstream were observed. No upstream endpoints were detected, so that an upper limit on the size of these large deletions could not be assigned. Three of the 11 gamma-ray-induced mutants contained an interruption in the dhfr gene without any detectable loss of sequence. Restriction analysis of these interrupted mutants showed that at least 8-14 kb of foreign DNA sequence became joined to the gene at the point of disruption. Cytogenetic analysis of these mutants showed that in two cases an inversion of the banding pattern on chromosome Z-2 had taken place. The inverted dhfr mutants contain very low amounts of dhfr RNA sequences, and the 5' end of an inversion mutant gene exhibits the same pattern of DNA methylation and DNase I-hypersensitivity as the wild-type gene. Our results suggest that ionizing radiation causes primarily, if not exclusively, large deletions and inversions in mammalian cells

  14. Thermal stabilization of dihydrofolate reductase using monte carlo unfolding simulations and its functional consequences.

    Directory of Open Access Journals (Sweden)

    Jian Tian

    2015-04-01

    Full Text Available Design of proteins with desired thermal properties is important for scientific and biotechnological applications. Here we developed a theoretical approach to predict the effect of mutations on protein stability from non-equilibrium unfolding simulations. We establish a relative measure based on apparent simulated melting temperatures that is independent of simulation length and, under certain assumptions, proportional to equilibrium stability, and we justify this theoretical development with extensive simulations and experimental data. Using our new method based on all-atom Monte-Carlo unfolding simulations, we carried out a saturating mutagenesis of Dihydrofolate Reductase (DHFR, a key target of antibiotics and chemotherapeutic drugs. The method predicted more than 500 stabilizing mutations, several of which were selected for detailed computational and experimental analysis. We find a highly significant correlation of r=0.65-0.68 between predicted and experimentally determined melting temperatures and unfolding denaturant concentrations for WT DHFR and 42 mutants. The correlation between energy of the native state and experimental denaturation temperature was much weaker, indicating the important role of entropy in protein stability. The most stabilizing point mutation was D27F, which is located in the active site of the protein, rendering it inactive. However for the rest of mutations outside of the active site we observed a weak yet statistically significant positive correlation between thermal stability and catalytic activity indicating the lack of a stability-activity tradeoff for DHFR. By combining stabilizing mutations predicted by our method, we created a highly stable catalytically active E. coli DHFR mutant with measured denaturation temperature 7.2°C higher than WT. Prediction results for DHFR and several other proteins indicate that computational approaches based on unfolding simulations are useful as a general technique to discover

  15. Structural analysis of dihydrofolate reductases enables rationalization of antifolate binding affinities and suggests repurposing possibilities.

    Science.gov (United States)

    Bhosle, Amrisha; Chandra, Nagasuma

    2016-03-01

    Antifolates are competitive inhibitors of dihydrofolate reductase (DHFR), a conserved enzyme that is central to metabolism and widely targeted in pathogenic diseases, cancer and autoimmune disorders. Although most clinically used antifolates are known to be target specific, some display a fair degree of cross-reactivity with DHFRs from other species. A method that enables identification of determinants of affinity and specificity in target DHFRs from different species and provides guidelines for the design of antifolates is currently lacking. To address this, we first captured the potential druggable space of a DHFR in a substructure called the 'supersite' and classified supersites of DHFRs from 56 species into 16 'site-types' based on pairwise structural similarity. Analysis of supersites across these site-types revealed that DHFRs exhibit varying extents of dissimilarity at structurally equivalent positions in and around the binding site. We were able to explain the pattern of affinities towards chemically diverse antifolates exhibited by DHFRs of different site-types based on these structural differences. We then generated an antifolate-DHFR network by mapping known high-affinity antifolates to their respective supersites and used this to identify antifolates that can be repurposed based on similarity between supersites or antifolates. Thus, we identified 177 human-specific and 458 pathogen-specific antifolates, a large number of which are supported by available experimental data. Thus, in the light of the clinical importance of DHFR, we present a novel approach to identifying differences in the druggable space of DHFRs that can be utilized for rational design of antifolates. © 2016 Federation of European Biochemical Societies.

  16. /sup 13/C nuclear magnetic resonance study of the interaction of ligands with arginine residues in dihydrofolate reductase

    Energy Technology Data Exchange (ETDEWEB)

    Cocco, L. (Univ. of Iowa, Iowa City); Blakley, R.L.; Walker, T.E.; London, R.E.

    1977-01-01

    /sup 13/C NMR spectra of Streptococcus faecium dihydrofolate reductase containing (/sup 13/C-guanidino) arginine and ligand complexes with the labeled enzyme are reported. The spectrum of the native enzyme shows 5 well-resolved resonances (the enzyme contains 8 Arg) with a chemical shift range of 1.2 ppM. Addition of ligands to the enzyme produces distinct changes in the enzyme spectrum, and demonstrates that /sup 13/C NMR of labeled protein can be used in studies of protein-ligand interactions. An example of the use of /sup 13/C-depleted material is also presented.

  17. Structural studies provide clues for analog design of specific inhibitors of Cryptosporidium hominis thymidylate synthase-dihydrofolate reductase.

    Science.gov (United States)

    Kumar, Vidya P; Cisneros, Jose A; Frey, Kathleen M; Castellanos-Gonzalez, Alejandro; Wang, Yiqiang; Gangjee, Aleem; White, A Clinton; Jorgensen, William L; Anderson, Karen S

    2014-09-01

    Cryptosporidium is the causative agent of a gastrointestinal disease, cryptosporidiosis, which is often fatal in immunocompromised individuals and children. Thymidylate synthase (TS) and dihydrofolate reductase (DHFR) are essential enzymes in the folate biosynthesis pathway and are well established as drug targets in cancer, bacterial infections, and malaria. Cryptosporidium hominis has a bifunctional thymidylate synthase and dihydrofolate reductase enzyme, compared to separate enzymes in the host. We evaluated lead compound 1 from a novel series of antifolates, 2-amino-4-oxo-5-substituted pyrrolo[2,3-d]pyrimidines as an inhibitor of Cryptosporidium hominis thymidylate synthase with selectivity over the human enzyme. Complementing the enzyme inhibition compound 1 also has anti-cryptosporidial activity in cell culture. A crystal structure with compound 1 bound to the TS active site is discussed in terms of several van der Waals, hydrophobic and hydrogen bond interactions with the protein residues and the substrate analog 5-fluorodeoxyuridine monophosphate (TS), cofactor NADPH and inhibitor methotrexate (DHFR). Another crystal structure in complex with compound 1 bound in both the TS and DHFR active sites is also reported here. The crystal structures provide clues for analog design and for the design of ChTS-DHFR specific inhibitors. Copyright © 2014. Published by Elsevier Ltd.

  18. Multiple origins of resistance-conferring mutations in Plasmodium vivax dihydrofolate reductase

    Directory of Open Access Journals (Sweden)

    O'Neil Michael T

    2008-04-01

    Full Text Available Abstract Background In order to maximize the useful therapeutic life of antimalarial drugs, it is crucial to understand the mechanisms by which parasites resistant to antimalarial drugs are selected and spread in natural populations. Recent work has demonstrated that pyrimethamine-resistance conferring mutations in Plasmodium falciparum dihydrofolate reductase (dhfr have arisen rarely de novo, but spread widely in Asia and Africa. The origin and spread of mutations in Plasmodium vivax dhfr were assessed by constructing haplotypes based on sequencing dhfr and its flanking regions. Methods The P. vivax dhfr coding region, 792 bp upstream and 683 bp downstream were amplified and sequenced from 137 contemporary patient isolates from Colombia, India, Indonesia, Papua New Guinea, Sri Lanka, Thailand, and Vanuatu. A repeat motif located 2.6 kb upstream of dhfr was also sequenced from 75 of 137 patient isolates, and mutational relationships among the haplotypes were visualized using the programme Network. Results Synonymous and non-synonymous single nucleotide polymorphisms (SNPs within the dhfr coding region were identified, as was the well-documented in-frame insertion/deletion (indel. SNPs were also identified upstream and downstream of dhfr, with an indel and a highly polymorphic repeat region identified upstream of dhfr. The regions flanking dhfr were highly variable. The double mutant (58R/117N dhfr allele has evolved from several origins, because the 58R is encoded by at least 3 different codons. The triple (58R/61M/117T and quadruple (57L/61M/117T/173F, 57I/58R/61M/117T and 57L/58R/61M/117T mutant alleles had at least three independent origins in Thailand, Indonesia, and Papua New Guinea/Vanuatu. Conclusion It was found that the P. vivax dhfr coding region and its flanking intergenic regions are highly polymorphic and that mutations in P. vivax dhfr that confer antifolate resistance have arisen several times in the Asian region. This contrasts

  19. Prognostic significance of numeric aberrations of genes for thymidylate synthase, thymidine phosphorylase and dihydrofolate reductase in colorectal cancer

    DEFF Research Database (Denmark)

    Jensen, Søren Astrup; Vainer, B.; Witton, C.J.

    2008-01-01

    ) in colorectal cancer, and to evaluate its prognostic significance following adjuvant chemotherapy, since these enzymes are closely related to efficacy of 5-fluorouracil (5FU). PATIENTS AND METHODS: Consecutive patients (n = 314), who were completely resected for colorectal cancer stages II-IV and adjuvantly......BACKGROUND: Most human cancer cells have structural aberrations of chromosomal regions leading to loss or gain of gene specific alleles. This study aimed to assess the range of gene copies per nucleus of thymidylate synthase (TYMS), thymidine phosphorylase (TP) and dihydrofolate reductase (DHFR...... the median were compared. Also TYMS expression, assessed by immunohistochemistry, was associated with TYMS copies per nucleus. RESULTS: The number of gene copies per nucleus were 1.7 (0.7-2.8), 1.8 (0.9-3.1) and 1.8 (1.1-2.7) median (range) for TYMS, TP and DHFR, respectively. TYMS expression was directly...

  20. Mechanism of dihydrofolate reductase downregulation in melanoma by 3-O-(3,4,5-trimethoxybenzoyl)-(-)-epicatechin.

    Science.gov (United States)

    Sánchez-del-Campo, Luís; Chazarra, Soledad; Montenegro, María F; Cabezas-Herrera, Juan; Rodríguez-López, José Neptuno

    2010-08-15

    In our search to improve the stability and cellular absorption of tea polyphenols, we synthesized 3-O-(3,4,5-trimethoxybenzoyl)-(-)-epicatechin (TMECG), which showed high antiproliferative activity against melanoma. TMECG downregulates dihydrofolate reductase (DHFR) expression in melanoma cells and we detail the sequential mechanisms that result from this even. TMECG is specifically activated in melanoma cells to form a stable quinone methide (TMECG-QM). TMECG-QM has a dual action on these cells. First, it acts as a potent antifolate compound, disrupting folate metabolism and increasing intracellular oxidized folate coenzymes, such as dihydrofolate, which is a non-competitive inhibitor of dihydropterine reductase, an enzyme essential for tetrahydrobiopterin (H(4)B) recycling. Such inhibition results in H(4)B deficiency, endothelial nitric oxide synthase (eNOS) uncoupling and superoxide production. Second, TMECG-QM acts as an efficient superoxide scavenger and promotes intra-cellular H(2)O(2) accumulation. Here, we present evidence that TMECG markedly reduces melanoma H(4)B and NO bioavailability and that TMECG action is abolished by the eNOS inhibitor N(omega)-nitro-L-arginine methyl ester or the H(2)O(2) scavenger catalase, which strongly suggests H(2)O(2)-dependent DHFR downregulation. In addition, the data presented here indicate that the simultaneous targeting of important pathways for melanoma survival, such as the folate cycle, H(4)B recycling, and the eNOS reaction, could represent an attractive strategy for fighting this malignant skin pathology. (c) 2010 Wiley-Liss, Inc.

  1. Structural comparison of chromosomal and exogenous dihydrofolate reductase from Staphylococcus aureus in complex with the potent inhibitor trimethoprim

    Energy Technology Data Exchange (ETDEWEB)

    Heaslet, Holly; Harris, Melissa; Fahnoe, Kelly; Sarver, Ronald; Putz, Henry; Chang, Jeanne; Subramanyam, Chakrapani; Barreiro, Gabriela; Miller, J. Richard; Pfizer

    2010-09-02

    Dihydrofolate reductase (DHFR) is the enzyme responsible for the NADPH-dependent reduction of 5,6-dihydrofolate to 5,6,7,8-tetrahydrofolate, an essential cofactor in the synthesis of purines, thymidylate, methionine, and other key metabolites. Because of its importance in multiple cellular functions, DHFR has been the subject of much research targeting the enzyme with anticancer, antibacterial, and antimicrobial agents. Clinically used compounds targeting DHFR include methotrexate for the treatment of cancer and diaminopyrimidines (DAPs) such as trimethoprim (TMP) for the treatment of bacterial infections. DAP inhibitors of DHFR have been used clinically for >30 years and resistance to these agents has become widespread. Methicillin-resistant Staphylococcus aureus (MRSA), the causative agent of many serious nosocomial and community acquired infections, and other gram-positive organisms can show resistance to DAPs through mutation of the chromosomal gene or acquisition of an alternative DHFR termed 'S1 DHFR.' To develop new therapies for health threats such as MRSA, it is important to understand the molecular basis of DAP resistance. Here, we report the crystal structure of the wild-type chromosomal DHFR from S. aureus in complex with NADPH and TMP. We have also solved the structure of the exogenous, TMP resistant S1 DHFR, apo and in complex with TMP. The structural and thermodynamic data point to important molecular differences between the two enzymes that lead to dramatically reduced affinity of DAPs to S1 DHFR. These differences in enzyme binding affinity translate into reduced antibacterial activity against strains of S. aureus that express S1 DHFR.

  2. The temperature dependence of the kinetic isotope effects of dihydrofolate reductase from Thermotoga maritima is influenced by intersubunit interactions.

    Science.gov (United States)

    Loveridge, E Joel; Allemann, Rudolf K

    2010-06-29

    Dihydrofolate reductase from the hyperthermophile Thermotoga maritima (TmDHFR) is unique among structurally characterized chromosomal DHFRs in that it forms a stable homodimer. Dimerization is believed to play a key role in the high thermal stability of TmDHFR, which is reflected in a melting temperature in excess of 85 degrees C. The dimer interface of TmDHFR is composed of a hydrophobic core with charged residues around the periphery. In particular, Lys129 of each subunit forms three-membered salt bridges with Glu136 and Glu138 of the other subunit. To probe the role of these salt bridges in the dimerization and thermal stability of TmDHFR, we generated a series of variants (TmDHFR-K129E, TmDHFR-E136K, TmDHFR-E138K, and TmDHFR-E136K/E138K) in which these residues were exchanged for residues whose side chains bear the opposite charge. Our results indicate that these salt bridges are key for the high thermal stability of TmDHFR but are not a requirement for dimerization. Although the rate of dihydrofolate reduction by TmDHFR is not significantly affected by the loss of the K129-E136-E138 salt bridges, changes to the temperature dependence of the kinetic isotope effect on hydride transfer are observed. These changes are in agreement with the proposal that DHFR catalysis may be affected by changes to the conformational ensemble of the enzyme rather than only to the coupling of protein motions to the reaction coordinate.

  3. Mechanism of the reaction catalyzed by dihydrofolate reductase from Escherichia coli: pH and deuterium isotope effects with NADPH as the variable substrate

    International Nuclear Information System (INIS)

    Morrison, J.F.; Stone, S.R.

    1988-01-01

    The variations with pH of the kinetic parameters and primary deuterium isotope effects for the reaction of NADPH with dihydrofolate reductase from Escherichia coli have been determined. The aims of the investigations were to elucidate the chemical mechanism of the reaction and to obtain information about the location of the rate-limiting steps. The V and V/K/sub NADPH/ profiles indicate that a single ionizing group at the active center of the enzyme must be protonated for catalysis, whereas the K/sub i/ profiles show that the binding of NADPH to the free enzyme and of ATP-ribose to the enzyme-dihydrofolate complex is pH independent. From the results of deuterium isotope effects on V/K/sub NADPH/, it is concluded that NADPH behaves as a sticky substrate. It is this stickiness that raises artificially the intrinsic pK value of 6.4 for the Asp-27 residue of the enzyme-dihydrofolate complex to an observed value of 8.9. Thus, the binary enzyme complex is largely protonated at neutral pH. The elevation of the intrinsic pK value of 6.4 for the ternary enzyme-NADPH-dihydrofolate complex to 8.5 is not due to the kinetic effects of substrates. Rather, it is the consequence of the lower, pH-independent rate of product release and the faster pH-dependent catalytic step. The data for deuterium isotope and deuterium solvent isotope effects are consistent with the postulate that, for the reduction of dihydrofolate to tetrahydrofolate, protonation precedes hydride transfer. A scheme is proposed for the indirect transfer of a proton from the enzyme to dihydrofolate

  4. Effects of point mutations in Plasmodium falciparum dihydrofolate reductase and dihydropterate synthase genes on clinical outcomes and in vitro susceptibility to sulfadoxine and pyrimethamine.

    Directory of Open Access Journals (Sweden)

    David J Bacon

    2009-08-01

    Full Text Available Sulfadoxine-pyrimethamine was a common first line drug therapy to treat uncomplicated falciparum malaria, but increasing therapeutic failures associated with the development of significant levels of resistance worldwide has prompted change to alternative treatment regimes in many national malaria control programs. METHODOLOGY AND FINDING: We conducted an in vivo therapeutic efficacy trial of sulfadoxine-pyrimethamine at two locations in the Peruvian Amazon enrolling 99 patients of which, 86 patients completed the protocol specified 28 day follow up. Our objective was to correlate the presence of polymorphisms in P. falciparum dihydrofolate reductase and dihydropteroate synthase to in vitro parasite susceptibility to sulfadoxine and pyrimethamine and to in vivo treatment outcomes. Inhibitory concentration 50 values of isolates increased with numbers of mutations (single [108N], sextuplet [BR/51I/108N/164L and 437G/581G] and septuplet (BR/51I/108N/164L and 437G/540E/581G with geometric means of 76 nM (35-166 nM, 582 nM (49-6890- nM and 4909 (3575-6741 nM nM for sulfadoxine and 33 nM (22-51 nM, 81 nM (19-345 nM, and 215 nM (176-262 nM for pyrimethamine. A single mutation present in the isolate obtained at the time of enrollment from either dihydrofolate reductase (164L or dihydropteroate synthase (540E predicted treatment failure as well as any other single gene alone or in combination. Patients with the dihydrofolate reductase 164L mutation were 3.6 times as likely to be treatment failures [failures 85.4% (164L vs 23.7% (I164; relative risk = 3.61; 95% CI: 2.14 - 6.64] while patients with the dihydropteroate synthase 540E were 2.6 times as likely to fail treatment (96.7% (540E vs 37.5% (K540; relative risk = 2.58; 95% CI: 1.88 - 3.73. Patients with both dihydrofolate reductase 164L and dihydropteroate synthase 540E mutations were 4.1 times as likely to be treatment failures [96.7% vs 23.7%; RR = 4.08; 95% CI: 2.45 - 7.46] compared to patients

  5. Towards the Understanding of Resistance Mechanisms in Clinically Isolated Trimethoprim-resistant, Methicillin-resistant Staphylococcus aureus Dihydrofolate Reductase

    Energy Technology Data Exchange (ETDEWEB)

    Frey, K.; Lombardo, M; Wright, D; Anderson, A

    2010-01-01

    Resistance to therapeutics such as trimethoprim-sulfamethoxazole has become an increasing problem in strains of methicillin-resistant Staphylococcus aureus (MRSA). Clinically isolated trimethoprim-resistant strains reveal a double mutation, H30N/F98Y, in dihydrofolate reductase (DHFR). In order to develop novel and effective therapeutics against these resistant strains, we evaluated a series of propargyl-linked antifolate lead compounds for inhibition of the mutant enzyme. For the propargyl-linked antifolates, the F98Y mutation generates minimal (between 1.2- and 6-fold) losses of affinity and the H30N mutation generates greater losses (between 2.4- and 48-fold). Conversely, trimethoprim affinity is largely diminished by the F98Y mutation (36-fold) and is not affected by the H30N mutation. In order to elucidate a mechanism of resistance, we determined a crystal structure of a complex of this double mutant with a lead propargyl-linked antifolate. This structure suggests a resistance mechanism consistent both for the propargyl-linked class of antifolates and for trimethoprim that is based on the loss of a conserved water-mediated hydrogen bond.

  6. Mutational analysis of Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase genes in the interior division of Sabah, Malaysia.

    Science.gov (United States)

    Lau, Tiek Ying; Sylvi, Mersumpin; William, Timothy

    2013-12-10

    The sulphadoxine/pyrimethamine (SDX/PYR) combination had been chosen to treat uncomplicated falciparum malaria in Malaysia for more than 30 years. Non-silent mutations in dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes are responsible for the resistance to pyrimethamine and sulphadoxine, respectively. This study reports the mutational analysis of pfdhfr and pfdhps in single Plasmodium falciparum infection isolates from the interior division of Sabah, Malaysian Borneo. A total of 22 P. falciparum single infection isolates collected from two districts of the interior division of Sabah from February to November 2010 were recruited for the mutational study of pfdhfr and pfdhps. Both genes were amplified by nested PCR prior to DNA sequencing and mutational analysis. A total of three pfdhfr and four pfdhps alleles were identified. The most prevalent pfdhfr allele is ANRNL (86%) involving triple mutation at position 108(S to N), 59(C to R) and 164(I to L). In pfdhps, two novel alleles, SGTGA (73%) and AAKAA (5%) were identified. Alleles involving triple mutation in both pfdhfr (ANRNL) and pfdhps (SGTGA), which were absent in Sabah in a study conducted about 15 years ago, are now prevalent. High prevalence of mutations in SDX/PYR associated drug resistance genes are reported in this study. This mutational study of pfdhps and pfdhfr indicating that SDX/PYR should be discontinued in this region.

  7. An approximate but efficient method to calculate free energy trends by computer simulation: Application to dihydrofolate reductase-inhibitor complexes

    Science.gov (United States)

    Gerber, Paul R.; Mark, Alan E.; van Gunsteren, Wilfred F.

    1993-06-01

    Derivatives of free energy differences have been calculated by molecular dynamics techniques. The systems under study were ternary complexes of Trimethoprim (TMP) with dihydrofolate reductases of E. coli and chicken liver, containing the cofactor NADPH. Derivatives are taken with respect to modification of TMP, with emphasis on altering the 3-, 4- and 5-substituents of the phenyl ring. A linear approximation allows the encompassing of a whole set of modifications in a single simulation, as opposed to a full perturbation calculation, which requires a separate simulation for each modification. In the case considered here, the proposed technique requires a factor of 1000 less computing effort than a full free energy perturbation calculation. For the linear approximation to yield a significant result, one has to find ways of choosing the perturbation evolution, such that the initial trend mirrors the full calculation. The generation of new atoms requires a careful treatment of the singular terms in the non-bonded interaction. The result can be represented by maps of the changed molecule, which indicate whether complex formation is favoured under movement of partial charges and change in atom polarizabilities. Comparison with experimental measurements of inhibition constants reveals fair agreement in the range of values covered. However, detailed comparison fails to show a significant correlation. Possible reasons for the most pronounced deviations are given.

  8. Cloning, recombinant expression and inhibitor profiles of dihydrofolate reductase from the Australian sheep blow fly, Lucilia cuprina.

    Science.gov (United States)

    Kotze, A C; Bagnall, N H; Ruffell, A P; Pearson, R

    2014-09-01

    While dihydrofolate reductase (DHFR) is an important drug target in mammals, bacteria and protozoa, no inhibitors of this enzyme have been developed as commercial insecticides. We therefore examined the potential of this enzyme as a drug target in an important ectoparasite of livestock, the Australian sheep blow fly, Lucilia cuprina (Diptera: Calliphoridae) (Wiedemann). The non-specific DHFR inhibitors aminopterin and methotrexate significantly inhibited the growth of L. cuprina larvae, with IC50 values at µg levels. Trimethoprim and pyrimethamine were 5-30-fold less active. Relative IC50 values for the inhibition of recombinant L. cuprina DHFR by various inhibitors were in accordance with their relative effects on larval growth. The active-site amino acid residues of L. cuprina DHFR differed by between 34% and 50% when compared with two mammalian species, as well as two bacteria and two protozoa. There were significant charge and size differences in specific residues between the blow fly and human DHFR enzymes, notably the L. cuprina Asn21, Lys31 and Lys63 residues. This study provides bioassay evidence to highlight the potential of blow fly DHFR as an insecticide target, and describes differences in active site residues between blow flies and other organisms which could be exploited in the design of blow fly control chemicals. © 2014 The Royal Entomological Society.

  9. Defining the Structural Basis for Allosteric Product Release from E. coli Dihydrofolate Reductase Using NMR Relaxation Dispersion.

    Science.gov (United States)

    Oyen, David; Fenwick, R Bryn; Aoto, Phillip C; Stanfield, Robyn L; Wilson, Ian A; Dyson, H Jane; Wright, Peter E

    2017-08-16

    The rate-determining step in the catalytic cycle of E. coli dihydrofolate reductase is tetrahydrofolate (THF) product release, which can occur via an allosteric or an intrinsic pathway. The allosteric pathway, which becomes accessible when the reduced cofactor NADPH is bound, involves transient sampling of a higher energy conformational state, greatly increasing the product dissociation rate as compared to the intrinsic pathway that obtains when NADPH is absent. Although the kinetics of this process are known, the enzyme structure and the THF product conformation in the transiently formed excited state remain elusive. Here, we use side-chain proton NMR relaxation dispersion measurements, X-ray crystallography, and structure-based chemical shift predictions to explore the structural basis of allosteric product release. In the excited state of the E:THF:NADPH product release complex, the reduced nicotinamide ring of the cofactor transiently enters the active site where it displaces the pterin ring of the THF product. The p-aminobenzoyl-l-glutamate tail of THF remains weakly bound in a widened binding cleft. Thus, through transient entry of the nicotinamide ring into the active site, the NADPH cofactor remodels the enzyme structure and the conformation of the THF to form a weakly populated excited state that is poised for rapid product release.

  10. 19-base pair deletion polymorphism of the dihydrofolate reductase (DHFR gene: maternal risk of Down syndrome and folate metabolism

    Directory of Open Access Journals (Sweden)

    Cristiani Cortez Mendes

    Full Text Available CONTEXT AND OBJECTIVE: Polymorphisms in genes involved in folate metabolism may modulate the maternal risk of Down syndrome (DS. This study evaluated the influence of a 19-base pair (bp deletion polymorphism in intron-1 of the dihydrofolate reductase (DHFR gene on the maternal risk of DS, and investigated the association between this polymorphism and variations in the concentrations of serum folate and plasma homocysteine (Hcy and plasma methylmalonic acid (MMA. DESIGN AND SETTING: Analytical cross-sectional study carried out at Faculdade de Medicina de São José do Rio Preto (Famerp. METHODS: 105 mothers of individuals with free trisomy of chromosome 21, and 184 control mothers were evaluated. Molecular analysis on the polymorphism was performed using the polymerase chain reaction (PCR through differences in the sizes of fragments. Folate was quantified by means of chemiluminescence, and Hcy and MMA by means of liquid chromatography and sequential mass spectrometry. RESULTS: There was no difference between the groups in relation to allele and genotype frequencies (P = 0.44; P = 0.69, respectively. The folate, Hcy and MMA concentrations did not differ significantly between the groups, in relation to genotypes (P > 0.05. CONCLUSIONS: The 19-bp deletion polymorphism of DHFR gene was not a maternal risk factor for DS and was not related to variations in the concentrations of serum folate and plasma Hcy and MMA in the study population.

  11. A nanotherapy strategy significantly enhances anticryptosporidial activity of an inhibitor of bifunctional thymidylate synthase-dihydrofolate reductase from Cryptosporidium.

    Science.gov (United States)

    Mukerjee, Anindita; Iyidogan, Pinar; Castellanos-Gonzalez, Alejandro; Cisneros, José A; Czyzyk, Daniel; Ranjan, Amalendu Prakash; Jorgensen, William L; White, A Clinton; Vishwanatha, Jamboor K; Anderson, Karen S

    2015-01-01

    Cryptosporidiosis, a gastrointestinal disease caused by protozoans of the genus Cryptosporidium, is a common cause of diarrheal diseases and often fatal in immunocompromised individuals. Bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) from Cryptosporidium hominis (C. hominis) has been a molecular target for inhibitor design. C. hominis TS-DHFR inhibitors with nM potency at a biochemical level have been developed however drug delivery to achieve comparable antiparasitic activity in Cryptosporidium infected cell culture has been a major hurdle for designing effective therapies. Previous mechanistic and structural studies have identified compound 906 as a nM C. hominis TS-DHFR inhibitor in vitro, having μM antiparasitic activity in cell culture. In this work, proof of concept studies are presented using a nanotherapy approach to improve drug delivery and the antiparasitic activity of 906 in cell culture. We utilized PLGA nanoparticles that were loaded with 906 (NP-906) and conjugated with antibodies to the Cryptosporidium specific protein, CP2, on the nanoparticle surface in order to specifically target the parasite. Our results indicate that CP2 labeled NP-906 (CP2-NP-906) reduces the level of parasites by 200-fold in cell culture, while NP-906 resulted in 4.4-fold decrease. Moreover, the anticryptosporidial potency of 906 improved 15 to 78-fold confirming the utility of the antibody conjugated nanoparticles as an effective drug delivery strategy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Nuclear magnetic resonance study of interaction of ligands with Streptococcus faecium dihydrofolate reductase labeled with [#betta#-13C]tryptophan

    International Nuclear Information System (INIS)

    London, R.E.; Groff, J.P.; Cocco, L.; Blakley, R.L.

    1982-01-01

    Dihydrofolate reductase from Streptococcus faecium has been labeled with [#betta#- 13 C]tryptophan. We have determined changes occurring in the chemical shifts and line widths of the four resonances of the 13 C NMR spectrum of the labeled enzyme, due to its interaction with various ligands. These include the coenzyme, NPDPH and related nucleotides, folate and its polyglutamate derivatives, and many inhibitors including methotrexate and trimethoprim. In addition, paramagnetic relaxation effects produced by a bound spin-labeled analogue of 2'-phosphoadenosine-5'-diphosphoribose on the tryptophan C/sup #betta#/ carbons have been measured. Distances calculated from the relaxation data have been compared with corresponding distances in the crystallographic model of the NADPH-methotrexate ternary complex of Lactobacillus casei reductase. The paramagnetic relaxation data indicate that the two downfield resonances (1 and 2) correspond to tryptophans (W/sub A/ and W/sub B/) that are more remote from the catalytic site, and from the crystallographic model these are seen to be Trp-115 and Trp-160. The upfield resonances (3 and 4) that show broadening due to chemical exchange correspond to closer residues (W/sub C/ and W/sub D/), and these are identified with Trp-6 and Trp-22. However, the relaxation data do not permit specific assignments within the nearer and farther pairs. Although resonance 3, which is split due to chemical exchange, was formerly assigned to Trp-6, data obtained for the enzyme in the presence of various ligands are better interpreted if resonance 3 is assigned to Trp-22, which is located on a loop that joins elements of secondary structure and forms one side of the ligand-binding cavity

  13. Histidine hydrogen-deuterium exchange mass spectrometry for probing the microenvironment of histidine residues in dihydrofolate reductase.

    Directory of Open Access Journals (Sweden)

    Masaru Miyagi

    2011-02-01

    Full Text Available Histidine Hydrogen-Deuterium Exchange Mass Spectrometry (His-HDX-MS determines the HDX rates at the imidazole C(2-hydrogen of histidine residues. This method provides not only the HDX rates but also the pK(a values of histidine imidazole rings. His-HDX-MS was used to probe the microenvironment of histidine residues of E. coli dihydrofolate reductase (DHFR, an enzyme proposed to undergo multiple conformational changes during catalysis.Using His-HDX-MS, the pK(a values and the half-lives (t(1/2 of HDX reactions of five histidine residues of apo-DHFR, DHFR in complex with methotrexate (DHFR-MTX, DHFR in complex with MTX and NADPH (DHFR-MTX-NADPH, and DHFR in complex with folate and NADP+ (DHFR-folate-NADP+ were determined. The results showed that the two parameters (pK(a and t(1/2 are sensitive to the changes of the microenvironment around the histidine residues. Although four of the five histidine residues are located far from the active site, ligand binding affected their pK(a, t(1/2 or both. This is consistent with previous observations of ligand binding-induced distal conformational changes on DHFR. Most of the observed pK(a and t(1/2 changes could be rationalized using the X-ray structures of apo-DHFR, DHFR-MTX-NADPH, and DHFR-folate-NADP+. The availability of the neutron diffraction structure of DHFR-MTX enabled us to compare the protonation states of histidine imidazole rings.Our results demonstrate the usefulness of His-HDX-MS in probing the microenvironments of histidine residues within proteins.

  14. Histidine hydrogen-deuterium exchange mass spectrometry for probing the microenvironment of histidine residues in dihydrofolate reductase.

    Science.gov (United States)

    Miyagi, Masaru; Wan, Qun; Ahmad, Md Faiz; Gokulrangan, Giridharan; Tomechko, Sara E; Bennett, Brad; Dealwis, Chris

    2011-02-16

    Histidine Hydrogen-Deuterium Exchange Mass Spectrometry (His-HDX-MS) determines the HDX rates at the imidazole C(2)-hydrogen of histidine residues. This method provides not only the HDX rates but also the pK(a) values of histidine imidazole rings. His-HDX-MS was used to probe the microenvironment of histidine residues of E. coli dihydrofolate reductase (DHFR), an enzyme proposed to undergo multiple conformational changes during catalysis. Using His-HDX-MS, the pK(a) values and the half-lives (t(1/2)) of HDX reactions of five histidine residues of apo-DHFR, DHFR in complex with methotrexate (DHFR-MTX), DHFR in complex with MTX and NADPH (DHFR-MTX-NADPH), and DHFR in complex with folate and NADP+ (DHFR-folate-NADP+) were determined. The results showed that the two parameters (pK(a) and t(1/2)) are sensitive to the changes of the microenvironment around the histidine residues. Although four of the five histidine residues are located far from the active site, ligand binding affected their pK(a), t(1/2) or both. This is consistent with previous observations of ligand binding-induced distal conformational changes on DHFR. Most of the observed pK(a) and t(1/2) changes could be rationalized using the X-ray structures of apo-DHFR, DHFR-MTX-NADPH, and DHFR-folate-NADP+. The availability of the neutron diffraction structure of DHFR-MTX enabled us to compare the protonation states of histidine imidazole rings. Our results demonstrate the usefulness of His-HDX-MS in probing the microenvironments of histidine residues within proteins.

  15. Small Angle Neutron Scattering Studies of R67 Dihydrofolate Reductase, a Tetrameric Protein with Intrinsically Disordered N-Termini.

    Science.gov (United States)

    Bhojane, Purva P; Duff, Michael R; Bafna, Khushboo; Agarwal, Pratul; Stanley, Christopher; Howell, Elizabeth E

    2017-11-07

    R67 dihydrofolate reductase (DHFR) is a homotetramer with a single active site pore and no sequence or structural homology with chromosomal DHFRs. The R67 enzyme provides resistance to trimethoprim, an active site-directed inhibitor of Escherichia coli DHFR. Sixteen to twenty N-terminal amino acids are intrinsically disordered in the R67 dimer crystal structure. Chymotrypsin cleavage of 16 N-terminal residues results in an active enzyme with a decreased stability. The space sampled by the disordered N-termini of R67 DHFR was investigated using small angle neutron scattering. From a combined analysis using molecular dynamics and the program SASSIE ( http://www.smallangles.net/sassie/SASSIE_HOME.html ), the apoenzyme displays a radius of gyration (R g ) of 21.46 ± 0.50 Å. Addition of glycine betaine, an osmolyte, does not result in folding of the termini as the R g increases slightly to 22.78 ± 0.87 Å. SASSIE fits of the latter SANS data indicate that the disordered N-termini sample larger regions of space and remain disordered, suggesting they might function as entropic bristles. Pressure perturbation calorimetry also indicated that the volume of R67 DHFR increases upon addition of 10% betaine and decreased at 20% betaine because of the dehydration of the protein. Studies of the hydration of full-length R67 DHFR in the presence of the osmolytes betaine and dimethyl sulfoxide find around 1250 water molecules hydrating the protein. Similar studies with truncated R67 DHFR yield around 400 water molecules hydrating the protein in the presence of betaine. The difference of ∼900 waters indicates the N-termini are well-hydrated.

  16. Nuclear magnetic resonance studies on bacterial dihydrofolate reductase containing (guanidino-/sup 13/C)arginine. [Streptococcus

    Energy Technology Data Exchange (ETDEWEB)

    Cocco, L.; Blakley, R.L.; Walker, T.E.; London, R.E.; Matwiyoff, N.A.

    1978-10-03

    Dihydrofolate reductase labeled with (guanidino-/sup 13/C)arginine has been purified from Streptococcus faecium and /sup 13/C nuclear magnetic resonance spectra of the enzyme and its complexes with various ligands have been recorded. Resonances of the eight residues are resolved into 4 to 6 peaks with chemical shifts over a range of 1.2 ppM. There appear to be two classes of residues: those with chemical shifts very close to that of free (guanidino-/sup 13/C)arginine (class 1); and those with significantly different shifts (class 2). Spin-lattice relaxation times (T/sub 1/), measured in H/sub 2/O, for residues of class 1 are approximately 50% greater than the values for residues of the second class. In D/sub 2/O the T/sub 1/ values for both classes of residues are essentially the same and approximately twice the values obtained in H/sub 2/O for residues of class 1. The temperature-dependent behavior of T/sub 1/ for residues of class 2, together with the small nuclear Overhauser enhancement values, and the difference in line width in H/sub 2/O vs. D/sub 2/O are consistent with the assumption that the internal motion of these residues is slow relative to the overall rotational motion of the protein. An overall rotational correlation time for the protein of 20 ns has been estimated from the data for these immobilized residues. Class 1 residues appear to have a significant degree of internal motion and are probably accessible to solvent, whereas class 2 residues are probably inaccessible.

  17. /sup 13/C-NMR studies of selectively carboxymethylated (methyl-/sup 13/C)methionine-labeled bacterial dihydrofolate reductase. [Streptococcus faecium

    Energy Technology Data Exchange (ETDEWEB)

    London, R.E.; Wageman, W.E.; Blakley, R.L.

    1983-08-01

    The /sup 13/C-labeled Streptococcus faecium enzyme was prepared under relatively mild conditions for NMR studies by reaction of unlabeled iodoacetate with the enzyme containing biosynthetically incorporated (methyl-/sup 13/C)methionine. The compound produced by this unique strategy was used as a part of a continuing study of the enzyme dihydrofolate reductase. The NMR studies provided assignment of resonance data for two of the methionine residues. Additionally, the specificity of the carboxymethylation provides a useful basis for resonance assignment.

  18. Evaluation of dihydrofolate reductase and dihydropteroate synthetase genotypes that confer resistance to sulphadoxine-pyrimethamine in Plasmodium falciparum in Haiti

    Directory of Open Access Journals (Sweden)

    Carter Tamar E

    2012-08-01

    Full Text Available Abstract Background Malaria caused by Plasmodium falciparum infects roughly 30,000 individuals in Haiti each year. Haiti has used chloroquine (CQ as a first-line treatment for malaria for many years and as a result there are concerns that malaria parasites may develop resistance to CQ over time. Therefore it is important to prepare for alternative malaria treatment options should CQ resistance develop. In many other malaria-endemic regions, antifolates, particularly pyrimethamine (PYR and sulphadoxine (SDX treatment combination (SP, have been used as an alternative when CQ resistance has developed. This study evaluated mutations in the dihydrofolate reductase (dhfr and dihydropteroate synthetase (dhps genes that confer PYR and SDX resistance, respectively, in P. falciparum to provide baseline data in Haiti. This study is the first comprehensive study to examine PYR and SDX resistance genotypes in P. falciparum in Haiti. Methods DNA was extracted from dried blood spots and genotyped for PYR and SDX resistance mutations in P. falciparum using PCR and DNA sequencing methods. Sixty-one samples were genotyped for PYR resistance in codons 51, 59, 108 and 164 of the dhfr gene and 58 samples were genotyped for SDX resistance codons 436, 437, 540 of the dhps gene in P. falciparum. Results Thirty-three percent (20/61 of the samples carried a mutation at codon 108 (S108N of the dhfr gene. No mutations in dhfr at codons 51, 59, 164 were observed in any of the samples. In addition, no mutations were observed in dhps at the three codons (436, 437, 540 examined. No significant difference was observed between samples collected in urban vs rural sites (Welch’s T-test p-value = 0.53 and permutations p-value = 0.59. Conclusion This study has shown the presence of the S108N mutation in P. falciparum that confers low-level PYR resistance in Haiti. However, the absence of SDX resistance mutations suggests that SP resistance may not be present in Haiti. These

  19. Evaluation of dihydrofolate reductase and dihydropteroate synthetase genotypes that confer resistance to sulphadoxine-pyrimethamine in Plasmodium falciparum in Haiti.

    Science.gov (United States)

    Carter, Tamar E; Warner, Megan; Mulligan, Connie J; Existe, Alexander; Victor, Yves S; Memnon, Gladys; Boncy, Jacques; Oscar, Roland; Fukuda, Mark M; Okech, Bernard A

    2012-08-13

    Malaria caused by Plasmodium falciparum infects roughly 30,000 individuals in Haiti each year. Haiti has used chloroquine (CQ) as a first-line treatment for malaria for many years and as a result there are concerns that malaria parasites may develop resistance to CQ over time. Therefore it is important to prepare for alternative malaria treatment options should CQ resistance develop. In many other malaria-endemic regions, antifolates, particularly pyrimethamine (PYR) and sulphadoxine (SDX) treatment combination (SP), have been used as an alternative when CQ resistance has developed. This study evaluated mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps) genes that confer PYR and SDX resistance, respectively, in P. falciparum to provide baseline data in Haiti. This study is the first comprehensive study to examine PYR and SDX resistance genotypes in P. falciparum in Haiti. DNA was extracted from dried blood spots and genotyped for PYR and SDX resistance mutations in P. falciparum using PCR and DNA sequencing methods. Sixty-one samples were genotyped for PYR resistance in codons 51, 59, 108 and 164 of the dhfr gene and 58 samples were genotyped for SDX resistance codons 436, 437, 540 of the dhps gene in P. falciparum. Thirty-three percent (20/61) of the samples carried a mutation at codon 108 (S108N) of the dhfr gene. No mutations in dhfr at codons 51, 59, 164 were observed in any of the samples. In addition, no mutations were observed in dhps at the three codons (436, 437, 540) examined. No significant difference was observed between samples collected in urban vs rural sites (Welch's T-test p-value = 0.53 and permutations p-value = 0.59). This study has shown the presence of the S108N mutation in P. falciparum that confers low-level PYR resistance in Haiti. However, the absence of SDX resistance mutations suggests that SP resistance may not be present in Haiti. These results have important implications for ongoing discussions on

  20. Calculated /sup 13/C NMR relaxation parameters for a restricted internal diffusion model. Application to methionine relaxation in dihydrofolate reductase

    Energy Technology Data Exchange (ETDEWEB)

    London, R.E.; Avitabile, J.

    1978-11-08

    /sup 13/C NMR relaxation parameters, T/sub 1/, T/sub 2/, and NOE, have been calculated based on a model assuming internal rotational diffusion subject to boundary conditions limiting the range of motion. Numerical results are presented as a function of diffusion coefficients D/sub 0/ and D/sub i/ and angle ..beta.. defined as in the free internal rotation calculation, as well as 2theta, the allowed range of motion. Relaxation times vary from values expected in the absence of internal motion to values slightly below those calculated using the free internal rotation model as the range is increased from 0 to 360/sup 0/. The discrepancy in the latter comparison arises from the boundary condition preventing diffusion from 180/sup +/ to 180/sup -/. Changes in T/sub 2/ are typically monotonic or nearly monotonic as a function of theta; however, changes in T/sub 1/ and NOE values are markedly nonmonotonic for D/sub 0/ approx. < 10/sup 6/ s/sup -1/ and for certain values of D/sub i/. Criteria for the applicability of the present calculations to the analysis of /sup 13/C NMR relaxation data obtained in studies of macromolecules undergoing restricted internal motion have been suggested. The results have been generalized to the case of multiple internal rotations, specifically for the problem of one free and one restricted diffusional process. In general, two types of rotation are not commutative. This model has been applied to relaxation data recently obtained for the methionine methyl resonances of specifically /sup 13/C-labeled dihydrofolate reductase obtained from S. faecium. The results indicate that the data can be readily explained by assuming rapid free internal diffusion about the S--CH/sub 3/ bond and restricted internal diffusion about the CH/sub 2/--S bond of methionine, such that for the broadest resonances the motional range is restricted to approx. 90/sup 0/ and for the sharpest resonances the range is >180/sup 0/. Restriction of the motion allows a

  1. Partial 1H NMR assignments of the Escherichia coli dihydrofolate reductase complex with folate: Evidence for a unique conformation of bound folate

    International Nuclear Information System (INIS)

    Falzone, C.J.; Benkovic, S.J.; Wright, P.E.

    1990-01-01

    Sequence-specific 1 H assignments have been made for over 25% of the amino acid side chains of Escherichia coli dihydrofolate reductase complexed with folate by using a variety of two-dimensional techniques. Proton resonances were assigned by using a combination of site-directed mutagenesis and a knowledge of the X-ray crystal structure. Unique sets of NOE connectivities present in hydrophobic pockets were matched with the X-ray structure and used to assign many of the residues. Other residues, particularly those near or in the active site, were assigned by site-directed mutagenesis. The ability to assign unambiguosly the proton resonances of these catalytically important residues allowed for extensive networks of NOE connectivities to follow from these assignments. As a consequence of these assignments, the orientation of the pterin ring of folate could be determined, and its conformation is similar to that of the productive dihydrofolate complex. Under these experimental conditions, only one bound form of the pterin ring could be detected

  2. Mixed quantum-classical simulation of the hydride transfer reaction catalyzed by dihydrofolate reductase based on a mapped system-harmonic bath model

    Science.gov (United States)

    Xu, Yang; Song, Kai; Shi, Qiang

    2018-03-01

    The hydride transfer reaction catalyzed by dihydrofolate reductase is studied using a recently developed mixed quantum-classical method to investigate the nuclear quantum effects on the reaction. Molecular dynamics simulation is first performed based on a two-state empirical valence bond potential to map the atomistic model to an effective double-well potential coupled to a harmonic bath. In the mixed quantum-classical simulation, the hydride degree of freedom is quantized, and the effective harmonic oscillator modes are treated classically. It is shown that the hydride transfer reaction rate using the mapped effective double-well/harmonic-bath model is dominated by the contribution from the ground vibrational state. Further comparison with the adiabatic reaction rate constant based on the Kramers theory confirms that the reaction is primarily vibrationally adiabatic, which agrees well with the high transmission coefficients found in previous theoretical studies. The calculated kinetic isotope effect is also consistent with the experimental and recent theoretical results.

  3. Structures of dihydrofolate reductase-thymidylate synthase of Trypanosoma cruzi in the folate-free state and in complex with two antifolate drugs, trimetrexate and methotrexate

    Energy Technology Data Exchange (ETDEWEB)

    Senkovich, Olga; Schormann, Norbert; Chattopadhyay, Debasish; (UAB)

    2010-11-22

    The flagellate protozoan parasite Trypanosoma cruzi is the pathogenic agent of Chagas disease (also called American trypanosomiasis), which causes approximately 50 000 deaths annually. The disease is endemic in South and Central America. The parasite is usually transmitted by a blood-feeding insect vector, but can also be transmitted via blood transfusion. In the chronic form, Chagas disease causes severe damage to the heart and other organs. There is no satisfactory treatment for chronic Chagas disease and no vaccine is available. There is an urgent need for the development of chemotherapeutic agents for the treatment of T. cruzi infection and therefore for the identification of potential drug targets. The dihydrofolate reductase activity of T. cruzi, which is expressed as part of a bifunctional enzyme, dihydrofolate reductase-thymidylate synthase (DHFR-TS), is a potential target for drug development. In order to gain a detailed understanding of the structure-function relationship of T. cruzi DHFR, the three-dimensional structure of this protein in complex with various ligands is being studied. Here, the crystal structures of T. cruzi DHFR-TS with three different compositions of the DHFR domain are reported: the folate-free state, the complex with the lipophilic antifolate trimetrexate (TMQ) and the complex with the classical antifolate methotrexate (MTX). These structures reveal that the enzyme is a homodimer with substantial interactions between the two TS domains of neighboring subunits. In contrast to the enzymes from Cryptosporidium hominis and Plasmodium falciparum, the DHFR and TS active sites of T. cruzi lie on the same side of the monomer. As in other parasitic DHFR-TS proteins, the N-terminal extension of the T. cruzi enzyme is involved in extensive interactions between the two domains. The DHFR active site of the T. cruzi enzyme shows subtle differences compared with its human counterpart. These differences may be exploited for the development of

  4. Increasing prevalence of wildtypes in the dihydrofolate reductase gene of Plasmodium falciparum in an area with high levels of sulfadoxine/pyrimethamine resistance after introduction of treated bed nets

    DEFF Research Database (Denmark)

    Alifrangis, Michael; Lemnge, Martha M; Rønn, Anita M

    2003-01-01

    In Magoda and Mpapayu villages in Tanzania, we have previously found comparable high prevalence of Plasmodium falciparum resistance to sulfadoxine/pyrimethamine (S/P) in vivo and of mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps) genes of P. falciparum respon...... than in Mpapayu in 2000. The impact of ITNs on the transmission intensity seems not only to affect the overall malaria morbidity, but may even facilitate restoration of susceptibility to antimalarial drugs....

  5. Two crystal structures of dihydrofolate reductase-thymidylate synthase from Cryptosporidium hominis reveal protein–ligand interactions including a structural basis for observed antifolate resistance

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Amy C., E-mail: aca@dartmouth.edu [Dartmouth College, Department of Chemistry, Burke Laboratories, Hanover, NH 03755 (United States)

    2005-03-01

    An analysis of the protein–ligand interactions in two crystal structures of DHFR-TS from C. hominis reveals a possible structural basis for observed antifolate resistance in C. hominis DHFR. A comparison with the structure of human DHFR reveals residue substitutions that may be exploited for the design of species-selective inhibitors. Cryptosporidium hominis is a protozoan parasite that causes acute gastrointestinal illness. There are no effective therapies for cryptosporidiosis, highlighting the need for new drug-lead discovery. An analysis of the protein–ligand interactions in two crystal structures of dihydrofolate reductase-thymidylate synthase (DHFR-TS) from C. hominis, determined at 2.8 and 2.87 Å resolution, reveals that the interactions of residues Ile29, Thr58 and Cys113 in the active site of C. hominis DHFR provide a possible structural basis for the observed antifolate resistance. A comparison with the structure of human DHFR reveals active-site differences that may be exploited for the design of species-selective inhibitors.

  6. Design, Synthesis, and X-ray Crystal Structures of 2,4-Diaminofuro[2,3-d]pyrimidines as Multireceptor Tyrosine Kinase and Dihydrofolate Reductase Inhibitors

    Science.gov (United States)

    Gangjee, Aleem; Li, Wei; Lin, Lu; Zeng, Yibin; Ihnat, Michael; Warnke, Linda A.; Green, Dixy W.; Cody, Vivian; Pace, Jim; Queener, Sherry F.

    2009-01-01

    To optimize dual receptor tyrosine kinase (RTK) and dihydrofolate reductase (DHFR) inhibition, the E- and Z-isomers of 5-[2-(2-methoxyphenyl)prop-1-en-1-yl]furo[2,3-d]pyrimidine-2,4-diamines (1a and 1b) were separated by HPLC and the X-ray crystal structures (2.0 Å and 1.4 Å respectively) with mouse DHFR and NADPH as well as 1b with human DHFR (1.5 Å) were determined. The E- and Z-isomers adopt different binding modes when bound to mouse DHFR. A series of 2,4-diaminofuro[2,3-d]pyrimidines 2–13 were designed and synthesized using the X-ray crystal structures of 1a and 1b with DHFR to increase their DHFR inhibitory activity. Wittig reactions of appropriate 2-methoxyphenyl ketones with 2,4-diamino-6-chloromethyl furo[2,3-d]pyrimidine afforded the C8–C9 unsaturated compounds 2–7 and catalytic reduction gave the saturated 8–13. Homologation of the C9-methyl analog maintains DHFR inhibitory activity. In addition, inhibition of EGFR and PDGFR-β were discovered for saturated C9-homologated analogs 9 and 10 that were absent in the saturated C9-methyl analogs. PMID:19748785

  7. In Silico Screening, Synthesis and In Vitro Evaluation of Some Quinazolinone and Pyridine Derivatives as Dihydrofolate Reductase Inhibitors for Anticancer Activity

    Directory of Open Access Journals (Sweden)

    A. G. Nerkar

    2009-01-01

    Full Text Available Dihydrofolate reductase (DHFR is the important target for anticancer drugs belonging to the class of antimetabolites as the enzyme plays important role in the de novo purine synthesis. We here report the in silico screening to obtain best fit molecules as DHFR inhibitors, synthesis of some ʻbest fitʼ quinazolinone from 2-phenyl-3-(substituted-benzilidine-amino quinazolinones (Quinazolinone Shiff's bases QSB1-5 and pyridine-4-carbohydrazide Shiff's bases (ISB1-5 derivatives and their in vitro anticancer assay. Synthesis of the molecules was performed using microwave assisted synthesis. The structures of these molecules were elucidated by IR and 1H-NMR. These compounds were then subjected for in vitro anticancer evaluation against five human cancer cell-lines for anticancer cyto-toxicity assay. Methotrexate (MTX was used as standard for this evaluation to give a comparable inhibition of the cell proliferation by DHFR inhibition. Placlitaxel, adriamycin and 5-fluoro-uracil were also used as standard to give a comparable activity of these compounds with other mechanism of anticancer activity. ISB3 (4-(N, N-dimethyl-amino-phenyl Schiff''s base derivative of pyridine carbohydrazide showed equipotent activity with the standards used in in vitro anticancer assay as per the NCI (National Cancer Institute guidelines.

  8. Nuclear magnetic resonance study of interaction of ligands with Streptococcus faecium dihydrofolate reductase labeled with (. gamma. -/sup 13/C)tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    London, R.E. (Los Alamos National Lab., NM); Groff, J.P.; Cocco, L.; Blakley, R.L.

    1982-01-01

    Dihydrofolate reductase from Streptococcus faecium has been labeled with (..gamma..-/sup 13/C)tryptophan. We have determined changes occurring in the chemical shifts and line widths of the four resonances of the /sup 13/C NMR spectrum of the labeled enzyme, due to its interaction with various ligands. These include the coenzyme, NPDPH and related nucleotides, folate and its polyglutamate derivatives, and many inhibitors including methotrexate and trimethoprim. In addition, paramagnetic relaxation effects produced by a bound spin-labeled analogue of 2'-phosphoadenosine-5'-diphosphoribose on the tryptophan C/sup ..gamma../ carbons have been measured. Distances calculated from the relaxation data have been compared with corresponding distances in the crystallographic model of the NADPH-methotrexate ternary complex of Lactobacillus casei reductase. The paramagnetic relaxation data indicate that the two downfield resonances (1 and 2) correspond to tryptophans (W/sub A/ and W/sub B/) that are more remote from the catalytic site, and from the crystallographic model these are seen to be Trp-115 and Trp-160. The upfield resonances (3 and 4) that show broadening due to chemical exchange correspond to closer residues (W/sub C/ and W/sub D/), and these are identified with Trp-6 and Trp-22. However, the relaxation data do not permit specific assignments within the nearer and farther pairs. Although resonance 3, which is split due to chemical exchange, was formerly assigned to Trp-6, data obtained for the enzyme in the presence of various ligands are better interpreted if resonance 3 is assigned to Trp-22, which is located on a loop that joins elements of secondary structure and forms one side of the ligand-binding cavity.

  9. The Dihydrofolate Reductase 19 bp Polymorphism Is Not Associated with Biomarkers of Folate Status in Healthy Young Adults, Irrespective of Folic Acid Intake.

    Science.gov (United States)

    Ozaki, Mari; Molloy, Anne M; Mills, James L; Fan, Ruzong; Wang, Yifan; Gibney, Eileen R; Shane, Barry; Brody, Lawrence C; Parle-McDermott, Anne

    2015-10-01

    Dihydrofolate reductase (DHFR) is essential for the conversion of folic acid to active folate needed for one-carbon metabolism. Common genetic variation within DHFR is restricted to the noncoding regions, and previous studies have focused on a 19 bp deletion/insertion polymorphism (rs70991108) within intron 1. Reports of an association between this polymorphism and blood folate biomarker concentrations are conflicting. In this study, we evaluated whether the DHFR 19 bp deletion/insertion polymorphism affects circulating folate biomarkers in, to our knowledge, the largest cohort to address this question to date. Healthy young Irish individuals (n = 2507) between 19 and 36 y of age were recruited between February 2003 and February 2004. Folic acid intake from supplements and fortified foods was assessed with the use of a customized food intake questionnaire. Concentrations of serum folate and vitamin B-12, red blood cell (RBC) folate, and plasma total homocysteine (tHcy) were measured. Data were analyzed with the use of linear regression models. Folic acid intake was positively associated with serum (P folic acid intake (>326 μg folic acid/d; P = 0.96). A nonsignificant trend toward lower RBC folate by genotype (P = 0.09) was observed in the lowest folic acid intake quintile (0-51 μg/d). In this cohort of healthy young individuals, the DHFR 19 bp deletion allele did not significantly affect circulating folate status, irrespective of folic acid intake. Our data rule out a strong functional effect from this polymorphism on blood folate concentrations. © 2015 American Society for Nutrition.

  10. Crystal Structures of Wild-type and Mutant Methicillin-resistant Staphylococcus aureus Dihydrofolate Reductase Reveal an Alternative Conformation of NADPH that may be Linked to Trimethoprim Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Frey, K.; Liu, J; Lombardo, M; Bolstad, D; Wright, D; Anderson, A

    2009-01-01

    Both hospital- and community-acquired Staphylococcus aureus infections have become major health concerns in terms of morbidity, suffering and cost. Trimethoprim-sulfamethoxazole (TMP-SMZ) is an alternative treatment for methicillin-resistant S. aureus (MRSA) infections. However, TMP-resistant strains have arisen with point mutations in dihydrofolate reductase (DHFR), the target for TMP. A single point mutation, F98Y, has been shown biochemically to confer the majority of this resistance to TMP. Using a structure-based approach, we have designed a series of novel propargyl-linked DHFR inhibitors that are active against several trimethoprim-resistant enzymes. We screened this series against wild-type and mutant (F98Y) S. aureus DHFR and found that several are active against both enzymes and specifically that the meta-biphenyl class of these inhibitors is the most potent. In order to understand the structural basis of this potency, we determined eight high-resolution crystal structures: four each of the wild-type and mutant DHFR enzymes bound to various propargyl-linked DHFR inhibitors. In addition to explaining the structure-activity relationships, several of the structures reveal a novel conformation for the cofactor, NADPH. In this new conformation that is predominantly associated with the mutant enzyme, the nicotinamide ring is displaced from its conserved location and three water molecules complete a network of hydrogen bonds between the nicotinamide ring and the protein. In this new position, NADPH has reduced interactions with the inhibitor. An equilibrium between the two conformations of NADPH, implied by their occupancies in the eight crystal structures, is influenced both by the ligand and the F98Y mutation. The mutation induced equilibrium between two NADPH-binding conformations may contribute to decrease TMP binding and thus may be responsible for TMP resistance.

  11. Structure-based approach to pharmacophore identification, in silico screening, and three-dimensional quantitative structure-activity relationship studies for inhibitors of Trypanosoma cruzi dihydrofolate reductase function

    Energy Technology Data Exchange (ETDEWEB)

    Schormann, N.; Senkovich, O.; Walker, K.; Wright, D.L.; Anderson, A.C.; Rosowsky, A.; Ananthan, S.; Shinkre, B.; Velu, S.; Chattopadhyay, D. (UAB); (Connecticut); (Southern Research); (DFCI)

    2009-07-10

    We have employed a structure-based three-dimensional quantitative structure-activity relationship (3D-QSAR) approach to predict the biochemical activity for inhibitors of T. cruzi dihydrofolate reductase-thymidylate synthase (DHFR-TS). Crystal structures of complexes of the enzyme with eight different inhibitors of the DHFR activity together with the structure in the substrate-free state (DHFR domain) were used to validate and refine docking poses of ligands that constitute likely active conformations. Structural information from these complexes formed the basis for the structure-based alignment used as input for the QSAR study. Contrary to indirect ligand-based approaches the strategy described here employs a direct receptor-based approach. The goal is to generate a library of selective lead inhibitors for further development as antiparasitic agents. 3D-QSAR models were obtained for T. cruzi DHFR-TS (30 inhibitors in learning set) and human DHFR (36 inhibitors in learning set) that show a very good agreement between experimental and predicted enzyme inhibition data. For crossvalidation of the QSAR model(s), we have used the 10% leave-one-out method. The derived 3D-QSAR models were tested against a few selected compounds (a small test set of six inhibitors for each enzyme) with known activity, which were not part of the learning set, and the quality of prediction of the initial 3D-QSAR models demonstrated that such studies are feasible. Further refinement of the models through integration of additional activity data and optimization of reliable docking poses is expected to lead to an improved predictive ability.

  12. An innovative strategy for dual inhibitor design and its application in dual inhibition of human thymidylate synthase and dihydrofolate reductase enzymes.

    Directory of Open Access Journals (Sweden)

    Mahreen Arooj

    Full Text Available Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. We have developed a novel computational approach by integrating the affinity predictions from structure-based virtual screening with dual ligand-based pharmacophore to discover potential dual inhibitors of human Thymidylate synthase (hTS and human dihydrofolate reductase (hDHFR. These are the key enzymes in folate metabolic pathway that is necessary for the biosynthesis of RNA, DNA, and protein. Their inhibition has found clinical utility as antitumor, antimicrobial, and antiprotozoal agents. A druglike database was utilized to perform dual-target docking studies. Hits identified through docking experiments were mapped over a dual pharmacophore which was developed from experimentally known dual inhibitors of hTS and hDHFR. Pharmacophore mapping procedure helped us in eliminating the compounds which do not possess basic chemical features necessary for dual inhibition. Finally, three structurally diverse hit compounds that showed key interactions at both active sites, mapped well upon the dual pharmacophore, and exhibited lowest binding energies were regarded as possible dual inhibitors of hTS and hDHFR. Furthermore, optimization studies were performed for final dual hit compound and eight optimized dual hits demonstrating excellent binding features at target systems were also regarded as possible dual inhibitors of hTS and hDHFR. In general, the strategy used in the current study could be a promising computational approach and may be generally applicable to other dual target drug designs.

  13. /sup 13/C NMR studies of bacterial dihydrofolate reductase containing (methyl-/sup 13/C)methionine and (guanido-/sup 13/C)arginine. [Streptococcus

    Energy Technology Data Exchange (ETDEWEB)

    Matwiyoff, N.A.; London, R.E.; Walker, T.E.; Blakley, R.L.; Cocco, L.

    1978-01-01

    (Methyl-/sup 13/C)methionine and (guanido-/sup 13/C)arginine have been incorporated with high efficiency by Streptococcus faecium var. Durans strain A into dihydrofolate reductase isoenzyme 2 and /sup 13/C NMR spectra have been obtained for the labeled enzymes and their complexes with substrates, co-factors, and inhibitors. The /sup 13/C NMR spectra exhibit a high degree of discrimination--up to six guanido-/sup 13/C resonances spanning a 1.2 ppM range have been resolved for the eight arginine residues and, under certain conditions, seven methyl-/sup 13/C resonances spanning a 3 ppM chemical shift range have been resolved for the seven methionine residues of the enzyme. The /sup 13/C chemical shifts and spin lattice relaxation times of these distinct, relatively narrow resonances can be interpreted in terms of the conformational states of the enzyme and the interactions of the /sup 13/C-labeled residues with bound ligands. In a larger context, the results reported here provide experimental data which bear on a central question in the use of /sup 13/C NMR spectroscopy to probe the structure of labeled macromolecules, vis.: Where should the /sup 13/C label be incorporated to ensure a relatively narrow resonance whose chemical shift is nonetheless sensitive to perturbations of the macromolecule. Contrary to one accepted view, this study demonstrates that a significant degree of internal motion for a class of amino acid residues is not necessarily incompatible with a large chemical shift dispersion within the class.

  14. Synthesis and molecular docking against dihydrofolate reductase of novel pyridin-N-ethyl-N-methylbenzenesulfonamides as efficient anticancer and antimicrobial agents

    Science.gov (United States)

    Debbabi, Khaled F.; Bashandy, Mahmoud S.; Al-Harbi, Sami A.; Aljuhani, Enas H.; Al-Saidi, Hamed M.

    2017-03-01

    This article describes the synthesis of some novel sulfonamides having biologically active pyridine 21-28. Starting with 4-(1-(2-(2-cyanoacetyl)hydrazono)ethyl)-N-ethyl-N-methylbenzenesulfonamide (2), which was prepared from condensation of acetophenone derivative 1 with 2-cyanoacetohydrazide. Interaction of compound 2 with different aldehydes namely 4-fluorobenzaldehyde, 4-hydroxybenzaldehyde and 4-N,N-dimethylbenzaldehyde afforded the corresponding hydrazono-ethyl-N-ethyl-N-methylbenzene sulfonamides 18-20 respectively, which when reacted with malononitrile and ethyl cyanoacetate afforded compounds 21-26 respectively. These compounds 21-26 can be prepared by another reaction route by interaction of compounds 2 with arylidine malononitrile and arylidine ethyl cyanoacetate in refluxing dioxane in the presence of trimethylamine as catalyst. Interaction of compound 2 with malononitrile and ethyl cyanoacetate afforded oxopyridine derivatives 27 and 28 respectively. All the new prepared compounds were evaluated for their antitumor activities against the cell lines MCF-7 in comparison with the reference drug Doxorubicin using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay. Compounds 25, 21, 23 with SI values of 9.72, 9.71, 8.81 respectively, exhibited better activity than doxorubicin (Dox) as a reference drug with SI value of 8.49. In addition, compounds 25, 27 and 22 exhibited anti-bacterial activity against gram-negative bacteria (Klebsiella pneumoniae) with inhibition zones 22.6, 20.3 and 19.3 mm respectively, which were more active than gentamicin as a reference drug with inhibition zone 17.3 mm. Molecular Operating Environment (MOE) performed virtual screening using molecular docking studies of the synthesized compounds. The results indicated that some synthesized compounds suitable inhibitor against dihydrofolate reductase (DHFR) enzyme (PDB SD: 4DFR) with further modification.

  15. Frequencies distribution of dihydrofolate reductase and dihydropteroate synthetase mutant alleles associated with sulfadoxine-pyrimethamine resistance in Plasmodium falciparum population from Hadhramout Governorate, Yemen.

    Science.gov (United States)

    Bamaga, Omar A A; Mahdy, Mohammed A K; Lim, Yvonne A L

    2015-12-22

    Malaria in Yemen is mainly caused by Plasmodium falciparum and 25% of the population is at high risk. Sulfadoxine-pyrimethamine (SP) had been used as monotherapy against P. falciparum. Emergence of chloroquine resistance led to the shift in anti-malarial treatment policy in Yemen to artemisinin-based combination therapy, that is artesunate (AS) plus SP as first-line therapy for uncomplicated malaria and artemether-lumefantrine as second-line treatment. This study aimed to screen mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps) genes associated with SP resistance among P. falciparum population in Hadhramout governorate, Yemen. Genomic DNA was extracted from dried blood spots of 137 P. falciparum isolates collected from a community-based study. DNA was amplified using nested polymerase chain reaction (PCR) and subsequently sequenced for Pfdhfr and Pfdhps genes. Sequences were analysed for mutations in Pfdhfr gene codons 51, 59, 108, and 164 and in Pfdhps gene codons 436, 437, and 540. A total of 128 and 114 P. falciparum isolates were successfully sequenced for Pfdhfr and Pfdhps genes, respectively. Each Pfdhfr mutant allele (I51 and N108) in P. falciparum population had a frequency of 84%. Pfdhfr R59 mutant allele was detected in one isolate. Mutation at codon 437 (G437) in the Pfdhps gene was detected in 44.7% of falciparum malaria isolates. Frequencies of Pfdhfr double mutant genotype (I51C59N108I164) and Pfdhfr/Pfdhps triple mutant genotype (I51C59N108I164-S436G437K540) were 82.8 and 39.3%, respectively. One isolate harboured Pfdhfr triple mutant genotype (I51, R59, N108, I164) and Pfdhfr/Pfdhps quadruple mutant genotype (I51R59N108I164-S436G437K540). High frequencies of Pfdhfr and Pfdhps mutant alleles and genotypes in P. falciparum population in Hadhramout, Yemen, highlight the risk of developing resistance for SP, the partner drug of AS, which subsequently will expose the parasite to AS monotherapy increasing then the

  16. Prediction of Plasmodium falciparum resistance to sulfadoxine/pyrimethamine in vivo by mutations in the dihydrofolate reductase and dihydropteroate synthetase genes: a comparative study between sites of differing endemicity

    DEFF Research Database (Denmark)

    Alifrangis, Michael; Enosse, Sonja; Khalil, Insaf F

    2003-01-01

    in vivo. The prevalence of mutations in dhfr and dhps in relation to S/P efficacy was studied in four sites of differing endemicity in Sudan, Mozambique, and Tanzania. The sites were organized in order of increasing resistance and a significant increase in the prevalence of triple mutations in codons c51...... recently. However, changes in susceptibility within the same area with moderate levels of resistance may be possible by longitudinal surveillance of a subset of dhfr/dhps mutations that has been associated with S/P resistance in vivo in a defined location.......Plasmodium falciparum resistance to sulfadoxine/pyrimethamine (S/P) is due to mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhfr) genes. Large-scale screening of the prevalence of these mutations could facilitate the surveillance of the level of S/P resistance...

  17. Pyridine Nucleotide Complexes with Bacillus anthracis Coenzyme A-Disulfide Reductase: A Structural Analysis of Dual NAD(P)H Specificity

    Energy Technology Data Exchange (ETDEWEB)

    Wallen,J.; Paige, C.; Mallett, T.; Karplus, P.; Claiborne, A.

    2008-01-01

    We have recently reported that CoASH is the major low-molecular weight thiol in Bacillus anthracis, and we have now characterized the kinetic and redox properties of the B. anthracis coenzyme A-disulfide reductase (CoADR, BACoADR) and determined the crystal structure at 2.30 Angstroms resolution. While the Staphylococcus aureus and Borrelia burgdorferi CoADRs exhibit strong preferences for NADPH and NADH, respectively, B. anthracis CoADR can use either pyridine nucleotide equally well. Sequence elements within the respective NAD(P)H-binding motifs correctly reflect the preferences for S. aureus and Bo. burgdorferi CoADRs, but leave questions as to how BACoADR can interact with both pyridine nucleotides. The structures of the NADH and NADPH complexes at ca. 2.3 Angstroms resolution reveal that a loop consisting of residues Glu180-Thr187 becomes ordered and changes conformation on NAD(P)H binding. NADH and NADPH interact with nearly identical conformations of this loop; the latter interaction, however, involves a novel binding mode in which the 2'-phosphate of NADPH points out toward solvent. In addition, the NAD(P)H-reduced BACoADR structures provide the first view of the reduced form (Cys42-SH/CoASH) of the Cys42-SSCoA redox center. The Cys42-SH side chain adopts a new conformation in which the conserved Tyr367'-OH and Tyr425'-OH interact with the nascent thiol(ate) on the flavin si-face. Kinetic data with Y367F, Y425F, and Y367, 425F BACoADR mutants indicate that Tyr425' is the primary proton donor in catalysis, with Tyr367' functioning as a cryptic alternate donor in the absence of Tyr425'.

  18. Role of Mutations in Dihydrofolate Reductase DfrA (Rv2763c) and Thymidylate Synthase ThyA (Rv2764c) in Mycobacterium tuberculosis Drug Resistance

    KAUST Repository

    Koser, C. U.

    2010-09-17

    We would like to comment on a number of recent reports in this journal (6, 8, 12, 18) concerning Mycobacterium tuberculosis dihydrofolate reductase (DHFR), encoded by dfrA (Rv2763c). Around 36% of phenotypically para-aminosalicylic acid (PAS)-resistant M. tuberculosis strains harbor mutations in thyA (Rv2764c), which encodes a thymidylate synthase (20). In their effort to elucidate the remaining unknown resistance mechanism(s), Mathys et al. extended their sequence analysis to a number of additional genes, including dfrA (12). It was unclear whether the three dfrA mutations they identified in the PAS-resistant strains P-693 and P-3158 could contribute to PAS resistance on their own. Nonetheless, these findings are notable for two reasons. First, isoniazid (INH) has been shown to inhibit M. tuberculosis DHFR in vitro (1). Whether the same holds true for ethionamide, which shares a number of common resistance mechanisms with INH, was not tested (J. Blanchard, personal communication). In any case, the clinical relevance of DHFR-mediated INH resistance remains enigmatic. To date, only Ho et al. have addressed this question, but they did not identify any dfrA mutations in a screen of 127 INH-resistant clinical isolates (8). Consequently, Mathys et al. remain the first to describe mutations in this target (12). However, given that isolates with mutated DHFR are members of a cluster with baseline INH resistance, the importance of these mutations with respect to INH resistance remains unclear. Irrespective of their relevance in INH resistance, these dfrA mutations are noteworthy for a second reason. Contrary to previous wisdom, Forgacs et al. recently showed that M. tuberculosis is sensitive to the drug combination trimethoprim-sulfamethoxazole (TMP-SMX) (6, 18). DHFR is competitively inhibited by TMP, and consequently, mutations therein lead to resistance in a variety of organisms (9, 16, 19). The crystal structures of the wild-type M. tuberculosis DHFR in complex with

  19. Screening for dihydrofolate reductase inhibitors using MOLPRINT 2D, a fast fragment-based method employing the naïve Bayesian classifier: limitations of the descriptor and the importance of balanced chemistry in training and test sets.

    Science.gov (United States)

    Bender, Andreas; Mussa, Hamse Y; Glen, Robert C

    2005-10-01

    A fragment-based similarity searching method, MOLPRINT 2D, was employed for virtual screening of Escherichia coli dihydrofolate reductase inhibitors. Using the original training set of 50,000 compounds, only marginal enrichment factors (between 1 and 3) could be achieved on the test library. The active structures contained in the training and test libraries represented different types of "chemistry", that is, different substructural features associated with activity. Training and test sets were pooled in a 2nd step and randomly split into training and test of equal size, with the objective of smoothing out the different chemical characteristics of both libraries. In a 10-fold cross-validation study on the new training and test sets, typically 10-fold enrichment could be found in the first 96 positions, 4-fold enrichment in the first 384 positions, and 3-fold enrichment in the first 1536 positions, corresponding to 6, 10, and 28 hits, respectively (out of a total of 307; activity defined as average residual activity of less than 80%). The conclusions are 2-fold. On one hand, the exact fragment-matching similarity searching method employed here is not capable of finding completely novel hit structures. On the other hand, this study emphasizes the requirement for a comparable distribution of chemical features of the training and test sets. MOLPRINT 2D is freely downloadable from http://www.cheminformatics.org.

  20. Molecular epidemiology of malaria in Cameroon. XXX. sequence analysis of Plasmodium falciparum ATPase 6, dihydrofolate reductase, and dihydropteroate synthase resistance markers in clinical isolates from children treated with an artesunate-sulfadoxine-pyrimethamine combination.

    Science.gov (United States)

    Menemedengue, Virginie; Sahnouni, Khalifa; Basco, Leonardo; Tahar, Rachida

    2011-07-01

    Plasmodium falciparum dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes are reliable molecular markers for antifolate resistance. The P. falciparum ATPase 6 (pfatp6) gene has been proposed to be a potential marker for artemisinin resistance. In our previous clinical study, we showed that artesunate-sulfadoxine-pyrimethamine is highly effective against uncomplicated malaria in Yaoundé, Cameroon. In the present study, dhfr, dhps, and pfatp6 mutations in P. falciparum isolates obtained from children treated with artesunate-sulfadoxine-pyrimethamine were determined. All 61 isolates had wild-type Pfatp6 263, 623, and 769 alleles, and 11 (18%) had a single E431K substitution. Three additional mutations, E643Q, E432K, and E641Q, were detected. The results did not indicate any warning signal of serious concern (i.e., no parasites were seen with quintuple dhfr-dhps, DHFR Ile164Leu, or pfatp6 mutations), as confirmed by the high clinical efficacy of artesunate-sulfadoxine-pyrimethamine. Further studies are required to identify a molecular marker that reliably predicts artemisinin resistance.

  1. Dihydrofolate-Reductase Mutations in Plasmodium knowlesi Appear Unrelated to Selective Drug Pressure from Putative Human-To-Human Transmission in Sabah, Malaysia.

    Directory of Open Access Journals (Sweden)

    Matthew J Grigg

    Full Text Available Malaria caused by zoonotic Plasmodium knowlesi is an emerging threat in Eastern Malaysia. Despite demonstrated vector competency, it is unknown whether human-to-human (H-H transmission is occurring naturally. We sought evidence of drug selection pressure from the antimalarial sulfadoxine-pyrimethamine (SP as a potential marker of H-H transmission.The P. knowlesi dihdyrofolate-reductase (pkdhfr gene was sequenced from 449 P. knowlesi malaria cases from Sabah (Malaysian Borneo and genotypes evaluated for association with clinical and epidemiological factors. Homology modelling using the pvdhfr template was used to assess the effect of pkdhfr mutations on the pyrimethamine binding pocket.Fourteen non-synonymous mutations were detected, with the most common being at codon T91P (10.2% and R34L (10.0%, resulting in 21 different genotypes, including the wild-type, 14 single mutants, and six double mutants. One third of the P. knowlesi infections were with pkdhfr mutants; 145 (32% patients had single mutants and 14 (3% had double-mutants. In contrast, among the 47 P. falciparum isolates sequenced, three pfdhfr genotypes were found, with the double mutant 108N+59R being fixed and the triple mutants 108N+59R+51I and 108N+59R+164L occurring with frequencies of 4% and 8%, respectively. Two non-random spatio-temporal clusters were identified with pkdhfr genotypes. There was no association between pkdhfr mutations and hyperparasitaemia or malaria severity, both hypothesized to be indicators of H-H transmission. The orthologous loci associated with resistance in P. falciparum were not mutated in pkdhfr. Subsequent homology modelling of pkdhfr revealed gene loci 13, 53, 120, and 173 as being critical for pyrimethamine binding, however, there were no mutations at these sites among the 449 P. knowlesi isolates.Although moderate diversity was observed in pkdhfr in Sabah, there was no evidence this reflected selective antifolate drug pressure in humans.

  2. Dihydrofolate-Reductase Mutations in Plasmodium knowlesi Appear Unrelated to Selective Drug Pressure from Putative Human-To-Human Transmission in Sabah, Malaysia.

    Science.gov (United States)

    Grigg, Matthew J; Barber, Bridget E; Marfurt, Jutta; Imwong, Mallika; William, Timothy; Bird, Elspeth; Piera, Kim A; Aziz, Ammar; Boonyuen, Usa; Drakeley, Christopher J; Cox, Jonathan; White, Nicholas J; Cheng, Qin; Yeo, Tsin W; Auburn, Sarah; Anstey, Nicholas M

    2016-01-01

    Malaria caused by zoonotic Plasmodium knowlesi is an emerging threat in Eastern Malaysia. Despite demonstrated vector competency, it is unknown whether human-to-human (H-H) transmission is occurring naturally. We sought evidence of drug selection pressure from the antimalarial sulfadoxine-pyrimethamine (SP) as a potential marker of H-H transmission. The P. knowlesi dihdyrofolate-reductase (pkdhfr) gene was sequenced from 449 P. knowlesi malaria cases from Sabah (Malaysian Borneo) and genotypes evaluated for association with clinical and epidemiological factors. Homology modelling using the pvdhfr template was used to assess the effect of pkdhfr mutations on the pyrimethamine binding pocket. Fourteen non-synonymous mutations were detected, with the most common being at codon T91P (10.2%) and R34L (10.0%), resulting in 21 different genotypes, including the wild-type, 14 single mutants, and six double mutants. One third of the P. knowlesi infections were with pkdhfr mutants; 145 (32%) patients had single mutants and 14 (3%) had double-mutants. In contrast, among the 47 P. falciparum isolates sequenced, three pfdhfr genotypes were found, with the double mutant 108N+59R being fixed and the triple mutants 108N+59R+51I and 108N+59R+164L occurring with frequencies of 4% and 8%, respectively. Two non-random spatio-temporal clusters were identified with pkdhfr genotypes. There was no association between pkdhfr mutations and hyperparasitaemia or malaria severity, both hypothesized to be indicators of H-H transmission. The orthologous loci associated with resistance in P. falciparum were not mutated in pkdhfr. Subsequent homology modelling of pkdhfr revealed gene loci 13, 53, 120, and 173 as being critical for pyrimethamine binding, however, there were no mutations at these sites among the 449 P. knowlesi isolates. Although moderate diversity was observed in pkdhfr in Sabah, there was no evidence this reflected selective antifolate drug pressure in humans.

  3. Unraveling the role of protein dynamics in dihydrofolate reductase catalysis

    Science.gov (United States)

    Luk, Louis Y. P.; Javier Ruiz-Pernía, J.; Dawson, William M.; Roca, Maite; Loveridge, E. Joel; Glowacki, David R.; Harvey, Jeremy N.; Mulholland, Adrian J.; Tuñón, Iñaki; Moliner, Vicent; Allemann, Rudolf K.

    2013-01-01

    Protein dynamics have controversially been proposed to be at the heart of enzyme catalysis, but identification and analysis of dynamical effects in enzyme-catalyzed reactions have proved very challenging. Here, we tackle this question by comparing an enzyme with its heavy (15N, 13C, 2H substituted) counterpart, providing a subtle probe of dynamics. The crucial hydride transfer step of the reaction (the chemical step) occurs more slowly in the heavy enzyme. A combination of experimental results, quantum mechanics/molecular mechanics simulations, and theoretical analyses identify the origins of the observed differences in reactivity. The generally slightly slower reaction in the heavy enzyme reflects differences in environmental coupling to the hydride transfer step. Importantly, the barrier and contribution of quantum tunneling are not affected, indicating no significant role for “promoting motions” in driving tunneling or modulating the barrier. The chemical step is slower in the heavy enzyme because protein motions coupled to the reaction coordinate are slower. The fact that the heavy enzyme is only slightly less active than its light counterpart shows that protein dynamics have a small, but measurable, effect on the chemical reaction rate. PMID:24065822

  4. Bioinformatic analysis of dihydrofolate reductase predicted in the ...

    African Journals Online (AJOL)

    olayemitoyin

    these health-promoting characteristics are still investigated ... exceeds dietary intake and affects the folate status of the host. ..... (2002). The influence of folate and multivitamin use on the familial risk of colon cancer in women. Cancer Epidemiol. Biomarkers Prev, 11: 227–234. Gill, S.R., Pop, M., Deboy, R.T., Eckburg, P.B.,.

  5. Disinfection of Vegetative Cells of Bacillus anthracis

    Science.gov (United States)

    2016-03-01

    Society for Microbiology ; New Orleans, LA, 2004. American Public Health Association. Standard Methods for the Examination of Water and Wastewater...Disinfection kinetics of vegetative cells of Bacillus anthracis in water with free available chlorine ([FAC] 2 mg/L) and monochloramine ([MC] 2 mg/L) were...anthracis. Bacillus anthracis cells Drinking water Chlorine demand-free (CDF

  6. Application of in vivo induced antigen technology (IVIAT to Bacillus anthracis.

    Directory of Open Access Journals (Sweden)

    Sean M Rollins

    Full Text Available In vivo induced antigen technology (IVIAT is an immuno-screening technique that identifies bacterial antigens expressed during infection and not during standard in vitro culturing conditions. We applied IVIAT to Bacillus anthracis and identified PagA, seven members of a N-acetylmuramoyl-L-alanine amidase autolysin family, three P60 family lipoproteins, two transporters, spore cortex lytic protein SleB, a penicillin binding protein, a putative prophage holin, respiratory nitrate reductase NarG, and three proteins of unknown function. Using quantitative real-time PCR comparing RNA isolated from in vitro cultured B. anthracis to RNA isolated from BALB/c mice infected with virulent Ames strain B. anthracis, we confirmed induced expression in vivo for a subset of B. anthracis genes identified by IVIAT, including L-alanine amidases BA3767, BA4073, and amiA (pXO2-42; the bacteriophage holin gene BA4074; and pagA (pXO1-110. The exogenous addition of two purified putative autolysins identified by IVIAT, N-acetylmuramoyl-L-alanine amidases BA0485 and BA2446, to vegetative B. anthracis cell suspensions induced a species-specific change in bacterial morphology and reduction in viable bacterial cells. Many of the proteins identified in our screen are predicted to affect peptidoglycan re-modeling, and our results support significant cell wall structural remodeling activity during B. anthracis infection. Identification of L-alanine amidases with B. anthracis specificity may suggest new potential therapeutic targets.

  7. Purification and properties of the dihydrofolate synthetase from Serratia indica

    International Nuclear Information System (INIS)

    Ikeda, Masamichi; Iwai, Kazuo

    1976-01-01

    The dihydrofolate synthetase (EC6.3.2.12) responsible for catalyzing the synthesis of dihydrofolic acid from dihydropteroic acid and L-glutamic acid was purified about 130-fold from extracts of Serratia indica IFO 3759 by ammonium sulfate fractionation, DEAE-Sephadex column chromatography, Sephadex G-200 gel filtration, and DEAE-cellulose column chromatography. The enzyme preparation obtained was shown to be homogeneous by DEAE-cellulose column chromatography and ultracentrifugal analysis. The sedimentation coefficient of this enzyme was 3.9 S, and the molecular weight was determined to be about 47,000 by Sephadex G-100. The optimum pH for the reaction was 9.0. The enzymatic reaction required dihydropteroate, L-glutamate and ATP as substrates, and Mg 2+ and K + as cofactors. γ-L-Glutamyl-L-glutamic acid cannot replace L-glutamic acid as the substrate. Neither pteroic acid nor tetrahydropteroic acid can be used as the substrate. ATP was partially replaced by ITP or GTP. The enzyme reaction was inhibited by the addition of ADP, but not by AMP. One mole of dihydrofolate, 1 mole of ADP and 1 mole of orthophosphate were produced from each 1 mole of dihydropteroic acid, L-glutamic acid, and ATP. These results suggest that the systematic name for the dihydrofolate synthetase is 7,8-dihydropteroate: L-glutamate ligase (ADP). (auth.)

  8. Dihydrofolate reductase amplification and sensitization to methotrexate of methotrexate-resistant colon cancer cells

    DEFF Research Database (Denmark)

    Morales Torres, Christina; García, Maria J; Ribas, Maria

    2009-01-01

    Gene amplification is one of the most frequent manifestations of genomic instability in human tumors and plays an important role in tumor progression and acquisition of drug resistance. To better understand the factors involved in acquired resistance to cytotoxic drugs via gene amplification, we ...... to a second round of treatment if left untreated during a sufficient period of time. [Mol Cancer Ther 2009;8(2):424-32]....

  9. Study on Folate Binding Domain of Dihydrofolate Reductase in Different Plant species and Human beings

    OpenAIRE

    Samanta, Aveek; Datta, Animesh Kumar; Datta, Siraj

    2014-01-01

    Data base (NCBI and TIGR) searches are made to retrieve protein sequences of different plant species namely Medicago truncatula, Pisum sativum, Ricinus communis, Arabidopsis thaliana, Vitis vinifera, Glycine max, Daucus carota, Oryza sativa Japonica Group, Arabidopsis lyrata subsp. lyrata, Brachypodium distachyon, Oryza sativa Indica Group, Zea mays and careful alignment of derived sequences shows 95% or higher identity. Similarly, DHFR sequence of human being is also retrieved from NCBI. A p...

  10. Kinetics and thermodynamics of the thermal inactivation and chaperone assisted folding of zebrafish dihydrofolate reductase.

    Science.gov (United States)

    Thapliyal, Charu; Jain, Neha; Rashid, Naira; Chaudhuri Chattopadhyay, Pratima

    2018-01-01

    The maintenance of thermal stability is a major issue in protein engineering as many proteins tend to form inactive aggregates at higher temperatures. Zebrafish DHFR, an essential protein for the survival of cells, shows irreversible thermal unfolding transition. The protein exhibits complete unfolding and loss of activity at 50 °C as monitored by UV-Visible, fluorescence and far UV-CD spectroscopy. The heat induced inactivation of zDHFR follows first-order kinetics and Arrhenius law. The variation in the value of inactivation rate constant, k with increasing temperatures depicts faster inactivation at elevated temperatures. We have attempted to study the chaperoning ability of a shorter variant of GroEL (minichaperone) and compared it with that of conventional GroEL-GroES chaperone system. Both the chaperone system prevented the aggregation and assisted in refolding of zDHFR. The rate of thermal inactivation was significantly retarded in the presence of chaperones which indicate that it enhances the thermal stability of the enzyme. As minichaperone is less complex, and does not require high energy co-factors like ATP, for its function as compared to conventional GroEL-GroES system, it can act as a very good in vitro as well as in vivo chaperone model for monitoring assisted protein folding phenomenon. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Prevalence of Dihydrofolate reductase gene mutations in Plasmodium falciparum isolate from pregnant women in Nigeria

    Directory of Open Access Journals (Sweden)

    Olusola Ojurongbe

    2011-12-01

    Full Text Available We assessed the prevalence of Plasmodium falciparum and the frequency of the dhfr triple mutation that is associated with antifolate drug resistance among P. falciparumisolates obtained from pregnant women in Ilorin, Nigeria. The study included 179 women in the second and third trimester of pregnancy who have been exposed to intermittent preventive treatment in pregnancy (IPTp with sulfadoxinepyrimethamine. Thick and thin blood films and PCR were used for malaria parasite detection. Blood group and hemoglobin concentration were also determined. Mutations in P. falciparum dhfr were analyzed by sequencing DNA obtained from blood spots on filter paper. Prevalence of P. falciparum in the population (PCR corrected was 44.1% (79/179 with 66.7% and 33.3% in the second and third trimester, respectively. Primigravide (51.3% were more infected than multigravide (48.7% but the difference was not statistically significant. Women in blood group A had the highest P. falciparum malaria infection (30.8%. The mean hemoglobin concentration was lower among those infected with malaria parasite. Also, more women with the malaria parasite (38.4% had anemia compare to those without (21.4%. The prevalence of the P. falciparum dhfr mutant alleles was 64.1%, 61.5%, 38.5%, and 12.8% for I51, R59, N108 and T108, respectively. None of the samples had the L164 mutation. The combined triple dhfr mutation (51 + 59 + 108 in the population was 17.9% (7 of 39. Also, the prevalence of the triple mutant alleles was not significantly associated to the number of doses of SP taken by the women. These findings highlight the need for a regular assessment of IPTp/SP efficacy, and evaluation of possible alternative drugs.

  12. Characterization of 21 Strains of Bacillus Anthracis

    National Research Council Canada - National Science Library

    Kournikakis, B

    2000-01-01

    Twenty-one strains of Bacillus anthracis currently held in the culture collection at DRES were characterized by colonial morphology, antibiotic sensitivity and BiologTM metabolic identification profiles...

  13. Interactions between Bacillus anthracis and plants may promote anthrax transmission.

    Directory of Open Access Journals (Sweden)

    Holly H Ganz

    2014-06-01

    Full Text Available Environmental reservoirs are essential in the maintenance and transmission of anthrax but are poorly characterized. The anthrax agent, Bacillus anthracis was long considered an obligate pathogen that is dormant and passively transmitted in the environment. However, a growing number of laboratory studies indicate that, like some of its close relatives, B. anthracis has some activity outside of its vertebrate hosts. Here we show in the field that B. anthracis has significant interactions with a grass that could promote anthrax spore transmission to grazing hosts. Using a local, virulent strain of B. anthracis, we performed a field experiment in an enclosure within a grassland savanna. We found that B. anthracis increased the rate of establishment of a native grass (Enneapogon desvauxii by 50% and that grass seeds exposed to blood reached heights that were 45% taller than controls. Further we detected significant effects of E. desvauxii, B. anthracis, and their interaction on soil bacterial taxa richness and community composition. We did not find any evidence for multiplication or increased longevity of B. anthracis in bulk soil associated with grass compared to controls. Instead interactions between B. anthracis and plants may result in increased host grazing and subsequently increased transmission to hosts.

  14. Inactivation of Bacillus Anthracis Spores Using Carbon Nanotubes

    Science.gov (United States)

    2014-10-30

    effect of SWNTs in combination with antimicrobial chemicals on inactivation of B. anthracis spores; 4) the effect of CNTs coated surfaces on the...2010 31-May-2014 Approved for Public Release; Distribution Unlimited Final Report: (Life Science Division/ Biochemistry ) Inactivation of Bacillus... Biochemistry ) Inactivation of Bacillus Anthracis Spores Using Carbon Nanotubes Report Title The Specific Aims of the project were to investigate: 1) the

  15. Real-Time PCR Identification of Unique Bacillus anthracis Sequences.

    Science.gov (United States)

    Cieślik, P; Knap, J; Kolodziej, M; Mirski, T; Joniec, J; Graniak, G; Zakowska, D; Winnicka, I; Bielawska-Drózd, A

    2015-01-01

    Bacillus anthracis is a spore-forming, Gram-positive microorganism. It is a causative agent of anthrax, a highly infectious disease. It belongs to the "Bacillus cereus group", which contains other closely related species, including Bacillus cereus, Bacillus thuringiensis, Bacillus mycoides, Bacillus weihenstephanensis, and Bacillus pseudomycoides. B. anthracis naturally occurs in soil environments. The BA5345 genetic marker was used for highly specific detection of B. anthracis with TaqMan probes. The detection limit of a real-time PCR assay was estimated at the level of 16.9 copies (CI95% - 37.4 to 37.86, SD = 0.2; SE = 0.118). Oligonucleotides designed for the targeted sequences (within the tested locus) revealed 100 % homology to B. anthracis strain reference sequences deposited in the database (NCBI) and high specificity to all tested B. anthracis strains. Additional in silico analysis of plasmid markers pag and cap genes with B. anthracis strains included in the database was carried out. Our study clearly indicates that the BA5345 marker can be used with success as a chromosomal marker in routine identification of B. anthracis; moreover, detection of plasmid markers indicates virulence of the examined strains.

  16. The implication of dihydrofolate reductase and dihydropteroate synthetase gene mutations in modification of Plasmodium falciparum characteristics

    DEFF Research Database (Denmark)

    A-Elbasit, Ishraga E; Alifrangis, Michael; Khalil, Insaf F

    2007-01-01

    , contributed significantly to the clearance of parasites with multiple dhfr/dhps mutations. However, these mutations have a survival advantage as they were associated with increased gametocytogenesis. The above implications of dhfr/dhps mutations were associated with MOM 2 to 5, regardless of the gene...

  17. Response of Plasmodium falciparum to cotrimoxazole therapy: relationship with plasma drug concentrations and dihydrofolate reductase and dihydropteroate synthase genotypes

    DEFF Research Database (Denmark)

    Khalil, Insaf F; Rønn, Anita M; Alifrangis, Michael

    2005-01-01

    . The presence of dhfr Ile 51 and Asn 108 alone or coupled with dhps Ala-436 among parasites that were cleared after treatment indicates that these alleles alone are insufficient to cause in vivo resistance. However, the presence of the triple mutant dhfr (Ile-51/Arg-59/Asn-108) with the dhps Gly-437 genotype...

  18. Production of functional soluble Dectin-1 glycoprotein using an IRES-linked destabilized-dihydrofolate reductase expression vector.

    Directory of Open Access Journals (Sweden)

    Say Kong Ng

    Full Text Available Dectin-1 (CLEC7A is a C-type lectin receptor that binds to β-glucans found in fungal cell walls to act as a major pattern recognition receptor (PRR. Since β-glucans epitope is not present in human cells, we are of the opinion that Dectin-1 can have therapeutic functions against fungal infections. We thus set out to produce a soluble extracellular domain of murine Dectin-1 (called sDectin-1 in sufficient titers to facilitate such studies in mouse models. Since sDectin-1 has previously been shown to be glycosylated, we chose to produce this protein using Chinese Hamster Ovary (CHO cells, a mammalian host cell line suitable for the high-titer production of recombinant glycoproteins. To ensure a high titer production of sDectin-1 and minimize the effects of gene fragmentation, we constructed a mammalian expression vector with a PEST-destabilized dhfr amplifiable marker downstream of an attenuated IRES element, which was in turn downstream of the sDectin-1 gene and a CMV IE promoter. Stably transfected and MTX-amplified cell pools were generated using this vector, and maximum sDectin-1 titers of 246 mg/l and 598 mg/l were obtained in shake flask batch culture and bioreactor fed-batch culture respectively. The purified recombinant sDectin-1 was shown to be glycosylated. Protein functionality was also demonstrated by its ability to bind to zymosan particles and to the cell wall of Saccharomyces cerevisiae. We describe for the first time the use of an attenuated IRES-linked PEST-destabilized dhfr amplifiable marker for the production of recombinant proteins with stably amplified cell pools. With our process, we reached the highest reported titer for producing recombinant proteins smaller than 50 kDa in cell pools. sDectin-1 protein produced is glycosylated and functional. This vector design can thus be used efficiently for the high-titer production of functional recombinant proteins.

  19. Atomic scale determination of enzyme flexibility and active site stability through static modes: case of dihydrofolate reductase.

    Science.gov (United States)

    Brut, Marie; Estève, Alain; Landa, Georges; Renvez, Guillaume; Djafari Rouhani, Mehdi; Vaisset, Marc

    2011-02-24

    A Static Mode approach is used to screen the biomechanical properties of DHFR. In this approach, a specific external stimulus may be designed at the atomic scale granularity to arrive at a proper molecular mechanism. In this frame, we address the issues related to the overall molecular flexibility versus loop motions and versus enzymatic activity. We show that backbone motions are particularly important to ensure DHFR domain communication and notably highlight the role of a α-helix in Met20 loop motion. We also investigate the active site flexibility in different bound states. Whereas in the occluded conformation the Met20 loop is highly flexible, in the closed conformation backbone motions are no longer significant, the Met20 loop is rigidified by new intra- and intermolecular weak bonds, which stabilizes the complex and promotes the hydride transfer. Finally, while various simulations, including I14 V and I14A mutations, confirm that Ile14 is a key residue in catalytic activity, we isolate and characterize at the atomic scale how a specific intraresidue chemical group makes it possible to assist ligand positioning, to direct the nicotinamide ring toward the folate ring.

  20. Response of Plasmodium falciparum to cotrimoxazole therapy: relationship with plasma drug concentrations and dihydrofolate reductase and dihydropteroate synthase genotypes

    DEFF Research Database (Denmark)

    Khalil, Insaf F; Rønn, Anita M; Alifrangis, Michael

    2005-01-01

    treatment and at days 3, 7, and 14 or upon recrudescence to ascertain drug absorption. Forty patients (89%) had an adequate clinical response, one patient (2%) had an early treatment failure response, while four patients (8%) showed late treatment failure responses. Genotyping of merozoite surface protein 1......, MSP-1, MSP-2, and glutamate-rich protein before treatment and upon recrudescence showed that all recurring parasites were recrudescences. The plasma levels of TRM, AcSMX, and SMX indicated adequate drug absorption in all patients. This suggests parasite resistance as a cause of treatment failure...

  1. Identification of Proteins in the Exosporium of Bacillus Anthracis

    National Research Council Canada - National Science Library

    Redmond, Caroline; Baillie, Leslie W. J; Hibbs, Stephen; Moir, Arthur J. G; Moir, Anne

    2004-01-01

    .... The protein profiles of SDS-PAGE-separated exosporium extracts were similar for all three. This suggests that avirulent variants lacking either or both plasmids are realistic models for studying the exosporium from spores of B. anthracis...

  2. Dendritic Cells Endocytose Bacillus Anthracis Spores: Implications for Anthrax Pathogenesis

    National Research Council Canada - National Science Library

    Brittingham, Katherine C; Ruthel, Gordon; Panchal, Rekha G; Fuller, Claudette L; Ribot, Wilson J

    2005-01-01

    Phagocytosis of inhaled Bacillus anthracis spores and subsequent trafficking to lymph nodes are decisive events in the progression of inhaled anthrax because they initiate germination and dissemination of spores...

  3. Novel giant siphovirus from Bacillus anthracis features unusual genome characteristics.

    Directory of Open Access Journals (Sweden)

    Holly H Ganz

    Full Text Available Here we present vB_BanS-Tsamsa, a novel temperate phage isolated from Bacillus anthracis, the agent responsible for anthrax infections in wildlife, livestock and humans. Tsamsa phage is a giant siphovirus (order Caudovirales, featuring a long, flexible and non-contractile tail of 440 nm (not including baseplate structure and an isometric head of 82 nm in diameter. We induced Tsamsa phage in samples from two different carcass sites in Etosha National Park, Namibia. The Tsamsa phage genome is the largest sequenced Bacillus siphovirus, containing 168,876 bp and 272 ORFs. The genome features an integrase/recombinase enzyme, indicative of a temperate lifestyle. Among bacterial strains tested, the phage infected only certain members of the Bacillus cereus sensu lato group (B. anthracis, B. cereus and B. thuringiensis and exhibited moderate specificity for B. anthracis. Tsamsa lysed seven out of 25 B. cereus strains, two out of five B. thuringiensis strains and six out of seven B. anthracis strains tested. It did not lyse B. anthracis PAK-1, an atypical strain that is also resistant to both gamma phage and cherry phage. The Tsamsa endolysin features a broader lytic spectrum than the phage host range, indicating possible use of the enzyme in Bacillus biocontrol.

  4. Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis.

    Science.gov (United States)

    Wilson, Melissa K; Abergel, Rebecca J; Raymond, Kenneth N; Arceneaux, Jean E L; Byers, B Rowe

    2006-09-15

    Three Bacillus anthracis Sterne strains (USAMRIID, 7702, and 34F2) and Bacillus cereus ATCC 14579 excrete two catecholate siderophores, petrobactin (which contains 3,4-dihydroxybenzoyl moieties) and bacillibactin (which contains 2,3-dihydroxybenzoyl moieties). However, the insecticidal organism Bacillus thuringiensis ATCC 33679 makes only bacillibactin. Analyses of siderophore production by previously isolated [Cendrowski et al., Mol. Microbiol. 52 (2004) 407-417] B. anthracis mutant strains revealed that the B. anthracis bacACEBF operon codes for bacillibactin production and the asbAB gene region is required for petrobactin assembly. The two catecholate moieties also were synthesized by separate routes. PCR amplification identified both asbA and asbB genes in the petrobactin producing strains whereas B. thuringiensis ATCC 33679 retained only asbA. Petrobactin synthesis is not limited to the cluster of B. anthracis strains within the B. cereus sensu lato group (in which B. cereus, B. anthracis, and B. thuringiensis are classified), although petrobactin might be prevalent in strains with pathogenic potential for vertebrates.

  5. Novel giant siphovirus from Bacillus anthracis features unusual genome characteristics.

    Science.gov (United States)

    Ganz, Holly H; Law, Christina; Schmuki, Martina; Eichenseher, Fritz; Calendar, Richard; Loessner, Martin J; Getz, Wayne M; Korlach, Jonas; Beyer, Wolfgang; Klumpp, Jochen

    2014-01-01

    Here we present vB_BanS-Tsamsa, a novel temperate phage isolated from Bacillus anthracis, the agent responsible for anthrax infections in wildlife, livestock and humans. Tsamsa phage is a giant siphovirus (order Caudovirales), featuring a long, flexible and non-contractile tail of 440 nm (not including baseplate structure) and an isometric head of 82 nm in diameter. We induced Tsamsa phage in samples from two different carcass sites in Etosha National Park, Namibia. The Tsamsa phage genome is the largest sequenced Bacillus siphovirus, containing 168,876 bp and 272 ORFs. The genome features an integrase/recombinase enzyme, indicative of a temperate lifestyle. Among bacterial strains tested, the phage infected only certain members of the Bacillus cereus sensu lato group (B. anthracis, B. cereus and B. thuringiensis) and exhibited moderate specificity for B. anthracis. Tsamsa lysed seven out of 25 B. cereus strains, two out of five B. thuringiensis strains and six out of seven B. anthracis strains tested. It did not lyse B. anthracis PAK-1, an atypical strain that is also resistant to both gamma phage and cherry phage. The Tsamsa endolysin features a broader lytic spectrum than the phage host range, indicating possible use of the enzyme in Bacillus biocontrol.

  6. Computational Fluid Dynamics Modeling of Bacillus anthracis ...

    Science.gov (United States)

    Journal Article Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. Four different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Despite the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways of the human at the same air concentration of anthrax spores. This greater deposition of spores in the upper airways in the human resulted in lower penetration and deposition in the tracheobronchial airways and the deep lung than that predict

  7. [Clustered regularly interspaced short palindromic repeats (CRISPR) site in Bacillus anthracis].

    Science.gov (United States)

    Gao, Zhiqi; Wang, Dongshu; Feng, Erling; Wang, Bingxiang; Hui, Yiming; Han, Shaobo; Jiao, Lei; Liu, Xiankai; Wang, Hengliang

    2014-11-04

    To investigate the polymorphism of clustered regularly interspaced short palindromic repeats (CRISPR) in Bacillu santhracis and the application to molecular typing based on the polymorphism of CRISPR in B. anthracis. We downloaded the whole genome sequence of 6 B. anthracis strains and extracted the CRISPR sites. We designed the primers of CRISPR sites and amplified the CRISPR fragments in 193 B. anthracis strains by PCR and sequenced these fragments. In order to reveal the polymorphism of CRISPR in B. anthracis, wealigned all the extracted sequences and sequenced results by local blasting. At the same time, we also analyzed the CRISPR sites in B. cereus and B. thuringiensis. We did not find any polymorphism of CRISPR in B. anthracis. The molecular typing approach based on CRISPR polymorphism is not suitable for B. anthracis, but it is possible for us to distinguish B. anthracis from B. cereus and B. thuringiensis.

  8. Alleged B. anthracis exposure claims in a workers' compensation setting.

    Science.gov (United States)

    Jewell, Gregory; Dunning, Kari; Lockey, James E

    2006-01-01

    Workers' compensation insurance in some states may not provide coverage for medical evaluation costs of workplace exposures related to potential bioterrorism acts if there is no diagnosed illness or disease. Personal insurance also may not provide coverage for these exposures occurring at the workplace. Governmental entities, insurers, and employers need to consider how to address such situations and the associated costs. The objective of this study was to examine characteristics of workers and total costs associated with workers' compensation claims alleging potential exposure to the bioterrorism organism B. anthracis. We examined 192 claims referred for review to the Ohio Bureau of Workers' Compensation (OBWC) from October 10, 2001, through December 20, 2004. Although some cases came from out-of-state areas where B. anthracis exposure was known to exist, no Ohio claim was associated with true B. anthracis exposure or B. anthracis-related illness. Of the 155 eligible claims, 126 included medical costs averaging dollar 219 and ranging from dollar 24 to dollar 3,126. There was no difference in mean cost for government and non-government employees (p = 0.202 Wilcoxon). The number of claims and associated medical costs for evaluation and treatment of potential workplace exposure to B. anthracis were relatively small. These results can be attributed to several factors, including no documented B. anthracis exposures and disease in Ohio and prompt transmission of recommended diagnostic and prophylactic treatment protocols to physicians. How employers, insurers, and jurisdictions address payment for evaluation and treatment of potential or documented exposures resulting from a potential terrorism-related event should be addressed proactively.

  9. Iron reductases from Pseudomonas aeruginosa.

    Science.gov (United States)

    Cox, C D

    1980-01-01

    Cell-free extracts of Pseudomonas aeruginosa contain enzyme activities which reduce Fe(III) to Fe(II) when iron is provided in certain chelates, but not when the iron is uncomplexed. Iron reductase activities for two substrates, ferripyochelin and ferric citrate, appear to be separate enzymes because of differences in heat stabilities, in locations in fractions of cell-free extracts, in reductant specificity, and in apparent sizes during gel filtration chromatography. Ferric citrate iron reductase is an extremely labile activity found in the cytoplasmic fraction, and ferripyochelin iron reductase is a more stable activity found in the periplasmic as well as cytoplasmic fraction of extracts. A small amount of activity detectable in the membrane fraction seemed to be loosely associated with the membranes. Although both enzymes have highest activity reduced nicotinamide adenine dinucleotide, reduced glutathione also worked with ferripyochelin iron reductase. In addition, oxygen caused an irreversible loss of a percentage of the ferripyochelin iron reductase following sparge of reaction mixtures, whereas the reductase for ferric citrate was not appreciably affected by oxygen. PMID:6766439

  10. Indirect Detection Of Bacillus Anthracis (Anthrax) Using Amplified Gamma Phage-Based Assays

    National Research Council Canada - National Science Library

    Reiman, Robert W

    2007-01-01

    The need for a simple, specific, sensitive, inexpensive, accurate, and rapid method to identify Bacillus anthracis became apparent during the Fall 2001 anthrax attacks which caused widespread panic...

  11. Anthrax Lethal Toxin Impairs Innate Immune Functions of Alveolar Macrophages and Facilitates Bacillus anthracis Survival

    National Research Council Canada - National Science Library

    Ribot, Wilson J; Panchal, Rekha G; Brittingham, Katherine C; Ruthel, Gordon; Kenny, Tara A; Lane, Douglas; Curry, Bob; Hoover, Timothy A; Friedlander, Arthur M; Bavari, Sina

    2006-01-01

    .... Although several factors contribute to inhalational anthrax, we hypothesized that unimpeded infection of Bacillus anthracis is directly linked to disabling the innate immune functions contributed by AM...

  12. Literature Review of DNA-Based Subspecies Analysis of Bacillus Anthracis Burkholderia Pseudomallel Burkholderia Mallei, and Yersinia Pestis

    National Research Council Canada - National Science Library

    Harvey, Steven

    1999-01-01

    ...; Bacillus anthracis, Burkholderia pseudomallei, Burkholderia mallei, and Yersinia pestis. Considerable research has been accomplished for the identification of polymorphisms from the strains B. anthracis and B. pseudomallei. The B...

  13. DECONTAMINATION ASSESSMENT OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS, AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACTS USING A HYDROGEN PERIOXIDE GAS GENERATOR

    Science.gov (United States)

    Aims: To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using hydrogen peroxide gas. Methods and Results: B. anthracis, B. subtilis, and G. Stearothermophilus spores were dried on seven...

  14. Historical distribution and molecular diversity of Bacillus anthracis, Kazakhstan.

    Science.gov (United States)

    Aikembayev, Alim M; Lukhnova, Larissa; Temiraliyeva, Gulnara; Meka-Mechenko, Tatyana; Pazylov, Yerlan; Zakaryan, Sarkis; Denissov, Georgiy; Easterday, W Ryan; Van Ert, Matthew N; Keim, Paul; Francesconi, Stephen C; Blackburn, Jason K; Hugh-Jones, Martin; Hadfield, Ted

    2010-05-01

    To map the distribution of anthrax outbreaks and strain subtypes in Kazakhstan during 1937-2005, we combined geographic information system technology and genetic analysis by using archived cultures and data. Biochemical and genetic tests confirmed the identity of 93 archived cultures in the Kazakhstan National Culture Collection as Bacillus anthracis. Multilocus variable number tandem repeat analysis genotyping identified 12 genotypes. Cluster analysis comparing these genotypes with previously published genotypes indicated that most (n = 78) isolates belonged to the previously described A1.a genetic cluster, 6 isolates belonged to the A3.b cluster, and 2 belonged to the A4 cluster. Two genotypes in the collection appeared to represent novel genetic sublineages; 1 of these isolates was from Krygystan. Our data provide a description of the historical, geographic, and genetic diversity of B. anthracis in this Central Asian region.

  15. Genotype Analysis of Bacillus anthracis Strains Circulating in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Farzana Islam Rume

    Full Text Available In Bangladesh, anthrax, caused by the bacterium Bacillus anthracis, is considered an endemic disease affecting ruminants with sporadic zoonotic occurrences in humans. Due to the lack of knowledge about risks from an incorrect removal of infected carcasses, the disease is not properly monitored, and because of the socio-economic conditions, the situation is under-reported and under-diagnosed. For sensitive species, anthrax represents a fatal outcome with sudden death and sometimes bleeding from natural orifices. The most common source of infection for ruminants is ingestion of spores during grazing in contaminated pastures or through grass and water contaminated with anthrax spores. Domestic cattle, sheep and goats can also become infected through contaminated bone meal (used as feed originating from anthrax-infected carcasses. The present investigation was conducted to isolate B. anthracis organisms from 169 samples (73 soil, 1 tissue, 4 bone and 91 bone meal samples collected from 12 different districts of Bangladesh. The sampling was carried out from 2012 to 2015. Twelve samples resulted positive for B. anthracis. Biomolecular analyses were conducted starting from the Canonical Single Nucleotide Polymorphism (CanSNP to analyze the phylogenetic origin of strains. The analysis of genotype, obtained through the Multiple Locus Variable Number Tandem Repeat Analysis (MLVA with the analysis of 15 Variable Number Tandem Repeats (VNTR, demonstrated four different genotypes: two of them were previously identified in the district of Sirajganj. The sub-genotyping, conducted with Single Nucleotide Repeats analysis, revealed the presence of eight subgenotypes. The data of the present study concluded that there was no observed correlation between imported cattle feed and anthrax occurrence in Bangladesh and that the remarkable genetic variations of B. anthracis were found in the soil of numerous outbreaks in this country.

  16. Multigeneration Cross-Contamination of Mail with Bacillus anthracis Spores.

    Directory of Open Access Journals (Sweden)

    Jason Edmonds

    Full Text Available The release of biological agents, including those which could be used in biowarfare or bioterrorism in large urban areas, has been a concern for governments for nearly three decades. Previous incidents from Sverdlosk and the postal anthrax attack of 2001 have raised questions on the mechanism of spread of Bacillus anthracis spores as an aerosol or contaminant. Prior studies have demonstrated that Bacillus atrophaeus is easily transferred through simulated mail handing, but no reports have demonstrated this ability with Bacillus anthracis spores, which have morphological differences that may affect adhesion properties between spore and formite. In this study, equipment developed to simulate interactions across three generations of envelopes subjected to tumbling and mixing was used to evaluate the potential for cross-contamination of B. anthracis spores in simulated mail handling. In these experiments, we found that the potential for cross-contamination through letter tumbling from one generation to the next varied between generations while the presence of a fluidizer had no statistical impact on the transfer of material. Likewise, the presence or absence of a fluidizer had no statistically significant impact on cross-contamination levels or reaerosolization from letter opening.

  17. Isolated menthone reductase and nucleic acid molecules encoding same

    Science.gov (United States)

    Croteau, Rodney B; Davis, Edward M; Ringer, Kerry L

    2013-04-23

    The present invention provides isolated menthone reductase proteins, isolated nucleic acid molecules encoding menthone reductase proteins, methods for expressing and isolating menthone reductase proteins, and transgenic plants expressing elevated levels of menthone reductase protein.

  18. New aspects of the infection mechanisms of Bacillus anthracis.

    Science.gov (United States)

    Zakowska, Dorota; Bartoszcze, Michał; Niemcewicz, Marcin; Bielawska-Drózd, Agata; Kocik, Janusz

    2012-01-01

    Articles concerning new aspects of B. anthracis mechanisms of infection were reviewed. It was found, that the hair follicle plays an important role in the spore germination process. The hair follicle represent an important portal of entry in the course of the cutaneous form of disease infections. After mouse exposition to aerosol of spores prepared from B. anthracis strains, an increase in the level of TNF-α cytokines was observed. The TNF-α cytokines were produced after intrusion into the host by the microorganism. This process may play a significant role in the induced migration of infected cells APCs (Antigen Presenting Cells) via chemotactic signals to the lymph nodes. It was explained that IgG, which binds to the spore surface, activates the adaptive immune system response. As a result, the release C3b opsonin from the spore surface, and mediating of C3 protein fragments of B. anthracis spores phagocytosis by human macrophages, was observed. The genes coding germination spores protein in mutant strains of B. anthracis MIGD was a crucial discovery. According to this, it could be assumed that the activity of B. anthracis spores germination process is dependent upon the sleB, cwlJ1 and cwlJ2 genes, which code the GSLEs lithic enzymes. It was also discovered that the specific antibody for PA20, which binds to the PA20 antigenic determinant, are able to block further PA83 proteolytic fission on the surface of cells. This process neutralized PA functions and weakened the activity of free PA20, which is produced during the PA83 enzyme fission process. Interaction between PA63 monomer and LF may be helpful in the PA63 oligomerization and grouping process, and the creation of LF/PA63 complexes may be a part of an alternative process of assembling the anthrax toxin on the surface of cells. It was found that actin-dependent endocytosis plays an important role in the PA heptamerisation process and leads to blocking the toxin activity. Chaperones, a protein derived from

  19. Differential nitrate accumulation, nitrate reduction, nitrate reductase ...

    African Journals Online (AJOL)

    use

    2011-12-07

    Dec 7, 2011 ... reductase activity and nitrite accumulation depend on the exogenous nitrate. Nitrite itself is reduced to ammonium by palstidic nitrite reductase. Nitrite reductase is activated by both nitrate and nitrite ions by positive feed forward, whereas nitrate metabolites, most likely ammonium and glutamine; down.

  20. Dihydrofolate synthetase and folylpolyglutamate synthetase: direct evidence for intervention of acyl phosphate intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, R.V.; Shane, B.; McGuire, J.J.; Coward, J.K.

    1988-12-13

    The transfer of /sup 17/O and/or /sup 18/O from (COOH-/sup 17/O or -/sup 18/O) enriched substrates to inorganic phosphate (P/sub i/) has been demonstrated for two enzyme-catalyzed reactions involved in folate biosynthesis and glutamylation. COOH-/sup 18/O-labeled folate, methotrexate, and dihydropteroate, in addition to (/sup 17/O)-glutamate, were synthesized and used as substrates for folylpolyglutamate synthetase (FPGS) isolated from Escherichia coli, hog liver, and rat liver and for dihydrofolate synthetase (DHFS) isolated from E. coli. P/sub i/ was purified from the reaction mixtures and converted to trimethyl phosphate (TMP), which was then analyzed for /sup 17/O and /sup 18/O enrichment by nuclear magnetic resonance (NMR) spectroscopy and/or mass spectroscopy. In the reactions catalyzed by the E. coli enzymes, both NMR and quantitative mass spectral analyses established that transfer of the oxygen isotope from the substrate /sup 18/O-enriched carboxyl group to P/sub i/ occurred, thereby providing strong evidence for an acyl phosphate intermediate in both the FPGS- and DHFS-catalyzed reactions. Similar oxygen-transfer experiments were carried out by use of two mammalian enzymes. The small amounts of P/sub i/ obtained from reactions catalyzed by these less abundant FPGS proteins precluded the use of NMR techniques. However, mass spectral analysis of the TMP derived from the mammalian FPGS-catalyzed reactions showed clearly that /sup 18/O transfer had occurred.

  1. Methylenetetrahydrofolate reductase (MTHFR) gene polymorphism ...

    African Journals Online (AJOL)

    Administrator

    2011-10-19

    Oct 19, 2011 ... Polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) gene are associated with abortion, early embryo loss and recurrent spontaneous abortion in human. However, information on the association between MTHFR polymorphism and cow abortion is scarce. In the present study, the effects.

  2. Association between methylenetetrahydrofolate reductase (MTHFR ...

    African Journals Online (AJOL)

    Association between methylenetetrahydrofolate reductase (MTHFR) C677T gene polymorphism and risk of ischemic stroke in North Indian population: A hospital based case–control study. Amit Kumar, Shubham Misra, Anjali Hazarika, Pradeep Kumar, Ram Sagar, Abhishek Pathak, Kamalesh Chakravarty, Kameshwar ...

  3. Methylenetetrahydrofolate reductase (MTHFR) gene polymorphism ...

    African Journals Online (AJOL)

    Polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) gene are associated with abortion, early embryo loss and recurrent spontaneous abortion in human. However, information on the association between MTHFR polymorphism and cow abortion is scarce. In the present study, the effects of MTHFR ...

  4. Trametes versicolor carboxylate reductase uncovered.

    Science.gov (United States)

    Winkler, Margit; Winkler, Christoph K

    The first carboxylate reductase from Trametes versicolor was identified, cloned, and expressed in Escherichia coli . The enzyme reduces aromatic acids such as benzoic acid and derivatives, cinnamic acid, and 3-phenylpropanoic acid, but also aliphatic acids such as octanoic acid are reduced.

  5. A novel multiplex PCR discriminates Bacillus anthracis and its genetically related strains from other Bacillus cereus group species.

    Directory of Open Access Journals (Sweden)

    Hirohito Ogawa

    Full Text Available Anthrax is an important zoonotic disease worldwide that is caused by Bacillus anthracis, a spore-forming pathogenic bacterium. A rapid and sensitive method to detect B. anthracis is important for anthrax risk management and control in animal cases to address public health issues. However, it has recently become difficult to identify B. anthracis by using previously reported molecular-based methods because of the emergence of B. cereus, which causes severe extra-intestinal infection, as well as the human pathogenic B. thuringiensis, both of which are genetically related to B. anthracis. The close genetic relation of chromosomal backgrounds has led to complexity of molecular-based diagnosis. In this study, we established a B. anthracis multiplex PCR that can screen for the presence of B. anthracis virulent plasmids and differentiate B. anthracis and its genetically related strains from other B. cereus group species. Six sets of primers targeting a chromosome of B. anthracis and B. anthracis-like strains, two virulent plasmids, pXO1 and pXO2, a bacterial gene, 16S rRNA gene, and a mammalian gene, actin-beta gene, were designed. The multiplex PCR detected approximately 3.0 CFU of B. anthracis DNA per PCR reaction and was sensitive to B. anthracis. The internal control primers also detected all bacterial and mammalian DNAs examined, indicating the practical applicability of this assay as it enables monitoring of appropriate amplification. The assay was also applied for detection of clinical strains genetically related to B. anthracis, which were B. cereus strains isolated from outbreaks of hospital infections in Japan, and field strains isolated in Zambia, and the assay differentiated B. anthracis and its genetically related strains from other B. cereus group strains. Taken together, the results indicate that the newly developed multiplex PCR is a sensitive and practical method for detecting B. anthracis.

  6. Nitric Oxide as a Regulator of B. anthracis Pathogenicity

    Directory of Open Access Journals (Sweden)

    Serguei G Popov

    2015-09-01

    Full Text Available Nitric oxide (NO is a key physiological regulator in eukaryotic and prokaryotic organisms. It can cause a variety of biological effects by reacting with its targets or/and indirectly inducing oxidative stress. NO can also be produced by bacteria including the pathogenic B. anthracis; however its role in the infectious process only begins to emerge. NO incapacitates macrophages by S-nitrosylating the intracellular proteins and protects B. anthracis from oxidative stress. It is also implicated in the formation of toxic peroxynitrite. In this study we further assessed the effects of B. anthracis NO produced by the NO synthase (bNOS on bacterial metabolism and host cells in experiments with the bNOS knockout Sterne strain. The mutation abrogated accumulation of nitrite and nitrate as tracer products of NO in the culture medium and markedly attenuated growth in both aerobic and microaerobic conditions. The regulatory role of NO was also suggested by the abnormally high rate of nitrate denitrification by the mutant in the presence of oxygen. Anaerobic regulation mediated by NO was reflected in reduced fermentation of glucose by the mutant correlating with the reduced toxicity of bacteria toward host cells in culture. The toxic effect of NO required permeabilization of the target cells as well as the activity of fermentation-derived metabolite in the conditions of reduced pH. The host cells demonstrated increased phosphorylation of major survivor protein kinase AKT correlating with reduced toxicity of the mutant in comparison with Sterne. Our global proteomic analysis of lymph from the lymph nodes of infected mice harboring bacteria revealed numerous changes in the pattern and levels of proteins associated with the activity of bNOS influencing key cell physiological processes relevant to energy metabolism, growth, signal transduction, stress response, septic shock and homeostasis. This is the first in vivo observation of the bacterial NO effect on the

  7. Identification of Bacillus anthracis specific chromosomal sequences by suppressive subtractive hybridization

    Directory of Open Access Journals (Sweden)

    Redkar Rajendra

    2004-02-01

    Full Text Available Abstract Background Bacillus anthracis, Bacillus thuringiensis and Bacillus cereus are closely related members of the B. cereus-group of bacilli. Suppressive subtractive hybridization (SSH was used to identify specific chromosomal sequences unique to B. anthracis. Results Two SSH libraries were generated. Genomic DNA from plasmid-cured B. anthracis was used as the tester DNA in both libraries, while genomic DNA from either B. cereus or B. thuringiensis served as the driver DNA. Progressive screening of the libraries by colony filter and Southern blot analyses identified 29 different clones that were specific for the B. anthracis chromosome relative not only to the respective driver DNAs, but also to seven other different strains of B. cereus and B. thuringiensis included in the process. The nucleotide sequences of the clones were compared with those found in genomic databases, revealing that over half of the clones were located into 2 regions on the B. anthracis chromosome. Conclusions Genes encoding potential cell wall synthesis proteins dominated one region, while bacteriophage-related sequences dominated the other region. The latter supports the hypothesis that acquisition of these bacteriophage sequences occurred during or after speciation of B. anthracis relative to B. cereus and B. thuringiensis. This study provides insight into the chromosomal differences between B. anthracis and its closest phylogenetic relatives.

  8. Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis.

    Science.gov (United States)

    Ivanova, Natalia; Sorokin, Alexei; Anderson, Iain; Galleron, Nathalie; Candelon, Benjamin; Kapatral, Vinayak; Bhattacharyya, Anamitra; Reznik, Gary; Mikhailova, Natalia; Lapidus, Alla; Chu, Lien; Mazur, Michael; Goltsman, Eugene; Larsen, Niels; D'Souza, Mark; Walunas, Theresa; Grechkin, Yuri; Pusch, Gordon; Haselkorn, Robert; Fonstein, Michael; Ehrlich, S Dusko; Overbeek, Ross; Kyrpides, Nikos

    2003-05-01

    Bacillus cereus is an opportunistic pathogen causing food poisoning manifested by diarrhoeal or emetic syndromes. It is closely related to the animal and human pathogen Bacillus anthracis and the insect pathogen Bacillus thuringiensis, the former being used as a biological weapon and the latter as a pesticide. B. anthracis and B. thuringiensis are readily distinguished from B. cereus by the presence of plasmid-borne specific toxins (B. anthracis and B. thuringiensis) and capsule (B. anthracis). But phylogenetic studies based on the analysis of chromosomal genes bring controversial results, and it is unclear whether B. cereus, B. anthracis and B. thuringiensis are varieties of the same species or different species. Here we report the sequencing and analysis of the type strain B. cereus ATCC 14579. The complete genome sequence of B. cereus ATCC 14579 together with the gapped genome of B. anthracis A2012 enables us to perform comparative analysis, and hence to identify the genes that are conserved between B. cereus and B. anthracis, and the genes that are unique for each species. We use the former to clarify the phylogeny of the cereus group, and the latter to determine plasmid-independent species-specific markers.

  9. Germination and persistence of Bacillus anthracis and Bacillus thuringiensis in soil microcosms.

    Science.gov (United States)

    Bishop, A H

    2014-11-01

    Decontaminating large, outdoor spaces of Bacillus anthracis spores presents significant problems, particularly in soil. Proof was sought that the addition of germinant chemicals could cause spores of B. anthracis and Bacillus thuringiensis, a commonly used simulant of the threat agent, to convert to the less resistant vegetative form in a microcosm. Nonsterile plant/soil microcosms were inoculated with spores of B. thuringiensis and two nonpathogenic strains of B. anthracis. A combination of L-alanine (100 mmol l(-1)) and inosine (10 mmol l(-1)) resulted in a 6 log decrease in spore numbers in both strains of B. anthracis over 2 weeks at 22°C; a 3 log decrease in B. anthracis Sterne spore numbers was observed after incubation for 2 weeks at 10°C. Negligible germination nor a decrease in viable count occurred in either strain when the concentration of L-alanine was decreased to 5 mmol l(-1). Germinated spores of B. thuringiensis were able to persist in vegetative form in the microcosms, whereas those of B. anthracis rapidly disappeared. The pleiotropic regulator PlcR, which B. anthracis lacks, does not contribute to the persistence of B. thuringiensis in vegetative form in soil. The principle of adding germinants to soil to trigger the conversion of spores to vegetative form has been demonstrated. Bacillus anthracis failed to persist in vegetative form or resporulate in the microcosms after it had been induced to germinate. The large scale, outdoor decontamination of B. anthracis spores may be facilitated by the application of simple, defined combinations of germinants. © 2014 Crown Copyright. Journal of Applied Microbiology © 2014 Society for Applied Microbiology This article is Published with the permission of the Controller of HMSO and Queen's Printer for Scotland.

  10. Roles of the Bacillus anthracis Spore Protein ExsK in Exosporium Maturation and Germination

    Science.gov (United States)

    2009-12-01

    ligation of a DNA fragment bearing the green fluorescent protein ( GFP ) open reading frame (produced by digestion of pAS5 [28] with BamHI and HindIII...microscopy of B. anthracis (Sterne) sporangia. Phase-contrast (Phase) and fluorescence ( GFP , Hoechst, and Merge) images of B. anthracis exsK- gfp (A, C, E...visualized for GFP fluorescence and DNA staining with Hoechst 33352. VOL. 191, 2009 B. ANTHRACIS EXOSPORIUM MATURATION AND GERMINATION 7589 at U S A M R

  11. Island-wide diversity in single nucleotide polymorphisms of the Plasmodium vivax dihydrofolate reductase and dihydropteroate synthetase genes in Sri Lanka

    DEFF Research Database (Denmark)

    Schousboe, Mette L; Rajakaruna, Rupika S; Salanti, Ali

    2007-01-01

    into the level of drug pressure caused by SP use and presumably other antifolate drugs. In Sri Lanka, chloroquine (CQ) with primaquine (PQ) and SP with PQ is used as first and second line treatment, respectively, against uncomplicated Plasmodium falciparum and/or P. vivax infections. CQ/PQ is still efficacious...... against P. vivax infections, thus SP is rarely used and it is assumed that the prevalence of SNPs related to P. vivax SP resistance is low. However, this has not been assessed in Sri Lanka as in most other parts of Asia. This study describes the prevalence and distribution of SNPs related to P. vivax SP...... resistance across Sri Lanka. SUBJECTS AND METHODS: P. vivax-positive samples were collected from subjects presenting at government health facilities across nine of the major malaria endemic districts on the island. The samples were analysed for SNPs/haplotypes at codon 57, 58, 61 and 117 of the Pvdhfr gene...

  12. Effects of Point Mutations in Plasmodium falciparum Dihydrofolate Reductase and Dihydropterate Synthase Genes on Clinical Outcomes and In Vitro Susceptibility to Sulfadoxine and Pyrimethamine

    Science.gov (United States)

    2009-08-01

    Efficacy of chloroquine, sulfadoxine-pyrimethamine, and mefloquine for the treatment of uncomplicated Plasmodium falciparum malaria on the north coast...Efficacy of sulfadoxine-pyrimethamine and mefloquine for the treatment of uncompli- cated Plasmodium falciparum malaria in the Amazon basin of Peru...Green MD, Bergqvist Y, Mount DL, Corbett S, D’Souza MJ (1999) Improved validated assay for the determination of mefloquine and its carboxy metabolite in

  13. Immunocytochemical localization of APS reductase and bisulfite reductase in three Desulfovibrio species

    NARCIS (Netherlands)

    Kremer, D.R.; Veenhuis, M.; Fauque, G.; Peck Jr., H.D.; LeGall, J.; Lampreia, J.; Moura, J.J.G.; Hansen, T.A.

    1988-01-01

    The localization of APS reductase and bisulfite reductase in Desulfovibrio gigas, D. vulgaris Hildenborough and D. thermophilus was studied by immunoelectron microscopy. Polyclonal antibodies were raised against the purified enzymes from each strain. Cells fixed with formaldehyde/glutaraldehyde were

  14. Structures of two superoxide dismutases from Bacillus anthracis reveal a novel active centre

    International Nuclear Information System (INIS)

    Boucher, Ian W.; Kalliomaa, Anne K.; Levdikov, Vladimir M.; Blagova, Elena V.; Fogg, Mark J.; Brannigan, James A.; Wilson, Keith S.; Wilkinson, Anthony J.

    2005-01-01

    The crystal structures of two manganese superoxide dismutases from B. anthracis were solved by X-ray crystallography using molecular replacement. The BA4499 and BA5696 genes of Bacillus anthracis encode proteins homologous to manganese superoxide dismutase, suggesting that this organism has an expanded repertoire of antioxidant proteins. Differences in metal specificity and quaternary structure between the dismutases of prokaryotes and higher eukaryotes may be exploited in the development of therapeutic antibacterial compounds. Here, the crystal structure of two Mn superoxide dismutases from B. anthracis solved to high resolution are reported. Comparison of their structures reveals that a highly conserved residue near the active centre is substituted in one of the proteins and that this is a characteristic feature of superoxide dismutases from the B. cereus/B. anthracis/B. thuringiensis group of organisms

  15. Indirect Detection Of Bacillus Anthracis (Anthrax) Using Amplified Gamma Phage-Based Assays

    National Research Council Canada - National Science Library

    Reiman, Robert W

    2007-01-01

    ... and ultimately killed five individuals. The Centers for Disease Control and Prevention currently employs agar plate lysis by gamma phage and direct fluorescence assay to confirm the presence of Bacillus anthracis...

  16. Lethality of Bacillus Anthracis Spores Due to Short Duration Heating Measured Using Infrared Spectroscopy

    National Research Council Canada - National Science Library

    Goetz, Kristina M

    2005-01-01

    In this research, Bacillus anthracis spores were subjected to bursts of heat lasting on the order of one second in duration using a laser system to simulate the explosive environment from an agent defeat weapon...

  17. Pharmacokinetics-Pharmacodynamics of Gatifloxacin in a Lethal Murine Bacillus Anthracis Inhalation Infection Model

    National Research Council Canada - National Science Library

    Ambrose, Paul G; Forrest, Alan; Craig, William A; Rubino, Christopher M; Bhavnani, Sujata M; Drusano, George L; Heine, Henery S

    2007-01-01

    We determined the pharmacokinetic-pharmacodynamic (PK-PD) measure most predictive of gatifloxacin efficacy and the magnitude of this measure necessary for survival in a murine Bacillus anthracis inhalation infection model...

  18. Efficacy of Oritavancin in a Murine Model of Bacillus anthracis Spore Inhalation Anthrax

    National Research Council Canada - National Science Library

    Heine, H. S; Bassett, J; Miller, L; Bassett, A; Ivins, B. E; Lehous, D; Arhin, F. F; Parr, Jr., T. R; Moeck, G

    2008-01-01

    The inhaled form of Bacillus anthracis infection may be fatal to humans. The current standard of care for inhalational anthrax postexposure prophylaxis is ciprofloxacin therapy twice daily for 60 days...

  19. FORMALDEHYDE GAS INACTIVATION OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACE MATERIALS.

    Science.gov (United States)

    Research evaluated the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface material using formaldehyde gas. Spores were dried on seven types of indoor surfaces and exposed to 1100 ppm formaldehyde gas for 10 hr. Fo...

  20. Fatty acyl-CoA reductase

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, Steven E.; Somerville, Chris R.

    1998-12-01

    The present invention relates to bacterial enzymes, in particular to an acyl-CoA reductase and a gene encoding an acyl-CoA reductase, the amino acid and nucleic acid sequences corresponding to the reductase polypeptide and gene, respectively, and to methods of obtaining such enzymes, amino acid sequences and nucleic acid sequences. The invention also relates to the use of such sequences to provide transgenic host cells capable of producing fatty alcohols and fatty aldehydes.

  1. Ecological niche modelling of the Bacillus anthracis A1.a sub-lineage in Kazakhstan.

    Science.gov (United States)

    Mullins, Jocelyn; Lukhnova, Larissa; Aikimbayev, Alim; Pazilov, Yerlan; Van Ert, Matthew; Blackburn, Jason K

    2011-12-12

    Bacillus anthracis, the causative agent of anthrax, is a globally distributed zoonotic pathogen that continues to be a veterinary and human health problem in Central Asia. We used a database of anthrax outbreak locations in Kazakhstan and a subset of genotyped isolates to model the geographic distribution and ecological associations of B. anthracis in Kazakhstan. The aims of the study were to test the influence of soil variables on a previous ecological niche based prediction of B. anthracis in Kazakhstan and to determine if a single sub-lineage of B. anthracis occupies a unique ecological niche. The addition of soil variables to the previously developed ecological niche model did not appreciably alter the limits of the predicted geographic or ecological distribution of B. anthracis in Kazakhstan. The A1.a experiment predicted the sub-lineage to be present over a larger geographic area than did the outbreak based experiment containing multiple lineages. Within the geographic area predicted to be suitable for B. anthracis by all ten best subset models, the A1.a sub-lineage was associated with a wider range of ecological tolerances than the outbreak-soil experiment. Analysis of rule types showed that logit rules predominate in the outbreak-soil experiment and range rules in the A1.a sub-lineage experiment. Random sub-setting of locality points suggests that models of B. anthracis distribution may be sensitive to sample size. Our analysis supports careful consideration of the taxonomic resolution of data used to create ecological niche models. Further investigations into the environmental affinities of individual lineages and sub-lineages of B. anthracis will be useful in understanding the ecology of the disease at large and small scales. With model based predictions serving as approximations of disease risk, these efforts will improve the efficacy of public health interventions for anthrax prevention and control.

  2. Identification and Validation of Specific Markers of Bacillus anthracis Spores by Proteomics and Genomics Approaches*

    Science.gov (United States)

    Chenau, Jérôme; Fenaille, François; Caro, Valérie; Haustant, Michel; Diancourt, Laure; Klee, Silke R.; Junot, Christophe; Ezan, Eric; Goossens, Pierre L.; Becher, François

    2014-01-01

    Bacillus anthracis is the causative bacteria of anthrax, an acute and often fatal disease in humans. The infectious agent, the spore, represents a real bioterrorism threat and its specific identification is crucial. However, because of the high genomic relatedness within the Bacillus cereus group, it is still a real challenge to identify B. anthracis spores confidently. Mass spectrometry-based tools represent a powerful approach to the efficient discovery and identification of such protein markers. Here we undertook comparative proteomics analyses of Bacillus anthracis, cereus and thuringiensis spores to identify proteoforms unique to B. anthracis. The marker discovery pipeline developed combined peptide- and protein-centric approaches using liquid chromatography coupled to tandem mass spectrometry experiments using a high resolution/high mass accuracy LTQ-Orbitrap instrument. By combining these data with those from complementary bioinformatics approaches, we were able to highlight a dozen novel proteins consistently observed across all the investigated B. anthracis spores while being absent in B. cereus/thuringiensis spores. To further demonstrate the relevance of these markers and their strict specificity to B. anthracis, the number of strains studied was extended to 55, by including closely related strains such as B. thuringiensis 9727, and above all the B. cereus biovar anthracis CI, CA strains that possess pXO1- and pXO2-like plasmids. Under these conditions, the combination of proteomics and genomics approaches confirms the pertinence of 11 markers. Genes encoding these 11 markers are located on the chromosome, which provides additional targets complementary to the commonly used plasmid-encoded markers. Last but not least, we also report the development of a targeted liquid chromatography coupled to tandem mass spectrometry method involving the selection reaction monitoring mode for the monitoring of the 4 most suitable protein markers. Within a proof

  3. Ecological Niche Modelling of the Bacillus anthracis A1.a sub-lineage in Kazakhstan

    Science.gov (United States)

    2011-01-01

    Background Bacillus anthracis, the causative agent of anthrax, is a globally distributed zoonotic pathogen that continues to be a veterinary and human health problem in Central Asia. We used a database of anthrax outbreak locations in Kazakhstan and a subset of genotyped isolates to model the geographic distribution and ecological associations of B. anthracis in Kazakhstan. The aims of the study were to test the influence of soil variables on a previous ecological niche based prediction of B. anthracis in Kazakhstan and to determine if a single sub-lineage of B. anthracis occupies a unique ecological niche. Results The addition of soil variables to the previously developed ecological niche model did not appreciably alter the limits of the predicted geographic or ecological distribution of B. anthracis in Kazakhstan. The A1.a experiment predicted the sub-lineage to be present over a larger geographic area than did the outbreak based experiment containing multiple lineages. Within the geographic area predicted to be suitable for B. anthracis by all ten best subset models, the A1.a sub-lineage was associated with a wider range of ecological tolerances than the outbreak-soil experiment. Analysis of rule types showed that logit rules predominate in the outbreak-soil experiment and range rules in the A1.a sub-lineage experiment. Random sub-setting of locality points suggests that models of B. anthracis distribution may be sensitive to sample size. Conclusions Our analysis supports careful consideration of the taxonomic resolution of data used to create ecological niche models. Further investigations into the environmental affinities of individual lineages and sub-lineages of B. anthracis will be useful in understanding the ecology of the disease at large and small scales. With model based predictions serving as approximations of disease risk, these efforts will improve the efficacy of public health interventions for anthrax prevention and control. PMID:22152056

  4. Identification of Bacillus anthracis by Using Monoclonal Antibody to Cell Wall Galactose-N-Acetylglucosamine Polysaccharide

    Science.gov (United States)

    1990-02-01

    Bacillus circulans ATCC 4513 b - - NR NT NT NT NT Bacillus coagulans ATCC 7050 b - - NR NT NT NT NT Bacillus eugilitis B-61 f - - NR NT NT NT NT...American Society for Microbiology W Identification of Bacillus anthracis by-U-sing Monoclonal Antibody CC to Cell Wall Galactose-N-Acetylglucosamine...Received 22 June 1989/Accepted 31 October 1989 ’ Guanidine extracts of crude Bacillus anthracis cell wall were used to vaccinate BALB/c mice and to

  5. The Bacillus anthracis chromosome contains four conserved, excision-proficient, putative prophages

    Directory of Open Access Journals (Sweden)

    Sozhamannan Shanmuga

    2006-04-01

    Full Text Available Abstract Background Bacillus anthracis is considered to be a recently emerged clone within the Bacillus cereus sensu lato group. The B. anthracis genome sequence contains four putative lambdoid prophages. We undertook this study in order to understand whether the four prophages are unique to B. anthracis and whether they produce active phages. Results More than 300 geographically and temporally divergent isolates of B. anthracis and its near neighbors were screened by PCR for the presence of specific DNA sequences from each prophage region. Every isolate of B. anthracis screened by PCR was found to produce all four phage-specific amplicons whereas none of the non-B. anthracis isolates, produced more than one phage-specific amplicon. Excision of prophages could be detected by a PCR based assay for attP sites on extra-chromosomal phage circles and for attB sites on phage-excised chromosomes. SYBR-green real-time PCR assays indicated that prophage excision occurs at very low frequencies (2 × 10-5 - 8 × 10-8/cell. Induction with mitomycin C increased the frequency of excision of one of the prophages by approximately 250 fold. All four prophages appear to be defective since, mitomycin C induced culture did not release any viable phage particle or lyse the cells or reveal any phage particle under electron microscopic examination. Conclusion The retention of all four putative prophage regions across all tested strains of B. anthracis is further evidence of the very recent emergence of this lineage and the prophage regions may be useful for differentiating the B. anthracis chromosome from that of its neighbors. All four prophages can excise at low frequencies, but are apparently defective in phage production.

  6. Green tea and epigallocatechin-3-gallate are bactericidal against Bacillus anthracis.

    Science.gov (United States)

    Falcinelli, Shane D; Shi, Maggie C; Friedlander, Arthur M; Chua, Jennifer

    2017-07-03

    Bacillus anthracis, the etiological agent of anthrax, is listed as a category A biothreat agent by the United States Centers for Disease Control and Prevention. The virulence of the organism is due to expression of two exotoxins and capsule, which interfere with host cellular signaling, alter host water homeostasis and inhibit phagocytosis of the pathogen, respectively. Concerns regarding the past and possible future use of B. anthracis as a bioterrorism agent have resulted in an impetus to develop more effective protective measures and therapeutics. In this study, green tea was found to inhibit the in vitro growth of B. anthracis. Epigallocatechin-3-gallate (EGCG), a compound found abundantly in green tea, was shown to be responsible for this activity. EGCG was bactericidal against both the attenuated B. anthracis ANR and the virulent encapsulated B. anthracis Ames strain. This study highlights the antimicrobial activity of green tea and EGCG against anthrax and suggests the need for further investigation of EGCG as a therapeutic candidate against B. anthracis. Published by Oxford University Press on behalf of FEMS 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  7. Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis.

    Science.gov (United States)

    Han, Cliff S; Xie, Gary; Challacombe, Jean F; Altherr, Michael R; Bhotika, Smriti S; Brown, Nancy; Bruce, David; Campbell, Connie S; Campbell, Mary L; Chen, Jin; Chertkov, Olga; Cleland, Cathy; Dimitrijevic, Mira; Doggett, Norman A; Fawcett, John J; Glavina, Tijana; Goodwin, Lynne A; Green, Lance D; Hill, Karen K; Hitchcock, Penny; Jackson, Paul J; Keim, Paul; Kewalramani, Avinash Ramesh; Longmire, Jon; Lucas, Susan; Malfatti, Stephanie; McMurry, Kim; Meincke, Linda J; Misra, Monica; Moseman, Bernice L; Mundt, Mark; Munk, A Christine; Okinaka, Richard T; Parson-Quintana, B; Reilly, Lee Philip; Richardson, Paul; Robinson, Donna L; Rubin, Eddy; Saunders, Elizabeth; Tapia, Roxanne; Tesmer, Judith G; Thayer, Nina; Thompson, Linda S; Tice, Hope; Ticknor, Lawrence O; Wills, Patti L; Brettin, Thomas S; Gilna, Paul

    2006-05-01

    Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis are closely related gram-positive, spore-forming bacteria of the B. cereus sensu lato group. While independently derived strains of B. anthracis reveal conspicuous sequence homogeneity, environmental isolates of B. cereus and B. thuringiensis exhibit extensive genetic diversity. Here we report the sequencing and comparative analysis of the genomes of two members of the B. cereus group, B. thuringiensis 97-27 subsp. konkukian serotype H34, isolated from a necrotic human wound, and B. cereus E33L, which was isolated from a swab of a zebra carcass in Namibia. These two strains, when analyzed by amplified fragment length polymorphism within a collection of over 300 of B. cereus, B. thuringiensis, and B. anthracis isolates, appear closely related to B. anthracis. The B. cereus E33L isolate appears to be the nearest relative to B. anthracis identified thus far. Whole-genome sequencing of B. thuringiensis 97-27and B. cereus E33L was undertaken to identify shared and unique genes among these isolates in comparison to the genomes of pathogenic strains B. anthracis Ames and B. cereus G9241 and nonpathogenic strains B. cereus ATCC 10987 and B. cereus ATCC 14579. Comparison of these genomes revealed differences in terms of virulence, metabolic competence, structural components, and regulatory mechanisms.

  8. The secret life of the anthrax agent Bacillus anthracis: bacteriophage-mediated ecological adaptations.

    Directory of Open Access Journals (Sweden)

    Raymond Schuch

    2009-08-01

    Full Text Available Ecological and genetic factors that govern the occurrence and persistence of anthrax reservoirs in the environment are obscure. A central tenet, based on limited and often conflicting studies, has long held that growing or vegetative forms of Bacillus anthracis survive poorly outside the mammalian host and must sporulate to survive in the environment. Here, we present evidence of a more dynamic lifecycle, whereby interactions with bacterial viruses, or bacteriophages, elicit phenotypic alterations in B. anthracis and the emergence of infected derivatives, or lysogens, with dramatically altered survival capabilities. Using both laboratory and environmental B. anthracis strains, we show that lysogeny can block or promote sporulation depending on the phage, induce exopolysaccharide expression and biofilm formation, and enable the long-term colonization of both an artificial soil environment and the intestinal tract of the invertebrate redworm, Eisenia fetida. All of the B. anthracis lysogens existed in a pseudolysogenic-like state in both the soil and worm gut, shedding phages that could in turn infect non-lysogenic B. anthracis recipients and confer survival phenotypes in those environments. Finally, the mechanism behind several phenotypic changes was found to require phage-encoded bacterial sigma factors and the expression of at least one host-encoded protein predicted to be involved in the colonization of invertebrate intestines. The results here demonstrate that during its environmental phase, bacteriophages provide B. anthracis with alternatives to sporulation that involve the activation of soil-survival and endosymbiotic capabilities.

  9. Oxygen and xenobiotic reductase activities of cytochrome P450.

    NARCIS (Netherlands)

    Goeptar, A.R.; Scheerens, H.; Vermeulen, N.P.E.

    1995-01-01

    The oxygen reductase and xenobiotic reductase activities of cytochrome P450 (P450) are reviewed. During the oxygen reductase activity of P450, molecular oxygen is reduced to superoxide anion radicals (O

  10. Monitoramento Tecnológico de Biossensores para Bacillus anthracis

    OpenAIRE

    Garcia, Rômulo Santiago de Lima

    2017-01-01

    O Exército Brasileiro, por meio da Seção de Defesa Biológica do Instituto de Defesa Química, Biológica, Radiológica e Nuclear, realizou o monitoramento tecnológico de biossensores para Bacillus anthracis em bancos de dados de patentes, para aperfeiçoar as atividades de pesquisa e desenvolvimento de produtos de defesa e analisar as tendências tecnológicas relativas a esta área, especialmente no que se refere aos biosensores ópticos baseados no principio de ressonância de plásmons de superfície...

  11. Decontamination Options for Drinking Water Contaminated with Bacillus anthracis Spores

    Energy Technology Data Exchange (ETDEWEB)

    Raber, E; Burklund, A

    2010-02-16

    Five parameters were evaluated with surrogates of Bacillus anthracis spores to determine effective decontamination options for use in a contaminated drinking water supply. The parameters were: (1) type of Bacillus spore surrogate (B. thuringiensis or B. atrophaeus); (2) spore concentration in suspension (10{sup 2} to 10{sup 6} spores/ml); (3) chemical characteristics of decontaminant [sodium dicholor-s-triazinetrione dihydrate (Dichlor), hydrogen peroxide, potassium peroxymonosulfate (Oxone), sodium hypochlorite, and VirkonS{reg_sign}]; (4) decontaminant concentration (0.01% to 5%); and (5) decontaminant exposure time (10 min to 24 hr). Results from 162 suspension tests with appropriate controls are reported. Hydrogen peroxide at a concentration of 5%, and Dichlor and sodium hypochlorite at a concentration of 2%, were effective at spore inactivation regardless of spore type tested, spore exposure time, or spore concentration evaluated. This is the first reported study of Dichlor as an effective decontaminant for B. anthracis spore surrogates. Dichlor's desirable characteristics of high oxidation potential, high level of free chlorine, and more neutral pH than that of other oxidizers evaluated appear to make it an excellent alternative. All three oxidizers were effective against B. atrophaeus spores in meeting EPA's biocide standard of greater than a 6 log kill after a 10-minute exposure time and at lower concentrations than typically reported for biocide use. Solutions of 5% VirkonS{reg_sign} and Oxone were less effective decontaminants than other options evaluated in this study and did not meet the EPA's efficacy standard for biocides. Differences in methods and procedures reported by other investigators make quantitative comparisons among studies difficult.

  12. Distribution and molecular evolution of bacillus anthracis genotypes in Namibia.

    Directory of Open Access Journals (Sweden)

    Wolfgang Beyer

    Full Text Available The recent development of genetic markers for Bacillus anthracis has made it possible to monitor the spread and distribution of this pathogen during and between anthrax outbreaks. In Namibia, anthrax outbreaks occur annually in the Etosha National Park (ENP and on private game and livestock farms. We genotyped 384 B. anthracis isolates collected between 1983-2010 to identify the possible epidemiological correlations of anthrax outbreaks within and outside the ENP and to analyze genetic relationships between isolates from domestic and wild animals. The isolates came from 20 animal species and from the environment and were genotyped using a 31-marker multi-locus-VNTR-analysis (MLVA and, in part, by twelve single nucleotide polymorphism (SNP markers and four single nucleotide repeat (SNR markers. A total of 37 genotypes (GT were identified by MLVA, belonging to four SNP-groups. All GTs belonged to the A-branch in the cluster- and SNP-analyses. Thirteen GTs were found only outside the ENP, 18 only within the ENP and 6 both inside and outside. Genetic distances between isolates increased with increasing time between isolations. However, genetic distance between isolates at the beginning and end of the study period was relatively small, indicating that while the majority of GTs were only found sporadically, three genetically close GTs, accounting for more than four fifths of all the ENP isolates, appeared dominant throughout the study period. Genetic distances among isolates were significantly greater for isolates from different host species, but this effect was small, suggesting that while species-specific ecological factors may affect exposure processes, transmission cycles in different host species are still highly interrelated. The MLVA data were further used to establish a model of the probable evolution of GTs within the endemic region of the ENP. SNR-analysis was helpful in correlating an isolate with its source but did not elucidate

  13. Distribution and molecular evolution of bacillus anthracis genotypes in Namibia.

    Science.gov (United States)

    Beyer, Wolfgang; Bellan, Steve; Eberle, Gisela; Ganz, Holly H; Getz, Wayne M; Haumacher, Renate; Hilss, Karen A; Kilian, Werner; Lazak, Judith; Turner, Wendy C; Turnbull, Peter C B

    2012-01-01

    The recent development of genetic markers for Bacillus anthracis has made it possible to monitor the spread and distribution of this pathogen during and between anthrax outbreaks. In Namibia, anthrax outbreaks occur annually in the Etosha National Park (ENP) and on private game and livestock farms. We genotyped 384 B. anthracis isolates collected between 1983-2010 to identify the possible epidemiological correlations of anthrax outbreaks within and outside the ENP and to analyze genetic relationships between isolates from domestic and wild animals. The isolates came from 20 animal species and from the environment and were genotyped using a 31-marker multi-locus-VNTR-analysis (MLVA) and, in part, by twelve single nucleotide polymorphism (SNP) markers and four single nucleotide repeat (SNR) markers. A total of 37 genotypes (GT) were identified by MLVA, belonging to four SNP-groups. All GTs belonged to the A-branch in the cluster- and SNP-analyses. Thirteen GTs were found only outside the ENP, 18 only within the ENP and 6 both inside and outside. Genetic distances between isolates increased with increasing time between isolations. However, genetic distance between isolates at the beginning and end of the study period was relatively small, indicating that while the majority of GTs were only found sporadically, three genetically close GTs, accounting for more than four fifths of all the ENP isolates, appeared dominant throughout the study period. Genetic distances among isolates were significantly greater for isolates from different host species, but this effect was small, suggesting that while species-specific ecological factors may affect exposure processes, transmission cycles in different host species are still highly interrelated. The MLVA data were further used to establish a model of the probable evolution of GTs within the endemic region of the ENP. SNR-analysis was helpful in correlating an isolate with its source but did not elucidate epidemiological

  14. Characterization of xylose reductase from Candida tropicalis ...

    African Journals Online (AJOL)

    USER

    2010-08-02

    Aug 2, 2010 ... Xylose reductase gene, enzyme cofactors and plasmids. E.coli BL21(DE3) was used as host strains for ... C. tropicalis xylose reductase gene was isolated from plasmid. pMD18-T (TaKaRa, Japan). Enzyme ..... the gels is instable, soft and even dissolve in the solution containing multivalent anions or high ...

  15. Light Sensitivity of Lactococcus lactis Thioredoxin Reductase

    DEFF Research Database (Denmark)

    Skjoldager, Nicklas

    such as Staphylococcus aureus (SaTrxR), Streptococcus pyogenes and Bacillus anthracis. A comparative photo-inactivation of TrxR from L. lactis, S. aureus and B. subtilis reveals that SaTrxR and BsTrxR are much less sensitive to light-inactivation than LlTrxR, though SaTrxR exhibited a similar rate of O2 reduction...

  16. The structure of the major cell wall polysaccharide of Bacillus anthracis is species-specific.

    Science.gov (United States)

    Choudhury, Biswa; Leoff, Christine; Saile, Elke; Wilkins, Patricia; Quinn, Conrad P; Kannenberg, Elmar L; Carlson, Russell W

    2006-09-22

    In this report we describe the structure of the polysaccharide released from Bacillus anthracis vegetative cell walls by aqueous hydrogen fluoride (HF). This HF-released polysaccharide (HF-PS) was isolated and structurally characterized from the Ames, Sterne, and Pasteur strains of B. anthracis. The HF-PSs were also isolated from the closely related Bacillus cereus ATCC 10987 strain, and from the B. cereus ATCC 14579 type strain and compared with those of B. anthracis. The structure of the B. anthracis HF-PS was determined by glycosyl composition and linkage analyses, matrix-assisted laser desorption-time of flight mass spectrometry, and one- and two-dimensional nuclear magnetic resonance spectroscopy. The HF-PSs from all of the B. anthracis isolates had an identical structure consisting of an amino sugar backbone of -->6)-alpha-GlcNAc-(1-->4)-beta-ManNAc-(1-->4)-beta-GlcNAc-(1-->, in which the alpha-GlcNAc residue is substituted with alpha-Gal and beta-Gal at O-3 and O-4, respectively, and the beta-GlcNAc substituted with alpha-Gal at O-3. There is some variability in the presence of two of these three Gal substitutions. Comparison with the HF-PSs from B. cereus ATCC 10987 and B. cereus ATCC 14579 showed that the B. anthracis structure was clearly different from each of these HF-PSs and, furthermore, that the B. cereus ATCC 10987 HF-PS structure was different from that of B. cereus ATCC 14579. The presence of a B. anthracis-specific polysaccharide structure in its vegetative cell wall is discussed with regard to its relationship to those of other Bacillus species.

  17. Detection of Bacillus anthracis DNA in complex soil and air samples using next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Nicholas A Be

    Full Text Available Bacillus anthracis is the potentially lethal etiologic agent of anthrax disease, and is a significant concern in the realm of biodefense. One of the cornerstones of an effective biodefense strategy is the ability to detect infectious agents with a high degree of sensitivity and specificity in the context of a complex sample background. The nature of the B. anthracis genome, however, renders specific detection difficult, due to close homology with B. cereus and B. thuringiensis. We therefore elected to determine the efficacy of next-generation sequencing analysis and microarrays for detection of B. anthracis in an environmental background. We applied next-generation sequencing to titrated genome copy numbers of B. anthracis in the presence of background nucleic acid extracted from aerosol and soil samples. We found next-generation sequencing to be capable of detecting as few as 10 genomic equivalents of B. anthracis DNA per nanogram of background nucleic acid. Detection was accomplished by mapping reads to either a defined subset of reference genomes or to the full GenBank database. Moreover, sequence data obtained from B. anthracis could be reliably distinguished from sequence data mapping to either B. cereus or B. thuringiensis. We also demonstrated the efficacy of a microbial census microarray in detecting B. anthracis in the same samples, representing a cost-effective and high-throughput approach, complementary to next-generation sequencing. Our results, in combination with the capacity of sequencing for providing insights into the genomic characteristics of complex and novel organisms, suggest that these platforms should be considered important components of a biosurveillance strategy.

  18. Carboxylic acid reductase enzymes (CARs).

    Science.gov (United States)

    Winkler, Margit

    2018-04-01

    Carboxylate reductases (CARs) are emerging as valuable catalysts for the selective one-step reduction of carboxylic acids to their corresponding aldehydes. The substrate scope of CARs is exceptionally broad and offers potential for their application in diverse synthetic processes. Two major fields of application are the preparation of aldehydes as end products for the flavor and fragrance sector and the integration of CARs in cascade reactions with aldehydes as the key intermediates. The latest applications of CARs are dominated by in vivo cascades and chemo-enzymatic reaction sequences. The challenge to fully exploit product selectivity is discussed. Recent developments in the characterization of CARs are summarized, with a focus on aspects related to the domain architecture and protein sequences of CAR enzymes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. ORF Alignment: NC_002945 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available hain A, Dihydrofolate ... Reductase Of Mycobacterium Tuberculosis Complexed With ... Nadph And... Methotrexate pdb|1DG8|A Chain A, Dihydrofolate ... Reductase Of Mycobacterium Tuberculosis... Complexed With ... Nadph pdb|1DG7|A Chain A, Dihydrofolate Reductase Of ... Mycobacterium Tuberculosi...late ... Reductase Of Mycobacterium Tuberculosis Complexed With ... Nadph And Trimethoprim emb

  20. ORF Alignment: NC_000962 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available hain A, Dihydrofolate ... Reductase Of Mycobacterium Tuberculosis Complexed With ... Nadph And... Methotrexate pdb|1DG8|A Chain A, Dihydrofolate ... Reductase Of Mycobacterium Tuberculosis... Complexed With ... Nadph pdb|1DG7|A Chain A, Dihydrofolate Reductase Of ... Mycobacterium Tuberculosi...late ... Reductase Of Mycobacterium Tuberculosis Complexed With ... Nadph And Trimethoprim emb

  1. ORF Alignment: NC_002755 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available hain A, Dihydrofolate ... Reductase Of Mycobacterium Tuberculosis Complexed With ... Nadph And... Methotrexate pdb|1DG8|A Chain A, Dihydrofolate ... Reductase Of Mycobacterium Tuberculosis... Complexed With ... Nadph pdb|1DG7|A Chain A, Dihydrofolate Reductase Of ... Mycobacterium Tuberculosi...late ... Reductase Of Mycobacterium Tuberculosis Complexed With ... Nadph And Trimethoprim emb

  2. Ferrisiderophore reductase activity in Bacillus megaterium.

    Science.gov (United States)

    Arceneaux, J E; Byers, B R

    1980-01-01

    The release of iron from ferrisiderophores (microbial ferric-chelating iron transport cofactors) by cell-free extracts of Bacillus megaterium was demonstrated. Reductive transfer of iron from ferrisiderophores to the ferrous-chelating agent ferrozine was measured spectrophotometrically. This ferrisiderophore reductase activity (reduced nicotinamide adenine dinucleotide phosphate:ferrisiderophore oxidoreductase) was associated primarily with the cell soluble rather than particulate (membrane) fraction. Ferrisiderophore reductase was inhibited by oxygen and required the addition of a reductant (reduced nicotinamide adenine dinucleotide phosphate was most effective) for maximal activity. The activity was destroyed by both heat and protease treatments and was inhibited by iodoacetamide treatment. Ferrisiderophore reductase activity for several microbial ferrisiderophores was measured; highest activity was displayed for ferrischizokinen, the ferrisiderophore produced by this organism. The Km and Vmax values of the reductase for ferrischizokinen were 2.5 x 10(-4) M and 35.7 nmol/min per mg of the ferrisiderophore reductase reaction. Preliminary fractionation of the cell soluble material by gel filtration chromatography resulted in the demonstration of ferrisiderophore reductase activity in three peaks of different molecular weight. Ferrisiderophore reductase probably mediates entrance of iron into cellular metabolism. PMID:6444944

  3. Novel Sample Preparation Method for Safe and Rapid Detection of Bacillus anthracis Spores in Environmental Powders and Nasal Swabs

    OpenAIRE

    Luna, Vicki A.; King, Debra; Davis, Carisa; Rycerz, Tony; Ewert, Matthew; Cannons, Andrew; Amuso, Philip; Cattani, Jacqueline

    2003-01-01

    Bacillus anthracis spores have been used as a biological weapon in the United States. We wanted to develop a safe, rapid method of sample preparation that provided safe DNA for the detection of spores in environmental and clinical specimens. Our method reproducibly detects B. anthracis in samples containing

  4. Development and validation of a real-time quantitative PCR assay for rapid identification of Bacillus anthracis in environmental samples.

    Science.gov (United States)

    Irenge, Léonid M; Durant, Jean-François; Tomaso, Herbert; Pilo, Paola; Olsen, Jaran S; Ramisse, Vincent; Mahillon, Jacques; Gala, Jean-Luc

    2010-11-01

    A real-time polymerase chain reaction (PCR) assay was developed for rapid identification of Bacillus anthracis in environmental samples. These samples often harbor Bacillus cereus bacteria closely related to B. anthracis, which may hinder its specific identification by resulting in false positive signals. The assay consists of two duplex real-time PCR: the first PCR allows amplification of a sequence specific of the B. cereus group (B. anthracis, B. cereus, Bacillus thuringiensis, Bacillus weihenstephanensis, Bacillus pseudomycoides, and Bacillus mycoides) within the phosphoenolpyruvate/sugar phosphotransferase system I gene and a B. anthracis specific single nucleotide polymorphism within the adenylosuccinate synthetase gene. The second real-time PCR assay targets the lethal factor gene from virulence plasmid pXO1 and the capsule synthesis gene from virulence plasmid pXO2. Specificity of the assay is enhanced by the use of minor groove binding probes and/or locked nucleic acids probes. The assay was validated on 304 bacterial strains including 37 B. anthracis, 67 B. cereus group, 54 strains of non-cereus group Bacillus, and 146 Gram-positive and Gram-negative bacteria strains. The assay was performed on various environmental samples spiked with B. anthracis or B. cereus spores. The assay allowed an accurate identification of B. anthracis in environmental samples. This study provides a rapid and reliable method for improving rapid identification of B. anthracis in field operational conditions.

  5. Bacillus anthracis in China and its relationship to worldwide lineages

    Directory of Open Access Journals (Sweden)

    Schupp James M

    2009-04-01

    Full Text Available Abstract Background The global pattern of distribution of 1033 B. anthracis isolates has previously been defined by a set of 12 conserved canonical single nucleotide polymorphisms (canSNP. These studies reinforced the presence of three major lineages and 12 sub-lineages and sub-groups of this anthrax-causing pathogen. Isolates that form the A lineage (unlike the B and C lineages have become widely dispersed throughout the world and form the basis for the geographical disposition of "modern" anthrax. An archival collection of 191 different B. anthracis isolates from China provides a glimpse into the possible role of Chinese trade and commerce in the spread of certain sub-lineages of this pathogen. Canonical single nucleotide polymorphism (canSNP and multiple locus VNTR analysis (MLVA typing has been used to examine this archival collection of isolates. Results The canSNP study indicates that there are 5 different sub-lineages/sub-groups in China out of 12 previously described world-wide canSNP genotypes. Three of these canSNP genotypes were only found in the western-most province of China, Xinjiang. These genotypes were A.Br.008/009, a sub-group that is spread across most of Europe and Asia; A.Br.Aust 94, a sub-lineage that is present in Europe and India, and A.Br.Vollum, a lineage that is also present in Europe. The remaining two canSNP genotypes are spread across the whole of China and belong to sub-group A.Br.001/002 and the A.Br.Ames sub-lineage, two closely related genotypes. MLVA typing adds resolution to the isolates in each canSNP genotype and diversity indices for the A.Br.008/009 and A.Br.001/002 sub-groups suggest that these represent older and established clades in China. Conclusion B. anthracis isolates were recovered from three canSNP sub-groups (A.Br.008/009, A.Br.Aust94, and A.Br.Vollum in the western most portion of the large Chinese province of Xinjiang. The city of Kashi in this province appears to have served as a crossroads

  6. Tetrathionate reductase of Salmonella thyphimurium: a molybdenum containing enzyme

    International Nuclear Information System (INIS)

    Hinojosa-Leon, M.; Dubourdieu, M.; Sanchez-Crispin, J.A.; Chippaux, M.

    1986-01-01

    Use of radioactive molybdenum demonstrates that the tetrathionate reductase of Salmonella typhimurium is a molydenum containing enzyme. It is proposed that this enzyme shares with other molybdo-proteins, such as nitrate reductase, a common molybdenum containing cofactor the defect of which leads to the loss of the tetrathionate reductase and nitrate reductase activities

  7. Structure of purine nucleoside phosphorylase (DeoD) from Bacillus anthracis

    International Nuclear Information System (INIS)

    Grenha, Rosa; Levdikov, Vladimir M.; Fogg, Mark J.; Blagova, Elena V.; Brannigan, James A.; Wilkinson, Anthony J.; Wilson, Keith S.

    2005-01-01

    The crystal structure of purine nucleoside phosphorylase (DeoD) from B. anthracis was solved by X-ray crystallography using molecular replacement and refined at a resolution of 2.24 Å. Protein structures from the causative agent of anthrax (Bacillus anthracis) are being determined as part of a structural genomics programme. Amongst initial candidates for crystallographic analysis are enzymes involved in nucleotide biosynthesis, since these are recognized as potential targets in antibacterial therapy. Purine nucleoside phosphorylase is a key enzyme in the purine-salvage pathway. The crystal structure of purine nucleoside phosphorylase (DeoD) from B. anthracis has been solved by molecular replacement at 2.24 Å resolution and refined to an R factor of 18.4%. This is the first report of a DeoD structure from a Gram-positive bacterium

  8. Evaluation of DNA extraction methods for Bacillus anthracis spores isolated from spiked food samples.

    Science.gov (United States)

    Thomas, M C; Shields, M J; Hahn, K R; Janzen, T W; Goji, N; Amoako, K K

    2013-07-01

    Nine commercial DNA extraction kits were evaluated for the isolation of DNA from 10-fold serial dilutions of Bacillus anthracis spores using quantitative real-time PCR (qPCR). The three kits determined by qPCR to yield the most sensitive and consistent detection (Epicenter MasterPure Gram Positive; MoBio PowerFood; ABI PrepSeq) were subsequently tested for their ability to isolate DNA from trace amounts of B. anthracis spores (approx. 6·5 × 10(1) and 1·3 × 10(2)  CFU in 25 ml or 50 g of food sample) spiked into complex food samples including apple juice, ham, whole milk and bagged salad and recovered with immunomagnetic separation (IMS). The MasterPure kit effectively and consistently isolated DNA from low amounts of B. anthracis spores captured from food samples. Detection was achieved from apple juice, ham, whole milk and bagged salad from as few as 65 ± 14, 68 ± 8, 66 ± 4 and 52 ± 16 CFU, respectively, and IMS samples were demonstrated to be free of PCR inhibitors. Detection of B. anthracis spores isolated from food by IMS differs substantially between commercial DNA extraction kits; however, sensitive results can be obtained with the MasterPure Gram Positive kit. The extraction protocol identified herein combined with IMS is novel for B. anthracis and allows detection of low levels of B. anthracis spores from contaminated food samples. © Her Majesty the Queen in Right of Canada [2013]. Reproduced with the permission of the Canadian Food Inspection Agency.

  9. Alveolar macrophages infected with Ames or Sterne strain of Bacillus anthracis elicit differential molecular expression patterns.

    Directory of Open Access Journals (Sweden)

    Felicia D Langel

    Full Text Available Alveolar macrophages (AMs phagocytose Bacillus anthracis following inhalation and induce the production of pro-inflammatory cytokines and chemokines to mediate the activation of innate immunity. Ames, the virulent strain of B. anthracis, contains two plasmids that encode the antiphagocytic poly-γ-d-glutamic acid capsule and the lethal toxin. The attenuated Sterne strain of B. anthracis, which lacks the plasmid encoding capsule, is widely adapted as a vaccine strain. Although differences in the outcome of infection with the two strains may have originated from the presence or absence of an anti-phagocytic capsule, the disease pathogenesis following infection will be manifested via the host responses, which is not well understood. To gain understanding of the host responses at cellular level, a microarray analysis was performed using primary rhesus macaque AMs infected with either Ames or Sterne spores. Notably, 528 human orthologs were identified to be differentially expressed in AMs infected with either strain of the B. anthracis. Meta-analyses revealed genes differentially expressed in response to B. anthracis infection were also induced upon infections with multiple pathogens such as Francisella Novicida or Staphylococcus aureus. This suggests the existence of a common molecular signature in response to pathogen infections. Importantly, the microarray and protein expression data for certain cytokines, chemokines and host factors provide further insights on how cellular processes such as innate immune sensing pathways, anti-apoptosis versus apoptosis may be differentially modulated in response to the virulent or vaccine strain of B. anthracis. The reported differences may account for the marked difference in pathogenicity between these two strains.

  10. Whole genome protein microarrays for serum profiling of immunodominant antigens of Bacillus anthracis

    Directory of Open Access Journals (Sweden)

    Karen Elizabeth Kempsell

    2015-08-01

    Full Text Available A commercial Bacillus anthracis (Anthrax whole genome protein microarray has been used to identify immunogenic Anthrax proteins using sera from groups of donors with (a confirmed B. anthracis naturally acquired cutaneous infection, (b confirmed B. anthracis intravenous drug use-acquired infection (c occupational exposure in a wool-sorters factory (d humans and rabbits vaccinated with the UK Anthrax protein vaccine and compared to naïve unexposed controls. Anti-IAP responses were observed for both IgG and IgA in the challenged groups; however the anti-IAP IgG response was more evident in the vaccinated group and the anti-IAP IgA response more evident in the B. anthracis-infected groups. Infected individuals appeared somewhat suppressed for their general IgG response, compared with other challenged groups.Immunogenic protein antigens were identified in all groups, some of which were shared between groups whilst others were specific for individual groups. The toxin proteins were immunodominant in all vaccinated, infected or other challenged groups. However a number of other chromosomally-located and plasmid encoded open reading frames were also recognised by infected or exposed groups in comparison to controls. Some of these antigens e.g. BA4182 are not recognised by vaccinated individuals, suggesting that there are proteins more specifically expressed by live Anthrax spores in vivo and are not currently found in the UK licensed Anthrax Vaccine (AVP. These may perhaps be preferentially expressed during infection and represent expression of alternative pathways in the B. anthracis ‘infectome’. These may make highly attractive candidates for diagnostic and vaccine biomarker development as they may be more specifically associated with the infectious phase of the pathogen. A number of B. anthracis small hypothetical protein targets have been synthesised, tested in mouse immunogenicity studies and validated in parallel using human sera from the

  11. Whole genome protein microarrays for serum profiling of immunodominant antigens of Bacillus anthracis

    Science.gov (United States)

    Kempsell, Karen E.; Kidd, Stephen P.; Lewandowski, Kuiama; Elmore, Michael J.; Charlton, Sue; Yeates, Annemarie; Cuthbertson, Hannah; Hallis, Bassam; Altmann, Daniel M.; Rogers, Mitch; Wattiau, Pierre; Ingram, Rebecca J.; Brooks, Tim; Vipond, Richard

    2015-01-01

    A commercial Bacillus anthracis (Anthrax) whole genome protein microarray has been used to identify immunogenic Anthrax proteins (IAP) using sera from groups of donors with (a) confirmed B. anthracis naturally acquired cutaneous infection, (b) confirmed B. anthracis intravenous drug use-acquired infection, (c) occupational exposure in a wool-sorters factory, (d) humans and rabbits vaccinated with the UK Anthrax protein vaccine and compared to naïve unexposed controls. Anti-IAP responses were observed for both IgG and IgA in the challenged groups; however the anti-IAP IgG response was more evident in the vaccinated group and the anti-IAP IgA response more evident in the B. anthracis-infected groups. Infected individuals appeared somewhat suppressed for their general IgG response, compared with other challenged groups. Immunogenic protein antigens were identified in all groups, some of which were shared between groups whilst others were specific for individual groups. The toxin proteins were immunodominant in all vaccinated, infected or other challenged groups. However, a number of other chromosomally-located and plasmid encoded open reading frame proteins were also recognized by infected or exposed groups in comparison to controls. Some of these antigens e.g., BA4182 are not recognized by vaccinated individuals, suggesting that there are proteins more specifically expressed by live Anthrax spores in vivo that are not currently found in the UK licensed Anthrax Vaccine (AVP). These may perhaps be preferentially expressed during infection and represent expression of alternative pathways in the B. anthracis “infectome.” These may make highly attractive candidates for diagnostic and vaccine biomarker development as they may be more specifically associated with the infectious phase of the pathogen. A number of B. anthracis small hypothetical protein targets have been synthesized, tested in mouse immunogenicity studies and validated in parallel using human sera from

  12. Thioredoxin Reductase and its Inhibitors

    Science.gov (United States)

    Saccoccia, Fulvio; Angelucci, Francesco; Boumis, Giovanna; Carotti, Daniela; Desiato, Gianni; Miele, Adriana E; Bellelli, Andrea

    2014-01-01

    Thioredoxin plays a crucial role in a wide number of physiological processes, which span from reduction of nucleotides to deoxyriboucleotides to the detoxification from xenobiotics, oxidants and radicals. The redox function of Thioredoxin is critically dependent on the enzyme Thioredoxin NADPH Reductase (TrxR). In view of its indirect involvement in the above mentioned physio/pathological processes, inhibition of TrxR is an important clinical goal. As a general rule, the affinities and mechanisms of binding of TrxR inhibitors to the target enzyme are known with scarce precision and conflicting results abound in the literature. A relevant analysis of published results as well as the experimental procedures is therefore needed, also in view of the critical interest of TrxR inhibitors. We review the inhibitors of TrxR and related flavoreductases and the classical treatment of reversible, competitive, non competitive and uncompetitive inhibition with respect to TrxR, and in some cases we are able to reconcile contradictory results generated by oversimplified data analysis. PMID:24875642

  13. Identification of a Bacillus anthracis specific indel in the yeaC gene and development of a rapid pyrosequencing assay for distinguishing B. anthracis from the B. cereus group.

    Science.gov (United States)

    Ahmod, Nadia Z; Gupta, Radhey S; Shah, Haroun N

    2011-12-01

    Bacillus anthracis, the causative agent of anthrax, is a potential source of bioterrorism. The existing assays for its identification lack specificity due to the close genetic relationship it exhibits to other members of the B. cereus group. Our comparative analyses of protein sequences from Bacillus species have identified a 24 amino acid deletion in a conserved region of the YeaC protein that is uniquely present in B. anthracis. PCR primers based on conserved regions flanking this indel in the Bacillus cereus group of species (viz. Bacillus cereus, B. anthracis, B. thuringiensis, B. mycoides, B. weihenstephnensis and B. pseudomycoides) specifically amplified a 282 bp fragment from all six reference B. anthracis strains, whereas a 354 bp fragment was amplified from 15 other B. cereus group of species/strains. These fragments, due to large size difference, are readily distinguished by means of agarose gel electrophoresis. In contrast to the B. cereus group, no PCR amplification was observed with any of the non-B. cereus group of species/strains. This indel was also used for developing a rapid pyrosequencing assay for the identification of B. anthracis. Its performance was evaluated by examining the presence or absence of this indel in a panel of 81 B. cereus-like isolates from various sources that included 39 B. anthracis strains. Based upon the sequence data from the pyrograms, the yeaC indel was found to be a distinctive characteristic of various B. anthracis strains tested and not found in any other species/strains from these samples. Therefore, this B. anthracis specific indel provides a robust and highly-specific chromosomal marker for the identification of this high-risk pathogen from other members of the B. cereus group independent of a strain's virulence. The pyrosequencing platform also allows for the rapid and simultaneous screening of multiple samples for the presence of this B. anthracis-specific marker. Copyright © 2011. Published by Elsevier B.V.

  14. Evaluation of the Efficacy of Methyl Bromide in the Decontamination of Building and Interior Materials Contaminated with Bacillus anthracis Spores

    Science.gov (United States)

    Wendling, Morgan; Richter, William; Lastivka, Andrew; Mickelsen, Leroy

    2016-01-01

    The primary goal of this study was to determine the conditions required for the effective inactivation of Bacillus anthracis spores on materials by using methyl bromide (MeBr) gas. Another objective was to obtain comparative decontamination efficacy data with three avirulent microorganisms to assess their potential for use as surrogates for B. anthracis Ames. Decontamination tests were conducted with spores of B. anthracis Ames and Geobacillus stearothermophilus, B. anthracis NNR1Δ1, and B. anthracis Sterne inoculated onto six different materials. Experimental variables included temperature, relative humidity (RH), MeBr concentration, and contact time. MeBr was found to be an effective decontaminant under a number of conditions. This study highlights the important role that RH has when fumigation is performed with MeBr. There were no tests in which a ≥6-log10 reduction (LR) of B. anthracis Ames was achieved on all materials when fumigation was done at 45% RH. At 75% RH, an increase in the temperature, the MeBr concentration, or contact time generally improved the efficacy of fumigation with MeBr. This study provides new information for the effective use of MeBr at temperatures and RH levels lower than those that have been recommended previously. The study also provides data to assist with the selection of an avirulent surrogate for B. anthracis Ames spores when additional tests with MeBr are conducted. PMID:26801580

  15. Application of high-throughput technologies to a structural proteomics-type analysis of Bacillus anthracis

    NARCIS (Netherlands)

    Au, K.; Folkers, G.E.; Kaptein, R.

    2006-01-01

    A collaborative project between two Structural Proteomics In Europe (SPINE) partner laboratories, York and Oxford, aimed at high-throughput (HTP) structure determination of proteins from Bacillus anthracis, the aetiological agent of anthrax and a biomedically important target, is described. Based

  16. Pharmacokinetic-Pharmacodynamic Assessment of Faropenem in a Lethal Murine Bacillus anthracis Inhalation Postexposure Prophylaxis Model

    Science.gov (United States)

    2010-05-01

    penem against B. anthracis on the basis of the data presented herein is consistent with values determined against S. pneu - moniae by Craig and Andes...in the neutropenic murine thigh infection model (8). Against 13 strains of Streptococcus pneu - moniae (MIC values, 0.008 to 2 g/ml), the mean

  17. Removal of Bacillus anthracis sterne spore from commercial unpasteurized liquid egg white using crossflow microfiltration

    Science.gov (United States)

    Current pasteurization technology used by the egg industry is ineffective for destruction of spores such as those of Bacillus anthracis (BA). The validity of a cross-flow microfiltration (MF) process for separation of the attenuated strain of BA (Sterne) spores from commercial unpasteurized liquid ...

  18. Isolation of Bacillus anthracis from dry cattle meat, skin and soil from ...

    African Journals Online (AJOL)

    Isolation of Bacillus anthracis from dry cattle meat, skin and soil from the Western Province of Zambia. LM Tuchili, JB Muma, T Fujikura, GS Pandey, MM Musonda, G Bbalo, W Ulaya. Abstract. No Abstract Available Journal of Science and Technology Vol.1(2) 1997: 56-58. Published 2004. Full Text: EMAIL FULL TEXT EMAIL ...

  19. Identification of Bacillus anthracis PurE inhibitors with antimicrobial activity.

    Science.gov (United States)

    Kim, Anna; Wolf, Nina M; Zhu, Tian; Johnson, Michael E; Deng, Jiangping; Cook, James L; Fung, Leslie W-M

    2015-04-01

    N(5)-carboxy-amino-imidazole ribonucleotide (N(5)-CAIR) mutase (PurE), a bacterial enzyme in the de novo purine biosynthetic pathway, has been suggested to be a target for antimicrobial agent development. We have optimized a thermal shift method for high-throughput screening of compounds binding to Bacillus anthracis PurE. We used a low ionic strength buffer condition to accentuate the thermal shift stabilization induced by compound binding to Bacillus anthracis PurE. The compounds identified were then subjected to computational docking to the active site to further select compounds likely to be inhibitors. A UV-based enzymatic activity assay was then used to select inhibitory compounds. Minimum inhibitory concentration (MIC) values were subsequently obtained for the inhibitory compounds against Bacillus anthracis (ΔANR strain), Escherichia coli (BW25113 strain, wild-type and ΔTolC), Francisella tularensis, Staphylococcus aureus (both methicillin susceptible and methicillin-resistant strains) and Yersinia pestis. Several compounds exhibited excellent (0.05-0.15μg/mL) MIC values against Bacillus anthracis. A common core structure was identified for the compounds exhibiting low MIC values. The difference in concentrations for inhibition and MIC suggest that another enzyme(s) is also targeted by the compounds that we identified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. clpC operon regulates cell architecture and sporulation in Bacillus anthracis.

    Science.gov (United States)

    Singh, Lalit K; Dhasmana, Neha; Sajid, Andaleeb; Kumar, Prasun; Bhaduri, Asani; Bharadwaj, Mitasha; Gandotra, Sheetal; Kalia, Vipin C; Das, Taposh K; Goel, Ajay K; Pomerantsev, Andrei P; Misra, Richa; Gerth, Ulf; Leppla, Stephen H; Singh, Yogendra

    2015-03-01

    The clpC operon is known to regulate several processes such as genetic competence, protein degradation and stress survival in bacteria. Here, we describe the role of clpC operon in Bacillus anthracis. We generated knockout strains of the clpC operon genes to investigate the impact of CtsR, McsA, McsB and ClpC deletion on essential processes of B. anthracis. We observed that growth, cell division, sporulation and germination were severely affected in mcsB and clpC deleted strains, while none of deletions affected toxin secretion. Growth defect in these strains was pronounced at elevated temperature. The growth pattern gets restored on complementation of mcsB and clpC in respective mutants. Electron microscopic examination revealed that mcsB and clpC deletion also causes defect in septum formation leading to cell elongation. These vegetative cell deformities were accompanied by inability of mutant strains to generate morphologically intact spores. Higher levels of polyhydroxybutyrate granules accumulation were also observed in these deletion strains, indicating a defect in sporulation process. Our results demonstrate, for the first time, the vital role played by McsB and ClpC in physiology of B. anthracis and open up further interest on this operon, which might be of importance to success of B. anthracis as pathogen. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Real-Time PCR Assay for a Unique Chromosomal Sequence of Bacillus anthracis

    Science.gov (United States)

    2004-12-01

    13061 Neisseria lactamica .............................................................. 23970 Bacillus coagulans ...NEG Bacillus coagulane 7050 NEG NEG Bacillus cereus 13472 NEG NEG Bacillus licheniforms 12759 NEG NEG Bacillus cereus 13824 NEG NEG Bacillus ...Assay for a Unique Chromosomal Sequence of Bacillus anthracis Elizabeth Bode,1 William Hurtle,2† and David Norwood1* United States Army Medical

  2. Draft Genome Sequences of Two Bacillus anthracis Strains from Etosha National Park, Namibia.

    Science.gov (United States)

    Valseth, Karoline; Nesbø, Camilla L; Easterday, W Ryan; Turner, Wendy C; Olsen, Jaran S; Stenseth, Nils C; Haverkamp, Thomas H A

    2016-08-25

    Bacillus anthracis strains K1 and K2 were isolated from two plains zebra anthrax carcasses in Etosha National Park, Namibia. These are draft genomes obtained by Illumina MiSeq sequencing of isolates collected from culture of blood-soaked soil from each carcass. Copyright © 2016 Valseth et al.

  3. The search and identification of the new immunodiagnostic targets of bacillus anthracis spore

    International Nuclear Information System (INIS)

    Biketov, S.; Dunaytsev, I.; Baranova, E.; Marinin, L.; Dyatlov, I.

    2009-01-01

    Spores of Bacillus anthracis have been used as bio warfare agent to bio terrorize purposes. As efficiency of anti-epidemic measures included urgent prevention and treatment is determined by terms within which the bio agent is identified. Direct and rapid spore detection by antibodies based detection system is very attractive alternative to current PCR-based assays or routine phenotyping which are the most accurate but are also complex, time-consumption and expensive. The main difficulty with respect to such kind of anthrax spores detection is a cross-reaction with spores of closely related bacteria. For development of species-specific antibodies to anthrax spores recombinant scFvs or hybridoma technique were used. In both case surface spore antigens contained species-specific epitopes are need. Among exosporium proteins only ExsF(BxpB), ExsK and SoaA are specific to B.cereus group. On the surface of B. anthracis spores, a unique tetrasaccharides containing an novel monosaccharide - anthrose, was discovered. It was shown that anthrose can be serving as species-specific target for B. anthracis spores detection. We have revealed that EA1 isolated from spore of Russians strain STI-1 contain carbohydrate which formed species-specific epitopes and determine immunogenicity of this antigen. Antibodies to this antigen specifically recognized the surface target of B. anthracis spores and do not reacted with others Bacillus spore. Based on these antibodies we developed the test-systems in different formats for rapid direct detection and identification of B. anthracis spores. The results of trial these test-systems with using more than 50 different Bacillus strains were indicated that carbohydrate of EA1 isolated from spore is effective immunodiagnostic target for anthrax spores bio detection.(author)

  4. The use of germinants to potentiate the sensitivity of Bacillus anthracis spores to peracetic acid

    Directory of Open Access Journals (Sweden)

    Ozgur eCelebi

    2016-01-01

    Full Text Available Elimination of Bacillus anthracis spores from the environment is a difficult and costly process due in part to the toxicity of current sporicidal agents. For this reason we investigated the ability of the spore germinants L-alanine (100 mM and inosine (5 mM to reduce the concentration of peracetic acid (PAA required to inactivate B.anthracis spores. While L-alanine significantly enhanced (p=0.0085 the bactericidal activity of 500 ppm PAA the same was not true for inosine suggesting some form of negative interaction. In contrast the germinant combination proved most effective at 100 ppm PAA (p=0.0009. To determine if we could achieve similar results in soil we treated soil collected from the burial site of an anthrax infected animal which had been supplemented with spores of the Sterne strain of B.anthracis to increase the level of contamination to 104 spores/g. Treatment with germinants followed one hour later by 5000 ppm PAA eliminated all of the spores. In contrast direct treatment of the animal burial site using this approach delivered using a back pack sprayer had no detectable effect on the level of B.anthracis contamination or on total culturable bacterial numbers over the course of the experiment. It did trigger a significant, but temporary, reduction (p<0.0001 in the total spore count suggesting that germination had been triggered under real world conditions. In conclusion, we have shown that the application of germinants increase the sensitivity of bacterial spores to PAA. While the results of the single field trial were inconclusive, the study highlighted the potential of this approach and the challenges faced when attempting to perform real world studies on B.anthracis spores contaminated sites.

  5. DNA probe functionalized QCM biosensor based on gold nanoparticle amplification for Bacillus anthracis detection.

    Science.gov (United States)

    Hao, Rong-Zhang; Song, Hong-Bin; Zuo, Guo-Min; Yang, Rui-Fu; Wei, Hong-Ping; Wang, Dian-Bing; Cui, Zong-Qiang; Zhang, ZhiPing; Cheng, Zhen-Xing; Zhang, Xian-En

    2011-04-15

    The rapid detection of Bacillus anthracis, the causative agent of anthrax disease, has gained much attention since the anthrax spore bioterrorism attacks in the United States in 2001. In this work, a DNA probe functionalized quartz crystal microbalance (QCM) biosensor was developed to detect B. anthracis based on the recognition of its specific DNA sequences, i.e., the 168 bp fragment of the Ba813 gene in chromosomes and the 340 bp fragment of the pag gene in plasmid pXO1. A thiol DNA probe was immobilized onto the QCM gold surface through self-assembly via Au-S bond formation to hybridize with the target ss-DNA sequence obtained by asymmetric PCR. Hybridization between the target DNA and the DNA probe resulted in an increase in mass and a decrease in the resonance frequency of the QCM biosensor. Moreover, to amplify the signal, a thiol-DNA fragment complementary to the other end of the target DNA was functionalized with gold nanoparticles. The results indicate that the DNA probe functionalized QCM biosensor could specifically recognize the target DNA fragment of B. anthracis from that of its closest species, such as Bacillus thuringiensis, and that the limit of detection (LOD) reached 3.5 × 10(2)CFU/ml of B. anthracis vegetative cells just after asymmetric PCR amplification, but without culture enrichment. The DNA probe functionalized QCM biosensor demonstrated stable, pollution-free, real-time sensing, and could find application in the rapid detection of B. anthracis. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Respiratory arsenate reductase as a bidirectional enzyme

    Science.gov (United States)

    Richey, C.; Chovanec, P.; Hoeft, S.E.; Oremland, R.S.; Basu, P.; Stolz, J.F.

    2009-01-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe–S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  7. In Vitro and In Vivo Activity of Omadacycline Against Two Biothreat Pathogens: Bacillus Anthracis and Yersinia Pestis

    Science.gov (United States)

    2013-02-27

    vivo efficacy of omadacycline ( OMC ) were evaluated against the causative pathogen of anthrax and plague, Bacillus anthracis and Yersinia pestis...respectively. Methods: Minimum inhibitory concentrations (MICs) of OMC were determined by microbroth dilution according to CLSI guidelines for 30

  8. The Pathogenomic Sequence Analysis of B. cereus and B.thuringiensis Isolates Closely Related to Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Cliff S.; Xie, Gary; Challacombe, Jean F.; Altherr, MichaelR.; Smriti, B.; Bruce, David; Campbell, Connie S.; Campbell, Mary L.; Chen, Jin; Chertkov, Olga; Cleland, Cathy; Dimitrijevic-Bussod, M.; Doggett, Norman A.; Fawcett, John J.; Glavina, Tijana; Goodwin, Lynne A.; Hill, Karen K.; Hitchcock, Penny; Jackson, Paul J.; Keim, Paul; Kewalramani, Avinash Ramesh; Longmire, Jon; Lucas, Susan; Malfatti,Stephanie; McMurry, Kim; Meincke, Linda J.; Misra, Monica; Moseman,Bernice L.; Mundt, Mark; Munk, A. Christine; Okinaka, Richard T.; Parson-Quintana, B.; Reilly, Lee P.; Richardson, Paul; Robinson, DonnaL.; Rubin, Eddy; Saunders, Elizabeth; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Ticknor, Lawrence O.; Wills, Patti L.; Gilna, Payl; Brettin, Thomas S.

    2005-08-18

    The sequencing and analysis of two close relatives of Bacillus anthracis are reported. AFLP analysis of over 300 isolates of B.cereus, B. thuringiensis and B. anthracis identified two isolates as being very closely related to B. anthracis. One, a B. cereus, BcE33L, was isolated from a zebra carcass in Nambia; the second, a B. thuringiensis, 97-27, was isolated from a necrotic human wound. The B. cereus appears to be the closest anthracis relative sequenced to date. A core genome of over 3,900 genes was compiled for the Bacillus cereus group, including Banthracis. Comparative analysis of these two genomes with other members of the B. cereus group provides insight into the evolutionary relationships among these organisms. Evidence is presented that differential regulation modulates virulence, rather than simple acquisition of virulence factors. These genome sequences provide insight into the molecular mechanisms contributing to the host range and virulence of this group of organisms.

  9. Inhibiting Inosine Hydrolase and Alanine Racemase to Enhance the Germination of Bacillus anthracis Sterne Spores: Potential Spore Decontamination Strategies

    Science.gov (United States)

    2015-06-19

    2015): << Inhibiting inosine hydrolase and alanine racemase to enhance the germination of Bacillus anthracis Sterne spores: potential spore...display a currently valid OMB control number. 1. REPORT DATE 02 OCT 2015 2. REPORT TYPE N/A 3. DATES COVERED 4. TITLE AND SUBTITLE Inhibiting...inosine hydrolase and alanine racemase to enhance the germination of Bacillus anthracis Sterne spores potential spore decontamination strategies 5a

  10. Discerning Viable from Nonviable Yersinia pestis pgm- and Bacillus anthracis Sterne using Propidium Monoazide in the Presence of White Powders

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Becky M.; Kaiser, Brooke LD; Sydor, Michael A.; Wunschel, David S.; Bruckner-Lea, Cindy J.; Hutchison, Janine R.

    2015-12-23

    ABSTRACT Aims To develop and optimize an assay to determine viability status of Bacillus anthracis Sterne and Yersinia pestis pgm- strains in the presence of white powders by coupling propidium monoazide (PMA) treatment with real-time PCR (qPCR) analysis. Methods and Results PMA selectively enters nonviable cells and binds DNA, thereby increasing qPCR assay cycle threshold (CT) values compared to untreated samples. Dye concentration, cell number and fitness, incubation time, inactivation methods, and assay buffer were optimized for B. anthracis Sterne and Y. pestis pgm-. Differences in CT values in nonviable cells compared to untreated samples were consistently > 9 for both B. anthracis Sterne vegetative cells and Y. pestis pgm- in the presence and absence of three different white powders. Our method eliminates the need for a DNA extraction step prior to detection by qPCR. Conclusions The developed assay enables simultaneous identification and viability assessment for B. anthracis Sterne and Y. pestis pgm- under laboratory conditions, even in the presence of white powders. Eliminating the DNA extraction step that is typically used reduces total assay time and labor requirements for sample analysis. Significance and Impact of the Study The method developed for simultaneous detection and viability assessment for B. anthracis and Y. pestis can be employed in forming decisions about the severity of a biothreat event or the safety of food. Keywords Bacillus anthracis, Yersinia pestis, Propidium Monoazide, qPCR, White Powders, Rapid Viability Detection

  11. Differential nitrate accumulation, nitrate reduction, nitrate reductase ...

    African Journals Online (AJOL)

    use

    2011-12-07

    Dec 7, 2011 ... nitrate salts supply on nitrate accumulation, amino acid biosynthesis, total protein production, nitrate reductase activity and carbohydrate biosynthesis in the roots and leaves of the plants. The results indicate that both sodium and potassium nitrate supplementation had stimulatory effects on all of the.

  12. Methylenetetrahydrofolate reductase A1298C polymorphism and ...

    African Journals Online (AJOL)

    Methylenetetrahydrofolate reductase A1298C polymorphism and breast cancer risk: A meta analysis of 33 studies. ... were searched for case‑control studies relating the association between MTHFR A1298C polymorphism and BC risk and estimated summary odds ratios (ORs) with confidence intervals (CIs) for assessment.

  13. Xylose reductase from the thermophilic fungus Talaromyces ...

    Indian Academy of Sciences (India)

    Given the potential application of xylose reductase enzymes that preferentially utilize the reduced form of nicotinamide adenine dinucleotide (NADH) rather than NADPH in the fermentation of five carbon sugars by genetically engineered microorganisms, the coenzyme selectivity of TeXR was altered by site-directed ...

  14. Methylenetetrahydrofolate reductase (MTHFR) C677T gene ...

    Indian Academy of Sciences (India)

    vitamin B12 and riboflavin that are required in Hcy metabolic pathway. Gene that encodes the methylenete- trahydrofolate reductase (MTHFR) enzyme that .... tors like climate, food habits, lifestyle and genetic makeup are common. Validation of the results of the present study in different ethnic groups with larger sample ...

  15. phenotype correlation of methylene tetrahydrofolate reductase ...

    African Journals Online (AJOL)

    Rabah M. Shawky

    2014-06-21

    Jun 21, 2014 ... ORIGINAL ARTICLE. Study of genotype–phenotype correlation of methylene tetrahydrofolate reductase (MTHFR) gene polymorphisms in a sample of Egyptian autistic children. Rabah M. Shawky a,. *, Farida El-baz b. , Tarek M. Kamal c. , Reham M. Elhossiny b. ,. Mona A. Ahmed b. , Ghada H. El Nady d.

  16. Ionic liquid mediated stereoselective synthesis of alanine linked hybrid quinazoline-4(3H)-one derivatives perturbing the malarial reductase activity in folate pathway.

    Science.gov (United States)

    Patel, Tarosh S; Bhatt, Jaimin D; Vanparia, Satish F; Patel, Urmila H; Dixit, Ritu B; Chudasama, Chaitanya J; Patel, Bhavesh D; Dixit, Bharat C

    2017-12-15

    Grimmel's method was optimized as well as modified leading to the cyclization and incorporation of alanine linked sulphonamide in 4-quinazolin-(3H)-ones. Further, the generation of heterocyclic motif at position-3 of 4-quinazolinones was explored by synthesis of imines, which unfortunately led to an isomeric mixture of stereoisomers. The hurdle of diastereomers encountered on the path was eminently rectified by development of new rapid and reproducible methodology involving the use of imidazolium based ionic liquid as solvents as well as catalyst for cyclization as well as synthesis of imines in situ at position-3 leading to procurement of single E-isomer as the target hybrid heterocyclic molecules. The purity and presence of single isomer was also confirmed by HPLC and spectroscopic techniques. Further, the synthesized sulphonamide linked 4-quinazolin-(3H)-ones hybrids were screened for their antimalarial potency rendering potent entities (4b, 4c, 4 l, 4 t and 4u). The active hybrids were progressively screened for enzyme inhibitory efficacy against presumed receptor Pf-DHFR and h-DHFR computationally as well as in vitro, proving their potency as dihydrofolate reductase inhibitors. The ADME properties of these active molecules were also predicted to enhance the knowhow of the oral bioavailability, indicating good bioavailability of the active entities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Variable Lymphocyte Receptor Recognition of the Immunodominant Glycoprotein of Bacillus anthracis Spores

    Energy Technology Data Exchange (ETDEWEB)

    Kirchdoerfer, Robert N.; Herrin, Brantley R.; Han, Byung Woo; Turnbough, Jr., Charles L.; Cooper, Max D.; Wilson, Ian A. (SNU); (Scripps); (Emory); (UAB); (Emory Vaccine)

    2012-07-25

    Variable lymphocyte receptors (VLRs) are the adaptive immune receptors of jawless fish, which evolved adaptive immunity independent of other vertebrates. In lieu of the immunoglobulin fold-based T and B cell receptors, lymphocyte-like cells of jawless fish express VLRs (VLRA, VLRB, or VLRC) composed of leucine-rich repeats and are similar to toll-like receptors (TLRs) in structure, but antibodies (VLRB) and T cell receptors (VLRA and VLRC) in function. Here, we present the structural and biochemical characterization of VLR4, a VLRB, in complex with BclA, the immunodominant glycoprotein of Bacillus anthracis spores. Using a combination of crystallography, mutagenesis, and binding studies, we delineate the mode of antigen recognition and binding between VLR4 and BclA, examine commonalities in VLRB recognition of antigens, and demonstrate the potential of VLR4 as a diagnostic tool for the identification of B. anthracis spores.

  18. Laboratory Studies on Surface Sampling of Bacillus anthracis Contamination: Summary, Gaps, and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F.; Amidan, Brett G.; Hu, Rebecca

    2011-11-28

    This report summarizes previous laboratory studies to characterize the performance of methods for collecting, storing/transporting, processing, and analyzing samples from surfaces contaminated by Bacillus anthracis or related surrogates. The focus is on plate culture and count estimates of surface contamination for swab, wipe, and vacuum samples of porous and nonporous surfaces. Summaries of the previous studies and their results were assessed to identify gaps in information needed as inputs to calculate key parameters critical to risk management in biothreat incidents. One key parameter is the number of samples needed to make characterization or clearance decisions with specified statistical confidence. Other key parameters include the ability to calculate, following contamination incidents, the (1) estimates of Bacillus anthracis contamination, as well as the bias and uncertainties in the estimates, and (2) confidence in characterization and clearance decisions for contaminated or decontaminated buildings. Gaps in knowledge and understanding identified during the summary of the studies are discussed and recommendations are given for future studies.

  19. Transcriptional profiling of Bacillus anthracis Sterne (34F2 during iron starvation.

    Directory of Open Access Journals (Sweden)

    Paul E Carlson

    2009-09-01

    Full Text Available Lack of available iron is one of many environmental challenges that a bacterium encounters during infection and adaptation to iron starvation is important for the pathogen to efficiently replicate within the host. Here we define the transcriptional response of B. anthracis Sterne (34F(2 to iron depleted conditions. Genome-wide transcript analysis showed that B. anthracis undergoes considerable changes in gene expression during growth in iron-depleted media, including the regulation of known and candidate virulence factors. Two genes encoding putative internalin proteins were chosen for further study. Deletion of either gene (GBAA0552 or GBAA1340 resulted in attenuation in a murine model of infection. This attenuation was amplified in a double mutant strain. These data define the transcriptional changes induced during growth in low iron conditions and illustrate the potential of this dataset in the identification of putative virulence determinants for future study.

  20. Sensitivity of Dormant and Germinating B, Anthracis Spores to Polycationic Compound

    Science.gov (United States)

    2005-06-01

    practical problems such as food spoilage , degradation of industrial materials, and "sick building syndrome" resulting from colonization of ventilation systems...species of Clostridium and Bacillus are of concern to the food industry due to their potential for spoilage of or toxin production in improperly...1.2. While most spore-forming bacterial species are classified as non-pathogenic or opportunistically pathogenic, Bacillus anthracis is well-known a

  1. Micro-Etched Platforms for Thermal Inactivation of Bacillus Anthracis and Bacillus Thuringiensis Spores

    Science.gov (United States)

    2008-03-01

    gentlemen are approachable and extremely well versed in their fields. Dr. Burggraf’s passion for learning coupled with the patience necessary to allow...wide spread employment on civilian targets has increased. Indeed, the well known biological agent Anthrax, Bacillus anthracis (B.a.), was recently...reached at 0.5 seconds with the heat from the fireball lasting a total of 4 seconds ( Orson , J.A. 2003; 104). From this data, the short time-temperature

  2. Automated thermochemolysis reactor for detection of Bacillus anthracis endospores by gas chromatography–mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dan [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Rands, Anthony D.; Losee, Scott C. [Torion Technologies, American Fork, UT 84003 (United States); Holt, Brian C. [Department of Statistics, Brigham Young University, Provo, UT 84602 (United States); Williams, John R. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Lammert, Stephen A. [Torion Technologies, American Fork, UT 84003 (United States); Robison, Richard A. [Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602 (United States); Tolley, H. Dennis [Department of Statistics, Brigham Young University, Provo, UT 84602 (United States); Lee, Milton L., E-mail: milton_lee@byu.edu [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States)

    2013-05-02

    Graphical abstract: -- Highlights: •An automated sample preparation system for Bacillus anthracis endospores was developed. •A thermochemolysis method was applied to produce and derivatize biomarkers for Bacillus anthracis detection. •The autoreactor controlled the precise delivery of reagents, and TCM reaction times and temperatures. •Solid phase microextraction was used to extract biomarkers, and GC–MS was used for final identification. •This autoreactor was successfully applied to the identification of Bacillus anthracis endospores. -- Abstract: An automated sample preparation system was developed and tested for the rapid detection of Bacillus anthracis endospores by gas chromatography–mass spectrometry (GC–MS) for eventual use in the field. This reactor is capable of automatically processing suspected bio-threat agents to release and derivatize unique chemical biomarkers by thermochemolysis (TCM). The system automatically controls the movement of sample vials from one position to another, crimping of septum caps onto the vials, precise delivery of reagents, and TCM reaction times and temperatures. The specific operations of introduction of sample vials, solid phase microextraction (SPME) sampling, injection into the GC–MS system, and ejection of used vials from the system were performed manually in this study, although they can be integrated into the automated system. Manual SPME sampling is performed by following visual and audible signal prompts for inserting the fiber into and retracting it from the sampling port. A rotating carousel design allows for simultaneous sample collection, reaction, biomarker extraction and analysis of sequential samples. Dipicolinic acid methyl ester (DPAME), 3-methyl-2-butenoic acid methyl ester (a fragment of anthrose) and two methylated sugars were used to compare the performance of the autoreactor with manual TCM. Statistical algorithms were used to construct reliable bacterial endospore signatures, and 24

  3. Automated thermochemolysis reactor for detection of Bacillus anthracis endospores by gas chromatography–mass spectrometry

    International Nuclear Information System (INIS)

    Li, Dan; Rands, Anthony D.; Losee, Scott C.; Holt, Brian C.; Williams, John R.; Lammert, Stephen A.; Robison, Richard A.; Tolley, H. Dennis; Lee, Milton L.

    2013-01-01

    Graphical abstract: -- Highlights: •An automated sample preparation system for Bacillus anthracis endospores was developed. •A thermochemolysis method was applied to produce and derivatize biomarkers for Bacillus anthracis detection. •The autoreactor controlled the precise delivery of reagents, and TCM reaction times and temperatures. •Solid phase microextraction was used to extract biomarkers, and GC–MS was used for final identification. •This autoreactor was successfully applied to the identification of Bacillus anthracis endospores. -- Abstract: An automated sample preparation system was developed and tested for the rapid detection of Bacillus anthracis endospores by gas chromatography–mass spectrometry (GC–MS) for eventual use in the field. This reactor is capable of automatically processing suspected bio-threat agents to release and derivatize unique chemical biomarkers by thermochemolysis (TCM). The system automatically controls the movement of sample vials from one position to another, crimping of septum caps onto the vials, precise delivery of reagents, and TCM reaction times and temperatures. The specific operations of introduction of sample vials, solid phase microextraction (SPME) sampling, injection into the GC–MS system, and ejection of used vials from the system were performed manually in this study, although they can be integrated into the automated system. Manual SPME sampling is performed by following visual and audible signal prompts for inserting the fiber into and retracting it from the sampling port. A rotating carousel design allows for simultaneous sample collection, reaction, biomarker extraction and analysis of sequential samples. Dipicolinic acid methyl ester (DPAME), 3-methyl-2-butenoic acid methyl ester (a fragment of anthrose) and two methylated sugars were used to compare the performance of the autoreactor with manual TCM. Statistical algorithms were used to construct reliable bacterial endospore signatures, and 24

  4. Identification of the pXO1 plasmid in attenuated Bacillus anthracis vaccine strains.

    Science.gov (United States)

    Liang, Xudong; Zhang, Huijuan; Zhang, Enmin; Wei, Jianchun; Li, Wei; Wang, Bingxiang; Dong, Shulin; Zhu, Jin

    2016-07-03

    Anthrax toxins and capsule are the major virulence factors of Bacillus anthracis. They are encoded by genes located on the plasmids pXO1 and pXO2, respectively. The vaccine strain Pasteur II was produced from high temperature subcultures of B. anthracis, which resulted in virulence attenuation through the loss of the plasmid pXO1. However, it is unclear whether the high temperature culture completely abolishes the plasmid DNA or affects the replication of the plasmid pXO1. In this study, we tested 3 B. anthracis vaccine strains, including Pasteur II from France, Qiankefusiji II from Russia, and Rentian II from Japan, which were all generated from subcultures at high temperatures. Surprisingly, we detected the presence of pXO1 plasmid DNA using overlap PCR in all these vaccine strains. DNA sequencing analysis of overlap PCR products further confirmed the presence of pXO1. Moreover, the expression of the protective antigen (PA) encoded on pXO1 was determined by using SDS-PAGE and western blotting. In addition, we mimicked Pasteur's method and exposed the A16R vaccine strain, which lacks the pXO2 plasmid, to high temperature, and identified the pXO1 plasmid in the subcultures at high temperatures. This indicated that the high temperature treatment at 42.5°C was unable to eliminate pXO1 plasmid DNA from B. anthracis. Our results suggest that the attenuation of the Pasteur II vaccine strain is likely due to the impact of high temperature stress on plasmid replication, which in turn limits the copy number of pXO1. Our data provide new insights into the mechanisms of the remaining immunogenicity and toxicity of the vaccine strains.

  5. Recombinant expression and purification of a tumor-targeted toxin in Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Bachran, Christopher; Abdelazim, Suzanne; Fattah, Rasem J.; Liu, Shihui [National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 (United States); Leppla, Stephen H., E-mail: sleppla@niaid.nih.gov [National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Non-infectious and protease-deficient Bacillus anthracis protein expression system. Black-Right-Pointing-Pointer Successful expression and purification of a tumor-targeted fusion protein drug. Black-Right-Pointing-Pointer Very low endotoxin contamination of purified protein. Black-Right-Pointing-Pointer Efficient protein secretion simplifies purification. Black-Right-Pointing-Pointer Functional anti-tumor fusion protein purified. -- Abstract: Many recombinant therapeutic proteins are purified from Escherichia coli. While expression in E. coli is easily achieved, some disadvantages such as protein aggregation, formation of inclusion bodies, and contamination of purified proteins with the lipopolysaccharides arise. Lipopolysaccharides have to be removed to prevent inflammatory responses in patients. Use of the Gram-positive Bacillus anthracis as an expression host offers a solution to circumvent these problems. Using the multiple protease-deficient strain BH460, we expressed a fusion of the N-terminal 254 amino acids of anthrax lethal factor (LFn), the N-terminal 389 amino acids of diphtheria toxin (DT389) and human transforming growth factor alpha (TGF{alpha}). The resulting fusion protein was constitutively expressed and successfully secreted by B. anthracis into the culture supernatant. Purification was achieved by anion exchange chromatography and proteolytic cleavage removed LFn from the desired fusion protein (DT389 fused to TGF{alpha}). The fusion protein showed the intended specific cytotoxicity to epidermal growth factor receptor-expressing human head and neck cancer cells. Final analyses showed low levels of lipopolysaccharides, originating most likely from contamination during the purification process. Thus, the fusion to LFn for protein secretion and expression in B. anthracis BH460 provides an elegant tool to obtain high levels of lipopolysaccharide-free recombinant protein.

  6. Recombinant expression and purification of a tumor-targeted toxin in Bacillus anthracis

    International Nuclear Information System (INIS)

    Bachran, Christopher; Abdelazim, Suzanne; Fattah, Rasem J.; Liu, Shihui; Leppla, Stephen H.

    2013-01-01

    Highlights: ► Non-infectious and protease-deficient Bacillus anthracis protein expression system. ► Successful expression and purification of a tumor-targeted fusion protein drug. ► Very low endotoxin contamination of purified protein. ► Efficient protein secretion simplifies purification. ► Functional anti-tumor fusion protein purified. -- Abstract: Many recombinant therapeutic proteins are purified from Escherichia coli. While expression in E. coli is easily achieved, some disadvantages such as protein aggregation, formation of inclusion bodies, and contamination of purified proteins with the lipopolysaccharides arise. Lipopolysaccharides have to be removed to prevent inflammatory responses in patients. Use of the Gram-positive Bacillus anthracis as an expression host offers a solution to circumvent these problems. Using the multiple protease-deficient strain BH460, we expressed a fusion of the N-terminal 254 amino acids of anthrax lethal factor (LFn), the N-terminal 389 amino acids of diphtheria toxin (DT389) and human transforming growth factor alpha (TGFα). The resulting fusion protein was constitutively expressed and successfully secreted by B. anthracis into the culture supernatant. Purification was achieved by anion exchange chromatography and proteolytic cleavage removed LFn from the desired fusion protein (DT389 fused to TGFα). The fusion protein showed the intended specific cytotoxicity to epidermal growth factor receptor-expressing human head and neck cancer cells. Final analyses showed low levels of lipopolysaccharides, originating most likely from contamination during the purification process. Thus, the fusion to LFn for protein secretion and expression in B. anthracis BH460 provides an elegant tool to obtain high levels of lipopolysaccharide-free recombinant protein.

  7. Modeling the potential distribution of Bacillus anthracis under multiple climate change scenarios for Kazakhstan.

    Directory of Open Access Journals (Sweden)

    Timothy Andrew Joyner

    Full Text Available Anthrax, caused by the bacterium Bacillus anthracis, is a zoonotic disease that persists throughout much of the world in livestock, wildlife, and secondarily infects humans. This is true across much of Central Asia, and particularly the Steppe region, including Kazakhstan. This study employed the Genetic Algorithm for Rule-set Prediction (GARP to model the current and future geographic distribution of Bacillus anthracis in Kazakhstan based on the A2 and B2 IPCC SRES climate change scenarios using a 5-variable data set at 55 km(2 and 8 km(2 and a 6-variable BioClim data set at 8 km(2. Future models suggest large areas predicted under current conditions may be reduced by 2050 with the A2 model predicting approximately 14-16% loss across the three spatial resolutions. There was greater variability in the B2 models across scenarios predicting approximately 15% loss at 55 km(2, approximately 34% loss at 8 km(2, and approximately 30% loss with the BioClim variables. Only very small areas of habitat expansion into new areas were predicted by either A2 or B2 in any models. Greater areas of habitat loss are predicted in the southern regions of Kazakhstan by A2 and B2 models, while moderate habitat loss is also predicted in the northern regions by either B2 model at 8 km(2. Anthrax disease control relies mainly on livestock vaccination and proper carcass disposal, both of which require adequate surveillance. In many situations, including that of Kazakhstan, vaccine resources are limited, and understanding the geographic distribution of the organism, in tandem with current data on livestock population dynamics, can aid in properly allocating doses. While speculative, contemplating future changes in livestock distributions and B. anthracis spore promoting environments can be useful for establishing future surveillance priorities. This study may also have broader applications to global public health surveillance relating to other diseases in addition to B

  8. Impedance Measurements Could Accelerate Phage-Based Identification of Bacillus anthracis and Other Bacteria

    Science.gov (United States)

    2016-09-01

    Impedance Measurements Could Accelerate Phage-Based Identification of Bacillus anthracis And Other Bacteria Thomas Brown, Salwa Shan, Teresa...infection can be detected as early as one hour after exposing as few as 105 CFU bacteria to the stressor. We predicted that similar responses could be used... bacteria to form confluent growth and for phage-induced plaques to appear. Techniques that permit faster detection of species-specific bacteria /phage

  9. Replacement of the folC gene, encoding folylpolyglutamate synthetase-dihydrofolate synthetase in Escherichia coli, with genes mutagenized in vitro.

    Science.gov (United States)

    Pyne, C; Bognar, A L

    1992-03-01

    The folylpolyglutamate synthetase-dihydrofolate synthetase gene (folC) in Escherichia coli was deleted from the bacterial chromosome and replaced by a selectable Kmr marker. The deletion strain required a complementing gene expressing folylpolyglutamate synthetase encoded on a plasmid for viability, indicating that folC is an essential gene in E. coli. The complementing folC gene was cloned into the vector pPM103 (pSC101, temperature sensitive for replication), which segregated spontaneously at 42 degrees C in the absence of selection. This complementing plasmid was replaced in the folC deletion strain by compatible pUC plasmids containing folC genes with mutations generated in vitro, producing strains which express only mutant folylpolyglutamate synthetase. Mutant folC genes expressing insufficient enzyme activity could not complement the chromosomal deletion, resulting in retention of the pPM103 plasmid. Some mutant genes expressing low levels of enzyme activity replaced the complementing plasmid, but the strains produced were auxotrophic for products of folate-dependent pathways. The folylpolyglutamate synthetase gene from Lactobacillus casei, which may lack dihydrofolate synthetase activity, replaced the complementing plasmid, but the strain was auxotrophic for all folate end products.

  10. Ecological niche modeling of Bacillus anthracis on three continents: evidence for genetic-ecological divergence?

    Directory of Open Access Journals (Sweden)

    Jocelyn C Mullins

    Full Text Available We modeled the ecological niche of a globally successful Bacillus anthracis sublineage in the United States, Italy and Kazakhstan to better understand the geographic distribution of anthrax and potential associations between regional populations and ecology. Country-specific ecological-niche models were developed and reciprocally transferred to the other countries to determine if pathogen presence could be accurately predicted on novel landscapes. Native models accurately predicted endemic areas within each country, but transferred models failed to predict known occurrences in the outside countries. While the effects of variable selection and limitations of the genetic data should be considered, results suggest differing ecological associations for the B. anthracis populations within each country and may reflect niche specialization within the sublineage. Our findings provide guidance for developing accurate ecological niche models for this pathogen; models should be developed regionally, on the native landscape, and with consideration to population genetics. Further genomic analysis will improve our understanding of the genetic-ecological dynamics of B. anthracis across these countries and may lead to more refined predictive models for surveillance and proactive vaccination programs. Further studies should evaluate the impact of variable selection of native and transferred models.

  11. Storage Effects on Sample Integrity of Environmental Surface Sampling Specimens with Bacillus anthracis Spores.

    Science.gov (United States)

    Perry, K Allison; O'Connell, Heather A; Rose, Laura J; Noble-Wang, Judith A; Arduino, Matthew J

    The effect of packaging, shipping temperatures and storage times on recovery of Bacillus anthracis . Sterne spores from swabs was investigated. Macrofoam swabs were pre-moistened, inoculated with Bacillus anthracis spores, and packaged in primary containment or secondary containment before storage at -15°C, 5°C, 21°C, or 35°C for 0-7 days. Swabs were processed according to validated Centers for Disease Control/Laboratory Response Network culture protocols, and the percent recovery relative to a reference sample (T 0 ) was determined for each variable. No differences were observed in recovery between swabs held at -15° and 5°C, (p ≥ 0.23). These two temperatures provided significantly better recovery than swabs held at 21°C or 35°C (all 7 days pooled, p ≤ 0.04). The percent recovery at 5°C was not significantly different if processed on days 1, 2 or 4, but was significantly lower on day 7 (day 2 vs. 7, 5°C, 10 2 , p=0.03). Secondary containment provided significantly better percent recovery than primary containment, regardless of storage time (5°C data, p ≤ 0.008). The integrity of environmental swab samples containing Bacillus anthracis spores shipped in secondary containment was maintained when stored at -15°C or 5°C and processed within 4 days to yield the optimum percent recovery of spores.

  12. Structural study and thermodynamic characterization of inhibitor binding to lumazine synthase from Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Morgunova, Ekaterina [Karolinska Institutet NOVUM, Center of Structural Biochemistry, Hälsovägen 7-9, 141 57 Huddinge (Sweden); Illarionov, Boris; Saller, Sabine [Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg (Germany); Popov, Aleksander [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble CEDEX 09 (France); Sambaiah, Thota [Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University (United States); Bacher, Adelbert [Chemistry Department, Technical University of Munich, 85747 Garching (Germany); Cushman, Mark [Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University (United States); Fischer, Markus [Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg (Germany); Ladenstein, Rudolf, E-mail: rudolf.ladenstein@ki.se [Karolinska Institutet NOVUM, Center of Structural Biochemistry, Hälsovägen 7-9, 141 57 Huddinge (Sweden)

    2010-09-01

    Crystallographic studies of lumazine synthase, the penultimate enzyme of the riboflavin-biosynthetic pathway in B. anthracis, provide a structural framework for the design of antibiotic inhibitors, together with calorimetric and kinetic investigations of inhibitor binding. The crystal structure of lumazine synthase from Bacillus anthracis was solved by molecular replacement and refined to R{sub cryst} = 23.7% (R{sub free} = 28.4%) at a resolution of 3.5 Å. The structure reveals the icosahedral symmetry of the enzyme and specific features of the active site that are unique in comparison with previously determined orthologues. The application of isothermal titration calorimetry in combination with enzyme kinetics showed that three designed pyrimidine derivatives bind to lumazine synthase with micromolar dissociation constants and competitively inhibit the catalytic reaction. Structure-based modelling suggested the binding modes of the inhibitors in the active site and allowed an estimation of the possible contacts formed upon binding. The results provide a structural framework for the design of antibiotics active against B. anthracis.

  13. Bacillus thuringiensis HD-1 Cry- : development of a safe, non-insecticidal simulant for Bacillus anthracis.

    Science.gov (United States)

    Bishop, A H; Robinson, C V

    2014-09-01

    A representative simulant for spores of Bacillus anthracis is needed for field testing. Bacillus thuringiensis is gaining recognition as a suitable organism. A strain that does not form the insecticidal, parasporal crystals that are characteristic of this species is a more accurate physical representative of B. anthracis spores. We developed noninsecticidal derivatives of two isolates of B. thuringiensis HD-1. Two plasmid-cured derivatives of B. thuringiensis HD-1, unable to make crystal toxins ('Cry(-) '), were isolated. These isolates and the existing Cry(-) strain, B. thuringiensis Al Hakam, were probed with PCR assays against the known insecticidal genes cry, vip and cyt. Their genomic DNA was sequenced to demonstrate a lack of insecticidal genes. This was confirmed by bioassays against a number of invertebrate species. Real-time PCR assays were developed to identify the B. thuringiensis HD-1 Cry(-) derivatives and an effective differential and selective medium was assessed. All three Cry(-) isolates are devoid of known insecticidal determinants. The B. thuringiensis HD-1 Cry(-) derivatives can easily be recovered from soil and identified by PCR with some selectivity. The B. thuringiensis HD-1 Cry(-) derivatives represent accurate, nongenetically manipulated simulants for B. anthracis with excellent human and environmental safety records. © 2014 Crown Copyright. Journal of Applied Microbiology © 2014 Society for Applied Microbiology This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.

  14. Optimization of a sample processing protocol for recovery of Bacillus anthracis spores from soil

    Science.gov (United States)

    Silvestri, Erin E.; Feldhake, David; Griffin, Dale; Lisle, John T.; Nichols, Tonya L.; Shah, Sanjiv; Pemberton, A; Schaefer III, Frank W

    2016-01-01

    Following a release of Bacillus anthracis spores into the environment, there is a potential for lasting environmental contamination in soils. There is a need for detection protocols for B. anthracis in environmental matrices. However, identification of B. anthracis within a soil is a difficult task. Processing soil samples helps to remove debris, chemical components, and biological impurities that can interfere with microbiological detection. This study aimed to optimize a previously used indirect processing protocol, which included a series of washing and centrifugation steps. Optimization of the protocol included: identifying an ideal extraction diluent, variation in the number of wash steps, variation in the initial centrifugation speed, sonication and shaking mechanisms. The optimized protocol was demonstrated at two laboratories in order to evaluate the recovery of spores from loamy and sandy soils. The new protocol demonstrated an improved limit of detection for loamy and sandy soils over the non-optimized protocol with an approximate matrix limit of detection at 14 spores/g of soil. There were no significant differences overall between the two laboratories for either soil type, suggesting that the processing protocol will be robust enough to use at multiple laboratories while achieving comparable recoveries.

  15. Identification and characterization of clinical Bacillus spp. isolates phenotypically similar to Bacillus anthracis.

    Science.gov (United States)

    Beesley, Cari A; Vanner, Cynthia L; Helsel, Leta O; Gee, Jay E; Hoffmaster, Alex R

    2010-12-01

    Bacillus anthracis, the etiological agent of anthrax, is a gram-positive, spore-forming rod, with colonies exhibiting a unique ground-glass appearance, and lacking hemolysis and motility. In addition to these phenotypes, several others traits are characteristic of B. anthracis such as susceptibility to gamma phage, the presence of two virulence plasmids (pX01 and pX02), and specific cell wall and capsular antigens that are commonly detected by direct fluorescent-antibody assays. We report on the identification and characterization of 14 Bacillus megaterium and four Bacillus sp. clinical isolates that are nonhemolytic, nonmotile, and produce a capsule antigenically similar to B. anthracis. This work furthers our understanding of Bacillus diversity and the limitations of the assays and phenotypes that are used to differentiate species in this genus. Further work is necessary to understand whether these strains are opportunistic pathogens or just contaminates. FEMS Microbiology Letters © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original US government works.

  16. The human-bacterial pathogen protein interaction networks of Bacillus anthracis, Francisella tularensis, and Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Matthew D Dyer

    2010-08-01

    Full Text Available Bacillus anthracis, Francisella tularensis, and Yersinia pestis are bacterial pathogens that can cause anthrax, lethal acute pneumonic disease, and bubonic plague, respectively, and are listed as NIAID Category A priority pathogens for possible use as biological weapons. However, the interactions between human proteins and proteins in these bacteria remain poorly characterized leading to an incomplete understanding of their pathogenesis and mechanisms of immune evasion.In this study, we used a high-throughput yeast two-hybrid assay to identify physical interactions between human proteins and proteins from each of these three pathogens. From more than 250,000 screens performed, we identified 3,073 human-B. anthracis, 1,383 human-F. tularensis, and 4,059 human-Y. pestis protein-protein interactions including interactions involving 304 B. anthracis, 52 F. tularensis, and 330 Y. pestis proteins that are uncharacterized. Computational analysis revealed that pathogen proteins preferentially interact with human proteins that are hubs and bottlenecks in the human PPI network. In addition, we computed modules of human-pathogen PPIs that are conserved amongst the three networks. Functionally, such conserved modules reveal commonalities between how the different pathogens interact with crucial host pathways involved in inflammation and immunity.These data constitute the first extensive protein interaction networks constructed for bacterial pathogens and their human hosts. This study provides novel insights into host-pathogen interactions.

  17. Ecological niche modeling of Bacillus anthracis on three continents: evidence for genetic-ecological divergence?

    Science.gov (United States)

    Mullins, Jocelyn C; Garofolo, Giuliano; Van Ert, Matthew; Fasanella, Antonio; Lukhnova, Larisa; Hugh-Jones, Martin E; Blackburn, Jason K

    2013-01-01

    We modeled the ecological niche of a globally successful Bacillus anthracis sublineage in the United States, Italy and Kazakhstan to better understand the geographic distribution of anthrax and potential associations between regional populations and ecology. Country-specific ecological-niche models were developed and reciprocally transferred to the other countries to determine if pathogen presence could be accurately predicted on novel landscapes. Native models accurately predicted endemic areas within each country, but transferred models failed to predict known occurrences in the outside countries. While the effects of variable selection and limitations of the genetic data should be considered, results suggest differing ecological associations for the B. anthracis populations within each country and may reflect niche specialization within the sublineage. Our findings provide guidance for developing accurate ecological niche models for this pathogen; models should be developed regionally, on the native landscape, and with consideration to population genetics. Further genomic analysis will improve our understanding of the genetic-ecological dynamics of B. anthracis across these countries and may lead to more refined predictive models for surveillance and proactive vaccination programs. Further studies should evaluate the impact of variable selection of native and transferred models.

  18. Fieldable genotyping of Bacillus anthracis and Yersinia pestis based on 25-loci Multi Locus VNTR Analysis

    Directory of Open Access Journals (Sweden)

    Carattoli Alessandra

    2008-01-01

    Full Text Available Abstract Background Anthrax and plague are diseases caused by Bacillus anthracis and Yersinia pestis respectively. These bacteria are etiological agents for worldwide zoonotic diseases and are considered among the most feared potential bioterror agents. Strain differentiation is difficult for these microorganisms because of their high intraspecies genome homogeneity. Moreover, fast strain identification and comparison with known genotypes may be crucial for naturally occurring outbreaks versus bioterrorist events discrimination. Results Thirty-nine B. anthracis and ten Y. pestis strains, representative of the species genetic diversity, were genotyped by Agilent 2100 Bioanalyzer using previously described Multiple Locus VNTR Analysis assays (MLVA. Results were compared to previous data obtained by standard genotyping system (capillary electrophoresis on automatic sequencer and, when necessary, direct amplicon sequencing. A reference comparison table containing actual fragment sizes, sequencer sizes and Agilent sizes was produced. Conclusion In this report an automated DNA electrophoresis apparatus which provides a cheaper alternative compared to capillary electrophoresis approaches was applied for genotyping of B. anthracis and Y. pestis. This equipment, uses pre-cast gels and provides easy transportation, low maintenance and overall general logistic requirements and costs, is easy to set up and provides rapid analysis. This platform is a candidate for on-site MLVA genotyping of biothreat agents as well as other bacterial pathogens. It is an alternative to the more expensive and demanding capillary electrophoresis methods, and to the less expensive but more time-consuming classical gel electrophoresis approach.

  19. Sample collection of virulent and non-virulent B. anthracis and Y. pestis for bioforensics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hong-geller, Elizabeth [Los Alamos National Laboratory; Valdez, Yolanda E [Los Alamos National Laboratory; Shou, Yulin [Los Alamos National Laboratory; Yoshida, Thomas M [Los Alamos National Laboratory; Marrone, Babetta L [Los Alamos National Laboratory; Dunbar, John [Los Alamos National Laboratory

    2009-01-01

    Validated sample collection methods are needed for recovery of microbial evidence in the event of accidental or intentional release of biological agents into the environment. To address this need, we evaluated the sample recovery efficiencies of two collection methods -- swabs and wipes -- for both non-virulent and virulent strains of B. anthracis and Y. pestis from four types of non-porous surfaces: two hydrophilic surfaces, stainless steel and glass, and two hydrophobic surfaces, vinyl and plastic. Sample recovery was quantified using Real-time qPCR to assay for intact DNA signatures. We found no consistent difference in collection efficiency between swabs or wipes. Furthermore, collection efficiency was more surface-dependent for virulent strains than non-virulent strains. For the two non-virulent strains, B. anthracis Sterne and Y. pestis A1122, collection efficiency was approximately 100% and 1 %, respectively, from all four surfaces. In contrast, recovery of B. anthracis Ames spores and Y. pestis C092 from vinyl and plastic was generally lower compared to collection from glass or stainless steel, suggesting that surface hydrophobicity may playa role in the strength of pathogen adhesion. The surface-dependent collection efficiencies observed with the virulent strains may arise from strain-specific expression of capsular material or other cell surface receptors that alter cell adhesion to specific surfaces. These findings contribute to validation of standard bioforensics procedures and emphasize the importance of specific strain and surface interactions in pathogen detection.

  20. Lapachol inhibition of vitamin K epoxide reductase and vitamin K quinone reductase.

    Science.gov (United States)

    Preusch, P C; Suttie, J W

    1984-11-01

    Lapachol [2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone] has been shown to be a potent inhibitor of both vitamin K epoxide reductase and the dithiothreitol-dependent vitamin K quinone reductase of rat liver microsomes in vitro. These observations explain the anticoagulant activity of lapachol previously observed in both rats and humans. Lapachol inhibition of the vitamin K epoxide and quinone reductases resembled coumarin anticoagulant inhibition, and was observed in normal strain but not in warfarin-resistant strain rat liver microsomes. This similarity of action suggests that the lactone functionality of the coumarins is not critical for their activity. The initial-velocity steady-state inhibition patterns for lapachol inhibition of the solubilized vitamin K epoxide reductase were consistent with tight binding of lapachol to the oxidized form of the enzyme, and somewhat lower affinity for the reduced form. It is proposed that lapachol assumes a 4-enol tautomeric structure similar to that of the 4-hydroxy coumarins. These structures are analogs of the postulated hydroxyvitamin K enolate intermediate bound to the oxidized form of the enzyme in the chemical reaction mechanism of vitamin K epoxide reductase, thus explaining their high affinity.

  1. Bacillus cereus Biovar Anthracis Causing Anthrax in Sub-Saharan Africa-Chromosomal Monophyly and Broad Geographic Distribution.

    Directory of Open Access Journals (Sweden)

    Kym S Antonation

    2016-09-01

    Full Text Available Through full genome analyses of four atypical Bacillus cereus isolates, designated B. cereus biovar anthracis, we describe a distinct clade within the B. cereus group that presents with anthrax-like disease, carrying virulence plasmids similar to those of classic Bacillus anthracis. We have isolated members of this clade from different mammals (wild chimpanzees, gorillas, an elephant and goats in West and Central Africa (Côte d'Ivoire, Cameroon, Central African Republic and Democratic Republic of Congo. The isolates shared several phenotypic features of both B. anthracis and B. cereus, but differed amongst each other in motility and their resistance or sensitivity to penicillin. They all possessed the same mutation in the regulator gene plcR, different from the one found in B. anthracis, and in addition, carry genes which enable them to produce a second capsule composed of hyaluronic acid. Our findings show the existence of a discrete clade of the B. cereus group capable of causing anthrax-like disease, found in areas of high biodiversity, which are possibly also the origin of the worldwide distributed B. anthracis. Establishing the impact of these pathogenic bacteria on threatened wildlife species will require systematic investigation. Furthermore, the consumption of wildlife found dead by the local population and presence in a domestic animal reveal potential sources of exposure to humans.

  2. Redefining the Australian Anthrax Belt: Modeling the Ecological Niche and Predicting the Geographic Distribution of Bacillus anthracis.

    Science.gov (United States)

    Barro, Alassane S; Fegan, Mark; Moloney, Barbara; Porter, Kelly; Muller, Janine; Warner, Simone; Blackburn, Jason K

    2016-06-01

    The ecology and distribution of B. anthracis in Australia is not well understood, despite the continued occurrence of anthrax outbreaks in the eastern states of the country. Efforts to estimate the spatial extent of the risk of disease have been limited to a qualitative definition of an anthrax belt extending from southeast Queensland through the centre of New South Wales and into northern Victoria. This definition of the anthrax belt does not consider the role of environmental conditions in the distribution of B. anthracis. Here, we used the genetic algorithm for rule-set prediction model system (GARP), historical anthrax outbreaks and environmental data to model the ecological niche of B. anthracis and predict its potential geographic distribution in Australia. Our models reveal the niche of B. anthracis in Australia is characterized by a narrow range of ecological conditions concentrated in two disjunct corridors. The most dominant corridor, used to redefine a new anthrax belt, parallels the Eastern Highlands and runs from north Victoria to central east Queensland through the centre of New South Wales. This study has redefined the anthrax belt in eastern Australia and provides insights about the ecological factors that limit the distribution of B. anthracis at the continental scale for Australia. The geographic distributions identified can help inform anthrax surveillance strategies by public and veterinary health agencies.

  3. NADH-Ferricyanide Reductase of Leaf Plasma Membranes : Partial Purification and Immunological Relation to Potato Tuber Microsomal NADH-Ferricyanide Reductase and Spinach Leaf NADH-Nitrate Reductase.

    Science.gov (United States)

    Askerlund, P; Laurent, P; Nakagawa, H; Kader, J C

    1991-01-01

    Plasma membranes obtained by two-phase partitioning of microsomal fractions from spinach (Spinacea oleracea L. cv Medania) and sugar beet leaves (Beta vulgaris L.) contained relatively high NADH-ferricyanide reductase and NADH-nitrate reductase (NR; EC 1.6.6.1) activities. Both of these activities were latent. To investigate whether these activities were due to the same enzyme, plasma membrane polypeptides were separated with SDS-PAGE and analyzed with immunoblotting methods. Antibodies raised against microsomal NADH-ferricyanide reductase (tentatively identified as NADH-cytochrome b(5) reductase, EC 1.6.2.2), purified from potato (Solanum tuberosum L. cv Bintje) tuber microsomes, displayed one single band at 43 kilodaltons when reacted with spinach plasma membranes, whereas lgG produced against NR from spinach leaves gave a major band at 110 kilodaltons together with a few fainter bands of lower molecular mass. Immunoblotting analysis using inside-out and right-side-out plasma membrane vesicles strongly indicated that NR was not an integral protein but probably trapped inside the plasma membrane vesicles during homogenization. Proteins from spinach plasma membranes were solubilized with the zwitterionic detergent 3-[(3-cholamidopropyl) dimethylammonio] 1-propane-sulfonate and separated on a Mono Q anion exchange column at pH 5.6 with fast protein liquid chromatography. One major peak of NADH-ferricyanide reductase activity was found after separation. The peak fraction was enriched about 70-fold in this activity compared to the plasma membrane. When the peak fractions were analyzed with SDS-PAGE the NADH-ferricyanide reductase activity strongly correlated with a 43 kilodalton polypeptide which reacted with the antibodies against potato microsomal NADH-ferricyanide reductase. Thus, our data indicate that most, if not all, of the truly membrane-bound NADH-ferricyanide reductase activity of leaf plasma membranes is due to an enzyme very similar to potato tuber

  4. The impact of inducing germination of Bacillus anthracis and Bacillus thuringiensis spores on potential secondary decontamination strategies.

    Science.gov (United States)

    Omotade, T O; Bernhards, R C; Klimko, C P; Matthews, M E; Hill, A J; Hunter, M S; Webster, W M; Bozue, J A; Welkos, S L; Cote, C K

    2014-12-01

    Decontamination and remediation of a site contaminated by the accidental or intentional release of fully virulent Bacillus anthracis spores are difficult, costly and potentially damaging to the environment. Development of novel decontamination strategies that have minimal environmental impacts remains a high priority. Although ungerminated spores are amongst the most resilient organisms known, once exposed to germinants, the germinating spores, in some cases, become susceptible to antimicrobial environments. We evaluated the concept that once germinated, B. anthracis spores would be less hazardous and significantly easier to remediate than ungerminated dormant spores. Through in vitro germination and sensitivity assays, we demonstrated that upon germination, B. anthracis Ames spores and Bacillus thuringiensis Al Hakam spores (serving as a surrogate for B. anthracis) become susceptible to environmental stressors. The majority of these germinated B. anthracis and B. thuringiensis spores were nonviable after exposure to a defined minimal germination-inducing solution for prolonged periods of time. Additionally, we examined the impact of potential secondary disinfectant strategies including bleach, hydrogen peroxide, formaldehyde and artificial UV-A, UV-B and UV-C radiation, employed after a 60-min germination-induction step. Each secondary disinfectant employs a unique mechanism of killing; as a result, germination-induction strategies are better suited for some secondary disinfectants than others. These results provide evidence that the deployment of an optimal combination strategy of germination-induction/secondary disinfection may be a promising aspect of wide-area decontamination following a B. anthracis contamination event. By inducing spores to germinate, our data confirm that the resulting cells exhibit sensitivities that can be leveraged when paired with certain decontamination measures. This increased susceptibility could be exploited to devise more

  5. Human carbonyl reductase 4 is a mitochondrial NADPH-dependent quinone reductase.

    Science.gov (United States)

    Endo, Satoshi; Matsunaga, Toshiyuki; Kitade, Yukio; Ohno, Satoshi; Tajima, Kazuo; El-Kabbani, Ossama; Hara, Akira

    2008-12-26

    A protein encoded in the gene Cbr4 on human chromosome 4q32.3 belongs to the short-chain dehydrogenase/reductase family. Contrary to the functional annotation as carbonyl reductase 4 (CBR4), we show that the recombinant tetrameric protein, composed of 25-kDa subunits, exhibits NADPH-dependent reductase activity for o- and p-quinones, but not for other aldehydes and ketones. The enzyme was insensitive to dicumarol and quercetin, potent inhibitors of cytosolic quinone reductases. The 25-kDa CBR4 was detected in human liver, kidney and cell lines on Western blotting using anti-CBR4 antibodies. The overexpression of CBR4 in bovine endothelial cells reveals that the enzyme has a non-cleavable mitochondrial targeting signal. We further demonstrate that the in vitro quinone reduction by CBR4 generates superoxide through the redox cycling, and suggest that the enzyme may be involved in the induction of apoptosis by cytotoxic 9,10-phenanthrenequinone.

  6. Structure and mechanism of dimethylsulfoxide reductase, a molybdopterin-containing enzyme of DMSO reductase family

    International Nuclear Information System (INIS)

    McEwan, A.G.; Ridge, J.P.; McDevitt, C.A.; Hanson, G.R.

    2001-01-01

    Full text: Apart from nitrogenase, enzymes containing molybdenum are members of a superfamily, the molybdopterin-containing enzymes. Most of these enzymes catalyse an oxygen atom transfer and two electron transfer reaction. During catalysis the Mo at the active site cycles between the Mo(VI) and Mo(IV) states. The DMSO reductase family of molybdopterin-containing enzymes all contain a bis(molybdopterin guanine dinucleotide)Mo cofactor and over thirty examples have now been described. Over the last five years crystal structures of dimethylsulfoxide (DMSO) reductase and four other enzymes of the DMSO reductase family have revealed that enzymes of this family have a similar tertiary structure. The Mo atom at the active site is coordinated by four thiolate ligands provided by the dithiolene side chains of the two MGD molecules of the bis(MGD)Mo cofactor as well as a ligand provided by an amino acid side chain. In addition, an oxygen atom in the form of an oxo, hydroxo or aqua group is also coordinated to the Mo atom. In the case of dimethylsulfoxide reductase X-ray crystallography of the product-reduced species and Raman spectroscopy has demonstrated that the enzyme contains a single exchangeable oxo group that is H-bonded to W116

  7. Nitroreductase reactions of Arabidopsis thaliana thioredoxin reductase.

    Science.gov (United States)

    Miskiniene, V; Sarlauskas, J; Jacquot, J P; Cenas, N

    1998-09-07

    Arabidopsis thaliana NADPH:thioredoxin reductase (TR, EC 1.6.4.5) catalyzed redox cycling of aromatic nitrocompounds, including the explosives 2,4,6-trinitrotoluene and tetryl, and the herbicide 3,5-dinitro-o-cresol. The yield of nitro anion radicals was equal to 70-90%. Redox cycling of tetryl was accompanied by formation of N-methylpicramide. Bimolecular rate constants of nitroaromatic reduction (kcat/Km) and reaction catalytic constants (kcat) increased upon an increase in oxidant single-electron reduction potential (E(1)7). Using compounds with an unknown E(1)7 value, the reactivity of TR increased parallelly to the increase in reactivity of ferredoxin:NADP+ reductase of Anabaena PCC 7119 (EC 1.18.1.2). This indicated that the main factor determining reactivity of nitroaromatics towards TR was their energetics of single-electron reduction. Incubation of reduced TR in the presence of tetryl or 2,4-dinitrochlorobenzene resulted in a loss of thioredoxin reductase activity, most probably due to modification of reduced catalytic disulfide, whereas nitroreductase reaction rates were unchanged. This means that on the analogy of quinone reduction by TR (D. Bironaite, Z. Anusevicius, J.-P. Jacquot, N. Cenas, Biochim. Biophys. Acta 1383 (1998) 82-92), FAD and not catalytic disulfide of TR was responsible for the reduction of nitroaromatics. Tetryl, 2,4,6-trinitrotoluene and thioredoxin increased the FAD fluorescence intensity of TR. This finding suggests that nitroaromatics may bind close to the thioredoxin-binding site at the catalytic disulfide domain of TR, and induce a conformational change of enzymes (S.B. Mulrooney, C.H. Williams Jr., Protein Sci. 6 (1997) 2188-2195). Our data indicate that certain nitroaromatic herbicides, explosives and other classes of xenobiotics may interfere with the reduction of thioredoxin by plant TR, and confer prooxidant properties to this antioxidant enzyme.

  8. cis-Acting Elements That Control Expression of the Master Virulence Regulatory Gene atxA in Bacillus anthracis

    OpenAIRE

    Dale, Jennifer L.; Raynor, Malik J.; Dwivedi, Prabhat; Koehler, Theresa M.

    2012-01-01

    Transcription of the Bacillus anthracis structural genes for the anthrax toxin proteins and biosynthetic operon for capsule is positively regulated by AtxA, a transcription regulator with unique properties. Consistent with the role of atxA in virulence factor expression, a B. anthracis atxA-null mutant is avirulent in a murine model for anthrax. In culture, multiple signals impact atxA transcript levels, and the timing and steady-state level of atxA expression are critical for optimal toxin a...

  9. [Valuation for usefulness of selected chromosomal markers for Bacillus anthracis identification. II. Valuation for markers SSH and rpoB].

    Science.gov (United States)

    Zasada, Aleksandra Anna; Jagielski, Marek

    2006-01-01

    The article presents results of valuation for B. anthracis-specificity and usefulness for its identification obtained for different chromosomal markers. In the second part of the study markers SSH241, SSH196, SSH163, SSH133 as well as a fragment of the house-keeping gene rpoB were analyzed. For the investigation MSSCP and multiplex-PCR assays were used. There were also tested different techniques of electrophoresis. The results gave an information about specificity of tested markers and their usefulness for B. anthracis identification.

  10. Bacillus anthracis: una mirada molecular a un patógeno célebre Bacillus anthracis: a molecular look at a famous pathogen

    Directory of Open Access Journals (Sweden)

    María E Pavan

    2011-12-01

    Full Text Available Bacillus anthracis es un bacilo gram positivo del grupo Bacillus cereus, que posee un genoma extremadamente monomórfco y comparte gran similitud fsiológica y de estructura genética con B. cereus y Bacillus thuringiensis. En este artículo se describen nuevos métodos moleculares para la identifcación y tipifcación de B. anthracis, basados en repeticiones en tándem de número variable o en diferencias genéticas detectadas por secuenciación, desarrollados en los últimos años. Los aspectos moleculares de los factores de virulencia tradicionales, cápsula, antígeno protector, factor letal y factor edema se describen en profundidad, junto con factores de virulencia recientemente propuestos, como los sideróforos, petrobactina y bacilibactina, la adhesina de la capa S y la lipoproteína MntA. También se detalla la organización molecular de los megaplásmidos pXO1 y pXO2, incluyendo la isla de patogenicidad de pXO1. El esqueleto genético de estos plásmidos se ha encontrado en otras especies relacionadas, probablemente debido a eventos de transferencia lateral. Finalmente, se presentan los dos receptores celulares del antígeno protector, ANTXR1/TEM8 y ANTXR2/CMG2, esenciales en la interacción del patógeno con el hospedador. Los estudios moleculares realizados en los últimos años han permitido aumentar enormemente el conocimiento de los diferentes aspectos de este microorganismo y su relación con el hospedador, pero a la vez han abierto nuevos interrogantes sobre este notorio patógeno.Bacillus anthracis, a gram-positive rod belonging to the Bacillus cereus group, has an extremely monomorphic genome, and presents high structural and physiological similarity with B. cereus and Bacillus thuringiensis. In this work, the new molecular methods for the identifcation and typing of B. anthracis developed in the last years, based on variable number tandem repeats or on genetic differences detected through sequencing, are described. The

  11. Comparison of sampling methods to recover germinated Bacillus anthracis and Bacillus thuringiensis endospores from surface coupons.

    Science.gov (United States)

    Mott, T M; Shoe, J L; Hunter, M; Woodson, A M; Fritts, K A; Klimko, C P; Quirk, A V; Welkos, S L; Cote, C K

    2017-05-01

    In an attempt to devise decontamination methods that are both effective and minimally detrimental to the environment, we evaluated germination induction as an enhancement to strategies for Bacillus anthracis spore decontamination. To determine an optimal method for the recovery of germinating spores from different matrices, it was critical to ensure that the sampling procedures did not negatively impact the viability of the germinating spores possibly confounding the results and downstream analyses of field trial data. Therefore, the two main objectives of this study were the following: (i) development of an effective processing protocol capable of recovering the maximum number of viable germinating or germinated spores from different surface materials; and (ii) using a model system of spore contamination, employ this protocol to evaluate the potential applicability of germination induction to wide-area decontamination of B. anthracis spores. We examined parameters affecting the sampling efficiencies of B. anthracis and the surrogate species Bacillus thuringiensis on nonporous and porous materials. The most efficient extraction from all matrices was observed using PBS with 0·01% Tween 80 extraction buffer. The addition of a sonication and/or extended vortex treatment did not yield significant increases in spore or germinated spore recovery. Our data demonstrate that previous germination-induction experiments performed in suspension can be reproduced when Bacillus spores are deposited onto reference surfaces materials. Our proof of concept experiment illustrated that a germination pretreatment step significantly improves conventional secondary decontamination strategies and remediation plans. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  12. Metal binding spectrum and model structure of the Bacillus anthracis virulence determinant MntA.

    Science.gov (United States)

    Vigonsky, Elena; Fish, Inbar; Livnat-Levanon, Nurit; Ovcharenko, Elena; Ben-Tal, Nir; Lewinson, Oded

    2015-10-01

    The potentially lethal human pathogen Bacillus anthracis expresses a putative metal import system, MntBCA, which belongs to the large family of ABC transporters. MntBCA is essential for virulence of Bacillus anthracis: deletion of MntA, the system's substrate binding protein, yields a completely non-virulent strain. Here we determined the metal binding spectrum of MntA. In contrast to what can be inferred from growth complementation studies we find no evidence that MntA binds Fe(2+) or Fe(3+). Rather, MntA binds a variety of other metal ions, including Mn(2+), Zn(2+), Cd(2+), Co(2+), and Ni(2+) with affinities ranging from 10(-6) to 10(-8) M. Binding of Zn(2+) and Co(2+) have a pronounced thermo-stabilizing effect on MntA, with Mn(2+) having a milder effect. The thermodynamic stability of MntA, competition experiments, and metal binding and release experiments all suggest that Mn(2+) is the metal that is likely transported by MntBCA and is therefore the limiting factor for virulence of Bacillus anthracis. A homology-model of MntA shows a single, highly conserved metal binding site, with four residues that participate in metal coordination: two histidines, a glutamate, and an aspartate. The metals bind to this site in a mutually exclusive manner, yet surprisingly, mutational analysis shows that for proper coordination each metal requires a different subset of these four residues. ConSurf evolutionary analysis and structural comparison of MntA and its homologues suggest that substrate binding proteins (SBPs) of metal ions use a pair of highly conserved prolines to interact with their cognate ABC transporters. This proline pair is found exclusively in ABC import systems of metal ions.

  13. Genes of Bacillus cereus and Bacillus anthracis encoding proteins of the exosporium.

    Science.gov (United States)

    Todd, Sarah J; Moir, Arthur J G; Johnson, Matt J; Moir, Anne

    2003-06-01

    The exosporium is the outermost layer of spores of Bacillus cereus and its close relatives Bacillus anthracis and Bacillus thuringiensis. For these pathogens, it represents the surface layer that makes initial contact with the host. To date, only the BclA glycoprotein has been described as a component of the exosporium; this paper defines 10 more tightly associated proteins from the exosporium of B. cereus ATCC 10876, identified by N-terminal sequencing of proteins from purified, washed exosporium. Likely coding sequences were identified from the incomplete genome sequence of B. anthracis or B. cereus ATCC 14579, and the precise corresponding sequence from B. cereus ATCC 10876 was defined by PCR and sequencing. Eight genes encode likely structural components (exsB, exsC, exsD, exsE, exsF, exsG, exsJ, and cotE). Several proteins of the exosporium are related to morphogenetic and outer spore coat proteins of B. subtilis, but most do not have homologues in B. subtilis. ExsE is processed from a larger precursor, and the CotE homologue appears to have been C-terminally truncated. ExsJ contains a domain of GXX collagen-like repeats, like the BclA exosporium protein of B. anthracis. Although most of the exosporium genes are scattered on the genome, bclA and exsF are clustered in a region flanking the rhamnose biosynthesis operon; rhamnose is part of the sugar moiety of spore glycoproteins. Two enzymes, alanine racemase and nucleoside hydrolase, are tightly adsorbed to the exosporium layer; they could metabolize small molecule germinants and may reduce the sensitivity of spores to these, limiting premature germination.

  14. Achieving consistent multiple daily low-dose Bacillus anthracis spore inhalation exposures in the rabbit model

    Directory of Open Access Journals (Sweden)

    Roy E Barnewall

    2012-06-01

    Full Text Available Repeated low-level exposures to Bacillus anthracis could occur before or after the remediation of an environmental release. This is especially true for persistent agents such as Bacillus anthracis spores, the causative agent of anthrax. Studies were conducted to examine aerosol methods needed for consistent daily low aerosol concentrations to deliver a low-dose (less than 106 colony forming units (CFU of B. anthracis spores and included a pilot feasibility characterization study, acute exposure study, and a multiple fifteen day exposure study. This manuscript focuses on the state-of-the-science aerosol methodologies used to generate and aerosolize consistent daily low aerosol concentrations and resultant low inhalation doses. The pilot feasibility characterization study determined that the aerosol system was consistent and capable of producing very low aerosol concentrations. In the acute, single day exposure experiment, targeted inhaled doses of 1 x 102, 1 x 103, 1 x 104, and 1 x 105 CFU were used. In the multiple daily exposure experiment, rabbits were exposed multiple days to targeted inhaled doses of 1 x 102, 1 x 103, and 1 x 104 CFU. In all studies, targeted inhaled doses remained fairly consistent from rabbit to rabbit and day to day. The aerosol system produced aerosolized spores within the optimal mass median aerodynamic diameter particle size range to reach deep lung alveoli. Consistency of the inhaled dose was aided by monitoring and recording respiratory parameters during the exposure with real-time plethysmography. Overall, the presented results show that the animal aerosol system was stable and highly reproducible between different studies and multiple exposure days.

  15. Mechanisms of DNA binding and regulation of Bacillus anthracis DNA primase.

    Science.gov (United States)

    Biswas, Subhasis B; Wydra, Eric; Biswas, Esther E

    2009-08-11

    DNA primases are pivotal enzymes in chromosomal DNA replication in all organisms. In this article, we report unique mechanistic characteristics of recombinant DNA primase from Bacillus anthracis. The mechanism of action of B. anthracis DNA primase (DnaG(BA)) may be described in several distinct steps as follows. Its mechanism of action is initiated when it binds to single-stranded DNA (ssDNA) in the form of a trimer. Although DnaG(BA) binds to different DNA sequences with moderate affinity (as expected of a mobile DNA binding protein), we found that DnaG(BA) bound to the origin of bacteriophage G4 (G4ori) with approximately 8-fold higher affinity. DnaG(BA) was strongly stimulated (>or=75-fold) by its cognate helicase, DnaB(BA), during RNA primer synthesis. With the G4ori ssDNA template, DnaG(BA) formed short (primers in the absence of DnaB(BA). The presence of DnaB(BA) increased the rate of primer synthesis. The observed stimulation of primer synthesis by cognate DnaB(BA) is thus indicative of a positive effector role for DnaB(BA). By contrast, Escherichia coli DnaB helicase (DnaB(EC)) did not stimulate DnaG(BA) and inhibited primer synthesis to near completion. This observed effect of E. coli DnaB(EC) is indicative of a strong negative effector role for heterologous DnaB(EC). We conclude that DnaG(BA) is capable of interacting with DnaB proteins from both B. anthracis and E. coli; however, between DnaB proteins derived from these two organisms, only the homologous DNA helicase (DnaB(BA)) acted as a positive effector of primer synthesis.

  16. Disinfection methods for spores of Bacillus atrophaeus, B. anthracis, Clostridium tetani, C. botulinum and C. difficile.

    Science.gov (United States)

    Oie, Shigeharu; Obayashi, Akiko; Yamasaki, Hirofumi; Furukawa, Hiroyuki; Kenri, Tsuyoshi; Takahashi, Motohide; Kawamoto, Keiko; Makino, Sou-ichi

    2011-01-01

    To evaluate disinfection methods for environments contaminated with bioterrorism-associated microorganism (Bacillus anthracis), we performed the following experiments. First, the sporicidal effects of sodium hypochlorite on spores of five bacterial species were evaluated. Bacillus atrophaeus was the most resistant to hypochlorite, followed in order by B. anthracis, Clostridium botulinum and Clostridium tetani, and Clostridium difficile. Subsequently, using B. atrophaeus spores that were the most resistant to hypochlorite, the sporicidal effects of hypochlorite at lower pH by adding vinegar were evaluated. Hypochlorite containing vinegar had far more marked sporicidal effects than hypochlorite alone. Cleaning with 0.5% (5000 ppm) hypochlorite containing vinegar inactivated B. atrophaeus spores attached to vinyl chloride and plywood plates within 15 s, while that not containing vinegar did not inactivate spores attached to cement or plywood plates even after 1 h. Therefore, the surfaces of cement or plywood plates were covered with gauze soaked in 0.5% hypochlorite containing vinegar, and the sporicidal effects were evaluated. B. atrophaeus spores attached to plywood plates were not inactivated even after 6 h, but those attached to cement plates were inactivated within 5 min. On the other hand, covering the surfaces of plywood plates with gauze soaked in 0.3% peracetic acid and gauze soaked in 2% glutaral inactivated B. atrophaeus spores within 5 min and 6 h, respectively. These results suggest that hypochlorite containing vinegar is effective for disinfecting vinyl chloride, tile, and cement plates contaminated with B. anthracis, and peracetic acid is effective for disinfecting plywood plates contaminated with such microorganism.

  17. Storage Effects on Sample Integrity of Environmental Surface Sampling Specimens with Bacillus anthracis Spores

    Science.gov (United States)

    Perry, K. Allison; O’Connell, Heather A.; Rose, Laura J.; Noble-Wang, Judith A.; Arduino, Matthew J.

    2016-01-01

    The effect of packaging, shipping temperatures and storage times on recovery of Bacillus anthracis. Sterne spores from swabs was investigated. Macrofoam swabs were pre-moistened, inoculated with Bacillus anthracis spores, and packaged in primary containment or secondary containment before storage at −15°C, 5°C, 21°C, or 35°C for 0–7 days. Swabs were processed according to validated Centers for Disease Control/Laboratory Response Network culture protocols, and the percent recovery relative to a reference sample (T0) was determined for each variable. No differences were observed in recovery between swabs held at −15° and 5°C, (p ≥ 0.23). These two temperatures provided significantly better recovery than swabs held at 21°C or 35°C (all 7 days pooled, p ≤ 0.04). The percent recovery at 5°C was not significantly different if processed on days 1, 2 or 4, but was significantly lower on day 7 (day 2 vs. 7, 5°C, 102, p=0.03). Secondary containment provided significantly better percent recovery than primary containment, regardless of storage time (5°C data, p ≤ 0.008). The integrity of environmental swab samples containing Bacillus anthracis spores shipped in secondary containment was maintained when stored at −15°C or 5°C and processed within 4 days to yield the optimum percent recovery of spores. PMID:27213119

  18. Protein profiles of field isolates ofBacillus anthracis from different endemic areas of Indonesia

    Directory of Open Access Journals (Sweden)

    M Bhakti Poerwadikarta

    1998-03-01

    Full Text Available Sonicated cell-free extract proteins of 14 field isolates ofBacillus anthracis from six different endemic areas of Indonesia were analyzed by the use of sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE methods . The protein profiles of each field isolate tested demonstrated slightly different at the protein bands with molecular weights of 18, 37, 52, 65 and 70 kDa, and varied between the field isolates and vaccine strains. The variation could provide clues to the source of anthrax transmission whether it was originated from similar strain or not.

  19. Biochip for the Detection of Bacillus anthracis Lethal Factor and Therapeutic Agents against Anthrax Toxins

    Directory of Open Access Journals (Sweden)

    Vitalii Silin

    2016-06-01

    Full Text Available Tethered lipid bilayer membranes (tBLMs have been used in many applications, including biosensing and membrane protein structure studies. This report describes a biosensor for anthrax toxins that was fabricated through the self-assembly of a tBLM with B. anthracis protective antigen ion channels that are both the recognition element and electrochemical transducer. We characterize the sensor and its properties with electrochemical impedance spectroscopy and surface plasmon resonance. The sensor shows a sensitivity similar to ELISA and can also be used to rapidly screen for molecules that bind to the toxins and potentially inhibit their lethal effects.

  20. Methemoglobin reductase activity in intact fish red blood cells

    DEFF Research Database (Denmark)

    Jensen, Frank B; Nielsen, Karsten

    2018-01-01

    Red blood cells (RBCs) possess methemoglobin reductase activity that counters the ongoing oxidation of hemoglobin (Hb) to methemoglobin (metHb), which in circulating blood is caused by Hb autoxidation or reactions with nitrite. We describe an assay for determining metHb reductase activity in intact...

  1. 21 CFR 864.7375 - Glutathione reductase assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... reductase deficiency, or riboflavin deficiency. (b) Classification. Class II (performance standards). [45 FR...

  2. Genomic analysis of three African strains of Bacillus anthracis demonstrates that they are part of the clonal expansion of an exclusively pathogenic bacterium

    Directory of Open Access Journals (Sweden)

    L. Rouli

    2014-11-01

    Full Text Available Bacillus anthracis is the causative agent of anthrax and is classified as a ‘Category A’ biological weapon. Six complete genomes of B. anthracis (A0248, Ames, Ames Ancestor, CDC684, H0491, and Sterne are currently available. In this report, we add three African strain genomes: Sen2Col2, Sen3 and Gmb1. To study the pan‐genome of B. anthracis, we used bioinformatics tools, such as Cluster of Orthologous Groups, and performed phylogenetic analysis. We found that the three African strains contained the pX01 and pX02 plasmids, the nonsense mutation in the plcR gene and the four known prophages. These strains are most similar to the CDC684 strain and belong to the A cluster. We estimated that the B. anthracis pan‐genome has 2893 core genes (99% of the genome size and 85 accessory genes. We validated the hypothesis that B. anthracis has a closed pan‐genome and found that the three African strains carry the two plasmids associated with bacterial virulence. The pan‐genome nature of B. anthracis confirms its lack of exchange (similar to Clostridium tetani and supports its exclusively pathogenic role, despite its survival in the environment. Moreover, thanks to the study of the core content single nucleotide polymorphisms, we can see that our three African strains diverged very recently from the other B. anthracis strains.

  3. Localization and structural analysis of a conserved pyruvylated epitope in Bacillus anthracis secondary cell wall polysaccharides and characterization of the galactose-deficient wall polysaccharide from avirulent B. anthracis CDC 684.

    Science.gov (United States)

    Forsberg, L Scott; Abshire, Teresa G; Friedlander, Arthur; Quinn, Conrad P; Kannenberg, Elmar L; Carlson, Russell W

    2012-08-01

    Bacillus anthracis CDC 684 is a naturally occurring, avirulent variant and close relative of the highly pathogenic B. anthracis Vollum. Bacillus anthracis CDC 684 contains both virulence plasmids, pXO1 and pXO2, yet is non-pathogenic in animal models, prompting closer scrutiny of the molecular basis of attenuation. We structurally characterized the secondary cell wall polysaccharide (SCWP) of B. anthracis CDC 684 (Ba684) using chemical and NMR spectroscopy analysis. The SCWP consists of a HexNAc trisaccharide backbone having identical structure as that of B. anthracis Pasteur, Sterne and Ames, →4)-β-d-ManpNAc-(1 → 4)-β-d-GlcpNAc-(1 → 6)-α-d-GlcpNAc-(1→. Remarkably, although the backbone is fully polymerized, the SCWP is the devoid of all galactosyl side residues, a feature which normally comprises 50% of the glycosyl residues on the highly galactosylated SCWPs from pathogenic strains. This observation highlights the role of defective wall assembly in virulence and indicates that polymerization occurs independently of galactose side residue attachment. Of particular interest, the polymerized Ba684 backbone retains the substoichiometric pyruvate acetal, O-acetate and amino group modifications found on SCWPs from normal B. anthracis strains, and immunofluorescence analysis confirms that SCWP expression coincides with the ability to bind the surface layer homology (SLH) domain containing S-layer protein extractable antigen-1. Pyruvate was previously demonstrated as part of a conserved epitope, mediating SLH-domain protein attachment to the underlying peptidoglycan layer. We find that a single repeating unit, located at the distal (non-reducing) end of the Ba684 SCWP, is structurally modified and that this modification is present in identical manner in the SCWPs of normal B. anthracis strains. These polysaccharides terminate in the sequence: (S)-4,6-O-(1-carboxyethylidene)-β-d-ManpNAc-(1 → 4)-[3-O-acetyl]-β-d-GlcpNAc-(1 → 6)-α-d-GlcpNH(2)-(1→.

  4. In silico and in vitro evaluation of PCR-based assays for the detection of Bacillus anthracis chromosomal signature sequences

    DEFF Research Database (Denmark)

    Ågren, Joakim; Hamidjaja, Raditijo A.; Hansen, Trine

    2013-01-01

    -layer, and prophage-lambda. Following a review of the literature, an in silico analysis of all signature sequences reported for identification of B. anthracis was conducted. Published primer and probe sequences were compared for specificity against 134 available Bacillus spp. genomes. Although many of the chromosomal...

  5. A Bivalent Anthrax–Plague Vaccine That Can Protect against Two Tier-1 Bioterror Pathogens, Bacillus anthracis and Yersinia pestis

    Directory of Open Access Journals (Sweden)

    Pan Tao

    2017-06-01

    Full Text Available Bioterrorism remains as one of the biggest challenges to global security and public health. Since the deadly anthrax attacks of 2001 in the United States, Bacillus anthracis and Yersinia pestis, the causative agents of anthrax and plague, respectively, gained notoriety and were listed by the CDC as Tier-1 biothreat agents. Currently, there is no Food and Drug Administration-approved vaccine against either of these threats for mass vaccination to protect general public, let alone a bivalent vaccine. Here, we report the development of a single recombinant vaccine, a triple antigen consisting of all three target antigens, F1 and V from Y. pestis and PA from B. anthracis, in a structurally stable context. Properly folded and soluble, the triple antigen retained the functional and immunogenicity properties of all three antigens. Remarkably, two doses of this immunogen adjuvanted with Alhydrogel® elicited robust antibody responses in mice, rats, and rabbits and conferred complete protection against inhalational anthrax and pneumonic plague. No significant antigenic interference was observed. Furthermore, we report, for the first time, complete protection of animals against simultaneous challenge with Y. pestis and the lethal toxin of B. anthracis, demonstrating that a single biodefense vaccine can protect against a bioterror attack with weaponized B. anthracis and/or Y. pestis. This bivalent anthrax–plague vaccine is, therefore, a strong candidate for stockpiling, after demonstration of its safety and immunogenicity in human clinical trials, as part of national preparedness against two of the deadliest bioterror threats.

  6. Draft Genome Sequences of Bacillus cereus E41 and Bacillus anthracis F34 Isolated from Algerian Salt Lakes

    OpenAIRE

    Daas, Mohamed Seghir; Rosana, Albert Remus R.; Acedo, Jeella Z.; Nateche, Farida; Kebbouche-Gana, Salima; Vederas, John C.; Case, Rebecca J.

    2017-01-01

    ABSTRACT Two strains of Bacillus, B.?cereus E41 and B.?anthracis F34, were isolated from a salt lake in A?n M?lila-Oum El Bouaghi, eastern Algeria, and Ain Baida-Ouargla, southern Algeria, respectively. Their genomes display genes for the production of several bioactive secondary metabolites, including polyhydroxyalkanoate, iron siderophores, lipopeptides, and bacteriocins.

  7. Improved Proteomic Analysis Following Trichloroacetic Acid Extraction of Bacillus anthracis Spore Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Brooke LD; Wunschel, David S.; Sydor, Michael A.; Warner, Marvin G.; Wahl, Karen L.; Hutchison, Janine R.

    2015-08-07

    Proteomic analysis of bacterial samples provides valuable information about cellular responses and functions under different environmental pressures. Proteomic analysis is dependent upon efficient extraction of proteins from bacterial samples without introducing bias toward extraction of particular protein classes. While no single method can recover 100% of the bacterial proteins, selected protocols can improve overall protein isolation, peptide recovery, or enrich for certain classes of proteins. The method presented here is technically simple and does not require specialized equipment such as a mechanical disrupter. Our data reveal that for particularly challenging samples, such as B. anthracis Sterne spores, trichloroacetic acid extraction improved the number of proteins identified within a sample compared to bead beating (714 vs 660, respectively). Further, TCA extraction enriched for 103 known spore specific proteins whereas bead beating resulted in 49 unique proteins. Analysis of C. botulinum samples grown to 5 days, composed of vegetative biomass and spores, showed a similar trend with improved protein yields and identification using our method compared to bead beating. Interestingly, easily lysed samples, such as B. anthracis vegetative cells, were equally as effectively processed via TCA and bead beating, but TCA extraction remains the easiest and most cost effective option. As with all assays, supplemental methods such as implementation of an alternative preparation method may provide additional insight to the protein biology of the bacteria being studied.

  8. Forensic Application of Microbiological Culture Analysis To Identify Mail Intentionally Contaminated with Bacillus anthracis Spores†

    Science.gov (United States)

    Beecher, Douglas J.

    2006-01-01

    The discovery of a letter intentionally filled with dried Bacillus anthracis spores in the office of a United States senator prompted the collection and quarantine of all mail in congressional buildings. This mail was subsequently searched for additional intentionally contaminated letters. A microbiological sampling strategy was used to locate heavy contamination within the 642 separate plastic bags containing the mail. Swab sampling identified 20 bags for manual and visual examination. Air sampling within the 20 bags indicated that one bag was orders of magnitude more contaminated than all the others. This bag contained a letter addressed to Senator Patrick Leahy that had been loaded with dried B. anthracis spores. Microbiological sampling of compartmentalized batches of mail proved to be efficient and relatively safe. Efficiency was increased by inoculating culture media in the hot zone rather than transferring swab samples to a laboratory for inoculation. All mail sampling was complete within 4 days with minimal contamination of the sampling environment or personnel. However, physically handling the intentionally contaminated letter proved to be exceptionally hazardous, as did sorting of cross-contaminated mail, which resulted in generation of hazardous aerosol and extensive contamination of protective clothing. Nearly 8 × 106 CFU was removed from the most highly cross-contaminated piece of mail found. Tracking data indicated that this and other heavily contaminated envelopes had been processed through the same mail sorting equipment as, and within 1 s of, two intentionally contaminated letters. PMID:16885280

  9. Type II topoisomerase mutations in Bacillus anthracis associated with high-level fluoroquinolone resistance.

    Science.gov (United States)

    Bast, Darrin J; Athamna, Abed; Duncan, Carla L; de Azavedo, Joyce C S; Low, Donald E; Rahav, Galia; Farrell, David; Rubinstein, Ethan

    2004-07-01

    To identify and characterize the mechanisms of high-level fluoroquinolone resistance in two strains of Bacillus anthracis following serial passage in increasing concentrations of fluoroquinolones. Fluoroquinolone-resistant isolates of the Sterne and Russian Anthrax Vaccine STi strains were obtained following serial passage in the presence of increasing concentrations of four different fluoroquinolones. The quinolone-resistance-determining regions of the type II topoisomerase genes from the resistant strains were amplified by PCR and characterized by DNA sequence analysis. The MICs in the presence and absence of reserpine were determined using broth microdilution as a means of detecting active efflux. Single and double amino acid substitutions in the GyrA (Ser-85-Leu; Glu-89-Arg/Gly/Lys) and GrlA (Ser-81-Tyr; Val-96-Ala; Asn-70-Lys) were most common. A single amino acid substitution in GyrB (Asp-430-Asn) was also identified. Efflux only applied to isolates selected for by either levofloxacin or ofloxacin. Specific amino acid substitutions in the type II topoisomerase enzymes significantly contributed to the development of high-level fluoroquinolone resistance in B. anthracis. However, notable differences between the strains and the drugs tested were identified including the role of efflux and the numbers and types of mutations identified.

  10. Identification of the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R.

    Directory of Open Access Journals (Sweden)

    Xiankai Liu

    Full Text Available Immunoproteomics was used to screen the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R. The spore and vegetative proteins were separated by 2D gel electrophoresis and transferred to polyvinylidene difluoride membranes, and then western blotting was performed with rabbit immune serum against B.anthracis live spores. Immunogenic spots were cut and digested by trypsin. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry was performed to identify the proteins. As a result, 11 and 45 immunogenic proteins were identified in the spores and vegetative cells, respectively; 26 of which have not been reported previously. To verify their immunogenicity, 12 of the identified proteins were selected to be expressed, and the immune sera from the mice vaccinated by the 12 expressed proteins, except BA0887, had a specific western blot band with the A16R whole cellular lytic proteins. Some of these immunogenic proteins might be used as novel vaccine candidates themselves or for enhancing the protective efficacy of a protective-antigen-based vaccine.

  11. A Study on molecular characterization of Razi Bacillus anthracis Sterne 34F2 substrain in Iran

    Directory of Open Access Journals (Sweden)

    Tadayon, K.

    2016-07-01

    Full Text Available Anthrax, a zoonotic disease caused by Bacillus anthracis, has affected humans since ancient times. For genomic characterization of Razi B. anthracis Sterne 34F2 substrain, single nucleotide polymorphism (SNP genotyping method developed by Van Erth, variable-number tandem-repeat (VNTR-8 analysis proposed by Keim, and multiple-locus VNTR analysis (MLVA-3 introduced by Levy were employed. In the SNPs typing system, where the nucleotide content of the genome at 13 evolutionary canonical loci was collectively analyzed, the originally South African 34F2 substrain was categorized in the A.Br.001/002 subgroup. In the VNTR-8 analysis, fragments with lengths of 314, 229, 162, 580, 532, 158, and 137 bp were identified at the following loci: vrrA, vrrB1, vrrB2, vrrC1, vrrC2, CG3, and pxO1, respectively. In addition, application of Levy's MLVA-3 genotyping method revealed that the genome of this strain carried 941, 451, and 864 bp fragments at AA03, AJ03, and AA07 loci, respectively. The present findings are undoubtedly helpful in meeting the requirements set by the World Organization for Animal Health (OIE and World Health Organization (WHO for anthrax vaccine manufacturers including Razi Institute. However, further similar studies are required to promote the current epidemiological knowledge of anthrax in Iran.

  12. Variant Cell Lines of Haplopappus gracilis with Disturbed Activities of Nitrate Reductase and Nitrite Reductase.

    Science.gov (United States)

    Gilissen, L J; Barneix, A J; van Staveren, M; Breteler, H

    1985-07-01

    Selected variant cell lines of Haplopappus gracilis (Nutt) Gray that showed disturbed growth after transfer from an alanine medium to NO(3) (-) medium were characterized. The in vivo NO(3) (-) reductase activity (NRA) was lower in these lines than in the wild type. In vitro NRA assays suggest that decreased in vivo NRA was not caused by a lower amount of active enzyme. Cells of the variant lines revealed up to 75% lower extractable activity of NO(2) (-) reductase as compared with the wild type. This coincided with higher accumulation of NO(2) (-) by the variant than by the wild type cells after transfer from alanine medium to NO(3) (-) medium. NO(2) (-) accumulation was transient or continuous, depending on cell line, metabolic state of the cells, and light conditions.

  13. Structures of mammalian cytosolic quinone reductases.

    Science.gov (United States)

    Foster, C E; Bianchet, M A; Talalay, P; Faig, M; Amzel, L M

    2000-08-01

    The metabolism of quinone compounds presents one source of oxidative stress in mammals, as many pathways proceed by mechanisms that generate reactive oxygen species as by-products. One defense against quinone toxicity is the enzyme NAD(P)H:quinone oxidoreductase type 1 (QR1), which metabolizes quinones by a two-electron reduction mechanism, thus averting production of radicals. QR1 is expressed in the cytoplasm of many tissues, and is highly inducible. A closely related homologue, quinone reductase type 2 (QR2), has been identified in several mammalian species. QR2 is also capable of reducing quinones to hydroquinones, but unlike QR1, cannot use NAD(P)H. X-ray crystallographic studies of QR1 and QR2 illustrate that despite their different biochemical properties, these enzymes have very similar three-dimensional structures. In particular, conserved features of the active sites point to the close relationship between these two enzymes.

  14. Hydroxylated naphthoquinones as substrates for Escherichia coli anaerobic reductases.

    Science.gov (United States)

    Rothery, R A; Chatterjee, I; Kiema, G; McDermott, M T; Weiner, J H

    1998-01-01

    We have used two hydroxylated naphthoquinol menaquinol analogues, reduced plumbagin (PBH2, 5-hydroxy-2-methyl-1,4-naphthoquinol) and reduced lapachol [LPCH2, 2-hydroxy-3-(3-methyl-2-butenyl)-1, 4-naphthoquinol], as substrates for Escherichia coli anaerobic reductases. These compounds have optical, solubility and redox properties that make them suitable for use in studies of the enzymology of menaquinol oxidation. Oxidized plumbagin and oxidized lapachol have well resolved absorbances at 419 nm (epsilon=3.95 mM-1. cm-1) and 481 nm (epsilon=2.66 mM-1.cm-1) respectively (in Mops/KOH buffer, pH 7.0). PBH2 is a good substrate for nitrate reductase A (Km=282+/-28 microM, kcat=120+/-6 s-1) and fumarate reductase (Km=155+/-24 microM, kcat=30+/-2 s-1), but not for DMSO reductase. LPCH2 is a good substrate for nitrate reductase A (Km=57+/-35 microM, kcat=68+/-13 s-1), fumarate reductase (Km=85+/-27 microM, kcat=74+/-6 s-1) and DMSO reductase (Km=238+/-30 microM, kcat=191+/-21 s-1). The sensitivity of enzymic LPCH2 and PBH2 oxidation to 2-n-heptyl-4-hydroxyquinoline N-oxide inhibition is consistent with their oxidation occurring at sites of physiological quinol binding. PMID:9576848

  15. The cytochrome bd respiratory oxygen reductases.

    Science.gov (United States)

    Borisov, Vitaliy B; Gennis, Robert B; Hemp, James; Verkhovsky, Michael I

    2011-11-01

    Cytochrome bd is a respiratory quinol: O₂ oxidoreductase found in many prokaryotes, including a number of pathogens. The main bioenergetic function of the enzyme is the production of a proton motive force by the vectorial charge transfer of protons. The sequences of cytochromes bd are not homologous to those of the other respiratory oxygen reductases, i.e., the heme-copper oxygen reductases or alternative oxidases (AOX). Generally, cytochromes bd are noteworthy for their high affinity for O₂ and resistance to inhibition by cyanide. In E. coli, for example, cytochrome bd (specifically, cytochrome bd-I) is expressed under O₂-limited conditions. Among the members of the bd-family are the so-called cyanide-insensitive quinol oxidases (CIO) which often have a low content of the eponymous heme d but, instead, have heme b in place of heme d in at least a majority of the enzyme population. However, at this point, no sequence motif has been identified to distinguish cytochrome bd (with a stoichiometric complement of heme d) from an enzyme designated as CIO. Members of the bd-family can be subdivided into those which contain either a long or a short hydrophilic connection between transmembrane helices 6 and 7 in subunit I, designated as the Q-loop. However, it is not clear whether there is a functional consequence of this difference. This review summarizes current knowledge on the physiological functions, genetics, structural and catalytic properties of cytochromes bd. Included in this review are descriptions of the intermediates of the catalytic cycle, the proposed site for the reduction of O₂, evidence for a proton channel connecting this active site to the bacterial cytoplasm, and the molecular mechanism by which a membrane potential is generated. 2011 Elsevier B.V. All rights reserved.

  16. A simple, high-throughput method to detect Plasmodium falciparum single nucleotide polymorphisms in the dihydrofolate reductase, dihydropteroate synthase, and P. falciparum chloroquine resistance transporter genes using polymerase chain reaction- and enzyme-linked immunosorbent

    DEFF Research Database (Denmark)

    Alifrangis, Michael; Enosse, Sonia; Pearce, Richard

    2005-01-01

    . However, to be a practical tool in the surveillance of drug resistance, simpler methods for high-throughput haplotyping are warranted. Here we describe a quick and simple technique that detects dhfr, dhps, and Pfcrt SNPs using polymerase chain reaction (PCR)- and enzyme-linked immunosorbent assay (ELISA...... the SNPs of dhfr, dhps, and Pfcrt with high specificity. The SSOP-ELISA compared well with a standard PCR-restriction fragment length polymorphism procedure, and gave identical positive results in more than 90% of the P. falciparum slide-positive samples tested. The SSOP-ELISA of all dhfr, dhps, or Pfcrt...

  17. On The Regulation of Spinach Nitrate Reductase 1

    Science.gov (United States)

    Sanchez, Juan; Heldt, Hans W.

    1990-01-01

    A coupled assay has been worked out to study spinach (Spinacea oleracea L.) nitrate reductase under low, more physiological concentrations of NADH. In this assay the reduction of nitrate is coupled to the oxidation of malate catalyzed by spinach NAD-malate dehydrogenase. The use of this coupled system allows the assay of nitrate reductase activity at steady-state concentrations of NADH below micromolar. We have used this coupled assay to study the kinetic parameters of spinach nitrate reductase and to reinvestigate the putative regulatory role of adenine nucleotides, inorganic phosphate, amino acids, and calcium and calmodulin. PMID:16667335

  18. MICs of Selected Antibiotics for Bacillus anthracis, Bacillus cereus, Bacillus thuringiensis, and Bacillus mycoides From a Range of Clinical and Environmental Sources as Determined by the Etest

    National Research Council Canada - National Science Library

    Turnbull, Peter C; Sirianni, Nicky M; LeBron, Carlos I; Samaan, Marian N; Sutton, Felicia N; Reyes, Anatalio E; Peruski , Jr, Leonard F

    2004-01-01

    ...; based on these breakpoints, the B. anthracis isolates were all fully susceptible to ciprofloxacin and tetracycline, and all except four cultures, three of which had a known history of penicillin resistance and were thought...

  19. The genome of a Bacillus isolate causing anthrax in chimpanzees combines chromosomal properties of B. cereus with B. anthracis virulence plasmids.

    Directory of Open Access Journals (Sweden)

    Silke R Klee

    Full Text Available Anthrax is a fatal disease caused by strains of Bacillus anthracis. Members of this monophyletic species are non motile and are all characterized by the presence of four prophages and a nonsense mutation in the plcR regulator gene. Here we report the complete genome sequence of a Bacillus strain isolated from a chimpanzee that had died with clinical symptoms of anthrax. Unlike classic B. anthracis, this strain was motile and lacked the four prohages and the nonsense mutation. Four replicons were identified, a chromosome and three plasmids. Comparative genome analysis revealed that the chromosome resembles those of non-B. anthracis members of the Bacillus cereus group, whereas two plasmids were identical to the anthrax virulence plasmids pXO1 and pXO2. The function of the newly discovered third plasmid with a length of 14 kbp is unknown. A detailed comparison of genomic loci encoding key features confirmed a higher similarity to B. thuringiensis serovar konkukian strain 97-27 and B. cereus E33L than to B. anthracis strains. For the first time we describe the sequence of an anthrax causing bacterium possessing both anthrax plasmids that apparently does not belong to the monophyletic group of all so far known B. anthracis strains and that differs in important diagnostic features. The data suggest that this bacterium has evolved from a B. cereus strain independently from the classic B. anthracis strains and established a B. anthracis lifestyle. Therefore we suggest to designate this isolate as "B. cereus variety (var. anthracis".

  20. Bacillus anthracis secretome time course under host-simulated conditions and identification of immunogenic proteins

    Directory of Open Access Journals (Sweden)

    Whittington Jessica

    2007-07-01

    Full Text Available Abstract Background The secretion time course of Bacillus anthracis strain RA3R (pXO1+/pXO2- during early, mid, and late log phase were investigated under conditions that simulate those encountered in the host. All of the identified proteins were analyzed by different software algorithms to characterize their predicted mode of secretion and cellular localization. In addition, immunogenic proteins were identified using sera from humans with cutaneous anthrax. Results A total of 275 extracellular proteins were identified by a combination of LC MS/MS and MALDI-TOF MS. All of the identified proteins were analyzed by SignalP, SecretomeP, PSORT, LipoP, TMHMM, and PROSITE to characterize their predicted mode of secretion, cellular localization, and protein domains. Fifty-three proteins were predicted by SignalP to harbor the cleavable N-terminal signal peptides and were therefore secreted via the classical Sec pathway. Twenty-three proteins were predicted by SecretomeP for secretion by the alternative Sec pathway characterized by the lack of typical export signal. In contrast to SignalP and SecretomeP predictions, PSORT predicted 171 extracellular proteins, 7 cell wall-associated proteins, and 6 cytoplasmic proteins. Moreover, 51 proteins were predicted by LipoP to contain putative Sec signal peptides (38 have SpI sites, lipoprotein signal peptides (13 have SpII sites, and N-terminal membrane helices (9 have transmembrane helices. The TMHMM algorithm predicted 25 membrane-associated proteins with one to ten transmembrane helices. Immunogenic proteins were also identified using sera from patients who have recovered from anthrax. The charge variants (83 and 63 kDa of protective antigen (PA were the most immunodominant secreted antigens, followed by charge variants of enolase and transketolase. Conclusion This is the first description of the time course of protein secretion for the pathogen Bacillus anthracis. Time course studies of protein secretion and

  1. Use of high-resolution melting and melting temperature-shift assays for specific detection and identification of Bacillus anthracis based on single nucleotide discrimination.

    Science.gov (United States)

    Derzelle, Sylviane; Mendy, Christiane; Laroche, Séverine; Madani, Nora

    2011-11-01

    Single nucleotide polymorphisms (SNPs) are important diagnostic markers for the detection and differentiation of Bacillus anthracis. High-Resolution Melting (HRM) and Melting Temperature (Tm)-shift methods are two approaches that enable SNP detection without the need for expensive labeled probes. We evaluated the potential diagnostic capability of those methods to discriminate B. anthracis from the other members of the B. cereus group. Two assays targeting B. anthracis-specific SNPs in the plcR and gyrA genes were designed for each method and used to genotype a panel of 155 Bacilli strains. All B. anthracis isolates (n=65) were correctly and unambiguously identified. Assays also proved to be appropriate for the direct genotyping of biological samples. They could reliably detect B. anthracis in contaminated organs containing as little as 10(3)CFU/ml, corresponding to a few genome equivalents per reaction. The HRM and Tm-shift applications described here represent valuable tools for specific identification of B. anthracis at reduced cost. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Characterization of mitochondrial thioredoxin reductase from C. elegans

    International Nuclear Information System (INIS)

    Lacey, Brian M.; Hondal, Robert J.

    2006-01-01

    Thioredoxin reductase catalyzes the NADPH-dependent reduction of the catalytic disulfide bond of thioredoxin. In mammals and other higher eukaryotes, thioredoxin reductases contain the rare amino acid selenocysteine at the active site. The mitochondrial enzyme from Caenorhabditis elegans, however, contains a cysteine residue in place of selenocysteine. The mitochondrial C. elegans thioredoxin reductase was cloned from an expressed sequence tag and then produced in Escherichia coli as an intein-fusion protein. The purified recombinant enzyme has a k cat of 610 min -1 and a K m of 610 μM using E. coli thioredoxin as substrate. The reported k cat is 25% of the k cat of the mammalian enzyme and is 43-fold higher than a cysteine mutant of mammalian thioredoxin reductase. The enzyme would reduce selenocysteine, but not hydrogen peroxide or insulin. The flanking glycine residues of the GCCG motif were mutated to serine. The mutants improved substrate binding, but decreased the catalytic rate

  3. Regulation of ribonucleotide reductase by Spd1 involves multiple mechanisms

    DEFF Research Database (Denmark)

    Nestoras, Konstantinos; Mohammed, Asma Hadi; Schreurs, Ann-Sofie

    2010-01-01

    The correct levels of deoxyribonucleotide triphosphates and their relative abundance are important to maintain genomic integrity. Ribonucleotide reductase (RNR) regulation is complex and multifaceted. RNR is regulated allosterically by two nucleotide-binding sites, by transcriptional control, and...

  4. Aldose reductase inhibitory activity and antioxidant capacity of pomegranate extracts

    OpenAIRE

    Karasu, Çimen; Cumaoğlu, Ahmet; Gürpinar, Ali Rifat; Kartal, Murat; Kovacikova, Lucia; Milackova, Ivana; Stefek, Milan

    2012-01-01

    The pomegranate, Punica granatum L., has been the subject of current interest as a medicinal agent with wide-ranging therapeutic indications. In the present study, pomegranate ethanolic seed and hull extracts were tested, in comparison with a commercial sample, for the inhibition of aldose reductase, an enzyme involved in the etiology of diabetic complications. In vitro inhibition of rat lens aldose reductase was determined by a conventional method. Pomegranate ethanolic hull extract and comm...

  5. Engineering Styrene Monooxygenase for Biocatalysis: Reductase-Epoxidase Fusion Proteins.

    Science.gov (United States)

    Heine, Thomas; Tucker, Kathryn; Okonkwo, Nonye; Assefa, Berhanegebriel; Conrad, Catleen; Scholtissek, Anika; Schlömann, Michael; Gassner, George; Tischler, Dirk

    2017-04-01

    The enantioselective epoxidation of styrene and related compounds by two-component styrene monooxygenases (SMOs) has targeted these enzymes for development as biocatalysts. In the present work, we prepare genetically engineered fusion proteins that join the C-terminus of the epoxidase (StyA) to the N-terminus of the reductase (StyB) through a linker peptide and demonstrate their utility as biocatalysts in the synthesis of Tyrain purple and other indigoid dyes. A single-vector expression system offers a simplified platform for transformation and expansion of the catalytic function of styrene monooxygenases, and the resulting fusion proteins are self-regulated and couple efficiently NADH oxidation to styrene epoxidation. We find that the reductase domain proceeds through a sequential ternary-complex mechanism at low FAD concentration and a double-displacement mechanism at higher concentrations of FAD. Single-turnover studies indicate an observed rate constant for FAD-to-FAD hydride transfer of ~8 s -1 . This step is rate limiting in the styrene epoxidation reaction and helps to ensure that flavin reduction and styrene epoxidation reactions proceed without wasteful side reactions. Comparison of the reductase activity of the fusion proteins with the naturally occurring reductase, SMOB, and N-terminally histidine-tagged reductase, NSMOB, suggests that the observed changes in catalytic mechanism are due in part to an increase in flavin-binding affinity associated with the N-terminal extension of the reductase.

  6. Phages Preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: Past, Present and Future

    Science.gov (United States)

    Gillis, Annika; Mahillon, Jacques

    2014-01-01

    Many bacteriophages (phages) have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here. PMID:25010767

  7. Amperometric Detection of Bacillus anthracis Spores: A Portable, Low-Cost Approach to the ELISA

    Directory of Open Access Journals (Sweden)

    Gabriel D. Peckham

    2013-01-01

    Full Text Available Antibody-based detection assays are generally robust, a desirable characteristic for in-the-field use. However, to quantify the colorimetric or fluorescent signal, these assays require expensive and fragile instruments which are ill-suited to in-the-field use. Lateral flow devices (LFDs circumvent these barriers to portability but suffer from poor sensitivity and subjective interpretation. Here, an antibody-based method for detecting Bacillus anthracis spores via amperometric signal generation is compared to ELISA and LFDs. This amperometric immunoassay uses antibody conjugated to magnetic beads and glucose oxidase (GOX along with the electron mediator 2, 6-dichlorophenolindophenol (DCPIP for production of a measurable current from a 0.4 V bias voltage. With similar sensitivity to ELISA, the assay can be completed in about 75 minutes while being completely powered and operated from a laptop computer. Immunoassay amperometry holds promise for bringing low-cost, quantitative detection of hazardous agents to the field.

  8. Phages Preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: Past, Present and Future

    Directory of Open Access Journals (Sweden)

    Annika Gillis

    2014-07-01

    Full Text Available Many bacteriophages (phages have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here.

  9. Esterase activity as a novel parameter of spore germination in Bacillus anthracis

    International Nuclear Information System (INIS)

    Ferencko, Linda; Cote, Mindy A.; Rotman, Boris

    2004-01-01

    Spores of Bacillus anthracis were shown to produce esterase activity about 4 min after exposure to conventional germinants such as combinations of amino acids and purine ribosides. Neither amino acids nor ribosides alone induce germination and esterase activity. Expression of esterase activity was chloramphenicol resistant, and correlated with loss of spore refractivity, a traditional parameter of early germination. Based on these observations, we hypothesized that esterase activity could be used as a novel parameter for quantifying early events during spore germination. To test this hypothesis, we measured expression of esterase activity under a variety of germinating conditions. Using diacetyl fluorescein as fluorogenic substrate of esterases, we demonstrated that esterase activity was invariably induced whenever spores were triggered by known germinants. Moreover, D-alanine, an inhibitor of L-alanine-mediated germination, was found to significantly inhibit expression of esterase activity. In terms of molecular mechanisms, esterase expression could represent activation of proteases at the onset of spore germination

  10. Bacillus anthracis Overcomes an Amino Acid Auxotrophy by Cleaving Host Serum Proteins

    Science.gov (United States)

    Terwilliger, Austen; Swick, Michelle C.; Pflughoeft, Kathryn J.; Pomerantsev, Andrei; Lyons, C. Rick; Koehler, Theresa M.

    2015-01-01

    ABSTRACT Bacteria sustain an infection by acquiring nutrients from the host to support replication. The host sequesters these nutrients as a growth-restricting strategy, a concept termed “nutritional immunity.” Historically, the study of nutritional immunity has centered on iron uptake because many bacteria target hemoglobin, an abundant circulating protein, as an iron source. Left unresolved are the mechanisms that bacteria use to attain other nutrients from host sources, including amino acids. We employed a novel medium designed to mimic the chemical composition of human serum, and we show here that Bacillus anthracis, the causative agent of anthrax disease, proteolyzes human hemoglobin to liberate essential amino acids which enhance its growth. This property can be traced to the actions of InhA1, a secreted metalloprotease, and extends to at least three other serum proteins, including serum albumin. The results suggest that we must also consider proteolysis of key host proteins to be a way for bacterial pathogens to attain essential nutrients, and we provide an experimental framework to determine the host and bacterial factors involved in this process. IMPORTANCE The mechanisms by which bacterial pathogens acquire nutrients during infection are poorly understood. Here we used a novel defined medium that approximates the chemical composition of human blood serum, blood serum mimic (BSM), to better model the nutritional environment that pathogens encounter during bacteremia. Removing essential amino acids from BSM revealed that two of the most abundant proteins in blood—hemoglobin and serum albumin—can satiate the amino acid requirement for Bacillus anthracis, the causative agent of anthrax. We further demonstrate that hemoglobin is proteolyzed by the secreted protease InhA1. These studies highlight that common blood proteins can be a nutrient source for bacteria. They also challenge the historical view that hemoglobin is solely an iron source for

  11. Nanoscale Structural and Mechanical Analysis of Bacillus anthracis Spores Inactivated with Rapid Dry Heating

    Science.gov (United States)

    Felker, Daniel L.; Burggraf, Larry W.

    2014-01-01

    Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating. PMID:24375142

  12. Recovery efficiency and limit of detection of aerosolized Bacillus anthracis Sterne from environmental surface samples.

    Science.gov (United States)

    Estill, Cheryl Fairfield; Baron, Paul A; Beard, Jeremy K; Hein, Misty J; Larsen, Lloyd D; Rose, Laura; Schaefer, Frank W; Noble-Wang, Judith; Hodges, Lisa; Lindquist, H D Alan; Deye, Gregory J; Arduino, Matthew J

    2009-07-01

    After the 2001 anthrax incidents, surface sampling techniques for biological agents were found to be inadequately validated, especially at low surface loadings. We aerosolized Bacillus anthracis Sterne spores within a chamber to achieve very low surface loading (ca. 3, 30, and 200 CFU per 100 cm(2)). Steel and carpet coupons seeded in the chamber were sampled with swab (103 cm(2)) or wipe or vacuum (929 cm(2)) surface sampling methods and analyzed at three laboratories. Agar settle plates (60 cm(2)) were the reference for determining recovery efficiency (RE). The minimum estimated surface concentrations to achieve a 95% response rate based on probit regression were 190, 15, and 44 CFU/100 cm(2) for sampling steel surfaces and 40, 9.2, and 28 CFU/100 cm(2) for sampling carpet surfaces with swab, wipe, and vacuum methods, respectively; however, these results should be cautiously interpreted because of high observed variability. Mean REs at the highest surface loading were 5.0%, 18%, and 3.7% on steel and 12%, 23%, and 4.7% on carpet for the swab, wipe, and vacuum methods, respectively. Precision (coefficient of variation) was poor at the lower surface concentrations but improved with increasing surface concentration. The best precision was obtained with wipe samples on carpet, achieving 38% at the highest surface concentration. The wipe sampling method detected B. anthracis at lower estimated surface concentrations and had higher RE and better precision than the other methods. These results may guide investigators to more meaningfully conduct environmental sampling, quantify contamination levels, and conduct risk assessment for humans.

  13. Bacillus anthracis Prolyl 4-Hydroxylase Interacts with and Modifies Elongation Factor Tu

    Energy Technology Data Exchange (ETDEWEB)

    Schnicker, Nicholas J. [Department; Razzaghi, Mortezaali [Department; Guha Thakurta, Sanjukta [Department; Chakravarthy, Srinivas [Biophysics; Dey, Mishtu [Department

    2017-10-17

    Prolyl hydroxylation is a very common post-translational modification and plays many roles in eukaryotes such as collagen stabilization, hypoxia sensing, and controlling protein transcription and translation. There is a growing body of evidence that suggests that prokaryotes contain prolyl 4-hydroxylases (P4Hs) homologous to the hypoxia-inducible factor (HIF) prolyl hydroxylase domain (PHD) enzymes that act on elongation factor Tu (EFTu) and are likely involved in the regulation of bacterial translation. Recent biochemical and structural studies with a PHD from Pseudomonas putida (PPHD) determined that it forms a complex with EFTu and hydroxylates a prolyl residue of EFTu. Moreover, while animal, plant, and viral P4Hs act on peptidyl proline, most prokaryotic P4Hs have been known to target free l-proline; the exceptions include PPHD and a P4H from Bacillus anthracis (BaP4H) that modifies collagen-like proline-rich peptides. Here we use biophysical and mass spectrometric methods to demonstrate that BaP4H recognizes full-length BaEFTu and a BaEFTu 9-mer peptide for site-specific proline hydroxylation. Using size-exclusion chromatography coupled small-angle X-ray scattering (SEC–SAXS) and binding studies, we determined that BaP4H forms a 1:1 heterodimeric complex with BaEFTu. The SEC–SAXS studies reveal dissociation of BaP4H dimeric subunits upon interaction with BaEFTu. While BaP4H is unusual within bacteria in that it is structurally and functionally similar to the animal PHDs and collagen P4Hs, respectively, this work provides further evidence of its promiscuous substrate recognition. It is possible that the enzyme might have evolved to hydroxylate a universally conserved protein in prokaryotes, similar to the PHDs, and implies a functional role in B. anthracis.

  14. Rapid detection and identification of Bacillus anthracis in food using pyrosequencing technology.

    Science.gov (United States)

    Amoako, Kingsley K; Janzen, Timothy W; Shields, Michael J; Hahn, Kristen R; Thomas, Matthew C; Goji, Noriko

    2013-08-01

    The development of advanced methodologies for the detection of Bacillus anthracis has been evolving rapidly since the release of the anthrax spores in the mail in 2001. Recent advances in detection and identification techniques could prove to be an essential component in the defense against biological attacks. Sequence based such as pyrosequencing, which has the capability to determine short DNA stretches in real-time using biotinylated PCR amplicons, has potential biodefense applications. Using markers from the virulence plasmids (pXO1 and pXO2) and chromosomal regions, we have demonstrated the power of this technology in the rapid, specific and sensitive detection of B. anthracis spores in food matrices including milk, juice, bottled water, and processed meat. The combined use of immunomagnetic separation and pyrosequencing showed positive detection when liquid foods (bottled water, milk, juice), and processed meat were experimentally inoculated with 6CFU/mL and 6CFU/g, respectively, without an enrichment step. Pyrosequencing is completed in about 60min (following PCR amplification) and yields accurate and reliable results with an added layer of confidence. The entire assay (from sample preparation to sequencing information) can be completed in about 7.5h. A typical run on food samples yielded 67-80bp reads with 94-100% identity to the expected sequence. This sequence based approach is a novel application for the detection of anthrax spores in food with potential application in foodborne bioterrorism response and biodefense involving the use of anthrax spores. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  15. Updating a B. anthracis Risk Model with Field Data from a Bioterrorism Incident.

    Science.gov (United States)

    Hong, Tao; Gurian, Patrick L

    2015-06-02

    In this study, a Bayesian framework was applied to update a model of pathogen fate and transport in the indoor environment. Distributions for model parameters (e.g., release quantity of B. anthracis spores, risk of illness, spore setting velocity, resuspension rate, sample recovery efficiency, etc.) were updated by comparing model predictions with measurements of B. anthracis spores made after one of the 2001 anthrax letter attacks. The updating process, which was implemented by using Markov chain Monte Carlo (MCMC) methods, significantly reduced the uncertainties of inputs with uniformed prior estimates: total quantity of spores released, the amount of spores exiting the room, and risk to occupants. In contrast, uncertainties were not greatly reduced for inputs for which informed prior data were available: deposition rates, resuspension rates, and sample recovery efficiencies. This suggests that prior estimates of these quantities that were obtained from a review of the technical literature are consistent with the observed behavior of spores in an actual attack. Posterior estimates of mortality risk for people in the room, when the spores were released, are on the order of 0.01 to 0.1, which supports the decision to administer prophylactic antibiotics. Multivariate sensitivity analyses were conducted to assess how effective different measurements were at reducing uncertainty in the estimated risk for the prior scenario. This analysis revealed that if the size distribution of the released particulates is known, then environmental sampling can be limited to accurately characterizing floor concentrations; otherwise, samples from multiple locations, as well as particulate and building air circulation parameters, need to be measured.

  16. Recovery Efficiency and Limit of Detection of Aerosolized Bacillus anthracis Sterne from Environmental Surface Samples ▿

    Science.gov (United States)

    Estill, Cheryl Fairfield; Baron, Paul A.; Beard, Jeremy K.; Hein, Misty J.; Larsen, Lloyd D.; Rose, Laura; Schaefer, Frank W.; Noble-Wang, Judith; Hodges, Lisa; Lindquist, H. D. Alan; Deye, Gregory J.; Arduino, Matthew J.

    2009-01-01

    After the 2001 anthrax incidents, surface sampling techniques for biological agents were found to be inadequately validated, especially at low surface loadings. We aerosolized Bacillus anthracis Sterne spores within a chamber to achieve very low surface loading (ca. 3, 30, and 200 CFU per 100 cm2). Steel and carpet coupons seeded in the chamber were sampled with swab (103 cm2) or wipe or vacuum (929 cm2) surface sampling methods and analyzed at three laboratories. Agar settle plates (60 cm2) were the reference for determining recovery efficiency (RE). The minimum estimated surface concentrations to achieve a 95% response rate based on probit regression were 190, 15, and 44 CFU/100 cm2 for sampling steel surfaces and 40, 9.2, and 28 CFU/100 cm2 for sampling carpet surfaces with swab, wipe, and vacuum methods, respectively; however, these results should be cautiously interpreted because of high observed variability. Mean REs at the highest surface loading were 5.0%, 18%, and 3.7% on steel and 12%, 23%, and 4.7% on carpet for the swab, wipe, and vacuum methods, respectively. Precision (coefficient of variation) was poor at the lower surface concentrations but improved with increasing surface concentration. The best precision was obtained with wipe samples on carpet, achieving 38% at the highest surface concentration. The wipe sampling method detected B. anthracis at lower estimated surface concentrations and had higher RE and better precision than the other methods. These results may guide investigators to more meaningfully conduct environmental sampling, quantify contamination levels, and conduct risk assessment for humans. PMID:19429546

  17. Methylenetetrahydrofolate Reductase Activity and Folate Metabolism

    Directory of Open Access Journals (Sweden)

    Nursen Keser

    2014-04-01

    Full Text Available Folate is a vital B vitamin which is easily water-soluble. It is a natural source which is found in the herbal and animal foods. Folate has important duties in the human metabolism, one of them is the adjustment of the level of plasma homocysteine. Reduction in MTHFR (methylenetetrahydrofolate reductase,which is in charge of the metabolism of homocysteine activity affects the level of homocysteine. Therefore MTHFR is an important enzyme in folate metabolism. Some of the mutations occurring in the MTHFR gene is a risk factor for various diseases and may be caused the hyperhomocysteinemia or the homocystinuria, and they also may lead to metabolic problems. MTHFR is effective in the important pathways such as DNA synthesis, methylation reactions and synthesis of RNA. C677T and A1298C are the most commonly occurring polymorphisms in the gene of MTHFR. The frequency of these polymorphisms show differences in the populations. MTHFR, folate distribution, metabolism of homocysteine and S-adenosylmethionine, by the MTHFR methylation the genetic defects have the potential of affecting the risk of disease in the negative or positive way.

  18. Aldose reductase mediates retinal microglia activation

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kun-Che; Shieh, Biehuoy; Petrash, J. Mark, E-mail: mark.petrash@ucdenver.edu

    2016-04-29

    Retinal microglia (RMG) are one of the major immune cells in charge of surveillance of inflammatory responses in the eye. In the absence of an inflammatory stimulus, RMG reside predominately in the ganglion layer and inner or outer plexiform layers. However, under stress RMG become activated and migrate into the inner nuclear layer (INL) or outer nuclear layer (ONL). Activated RMG in cell culture secrete pro-inflammatory cytokines in a manner sensitive to downregulation by aldose reductase inhibitors. In this study, we utilized CX3CR1{sup GFP} mice carrying AR mutant alleles to evaluate the role of AR on RMG activation and migration in vivo. When tested on an AR{sup WT} background, IP injection of LPS induced RMG activation and migration into the INL and ONL. However, this phenomenon was largely prevented by AR inhibitors or in AR null mice, or was exacerbated in transgenic mice that over-express AR. LPS-induced increases in ocular levels of TNF-α and CX3CL-1 in WT mice were substantially lower in AR null mice or were reduced by AR inhibitor treatment. These studies demonstrate that AR expression in RMG may contribute to the proinflammatory phenotypes common to various eye diseases such as uveitis and diabetic retinopathy. - Highlights: • AR inhibition prevents retinal microglial activation. • Endotoxin-induced ocular cytokine production is reduced in AR null mice. • Overexpression of AR spontaneously induces retinal microglial activation.

  19. NADH-Ferricyanide Reductase of Leaf Plasma Membranes 1

    Science.gov (United States)

    Askerlund, Per; Laurent, Pascal; Nakagawa, Hiroki; Kader, Jean-Claude

    1991-01-01

    Plasma membranes obtained by two-phase partitioning of microsomal fractions from spinach (Spinacea oleracea L. cv Medania) and sugar beet leaves (Beta vulgaris L.) contained relatively high NADH-ferricyanide reductase and NADH-nitrate reductase (NR; EC 1.6.6.1) activities. Both of these activities were latent. To investigate whether these activities were due to the same enzyme, plasma membrane polypeptides were separated with SDS-PAGE and analyzed with immunoblotting methods. Antibodies raised against microsomal NADH-ferricyanide reductase (tentatively identified as NADH-cytochrome b5 reductase, EC 1.6.2.2), purified from potato (Solanum tuberosum L. cv Bintje) tuber microsomes, displayed one single band at 43 kilodaltons when reacted with spinach plasma membranes, whereas lgG produced against NR from spinach leaves gave a major band at 110 kilodaltons together with a few fainter bands of lower molecular mass. Immunoblotting analysis using inside-out and right-side-out plasma membrane vesicles strongly indicated that NR was not an integral protein but probably trapped inside the plasma membrane vesicles during homogenization. Proteins from spinach plasma membranes were solubilized with the zwitterionic detergent 3-[(3-cholamidopropyl) dimethylammonio] 1-propane-sulfonate and separated on a Mono Q anion exchange column at pH 5.6 with fast protein liquid chromatography. One major peak of NADH-ferricyanide reductase activity was found after separation. The peak fraction was enriched about 70-fold in this activity compared to the plasma membrane. When the peak fractions were analyzed with SDS-PAGE the NADH-ferricyanide reductase activity strongly correlated with a 43 kilodalton polypeptide which reacted with the antibodies against potato microsomal NADH-ferricyanide reductase. Thus, our data indicate that most, if not all, of the truly membrane-bound NADH-ferricyanide reductase activity of leaf plasma membranes is due to an enzyme very similar to potato tuber

  20. Most Probable Number Rapid Viability PCR Method to Detect Viable Spores of Bacillus anthracis in Swab Samples

    Energy Technology Data Exchange (ETDEWEB)

    Letant, S E; Kane, S R; Murphy, G A; Alfaro, T M; Hodges, L; Rose, L; Raber, E

    2008-05-30

    This note presents a comparison of Most-Probable-Number Rapid Viability (MPN-RV) PCR and traditional culture methods for the quantification of Bacillus anthracis Sterne spores in macrofoam swabs generated by the Centers for Disease Control and Prevention (CDC) for a multi-center validation study aimed at testing environmental swab processing methods for recovery, detection, and quantification of viable B. anthracis spores from surfaces. Results show that spore numbers provided by the MPN RV-PCR method were in statistical agreement with the CDC conventional culture method for all three levels of spores tested (10{sup 4}, 10{sup 2}, and 10 spores) even in the presence of dirt. In addition to detecting low levels of spores in environmental conditions, the MPN RV-PCR method is specific, and compatible with automated high-throughput sample processing and analysis protocols.

  1. Transcripts of Anthocyanidin Reductase and Leucoanthocyanidin Reductase and Measurement of Catechin and Epicatechin in Tartary Buckwheat

    Directory of Open Access Journals (Sweden)

    Yeon Bok Kim

    2014-01-01

    Full Text Available Anthocyanidin reductase (ANR and leucoanthocyanidin reductase (LAR play an important role in the monomeric units biosynthesis of proanthocyanidins (PAs such as catechin and epicatechin in several plants. The aim of this study was to clone ANR and LAR genes involved in PAs biosynthesis and examine the expression of these two genes in different organs under different growth conditions in two tartary buckwheat cultivars, Hokkai T8 and T10. Gene expression was carried out by quantitative real-time RT-PCR, and catechin and epicatechin content was analyzed by high performance liquid chromatography. The expression pattern of ANR and LAR did not match the accumulation pattern of PAs in different organs of two cultivars. Epicatechin content was the highest in the flowers of both cultivars and it was affected by light in only Hokkai T8 sprouts. ANR and LAR levels in tartary buckwheat might be regulated by different mechanisms for catechin and epicatechin biosynthesis under light and dark conditions.

  2. Isolation and characterization of cDNAs encoding leucoanthocyanidin reductase and anthocyanidin reductase from Populus trichocarpa.

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    Full Text Available Proanthocyanidins (PAs contribute to poplar defense mechanisms against biotic and abiotic stresses. Transcripts of PA biosynthetic genes accumulated rapidly in response to infection by the fungus Marssonina brunnea f.sp. multigermtubi, treatments of salicylic acid (SA and wounding, resulting in PA accumulation in poplar leaves. Anthocyanidin reductase (ANR and leucoanthocyanidin reductase (LAR are two key enzymes of the PA biosynthesis that produce the main subunits: (+-catechin and (--epicatechin required for formation of PA polymers. In Populus, ANR and LAR are encoded by at least two and three highly related genes, respectively. In this study, we isolated and functionally characterized genes PtrANR1 and PtrLAR1 from P. trichocarpa. Phylogenetic analysis shows that Populus ANR1 and LAR1 occurr in two distinct phylogenetic lineages, but both genes have little difference in their tissue distribution, preferentially expressed in roots. Overexpression of PtrANR1 in poplar resulted in a significant increase in PA levels but no impact on catechin levels. Antisense down-regulation of PtrANR1 showed reduced PA accumulation in transgenic lines, but increased levels of anthocyanin content. Ectopic expression of PtrLAR1 in poplar positively regulated the biosynthesis of PAs, whereas the accumulation of anthocyanin and flavonol was significantly reduced (P<0.05 in all transgenic plants compared to the control plants. These results suggest that both PtrANR1 and PtrLAR1 contribute to PA biosynthesis in Populus.

  3. Purification and Properties of an NADPH-Aldose Reductase (Aldehyde Reductase) from Euonymus japonica Leaves

    Science.gov (United States)

    Negm, Fayek B.

    1986-01-01

    The enzyme aldose (aldehyde) reductase was partially purified (142-fold) and characterized from Euonymus japonica leaves. The reductase, a dimer, had an average molecular weight of 67,000 as determined by gel filtration on Sephadex G-100. The enzyme was NADPH specific and reduced a broad range of substrates including aldoses, aliphatic aldehydes, and aromatic aldehydes. Maximum activity was observed at pH 8 in phosphate and Tris-HCl buffers and at pH 8.6 to 9.0 in glycine-NaOH buffer using dl-glyceraldehyde or 3-pyridinecarboxaldehyde as substrate. NADP was a competitive inhibitor with respect to NADPH with a Ki of 60 micromolar. Glycerol was an uncompetitive inhibitor to dl-glyceraldehyde (K′i = 460 millimolar). The Euonymus enzyme was inhibited by sulfhydryl inhibitor, phenobarbital, and high concentrations of Li2SO4. Pyrazol and metal chelating agents inhibited the enzyme slightly. Enzyme activity was detected in the leaves and berries of Celastrus orbiculatus and several species of Euonymus. Probable function of this enzyme is to reduce d-galactose to galactitol, a characteristic metabolite in phloem sap of members of the Celastraceae family. Images Fig. 1 PMID:16664750

  4. 5α-reductases in human physiology: an unfolding story.

    Science.gov (United States)

    Traish, Abdulmaged M

    2012-01-01

    5α-reductases are a family of isozymes expressed in a wide host of tissues including the central nervous system (CNS) and play a pivotal role in male sexual differentiation, development and physiology. A comprehensive literature search from 1970 to 2011 was made through PubMed and the relevant information was summarized. 5α reductases convert testosterone, progesterone, deoxycorticosterone, aldosterone and corticosterone into their respective 5α-dihydro-derivatives, which serve as substrates for 3α-hydroxysteroid dehydrogenase enzymes. The latter transforms these 5α-reduced metabolites into a subclass of neuroactive steroid hormones with distinct physiological functions. The neuroactive steroid hormones modulate a multitude of functions in human physiology encompassing regulation of sexual differentiation, neuroprotection, memory enhancement, anxiety, sleep and stress, among others. In addition, 5α -reductase type 3 is also implicated in the N-glycosylation of proteins via formation of dolichol phosphate. The family of 5α-reductases was targeted for drug development to treat pathophysiological conditions, such as benign prostatic hyperplasia and androgenetic alopecia. While the clinical use of 5α-reductase inhibitors was well established, the scope and the magnitude of the adverse side effects of such drugs, especially on the CNS, is still unrecognized due to lack of knowledge of the various physiological functions of this family of enzymes, especially in the CNS. There is an urgent need to better understand the function of 5α-reductases and the role of neuroactive steroids in human physiology in order to minimize the potential adverse side effects of inhibitors targeting 5α-reductases to treat benign prostatic hyperplasia and androgenic alopecia.

  5. Technical Note: Simple, scalable, and sensitive protocol for retrieving Bacillus anthracis (and other live bacteria) from heroin.

    Science.gov (United States)

    Grass, Gregor; Ahrens, Bjoern; Schleenbecker, Uwe; Dobrzykowski, Linda; Wagner, Matthias; Krüger, Christian; Wölfel, Roman

    2016-02-01

    We describe a culture-based method suitable for isolating Bacillus anthracis and other live bacteria from heroin. This protocol was developed as a consequence of the bioforensic need to retrieve bacteria from batches of the drug associated with cases of injectional anthrax among heroin-consumers in Europe. This uncommon manifestation of infection with the notorious pathogen B. anthracis has resulted in 26 deaths between the years 2000 to 2013. Thus far, no life disease agent has been isolated from heroin during forensic investigations surrounding these incidences. Because of the conjectured very small number of disease-causing endospores in the contaminated drug it is likely that too few target sequences are available for molecular genetic analysis. Therefore, a direct culture-based approach was chosen here. Endospores of attenuated B. anthracis artificially spiked into heroin were successfully retrieved at 84-98% recovery rates using a wash solution consisting of 0.5% Tween 20 in water. Using this approach, 82 samples of un-cut heroin originating from the German Federal Criminal Police Office's heroin analysis program seized during the period between 2000 and 2014 were tested and found to be surprisingly poor in retrievable bacteria. Notably, while no B. anthracis was isolated from the drug batches, other bacteria were successfully cultured. The resulting methodical protocol is therefore suitable for analyzing un-cut heroin which can be anticipated to comprise the original microbiota from the drug's original source without interference from contaminations introduced by cutting. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Identification of potential drug targets by subtractive genome analysis of Bacillus anthracis A0248: An in silico approach.

    Science.gov (United States)

    Rahman, Anisur; Noore, Sanaullah; Hasan, Anayet; Ullah, Rakib; Rahman, Hafijur; Hossain, Amzad; Ali, Yeasmeen; Islam, Saiful

    2014-10-01

    Bacillus anthracis is a gram positive, spore forming, rod shaped bacteria which is the etiologic agent of anthrax - cutaneous, pulmonary and gastrointestinal. A recent outbreak of anthrax in a tropical region uncovered natural and in vitro resistance against penicillin, ciprofloxacin, quinolone due to over exposure of the pathogen to these antibiotics. This fact combined with the ongoing threat of using B. anthracis as a biological weapon proves that the identification of new therapeutic targets is urgently needed. In this computational approach various databases and online based servers were used to detect essential proteins of B. anthracis A0248. Protein sequences of B. anthracis A0248 strain were retrieved from the NCBI database which was then run in CD-hit suite for clustering. NCBI BlastP against the human proteome and similarity search against DEG were done to find out essential human non-homologous proteins. Proteins involved in unique pathways were analyzed using KEGG genome database and PSORTb, CELLO v.2.5, ngLOC - these three tools were used to deduce putative cell surface proteins. Successive analysis revealed 116 proteins to be essential human non-homologs among which 17 were involved in unique metabolic pathways and 28 were predicted as membrane associated proteins. Both types of proteins can be exploited as they are unlikely to have homologous counterparts in the human host. Being human non-homologous, these proteins can be targeted for potential therapeutic drug development in future. Targets on unique metabolic and membrane-bound proteins can block cell wall synthesis, bacterial replication and signal transduction respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Detection of Bacillus anthracis spores by super-paramagnetic lateral-flow immunoassays based on "Road Closure".

    Science.gov (United States)

    Wang, Dian-Bing; Tian, Bo; Zhang, Zhi-Ping; Wang, Xu-Ying; Fleming, Joy; Bi, Li-Jun; Yang, Rui-Fu; Zhang, Xian-En

    2015-05-15

    Detection of Bacillus anthracis in the field, whether as a natural infection or as a biothreat remains challenging. Here we have developed a new lateral-flow immunochromatographic assay (LFIA) for B. anthracis spore detection based on the fact that conjugates of B. anthracis spores and super-paramagnetic particles labeled with antibodies will block the pores of chromatographic strips and form retention lines on the strips, instead of the conventionally reported test lines and control lines in classic LFIA. As a result, this new LFIA can simultaneously realize optical, magnetic and naked-eye detection by analyzing signals from the retention lines. As few as 500-700 pure B. anthracis spores can be recognized with CV values less than 8.31% within 5 min of chromatography and a total time of 20 min. For powdery sample tests, this LFIA can endure interference from 25% (w/v) milk, 10% (w/v) baking soda and 10% (w/v) starch without any sample pre-treatment, and has a corresponding detection limit of 6×10(4) spores/g milk powder, 2×10(5) spores/g starch and 5×10(5) spores/g baking soda. Compared with existing methods, this new approach is very competitive in terms of sensitivity, specificity, cost and ease of operation. This proof-of-concept study can also be extended for detection of many other large-sized analytes. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Draft Genome Sequences of Bacillus cereus E41 and Bacillus anthracis F34 Isolated from Algerian Salt Lakes

    Science.gov (United States)

    Daas, Mohamed Seghir; Rosana, Albert Remus R.; Acedo, Jeella Z.; Nateche, Farida; Kebbouche-Gana, Salima; Vederas, John C.

    2017-01-01

    ABSTRACT Two strains of Bacillus, B. cereus E41 and B. anthracis F34, were isolated from a salt lake in Aïn M’lila-Oum El Bouaghi, eastern Algeria, and Ain Baida-Ouargla, southern Algeria, respectively. Their genomes display genes for the production of several bioactive secondary metabolites, including polyhydroxyalkanoate, iron siderophores, lipopeptides, and bacteriocins. PMID:28522726

  9. Rapid Detection of the Poly-γ-d-Glutamic Acid Capsular Antigen of Bacillus anthracis by Latex Agglutination

    Science.gov (United States)

    AuCoin, David P.; Sutherland, Marjorie D.; Percival, Ann L.; Lyons, C. Rick; Lovchik, Julie A.; Kozel, Thomas R.

    2009-01-01

    Latex agglutination has been used to detect capsular polysaccharides from a variety of bacteria in body fluids. A latex agglutination assay was constructed for detection of the poly-γ-d-glutamic acid (γdPGA) capsular polypeptide of Bacillus anthracis in serum from animal models of pulmonary anthrax. The assay was able to detect γdPGA in serum from infected animals at concentrations of 100–200 ng/ml. PMID:19345041

  10. Immunoassay for Capsular Antigen of Bacillus anthracis Enables Rapid Diagnosis in a Rabbit Model of Inhalational Anthrax.

    Directory of Open Access Journals (Sweden)

    Marcellene A Gates-Hollingsworth

    Full Text Available Inhalational anthrax is a serious biothreat. Effective antibiotic treatment of inhalational anthrax requires early diagnosis; the further the disease has progressed, the less the likelihood for cure. Current means for diagnosis such as blood culture require several days to a result and require advanced laboratory infrastructure. An alternative approach to diagnosis is detection of a Bacillus anthracis antigen that is shed into blood and can be detected by rapid immunoassay. The goal of the study was to evaluate detection of poly-γ-D-glutamic acid (PGA, the capsular antigen of B. anthracis, as a biomarker surrogate for blood culture in a rabbit model of inhalational anthrax. The mean time to a positive blood culture was 26 ± 5.7 h (mean ± standard deviation, whereas the mean time to a positive ELISA was 22 ± 4.2 h; P = 0.005 in comparison with blood culture. A lateral flow immunoassay was constructed for detection of PGA in plasma at concentrations of less than 1 ng PGA/ml. Use of the lateral flow immunoassay for detection of PGA in the rabbit model found that antigen was detected somewhat earlier than the earliest time point at which the blood culture became positive. The low cost, ease of use, and rapid time to result of the lateral flow immunoassay format make an immunoassay for PGA a viable surrogate for blood culture for detection of infection in individuals who have a likelihood of exposure to B. anthracis.

  11. Immunoassay for Capsular Antigen of Bacillus anthracis Enables Rapid Diagnosis in a Rabbit Model of Inhalational Anthrax.

    Science.gov (United States)

    Gates-Hollingsworth, Marcellene A; Perry, Mark R; Chen, Hongjing; Needham, James; Houghton, Raymond L; Raychaudhuri, Syamal; Hubbard, Mark A; Kozel, Thomas R

    2015-01-01

    Inhalational anthrax is a serious biothreat. Effective antibiotic treatment of inhalational anthrax requires early diagnosis; the further the disease has progressed, the less the likelihood for cure. Current means for diagnosis such as blood culture require several days to a result and require advanced laboratory infrastructure. An alternative approach to diagnosis is detection of a Bacillus anthracis antigen that is shed into blood and can be detected by rapid immunoassay. The goal of the study was to evaluate detection of poly-γ-D-glutamic acid (PGA), the capsular antigen of B. anthracis, as a biomarker surrogate for blood culture in a rabbit model of inhalational anthrax. The mean time to a positive blood culture was 26 ± 5.7 h (mean ± standard deviation), whereas the mean time to a positive ELISA was 22 ± 4.2 h; P = 0.005 in comparison with blood culture. A lateral flow immunoassay was constructed for detection of PGA in plasma at concentrations of less than 1 ng PGA/ml. Use of the lateral flow immunoassay for detection of PGA in the rabbit model found that antigen was detected somewhat earlier than the earliest time point at which the blood culture became positive. The low cost, ease of use, and rapid time to result of the lateral flow immunoassay format make an immunoassay for PGA a viable surrogate for blood culture for detection of infection in individuals who have a likelihood of exposure to B. anthracis.

  12. Pancreaticobiliary cancers with deficient methylenetetrahydrofolate reductase genotypes.

    Science.gov (United States)

    Matsubayashi, Hiroyuki; Skinner, Halcyon G; Iacobuzio-Donahue, Christine; Abe, Tadayoshi; Sato, Norihiro; Riall, Taylor Sohn; Yeo, Charles J; Kern, Scott E; Goggins, Michael

    2005-08-01

    Methyl group deficiency might promote carcinogenesis by inducing DNA breaks and DNA hypomethylation. We hypothesized that deficient methylenetetrahydrofolate reductase (MTHFR) genotypes could promote pancreatic cancer development. First, we performed a case-control study of germline MTHFR polymorphisms (C677T, A1298C) in 303 patients with pancreatic cancer and 305 matched control subjects. Pancreatic neoplasms frequently lose an MTHFR allele during tumorigenesis; we hypothesized that such loss could promote carcinogenesis. We therefore evaluated the cancer MTHFR genotypes of 82 patients with pancreaticobiliary cancers and correlated them to genome-wide measures of chromosomal deletion by using 386 microsatellite markers. Finally, MTHFR genotypes were correlated with global DNA methylation in 68 cancer cell lines. Germline MTHFR polymorphisms were not associated with an increased likelihood of having pancreatic cancer. Fractional allelic loss (a measure of chromosomal loss) trended higher in cancers with 677T genotypes than in cancers with other genotypes (P = .055). Among cancers with loss of an MTHFR allele, cancers with 677T MTHFR alleles had more deletions at folate-sensitive fragile sites (36.9%) and at tumor suppressor gene loci (68.5%) than 677C cancers (28.7% and 47.8%, P = .079 and .014, respectively). LINE1 methylation was lower in cancers with less functional 677T/TT genotypes (24.4%) than in those with 677CT (26.0%) and CC/C genotypes (32.5%) (P = .014). Cancers with defective MTHFR genotypes have more DNA hypomethylation and more chromosomal losses. Deficient MTHFR function due to loss of an MTHFR allele by an evolving neoplasm might, by promoting chromosomal losses, accelerate cancer development.

  13. Sulfite reductase protects plants against sulfite toxicity.

    Science.gov (United States)

    Yarmolinsky, Dmitry; Brychkova, Galina; Fluhr, Robert; Sagi, Moshe

    2013-02-01

    Plant sulfite reductase (SiR; Enzyme Commission 1.8.7.1) catalyzes the reduction of sulfite to sulfide in the reductive sulfate assimilation pathway. Comparison of SiR expression in tomato (Solanum lycopersicum 'Rheinlands Ruhm') and Arabidopsis (Arabidopsis thaliana) plants revealed that SiR is expressed in a different tissue-dependent manner that likely reflects dissimilarity in sulfur metabolism between the plant species. Using Arabidopsis and tomato SiR mutants with modified SiR expression, we show here that resistance to ectopically applied sulfur dioxide/sulfite is a function of SiR expression levels and that plants with reduced SiR expression exhibit higher sensitivity than the wild type, as manifested in pronounced leaf necrosis and chlorophyll bleaching. The sulfite-sensitive mutants accumulate applied sulfite and show a decline in glutathione levels. In contrast, mutants that overexpress SiR are more tolerant to sulfite toxicity, exhibiting little or no damage. Resistance to high sulfite application is manifested by fast sulfite disappearance and an increase in glutathione levels. The notion that SiR plays a role in the protection of plants against sulfite is supported by the rapid up-regulation of SiR transcript and activity within 30 min of sulfite injection into Arabidopsis and tomato leaves. Peroxisomal sulfite oxidase transcripts and activity levels are likewise promoted by sulfite application as compared with water injection controls. These results indicate that, in addition to participating in the sulfate assimilation reductive pathway, SiR also plays a role in protecting leaves against the toxicity of sulfite accumulation.

  14. Thermolabile defect of methylenetetrahydrofolate reductase in coronary artery disease.

    Science.gov (United States)

    Kang, S S; Passen, E L; Ruggie, N; Wong, P W; Sora, H

    1993-10-01

    To determine whether or not a moderate genetic defect of homocysteine metabolism is associated with the development of coronary artery disease, we studied the prevalence of thermolabile methylenetetrahydrofolate reductase, which is probably the most common genetic defect of homocysteine metabolism. Three hundred thirty-nine subjects who underwent coronary angiography were classified into three groups: (1) patients with severe coronary artery stenosis (> or = 70% occlusion in one or more coronary arteries or > or = 50% occlusion in the left main coronary artery), (2) patients with mild to moderate coronary artery stenosis (< 70% occlusion in one or more coronary arteries or < 50% occlusion in the left main coronary artery), and (3) patients with non-coronary heart disease or noncardiac chest pain (nonstenotic coronary arteries). The thermolability of methylenetetrahydrofolate reductase was prospectively determined in all subjects. Plasma homocyst(e)ine levels were then measured in those with thermolabile methylenetetrahydrofolate reductase. The traditional risk factors for coronary artery disease were thereafter ascertained by chart review of all subjects. The prevalence of thermolabile methylenetetrahydrofolate reductase was 18.1% in group 1, 13.4% in group 2, and 7.9% in group 3. There was a significant difference between the prevalence of thermolabile methylenetetrahydrofolate reductase in groups 1 and 3 (P < .04). All individuals with thermolabile methylenetetrahydrofolate reductase irrespective of their clinical grouping had higher plasma homocyst(e)ine levels than normal (group 1, 14.86 +/- 5.85; group 2, 15.36 +/- 5.70; group 3, 13.39 +/- 3.80; normal, 8.50 +/- 2.8 nmol/mL). Nonetheless, there was no statistically significant difference in the plasma homocyst(e)ine concentrations of these patients with or without coronary artery stenosis. Using discriminant function analysis, thermolabile methylenetetrahydrofolate reductase was predictive of angiographically

  15. The role of biliverdin reductase in colorectal cancer

    International Nuclear Information System (INIS)

    Bauer, M.

    2010-01-01

    In recent years, the effects of biliverdin and bilirubin have been studied extensively, and an inhibitory effect of bile pigments in cancer progression has been proposed. In this study we focused on the effects of biliverdin reductase, the enzyme that converts biliverdin to bilirubin, in colorectal cancer. For in vitro experiments we used a human colorectal carcinoma cell line and transfected it with an expression construct of shRNA specific for biliverdin reductase, to create cells with stable knock-down of enzyme expression. Cell proliferation was analyzed using the CASY model TT cell counting device. Western blot protein analysis was performed to study intracellular signaling cascades. Samples of human colorectal cancer were analyzed using immunohistochemistry. We were able to confirm the antiproliferative effects of bile pigments on cancer cells in vitro. However, this effect was attenuated in biliverdin reductase knock down cells. ERK and Akt activation seen under biliverdin and bilirubin treatment was also reduced in biliverdin reductase deficient cells. Immunohistochemical analysis of tumor samples from patients with colorectal cancer showed elevated biliverdin reductase levels. High enzyme expression was associated with lower overall and disease free patient survival. We conclude that BVR is required for bile pigment mediated effects regarding cancer cell proliferation and modulation of intracellular signaling cascades. The role of BVR overexpression in vivo and its exact influence on cancer progression and patient survival need to be further investigated. (author) [de

  16. Intramolecular electron transfer in Pseudomonas aeruginosa cd(1) nitrite reductase

    DEFF Research Database (Denmark)

    Farver, Ole; Brunori, Maurizio; Cutruzzolà, Francesca

    2009-01-01

    The cd(1) nitrite reductases, which catalyze the reduction of nitrite to nitric oxide, are homodimers of 60 kDa subunits, each containing one heme-c and one heme-d(1). Heme-c is the electron entry site, whereas heme-d(1) constitutes the catalytic center. The 3D structure of Pseudomonas aeruginosa...... nitrite reductase has been determined in both fully oxidized and reduced states. Intramolecular electron transfer (ET), between c and d(1) hemes is an essential step in the catalytic cycle. In earlier studies of the Pseudomonas stutzeri enzyme, we observed that a marked negative cooperativity...... is controlling this internal ET step. In this study we have investigated the internal ET in the wild-type and His369Ala mutant of P. aeruginosa nitrite reductases and have observed similar cooperativity to that of the Pseudomonas stutzeri enzyme. Heme-c was initially reduced, in an essentially diffusion...

  17. Construction of a high-efficiency cloning system using the Golden Gate method and I-SceI endonuclease for targeted gene replacement in Bacillus anthracis.

    Science.gov (United States)

    Wang, Tiantian; Wang, Dongshu; Lyu, Yufei; Feng, Erling; Zhu, Li; Liu, Chunjie; Wang, Yanchun; Liu, Xiankai; Wang, Hengliang

    2018-02-10

    To investigate gene function in Bacillus anthracis, a high-efficiency cloning system is required with an increased rate of allelic exchange. Golden Gate cloning is a molecular cloning strategy allowing researchers to simultaneously and directionally assemble multiple DNA fragments to construct target plasmids using type IIs restriction enzymes and T4 DNA ligase in the same reaction system. Here, a B. anthracis S-layer protein EA1 allelic exchange vector was successfully constructed using the Golden Gate method. No new restriction sites were introduced into this knockout vector, and seamless assembly of the DNA fragments was achieved. To elevate the efficiency of homologous recombination between the allelic exchange vector and chromosomal DNA, we introduced an I-SceI site into the allelic exchange vector. The eag gene was successfully knocked out in B. anthracis using this vector. Simultaneously, the allelic exchange vector construction method was developed into a system for generating B. anthracis allelic exchange vectors. To verify the effectiveness of this system, some other allelic exchange vectors were constructed and gene replacements were performed in B. anthracis. It is speculated that this gene knockout vector construction system and high-efficiency targeted gene replacement using I-SceI endonuclease can be applied to other Bacillus spp. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Comparison of false-negative rates and limits of detection following macrofoam-swab sampling of Bacillus anthracis surrogates via Rapid Viability PCR and plate culture.

    Science.gov (United States)

    Hutchison, J R; Piepel, G F; Amidan, B G; Hess, B M; Sydor, M A; Deatherage Kaiser, B L

    2018-01-21

    We evaluated the effects of Bacillus anthracis surrogates, low surface concentrations, surface materials and assay methods on false-negative rate (FNR) and limit of detection (LOD 95 ) for recovering Bacillus spores using a macrofoam-swab sampling procedure. Bacillus anthracis Sterne or Bacillus atrophaeus Nakamura spores were deposited over a range of low target concentrations (2-500 per coupon) onto glass, stainless steel, vinyl tile and plastic. Samples were assayed using a modified Rapid Viability-PCR (mRV-PCR) method and the traditional plate culture method to obtain FNR and LOD 95 results. Mean FNRs tended to be lower for mRV-PCR compared to culturing, and increased as spore concentration decreased for all surface materials. Surface material, but not B. anthracis surrogate, influenced FNRs with the mRV-PCR method. The mRV-PCR LOD 95 was lowest for glass and highest for vinyl tile. LOD 95 values overall were lower for mRV-PCR than for the culture method. This study adds to the limited data on FNR and LOD 95 for mRV-PCR and culturing methods with low concentrations of B. anthracis sampled from various surface materials by the CDC macrofoam-swab method. These are key inputs for planning characterization and clearance studies for low contamination levels of B. anthracis. © 2018 The Society for Applied Microbiology.

  19. Comparison of false-negative rates and limits of detection following macrofoam-swab sampling of Bacillus anthracis surrogates via Rapid Viability PCR and plate culture

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, Janine R.; Piepel, Gregory F.; Amidan, Brett G.; Hess, Becky M.; Sydor, Michael A.; Kaiser, Brooke LD

    2018-03-13

    Aims: We evaluated the effects of Bacillus anthracis surrogates, low surface concentrations, surface materials, and assay methods on false-negative rate (FNR) and limit of detection (LOD95) for recovering Bacillus spores using a macrofoam-swab sampling procedure. Methods and Results: Bacillus anthracis Sterne or Bacillus atrophaeus Nakamura spores were deposited over a range of low target concentrations (2 – 500 coupon-1) onto glass, stainless steel, vinyl tile, and plastic. Samples were assayed using a modified Rapid Viability-PCR (mRV-PCR) method and the traditional plate culture method to obtain FNR and LOD95 results. Conclusions: Mean FNRs tended to be lower for mRV-PCR compared to culturing, and increased as spore concentration decreased for all surface materials. Surface material, but not B. anthracis surrogate, influenced FNRs with the mRV-PCR method. The mRV-PCR LOD95 was lowest for glass and highest for vinyl tile. LOD95 values overall were lower for mRV-PCR than for the culture method. Significance and Impact of Study: This study adds to the limited data on FNR and LOD95 for mRV-PCR and culturing methods with low concentrations of B. anthracis sampled from various surface materials by the CDC macrofoam-swab method. These are key inputs for planning characterization and clearance studies for low contamination levels of B. anthracis.

  20. The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1.

    Science.gov (United States)

    Rasko, David A; Ravel, Jacques; Økstad, Ole Andreas; Helgason, Erlendur; Cer, Regina Z; Jiang, Lingxia; Shores, Kelly A; Fouts, Derrick E; Tourasse, Nicolas J; Angiuoli, Samuel V; Kolonay, James; Nelson, William C; Kolstø, Anne-Brit; Fraser, Claire M; Read, Timothy D

    2004-01-01

    We sequenced the complete genome of Bacillus cereus ATCC 10987, a non-lethal dairy isolate in the same genetic subgroup as Bacillus anthracis. Comparison of the chromosomes demonstrated that B.cereus ATCC 10987 was more similar to B.anthracis Ames than B.cereus ATCC 14579, while containing a number of unique metabolic capabilities such as urease and xylose utilization and lacking the ability to utilize nitrate and nitrite. Additionally, genetic mechanisms for variation of capsule carbohydrate and flagella surface structures were identified. Bacillus cereus ATCC 10987 contains a single large plasmid (pBc10987), of approximately 208 kb, that is similar in gene content and organization to B.anthracis pXO1 but is lacking the pathogenicity-associated island containing the anthrax lethal and edema toxin complex genes. The chromosomal similarity of B.cereus ATCC 10987 to B.anthracis Ames, as well as the fact that it contains a large pXO1-like plasmid, may make it a possible model for studying B.anthracis plasmid biology and regulatory cross-talk.

  1. Effect of ammonium and nitrate on ferric chelate reductase and nitrate reductase in Vaccinium species.

    Science.gov (United States)

    Poonnachit, U; Darnell, R

    2004-04-01

    Most Vaccinium species have strict soil requirements for optimal growth, requiring low pH, high iron availability and nitrogen primarily in the ammonium form. These soils are limited and are often located near wetlands. Vaccinium arboreum is a wild species adapted to a wide range of soils, including high pH, low iron, and nitrate-containing soils. This broader soil adaptation in V. arboreum may be related to increased efficiency of iron or nitrate uptake compared with the cultivated Vaccinium species. Nitrate, ammonium and iron uptake, and nitrate reductase (NR) and ferric chelate reductase (FCR) activities were compared in two Vaccinium species grown hydroponically in either nitrate or ammonia, with or without iron. The species studied were the wild V. arboreum and the cultivated V. corymbosum interspecific hybrid, which exhibits the strict soil requirements of most Vaccinium species. Ammonium uptake was significantly greater than nitrate uptake in both species, while nitrate uptake was greater in the wild species, V. arboreum, compared with the cultivated species, V. corymbosum. The increased nitrate uptake in V. arboreum was correlated with increased root NR activity compared with V. corymbosum. The lower nitrate uptake in V. corymbosum was reflected in decreased plant dry weight in this species compared with V. arboreum. Root FCR activity increased significantly in V. corymbosum grown under iron-deficient conditions, compared with the same species grown under iron-sufficient conditions or with V. arboreum grown under either iron condition. V. arboreum appears to be more efficient in acquiring nitrate compared with V. corymbosum, possibly due to increased NR activity and this may partially explain the wider soil adaptation of V. arboreum.

  2. Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase.

    Science.gov (United States)

    Liu, Yi; Shi, Zi; Maximova, Siela; Payne, Mark J; Guiltinan, Mark J

    2013-12-05

    The proanthocyanidins (PAs), a subgroup of flavonoids, accumulate to levels of approximately 10% total dry weight of cacao seeds. PAs have been associated with human health benefits and also play important roles in pest and disease defense throughout the plant. To dissect the genetic basis of PA biosynthetic pathway in cacao (Theobroma cacao), we have isolated three genes encoding key PA synthesis enzymes, anthocyanidin synthase (ANS), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR). We measured the expression levels of TcANR, TcANS and TcLAR and PA content in cacao leaves, flowers, pod exocarp and seeds. In all tissues examined, all three genes were abundantly expressed and well correlated with PA accumulation levels, suggesting their active roles in PA synthesis. Overexpression of TcANR in an Arabidopsis ban mutant complemented the PA deficient phenotype in seeds and resulted in reduced anthocyanidin levels in hypocotyls. Overexpression of TcANS in tobacco resulted in increased content of both anthocyanidins and PAs in flower petals. Overexpression of TcANS in an Arabidopsis ldox mutant complemented its PA deficient phenotype in seeds. Recombinant TcLAR protein converted leucoanthocyanidin to catechin in vitro. Transgenic tobacco overexpressing TcLAR had decreased amounts of anthocyanidins and increased PAs. Overexpressing TcLAR in Arabidopsis ldox mutant also resulted in elevated synthesis of not only catechin but also epicatechin. Our results confirm the in vivo function of cacao ANS and ANR predicted based on sequence homology to previously characterized enzymes from other species. In addition, our results provide a clear functional analysis of a LAR gene in vivo.

  3. Plasmid-encoded diacetyl (acetoin) reductase in Leuconostoc pseudomesenteroides

    DEFF Research Database (Denmark)

    Rattray, Fergal P; Myling-Petersen, Dorte; Larsen, Dianna

    2003-01-01

    A plasmid-borne diacetyl (acetoin) reductase (butA) from Leuconostoc pseudomesenteroides CHCC2114 was sequenced and cloned. Nucleotide sequence analysis revealed an open reading frame encoding a protein of 257 amino acids which had high identity at the amino acid level to diacetyl (acetoin...... diacetyl (acetoin) reductase activity with NADH as coenzyme, but not with NADPH as coenzyme, suggesting the presence of another diacetyl (acetoin)-reducing activity in L. pseudomesenteroides. Plasmid-curing experiments demonstrated that the butA gene is carried on a 20-kb plasmid in L. pseudomesenteroides....

  4. Secondary cell wall polysaccharides of Bacillus anthracis are antigens that contain specific epitopes which cross-react with three pathogenic Bacillus cereus strains that caused severe disease, and other epitopes common to all the Bacillus cereus strains tested.

    Science.gov (United States)

    Leoff, Christine; Saile, Elke; Rauvolfova, Jana; Quinn, Conrad P; Hoffmaster, Alex R; Zhong, Wei; Mehta, Alok S; Boons, Geert-Jan; Carlson, Russell W; Kannenberg, Elmar L

    2009-06-01

    The immunoreactivities of hydrogen fluoride (HF)-released cell wall polysaccharides (HF-PSs) from selected Bacillus anthracis and Bacillus cereus strains were compared using antisera against live and killed B. anthracis spores. These antisera bound to the HF-PSs from B. anthracis and from three clinical B. cereus isolates (G9241, 03BB87, and 03BB102) obtained from cases of severe or fatal human pneumonia but did not bind to the HF-PSs from the closely related B. cereus ATCC 10987 or from B. cereus type strain ATCC 14579. Antiserum against a keyhole limpet hemocyanin conjugate of the B. anthracis HF-PS (HF-PS-KLH) also bound to HF-PSs and cell walls from B. anthracis and the three clinical B. cereus isolates, and B. anthracis spores. These results indicate that the B. anthracis HF-PS is an antigen in both B. anthracis cell walls and spores, and that it shares cross-reactive, and possibly pathogenicity-related, epitopes with three clinical B. cereus isolates that caused severe disease. The anti-HF-PS-KLH antiserum cross-reacted with the bovine serum albumin (BSA)-conjugates of all B. anthracis and all B. cereus HF-PSs tested, including those from nonclinical B. cereus ATCC 10987 and ATCC 14579 strains. Finally, the serum of vaccinated (anthrax vaccine adsorbed (AVA)) Rhesus macaques that survived inhalation anthrax contained IgG antibodies that bound the B. anthracis HF-PS-KLH conjugate. These data indicate that HF-PSs from the cell walls of the bacilli tested here are (i) antigens that contain (ii) a potentially virulence-associated carbohydrate antigen motif, and (iii) another antigenic determinant that is common to B. cereus strains.

  5. Compensatory periplasmic nitrate reductase activity supports anaerobic growth of Pseudomonas aeruginosa PAO1 in the absence of membrane nitrate reductase

    Science.gov (United States)

    Van Alst, Nadine E.; Sherrill, Lani A.; Iglewski, Barbara H.; Haidaris, Constantine G.

    2009-01-01

    Nitrate serves as a terminal electron acceptor under anaerobic conditions in Pseudomonas aeruginosa. Reduction of nitrate to nitrite generates a transmembrane proton motive force allowing ATP synthesis and anaerobic growth. Inner membrane-bound nitrate reductase NarGHI is encoded within the narK1K2GHJI operon and the periplasmic nitrate reductase NapAB is encoded within the napEFDABC operon. The role of the two dissimilatory nitrate reductases in anaerobic growth, and the regulation of their expression were examined by using a set of deletion mutants in P. aeruginosa PAO1. NarGHI mutants were unable to grow anaerobically, but plate cultures remained viable up to 120 hr. In contrast, nitrate sensor-response regulator mutant ΔnarXL displayed growth arrest initially, but resumed growth after 72 hr and reached early stationary phase in liquid culture after 120 hr. Genetic, transcriptional, and biochemical studies demonstrated that anaerobic growth recovery by the NarXL mutant was the result of NapAB periplasmic nitrate reductase expression. A novel transcriptional start site for napEFDABC expression was identified in the NarXL mutant grown anaerobically. Furthermore, mutagenesis of a consensus NarL-binding site monomer upstream of the novel transcriptional start site restored anaerobic growth recovery in the NarXL mutant. The data suggest that during anaerobic growth of wild type P. aeruginosa PAO1, nitrate response regulator NarL directly represses expression of periplasmic nitrate reductase, while inducing maximal expression of membrane nitrate reductase. PMID:19935885

  6. Possible Use of Bacteriophages Active against Bacillus anthracis and Other B. cereus Group Members in the Face of a Bioterrorism Threat

    Science.gov (United States)

    Weber-Dąbrowska, Beata; Borysowski, Jan; Górski, Andrzej

    2014-01-01

    Anthrax is an infectious fatal disease with epidemic potential. Nowadays, bioterrorism using Bacillus anthracis is a real possibility, and thus society needs an effective weapon to neutralize this threat. The pathogen may be easily transmitted to human populations. It is easy to store, transport, and disseminate and may survive for many decades. Recent data strongly support the effectiveness of bacteriophage in treating bacterial diseases. Moreover, it is clear that bacteriophages should be considered a potential incapacitative agent against bioterrorism using bacteria belonging to B. cereus group, especially B. anthracis. Therefore, we have reviewed the possibility of using bacteriophages active against Bacillus anthracis and other species of the B. cereus group in the face of a bioterrorism threat. PMID:25247187

  7. The Saccharomyces boulardii CNCM I-745 strain shows protective effects against the B. anthracis LT toxin.

    Science.gov (United States)

    Pontier-Bres, Rodolphe; Rampal, Patrick; Peyron, Jean-François; Munro, Patrick; Lemichez, Emmanuel; Czerucka, Dorota

    2015-10-30

    The probiotic yeast Saccharomyces boulardii (S. boulardii) has been prescribed for the prophylaxis and treatment of several infectious diarrheal diseases. Gastrointestinal anthrax causes fatal systemic disease. In the present study, we investigated the protective effects conferred by Saccharomyces boulardii CNCM I-745 strain on polarized T84 columnar epithelial cells intoxicated by the lethal toxin (LT) of Bacillus anthracis. Exposure of polarized T84 cells to LT affected cell monolayer integrity, modified the morphology of tight junctions and induced the formation of actin stress fibers. Overnight treatment of cells with S. boulardii before incubation with LT maintained the integrity of the monolayers, prevented morphological modification of tight junctions, restricted the effects of LT on actin remodeling and delayed LT-induced MEK-2 cleavage. Mechanistically, we demonstrated that in the presence of S. boulardii, the medium is depleted of both LF and PA sub-units of LT and the appearance of a cleaved form of PA. Our study highlights the potential of the S. boulardii CNCM I-745 strain as a prophylactic agent against the gastrointestinal form of anthrax.

  8. The Saccharomyces boulardii CNCM I-745 Strain Shows Protective Effects against the B. anthracis LT Toxin

    Directory of Open Access Journals (Sweden)

    Rodolphe Pontier-Bres

    2015-10-01

    Full Text Available The probiotic yeast Saccharomyces boulardii (S. boulardii has been prescribed for the prophylaxis and treatment of several infectious diarrheal diseases. Gastrointestinal anthrax causes fatal systemic disease. In the present study, we investigated the protective effects conferred by Saccharomyces boulardii CNCM I-745 strain on polarized T84 columnar epithelial cells intoxicated by the lethal toxin (LT of Bacillus anthracis. Exposure of polarized T84 cells to LT affected cell monolayer integrity, modified the morphology of tight junctions and induced the formation of actin stress fibers. Overnight treatment of cells with S. boulardii before incubation with LT maintained the integrity of the monolayers, prevented morphological modification of tight junctions, restricted the effects of LT on actin remodeling and delayed LT-induced MEK-2 cleavage. Mechanistically, we demonstrated that in the presence of S. boulardii, the medium is depleted of both LF and PA sub-units of LT and the appearance of a cleaved form of PA. Our study highlights the potential of the S. boulardii CNCM I-745 strain as a prophylactic agent against the gastrointestinal form of anthrax.

  9. Bacillus anthracis Co-Opts Nitric Oxide and Host Serum Albumin for Pathogenicity in Hypoxic Conditions

    Directory of Open Access Journals (Sweden)

    Stephen eSt John

    2013-05-01

    Full Text Available Bacillus anthracis is a dangerous pathogen of humans and many animal species. Its virulence has been mainly attributed to the production of Lethal and Edema toxins as well as the antiphagocytic capsule. Recent data indicate that the nitric oxide (NO synthase (baNOS plays an important pathogenic role at the early stage of disease by protecting bacteria from the host reactive species and S-nytrosylating the mitochondrial proteins in macrophages. In this study we for the first time present evidence that bacteria-derived NO participates in the generation of highly reactive oxidizing species which could be abolished by the NOS inhibitor L-NAME, free thiols, and superoxide dismutase but not catalase. The formation of toxicants is likely a result of the simultaneous formation of NO and superoxide leading to a labile peroxynitrite and its stable decomposition product, nitrogen dioxide. The toxicity of bacteria could be potentiated in the presence of bovine serum albumin. This effect is consistent with the property of serum albumin to serves as a trap of a volatile NO accelerating its reactions. Our data suggest that during infection in the hypoxic environment of pre-mortal host the accumulated NO is expected to have a broad toxic impact on host cell functions.

  10. In Silico Genomic Fingerprints of the Bacillus anthracis Group Obtained by Virtual Hybridization

    Directory of Open Access Journals (Sweden)

    Hueman Jaimes-Díaz

    2015-02-01

    Full Text Available In this study we evaluate the capacity of Virtual Hybridization to identify between highly related bacterial strains. Eight genomic fingerprints were obtained by virtual hybridization for the Bacillus anthracis genome set, and a set of 15,264 13-nucleotide short probes designed to produce genomic fingerprints unique for each organism. The data obtained from each genomic fingerprint were used to obtain hybridization patterns simulating a DNA microarray. Two virtual hybridization methods were used: the Direct and the Extended method to identify the number of potential hybridization sites and thus determine the minimum sensitivity value to discriminate between genomes with 99.9% similarity. Genomic fingerprints were compared using both methods and phylogenomic trees were constructed to verify that the minimum detection value is 0.000017. Results obtained from the genomic fingerprints suggest that the distribution in the trees is correct, as compared to other taxonomic methods. Specific virtual hybridization sites for each of the genomes studied were also identified.

  11. Detection of Bacillus anthracis spores from environmental water using bioluminescent reporter phage.

    Science.gov (United States)

    Nguyen, C; Makkar, R; Sharp, N J; Page, M A; Molineux, I J; Schofield, D A

    2017-11-01

    We investigated the ability of a temperate Bacillus anthracis reporter phage (Wβ::luxAB-2), which transduces bioluminescence to infected cells, to detect viable spores from deliberately contaminated environmental water samples. Environmental water was inoculated with spores and assayed with Wβ::luxAB-2. Bioluminescent signals directly correlated with input phage and spore concentrations. A limit of detection of 10 1 and 10 2 CFU per ml within 8 h was achieved from pond and lake water, respectively. Detection was greatly simplified by minimizing sample processing steps without spore extraction. The complex endogenous microbial flora and salt content of brackish water challenged the assay, extending the detection time to 12 h for a sensitivity of 10 2 CFU per ml. Phage-mediated bioluminescence was strictly dependent on bacterial physiology, being significantly reduced in mid/late log phase cells. This was shown to be due to an inability of the phage to adsorb. The reporter phage Wβ::luxAB-2 displays potential for simplified detection of viable spores from contaminated water samples within 12 h. A deliberate aerosol release of spores could lead to widespread contamination, leaving large areas uninhabitable until remediation. An essential requirement of this restoration process is the development of simplified detection assays in different environmental matrices. © 2017 The Society for Applied Microbiology.

  12. Micropatterned Macrophage Analysis Reveals Global Cytoskeleton Constraints Induced by Bacillus anthracis Edema Toxin

    Science.gov (United States)

    Trescos, Yannick; Tessier, Emilie; Rougeaux, Clémence; Goossens, Pierre L.

    2015-01-01

    Bacillus anthracis secretes the edema toxin (ET) that disrupts the cellular physiology of endothelial and immune cells, ultimately affecting the adherens junction integrity of blood vessels that in turn leads to edema. The effects of ET on the cytoskeleton, which is critical in cell physiology, have not been described thus far on macrophages. In this study, we have developed different adhesive micropatterned surfaces (L and crossbow) to control the shape of bone marrow-derived macrophages (BMDMs) and primary peritoneal macrophages. We found that macrophage F-actin cytoskeleton adopts a specific polar organization slightly different from classical human HeLa cells on the micropatterns. Moreover, ET induced a major quantitative reorganization of F-actin within 16 h with a collapse at the nonadhesive side of BMDMs along the nucleus. There was an increase in size and deformation into a kidney-like shape, followed by a decrease in size that correlates with a global cellular collapse. The collapse of F-actin was correlated with a release of focal adhesion on the patterns and decreased cell size. Finally, the cell nucleus was affected by actin reorganization. By using this technology, we could describe many previously unknown macrophage cellular dysfunctions induced by ET. This novel tool could be used to analyze more broadly the effects of toxins and other virulence factors that target the cytoskeleton. PMID:26015478

  13. Rugged single domain antibody detection elements for Bacillus anthracis spores and vegetative cells.

    Directory of Open Access Journals (Sweden)

    Scott A Walper

    Full Text Available Significant efforts to develop both laboratory and field-based detection assays for an array of potential biological threats started well before the anthrax attacks of 2001 and have continued with renewed urgency following. While numerous assays and methods have been explored that are suitable for laboratory utilization, detection in the field is often complicated by requirements for functionality in austere environments, where limited cold-chain facilities exist. In an effort to overcome these assay limitations for Bacillus anthracis, one of the most recognizable threats, a series of single domain antibodies (sdAbs were isolated from a phage display library prepared from immunized llamas. Characterization of target specificity, affinity, and thermal stability was conducted for six sdAb families isolated from rounds of selection against the bacterial spore. The protein target for all six sdAb families was determined to be the S-layer protein EA1, which is present in both vegetative cells and bacterial spores. All of the sdAbs examined exhibited a high degree of specificity for the target bacterium and its spore, with affinities in the nanomolar range, and the ability to refold into functional antigen-binding molecules following several rounds of thermal denaturation and refolding. This research demonstrates the capabilities of these sdAbs and their potential for integration into current and developing assays and biosensors.

  14. New developments in vaccines, inhibitors of anthrax toxins, and antibiotic therapeutics for Bacillus anthracis.

    Science.gov (United States)

    Beierlein, J M; Anderson, A C

    2011-01-01

    Bacillus anthracis, the causative agent responsible for anthrax infections, poses a significant biodefense threat. There is a high mortality rate associated with untreated anthrax infections; specifically, inhalation anthrax is a particularly virulent form of infection with mortality rates close to 100%, even with aggressive treatment. Currently, a vaccine is not available to the general public and few antibiotics have been approved by the FDA for the treatment of inhalation anthrax. With the threat of natural or engineered bacterial resistance to antibiotics and the limited population for whom the current drugs are approved, there is a clear need for more effective treatments against this deadly infection. A comprehensive review of current research in drug discovery is presented in this article, including efforts to improve the purity and stability of vaccines, design inhibitors targeting the anthrax toxins, and identify inhibitors of novel enzyme targets. High resolution structural information for the anthrax toxins and several essential metabolic enzymes has played a significant role in aiding the structure-based design of potent and selective antibiotics.

  15. Evaluation of PCR Systems for Field Screening of Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Ozanich, Richard M.; Colburn, Heather A.; Victry, Kristin D.; Bartholomew, Rachel A.; Arce, Jennifer S.; Heredia-Langner, Alejandro; Jarman, Kristin; Kreuzer, Helen W.; Bruckner-Lea, Cynthia J.

    2017-02-01

    There is little published data on the performance of hand-portable polymerase chain reaction (PCR) instruments that could be used by first responders to determine if a suspicious powder contains a potential biothreat agent. We evaluated five commercially available hand-portable PCR instruments for detection of Bacillus anthracis (Ba). We designed a cost-effective, statistically-based test plan that allows instruments to be evaluated at performance levels ranging from 0.85-0.95 lower confidence bound (LCB) on the probability of detection (POD) at confidence levels of 80-95%. We assessed specificity using purified genomic DNA from 13 Ba strains and 18 Bacillus near neighbors, interference with 22 common hoax powders encountered in the field, and PCR inhibition when Ba spores were spiked into these powders. Our results indicated that three of the five instruments achieved >0.95 LCB on the POD with 95% confidence at test concentrations of 2,000 genome equivalents/mL (comparable to 2,000 spores/mL), displaying more than sufficient sensitivity for screening suspicious powders. These instruments exhibited no false positive results or PCR inhibition with common hoax powders, and reliably detected Ba spores spiked into common hoax powders, though some issues with instrument controls were observed. Our testing approach enables efficient instrument performance testing to a statistically rigorous and cost-effective test plan to generate performance data that will allow users to make informed decisions regarding the purchase and use of biodetection equipment in the field.

  16. Measurements of the Ultraviolet Fluorescence Cross Sections and Spectra of Bacillus Anthracis Simulants

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, J.R.

    1998-09-01

    Measurements of the ultraviolet autofluorescence spectra and absolute cross sections of the Bacillus anthracis (Ba) simulants Bacillus globigii (Bg), Bacillus megaterium (Bm), Bacillus subtilis (Bs), and Bacillus cereus (Bc) were measured. Fluorescence spectra and cross sections of pine pollen (Pina echinata) were measured for comparison. Both dried vegetative cells and spores separated from the sporulated vegetative material were studied. The spectra were obtained by suspending a small number (<10) of particles in air in our Single Particle Spectroscopy Apparatus (SPSA), illuminating the particles with light from a spectrally filtered arc lamp, and measuring the fluorescence spectra of the particles. The illumination was 280 nm (20 nm FWHM) and the fluorescence spectra was measured between 300 and 450 nm. The fluorescence cross section of vegetative Bg peaks at 320 nm with a maximum cross section of 5 X 10{sup -14} cm{sup 2}/sr-nm-particle while the Bg spore fluorescence peaks at 310 nm with peak fluorescence of 8 X 10{sup -15} cm{sup 2}/sr-nm-particle. Pine pollen particles showed a higher fluorescence peaking at 355 nm with a cross section of 1.7 X 10{sup -13} cm{sup 2}/sr-nm-particle. Integrated cross sections ranged from 3.0 X 10{sup -13} for the Bg spores through 2.25 X 10{sup -12} (cm{sup 2}/sr-particle) for the vegetative cells.

  17. Activities of different fluoroquinolones against Bacillus anthracis mutants selected in vitro and harboring topoisomerase mutations.

    Science.gov (United States)

    Grohs, Patrick; Podglajen, Isabelle; Gutmann, Laurent

    2004-08-01

    Three sets of mutants of Bacillus anthracis resistant to fluoroquinolones were selected on ciprofloxacin and moxifloxacin in a stepwise manner from a nalidixic acid-resistant but fluoroquinolone-susceptible plasmidless strain harboring a Ser85Leu GyrA mutation. A high level of resistance to fluoroquinolones could be obtained in four or five selection steps. In each case, ParC was the secondary target. However, in addition to the GyrA mutation, expression of high-level resistance required (i) in the first set of mutants, active drug efflux associated with a mutation in the QRDR of ParC; (ii) in the second set, two mutations in the QRDR of ParC associated with a mutation in GyrB; and (iii) in the third set, two QRDR mutations, one in ParC and one in GyrA. Interestingly, several selection steps occurred without obvious mutations in the QRDR of any topoisomerase, thereby implying the existence of other resistance mechanisms. Among the fluoroquinolones tested, garenoxacin showed the best activity.

  18. Structural analysis and evidence for dynamic emergence of Bacillus anthracis S-layer networks.

    Science.gov (United States)

    Couture-Tosi, Evelyne; Delacroix, Hervé; Mignot, Tâm; Mesnage, Stéphane; Chami, Mohamed; Fouet, Agnès; Mosser, Gervaise

    2002-12-01

    Surface layers (S-layers), which form the outermost layers of many Bacteria and Archaea, consist of protein molecules arranged in two-dimensional crystalline arrays. Bacillus anthracis, a gram-positive, spore-forming bacterium, responsible for anthrax, synthesizes two abundant surface proteins: Sap and EA1. Regulatory studies showed that EA1 and Sap appear sequentially at the surface of the parental strain. Sap and EA1 can form arrays. The structural parameters of S-layers from mutant strains (EA1(-) and Sap(-)) were determined by computer image processing of electron micrographs of negatively stained regular S-layer fragments or deflated whole bacteria. Sap and EA1 projection maps were calculated on a p1 symmetry basis. The unit cell parameters of EA1 were a = 69 A, b = 83 A, and gamma = 106 degrees, while those of Sap were a = 184 A, b = 81 A, and gamma = 84 degrees. Freeze-etching experiments and the analysis of the peripheral regions of the cell suggested that the two S-layers have different settings. We characterized the settings of each network at different growth phases. Our data indicated that the scattered emergence of EA1 destabilizes the Sap S-layer.

  19. Rapid identification of Bacillus anthracis spores in suspicious powder samples by using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS).

    Science.gov (United States)

    Dybwad, Marius; van der Laaken, Anton L; Blatny, Janet Martha; Paauw, Armand

    2013-09-01

    Rapid and reliable identification of Bacillus anthracis spores in suspicious powders is important to mitigate the safety risks and economic burdens associated with such incidents. The aim of this study was to develop and validate a rapid and reliable laboratory-based matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis method for identifying B. anthracis spores in suspicious powder samples. A reference library containing 22 different Bacillus sp. strains or hoax materials was constructed and coupled with a novel classification algorithm and standardized processing protocol for various powder samples. The method's limit of B. anthracis detection was determined to be 2.5 × 10(6) spores, equivalent to a 55-μg sample size of the crudest B. anthracis-containing powder discovered during the 2001 Amerithrax incidents. The end-to-end analysis method was able to successfully discriminate among samples containing B. anthracis spores, closely related Bacillus sp. spores, and commonly encountered hoax materials. No false-positive or -negative classifications of B. anthracis spores were observed, even when the analysis method was challenged with a wide range of other bacterial agents. The robustness of the method was demonstrated by analyzing samples (i) at an external facility using a different MALDI-TOF MS instrument, (ii) using an untrained operator, and (iii) using mixtures of Bacillus sp. spores and hoax materials. Taken together, the observed performance of the analysis method developed demonstrates its potential applicability as a rapid, specific, sensitive, robust, and cost-effective laboratory-based analysis tool for resolving incidents involving suspicious powders in less than 30 min.

  20. Multiplex PCR for species-level identification of Bacillus anthracis and detection of pXO1, pXO2, and related plasmids.

    Science.gov (United States)

    Riojas, Marco A; Kiss, Katalin; McKee, Marian L; Hazbón, Manzour Hernando

    2015-01-01

    The Bacillus anthracis virulence plasmids pXO1 and pXO2 have critical implications for biosafety and select agent status. The proper identification and characterization of B. anthracis and its plasmid profile is important to the biodefense research community. Multiplex PCR was used to simultaneously detect a B. anthracis-specific chromosomal mutation, 4 targets distributed across pXO1, 3 targets distributed across pXO2, and highly conserved regions of the 16S gene, allowing an internal positive control for each sample. The multiplex PCR can produce as many as 9 easily separable and distinguishable amplicons, ranging in size from 188 to 555 bp. The PCR results were used to characterize DNA samples extracted from B. anthracis, other Bacillus species, and other bacterial species from many different genera. With the exception of 2 novel putative plasmids discovered, testing against inclusion and extensive exclusion panels showed 100% correlation to previously published and expected results. Upon testing 29 previously unpublished B. anthracis strains, 10 (34.5%) were pXO1(+)/pXO2(+), 9 (31.0%) were pXO1(+)/pXO2(-), 7 (24.1%) were pXO1(-)/pXO2(+), and 3 (10.3%) were pXO1(-)/pXO2(-). The present work presents a novel 9-target multiplex PCR assay capable of species-level identification of B. anthracis via a unique chromosomal marker and the detection of pXO1 and pXO2 via multiply redundant targets on each.

  1. Optimum conditions for cotton nitrate reductase extraction and ...

    African Journals Online (AJOL)

    Conditions of nitrate reductase extraction and activity measurement should be adapted to plant species, and to the organs of the same plant, because of extreme weaknesses and instabilities of the enzyme. Different extraction and reaction media have been compared in order to define the best conditions for cotton callus ...

  2. Intraethnic variation in steroid-5-alpha-reductase polymorphisms in ...

    Indian Academy of Sciences (India)

    2015-06-01

    Jun 1, 2015 ... in prostate cancer patients: a potential factor implicated in 5-alpha-reductase inhibitor treatment. LUIS ALBERTO HENRÍQUEZ-HERNÁNDEZ1,2,3∗, ALMUDENA VALENCIANO2, PALMIRA FORO-ARNALOT4,. MARÍA JESÚS ÁLVAREZ-CUBERO5,6, JOSÉ MANUEL COZAR7, JOSÉ FRANCISCO ...

  3. Intraethnic variation in steroid-5-alpha-reductase polymorphisms in ...

    Indian Academy of Sciences (India)

    2015-06-01

    Jun 1, 2015 ... Herrera-Ramos E., Rodríguez-Gallego C. and Lara P. C. 2015 Intraethnic variation in steroid-5-alpha-reductase polymorphisms in prostate ... generation. This study was approved by the Research and. Ethics Committee of each institution participant in the study. DNA was isolated from 300 µL of ...

  4. Dizygotic twinning is not associated with methylenetetrahydrofolate reductase haplotypes

    NARCIS (Netherlands)

    Montgomery, GW; Zhao, Z.Z.; Morley, K.I.; Marsh, A.J.; Boomsma, D.I.; Martin, N.G.; Duffy, DL

    2003-01-01

    Background: Folate metabolism is critical to embryonic development, influencing neural tube defects (NTD) and recurrent early pregnancy loss. Polymorphisms in 5,10-methylenetetrahydrofolate reductase (MTHFR) have been associated with dizygotic (DZ) twinning through pregnancy loss. Methods: The C677T

  5. Optimum conditions for cotton nitrate reductase extraction and ...

    African Journals Online (AJOL)

    GREGO

    mM of glutamine in the extraction buffer stimulates significantly, in vitro, the reduction of nitrate. Enzyme activity is moreover optimal when 1 M of exogenous nitrate, as substrate, is added to the reaction medium. At these optimum conditions of nitrate reductase activity determination, the substrate was completely reduced ...

  6. Cloning and expression analysis of dihydroxyflavonol 4-reductase ...

    African Journals Online (AJOL)

    Southern blot analysis indicate that DFR is presented as a single copy in the Ascocenda spp. genome. The AscoDFR gene was highly expressed in the flower stages 2 and 3 of development as well as in the sepal and petal of the orchid flower. Keywords: Orchid, dihydroxyflavonol 4-reductase, anthocyanins, gene cloning ...

  7. Crystallographic analysis of tricolosan bound to enoyl reductase.

    NARCIS (Netherlands)

    Roujeinikova, A.; Levy, C.W.; Rowsell, S.; Sedelnikova, S.; Baker, P.J.; Minshull, C.A.; Mistry, A.; Colls, J.G.; Camble, R.; Stuitje, A.R.; Slabas, A.R.; Rafferty, J.B.; Pauptit, R.A.; Viner, A; Rice, D.W.

    1999-01-01

    Molecular genetic studies with strains of Escherichia coli resistant to triclosan, an ingredient of many anti-bacterial household goods, have suggested that this compound works by acting as an inhibitor of enoyl reductase (ENR) and thereby blocking lipid biosynthesis. We present structural analyses

  8. Molecular Cloning and Expression of Bacterial Mercuric Reductase ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... In order to characterize the bacterial mercuric reductase (merA) gene, mercury resistant (Hgr). Escherichia coli strains have been isolated from various mercury contaminated sites of India. Their minimum inhibitory concentration (MIC) for Hg and zone of inhibition for different antibiotics were measured, and ...

  9. Aldose reductase inhibitory activity and antioxidant capacity of pomegranate extracts.

    Science.gov (United States)

    Karasu, Cimen; Cumaoğlu, Ahmet; Gürpinar, Ali Rifat; Kartal, Murat; Kovacikova, Lucia; Milackova, Ivana; Stefek, Milan

    2012-03-01

    The pomegranate, Punica granatum L., has been the subject of current interest as a medicinal agent with wide-ranging therapeutic indications. In the present study, pomegranate ethanolic seed and hull extracts were tested, in comparison with a commercial sample, for the inhibition of aldose reductase, an enzyme involved in the etiology of diabetic complications. In vitro inhibition of rat lens aldose reductase was determined by a conventional method. Pomegranate ethanolic hull extract and commercial pomegranate hull extract exhibited similar aldose reductase inhibitory activity characterized by IC(50) values ranging from 3 to 33.3 μg/ml. They were more effective than pomegranate ethanolic seed extract with IC(50) ranging from 33.3 to 333 μg/ml. Antioxidant action of the novel compounds was documented in a DPPH test and in a liposomal membrane model, oxidatively stressed by peroxyl radicals. All the plant extracts showed considerable antioxidant potential in the DPPH assay. Pomegranate ethanolic hull extract and commercial pomegranate hull extract executed similar protective effects on peroxidatively damaged liposomal membranes characterized by 10ethanolic seed extract showed significantly lower antioxidant activity compared to both hull extracts studied. Pomegranate extracts are thus presented as bifunctional agents combining aldose reductase inhibitory action with antioxidant activity and with potential therapeutic use in prevention of diabetic complications.

  10. Transcriptional modulation of genes encoding nitrate reductase in ...

    African Journals Online (AJOL)

    2016-10-26

    Oct 26, 2016 ... The free aluminum (Al) content in soil can reach levels that are toxic to plants, and this has frequently limited increased productivity of cultures. Four genes encoding nitrate reductase (NR) were identified, named ZmNR1–4. With the aim of evaluating NR activity and the transcriptional modulation of the.

  11. Transcriptional modulation of genes encoding nitrate reductase in ...

    African Journals Online (AJOL)

    The free aluminum (Al) content in soil can reach levels that are toxic to plants, and this has frequently limited increased productivity of cultures. Four genes encoding nitrate reductase (NR) were identified, named ZmNR1–4. With the aim of evaluating NR activity and the transcriptional modulation of the ZmNR1, ZmNR2, ...

  12. Evaluation of the conserve flavin reductase gene from three ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-15

    Dec 15, 2009 ... means of PCR technique. The nucleic acid sequences of the PCR primers were designed using conserved nucleic acid sequences of the flavin reductase enzyme from. Rhodococcus sp. strain IGTS8. The oligonucleotide primers were as follows: 5'-GAA TTC ATG TCT GAC. AAG CCG AAT GCC-3' (forward) ...

  13. The intramolecular electron transfer between copper sites of nitrite reductase

    DEFF Research Database (Denmark)

    Farver, O; Eady, R R; Abraham, Z H

    1998-01-01

    The intramolecular electron transfer (ET) between the type 1 Cu(I) and the type 2 Cu(II) sites of Alcaligenes xylosoxidans dissimilatory nitrite reductase (AxNiR) has been studied in order to compare it with the analogous process taking place in ascorbate oxidase (AO). This internal process is in...

  14. Molecular Cloning and Expression of Bacterial Mercuric Reductase ...

    African Journals Online (AJOL)

    In order to characterize the bacterial mercuric reductase (merA) gene, mercury resistant (Hgr) Escherichia coli strains have been isolated from various mercury contaminated sites of India. Their minimum inhibitory concentration (MIC) for Hg and zone of inhibition for different antibiotics were measured, and finally mer operon ...

  15. The Polymorphisms in Methylenetetrahydrofolate Reductase, Methionine Synthase, Methionine Synthase Reductase, and the Risk of Colorectal Cancer

    Science.gov (United States)

    Zhou, Daijun; Mei, Qiang; Luo, Han; Tang, Bo; Yu, Peiwu

    2012-01-01

    Polymorphisms in genes involved in folate metabolism may modulate the risk of colorectal cancer (CRC), but data from published studies are conflicting. The current meta-analysis was performed to address a more accurate estimation. A total of 41 (17,552 cases and 26,238 controls), 24(8,263 cases and 12,033 controls), 12(3,758 cases and 5,646 controls), and 13 (5,511 cases and 7,265 controls) studies were finally included for the association between methylenetetrahydrofolate reductase (MTHFR) C677T and A1289C, methione synthase reductase (MTRR) A66G, methionine synthase (MTR) A2756G polymorphisms and the risk of CRC, respectively. The data showed that the MTHFR 677T allele was significantly associated with reduced risk of CRC (OR = 0.93, 95%CI 0.90-0.96), while the MTRR 66G allele was significantly associated with increased risk of CRC (OR = 1.11, 95%CI 1.01-1.18). Sub-group analysis by ethnicity revealed that MTHFR C677T polymorphism was significantly associated with reduced risk of CRC in Asians (OR = 0.80, 95%CI 0.72-0.89) and Caucasians (OR = 0.84, 95%CI 0.76-0.93) in recessive genetic model, while the MTRR 66GG genotype was found to significantly increase the risk of CRC in Caucasians (GG vs. AA: OR = 1.18, 95%CI 1.03-1.36). No significant association was found between MTHFR A1298C and MTR A2756G polymorphisms and the risk of CRC. Cumulative meta-analysis showed no particular time trend existed in the summary estimate. Probability of publication bias was low across all comparisons illustrated by the funnel plots and Egger's test. Collectively, this meta-analysis suggested that MTHFR 677T allele might provide protection against CRC in worldwide populations, while MTRR 66G allele might increase the risk of CRC in Caucasians. Since potential confounders could not be ruled out completely, further studies were needed to confirm these results. PMID:22719222

  16. Identification of 5α-reductase isoenzymes in canine skin.

    Science.gov (United States)

    Bernardi de Souza, Lucilene; Paradis, Manon; Zamberlam, Gustavo; Benoit-Biancamano, Marie-Odile; Price, Christopher

    2015-10-01

    Alopecia X in dogs is a noninflammatory alopecia that may be caused by a hormonal dysfunction. It may be similar to androgenic alopecia in men that is caused by the effect of dihydrotestosterone (DHT). The 5α-reductase isoenzymes, 5αR1 and 5αR2, and a recently described 5αR3, are responsible for the conversion of testosterone into DHT. However, which 5α-reductases are present in canine skin has not yet been described. The main objective of this study was to determine the pattern of expression of 5α-reductase genes in canine skin. Skin biopsies were obtained from healthy, intact young-mature beagles (three males, four females) at three anatomical sites normally affected by alopecia X (dorsal neck, back of thighs and base of tail) and two sites generally unaffected (dorsal head and ventral thorax). Prostate samples (n = 3) were collected as positive controls for 5α-reductase mRNA abundance measurement by real-time PCR. We detected mRNA encoding 5αR1 and 5αR3 but not 5αR2. There were no significant differences in 5αR1 and 5αR3 mRNA levels between the different anatomical sites, irrespective of gender (P > 0.05). Moreover, the mean mRNA abundance in each anatomical site did not differ between males and females (P > 0.05). To the best of the authors' knowledge, this is the first study demonstrating the expression of 5α-reductases in canine skin and the expression of 5αR3 in this tissue. These results may help to elucidate the pathogenesis of alopecia X and to determine more appropriate treatments for this disorder. © 2015 ESVD and ACVD.

  17. Rapid focused sequencing: a multiplexed assay for simultaneous detection and strain typing of Bacillus anthracis, Francisella tularensis, and Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Rosemary S Turingan

    Full Text Available BACKGROUND: The intentional release of Bacillus anthracis in the United States in 2001 has heightened concern about the use of pathogenic microorganisms in bioterrorism attacks. Many of the deadliest bacteria, including the Class A Select Agents Bacillus anthracis, Francisella tularensis, and Yersinia pestis, are highly infectious via the pulmonary route when released in aerosolized form. Hence, rapid, sensitive, and reliable methods for detection of these biothreats and characterization of their potential impact on the exposed population are of critical importance to initiate and support rapid military, public health, and clinical responses. METHODOLOGY/PRINCIPAL FINDINGS: We have developed microfluidic multiplexed PCR and sequencing assays based on the simultaneous interrogation of three pathogens per assay and ten loci per pathogen. Microfluidic separation of amplified fluorescently labeled fragments generated characteristic electrophoretic signatures for identification of each agent. The three sets of primers allowed significant strain typing and discrimination from non-pathogenic closely-related species and environmental background strains based on amplicon sizes alone. Furthermore, sequencing of the 10 amplicons per pathogen, termed "Rapid Focused Sequencing," allowed an even greater degree of strain discrimination and, in some cases, can be used to determine virulence. Both amplification and sequencing assays were performed in microfluidic biochips developed for fast thermal cycling and requiring 7 µL per reaction. The 30-plex sequencing assay resulted in genotypic resolution of 84 representative strains belonging to each of the three biothreat species. CONCLUSIONS/SIGNIFICANCE: The microfluidic multiplexed assays allowed identification and strain differentiation of the biothreat agents Bacillus anthracis, Francisella tularensis, and Yersinia pestis and clear discrimination from closely-related species and several environmental

  18. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases

    Science.gov (United States)

    Min, Tongpil; Kasahara, Hiroyuki; Bedgar, Diana L.; Youn, Buhyun; Lawrence, Paulraj K.; Gang, David R.; Halls, Steven C.; Park, HaJeung; Hilsenbeck, Jacqueline L.; Davin, Laurence B.; hide

    2003-01-01

    Despite the importance of plant lignans and isoflavonoids in human health protection (e.g. for both treatment and prevention of onset of various cancers) as well as in plant biology (e.g. in defense functions and in heartwood development), systematic studies on the enzymes involved in their biosynthesis have only recently begun. In this investigation, three NADPH-dependent aromatic alcohol reductases were comprehensively studied, namely pinoresinol-lariciresinol reductase (PLR), phenylcoumaran benzylic ether reductase (PCBER), and isoflavone reductase (IFR), which are involved in central steps to the various important bioactive lignans and isoflavonoids. Of particular interest was in determining how differing regio- and enantiospecificities are achieved with the different enzymes, despite each apparently going through similar enone intermediates. Initially, the three-dimensional x-ray crystal structures of both PLR_Tp1 and PCBER_Pt1 were solved and refined to 2.5 and 2.2 A resolutions, respectively. Not only do they share high gene sequence similarity, but their structures are similar, having a continuous alpha/beta NADPH-binding domain and a smaller substrate-binding domain. IFR (whose crystal structure is not yet obtained) was also compared (modeled) with PLR and PCBER and was deduced to have the same overall basic structure. The basis for the distinct enantio-specific and regio-specific reactions of PCBER, PLR, and IFR, as well as the reaction mechanism and participating residues involved (as identified by site-directed mutagenesis), are discussed.

  19. Triterpenes and meroterpenes from Ganoderma lucidum with inhibitory activity against HMGs reductase, aldose reductase and α-glucosidase.

    Science.gov (United States)

    Chen, Baosong; Tian, Jin; Zhang, Jinjin; Wang, Kai; Liu, Li; Yang, Bo; Bao, Li; Liu, Hongwei

    2017-07-01

    Seven new compounds including four lanostane triterpenoids, lucidenic acids Q-S (1-3) and methyl ganoderate P (4), and three triterpene-farnesyl hydroquinone conjugates, ganolucinins A-C (5-7), one new natural product ganomycin J (8), and 73 known compounds (9-81) were isolated from fruiting bodies of Ganoderma lucidum. The structures of the compounds 1-8 were determined by spectroscopic methods. Bioactivities of compounds isolated were assayed against HMG-CoA reductase, aldose reductase, α-glucosidase, and PTP1B. Ganolucidic acid η (39), ganoderenic acid K (44), ganomycin J (8), and ganomycin B (61) showed strong inhibitory activity against HMG-CoA reductase with IC 50 of 29.8, 16.5, 30.3 and 14.3μM, respectively. Lucidumol A (67) had relatively good effect against aldose reductase with IC 50 of 19.1μM. Farnesyl hydroquinones ganomycin J (8), ganomycin B (61), ganomycin I (62), and triterpene-farnesyl hydroquinone conjugates ganoleuconin M (76) and ganoleuconin O (79) possessed good inhibitory activity against α-glucosidase with IC 50 in the range of 7.8 to 21.5μM. This work provides chemical and biological evidence for the usage of extracts of G. lucidum as herbal medicine and food supplements for the control of hyperglycemic and hyperlipidemic symptoms. Copyright © 2017. Published by Elsevier B.V.

  20. Genotyping of Bacillus anthracis strains based on automated capillary 25-loci Multiple Locus Variable-Number Tandem Repeats Analysis

    Directory of Open Access Journals (Sweden)

    Ciervo Alessandra

    2006-04-01

    Full Text Available Abstract Background The genome of Bacillus anthracis, the etiological agent of anthrax, is highly monomorphic which makes differentiation between strains difficult. A Multiple Locus Variable-number tandem repeats (VNTR Analysis (MLVA assay based on 20 markers was previously described. It has considerable discrimination power, reproducibility, and low cost, especially since the markers proposed can be typed by agarose-gel electrophoresis. However in an emergency situation, faster genotyping and access to representative databases is necessary. Results Genotyping of B. anthracis reference strains and isolates from France and Italy was done using a 25 loci MLVA assay combining 21 previously described loci and 4 new ones. DNA was amplified in 4 multiplex PCR reactions and the length of the resulting 25 amplicons was estimated by automated capillary electrophoresis. The results were reproducible and the data were consistent with other gel based methods once differences in mobility patterns were taken into account. Some alleles previously unresolved by agarose gel electrophoresis could be resolved by capillary electrophoresis, thus further increasing the assay resolution. One particular locus, Bams30, is the result of a recombination between a 27 bp tandem repeat and a 9 bp tandem repeat. The analysis of the array illustrates the evolution process of tandem repeats. Conclusion In a crisis situation of suspected bioterrorism, standardization, speed and accuracy, together with the availability of reference typing data are important issues, as illustrated by the 2001 anthrax letters event. In this report we describe an upgrade of the previously published MLVA method for genotyping of B. anthracis and apply the method to the typing of French and Italian B. anthracis strain collections. The increased number of markers studied compared to reports using only 8 loci greatly improves the discrimination power of the technique. An Italian strain belonging to the

  1. A tandem repeats database for bacterial genomes: application to the genotyping of Yersinia pestis and Bacillus anthracis

    Directory of Open Access Journals (Sweden)

    Denoeud France

    2001-03-01

    Full Text Available Abstract Background Some pathogenic bacteria are genetically very homogeneous, making strain discrimination difficult. In the last few years, tandem repeats have been increasingly recognized as markers of choice for genotyping a number of pathogens. The rapid evolution of these structures appears to contribute to the phenotypic flexibility of pathogens. The availability of whole-genome sequences has opened the way to the systematic evaluation of tandem repeats diversity and application to epidemiological studies. Results This report presents a database (http://minisatellites.u-psud.fr of tandem repeats from publicly available bacterial genomes which facilitates the identification and selection of tandem repeats. We illustrate the use of this database by the characterization of minisatellites from two important human pathogens, Yersinia pestis and Bacillus anthracis. In order to avoid simple sequence contingency loci which may be of limited value as epidemiological markers, and to provide genotyping tools amenable to ordinary agarose gel electrophoresis, only tandem repeats with repeat units at least 9 bp long were evaluated. Yersinia pestis contains 64 such minisatellites in which the unit is repeated at least 7 times. An additional collection of 12 loci with at least 6 units, and a high internal conservation were also evaluated. Forty-nine are polymorphic among five Yersinia strains (twenty-five among three Y. pestis strains. Bacillus anthracis contains 30 comparable structures in which the unit is repeated at least 10 times. Half of these tandem repeats show polymorphism among the strains tested. Conclusions Analysis of the currently available bacterial genome sequences classifies Bacillus anthracis and Yersinia pestis as having an average (approximately 30 per Mb density of tandem repeat arrays longer than 100 bp when compared to the other bacterial genomes analysed to date. In both cases, testing a fraction of these sequences for

  2. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    Science.gov (United States)

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki; Gang, David R.; Sarkanen, Simo; Ford, Joshua D.

    2001-04-03

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  3. Structural and functional characterization of microcin C resistance peptidase MccF from Bacillus anthracis.

    Science.gov (United States)

    Nocek, Boguslaw; Tikhonov, Anton; Babnigg, Gyorgy; Gu, Minyi; Zhou, Min; Makarova, Kira S; Vondenhoff, Gaston; Van Aerschot, Arthur; Kwon, Keehwan; Anderson, Wayne F; Severinov, Konstantin; Joachimiak, Andrzej

    2012-07-20

    Microcin C (McC) is heptapeptide adenylate antibiotic produced by Escherichia coli strains carrying the mccABCDEF gene cluster encoding enzymes, in addition to the heptapeptide structural gene mccA, necessary for McC biosynthesis and self-immunity of the producing cell. The heptapeptide facilitates McC transport into susceptible cells, where it is processed releasing a non-hydrolyzable aminoacyl adenylate that inhibits an essential aminoacyl-tRNA synthetase. The self-immunity gene mccF encodes a specialized serine peptidase that cleaves an amide bond connecting the peptidyl or aminoacyl moieties of, respectively, intact and processed McC with the nucleotidyl moiety. Most mccF orthologs from organisms other than E. coli are not linked to the McC biosynthesis gene cluster. Here, we show that a protein product of one such gene, MccF from Bacillus anthracis (BaMccF), is able to cleave intact and processed McC, and we present a series of structures of this protein. Structural analysis of apo-BaMccF and its adenosine monophosphate complex reveals specific features of MccF-like peptidases that allow them to interact with substrates containing nucleotidyl moieties. Sequence analyses and phylogenetic reconstructions suggest that several distinct subfamilies form the MccF clade of the large S66 family of bacterial serine peptidases. We show that various representatives of the MccF clade can specifically detoxify non-hydrolyzable aminoacyl adenylates differing in their aminoacyl moieties. We hypothesize that bacterial mccF genes serve as a source of bacterial antibiotic resistance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Computational fluid dynamics modeling of Bacillus anthracis spore deposition in rabbit and human respiratory airways

    Energy Technology Data Exchange (ETDEWEB)

    Kabilan, S.; Suffield, S. R.; Recknagle, K. P.; Jacob, R. E.; Einstein, D. R.; Kuprat, A. P.; Carson, J. P.; Colby, S. M.; Saunders, J. H.; Hines, S. A.; Teeguarden, J. G.; Straub, T. M.; Moe, M.; Taft, S. C.; Corley, R. A.

    2016-09-01

    Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived respectively from computed tomography (CT) and µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation–exhalation breathing conditions using average species-specific minute volumes. Two different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the nasal sinus compared to the human at the same air concentration of anthrax spores. In contrast, higher spore deposition was predicted in the lower conducting airways of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology for deposition.

  5. Computational Fluid Dynamics Modeling of Bacillus anthracis Spore Deposition in Rabbit and Human Respiratory Airways

    Energy Technology Data Exchange (ETDEWEB)

    Kabilan, Senthil; Suffield, Sarah R.; Recknagle, Kurtis P.; Jacob, Rick E.; Einstein, Daniel R.; Kuprat, Andrew P.; Carson, James P.; Colby, Sean M.; Saunders, James H.; Hines, Stephanie; Teeguarden, Justin G.; Straub, Tim M.; Moe, M.; Taft, Sarah; Corley, Richard A.

    2016-09-30

    Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. The highest exposure concentration was modeled in the rabbit based upon prior acute inhalation studies. For comparison, human simulation was also conducted at the same concentration. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways compared to the human at the same air concentration of anthrax spores. As a result, higher particle deposition was predicted in the conducting airways and deep lung of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology.

  6. Human monoclonal antibodies against anthrax lethal factor and protective antigen act independently to protect against Bacillus anthracis infection and enhance endogenous immunity to anthrax

    NARCIS (Netherlands)

    Albrecht, Mark T.; Li, Han; Williamson, E. Diane; LeButt, Chris S.; Flick-Smith, Helen C.; Quinn, Conrad P.; Westra, Hans; Galloway, Darrell; Mateczun, Alfred; Goldman, Stanley; Groen, Herman; Baillie, Les W. J.

    2007-01-01

    The unpredictable nature of bioterrorism and the absence of real-time detection systems have highlighted the need for an efficient postexposure therapy for Bacillus anthracis infection. One approach is passive immunization through the administration of antibodies that mitigate the biological action

  7. Characterization of the variable-number tandem repeats in vrrA from different Bacillus anthracis isolates

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, P.J.; Walthers, E.A.; Richmond, K.L. [Los Alamos National Lab., NM (United States)] [and others

    1997-04-01

    PCR analysis of 198 Bacillus anthracis isolates revealed a variable region of DNA sequence differing in length among the isolates. Five Polymorphisms differed by the presence Of two to six copies of the 12-bp tandem repeat 5{prime}-CAATATCAACAA-3{prime}. This variable-number tandem repeat (VNTR) region is located within a larger sequence containing one complete open reading frame that encodes a putative 30-kDa protein. Length variation did not change the reading frame of the encoded protein and only changed the copy number of a 4-amino-acid sequence (QYQQ) from 2 to 6. The structure of the VNTR region suggests that these multiple repeats are generated by recombination or polymerase slippage. Protein structures predicted from the reverse-translated DNA sequence suggest that any structural changes in the encoded protein are confined to the region encoded by the VNTR sequence. Copy number differences in the VNTR region were used to define five different B. anthracis alleles. Characterization of 198 isolates revealed allele frequencies of 6.1, 17.7, 59.6, 5.6, and 11.1% sequentially from shorter to longer alleles. The high degree of polymorphism in the VNTR region provides a criterion for assigning isolates to five allelic categories. There is a correlation between categories and geographic distribution. Such molecular markers can be used to monitor the epidemiology of anthrax outbreaks in domestic and native herbivore populations. 22 refs., 4 figs., 3 tabs.

  8. Poly(3-hydroxybutyrate) fuels the tricarboxylic acid cycle and de novo lipid biosynthesis during Bacillus anthracis sporulation.

    Science.gov (United States)

    Sadykov, Marat R; Ahn, Jong-Sam; Widhelm, Todd J; Eckrich, Valerie M; Endres, Jennifer L; Driks, Adam; Rutkowski, Gregory E; Wingerd, Kevin L; Bayles, Kenneth W

    2017-06-01

    Numerous bacteria accumulate poly(3-hydroxybutyrate) (PHB) as an intracellular reservoir of carbon and energy in response to imbalanced nutritional conditions. In Bacillus spp., where PHB biosynthesis precedes the formation of the dormant cell type called the spore (sporulation), the direct link between PHB accumulation and efficiency of sporulation was observed in multiple studies. Although the idea of PHB as an intracellular carbon and energy source fueling sporulation was proposed several decades ago, the mechanisms underlying PHB contribution to sporulation have not been defined. Here, we demonstrate that PHB deficiency impairs Bacillus anthracis sporulation through diminishing the energy status of the cells and by reducing carbon flux into the tricarboxylic acid (TCA) cycle and de novo lipid biosynthesis. Consequently, this metabolic imbalance decreased biosynthesis of the critical components required for spore integrity and resistance, such as dipicolinic acid (DPA) and the spore's inner membrane. Supplementation of the PHB deficient mutant with exogenous fatty acids overcame these sporulation defects, highlighting the importance of the TCA cycle and lipid biosynthesis during sporulation. Combined, the results of this work reveal the molecular mechanisms of PHB contribution to B. anthracis sporulation and provide valuable insight into the metabolic requirements for this developmental process in Bacillus species. © 2017 John Wiley & Sons Ltd.

  9. Molecular Basis for the Attachment of S-Layer Proteins to the Cell Wall of Bacillus anthracis.

    Science.gov (United States)

    Sychantha, David; Chapman, Robert N; Bamford, Natalie C; Boons, Geert-Jan; Howell, P Lynne; Clarke, Anthony J

    2018-04-03

    Bacterial surface (S) layers are paracrystalline arrays of protein assembled on the bacterial cell wall that serve as protective barriers and scaffolds for housekeeping enzymes and virulence factors. The attachment of S-layer proteins to the cell walls of the Bacillus cereus sensu lato, which includes the pathogen Bacillus anthracis, occurs through noncovalent interactions between their S-layer homology domains and secondary cell wall polysaccharides. To promote these interactions, it is presumed that the terminal N-acetylmannosamine (ManNAc) residues of the secondary cell wall polysaccharides must be ketal-pyruvylated. For a few specific S-layer proteins, the O-acetylation of the penultimate N-acetylglucosamine (GlcNAc) is also required. Herein, we present the X-ray crystal structure of the SLH domain of the major surface array protein Sap from B. anthracis in complex with 4,6- O-ketal-pyruvyl-β-ManNAc-(1,4)-β-GlcNAc-(1,6)-α-GlcN. This structure reveals for the first time that the conserved terminal SCWP unit is the direct ligand for the SLH domain. Furthermore, we identify key binding interactions that account for the requirement of 4,6- O-ketal-pyruvyl-ManNAc while revealing the insignificance of the O-acetylation on the GlcNAc residue for recognition by Sap.

  10. Recent structural insights into the function of copper nitrite reductases.

    Science.gov (United States)

    Horrell, Sam; Kekilli, Demet; Strange, Richard W; Hough, Michael A

    2017-11-15

    Copper nitrite reductases (CuNiR) carry out the first committed step of the denitrification pathway of the global nitrogen cycle, the reduction of nitrite (NO 2 - ) to nitric oxide (NO). As such, they are of major agronomic and environmental importance. CuNiRs occur primarily in denitrifying soil bacteria which carry out the overall reduction of nitrate to dinitrogen. In this article, we review the insights gained into copper nitrite reductase (CuNiR) function from three dimensional structures. We particularly focus on developments over the last decade, including insights from serial femtosecond crystallography using X-ray free electron lasers (XFELs) and from the recently discovered 3-domain CuNiRs.

  11. The evolution of the ribonucleotide reductases: much ado about oxygen.

    Science.gov (United States)

    Poole, Anthony M; Logan, Derek T; Sjöberg, Britt-Marie

    2002-08-01

    Ribonucleotide reduction is the only known biological means for de novo production of deoxyribonucleotides, the building blocks of DNA. These are produced from ribonucleotides, the building blocks of RNA, and the direction of this reaction has been taken to support the idea that, in evolution, RNA preceded DNA as genetic material. However, an understanding of the evolutionary relationships among the three modern-day classes of ribonucleotide reductase and how the first reductase arose early in evolution is still far off. We propose that the diversification of this class of enzymes is inherently tied to microbial colonization of aerobic and anaerobic niches. The work is of broader interest, as it also sheds light on the process of adaptation to oxygenic environments consequent to the evolution of atmospheric oxygen.

  12. Substrate specificity of an aflatoxin-metabolizing aldehyde reductase.

    OpenAIRE

    Ellis, E M; Hayes, J D

    1995-01-01

    The enzyme from rat liver that reduces aflatoxin B1-dialdehyde exhibits a unique catalytic specificity distinct from that of other aldo-keto reductases. This enzyme, designated AFAR, displays high activity towards dicarbonyl-containing compounds with ketone groups on adjacent carbon atoms; 9,10-phenanthrenequinone, acenaphthenequinone and camphorquinone were found to be good substrates. Although AFAR can also reduce aromatic and aliphatic aldehydes such as succinic semialdehyde, it is inactiv...

  13. Intraethnic variation in steroid-5-alpha-reductase polymorphisms in ...

    Indian Academy of Sciences (India)

    in prostate cancer patients: a potential factor implicated in. 5-alpha-reductase inhibitor treatment. Luis Alberto Henríquez-Hernández, Almudena Valenciano, Palmira Foro-Arnalot, María Jesús Álvarez-Cubero,. José Manuel Cozar, José Francisco Suárez-Novo, Manel Castells-Esteve, Pablo Fernández-Gonzalo,.

  14. Cloning and characterization of a nitrite reductase gene related to ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-01

    Mar 1, 2010 ... BL21 (DE3) strain with the recombinant expression vector pET-28A-GhNiR. NiR activity assay showed that the crude GhNiR protein had obvious activity to NaNO2 substrate. Key words: Cotton, nitrite reductase, prokaryotic expression, semi-quantitative RT-PCR, GenBank Accession. No: GQ389691.

  15. Xylose reductase from the thermophilic fungus Talaromyces emersonii

    Indian Academy of Sciences (India)

    Prakash

    action of xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) is required to convert D-xylose to D-xylulose and all enzymes of the D-xylose pathway can be used in the L-arabinose pathway, where arabitol is oxidized by NAD+-dependent arabitol dehydrogenase (EC. 1.1.1.12) producing L-xylulose. This is ...

  16. Nitrate reductase gene involvement in hexachlorobiphenyl dechlorination by Phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    De, Supriyo; Perkins, Michael; Dutta, Sisir K.

    2006-01-01

    Polychlorobiphenyl (PCB) degradation usually occurs through reductive dechlorination under anaerobic conditions and phenolic ring cleavage under aerobic conditions. In this paper, we provide evidence of nitrate reductase (NaR) mediated dechlorination of hexachlorobiphenyl (PCB-153) in Phanerochaete chrysosporium under non-ligninolytic condition and the gene involved. The NaR enzyme and its cofactor, molybdenum (Mo), were found to mediate reductive dechlorination of PCBs even in aerobic condition. Tungsten (W), a competitive inhibitor of this enzyme, was found to suppress this dechlorination. Chlorine release assay provided further evidence of this nitrate reductase mediated dechlorination. Commercially available pure NaR enzyme from Aspergillus was used to confirm these results. Through homology search using TBLASTN program, NaR gene was identified, primers were designed and the RT-PCR product was sequenced. The NaR gene was then annotated in the P. chrysosporium genome (GenBank accession no. AY700576). This is the first report regarding the presence of nitrate reductase gene in this fungus with the explanation why this fungus can dechlorinate PCBs even in aerobic condition. These fungal inoculums are used commercially as pellets in sawdust for enhanced bioremediation of PCBs at the risk of depleting soil nitrates. Hence, the addition of nitrates to the pellets will reduce this risk as well as enhance its activity

  17. Microevolution of Anthrax from a Young Ancestor (M.A.Y.A.) Suggests a Soil-Borne Life Cycle of Bacillus anthracis

    Science.gov (United States)

    Braun, Peter; Grass, Gregor; Aceti, Angela; Serrecchia, Luigina; Affuso, Alessia; Marino, Leonardo; Grimaldi, Stefania; Pagano, Stefania; Hanczaruk, Matthias; Georgi, Enrico; Northoff, Bernd; Schöler, Anne; Schloter, Michael; Antwerpen, Markus; Fasanella, Antonio

    2015-01-01

    During an anthrax outbreak at the Pollino National Park (Basilicata, Italy) in 2004, diseased cattle were buried and from these anthrax-foci Bacillus anthracis endospores still diffuse to the surface resulting in local accumulations. Recent data suggest that B. anthracis multiplies in soil outside the animal-host body. This notion is supported by the frequent isolation of B. anthracis from soil lacking one or both virulence plasmids. Such strains represent an evolutionary dead end, as they are likely no longer able to successfully infect new hosts. This loss of virulence plasmids is explained most simply by postulating a soil-borne life cycle of the pathogen. To test this hypothesis we investigated possible microevolution at two natural anthrax foci from the 2004 outbreak. If valid, then genotypes of strains isolated from near the surface at these foci should be on a different evolutionary trajectory from those below residing in deeper-laying horizons close to the carcass. Thus, the genetic diversity of B. anthracis isolates was compared conducting Progressive Hierarchical Resolving Assays using Nucleic Acids (PHRANA) and next generation Whole Genome Sequencing (WGS). PHRANA was not discriminatory enough to resolve the fine genetic relationships between the isolates. Conversely, WGS of nine isolates from near-surface and nine from near-carcass revealed five isolate specific SNPs, four of which were found only in different near-surface isolates. In support of our hypothesis, one surface-isolate lacked plasmid pXO1 and also harbored one of the unique SNPs. Taken together, our results suggest a limited soil-borne life cycle of B. anthracis. PMID:26266934

  18. Identification of Bacillus anthracis by using matrix-assisted laser desorption ionization-time of flight mass spectrometry and artificial neural networks.

    Science.gov (United States)

    Lasch, Peter; Beyer, Wolfgang; Nattermann, Herbert; Stämmler, Maren; Siegbrecht, Enrico; Grunow, Roland; Naumann, Dieter

    2009-11-01

    This report demonstrates the applicability of a combination of matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) and chemometrics for rapid and reliable identification of vegetative cells of the causative agent of anthrax, Bacillus anthracis. Bacillus cultures were prepared under standardized conditions and inactivated according to a recently developed MS-compatible inactivation protocol for highly pathogenic microorganisms. MALDI-TOF MS was then employed to collect spectra from the microbial samples and to build up a database of bacterial reference spectra. This database comprised mass peak profiles of 374 strains from Bacillus and related genera, among them 102 strains of B. anthracis and 121 strains of B. cereus. The information contained in the database was investigated by means of visual inspection of gel view representations, univariate t tests for biomarker identification, unsupervised hierarchical clustering, and artificial neural networks (ANNs). Analysis of gel views and independent t tests suggested B. anthracis- and B. cereus group-specific signals. For example, mass spectra of B. anthracis exhibited discriminating biomarkers at 4,606, 5,413, and 6,679 Da. A systematic search in proteomic databases allowed tentative assignment of some of the biomarkers to ribosomal protein or small acid-soluble proteins. Multivariate pattern analysis by unsupervised hierarchical cluster analysis further revealed a subproteome-based taxonomy of the genus Bacillus. Superior classification accuracy was achieved when supervised ANNs were employed. For the identification of B. anthracis, independent validation of optimized ANN models yielded a diagnostic sensitivity of 100% and a specificity of 100%.

  19. Failure of Sterne- and Pasteur-like strains of Bacillus anthracis to replicate and survive in the urban bluebottle blow fly Calliphora vicina under laboratory conditions.

    Directory of Open Access Journals (Sweden)

    Britta von Terzi

    Full Text Available This study aimed to elucidate the bacteriological events occurring within the gut of Calliphora vicina, selected as the European representative of blow flies held responsible for the spread of anthrax during epidemics in certain parts of the world. Green-fluorescent-protein-carrying derivatives of Bacillus anthracis were used. These lacked either one of the virulence plasmids pXO1 and pXO2 and were infected, or not infected, with a worm intestine phage (Wip4 known to influence the phenotype and survival of the pathogen. Blood meals were prepared for the flies by inoculation of sheep blood with germinated and, in case of pXO2+ strains, encapsulated cells of the four B. anthracis strains. After being fed for 4 h an initial 10 flies were externally disinfected with peracetic acid to ensure subsequent quantitation representing ingested B. anthracis only. Following neutralization, they were crushed in sterile saline. Over each of the ensuing 7 to 10 days, 10 flies were removed and processed the same way. In the absence of Wip4, strains showed steady declines to undetectable in the total B. anthracis counts, within 7-9 days. With the phage infected strains, the falls in viable counts were significantly more rapid than in their uninfected counterparts. Spores were detectable in flies for longer periods than vegetative bacteria. In line with the findings in both biting and non-biting flies of early workers our results indicate that B. anthracis does not multiply in the guts of blow flies and survival is limited to a matter of days.

  20. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription

    DEFF Research Database (Denmark)

    Cheng, Chi-Lien; Acedo, Gregoria N; Kristensen, Michael

    1992-01-01

    can replace light in eliciting an increase of nitrate reductase mRNA accumulation in dark-adapted green Arabidopsis plants. We show further that sucrose alone is sufficient for the full expression of nitrate reductase genes in etiolated Arabidopsis plants. Finally, using a reporter gene, we show......Nitrate reductase, the first enzyme in nitrate assimilation, is located at the crossroad of two energy-consuming pathways: nitrate assimilation and carbon fixation. Light, which regulates the expression of many higher-plant carbon fixation genes, also regulates nitrate reductase gene expression....... Located in the cytosol, nitrate reductase obtains its reductant not from photosynthesis but from carbohydrate catabolism. This relationship prompted us to investigate the indirect role that light might play, via photosynthesis, in the regulation of nitrate reductase gene expression. We show that sucrose...

  1. CD4+ T cells targeting dominant and cryptic epitopes from Bacillus anthracis Lethal Factor

    Directory of Open Access Journals (Sweden)

    Stephanie eAscough

    2016-01-01

    Full Text Available Anthrax is an endemic infection in many countries, particularly in the developing world. The causative agent, Bacillus anthracis, mediates disease through the secretion of binary exotoxins. Until recently, research into adaptive immunity targeting this bacterial pathogen has largely focused on the humoral response to these toxins. There is, however, growing recognition that cellular immune responses involving IFNγ producing CD4+ T cells also contribute significantly to a protective memory response. An established concept in adaptive immunity to infection is that during infection of host cells, new microbial epitopes may be revealed, leading to immune recognition of so called ‘cryptic’ or ‘subdominant’ epitopes. We analysed the response to both cryptic and immunodominant T cell epitopes derived from the toxin component lethal factor and presented by a range of HLA-DR alleles. Using IFNγ-ELISPOT assays we characterised epitopes that elicited a response following immunisation with synthetic peptide and the whole protein and tested their capacities to bind purified HLA-DR molecules in vitro. We found that DR1 transgenics demonstrated T cell responses to a greater number of domain III cryptic epitopes than other HLA-DR transgenics, and that this pattern was repeated with the immunodominant epitopes, a greater proportion of these epitopes induced a T cell response when presented within the context of the whole protein. Immunodominant epitopes LF457-476 and LF467-487 were found to induce a T cell response to the peptide, as well as to the whole native LF protein in DR1 and DR15, but not in DR4 trangenics. The analysis of Domain I revealed the presence of several unique cryptic epitopes all of which showed a strong to moderate relative binding affinity to HLA-DR4 molecules. However, none of the cryptic epitopes from either domain III or I displayed notably high binding affinities across all HLA-DR alleles assayed. These responses were

  2. Naturally acquired antibodies to Bacillus anthracis protective antigen in vultures of southern Africa

    Directory of Open Access Journals (Sweden)

    P. C.B. Turnbull

    2008-08-01

    Full Text Available TURNBULLP, P.C.B. DIEKMANNM,M., KILIAN, J.W., VERSFELDW, W.,DE VOS, V., ARNTZENL, L.,WOLTER, K., BARTELS, P. & KOTZE, A. 2008.N aturally acquired antibodies to Bacillusa nthracisp rotective antigeni n vultureso f southern Africa. Onderstepoort Journal of Veterinary Research, T5:95-102 Sera from 19 wild caught vultures in northern Namibia and 15 (12 wild caught and three captive bred but with minimal histories in North West Province, South Africa, were examined by an enzyme-linked immunosorbenats say( ELISAf or antibodiesto the Bacillus anthracis toxin protective antigen (PA. As assessed from the baseline established with a control group of ten captive reared vultures with well-documented histories, elevated titres were found in 12 of the 19 (63% wild caught Namibian birds as compared with none of the 15 South African ones. There was a highly significant difference between the Namibian group as a hole and the other groups (P 0.05. Numbers in the Namibian group were too small to determine any significances in species-, sex- or age-related differences within the raw data showing elevated titres in four out of six Cape Vultures, Gyps coprotheress, six out of ten Whitebacked Vultures, Gyps africanus, and one out of three Lappet-faced Vultures, Aegypiust racheliotus, or in five of six males versus three of seven females, and ten of 15 adults versus one of four juveniles. The results are in line with the available data on the incidence of anthrax in northern Namibia and South Africa and the likely contact of the vultures tested with anthrax carcasses. lt is not known whether elevated titre indicates infection per se in vultures or absorption of incompletely digested epitopes of the toxin or both. The results are discussed in relation to distances travelled by vultures as determined by new tracking techniques, how serology can reveal anthrax activity in an area and the issue of the role of vultures in transmission of anthrax.

  3. National validation study of a swab protocol for the recovery of Bacillus anthracis spores from surfaces.

    Science.gov (United States)

    Hodges, Lisa R; Rose, Laura J; O'Connell, Heather; Arduino, Matthew J

    2010-05-01

    Twelve Laboratory Response Network (LRN) affiliated laboratories participated in a validation study of a macrofoam swab protocol for the recovery, detection, and quantification of viable B. anthracis (BA) Sterne spores from steel surfaces. CDC personnel inoculated steel coupons (26cm(2)) with 1-4 log(10) BA spores and recovered them by sampling with pre-moistened macrofoam swabs. Phase 1 (P1) of the study evaluated swabs containing BA only, while dust and background organisms were added to swabs in Phase 2 (P2) to mimic environmental conditions. Laboratories processed swabs and enumerated spores by culturing eluted swab suspensions and counting colonies with morphology consistent with BA. Processed swabs were placed in enrichment broth, incubated 24h, and cultured by streaking for isolation. Real-time PCR was performed on selected colonies from P2 samples to confirm the identity of BA. Mean percent recovery (%R) of spores from the surface ranged from 15.8 to 31.0% (P1) and from 27.9 to 55.0% (P2). The highest mean percent recovery was 31.0% (sd 10.9%) for P1 (4 log(10) inoculum) and 55.0% (sd 27.6%) for P2 (1 log(10) inoculum). The overall %R was higher for P2 (44.6%) than P1 (24.1%), but the overall reproducibility (between-lab variability) was lower in P2 than in P1 (25.0 vs 16.5%CV, respectively). The overall precision (within-lab variability) was close to identical for P1 and P2 (44.0 and 44.1, respectively), but varied greatly between inoculum levels. The protocol demonstrated linearity in %R over the three inoculum levels and is able to detect between 26 and 5x10(6)spores/26cm(2). Sensitivity as determined by culture was >98.3% for both phases and all inocula, suggesting that the culture method maintains sensitivity in the presence of contaminants. The enrichment broth method alone was less sensitive for sampled swabs (66.4%) during P2, suggesting that the presence of background organisms inhibited growth or isolation of BA from the broth. The addition of

  4. Gamma-irradiation activates biochemical systems: induction of nitrate reductase activity in plant callus.

    OpenAIRE

    Pandey, K N; Sabharwal, P S

    1982-01-01

    Gamma-irradiation induced high levels of nitrate reductase activity (NADH:nitrate oxidoreductase, EC 1.6.6.1) in callus of Haworthia mirabilis Haworth. Subcultures of gamma-irradiated tissues showed autonomous growth on minimal medium. We were able to mimic the effects of gamma-irradiation by inducing nitrate reductase activity in unirradiated callus with exogenous auxin and kinetin. These results revealed that induction of nitrate reductase activity by gamma-irradiation is mediated through i...

  5. Immunological comparison of the NADH:nitrate reductase from different cucumber tissues

    Directory of Open Access Journals (Sweden)

    Jolanta Marciniak

    2014-01-01

    Full Text Available Soluble nitrate reductase from cucumber roots (Cucumis sativus L. was isolated and purified with blue-Sepharose 4B. Specific antibodies against the NR protein were raised by immunization of a goat. Using polyclonal antibodies anti-NR properties of the nitrate reductase from various cucumber tissues were examined. Experiments showed difference in immuno-logical properties of nitrate reductase (NR from cotyledon roots and leaves.

  6. Histochemical localization of glutathione dependent NBT-reductase in mouse skin.

    Science.gov (United States)

    Shukla, Y

    2001-09-01

    Localization of the glutathione dependent Nitroblue tetrazolium (NBT) reductase in fresh frozen sections of mouse skin and possible dependence of NBT reductase on tissue thiol levels has been investigated. The fresh frozen tissue sections (8 m thickness) were prepared and incubated in medium containing NBT, reduced glutathione (GSH) and phosphate buffer. The staining for GSH was performed with mercury orange. The activity of the NBT-reductase in mouse skin has been found to be localized in the areas rich in glutathione and actively proliferating area of the skin. The activity of the NBT-reductase seems to be dependent on the glutathione contents.

  7. Comparative genomics of Bacillus anthracis from the wool industry highlights polymorphisms of lineage A.Br.Vollum.

    Science.gov (United States)

    Derzelle, Sylviane; Aguilar-Bultet, Lisandra; Frey, Joachim

    2016-12-01

    With the advent of affordable next-generation sequencing (NGS) technologies, major progress has been made in the understanding of the population structure and evolution of the B. anthracis species. Here we report the use of whole genome sequencing and computer-based comparative analyses to characterize six strains belonging to the A.Br.Vollum lineage. These strains were isolated in Switzerland, in 1981, during iterative cases of anthrax involving workers in a textile plant processing cashmere wool from the Indian subcontinent. We took advantage of the hundreds of currently available B. anthracis genomes in public databases, to investigate the genetic diversity existing within the A.Br.Vollum lineage and to position the six Swiss isolates into the worldwide B. anthracis phylogeny. Thirty additional genomes related to the A.Br.Vollum group were identified by whole-genome single nucleotide polymorphism (SNP) analysis, including two strains forming a new evolutionary branch at the basis of the A.Br.Vollum lineage. This new phylogenetic lineage (termed A.Br.H9401) splits off the branch leading to the A.Br.Vollum group soon after its divergence to the other lineages of the major A clade (i.e. 6 SNPs). The available dataset of A.Br.Vollum genomes were resolved into 2 distinct groups. Isolates from the Swiss wool processing facility clustered together with two strains from Pakistan and one strain of unknown origin isolated from yarn. They were clearly differentiated (69 SNPs) from the twenty-five other A.Br.Vollum strains located on the branch leading to the terminal reference strain A0488 of the lineage. Novel analytic assays specific to these new subgroups were developed for the purpose of rapid molecular epidemiology. Whole genome SNP surveys greatly expand upon our knowledge on the sub-structure of the A.Br.Vollum lineage. Possible origin and route of spread of this lineage worldwide are discussed. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights

  8. A multiplex bead-based suspension array assay for interrogation of phylogenetically informative single nucleotide polymorphisms for Bacillus anthracis

    DEFF Research Database (Denmark)

    Thierry, Simon; Hamidjaja, Raditijo A.; Girault, Guillaume

    2013-01-01

    Single nucleotide polymorphisms (SNPs) are abundant in genomes of all species and represent informative DNA markers extensively used to analyze phylogenetic relationships between strains. Medium to high throughput, open methodologies able to test many SNPs in a minimum time are therefore in great...... been modified and adapted for simultaneous interrogation of 13 biallelic canonical SNPs in a 13-plex assay. Changes made to the originally published method include the design of allele-specific dual-priming-oligonucleotides (DPOs) as competing detection probes (MOLigo probes) and use of asymmetric PCR...... laboratories. While cost-effective compared to other singleplex methods, the present MOL-PCR method offers a high degree of flexibility and scalability. It can easily accommodate newly identified SNPs to increase resolving power to the canSNP typing of B. anthracis....

  9. Gastric pH and Toxin Factors Modulate Infectivity and Disease Progression After Gastrointestinal Exposure to Bacillus anthracis.

    Science.gov (United States)

    Xie, Tao; Rotstein, David; Sun, Chen; Fang, Hui; Frucht, David M

    2017-12-12

    Gastrointestinal (GI) anthrax is the most prevalent form of naturally acquired Bacillus anthracis infection, which is associated with exposure to vegetative bacteria in infected meat (carnivores) or to fermented rumen contents (herbivores). We assessed whether key host and pathogen factors modulate infectivity and progression of infection using a mouse model of GI infection. Gastric acid neutralization increases infectivity, but 30%-40% of mice succumb to infection without neutralization. Mice either fed or fasted before exposure showed similar infectivity rates. Finally, the pathogen's anthrax lethal factor is required to establish lethal infection, whereas its edema factor modulates progression and dissemination of infection. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  10. Evaluation of Immunoassays and General Biological Indicator Tests for Field Screening of Bacillus anthracis and Ricin

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, Rachel A.; Ozanich, Richard M.; Arce, Jennifer S.; Engelmann, Heather E.; Heredia-Langner, Alejandro; Hofstad, Beth A.; Hutchison, Janine R.; Jarman, Kristin; Melville, Angela M.; Victry, Kristin D.; Bruckner-Lea, Cynthia J.

    2017-02-01

    The goal of this testing was to evaluate the ability of currently available commercial off-the-shelf (COTS) biological indicator tests and immunoassays to detect Bacillus anthracis (Ba) spores and ricin. In general, immunoassays provide more specific identification of biological threats as compared to indicator tests [3]. Many of these detection products are widely used by first responders and other end users. In most cases, performance data for these instruments are supplied directly from the manufacturer, but have not been verified by an external, independent assessment [1]. Our test plan modules included assessments of inclusivity (ability to generate true positive results), commonly encountered hoax powders (which can cause potential interferences or false positives), and estimation of limit of detection (LOD) (sensitivity) testing.

  11. A strain-variable bacteriocin in Bacillus anthracis and Bacillus cereus with repeated Cys-Xaa-Xaa motifs

    Directory of Open Access Journals (Sweden)

    Haft Daniel H

    2009-04-01

    Full Text Available Abstract Bacteriocins are peptide antibiotics from ribosomally translated precursors, produced by bacteria often through extensive post-translational modification. Minimal sequence conservation, short gene lengths, and low complexity sequence can hinder bacteriocin identification, even during gene calling, so they are often discovered by proximity to accessory genes encoding maturation, immunity, and export functions. This work reports a new subfamily of putative thiazole-containing heterocyclic bacteriocins. It appears universal in all strains of Bacillus anthracis and B. cereus, but has gone unrecognized because it is always encoded far from its maturation protein operon. Patterns of insertions and deletions among twenty-four variants suggest a repeating functional unit of Cys-Xaa-Xaa. Reviewers This article was reviewed by Andrei Osterman and Lakshminarayan Iyer.

  12. Evaluation of New Dihydrophthalazine-Appended 2,4-Diaminopyrimidines against Bacillus anthracis: Improved Syntheses Using a New Pincer Complex

    Directory of Open Access Journals (Sweden)

    Nagendra Prasad Muddala

    2015-04-01

    Full Text Available The synthesis and evaluation of ten new dihydrophthalazine-appended 2,4-diaminopyrimidines as potential drugs to treat Bacillus anthracis is reported. An improved synthesis utilizing a new pincer catalyst, dichlorobis[1-(dicyclohexylphosphanyl-piperidine]palladium(II, allows the final Heck coupling to be performed at 90 °C using triethylamine as the base. These milder conditions have been used to achieve improved yields for new and previously reported substrates with functional groups that degrade or react at the normal 140 °C reaction temperature. An analytical protocol for separating the S and R enantiomers of two of the most active compounds is also disclosed. Finally, the X-ray structure for the most active enantiomer of the lead compound, (S-RAB1, is given.

  13. Methylenetetrahydrofolate reductase (MTHFR) deficiency presenting as a rash.

    LENUS (Irish Health Repository)

    Crushell, Ellen

    2012-09-01

    We report on the case of a 2-year-old girl recently diagnosed with Methylenetetrahydrofolate reductase (MTHFR) deficiency who originally presented in the neonatal period with a distinctive rash. At 11 weeks of age she developed seizures, she had acquired microcephaly and developmental delay. The rash deteriorated dramatically following commencement of phenobarbitone; both rash and seizures abated following empiric introduction of pyridoxine and folinic acid as treatment of possible vitamin responsive seizures. We postulate that phenobarbitone in combination with MTHFR deficiency may have caused her rash to deteriorate and subsequent folinic acid was helpful in treating the rash and preventing further acute neurological decline as commonly associated with this condition.

  14. Applications of Carboxylic Acid Reductases in Oleaginous Microbes

    Energy Technology Data Exchange (ETDEWEB)

    Resch, Michael G.; Linger, Jeffrey; McGeehan, John; Tyo, Keith; Beckham, Gregg

    2016-05-26

    Carboxylic acid reductases (CARs) are recently emerging reductive enzymes for the direct production of aldehydes from biologically-produced carboxylic acids. Recent work has demonstrated that these powerful enzymes are able to reduce a very broad range of volatile- to long-chain fatty acids as well as aromatic acids. Here, we express four CAR enzymes from different fungal origins to test their activity against fatty acids commonly produced in oleaginous microbes. These in vitro results will inform metabolic engineering strategies to conduct mild biological reduction of carboxylic acids in situ, which is conventionally done via hydrotreating catalysis at high temperatures and hydrogen pressures.

  15. Baulamycins A and B, broad-spectrum antibiotics identified as inhibitors of siderophore biosynthesis in Staphylococcus aureus and Bacillus anthracis.

    Science.gov (United States)

    Tripathi, Ashootosh; Schofield, Michael M; Chlipala, George E; Schultz, Pamela J; Yim, Isaiah; Newmister, Sean A; Nusca, Tyler D; Scaglione, Jamie B; Hanna, Philip C; Tamayo-Castillo, Giselle; Sherman, David H

    2014-01-29

    Siderophores are high-affinity iron chelators produced by microorganisms and frequently contribute to the virulence of human pathogens. Targeted inhibition of the biosynthesis of siderophores staphyloferrin B of Staphylococcus aureus and petrobactin of Bacillus anthracis hold considerable potential as a single or combined treatment for methicillin-resistant S. aureus (MRSA) and anthrax infection, respectively. The biosynthetic pathways for both siderophores involve a nonribosomal peptide synthetase independent siderophore (NIS) synthetase, including SbnE in staphyloferrin B and AsbA in petrobactin. In this study, we developed a biochemical assay specific for NIS synthetases to screen for inhibitors of SbnE and AsbA against a library of marine microbial-derived natural product extracts (NPEs). Analysis of the NPE derived from Streptomyces tempisquensis led to the isolation of the novel antibiotics baulamycins A (BmcA, 6) and B (BmcB, 7). BmcA and BmcB displayed in vitro activity with IC50 values of 4.8 μM and 19 μM against SbnE and 180 μM and 200 μM against AsbA, respectively. Kinetic analysis showed that the compounds function as reversible competitive enzyme inhibitors. Liquid culture studies with S. aureus , B. anthracis , E. coli , and several other bacterial pathogens demonstrated the capacity of these natural products to penetrate bacterial barriers and inhibit growth of both Gram-positive and Gram-negative species. These studies provide proof-of-concept that natural product inhibitors targeting siderophore virulence factors can provide access to novel broad-spectrum antibiotics, which may serve as important leads for the development of potent anti-infective agents.

  16. Functions of Flavin Reductase and Quinone Reductase in 2,4,6-Trichlorophenol Degradation by Cupriavidus necator JMP134▿

    OpenAIRE

    Belchik, Sara Mae; Xun, Luying

    2007-01-01

    The tcpRXABCYD operon of Cupriavidus necator JMP134 is involved in the degradation of 2,4,6-trichlorophenol (2,4,6-TCP), a toxic pollutant. TcpA is a reduced flavin adenine dinucleotide (FADH2)-dependent monooxygenase that converts 2,4,6-TCP to 6-chlorohydroxyquinone. It has been implied via genetic analysis that TcpX acts as an FAD reductase to supply TcpA with FADH2, whereas the function of TcpB in 2,4,6-TCP degradation is still unclear. In order to provide direct biochemical evidence for t...

  17. Analysis of nitrate reductase mRNA expression and nitrate reductase activity in response to nitrogen supply

    OpenAIRE

    Gholamreza Kavoosi; Sadegh Balotf; Homeira Eshghi; Hasan Hasani

    2014-01-01

    Nitrate is one of the major sources of nitrogen for the growth of plants. It is taken up by plant roots and transported to the leaves where it is reduced to nitrite in the. The main objective of this research was to investigate stimulatory effects of sodium nitrate, potassium nitrate, ammonia and urea on the production/generation of the nitrate reductase mRNA in Triticum aestivum plants. The plants were grown in standard nutrient solution for 21 days and then starved in a media without nitrat...

  18. THE EFFECTS OF AN ALDOSE REDUCTASE INHIBITOR ON THE PROGRESSION OF DIABETIC-RETINOPATHY

    NARCIS (Netherlands)

    TROMP, A; HOOYMANS, JMM; BARENDSEN, BC; VONDOORMAAL, JJ

    1991-01-01

    The polyol pathway has long been associated with diabetic retinopathy. Glucose is converted to sorbitol with the aid of the enzyme aldose reductase. Aldose reductase inhibitors can prevent changes induced by diabetes. A total of 30 patients with minimal background retinopathy were randomly divided

  19. Characterization and regulation of Leishmania major 3-hydroxy-3-methylglutaryl-CoA reductase

    DEFF Research Database (Denmark)

    Montalvetti, A; Pena Diaz, Javier; Hurtado, R

    2000-01-01

    In eukaryotes the enzyme 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase catalyses the synthesis of mevalonic acid, a common precursor to all isoprenoid compounds. Here we report the isolation and overexpression of the gene coding for HMG-CoA reductase from Leishmania major. The protein from L...

  20. HMG-CoA-reductase inhibitors and neuropathy : reports to the Netherlands Pharmacovigilance Centre

    NARCIS (Netherlands)

    de Langen, J J; van Puijenbroek, E P

    2006-01-01

    The number of patients taking HMG-CoA-reductase inhibitors for hypercholesterolaemia is growing rapidly. Treatment with HMG-CoA-reductase inhibitors significantly reduces the risk of cardiovascular morbidity and mortality, but may rarely cause serious adverse drug reactions (ADRs). The most serious

  1. Bioactivation of lapachol responsible for DNA scission by NADPH-cytochrome P450 reductase.

    Science.gov (United States)

    Kumagai, Y; Tsurutani, Y; Shinyashiki, M; Homma-Takeda, S; Nakai, Y; Yoshikawa, T; Shimojo, N

    1997-09-01

    The reduction of the naphthoquinone derivative, lapachol, which is responsible for its bioactivation was examined using microsomal preparations and NADPH-cytochrome P450 reductase (P450 reductase). Phenobarbital (PB) pretreatment resulted in an induction of enzyme activities for cytochrome c reduction (1.54 times) and lapachol reduction (1.20 times) by hepatic microsomal preparation of rats. The specific activity of lapachol reduction by purified P450 reductase showed 56-fold higher than that by untreated liver microsomes. Addition of antibody against P450 reductase (2 mg of IgG/mg of protein) to the microsomal incubation mixture caused an immunoinhibition of cytochrome c (32%) and lapachol (19%) reduction activities, suggesting that P450 reductase catalyzes lapachol reduction. Generation of superoxide anion radical (1321 nmol/mg per min) in approximately equivalent amounts of with NADPH consumption (941 nmol/mg per min) was detected during metabolism of lapachol by P450 reductase. Electron spin resonance (ESR) experiments confirmed generation of superoxide anion radical and hydroxyl radical as these 5,5'-dimethyl-1-pyrroline N-oxide (DMPO) adducts. Incubation of lapachol with P450 reductase caused a cleavage of DNA which was reduced in the presence of Cu,Zn-superoxide dismutase (Cu,Zn-SOD), catalase(1), and hydroxyl radical scavengers such as dimethyl sulfoxide (DMSO) and thiourea. Taken together, these results indicate that lapachol is bioactivated by P450 reductase to reactive species, which promote DNA scission through the redox cycling based generation of superoxide anion radical.

  2. Bioinformatics approach of three partial polyprenol reductase genes in Kandelia obovata

    Science.gov (United States)

    Basyuni, M.; Wati, R.; Sagami, H.; Oku, H.; Baba, S.

    2018-03-01

    This present study describesthe bioinformatics approach to analyze three partial polyprenol reductase genes from mangrove plant, Kandeliaobovataas well aspredictedphysical and chemical properties, potential peptide, subcellular localization, and phylogenetic. The diversity was noted in the physical and chemical properties of three partial polyprenol reductase genes. The values of chloroplast were relatively high, showed that chloroplast transit peptide occurred in mangrove polyprenol reductase. The target peptide value of mitochondria varied from 0.088 to 0.198 indicated it was possible to be present. These results suggested the importance of understanding the diversity of physicochemical properties of the different amino acids in polyprenol reductase. The subcellular localization of two partial genes located in the plasma membrane. To confirm the homology among the polyprenol reductase in the database, a dendrogram was drawn. The phylogenetic tree depicts that there are three clusters, the partial genes of K. obovata joined the largest one: C23157 was close to Ricinus communis polyprenol reductase. Whereas, C23901 and C24171 were grouped with Ipomoea nil polyprenol reductase, suggested that these polyprenol reductase genes form distinct separation into tropical habitat plants.

  3. The role of thioredoxin reductases in brain development.

    Directory of Open Access Journals (Sweden)

    Jonna Soerensen

    Full Text Available The thioredoxin-dependent system is an essential regulator of cellular redox balance. Since oxidative stress has been linked with neurodegenerative disease, we studied the roles of thioredoxin reductases in brain using mice with nervous system (NS-specific deletion of cytosolic (Txnrd1 and mitochondrial (Txnrd2 thioredoxin reductase. While NS-specific Txnrd2 null mice develop normally, mice lacking Txnrd1 in the NS were significantly smaller and displayed ataxia and tremor. A striking patterned cerebellar hypoplasia was observed. Proliferation of the external granular layer (EGL was strongly reduced and fissure formation and laminar organisation of the cerebellar cortex was impaired in the rostral portion of the cerebellum. Purkinje cells were ectopically located and their dendrites stunted. The Bergmann glial network was disorganized and showed a pronounced reduction in fiber strength. Cerebellar hypoplasia did not result from increased apoptosis, but from decreased proliferation of granule cell precursors within the EGL. Of note, neuron-specific inactivation of Txnrd1 did not result in cerebellar hypoplasia, suggesting a vital role for Txnrd1 in Bergmann glia or neuronal precursor cells.

  4. Interspecific variation for thermal dependence of glutathione reductase in sainfoin.

    Science.gov (United States)

    Kidambi, S P; Mahan, J R; Matches, A G

    1990-05-01

    Understanding the biochemical and physiological consequences of species variation would expedite improvement in agronomically useful genotypes of sainfoin (Onobrychis spp.) Information on variation among sainfoin species is lacking on thermal dependence of glutathione reductase (B.C. 1.6.4.2.), which plays an important role in the protection of plants from both high and low temperature stresses by preventing harmful oxidation of enzymes and membranes. Our objective was to investigate the interspecific variation for thermal dependency of glutathione reductase in sainfoin. Large variation among species was found for: (i) the minimum apparent Km (0.4-2.5 μM NADPH), (ii) the temperature at which the minimum apparent Km was observed (15°-5°C), and (iii) the thermal kinetic windows (2°-30°C width) over a 15°-45°C temperature gradient. In general, tetraploid species had narrower (≤17°C) thermal kinetic windows than did diploid species (∼30°C), with one exception among the diploids. Within the tetraploid species, the cultivars of O. viciifolia had a broader thermal kinetic window (≥7°C) than the plant introduction (PI 212241, >2 °C) itself.

  5. Optimisation of nitrate reductase enzyme activity to synthesise silver nanoparticles.

    Science.gov (United States)

    Khodashenas, Bahareh; Ghorbani, Hamid Reza

    2016-06-01

    Today, the synthesis of silver nanoparticles (Ag NPs) is very common since it has many applications in different areas. The synthesis of these nanoparticles is done by means of physical, chemical, or biological methods. However, due to its inexpensive and environmentally friendly features, the biological method is more preferable. In the present study, using nitrate reductase enzyme available in the Escherichia coli (E. coli) bacterium, the biosynthesis of Ag NPs was investigated. In addition, the activity of the nitrate reductase enzyme was optimised by changing its cultural conditions, and the effects of silver nitrate (AgNO(3)) concentration and enzyme amount on nanoparticles synthesis were studied. Finally, the produced nanoparticles were studied using ultraviolet -visible (UV-Vis) spectrophotometer, dynamic light scattering technique, and transmission electron microscopy. UV-Visible spectrophotometric study showed the characteristic peak for Ag NPs at wavelength 405-420 nm for 1 mM metal precursor solution (AgNO(3)) with 1, 5, 10, and 20 cc supernatant and 435 nm for 0.01M AgNO(3) with 20 cc supernatant. In this study, it was found that there is a direct relationship between the AgNO(3) concentration and the size of produced Ag NPs.

  6. A ferric-chelate reductase for iron uptake from soils.

    Science.gov (United States)

    Robinson, N J; Procter, C M; Connolly, E L; Guerinot, M L

    1999-02-25

    Iron deficiency afflicts more than three billion people worldwide, and plants are the principal source of iron in most diets. Low availability of iron often limits plant growth because iron forms insoluble ferric oxides, leaving only a small, organically complexed fraction in soil solutions. The enzyme ferric-chelate reductase is required for most plants to acquire soluble iron. Here we report the isolation of the FRO2 gene, which is expressed in iron-deficient roots of Arabidopsis. FRO2 belongs to a superfamily of flavocytochromes that transport electrons across membranes. It possesses intramembranous binding sites for haem and cytoplasmic binding sites for nucleotide cofactors that donate and transfer electrons. We show that FRO2 is allelic to the frd1 mutations that impair the activity of ferric-chelate reductase. There is a nonsense mutation within the first exon of FRO2 in frd1-1 and a missense mutation within FRO2 in frd1-3. Introduction of functional FRO2 complements the frd1-1 phenotype in transgenic plants. The isolation of FRO2 has implications for the generation of crops with improved nutritional quality and increased growth in iron-deficient soils.

  7. Crystal structure of human quinone reductase type 2, a metalloflavoprotein.

    Science.gov (United States)

    Foster, C E; Bianchet, M A; Talalay, P; Zhao, Q; Amzel, L M

    1999-08-03

    In mammals, two separate but homologous cytosolic quinone reductases have been identified: NAD(P)H:quinone oxidoreductase type 1 (QR1) (EC 1.6.99.2) and quinone reductase type 2 (QR2). Although QR1 and QR2 are nearly 50% identical in protein sequence, they display markedly different catalytic properties and substrate specificities. We report here two crystal structures of QR2: in its native form and bound to menadione (vitamin K(3)), a physiological substrate. Phases were obtained by molecular replacement, using our previously determined rat QR1 structure as the search model. QR2 shares the overall fold of the major catalytic domain of QR1, but lacks the smaller C-terminal domain. The FAD binding sites of QR1 and QR2 are very similar, but their hydride donor binding sites are considerably different. Unexpectedly, we found that QR2 contains a specific metal binding site, which is not present in QR1. Two histidine nitrogens, one cysteine thiol, and a main chain carbonyl group are involved in metal coordination. The metal binding site is solvent-accessible, and is separated from the FAD cofactor by a distance of about 13 A.

  8. The effect of ionic and non-ionic surfactants on the growth, nitrate reductase and nitrite reductase activities of Spirodela polyrrhiza (L. Schleiden

    Directory of Open Access Journals (Sweden)

    Józef Buczek

    2014-01-01

    Full Text Available Inclusion into the medium of 5 mg•dm-3 of non-ionic (ENF or ionic (DBST surfactant caused 50-60% inhibition of nitrite reductase MR activity in S. polyrrhiza. At the same time, increased accumulation of NO2- in the plant tissues and lowering of the total and soluble protein contents were found. DBST also lowered the nitrate reductase (NR activity and the dry mass of the plants.

  9. Characterization of the reductase domain of rat neuronal nitric oxide synthase generated in the methylotrophic yeast Pichia pastoris. Calmodulin response is complete within the reductase domain itself.

    Science.gov (United States)

    Gachhui, R; Presta, A; Bentley, D F; Abu-Soud, H M; McArthur, R; Brudvig, G; Ghosh, D K; Stuehr, D J

    1996-08-23

    Rat neuronal NO synthase (nNOS) is comprised of a flavin-containing reductase domain and a heme-containing oxygenase domain. Calmodulin binding to nNOS increases the rate of electron transfer from NADPH into its flavins, triggers electron transfer from flavins to the heme, activates NO synthesis, and increases reduction of artificial electron acceptors such as cytochrome c. To investigate what role the reductase domain plays in calmodulin's activation of these functions, we overexpressed a form of the nNOS reductase domain (amino acids 724-1429) in the yeast Pichia pastoris that for the first time exhibits a complete calmodulin response. The reductase domain was purified by 2',5'-ADP affinity chromatography yielding 25 mg of pure protein per liter of culture. It contained 1 FAD and 0.8 FMN per molecule. Most of the protein as isolated contained an air-stable flavin semiquinone radical that was sensitive to FeCN6 oxidation. Anaerobic titration of the FeCN6-oxidized reductase domain with NADPH indicated the flavin semiquinone re-formed after addition of 1-electron equivalent and the flavins could accept up to 3 electrons from NADPH. Calmodulin binding to the recombinant reductase protein increased its rate of NADPH-dependent flavin reduction and its rate of electron transfer to cytochrome c, FeCN6, or dichlorophenolindophenol to fully match the rate increases achieved when calmodulin bound to native full-length nNOS. Calmodulin's activation of the reductase protein was associated with an increase in domain tryptophan and flavin fluorescence. We conclude that many of calmodulin's actions on native nNOS can be fully accounted for through its interaction with the nNOS reductase domain itself.

  10. Preliminary report for analysis of genome wide mutations from four ciprofloxacin resistant B. anthracis Sterne isolates generated by Illumina, 454 sequencing and microarrays for DHS

    Energy Technology Data Exchange (ETDEWEB)

    Jaing, Crystal [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vergez, Lisa [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hinckley, Aubree [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thissen, James [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gardner, Shea [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McLoughlin, Kevin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jackson, Paul [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ellingson, Sally [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hauser, Loren [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brettin, Tom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fofanov, Viacheslav [Eureka Genomics, Hercules, CA (United States); Koshinsky, Heather [Eureka Genomics, Hercules, CA (United States); Fofanov, Yuriy [Univ. of Houston, TX (United States)

    2011-06-21

    The objective of this project is to provide DHS a comprehensive evaluation of the current genomic technologies including genotyping, Taqman PCR, multiple locus variable tandem repeat analysis (MLVA), microarray and high-throughput DNA sequencing in the analysis of biothreat agents from complex environmental samples. As the result of a different DHS project, we have selected for and isolated a large number of ciprofloxacin resistant B. anthracis Sterne isolates. These isolates vary in the concentrations of ciprofloxacin that they can tolerate, suggesting multiple mutations in the samples. In collaboration with University of Houston, Eureka Genomics and Oak Ridge National Laboratory, we analyzed the ciprofloxacin resistant B. anthracis Sterne isolates by microarray hybridization, Illumina and Roche 454 sequencing to understand the error rates and sensitivity of the different methods. The report provides an assessment of the results and a complete set of all protocols used and all data generated along with information to interpret the protocols and data sets.

  11. Cloning and Expression of Fusion Genes of Domain A-1 Protective Antigen of Bacillus Anthracis and Shigella Enterotoxin B Subunit (Stxb In E. Coil

    Directory of Open Access Journals (Sweden)

    AH ahmadi

    2015-02-01

    Conclusion: The findings of the current study revealed that this antigen can be raised as an anti-cancer and recombinant vaccine candidate against types of Shigella, Escherichia coli and Bacillus anthracis which can be due to such factors as identification of antigen(PA by antibody PA20, its apoptosis induction properties, property of immunogenicity, adjuvant and delivery of STxB protein and high expression levels of Gb3 in human cancer cells.

  12. Matrix Assisted Laser Desorption Ionization Mass Spectrometric Analysis of Bacillus anthracis: From Fingerprint Analysis of the Bacterium to Quantification of its Toxins in Clinical Samples

    Science.gov (United States)

    Woolfitt, Adrian R.; Boyer, Anne E.; Quinn, Conrad P.; Hoffmaster, Alex R.; Kozel, Thomas R.; de, Barun K.; Gallegos, Maribel; Moura, Hercules; Pirkle, James L.; Barr, John R.

    A range of mass spectrometry-based techniques have been used to identify, characterize and differentiate Bacillus anthracis, both in culture for forensic applications and for diagnosis during infection. This range of techniques could usefully be considered to exist as a continuum, based on the degrees of specificity involved. We show two examples here, a whole-organism fingerprinting method and a high-specificity assay for one unique protein, anthrax lethal factor.

  13. Discrimination of Bacillus anthracis Spores by Direct in-situ Analysis of Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Youngsu; Lee, Jonghee; Kim, Seongsoo [Agency for Defense Development, Daejeon (Korea, Republic of)

    2013-09-15

    The rapid and accurate identification of biological agents is a critical step in the case of bio-terror and biological warfare attacks. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been widely used for the identification of microorganisms. In this study, we describe a method for the rapid and accurate discrimination of Bacillus anthracis spores using MALDI-TOF MS. Our direct in-situ analysis of MALDI-TOF MS does not involve subsequent high-resolution mass analyses and sample preparation steps. This method allowed the detection of species-specific biomarkers from each Bacillus spores. Especially, B. anthracis spores had specific biomarker peaks at 2503, 3089, 3376, 6684, 6698, 6753, and 6840 m/z. Cluster and PCA analyses of the mass spectra of Bacillus spores revealed distinctively separated clusters and within-groups similarity. Therefore, we believe that this method is effective in the real-time identification of biological warfare agents such as B. anthracis as well as other microorganisms in the field.

  14. Discrimination of Bacillus anthracis Spores by Direct in-situ Analysis of Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry

    International Nuclear Information System (INIS)

    Jeong, Youngsu; Lee, Jonghee; Kim, Seongsoo

    2013-01-01

    The rapid and accurate identification of biological agents is a critical step in the case of bio-terror and biological warfare attacks. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been widely used for the identification of microorganisms. In this study, we describe a method for the rapid and accurate discrimination of Bacillus anthracis spores using MALDI-TOF MS. Our direct in-situ analysis of MALDI-TOF MS does not involve subsequent high-resolution mass analyses and sample preparation steps. This method allowed the detection of species-specific biomarkers from each Bacillus spores. Especially, B. anthracis spores had specific biomarker peaks at 2503, 3089, 3376, 6684, 6698, 6753, and 6840 m/z. Cluster and PCA analyses of the mass spectra of Bacillus spores revealed distinctively separated clusters and within-groups similarity. Therefore, we believe that this method is effective in the real-time identification of biological warfare agents such as B. anthracis as well as other microorganisms in the field

  15. Comprehensive Laboratory Evaluation of a Highly Specific Lateral Flow Assay for the Presumptive Identification of Bacillus anthracis Spores in Suspicious White Powders and Environmental Samples.

    Science.gov (United States)

    Ramage, Jason G; Prentice, Kristin W; DePalma, Lindsay; Venkateswaran, Kodumudi S; Chivukula, Sruti; Chapman, Carol; Bell, Melissa; Datta, Shomik; Singh, Ajay; Hoffmaster, Alex; Sarwar, Jawad; Parameswaran, Nishanth; Joshi, Mrinmayi; Thirunavkkarasu, Nagarajan; Krishnan, Viswanathan; Morse, Stephen; Avila, Julie R; Sharma, Shashi; Estacio, Peter L; Stanker, Larry; Hodge, David R; Pillai, Segaran P

    2016-01-01

    We conducted a comprehensive, multiphase laboratory evaluation of the Anthrax BioThreat Alert(®) test strip, a lateral flow immunoassay (LFA) for the rapid detection of Bacillus anthracis spores. The study, conducted at 2 sites, evaluated this assay for the detection of spores from the Ames and Sterne strains of B. anthracis, as well as those from an additional 22 strains. Phylogenetic near neighbors, environmental background organisms, white powders, and environmental samples were also tested. The Anthrax LFA demonstrated a limit of detection of about 10(6) spores/mL (ca. 1.5 × 10(5) spores/assay). In this study, overall sensitivity of the LFA was 99.3%, and the specificity was 98.6%. The results indicated that the specificity, sensitivity, limit of detection, dynamic range, and repeatability of the assay support its use in the field for the purpose of qualitatively evaluating suspicious white powders and environmental samples for the presumptive presence of B. anthracis spores.

  16. Rapid detection method for Bacillus anthracis using a combination of multiplexed real-time PCR and pyrosequencing and its application for food biodefense.

    Science.gov (United States)

    Janzen, Timothy W; Thomas, Matthew C; Goji, Noriko; Shields, Michael J; Hahn, Kristen R; Amoako, Kingsley K

    2015-02-01

    Bacillus anthracis, the causative agent of anthrax, has the capacity to form highly resilient spores as part of its life cycle. The potential for the dissemination of these spores using food as a vehicle is a huge public health concern and, hence, requires the development of a foodborne bioterrorism response approach. In this work, we address a critical gap in food biodefense by presenting a novel, combined, sequential method involving the use of real-time PCR and pyrosequencing for the rapid, specific detection of B. anthracis spores in three food matrices: milk, apple juice, and bottled water. The food samples were experimentally inoculated with 40 CFU ml(-1), and DNA was extracted from the spores and analyzed after immunomagnetic separation. Applying the combination of multiplex real-time PCR and pyrosequencing, we successfully detected the presence of targets on both of the virulence plasmids and the chromosome. The results showed that DNA amplicons generated from a five-target multiplexed real-time PCR detection using biotin-labeled primers can be used for single-plex pyrosequencing detection. The combined use of multiplexed real-time PCR and pyrosequencing is a novel, rapid detection method for B. anthracis from food and provides a tool for accurate, quantitative identification with potential biodefense applications.

  17. Structures of an alanine racemase from Bacillus anthracis (BA0252) in the presence and absence of (R)-1-aminoethylphosphonic acid (l-Ala-P)

    International Nuclear Information System (INIS)

    Au, Kinfai; Ren, Jingshan; Walter, Thomas S.; Harlos, Karl; Nettleship, Joanne E.; Owens, Raymond J.; Stuart, David I.; Esnouf, Robert M.

    2008-01-01

    Structures of BA0252, an alanine racemase from B. anthracis, in the presence and absence of the inhibitor (R)-1-aminoethylphosphonic acid (l-Ala-P) and determined by X-ray crystallography to resolutions of 2.1 and 1.47 Å, respectively, are described. Bacillus anthracis, the causative agent of anthrax, has been targeted by the Oxford Protein Production Facility to validate high-throughput protocols within the Structural Proteomics in Europe project. As part of this work, the structures of an alanine racemase (BA0252) in the presence and absence of the inhibitor (R)-1-aminoethylphosphonic acid (l-Ala-P) have determined by X-ray crystallo@@graphy to resolutions of 2.1 and 1.47 Å, respectively. Difficulties in crystallizing this protein were overcome by the use of reductive methylation. Alanine racemase has attracted much interest as a possible target for anti-anthrax drugs: not only is d-alanine a vital component of the bacterial cell wall, but recent studies also indicate that alanine racemase, which is accessible in the exosporium, plays a key role in inhibition of germination in B. anthracis. These structures confirm the binding mode of l-Ala-P but suggest an unexpected mechanism of inhibition of alanine racemase by this compound and could provide a basis for the design of improved alanine racemase inhibitors with potential as anti-anthrax therapies

  18. Individualized supplementation of folic acid according to polymorphisms of methylenetetrahydrofolate reductase (MTHFR), methionine synthase reductase (MTRR) reduced pregnant complications.

    Science.gov (United States)

    Li, Xiujuan; Jiang, Jing; Xu, Min; Xu, Mei; Yang, Yan; Lu, Wei; Yu, Xuemei; Ma, Jianlin; Pan, Jiakui

    2015-01-01

    This study aimed to detect the genotype distributions and allele frequencies of methylenetetrahydrofolate reductase (MTHFR) C677T, A1298C and methionine synthase reductase (MTRR) A66G polymorphisms of pregnant women in Jiaodong region in China, and to investigate whether folic acid supplementation affect the pregnancy complications. A total of 7,812 pregnant women from the Jiaodong region in Shandong province in China. By using Taqman-MGB, 2,928 pregnant women (case group) were tested for the genotype distributions and allele frequencies of MTHFR C677T, A1298C and MTRR A66G polymorphisms. Folic acid metabolism ability was ranked at four levels and then pregnant women in different rank group were supplemented with different doses of folic acid. Their pregnancy complications were followed up and compared with 4,884 pregnant women without folic acid supplementation (control group) in the same hospital. The allele frequencies of MTHFR C677T were 49.1 and 50.9%; those of MTHFR A1298C were 80.2 and 19.8%, and those of MTRR A66G were 74.1 and 25.9%. After supplemented with folic acid, the complication rates in different age groups were significantly reduced, especially for gestational diabetes mellitus and hypertension. Periconceptional folic acid supplementation and healthcare following gene polymorphism testing may be a powerful measure to decrease congenital malformations. © 2015 S. Karger AG, Basel.

  19. 5,10-Methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTRR), and methionine synthase reductase (MTR) gene polymorphisms and adult meningioma risk.

    Science.gov (United States)

    Zhang, Jun; Zhou, Yan-Wen; Shi, Hua-Ping; Wang, Yan-Zhong; Li, Gui-Ling; Yu, Hai-Tao; Xie, Xin-You

    2013-11-01

    The causes of meningiomas are not well understood. Folate metabolism gene polymorphisms have been shown to be associated with various human cancers. It is still controversial and ambiguous between the functional polymorphisms of folate metabolism genes 5,10-methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTRR), and methionine synthase reductase (MTR) and risk of adult meningioma. A population-based case–control study involving 600 meningioma patients (World Health Organization [WHO] Grade I, 391 cases; WHO Grade II, 167 cases; WHO Grade III, 42 cases) and 600 controls was done for the MTHFR C677T and A1298C, MTRR A66G, and MTR A2756G variants in Chinese Han population. The folate metabolism gene polymorphisms were determined by using a polymerase chain reaction–restriction fragment length polymorphism assay. Meningioma cases had a significantly lower frequency of MTHFR 677 TT genotype [odds ratio (OR) = 0.49, 95 % confidence interval (CI) 0.33–0.74; P = 0.001] and T allele (OR = 0.80, 95 % CI 0.67–0.95; P = 0.01) than controls. A significant association between risk of meningioma and MTRR 66 GG (OR = 1.41, 95 % CI 1.02–1.96; P = 0.04) was also observed. When stratifying by the WHO grade of meningioma, no association was found. Our study suggested that MTHFR C677T and MTRR A66G variants may affect the risk of adult meningioma in Chinese Han population.

  20. A new cotton SDR family gene encodes a polypeptide possessing aldehyde reductase and 3-ketoacyl-CoA reductase activities.

    Science.gov (United States)

    Pang, Yu; Song, Wen-Qiang; Chen, Fang-Yuan; Qin, Yong-Mei

    2010-03-01

    To understand regulatory mechanisms of cotton fiber development, microarray analysis has been performed for upland cotton (Gossypium hirsutum). Based on this, a cDNA (GhKCR3) encoding a polypeptide belonging to short-chain alcohol dehydrogenase/reductase family was isolated and cloned. It contains an open reading frame of 987 bp encoding a polypeptide of 328 amino acid residues. Following its overexpression in bacterial cells, the purified recombinant protein specifically uses NADPH to reduce a variety of short-chain aldehydes. A fragment between Gly180 and Gly191 was found to be essential for its catalytic activity. Though the GhKCR3 gene shares low sequence similarities to the ortholog of Saccharomyces cerevisiae YBR159w that encodes 3-ketoacyl-CoA reductase (KCR) catalyzing the second step of fatty acid elongation, it was surprisingly able to complement the yeast ybr159wDelta mutant. Gas chromatography-mass spectrometry analysis showed that very long-chain fatty acids, especially C26:0, were produced in the ybr159wDelta mutant cells expressing GhKCR3. Applying palmitoyl-CoA and malonyl-CoA as substrates, GhKCR3 showed KCR activity in vitro. Quantitative real time-PCR analysis indicated GhKCR3 transcripts accumulated in rapidly elongating fibers, roots, and stems. Our results suggest that GhKCR3 is probably a novel KCR contributing to very long-chain fatty acid biosynthesis in plants.

  1. [Development and comparative evaluation of up-converting phosphor technology based lateral flow assay for rapid detection of Yersinia pestis, Bacillus anthracis spore and Brucella spp].

    Science.gov (United States)

    Li, Chunfeng; Zhang, Pingping; Wang, Xiaoying; Liu, Xiao; Zhao, Yong; Sun, Chongyun; Wang, Chengbin; Yang, Ruifu; Zhou, Lei

    2015-01-01

    To develop an up-converting phosphor technology based lateral flow (UPT-LF) assay for rapid and quantitative detection of Yersinia pestis, Bacillus anthracis spore and Brucella spp.and make the comparison with BioThreat Alert (BTA) test strips (Tetracore Inc., USA). Using up-converting phosphor nano-particles (UCP-NPs) as the bio-marker, three double-antibody-sandwich model based UPT-LF strips including Plague-UPT-LF, Anthrax-UPT-LF, Brucella-UPT-LF were prepared and its sensitivity, accuracy, linearity and specificity were determined by detecting 10(10), 10(9), 10(8), 10(7), 10(6), 10(5) and 0 CFU/ml series of concentrations of Y.pestis, B.anthracis, Brucella standards and other 27 kinds of 10(9) CFU/ml series of contrations of bacteria strains.Furthermore, the speed, sensitivity and accuracy of bacteria standards and simulated sample detection were compared between UPT-LF and BTA system. The detection limit of Plague-UPT-LF, Anthrax-UPT-LF and Brucella-LF was 10(5) CFU/ml. The CV of series of bacteria concentrations was ≤ 15%, and the r between lg (T/C-cut-off) and lg (concentration) was 0.996,0.998 and 0.999 (F values were 1 647.57, 743.51 and 1 822.17. All the P values were Brucella-LF were excellent, while that of Anthrax-UPT-LF was a little bit regretful because of non-specific reaction with two isolates of B. subtilis and one B.cereus. On-site evaluation showed the detection time of UPT-LF for all Y.pestis, B.anthracis spore and Brucella spp.was 33, 36 and 37 min, while BTA was 115, 115 and 111 min, which revealed the higher detection speed and sensitivity of UPT-LF comparing with BTA. The negative rate of two methods for blank standard was both 5/5, the sensitivity of UPT-LF for Y.pestis,B.anthracis spore and Brucella spp. was all 10(5) CFU/ml, then BTA was 10(6), 10(6) and 10(5) CFU/ml, respectively. The detection rate of UPT-LF for all three bacteria analog positive samples was 16/16, while BTA for B.anthracis was 7/16 only. The good performance

  2. Characterization of the N-Acetyl-[alpha]-d-glucosaminyl l-Malate Synthase and Deacetylase Functions for Bacillithiol Biosynthesis in Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Parsonage, Derek; Newton, Gerald L.; Holder, Robert C.; Wallace, Bret D.; Paige, Carleitta; Hamilton, Chris J.; Dos Santos, Patricia C.; Redinbo, Matthew R.; Reid, Sean D.; Claiborne, Al (Wake Forest); (UNC); (East Anglia); (UCSD)

    2012-02-21

    Bacillithiol (Cys-GlcN-malate, BSH) has recently been identified as a novel low-molecular weight thiol in Bacillus anthracis, Staphylococcus aureus, and several other Gram-positive bacteria lacking glutathione and mycothiol. We have now characterized the first two enzymes for the BSH biosynthetic pathway in B. anthracis, which combine to produce {alpha}-D-glucosaminyl L-malate (GlcN-malate) from UDP-GlcNAc and L-malate. The structure of the GlcNAc-malate intermediate has been determined, as have the kinetic parameters for the BaBshA glycosyltransferase ({yields}GlcNAc-malate) and the BaBshB deacetylase ({yields}GlcN-malate). BSH is one of only two natural products reported to contain a malyl glycoside, and the crystal structure of the BaBshA-UDP-malate ternary complex, determined in this work at 3.3 {angstrom} resolution, identifies several active-site interactions important for the specific recognition of L-malate, but not other {alpha}-hydroxy acids, as the acceptor substrate. In sharp contrast to the structures reported for the GlcNAc-1-D-myo-inositol-3-phosphate synthase (MshA) apo and ternary complex forms, there is no major conformational change observed in the structures of the corresponding BaBshA forms. A mutant strain of B. anthracis deficient in the BshA glycosyltransferase fails to produce BSH, as predicted. This B. anthracis bshA locus (BA1558) has been identified in a transposon-site hybridization study as required for growth, sporulation, or germination [Day, W. A., Jr., Rasmussen, S. L., Carpenter, B. M., Peterson, S. N., and Friedlander, A. M. (2007) J. Bacteriol. 189, 3296-3301], suggesting that the biosynthesis of BSH could represent a target for the development of novel antimicrobials with broad-spectrum activity against Gram-positive pathogens like B. anthracis. The metabolites that function in thiol redox buffering and homeostasis in Bacillus are not well understood, and we present a composite picture based on this and other recent work.

  3. Thermolabile methylenetetrahydrofolate reductase in patients with coronary artery disease.

    Science.gov (United States)

    Kang, S S; Wong, P W; Zhou, J M; Sora, J; Lessick, M; Ruggie, N; Grcevich, G

    1988-07-01

    Thermostability of lymphocyte methylenetetrahydrofolate reductase (MTHFR) was determined in 21 patients aged less than 50 years with proven coronary artery disease, and in 21 age- and sex-matched controls without clinical evidence of vascular disease. The mean +/- SD of residual activity after heat inactivation at 46 degrees C for five minutes was 37.6% +/- 5.6% in the controls. In contrast, patients with coronary artery disease could be divided into two subgroups. Fifteen of them had 38.1 +/- 5.9% residual activity which was similar to that of the controls. In six of them the mean +/- SD residual activity after heat inactivation was 13.6% +/- 5.1% which was below 2 SD of the normal mean. These observations suggested that thermolabile MTHFR was associated with development of coronary artery disease.

  4. Substrate specificity of an aflatoxin-metabolizing aldehyde reductase.

    Science.gov (United States)

    Ellis, E M; Hayes, J D

    1995-01-01

    The enzyme from rat liver that reduces aflatoxin B1-dialdehyde exhibits a unique catalytic specificity distinct from that of other aldo-keto reductases. This enzyme, designated AFAR, displays high activity towards dicarbonyl-containing compounds with ketone groups on adjacent carbon atoms; 9,10-phenanthrenequinone, acenaphthenequinone and camphorquinone were found to be good substrates. Although AFAR can also reduce aromatic and aliphatic aldehydes such as succinic semialdehyde, it is inactive with glucose, galactose and xylose. The enzyme also exhibits low activity towards alpha,beta-unsaturated carbonyl-containing compounds. Determination of the apparent Km reveals that AFAR has highest affinity for 9,10-phenanthrenequinone and succinic semialdehyde, and low affinity for glyoxal and DL-glyceraldehyde. PMID:8526867

  5. Diterpenoids with thioredoxin reductase inhibitory activities from Jatropha multifida.

    Science.gov (United States)

    Zhu, Jian-Yong; Zhang, Chun-Yang; Dai, Jing-Jing; Rahman, Khalid; Zhang, Hong

    2017-12-01

    Chemical investigation of the Jatropha multifida has led to the isolation of nine diterpenoids (1-9), including a new jatromulone A, four podocarpane diterpenoids (2-5), two lathyrane-type diterpenoids (6 and 7) and two dinorditerpenoids (8 and 9). Their structures were elucidated by spectroscopic analysis, and the absolute configurations of 1 were determined by CD analysis. All of the diterpenoids were screened for inhibitory activity against thioredoxin reductase (TrxR), which is a potential target for cancer chemotherapy with redox balance and antioxidant functions. Compounds 6 and 7 exhibited stronger activity (IC 50 : 23.4 and 10.6 μM, respectively) than the positive control, curcumin (IC 50  = 25.0 μM). Compounds 2-9 were isolated from J. multifida for the first time.

  6. Methylenetetrahydrofolate reductase polymorphisms in myeloid leukemia patients from Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Cynara Gomes Barbosa

    2008-01-01

    Full Text Available Methylenetetrahydrofolate reductase (MTHFR: EC 1.5.1.20 polymorphisms are associated to acute lymphoid leukemia in different populations. We used the polymerase chain reaction and the restriction fragment length polymorphism method (PCR-RFLP to investigate MTHFR C677T and A1298C polymorphism frequencies in 67 patients with chronic myeloid leukemia (CML, 27 with acute myeloid leukemia FAB subtype M3 (AML-M3 and 100 apparently healthy controls. The MTHFR mutant allele frequencies were as follows: CML = 17.2% for C677T, 21.6% for A1298C; AML-M3 = 22.2% for C677T, 24.1% for A1298C; and controls = 20.5% for C677T, 21% for A1298C. Taken together, our results provide evidence that MTHFR polymorphisms have no influence on the development of CML or AML-M3.

  7. Aldose reductase inhibitors from the fruiting bodies of Ganoderma applanatum.

    Science.gov (United States)

    Lee, Sanghyun; Shim, Sang Hee; Kim, Ju Sun; Shin, Kuk Hyun; Kang, Sam Sik

    2005-06-01

    The isolation and characterization of rat lens aldose reductase (RLAR) inhibitors from the fruiting bodies of Ganoderma applanatum were conducted. Among the extracts and fractions from G. applanatum tested, the MeOH extract and EtOAc fraction were found to exhibit potent RLAR inhibition in vitro, their IC50 being 1.7 and 0.8 microg/ml, respectively. From the active EtOAc fraction, seven compounds with diverse structural moieties were isolated and identified as D-mannitol (1), 2-methoxyfatty acids (2), cerebrosides (3), daucosterol (4), 2,5-dihydroxyacetophenone (5), 2,5-dihydroxybenzoic acid (6), and protocatechualdehyde (7). Among them, protocatechualdehyde (7) was found to be the most potent RLAR inhibitor (IC50=0.7 microg/ml), and may be useful for the prevention and/or treatment of diabetic complications.

  8. Two methylenetetrahydrofolate reductase gene (MTHFR) polymorphisms, schizophrenia and bipolar disorder

    DEFF Research Database (Denmark)

    Jönsson, Erik G; Larsson, Kristina; Vares, Maria

    2008-01-01

    disorder. In a replication attempt the MTHFR C677T and A1298C SNPs were analyzed in three Scandinavian schizophrenia case-control samples. In addition, Norwegian patients with bipolar disorder were investigated. There were no statistically significant allele or genotype case-control differences....... The present Scandinavian results do not verify previous associations between the putative functional MTHFR gene polymorphisms and schizophrenia or bipolar disorder. However, when combined with previous studies in meta-analyses there is still evidence for association between the MTHFR C677T polymorphism......Recent meta-analyses of the methylenetetrahydrofolate reductase gene (MTHFR) have suggested association between two of its functional single gene polymorphisms (SNPs; C677T and A1298C) and schizophrenia. Studies have also suggested association between MTHFR C677T and A1298C variation and bipolar...

  9. Crystal structure of isoflavone reductase from alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Wang, Xiaoqiang; He, Xianzhi; Lin, Jianqiao; Shao, Hui; Chang, Zhenzhan; Dixon, Richard A

    2006-05-19

    Isoflavonoids play important roles in plant defense and exhibit a range of mammalian health-promoting activities. Isoflavone reductase (IFR) specifically recognizes isoflavones and catalyzes a stereospecific NADPH-dependent reduction to (3R)-isoflavanone. The crystal structure of Medicago sativa IFR with deletion of residues 39-47 has been determined at 1.6A resolution. Structural analysis, molecular modeling and docking, and comparison with the structures of other NADPH-dependent enzymes, defined the putative binding sites for co-factor and substrate and potential key residues for enzyme activity and substrate specificity. Further mutagenesis has confirmed the role of Lys144 as a catalytic residue. This study provides a structural basis for understanding the enzymatic mechanism and substrate specificity of IFRs as well as the functions of IFR-like proteins.

  10. Lactococcus lactis Thioredoxin Reductase Is Sensitive to Light Inactivation

    DEFF Research Database (Denmark)

    Björnberg, Olof; Viennet, Thibault; Skjoldager, Nicklas

    2015-01-01

    enzymes belong to the same class of low-molecular weight thioredoxin reductases and display similar kcat values (∼25 s-1) with their cognate thioredoxin. Remarkably, however, the L. lactis enzyme is inactivated by visible light and furthermore reduces molecular oxygen 10 times faster than E. coli Trx......R. The rate of light inactivation under standardized conditions (λmax = 460 nm and 4 °C) was reduced at lowered oxygen concentrations and in the presence of iodide. Inactivation was accompanied by a distinct spectral shift of the flavin adenine dinucleotide (FAD) that remained firmly bound. High......-resolution mass spectrometric analysis of heat-extracted FAD from light-damaged TrxR revealed a mass increment of 13.979 Da, relative to that of unmodified FAD, corresponding to the addition of one oxygen atom and the loss of two hydrogen atoms. Tandem mass spectrometry confined the increase in mass...

  11. Aspects of ribonucleotide reductase regulation and genome stability

    DEFF Research Database (Denmark)

    Nielsen, Helena Berner Nedergaard

    yeast, and Sml1, Hug1, and Dif1 in budding yeast. An elevated, as well as a reduced dNTP pool is shown to lead to an increase in spontaneous mutation rates, hence regulation of RNR is very important in order to maintain genomic stability. No human inhibitory proteins have yet been identified to regulate......In all living cells, synthesis of the DNA building blocks, deoxyribonucleoside triphosphates (dNTPs), is tightly regulated to ensure a precise DNA replication to maintain genomic stability. Ribonucleotide reductase (RNR) is the enzyme responsible for reducing ribonucleotides to their deoxy forms...... the human RNR enzyme. In this study regulation of human RNR was investigated using a fission yeast strain that depended solely on the human genes of R1 and R2 for dNTP synthesis. Even though this strain could grow like wild-type fission yeast it was hypersensitive to hydroxyurea (HU) and depended...

  12. Two methylenetetrahydrofolate reductase gene (MTHFR) polymorphisms, schizophrenia and bipolar disorder

    DEFF Research Database (Denmark)

    Jönsson, Erik G; Larsson, Kristina; Vares, Maria

    2008-01-01

    Recent meta-analyses of the methylenetetrahydrofolate reductase gene (MTHFR) have suggested association between two of its functional single gene polymorphisms (SNPs; C677T and A1298C) and schizophrenia. Studies have also suggested association between MTHFR C677T and A1298C variation and bipolar...... disorder. In a replication attempt the MTHFR C677T and A1298C SNPs were analyzed in three Scandinavian schizophrenia case-control samples. In addition, Norwegian patients with bipolar disorder were investigated. There were no statistically significant allele or genotype case-control differences....... The present Scandinavian results do not verify previous associations between the putative functional MTHFR gene polymorphisms and schizophrenia or bipolar disorder. However, when combined with previous studies in meta-analyses there is still evidence for association between the MTHFR C677T polymorphism...

  13. Fatty acyl-CoA reductases of birds

    Directory of Open Access Journals (Sweden)

    Hellenbrand Janine

    2011-12-01

    Full Text Available Abstract Background Birds clean and lubricate their feathers with waxes that are produced in the uropygial gland, a holocrine gland located on their back above the tail. The type and the composition of the secreted wax esters are dependent on the bird species, for instance the wax ester secretion of goose contains branched-chain fatty acids and unbranched fatty alcohols, whereas that of barn owl contains fatty acids and alcohols both of which are branched. Alcohol-forming fatty acyl-CoA reductases (FAR catalyze the reduction of activated acyl groups to fatty alcohols that can be esterified with acyl-CoA thioesters forming wax esters. Results cDNA sequences encoding fatty acyl-CoA reductases were cloned from the uropygial glands of barn owl (Tyto alba, domestic chicken (Gallus gallus domesticus and domestic goose (Anser anser domesticus. Heterologous expression in Saccharomyces cerevisiae showed that they encode membrane associated enzymes which catalyze a NADPH dependent reduction of acyl-CoA thioesters to fatty alcohols. By feeding studies of transgenic yeast cultures and in vitro enzyme assays with membrane fractions of transgenic yeast cells two groups of isozymes with different properties were identified, termed FAR1 and FAR2. The FAR1 group mainly synthesized 1-hexadecanol and accepted substrates in the range between 14 and 18 carbon atoms, whereas the FAR2 group preferred stearoyl-CoA and accepted substrates between 16 and 20 carbon atoms. Expression studies with tissues of domestic chicken indicated that FAR transcripts were not restricted to the uropygial gland. Conclusion The data of our study suggest that the identified and characterized avian FAR isozymes, FAR1 and FAR2, can be involved in wax ester biosynthesis and in other pathways like ether lipid synthesis.

  14. Photooxidative Destruction of Chloroplasts Leads to Reduced Expression of Peroxisomal NADH-Dependent Hydroxypyruvate Reductase in Developing Cucumber Cotyledons 1

    Science.gov (United States)

    Schwartz, Brain W.; Daniel, Steven G.; Becker, Wayne M.

    1992-01-01

    Photooxidative destruction of chloroplasts by exposure of norflurazon-treated cucumber (Cucumis sativus L.) seedlings to white light leads to reduced levels of the nuclear-encoded, peroxisomal enzyme hydroxypyruvate reductase. The partial reduction in hydroxypyruvate reductase activity under photooxidative conditions is accompanied by reductions in levels of hydroxypyruvate reductase protein and transcript. The low level of hydroxypyruvate reductase gene expression in the dark is not affected by norflurazon, and nonphotooxidizing far-red light is able to induce significant increases in hydroxypyruvate reductase expression even in the presence of norflurazon. We conclude that intact plastids are required for maximal expression of hydroxypyruvate reductase in the light and that the plastids affect hydroxypyruvate reductase gene expression at a pretranslational level. ImagesFigure 2Figure 3Figure 4 PMID:16668940

  15. Comparison of the Stereospecificity and Immunoreactivity of NADH-Ferricyanide Reductases in Plant Membranes.

    Science.gov (United States)

    Fredlund, K. M.; Struglics, A.; Widell, S.; Askerlund, P.; Kader, J. C.; Moller, I. M.

    1994-11-01

    The substrate stereospecificity of NADH-ferricyanide reductase activities in the inner mitochondrial membrane and peroxisomal membrane of potato (Solanum tuberosum L.) tubers, spinach (Spinacea oleracea L.) leaf plasma membrane, and red beetroot (Beta vulgaris L.) tonoplast were all specific for the [beta]-hydrogen of NADH, whereas the reductases in wheat root (Triticum aestivum L.) endoplasmic reticulum and potato tuber outer mitochondrial membrane were both [alpha]-hydrogen specific. In all isolated membrane fractions one or several polypeptides with an apparent size of 45 to 55 kD cross-reacted with antibodies raised against a microsomal NADH-ferricyanide reductase on western blots.

  16. X-ray structural studies of quinone reductase 2 nanomolar range inhibitors

    OpenAIRE

    Pegan, Scott D; Sturdy, Megan; Ferry, Gilles; Delagrange, Philippe; Boutin, Jean A; Mesecar, Andrew D

    2011-01-01

    Quinone reductase 2 (QR2) is one of two members comprising the mammalian quinone reductase family of enzymes responsible for performing FAD mediated reductions of quinone substrates. In contrast to quinone reductase 1 (QR1) which uses NAD(P)H as its co-substrate, QR2 utilizes a rare group of hydride donors, N-methyl or N-ribosyl nicotinamide. Several studies have linked QR2 to the generation of quinone free radicals, several neuronal degenerative diseases, and cancer. QR2 has been also identi...

  17. Differential Binding of Co(II) and Zn(II) to Metallo-beta-Lactamase Bla2 from Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, M.; Breece, R; Hajdin, C; Bender, K; Hu, Z; Costello, A; Bennett, B; Tierney, D; Crowder, M

    2009-01-01

    In an effort to probe the structure, mechanism, and biochemical properties of metallo-{beta}-lactamase Bla2 from Bacillus anthracis, the enzyme was overexpressed, purified, and characterized. Metal analyses demonstrated that recombinant Bla2 tightly binds 1 equiv of Zn(II). Steady-state kinetic studies showed that mono-Zn(II) Bla2 (1Zn-Bla2) is active, while di-Zn(II) Bla2 (ZnZn-Bla2) was unstable. Catalytically, 1Zn-Bla2 behaves like the related enzymes CcrA and L1. In contrast, di-Co(II) Bla2 (CoCo-Bla2) is substantially more active than the mono-Co(II) analogue. Rapid kinetics and UV-vis, 1H NMR, EPR, and EXAFS spectroscopic studies show that Co(II) binding to Bla2 is distributed, while EXAFS shows that Zn(II) binding is sequential. To our knowledge, this is the first documented example of a Zn enzyme that binds Co(II) and Zn(II) via distinct mechanisms, underscoring the need to demonstrate transferability when extrapolating results on Co(II)-substituted proteins to the native Zn(II)-containing forms.

  18. Biochemical and Structural Analysis of an Eis Family Aminoglycoside Acetyltransferase from Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Green, Keith D.; Biswas, Tapan; Chang, Changsoo; Wu, Ruiying; Chen, Wenjing; Janes, Brian K.; Chalupska, Dominika; Gornicki, Piotr; Hanna, Philip C.; Tsodikov, Oleg V.; Joachimiak, Andrzej; Garneau-Tsodikova, Sylvie

    2015-05-26

    Proteins from the enhanced intracellular survival (Eis) family are versatile acetyltransferases that acetylate amines at multiple positions of several aminoglycosides (AGs). Their upregulation confers drug resistance. Homologues of Eis are present in diverse bacteria, including many pathogens. Eis from Mycobacterium tuberculosis (Eis_Mtb) has been well characterized. In this study, we explored the AG specificity and catalytic efficiency of the Eis family protein from Bacillus anthracis (Eis_Ban). Kinetic analysis of specificity and catalytic efficiency of acetylation of six AGs indicates that Eis_Ban displays significant differences from Eis_Mtb in both substrate binding and catalytic efficiency. The number of acetylated amines was also different for several AGs, indicating a distinct regiospecificity of Eis_Ban. Furthermore, most recently identified inhibitors of Eis_Mtb did not inhibit Eis_Ban, underscoring the differences between these two enzymes. To explain these differences, we determined an Eis_Ban crystal structure. The comparison of the crystal structures of Eis_Ban and Eis_Mtb demonstrates that critical residues lining their respective substrate binding pockets differ substantially, explaining their distinct specificities. Our results suggest that acetyltransferases of the Eis family evolved divergently to garner distinct specificities while conserving catalytic efficiency, possibly to counter distinct chemical challenges. The unique specificity features of these enzymes can be utilized as tools for developing AGs with novel modifications and help guide specific AG treatments to avoid Eis-mediated resistance.

  19. BLACK-BACKED JACKAL EXPOSURE TO RABIES VIRUS, CANINE DISTEMPER VIRUS, AND BACILLUS ANTHRACIS IN ETOSHA NATIONAL PARK, NAMIBIA

    Science.gov (United States)

    Bellan, Steve E.; Cizauskas, Carrie A.; Miyen, Jacobeth; Ebersohn, Karen; Küsters, Martina; Prager, Katie; Van Vuuren, Moritz; Sabeta, Claude; Getz, Wayne M.

    2017-01-01

    Canine distemper virus (CDV) and rabies virus (RABV) occur worldwide in wild carnivore and domestic dog populations and pose threats to wildlife conservation and public health. In Etosha National Park (ENP), Namibia, anthrax is endemic and generates carcasses frequently fed on by an unusually dense population of black-backed jackals (Canis mesomelas). Using serology and phylogenetic analyses (on samples obtained from February, 2009 to July, 2010), and historical mortality records (1975–2011), we assessed jackal exposure to Bacillus anthracis (BA; the causal bacterial agent of anthrax), CDV, and RABV. Seroprevalence to all three pathogens was relatively high with 95% (n = 86), 73% (n = 86), and 9% (n = 81) of jackals exhibiting antibodies to BA, CDV, and RABV, respectively. Exposure to BA, as assessed with an anti-Protective Antigen ELISA test, increased significantly with age and all animals >1 yr old tested positive. Seroprevalence of exposure to CDV also increased significantly with age, with similar age-specific trends during both years of the study. No significant effect of age was found on RABV seroprevalence. Three of the seven animals exhibiting immunity to RABV were monitored for more than one year after sampling and did not succumb to the disease. Mortality records revealed that rabid animals are destroyed nearly every year inside the ENP tourist camps. Phylogenetic analyses demonstrated that jackal RABV in ENP is part of the same transmission cycle as other dog-jackal RABV cycles in Namibia. PMID:22493112

  20. Effect of Phosphate Ion on the Structure of Lumazine Synthase, an Antigen Presentation System From Bacillus anthracis.

    Science.gov (United States)

    Wei, Yangjie; Wahome, Newton; Kumar, Prashant; Whitaker, Neal; Picking, Wendy L; Middaugh, C Russell

    2018-03-01

    Lumazine synthase (LS) is an oligomeric enzyme involved in the biosynthesis of riboflavin in microorganisms, fungi, and plants. LS has become of significant interest to biomedical science because of its critical biological role and attractive structural properties for antigen presentation in vaccines. LS derived from Bacillus anthracis (BaLS) consists of 60 identical subunits forming an icosahedron. Its crystal structure has been solved, but its dynamic conformational properties have not yet been studied. We investigated the conformation of BaLS in response to different stress conditions (e.g., chemical denaturants, pH, and temperature) using a variety of biophysical techniques. The physical basis for these thermal transitions was studied, indicating that a molten globular state was present during chemical unfolding by guanidine HCl. In addition, BaLS showed 2 distinct thermal transitions in phosphate-containing buffers. The first transition was due to the dissociation of phosphate ions from BaLS and the second one came from the dissociation and conformational alteration of its icosahedral structure. A small conformational alteration was induced by the binding/dissociation of phosphate ions to BaLS. This work provides a closer view of the conformational behavior of BaLS and provides important information for the formulation of vaccines which use this protein. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  1. Black-backed jackal exposure to rabies virus, canine distemper virus, and Bacillus anthracis in Etosha National Park, Namibia.

    Science.gov (United States)

    Bellan, Steve E; Cizauskas, Carrie A; Miyen, Jacobeth; Ebersohn, Karen; Küsters, Martina; Prager, K C; Van Vuuren, Moritz; Sabeta, Claude; Getz, Wayne M

    2012-04-01

    Canine distemper virus (CDV) and rabies virus (RABV) occur worldwide in wild carnivore and domestic dog populations and pose threats to wildlife conservation and public health. In Etosha National Park (ENP), Namibia, anthrax is endemic and generates carcasses frequently fed on by an unusually dense population of black-backed jackals (Canis mesomelas). Using serology, phylogenetic analyses (on samples obtained from February 2009-July 2010), and historical mortality records (1975-2011), we assessed jackal exposure to Bacillus anthracis (BA; the causal bacterial agent of anthrax), CDV, and RABV. Prevalence of antibodies against BA (95%, n = 86) and CDV (71%, n = 80) was relatively high, while that of antibodies against RABV was low (9%, n = 81). Exposure to BA increased significantly with age, and all animals >6 mo old were antibody-positive. As with BA, prevalence of antibodies against CDV increased significantly with age, with similar age-specific trends during both years of the study. No significant effect of age was found on the prevalence of antibodies against RABV. Three of the seven animals with antibodies against RABV were monitored for more than 1 yr after sampling and showed no signs of active infection. Mortality records revealed that rabid animals are destroyed nearly every year inside the ENP tourist camps. Phylogenetic analyses demonstrated that jackal RABV in ENP is part of the same transmission cycle as other dog-jackal RABV cycles in Namibia.

  2. Constant domains influence binding of mouse–human chimeric antibodies to the capsular polypeptide of Bacillus anthracis

    Science.gov (United States)

    Hubbard, Mark A; Thorkildson, Peter; Kozel, Thomas R; AuCoin, David P

    2013-01-01

    Our laboratory previously described the binding characteristics of the murine IgG3 monoclonal antibody (MuAb) F26G3. This antibody binds the poly-glutamic acid capsule (PGA) of Bacillus anthracis, an essential virulence factor in the progression of anthrax. F26G3 IgG3 MuAb binds PGA with a relatively high functional affinity (10 nM), produces a distinct “rim” quellung reaction, and is protective in a murine model of pulmonary anthrax. This study engineered an IgG subclass family of F26G3 mouse–human chimeric antibodies (ChAb). The F26G3 ChAbs displayed 9- to 20-fold decreases in functional affinity, as compared with the parent IgG3 MuAb. Additionally, the quellung reactions that were produced by the ChAbs all differed from the parent IgG3 MuAb in that they appeared “puffy” in nature. This study demonstrates that human constant domains may influence multiple facets of antibody binding to microbial capsular antigens despite their spatial separation from the traditional antigen-binding site. PMID:23863605

  3. Stereo-selective binding of monoclonal antibodies to the poly-γ-D-glutamic acid capsular antigen of Bacillus anthracis.

    Science.gov (United States)

    Hubbard, Mark A; Thorkildson, Peter; Welch, William H; Kozel, Thomas R

    2013-10-01

    Bacillus anthracis is surrounded by an anti-phagocytic capsule that is entirely composed of γ-linked D-glutamic acid (γDPGA). γDPGA is required for virulence and is produced in large quantities following spore germination. We have previously described the isolation of several γDPGA-reactive mAbs. The reagents are effective in both immunoprotection and diagnostic applications. The current work was done to further investigate the specificity of γDPGA-reactive mAbs. The specificity of each mAb was characterized using surface plasmon resonance. Our results indicate that each mAb is stereoselective for binding to D-glutamic acid oligomers, but to varying degrees. In particular, mAb F26G3 is highly selective for γDPGA; alterations in stereochemistry disrupted recognition. These differences in mAb reactivity suggest that binding of γDPGA by mAb F26G3 is more specific than non-directional ionic interactions between a negatively charged antigen and a positively charged antibody. Published by Elsevier Ltd.

  4. Constant domains influence binding of mouse-human chimeric antibodies to the capsular polypeptide of Bacillus anthracis.

    Science.gov (United States)

    Hubbard, Mark A; Thorkildson, Peter; Kozel, Thomas R; AuCoin, David P

    2013-08-15

    Our laboratory previously described the binding characteristics of the murine IgG3 monoclonal antibody (MuAb) F26G3. This antibody binds the poly-glutamic acid capsule (PGA) of Bacillus anthracis, an essential virulence factor in the progression of anthrax. F26G3 IgG3 MuAb binds PGA with a relatively high functional affinity (10 nM), produces a distinct "rim" quellung reaction, and is protective in a murine model of pulmonary anthrax. This study engineered an IgG subclass family of F26G3 mouse-human chimeric antibodies (ChAb). The F26G3 ChAbs displayed 9- to 20-fold decreases in functional affinity, as compared with the parent IgG3 MuAb. Additionally, the quellung reactions that were produced by the ChAbs all differed from the parent IgG3 MuAb in that they appeared "puffy" in nature. This study demonstrates that human constant domains may influence multiple facets of antibody binding to microbial capsular antigens despite their spatial separation from the traditional antigen-binding site.

  5. Mo and W bis-MGD enzymes: nitrate reductases and formate dehydrogenases.

    Science.gov (United States)

    Moura, José J G; Brondino, Carlos D; Trincão, José; Romão, Maria João

    2004-10-01

    Molybdenum and tungsten are second- and third-row transition elements, respectively, which are found in a mononuclear form in the active site of a diverse group of enzymes that generally catalyze oxygen atom transfer reactions. Mononuclear Mo-containing enzymes have been classified into three families: xanthine oxidase, DMSO reductase, and sulfite oxidase. The proteins of the DMSO reductase family present the widest diversity of properties among its members and our knowledge about this family was greatly broadened by the study of the enzymes nitrate reductase and formate dehydrogenase, obtained from different sources. We discuss in this review the information of the better characterized examples of these two types of Mo enzymes and W enzymes closely related to the members of the DMSO reductase family. We briefly summarize, also, the few cases reported so far for enzymes that can function either with Mo or W at their active site.

  6. Survival and Psychomotor Development With Early Betaine Treatment in Patients With Severe Methylenetetrahydrofolate Reductase Deficiency

    NARCIS (Netherlands)

    Diekman, Eugene F.; de Koning, Tom J.; Verhoeven-Duif, Nanda M.; Rovers, Maroeska M.; van Hasselt, Peter M.

    IMPORTANCE The impact of betaine treatment on outcome in patients with severe methylenetetrahydrofolate reductase (MTHFR) deficiency is presently unclear. OBJECTIVE To investigate the effect of betaine treatment on development and survival in patients with severe MTHFR deficiency. DATA SOURCES

  7. Survival and psychomotor development with early betaine treatment in patients with severe methylenetetrahydrofolate reductase deficiency

    NARCIS (Netherlands)

    Diekman, E.F.; Koning, T.J. de; Verhoeven-Duif, N.M.; Rovers, M.M.; Hasselt, P.M. van

    2014-01-01

    IMPORTANCE The impact of betaine treatment on outcome in patients with severe methylenetetrahydrofolate reductase (MTHFR) deficiency is presently unclear. OBJECTIVE To investigate the effect of betaine treatment on development and survival in patients with severe MTHFR deficiency. DATA SOURCES

  8. Bioinformatics analysis of the predicted polyprenol reductase genes in higher plants

    Science.gov (United States)

    Basyuni, M.; Wati, R.

    2018-03-01

    The present study evaluates the bioinformatics methods to analyze twenty-four predicted polyprenol reductase genes from higher plants on GenBank as well as predicted the structure, composition, similarity, subcellular localization, and phylogenetic. The physicochemical properties of plant polyprenol showed diversity among the observed genes. The percentage of the secondary structure of plant polyprenol genes followed the ratio order of α helix > random coil > extended chain structure. The values of chloroplast but not signal peptide were too low, indicated that few chloroplast transit peptide in plant polyprenol reductase genes. The possibility of the potential transit peptide showed variation among the plant polyprenol reductase, suggested the importance of understanding the variety of peptide components of plant polyprenol genes. To clarify this finding, a phylogenetic tree was drawn. The phylogenetic tree shows several branches in the tree, suggested that plant polyprenol reductase genes grouped into divergent clusters in the tree.

  9. A soluble 3-hydroxy-3-methylglutaryl-CoA reductase in the protozoan Trypanosoma cruzi

    DEFF Research Database (Denmark)

    Pena Diaz, Javier; Montalvetti, A; Camacho, A

    1997-01-01

    cellular distribution of enzymic activity was investigated after differential centrifugation of Trypanosoma cell extracts. Reductase activity was primarily associated with the cellular soluble fraction because 95% of the total cellular activity was recovered in the supernatant and was particularly...

  10. The 1-hydroxy-2-methyl-butenyl 4-diphosphate reductase gene from ...

    African Journals Online (AJOL)

    The 1-hydroxy-2-methyl-butenyl 4-diphosphate reductase gene from Taxus media: Cloning, characterization and functional identification. Y Sun, M Chen, J Tang, W Liu, C Yang, Y Yang, X Lan, M Hsieh, Z Liao ...

  11. The Importance of Homozygous Polymorphisms of Methylenetetrahydrofolate Reductase Gene in Romanian Patients with Idiopathic Venous Thromboembolism

    OpenAIRE

    Hotoleanu, Cristina; Trifa, Adrian; Popp, Radu; Fodor, Daniela

    2013-01-01

    Background: Methylenetetrahydrofolate reductase (MTHFR) polymorphisms have recently raised the interest as a possible thrombophilic factors. Aims: We aimed to assess the frequency of the methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms in idiopathic venous thromboembolism (VTE) in a Romanian population and the associated risk of VTE. Study Design: We performed a case-control transversal study including 90 patients diagnosed with VTE and 75 sex- an...

  12. Aldose Reductase Inhibitory Activity of Compounds from??Zea mays L.

    OpenAIRE

    Kim, Tae Hyeon; Kim, Jin Kyu; Kang, Young-Hee; Lee, Jae-Yong; Kang, Il Jun; Lim, Soon Sung

    2013-01-01

    Aldose reductase (AR) inhibitors have a considerable therapeutic potential against diabetes complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of an EtOH extract of the kernel from purple corn (Zea mays L.), 7 nonanthocyanin phenolic compounds (compound 1?7) and 5 anthocyanins (compound 8?12) were isolated. These compounds were investigated by rat lens aldose reductase (RLAR) inhibitory assays. Kinetic analyses of recombinant human aldose reducta...

  13. Genome sequence analysis of predicted polyprenol reductase gene from mangrove plant kandelia obovata

    Science.gov (United States)

    Basyuni, M.; Sagami, H.; Baba, S.; Oku, H.

    2018-03-01

    It has been previously reported that dolichols but not polyprenols were predominated in mangrove leaves and roots. Therefore, the occurrence of larger amounts of dolichol in leaves of mangrove plants implies that polyprenol reductase is responsible for the conversion of polyprenol to dolichol may be active in mangrove leaves. Here we report the early assessment of probably polyprenol reductase gene from genome sequence of mangrove plant Kandelia obovata. The functional assignment of the gene was based on a homology search of the sequences against the non-redundant (nr) peptide database of NCBI using Blastx. The degree of sequence identity between DNA sequence and known polyprenol reductase was confirmed using the Blastx probability E-value, total score, and identity. The genome sequence data resulted in three partial sequences, termed c23157 (700 bp), c23901 (960 bp), and c24171 (531 bp). The c23157 gene showed the highest similarity (61%) to predicted polyprenol reductase 2- like from Gossypium raimondii with E-value 2e-100. The second gene was c23901 to exhibit high similarity (78%) to the steroid 5-alpha-reductase Det2 from J. curcas with E-value 2e-140. Furthermore, the c24171 gene depicted highest similarity (79%) to the polyprenol reductase 2 isoform X1 from Jatropha curcas with E- value 7e-21.The present study suggested that the c23157, c23901, and c24171, genes may encode predicted polyprenol reductase. The c23157, c23901, c24171 are therefore the new type of predicted polyprenol reductase from K. obovata.

  14. Purification and characterization of (+)dihydroflavonol (3-hydroxyflavanone) 4-reductase from flowers of Dahlia variabilis.

    Science.gov (United States)

    Fischer, D; Stich, K; Britsch, L; Grisebach, H

    1988-07-01

    Individual flowers from inflorescences of Dahlia variabilis (cv Scarlet Star) in young developmental stages contained relatively high activity of (+)-dihydroflavonol (DHF) 4-reductase. The DHF reductase was purified from such flowers to apparent homogeneity by a five-step procedure. This included affinity adsorption on Blue Sepharose and elution of the enzyme with NADP+. By gel filtration and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis it was shown that DHF reductase contains only one polypeptide chain with a Mr of about 41,000. The reductase required NADPH as cofactor and catalyzed transfer of the pro-S hydrogen of NADPH to the substrate. Flavanones and dihydroflavonols (3-hydroxyflavanones) were substrates for DHF reductase with pH optima of about 6.0 for flavanones and of about 6.8 for dihydroflavonols. Flavanones were reduced to the corresponding flavan-4-ols and (+)-dihydroflavonols to flavan-3,4-cis-diols. Apparent Michaelis constants determined for (2S)-naringenin, (2S)-eriodicytol, (+)-dihydrokaempferol, (+)-dihydroquercetin, and NADPH were, respectively, 2.3, 2, 10, 15, and 42 microM. V/Km values were higher for dihydroflavonols than for flavanones. Conversion of dihydromyricetin to leucodelphinidin was also catalyzed by the enzyme at a low rate, whereas flavones and flavonols were not accepted as substrates. DHF reductase was not inhibited by metal chelators.

  15. Comparative evaluation of eleven commercial DNA extraction kits for real-time PCR detection of Bacillus anthracis spores in spiked dairy samples.

    Science.gov (United States)

    Mertens, Katja; Freund, Lisa; Schmoock, Gernot; Hänsel, Christoph; Melzer, Falk; Elschner, Mandy C

    2014-01-17

    Spores of Bacillus anthracis are highly resistant and can survive conditions used for food preservation. Sample size and complexity represent the major hurdles for pathogen detection in food-related settings. Eleven commercial DNA extraction kits were evaluated for detection of B. anthracis spores by quantitative real-time PCR (qPCR) in dairy products. DNA was extracted from serial dilutions of B. anthracis spores in milk powder, cream cheese, whole milk and buttermilk. Three kits (QIAamp DNA mini kit, Invisorb Food kit I and II) were determined to produce the lowest limit of detections (LODs) with equally good performance. These kits employed lysozyme and proteinase K treatments or proteinase K in combination with cethyltrimethylamonium bromide-mediated (CTAB) precipitation of cell debris for cell disruption and DNA release. The LODs for these three kits were determined as 10(2) spores/ml of distilled water, 10(3)s pores/20 mg of powdered milk and 10(4) spores/100 mg of cream cheese, respectively. Performance testing of the QIAamp DNA mini kit demonstrated a good reproducibility and appropriate detection limits from 10(3)/ml for butter milk, 10(4)/ml for whole milk and 10(4)/100 mg for low fat cream cheese. However, DNA extraction efficiency was strongly inhibited by cream cheese with higher fat contents with an increased LOD of 10(6)/100 mg spores. This study demonstrated that qPCR detection depends directly on the appropriate DNA extraction method for an individual food matrix and bacterial agent. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. False Negative Rates of a Macrofoam-Swab Sampling Method with Low Surface Concentrations of Two Bacillus anthracis Surrogates via Real-Time PCR

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, Janine R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Piepel, Gregory F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Amidan, Brett G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sydor, Michael A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kaiser, Brooke L.D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-06-01

    Surface sampling for Bacillus anthracis spores has traditionally relied on detection via bacterial cultivation methods. Although effective, this approach does not provide the level of organism specificity that can be gained through molecular techniques. False negative rates (FNR) and limits of detection (LOD) were determined for two B. anthracis surrogates with modified rapid viability-polymerase chain reaction (mRV-PCR) following macrofoam-swab sampling. This study was conducted in parallel with a previously reported study that analyzed spores using a plate-culture method. B. anthracis Sterne (BAS) or B. atrophaeus Nakamura (BG) spores were deposited onto four surface materials (glass, stainless steel, vinyl tile, and plastic) at nine target concentrations (2 to 500 spores/coupon; 0.078 to 19.375 colony-forming units [CFU] per cm2). Mean FNR values for mRV-PCR analysis ranged from 0 to 0.917 for BAS and 0 to 0.875 for BG and increased as spore concentration decreased (over the concentrations investigated) for each surface material. FNRs based on mRV-PCR data were not statistically different for BAS and BG, but were significantly lower for glass than for vinyl tile. FNRs also tended to be lower for the mRV-PCR method compared to the culture method. The mRV-PCR LOD95 was lowest for glass (0.429 CFU/cm2 with BAS and 0.341 CFU/cm2 with BG) and highest for vinyl tile (0.919 CFU/cm2 with BAS and 0.917 CFU/cm2 with BG). These mRV-PCR LOD95 values were lower than the culture values (BAS: 0.678 to 1.023 CFU/cm2 and BG: 0.820 to 1.489 CFU/cm2). The FNR and LOD95 values reported in this work provide guidance for environmental sampling of Bacillus spores at low concentrations.

  17. Genotyping of French Bacillus anthracis strains based on 31-loci multi locus VNTR analysis: epidemiology, marker evaluation, and update of the internet genotype database.

    Directory of Open Access Journals (Sweden)

    Simon Thierry

    Full Text Available BACKGROUND: Bacillus anthracis is known to have low genetic variability. In spite of this lack of diversity, multiple-locus variable-number tandem repeat (VNTR analysis (MLVA and single nucleotide polymorphisms (SNPs including the canonical SNPs assay (canSNP have proved to be highly effective to differentiate strains. Five different MLVA schemes based on a collection of 31 VNTR loci (MLVA8, MLVA15, MLVA20, MLVA25 and MLVA31 with increased resolving power have been described. RESULTS: MLVA31 was applied to characterize the French National Reference Laboratory collection. The total collection of 130 strains is resolved in 35 genotypes. The 119 veterinary and environmental strains collection in France were resolved into 26 genotypes belonging to three canSNP lineages and four MLVA clonal complexes (CCs with particular geographical clustering. A subset of seven loci (MLVA7 is proposed to constitute a first line assay. The loci are compatible with moderate resolution equipment such as agarose gel electrophoresis and show a good congruence value with MLVA31. The associated MLVA and SNP data was imported together with published genotyping data by taking advantage of major enhancements to the MLVAbank software and web site. CONCLUSIONS: The present report provides a wide coverage of the genetic diversity of naturally occurring B. anthracis strains in France as can be revealed by MLVA. The data obtained suggests that once such coverage is achieved, it becomes possible to devise optimized first-line MLVA assays comprising a sufficiently low number of loci to be typed either in one multiplex PCR or on agarose gels. Such a selection of seven loci is proposed here, and future similar investigations in additional countries will indicate to which extend the same selection can be used worldwide as a common minimum set. It is hoped that this approach will contribute to an efficient and low-cost routine surveillance of important pathogens for biosecurity such as

  18. Association study between methylenetetrahydrofolate reductase gene polymorphisms and Graves' disease.

    Science.gov (United States)

    Mao, Renfang; Fan, Yihui; Zuo, Lulu; Geng, Dongfeng; Meng, Fantao; Zhu, Jing; Li, Qiang; Qiao, Hong; Jin, Yan; Bai, Jing; Fu, Songbin

    2010-10-01

    5,10-Methylenetetrahydrofolate reductase (MTHFR) catalyzes the metabolism of folate and nucleotides, which are essential for DNA synthesis and methylation. It is highly polymorphic, and its variant genotypes result in lower enzymatic activity and higher plasma homocysteine. Previous studies have provided evidence that a high prevalence of MTHFR gene polymorphisms is frequently detected in patients with autoimmune disease, suggesting a novel genetic association with autoimmune disorders. However, the genetic association between MTHFR and Graves' disease (GD), one of the most common autoimmune diseases, has not been studied. Here, we designed a clinic-based case-control study including 199 GD cases and 235 healthy controls to examine the associations between three common MTHFR polymorphisms (i.e., C677T, A1298C, and G1793A) and GD. Surprisingly, logistic regression analysis shows MTHFR 677CT + TT genotypes are associated with an approximately 42% reduction in the risk of GD in women (adjusted OR = 0.58, 95% CI = 0.3-0.9), compared to the CC genotype, indicating a significant protective effect of 677CT + TT genotypes. Our result provides epidemiological evidence that MTHFR mutation (C677T) protects women from GD. The protective effect, possibly obtained by influencing DNA methylation, should be confirmed in a large number of cohorts. Copyright © 2010 John Wiley & Sons, Ltd.

  19. Old and new inhibitors of quinone reductase 2.

    Science.gov (United States)

    Ferry, Gilles; Hecht, Sabrina; Berger, Sylvie; Moulharat, Natacha; Coge, Francis; Guillaumet, Gérald; Leclerc, Véronique; Yous, Saïd; Delagrange, Philippe; Boutin, Jean A

    2010-07-30

    Quinone reductase 2 is a cytosolic enzyme which catalyses the reduction of quinones, such as menadione and coenzymes Q. Despite a relatively close sequence-based resemblance to NAD(P)H:quinone oxidoreductase 1 (QR1), it has many different features. QR2 is the third melatonin binding site (MT3). It is inhibited in the micromolar range by melatonin, and does not accept conventional phosphorylated nicotinamides as hydride donors. QR2 has a powerful capacity to activate quinones leading to unexpected toxicity situations. In the present paper, we report the characterization of three QR2 modulators: melatonin, resveratrol and S29434. The latter compound inhibits QR2 activity with an IC(50) in the low nanomolar range. The potency of the modulators ranged as follows, from the least to the most potent: melatonin

  20. Antiproliferative and quinone reductase-inducing activities of withanolides derivatives.

    Science.gov (United States)

    García, Manuela E; Nicotra, Viviana E; Oberti, Juan C; Ríos-Luci, Carla; León, Leticia G; Marler, Laura; Li, Guannan; Pezzuto, John M; van Breemen, Richard B; Padrón, José M; Hueso-Falcón, Idaira; Estévez-Braun, Ana

    2014-07-23

    Two new and five known withanolides (jaborosalactones 2, 3, 4, 5, and 24) were isolated from the leaves of Jaborosa runcinata Lam. We also obtained some derivatives from jaborosalactone 5, which resulted to be the major isolated metabolite. The natural compounds as well as derivatives were evaluated for their antiproliferative activity and the induction of quinone reductase 1 (QR1; NQ01) activity. Structure-activity relationships revealed valuable information on the pharmacophore of withanolide-type compounds. Three compounds of this series showed significantly higher antiproliferative activity than jaborosalactone 5. The effect of these compounds on the cell cycle was determined. Furthermore, the ability of major compounds to induce QR1 was evaluated. It was found that all the active test compounds are monofunctional inducers that interact with Keap1. The most promising derivatives prepared from jaborosalactone 5 include (23R)-4β,12β,21-trihydroxy-1,22-dioxo-12,23-cycloergostan-2,5,17,24-tetraen-26,23-olide (18) and (23R)-21-acetoxy-12β-hydroxy-1,22-dioxo-12,23-cycloergostan-2,5,17,24-tetraen-26,23-lactame (20). Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Structure, function, and mechanism of cytosolic quinone reductases.

    Science.gov (United States)

    Bianchet, Mario A; Erdemli, Sabri Bora; Amzel, L Mario

    2008-01-01

    Quinone reductases type 1 (QR1) are FAD-containing enzymes that catalyze the reduction of many quinones, including menadione (Vit K3), to hydroquinones using reducing equivalents provided by NAD(P)H. The reaction proceeds with a ping-pong mechanism in which the NAD(P)H and the substrate occupy alternatively overlapping regions of the same binding site and participate in a double hydride transfer: one from NAD(P)H to the FAD of the enzyme, and one from the FADH(2) of the enzyme to the quinone substrate. The main function of QR1 is probably the detoxification of dietary quinones but it may also contribute to the reduction of vitamin K for its involvement in blood coagulation. In addition, the same reaction that QR1 uses in the detoxification of quinones, activates some compounds making them cytotoxic. Since QR1 is elevated in many tumors, this property has encouraged the development of chemotherapeutic compounds that become cytotoxic after reduction by QR1. The structures of QR1 alone, and in complexes with substrates, inhibitors, and chemotherapeutic prodrugs, combined with biochemical and mechanistic studies have provided invaluable insight into the mechanism of the enzyme as well as suggestions for the improvements of the chemotherapeutic prodrugs. Similar information is beginning to accumulate about another related enzyme, QR2.

  2. 5 alpha-reductase inhibitors and prostatic disease.

    Science.gov (United States)

    Schröder, F H

    1994-08-01

    5 alpha-Reductase inhibitors are a new class of substances with very specific effects on type I and type II 5 alpha R which may be of use in the treatment of skin disease, such as male pattern baldness, male acne and hirsutism, as well as prostatic hyperplasia and prostate cancer. At least two types of 5 alpha R inhibitors with a different pH optimum have been described. cDNA encoding for both the type I and the type II enzyme has been cloned. Most of the orally effective 5 alpha R inhibitors belong to the class of 4-azasteroids. The radical substituted in the 17 position of the steroid ring seems to be related to species specific variations and to the types of 5 alpha R enzymes in different species and organ systems. 5 alpha R inhibitors lead to a decrease of plasma DHT by about 65% while there is a slight rise in plasma testosterone. The decrease of tissue DHT in the ventral prostate of the intact rat, the dog and in humans is more pronounced and amounts to about 85%. There is a reciprocal rise of tissue T in these systems. The application of an inhibitor of 5 alpha R type II leads to a shrinkage of BPH in men by about 30%. In the rat a similar shrinkage accompanied by a significant decrease of total organ DNA occurs. This decrease, however, is not as pronounced as can be achieved with castration.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Increased 5α-reductase activity in idiopathic hirsutism

    International Nuclear Information System (INIS)

    Serafini, P.; Lobo, R.A.

    1985-01-01

    In vitro, genital skin 5α-reductase activity (5α-RA) was measured in ten hirsute women with normal androgen levels (idiopathic hirsutism (IH)) and in ten hirsute women with elevated androgen levels (polycystic ovary syndrome (PCO)) in order to determine the influence of secreted androgens on 5α-RA. In vitro 5α-RA was assessed by incubations of skin with 14 C-testosterone (T) for 2 hours, after which steroids were separated and the radioactivity of dihydrotestosterone (DHT) and 5α-androstane 3α-17β-estradiol (3α-diol) in specific eluates were determined. All androgens were normal in IH with the exception of higher levels of 3α-diol glucuronide which were similar to the levels of PCO. The conversion ratio (CR) of T to DHT in IH and PCO were similar, yet significantly greater than the CR of control subjects. The CR of T to 3α-diol in IH and PCO were similar, yet higher than in control subjects. Serum androgens showed no correlation with 5α-RA, while the CR of T to DHT showed a significant positive correlation with the Ferriman and Gallwey score. The increased 5α-RA in IH appears to be independent of serum androgen levels and is, therefore, an inherent abnormality. The term idiopathic is a misnomer, because hirsutism in these patients may be explained on the basis of increased skin 5α-RA

  4. Cheminformatics Models for Inhibitors of Schistosoma mansoni Thioredoxin Glutathione Reductase

    Directory of Open Access Journals (Sweden)

    Sonam Gaba

    2014-01-01

    Full Text Available Schistosomiasis is a neglected tropical disease caused by a parasite Schistosoma mansoni and affects over 200 million annually. There is an urgent need to discover novel therapeutic options to control the disease with the recent emergence of drug resistance. The multifunctional protein, thioredoxin glutathione reductase (TGR, an essential enzyme for the survival of the pathogen in the redox environment has been actively explored as a potential drug target. The recent availability of small-molecule screening datasets against this target provides a unique opportunity to learn molecular properties and apply computational models for discovery of activities in large molecular libraries. Such a prioritisation approach could have the potential to reduce the cost of failures in lead discovery. A supervised learning approach was employed to develop a cost sensitive classification model to evaluate the biological activity of the molecules. Random forest was identified to be the best classifier among all the classifiers with an accuracy of around 80 percent. Independent analysis using a maximally occurring substructure analysis revealed 10 highly enriched scaffolds in the actives dataset and their docking against was also performed. We show that a combined approach of machine learning and other cheminformatics approaches such as substructure comparison and molecular docking is efficient to prioritise molecules from large molecular datasets.

  5. Determination of Nitrate Reductase Assay Depending on the Microbial Growth

    International Nuclear Information System (INIS)

    El-Kabbany, H.M.

    2012-01-01

    A rapid micro-dilution assay for determination of the antimicrobial susceptibility of different bacterial isolates was developed. This assay is based on the ability of the most of viable organisms to reduce nitrates. The MIC or MBC could be determined by nitrate reductase (NR) only after 30 to 90 min of incubation depending on the behaviour of microbial growth. Bacterial viability is detected by a positive nitrite reduction rather than visible turbidity. The nitrate reduction assay was compared with standard micro-assay using 250 isolates of different taxa against 10 antibiotics belonging to different classes. An excellent agreement of 82.5 % was found between the two methods and only 17.5 % of 1794 trials showed difference in the determined MIC by tow-dilution interval above or below the MIC determined by the turbidimetric method under the same test conditions. However, the nitrate reduction assay was more rapid and sensitive in detecting viable bacteria and so, established an accurate estimate of the minimal inhibitory concentration (MIC) or the minimal bacterial concentration (MBC). The nitrate reduction assay offers the additional advantage that it could be used to determine the MBC without having to subculture the broth. 232 cases of resistance were detected by NR and 4 different media were tested for susceptibility test. The bacterial isolates were exposed to ultra violet (UV) light for different period

  6. Regulation of anthrax toxin activator gene (atxA) expression in Bacillus anthracis: temperature, not CO2/bicarbonate, affects AtxA synthesis.

    OpenAIRE

    Dai, Z; Koehler, T M

    1997-01-01

    Anthrax toxin gene expression in Bacillus anthracis is dependent on the presence of atxA, a trans-acting regulatory gene located on the resident 185-kb plasmid pXO1. In atxA+ strains, expression of the toxin genes (pag, lef, and cya) is enhanced by two physiologically significant signals: elevated CO2/bicarbonate and temperature. To determine whether increased toxin gene expression in response to these signals is associated with increased atxA expression, we monitored steady-state levels of a...

  7. Characterization of Potential Antimicrobial Targets in Bacillus spp. II. Branched-Chain Aminotransferase and Methionine Regeneration in B. cereus and B. anthracis

    Science.gov (United States)

    2002-09-01

    canaline, un inhibiteur de transaminase, inhibait la croissance de B. cereus avec une C150 de 35 gM dans un milieu minimum et 760 pM dans un bouillon...Depuis quelques anndes, ii existe une croissance de la rdsistance naturelle du charbon A la pdnicilline et aux autres antibiotiques b~ta-lactamines...tabolisme du B. anthracis. L’inhibition de la croissance du B. cereus in vitro avec la transaminase inhibitrice de la canaline a montr6 que le compos6 a

  8. Expression, purification, crystallization and preliminary X-ray analysis of perakine reductase, a new member of the aldo-keto reductase enzyme superfamily from higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Cindy [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Mueller, Uwe [Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung mbH, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany); Panjikar, Santosh [European Molecular Biology Laboratory Hamburg, Outstation Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Sun, Lianli [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Department of TCM and Natural Drug Research, College of Pharmaceutical Sciences, 513 Zijingang Campus, Zhejiang University, 310058 Hangzhou (China); Ruppert, Martin [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Zhao, Yu [Department of TCM and Natural Drug Research, College of Pharmaceutical Sciences, 513 Zijingang Campus, Zhejiang University, 310058 Hangzhou (China); Stöckigt, Joachim, E-mail: stoeckig@mail.uni-mainz.de [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Department of TCM and Natural Drug Research, College of Pharmaceutical Sciences, 513 Zijingang Campus, Zhejiang University, 310058 Hangzhou (China)

    2006-12-01

    Perakine reductase, a novel member of the aldo-keto reductase enzyme superfamily of higher plants, is involved in the biosynthesis of monoterpenoid indole alkaloids in the Indian medicinal plant Rauvolfia serpentina. The enzyme has been crystallized in C-centered orthorhombic space group and diffracts to 2.0 Å resolution. Perakine reductase (PR) is a novel member of the aldo-keto reductase enzyme superfamily from higher plants. PR from the plant Rauvolfia serpentina is involved in the biosynthesis of monoterpenoid indole alkaloids by performing NADPH-dependent reduction of perakine, yielding raucaffrinoline. However, PR can also reduce cinnamic aldehyde and some of its derivatives. After heterologous expression of a triple mutant of PR in Escherichia coli, crystals of the purified and methylated enzyme were obtained by the hanging-drop vapour-diffusion technique at 293 K with 100 mM sodium citrate pH 5.6 and 27% PEG 4000 as precipitant. Crystals belong to space group C222{sub 1} and diffract to 2.0 Å, with unit-cell parameters a = 58.9, b = 93.0, c = 143.4 Å.

  9. Nitrate reductase from Spinacea oleracea. FAD and the reactivation of the enzyme treated with p-Hydroxymercuribenzoate.

    Science.gov (United States)

    Castillo, F; de la Rosa, F F; Palacián, E

    1977-12-01

    Spinach nitrate reductase complex previously inactivated by treatment with mercurials p-hydroxymercuribenzoate or p-hydroxymercuriphenyl sulphonate can be reactivated by incubation with dithioerythritol. The reactivation of NADH-diaphorase seems to be FAD-dependent, whereas that of FNH2-nitrate reductase is not. The requirement of FAD for NADH-inactivation of nitrate reductase treated with p-hydroxymercuribenzoate disappears after treatment with dithioerythritol.

  10. Induction of aldose reductase and sorbitol in renal inner medullary cells by elevated extracellular NaCl.

    OpenAIRE

    Bagnasco, S M; Uchida, S; Balaban, R S; Kador, P F; Burg, M B

    1987-01-01

    Aldose reductase [aldehyde reductase 2; alditol:NAD(P)+ 1-oxidoreductase, EC 1.1.1.21] catalyzes conversion of glucose to sorbitol. Although its activity is implicated in the progression of ocular and neurological complications of diabetes, the normal function of the enzyme in most cells is unknown. Both aldose reductase activity and substantial levels of sorbitol were previously reported in renal inner medullary cells. In this tissue, the extracellular NaCl concentration normally is high and...

  11. Molecular and biochemical characterization of the Fe(III) chelate reductase gene family in Arabidopsis thaliana.

    Science.gov (United States)

    Wu, Huilan; Li, Lihua; Du, Juan; Yuan, Youxi; Cheng, Xudong; Ling, Hong-Qing

    2005-09-01

    Iron chelate reductase is required for iron acquisition from soil and for metabolism in plants. In the genome of Arabidopsis thaliana there are eight genes classified into the iron chelate reductase gene family (AtFROs) based on sequence homology with AtFRO2 (a ferric chelate reductase in Arabidopsis). They are localized on chromosome 1 (three AtFROs) and chromosome 5 (five AtFROs) of Arabidopsis and show a high level of amino acid sequence similarity to each other. An assay for ferric chelate reductase activity revealed that AtFRO2, AtFRO3, AtFRO4, AtFRO5, AtFRO7 and AtFRO8 conferred significantly increased iron reduction activity compared with the control when expressed in yeast cells, indicating that the six AtFROs encode iron chelate reductases functioning in iron homeostasis in Arabidopsis. AtFRO2 displayed the highest iron reduction activity among the AtFROs investigated, further demonstrating that AtFRO2 is a major iron reductase gene in Arabidopsis. AtFRO2 and AtFRO3 were mainly expressed in roots of Arabidopsis, AtFRO5 and AtFRO6 in shoots and flowers, and AtFRO7 in cotyledons and trichomes, whereas the transcription of AtFRO8 was specific for leaf veins. Considering the tissue-specific expression profiles of AtFRO genes, we suggest that AtFRO2 and AtFRO3 are two Fe(III) chelate reductases mainly functioning in iron acquisition and metabolism in Arabidopsis roots, while AtFRO5, AtFRO6, AtFRO7 and AtFRO8 are required for iron homeostasis in different tissues of shoots.

  12. Rapid identification of genetic modifications in Bacillus anthracis using whole genome draft sequences generated by 454 pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Peter E Chen

    Full Text Available BACKGROUND: The anthrax letter attacks of 2001 highlighted the need for rapid identification of biothreat agents not only for epidemiological surveillance of the intentional outbreak but also for implementing appropriate countermeasures, such as antibiotic treatment, in a timely manner to prevent further casualties. It is clear from the 2001 cases that survival may be markedly improved by administration of antimicrobial therapy during the early symptomatic phase of the illness; i.e., within 3 days of appearance of symptoms. Microbiological detection methods are feasible only for organisms that can be cultured in vitro and cannot detect all genetic modifications with the exception of antibiotic resistance. Currently available immuno or nucleic acid-based rapid detection assays utilize known, organism-specific proteins or genomic DNA signatures respectively. Hence, these assays lack the ability to detect novel natural variations or intentional genetic modifications that circumvent the targets of the detection assays or in the case of a biological attack using an antibiotic resistant or virulence enhanced Bacillus anthracis, to advise on therapeutic treatments. METHODOLOGY/PRINCIPAL FINDINGS: We show here that the Roche 454-based pyrosequencing can generate whole genome draft sequences of deep and broad enough coverage of a bacterial genome in less than 24 hours. Furthermore, using the unfinished draft sequences, we demonstrate that unbiased identification of known as well as heretofore-unreported genetic modifications that include indels and single nucleotide polymorphisms conferring antibiotic and phage resistances is feasible within the next 12 hours. CONCLUSIONS/SIGNIFICANCE: Second generation sequencing technologies have paved the way for sequence-based rapid identification of both known and previously undocumented genetic modifications in cultured, conventional and newly emerging biothreat agents. Our findings have significant implications in

  13. Reverse-Phase Microarray Analysis Reveals Novel Targets in Lymph Nodes of Bacillus anthracis Spore-Challenged Mice.

    Directory of Open Access Journals (Sweden)

    Taissia G Popova

    Full Text Available Anthrax is a frequently fatal infection of many animal species and men. The causative agent Bacillus anthracis propagates through the lymphatic system of the infected host; however, the specific interactions of the host and microbe within the lymphatics are incompletely understood. We report the first description of the phosphoprotein signaling in the lymph nodes of DBA/2 mice using a novel technique combining the reverse-phase microarray with the laser capture microdissection. Mice were challenged into foot pads with spores of toxinogenic, unencapsulated Sterne strain. The spores quickly migrated to the regional popliteal lymph nodes and spread to the bloodstream as early as 3 h post challenge. All mice died before 72 h post challenge from the systemic disease accompanied by a widespread LN tissue damage by bacteria, including the hemorrhagic necrotizing lymphadenitis, infiltration of CD11b+ and CD3+ cells, and massive proliferation of bacteria in lymph nodes. A macrophage scavenger receptor CD68/macrosialin was upregulated and found in association with vegetative bacteria likely as a marker of their prior interaction with macrophages. The major signaling findings among the 65 tested proteins included the reduced MAPK signaling, upregulation of STAT transcriptional factors, and altered abundance of a number of pro- and anti-apoptotic proteins with signaling properties opposing each other. Downregulation of ERK1/2 was associated with the response of CD11b+ macrophages/dendritic cells, while upregulation of the pro-apoptotic Puma indicated a targeting of CD3+ T-cells. A robust upregulation of the anti-apoptotic survivin was unexpected because generally it is not observed in adult tissues. Taken together with the activation of STATs it may reflect a new pathogenic mechanism aimed to delay the onset of apoptosis. Our data emphasize a notion that the net biological outcome of disease is determined by a cumulative impact of factors representing the

  14. Reverse-Phase Microarray Analysis Reveals Novel Targets in Lymph Nodes of Bacillus anthracis Spore-Challenged Mice.

    Science.gov (United States)

    Popova, Taissia G; Espina, Virginia; Liotta, Lance A; Popov, Serguei G

    2015-01-01

    Anthrax is a frequently fatal infection of many animal species and men. The causative agent Bacillus anthracis propagates through the lymphatic system of the infected host; however, the specific interactions of the host and microbe within the lymphatics are incompletely understood. We report the first description of the phosphoprotein signaling in the lymph nodes of DBA/2 mice using a novel technique combining the reverse-phase microarray with the laser capture microdissection. Mice were challenged into foot pads with spores of toxinogenic, unencapsulated Sterne strain. The spores quickly migrated to the regional popliteal lymph nodes and spread to the bloodstream as early as 3 h post challenge. All mice died before 72 h post challenge from the systemic disease accompanied by a widespread LN tissue damage by bacteria, including the hemorrhagic necrotizing lymphadenitis, infiltration of CD11b+ and CD3+ cells, and massive proliferation of bacteria in lymph nodes. A macrophage scavenger receptor CD68/macrosialin was upregulated and found in association with vegetative bacteria likely as a marker of their prior interaction with macrophages. The major signaling findings among the 65 tested proteins included the reduced MAPK signaling, upregulation of STAT transcriptional factors, and altered abundance of a number of pro- and anti-apoptotic proteins with signaling properties opposing each other. Downregulation of ERK1/2 was associated with the response of CD11b+ macrophages/dendritic cells, while upregulation of the pro-apoptotic Puma indicated a targeting of CD3+ T-cells. A robust upregulation of the anti-apoptotic survivin was unexpected because generally it is not observed in adult tissues. Taken together with the activation of STATs it may reflect a new pathogenic mechanism aimed to delay the onset of apoptosis. Our data emphasize a notion that the net biological outcome of disease is determined by a cumulative impact of factors representing the microbial insult and

  15. Production and Characterization of Monoclonal Antibodies against NADPH-Cytochrome P-450 Reductases from Helianthus tuberosus1

    Science.gov (United States)

    Lesot, Agnès; Benveniste, Irène; Hasenfratz, Marie-Paule; Durst, Francis

    1992-01-01

    Monoclonal antibodies (mAbs) against a plant NADPH-cytochrome P-450 (Cyt P-450) reductase from Jerusalem artichoke (Helianthus tuberosus) tuber were prepared. These antibodies were produced by hybridoma resulting from the fusion of spleen cells from a rat immunized with a purified preparation of the reductase and mouse myeloma cells. The mAbs thus obtained were screened for their interaction with the reductases, first in western dots and then in blots, and for their ability to inhibit the NADPH-cytochrome c (Cyt c) reductase activity from Jerusalem artichoke microsomes. Among the 11 clones giving a positive response on western blots, only 6 were also able to inhibit microsomal NADPH-Cyt c reductase activity, and the microsomal Cyt P-450 monooxygenase activities dependent upon electrons transferred by the reductase. Thus, two families of mAbs were characterized: a family of mAbs that interact with epitopes of the reductase implicated in the reduction of Cyt P-450 by NADPH (binding sites for NADPH, flavin mononucleotide, flavin adenine dinucleotide, and Cyt P-450), and a structural family, whose members recognize epitopes outside the active site of the reductases. These mAbs specifically recognize the reductase, and all of them interact with all of the isoforms, indicating that important primary or secondary structural analogies exist between the isoforms, not only at the active site, but also at the level of epitopes not directly associated with catalytic activity. Images Figure 1 Figure 2 Figure 3 PMID:16653138

  16. Methylenetetrahydrofolate reductase genotype association with the risk of follicular lymphoma.

    Science.gov (United States)

    Ismail, Said I; Ababneh, Nida A; Khader, Yousef; Abu-Khader, Ahmad A; Awidi, Abdullah

    2009-12-01

    The metabolism of folate is essential in DNA synthesis, and polymorphisms of genes involved in such metabolism have been implicated in many types of cancer. Among these, the methylene tetrahydrofolate reductase gene (MTHFR) encodes an enzyme that converts folate to a methyl donor used for DNA methylation. We studied the association between the different genotypes of the two most common MTHFR polymorphisms, C677T and A1298C, and the risk of follicular lymphoma (FL). For this purpose, 55 previously diagnosed FL patients and 170 normal control subjects were examined using polymerase chain reaction followed by restriction fragment length polymorphism. The frequency of the A1298C CC homozygous mutant genotype was significantly higher in patients with FL than in control subjects (OR = 3.51, 95% CI = 1.39-8.86, P = 0.008). No such association was found for the heterozygous A1298C AC genotype (OR = 1.08, 95% CI = 0.55-2.12, P = 0.83). On the other hand, no significant association was found for either the C677T CT heterozygous genotype (OR = 0.79, 95% CI = 0.42-1.51, P = 0.49) or the C677T TT homozygous mutant genotype (OR = 0.55, 95% CI = 0.12-2.65, P = 0.46). The present findings add to the very few reports suggesting a link between the A1298C CC homozygous MTHFR genotype and a higher risk of developing FL, and the first such in a Jordanian population.

  17. Sepiapterin Reductase Mediates Chemical Redox Cycling in Lung Epithelial Cells*

    Science.gov (United States)

    Yang, Shaojun; Jan, Yi-Hua; Gray, Joshua P.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2013-01-01

    In the lung, chemical redox cycling generates highly toxic reactive oxygen species that can cause alveolar inflammation and damage to the epithelium, as well as fibrosis. In this study, we identified a cytosolic NADPH-dependent redox cycling activity in mouse lung epithelial cells as sepiapterin reductase (SPR), an enzyme important for the biosynthesis of tetrahydrobiopterin. Human SPR was cloned and characterized. In addition to reducing sepiapterin, SPR mediated chemical redox cycling of bipyridinium herbicides and various quinones; this activity was greatest for 1,2-naphthoquinone followed by 9,10-phenanthrenequinone, 1,4-naphthoquinone, menadione, and 2,3-dimethyl-1,4-naphthoquinone. Whereas redox cycling chemicals inhibited sepiapterin reduction, sepiapterin had no effect on redox cycling. Additionally, inhibitors such as dicoumarol, N-acetylserotonin, and indomethacin blocked sepiapterin reduction, with no effect on redox cycling. Non-redox cycling quinones, including benzoquinone and phenylquinone, were competitive inhibitors of sepiapterin reduction but noncompetitive redox cycling inhibitors. Site-directed mutagenesis of the SPR C-terminal substrate-binding site (D257H) completely inhibited sepiapterin reduction but had minimal effects on redox cycling. These data indicate that SPR-mediated reduction of sepiapterin and redox cycling occur by distinct mechanisms. The identification of SPR as a key enzyme mediating chemical redox cycling suggests that it may be important in generating cytotoxic reactive oxygen species in the lung. This activity, together with inhibition of sepiapterin reduction by redox-active chemicals and consequent deficiencies in tetrahydrobiopterin, may contribute to tissue injury. PMID:23640889

  18. Rapid Identification of Aldose Reductase Inhibitory Compounds from Perilla frutescens

    Directory of Open Access Journals (Sweden)

    Ji Hun Paek

    2013-01-01

    Full Text Available The ethyl acetate (EtOAc soluble fraction of methanol extracts of Perilla frutescens (P. frutescens inhibits aldose reductase (AR, the key enzyme in the polyol pathway. Our investigation of inhibitory compounds from the EtOAc soluble fraction of P. frutescens was followed by identification of the inhibitory compounds by a combination of HPLC microfractionation and a 96-well enzyme assay. This allowed the biological activities to be efficiently matched with selected HPLC peaks. Structural analyses of the active compounds were performed by LC-MSn. The main AR inhibiting compounds were tentatively identified as chlorogenic acid and rosmarinic acid by LC-MSn. A two-step high speed counter current chromatography (HSCCC isolation method was developed with a solvent system of n-hexane-ethyl acetate-methanol-water at 1.5 : 5 : 1 : 5, v/v and 3 : 7 : 5 : 5, v/v. The chemical structures of the isolated compounds were determined by 1H- and 13C-nuclear magnetic resonance spectrometry (NMR. The main compounds inhibiting AR in the EtOAc fraction of methanol extracts of P. frutescens were identified as chlorogenic acid (2 (IC50 = 3.16 μM, rosmarinic acid (4 (IC50 = 2.77 μM, luteolin (5 (IC50 = 6.34 μM, and methyl rosmarinic acid (6 (IC50 = 4.03 μM.

  19. Methylenetetrahydrofolate Reductase gene polymorphism in children with allergic rhinitis.

    Science.gov (United States)

    Dogru, M; Aydin, H; Aktas, A; Cırık, A A

    2015-01-01

    Methylenetetrahydrofolate Reductase (MTHFR) polymorphisms by impairing folate metabolism may influence the development of allergic diseases. The results of studies evaluating the relationship between MTHFR polymorphisms and atopic disease are controversial. The aim of this study was to investigate the association between the polymorphisms of C677T and A1298C for MTHFR gene and allergic rhinitis (AR) in children. Ninety patients followed up with diagnosis of allergic rhinitis in our clinic and 30 children with no allergic diseases were included in the study. All participants were genotyped for the MTHFR (C677T) and (A1298C) polymorphisms. Vitamin b12, folate and homocysteine levels were measured. The mean age of patients was 9.2±2.9 years; 66.7% of the patients were male. There was no significant difference between patient and control groups regarding gender, age and atopy history of the family (p>0.05). The frequency of homozygotes for MTHFR C677T polymorphism in the patient and control groups was 3.3% and 10%, respectively. The frequency of homozygotes for MTHFR A1298C polymorphism among groups was 26.7% and 16.7%, respectively. The association between allergic rhinitis and polymorphisms of C677T and A1298C for MTHFR gene was not statistically significant in patients compared with controls (p>0.05). There were no statistically significant differences between the patients and the control group in terms of serum vitamin b12, folate and homocysteine levels (p>0.05). We found no evidence for an association between allergic rhinitis and polymorphisms of C677T and A1298C for MTHFR gene in children. Further studies investigating the relationship between MTHFR polymorphism and AR are required. Copyright © 2014 SEICAP. Published by Elsevier Espana. All rights reserved.

  20. Methylenetetrahydrofolate reductase gene polymorphisms in Egyptian Turner Syndrome patients.

    Science.gov (United States)

    Ismail, Manal F; Zarouk, Waheba A; Ruby, Mona O; Mahmoud, Wael M; Gad, Randa S

    2015-01-01

    Folate metabolism dysfunctions can result in DNA hypomethylation and abnormal chromosome segregation. Two common polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) encoding gene (C677T and A1298C) reduce MTHFR activity, but when associated with aneuploidy, the results are conflicting. Turner Syndrome (TS) is an interesting model for investigating the association between MTHFR gene polymorphisms and nondisjunction because of the high frequency of chromosomal mosaicism in this syndrome. To investigate the association of MTHFR gene C677T and A1298C polymorphisms in TS patients and their mothers and to correlate these polymorphisms with maternal risk of TS offspring. MTHFR C677T and A1298C polymorphisms were genotyped in 33 TS patients, their mothers and 15 healthy females with their mothers as controls using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and sequencing technique. Genotype and allele frequencies of both C677T and A1298C were not significantly different between TS cases and controls. There were no significant differences in C677T genotype distribution between the TS mothers and controls (p=1). The MTHFR 1298AA and 1298AC genotypes were significantly increased in TS mothers Vs. control mothers (p=0.002). The C allele frequency of the A1298C polymorphism was significantly different between the TS mothers and controls (p=0.02). The association of A1298C gene polymorphism in TS patients was found to increase with increasing age of both mothers (p=0.026) and fathers (p=0.044) of TS cases. Our findings suggest a strong association between maternal MTHFR A1298C and risk of TS in Egypt.

  1. The Reaction Mechanism of Methyl-Coenzyme M Reductase

    Science.gov (United States)

    Wongnate, Thanyaporn; Ragsdale, Stephen W.

    2015-01-01

    Methyl-coenzyme M reductase (MCR) is a nickel tetrahydrocorphinoid (coenzyme F430) containing enzyme involved in the biological synthesis and anaerobic oxidation of methane. MCR catalyzes the conversion of methyl-2-mercaptoethanesulfonate (methyl-SCoM) and N-7-mercaptoheptanoylthreonine phosphate (CoB7SH) to CH4 and the mixed disulfide CoBS-SCoM. In this study, the reaction of MCR from Methanothermobacter marburgensis, with its native substrates was investigated using static binding, chemical quench, and stopped-flow techniques. Rate constants were measured for each step in this strictly ordered ternary complex catalytic mechanism. Surprisingly, in the absence of the other substrate, MCR can bind either substrate; however, only one binary complex (MCR·methyl-SCoM) is productive whereas the other (MCR·CoB7SH) is inhibitory. Moreover, the kinetic data demonstrate that binding of methyl-SCoM to the inhibitory MCR·CoB7SH complex is highly disfavored (Kd = 56 mm). However, binding of CoB7SH to the productive MCR·methyl-SCoM complex to form the active ternary complex (CoB7SH·MCR(NiI)·CH3SCoM) is highly favored (Kd = 79 μm). Only then can the chemical reaction occur (kobs = 20 s−1 at 25 °C), leading to rapid formation and dissociation of CH4 leaving the binary product complex (MCR(NiII)·CoB7S−·SCoM), which undergoes electron transfer to regenerate Ni(I) and the final product CoBS-SCoM. This first rapid kinetics study of MCR with its natural substrates describes how an enzyme can enforce a strictly ordered ternary complex mechanism and serves as a template for identification of the reaction intermediates. PMID:25691570

  2. Methylenetetrahy-drofolate Reductase Gene Polymorphism in Patients Receiving Hemodialysis

    Directory of Open Access Journals (Sweden)

    Ermina Kiseljaković

    2010-04-01

    Full Text Available Methylenetetrahydrofolate Reductase (MTHFR is key enzyme in metabolism of homocysteine. Homozygotes for mutation (TT genotype have hyperhomocysteinemia, risk factor for atherosclerosis development. The aim of the study was to find out distribution of genotype frequencies of C677T MTHFR among patients on maintenance hemodialysis. Possible association of alleles and genotypes of C677T polymorphism of the MTHFR gene with age of onset, duration of dialysis and cause of kidney failure was studied also. Cross-sectional study includes 80 patients from Clinic of Hemodialysis KUCS in Sarajevo. In order to perform genotyping, isolated DNA was analyzed by RFLP-PCR and gel-electrophoresis. From total of 80 patients, 42.5% (n=24 were female, 57.5% (n=46 were male, mean age 54.59±1.78 years and duration of dialysis 79.92±6.32 months. Genotype distribution was: CC 51.2% (n=41, CT 37.5% (n=30 and TT 11.2% (n=9. Patients with wild-type genotype have longer duration of dialysis in month (87.1 ± 63.93 comparing to TT genotype patients (67.06 ± 39.3, with no statistical significance. T allele frequency was significantly higher in group of vascular and congenital cause of kidney failure (Pearson X2 =6.049, P<0.05 comparing to inflammation etiology group. Genotype distribution results are within the results other studies in Europe. Obtained results indicate that C677T polymorphism is not associated with onset, duration and cause of kidney failure in our hemodialysis population. There is an association of T allele of the MTHFR gene and vascular and congenital cause kidney failure.

  3. Hyperhomocysteinaemia, methylenetetrahydrofolate reductase polymorphism and risk of coronary artery disease.

    Science.gov (United States)

    Kerkeni, Mohsen; Addad, Faouzi; Chauffert, Maryline; Myara, Anne; Gerhardt, Marie; Chevenne, Didier; Trivin, François; Farhat, Mohamed Ben; Miled, Abdelhedi; Maaroufi, Khira

    2006-05-01

    Hyperhomocysteinaemia is an independent, graded risk factor for coronary artery disease (CAD). The methylenetetrahydrofolate reductase (MTHFR) polymorphism is associated with hyperhomcysteinaemia and may therefore influence individual susceptibility to CAD. We have investigated this risk factor in a Tunisian Arab population. Polymerase chain reaction-restriction fragment length polymorphism analysis was used to detect the C677T and A1298C variants of the MTHFR gene in 100 patients with CAD and 120 healthy controls. The severity of CAD was expressed as the number of affected vessels. Plasma total homocysteine (tHcy) concentration was determined using a direct chemiluminescence assay. MTHFR CC, CT and TT genotype frequencies in the CAD group were significantly different from those observed in the control group (49%, 35% and 16% versus 48.3%, 45.8% and 5.8%, respectively; P = 0.031). However, MTHFR AA, AC and CC genotypes frequencies in the CAD group were not significantly different from the control group ( P = 0.568). Patients with CAD showed higher plasma tHcy concentrations than patients without CAD (15.86 +/- 8.63 micromol/L versus 11.90 +/- 3.25 micromol/L, P MTHFR polymorphisms and the number of stenosed vessels. Patients with the MTHFR TT genotype had higher plasma tHcy, serum creatinine, cholesterol and triglyceride concentrations than patients with the MTHFR CC genotype. The C677T polymorphism of the MTHFR gene is associated with hyperhomocysteinaemia, lipid dysregulation and the presence of CAD in this Tunisian Arab population.

  4. Increased 5. cap alpha. -reductase activity in idiopathic hirsutism

    Energy Technology Data Exchange (ETDEWEB)

    Serafini, P.; Lobo, R.A.

    1985-01-01

    In vitro, genital skin 5..cap alpha..-reductase activity (5..cap alpha..-RA) was measured in ten hirsute women with normal androgen levels (idiopathic hirsutism (IH)) and in ten hirsute women with elevated androgen levels (polycystic ovary syndrome (PCO)) in order to determine the influence of secreted androgens on 5..cap alpha..-RA. In vitro 5..cap alpha..-RA was assessed by incubations of skin with /sup 14/C-testosterone (T) for 2 hours, after which steroids were separated and the radioactivity of dihydrotestosterone (DHT) and 5..cap alpha..-androstane 3..cap alpha..-17..beta..-estradiol (3..cap alpha..-diol) in specific eluates were determined. All androgens were normal in IH with the exception of higher levels of 3..cap alpha..-diol glucuronide which were similar to the levels of PCO. The conversion ratio (CR) of T to DHT in IH and PCO were similar, yet significantly greater than the CR of control subjects. The CR of T to 3..cap alpha..-diol in IH and PCO were similar, yet higher than in control subjects. Serum androgens showed no correlation with 5..cap alpha..-RA, while the CR of T to DHT showed a significant positive correlation with the Ferriman and Gallwey score. The increased 5..cap alpha..-RA in IH appears to be independent of serum androgen levels and is, therefore, an inherent abnormality. The term idiopathic is a misnomer, because hirsutism in these patients may be explained on the basis of increased skin 5..cap alpha..-RA.

  5. Rapid Identification of Aldose Reductase Inhibitory Compounds from Perilla frutescens

    Science.gov (United States)

    Paek, Ji Hun; Shin, Kuk Hyun; Kang, Young-Hee; Lee, Jae-Yong; Lim, Soon Sung

    2013-01-01

    The ethyl acetate (EtOAc) soluble fraction of methanol extracts of Perilla frutescens (P. frutescens) inhibits aldose reductase (AR), the key enzyme in the polyol pathway. Our investigation of inhibitory compounds from the EtOAc soluble fraction of P. frutescens was followed by identification of the inhibitory compounds by a combination of HPLC microfractionation and a 96-well enzyme assay. This allowed the biological activities to be efficiently matched with selected HPLC peaks. Structural analyses of the active compounds were performed by LC-MSn. The main AR inhibiting compounds were tentatively identified as chlorogenic acid and rosmarinic acid by LC-MSn. A two-step high speed counter current chromatography (HSCCC) isolation method was developed with a solvent system of n-hexane-ethyl acetate-methanol-water at 1.5 : 5 : 1 : 5, v/v and 3 : 7 : 5 : 5, v/v. The chemical structures of the isolated compounds were determined by 1H- and 13C-nuclear magnetic resonance spectrometry (NMR). The main compounds inhibiting AR in the EtOAc fraction of methanol extracts of P. frutescens were identified as chlorogenic acid (2) (IC50 = 3.16 μM), rosmarinic acid (4) (IC50 = 2.77 μM), luteolin (5) (IC50 = 6.34 μM), and methyl rosmarinic acid (6) (IC50 = 4.03 μM). PMID:24308003

  6. Association of Suicidality and Depression With 5α-Reductase Inhibitors.

    Science.gov (United States)

    Welk, Blayne; McArthur, Eric; Ordon, Michael; Anderson, Kelly K; Hayward, Jade; Dixon, Stephanie

    2017-05-01

    There have been concerns raised by patients and regulatory agencies regarding serious psychiatric adverse effects associated with 5α-reductase inhibitors. To determine if there is an increased risk of suicide, self-harm, or depression among older men starting a 5α-reductase inhibitor for prostatic enlargement. A population-based, retrospective, matched cohort study using linked administrative data for 93 197 men ages 66 years or older (median [IQR] age, 75 [70-80] years) in Ontario, Canada, who initiated a new prescription for a 5α-reductase inhibitor during the study period (2003 through 2013). Participants were matched (using a propensity score that included 44 of our 96 covariates that included medical comorbidities, medication usage, and health care system utilization) to an equal number of men not prescribed a 5α-reductase inhibitor. Duration of finasteride or dutasteride usage. Suicide. Secondary outcomes were self-harm and depression. Men who used 5α-reductase inhibitors were not at a significantly increased risk of suicide (HR, 0.88; 95% CI, 0.53-1.45). Risk of self-harm was significantly increased during the initial 18 months after 5α-reductase inhibitor initiation (HR, 1.88; 95% CI, 1.34-2.64), but not thereafter. Incident depression risk was elevated during the initial 18 months after 5α-reductase inhibitor initiation (HR, 1.94; 95% CI, 1.73-2.16), and continued to be elevated, but to a lesser degree, for the remainder of the follow-up period (HR, 1.22; 95% CI, 1.08-1.37). The absolute increases in the event rates for these 2 outcomes were 17 per 100 000 patient-years and 237 per 100 000 patient-years, respectively. The type of 5α-reductase inhibitor (finasteride or dutasteride) did not significantly modify the observed associations with suicide, self-harm, and depression. In a large cohort of men ages 66 years or older, we did not demonstrate an increased risk of suicide associated with 5α-reductase inhibitor use. However, the risk of

  7. Detection of Bacillus anthracis spores and a model protein using PEMC sensors in a flow cell at 1 mL/min.

    Science.gov (United States)

    Campbell, Gossett A; Mutharasan, Raj

    2006-07-15

    Piezoelectric-excited millimeter-sized cantilever (PEMC) sensors of 4mm(2) sensing area were immobilized with antibody specific to Bacillus anthracis (anti-BA) spores or bovine serum albumin (anti-BSA). Detection of pathogen (Bacillus anthracis (BA) at 300 spores/mL) and BSA (1 mg/mL) were investigated under both stagnant and flow conditions. Two flow cell designs were evaluated by characterizing flow-induced resonant frequency shifts. One of the flow cells labeled SFC-2 (hold-up volume of 0.3 mL), showed small fluctuations (+/-20 Hz) around a common resonant frequency response of 217 Hz in the flow rate range of 1-17 mL/min. The total resonant frequency change obtained for the binding of 300 spores/mL in 1h was 90+/-5 Hz (n=2), and 162+/-10 Hz (n=2) under stagnant and flow conditions, respectively. Binding of antibodies, anti-BA and anti-BSA, were more rapid under flow than under stagnant conditions. The sensor was repeatedly exposed to BSA with an intermediate release step. The first and second responses to BSA were nearly identical. The total resonant frequency response to BSA was 388+/-10 (n=2) Hz under flow conditions. Kinetic analysis is carried out to quantify the effect of flow rate on antibody immobilization and the two types of detection experiments.

  8. Test methods and response surface models for hot, humid air decontamination of materials contaminated with dirty spores of Bacillus anthracis ∆Sterne and Bacillus thuringiensis Al Hakam.

    Science.gov (United States)

    Buhr, T L; Young, A A; Barnette, H K; Minter, Z A; Kennihan, N L; Johnson, C A; Bohmke, M D; DePaola, M; Cora-Laó, M; Page, M A

    2015-11-01

    To develop test methods and evaluate survival of Bacillus anthracis ∆Sterne or Bacillus thuringiensis Al Hakam on materials contaminated with dirty spore preparations after exposure to hot, humid air using response surface modelling. Spores (>7 log10 ) were mixed with humic acid + spent sporulation medium (organic debris) or kaolin (dirt debris). Spore samples were then dried on five different test materials (wiring insulation, aircraft performance coating, anti-skid, polypropylene, and nylon). Inoculated materials were tested with 19 test combinations of temperature (55, 65, 75°C), relative humidity (70, 80, 90%) and time (1, 2, 3 days). The slowest spore inactivation kinetics was on nylon webbing and/or after addition of organic debris. Hot, humid air effectively decontaminates materials contaminated with dirty Bacillus spore preparations; debris and material interactions create complex decontamination kinetic patterns; and B. thuringiensis Al Hakam is a realistic surrogate for B. anthracis. Response surface models of hot, humid air decontamination were developed which may be used to select decontamination parameters for contamination scenarios including aircraft. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  9. Recombinant pinoresinol-lariciresinol reductases from western red cedar (Thuja plicata) catalyze opposite enantiospecific conversions.

    Science.gov (United States)

    Fujita, M; Gang, D R; Davin, L B; Lewis, N G

    1999-01-08

    Although the heartwood of woody plants represents the main source of fiber and solid wood products, essentially nothing is known about how the biological processes leading to its formation are initiated and regulated. Accordingly, a reverse transcription-polymerase chain reaction-guided cloning strategy was employed to obtain genes encoding pinoresinol-lariciresinol reductases from western red cedar (Thuja plicata) as a means to initiate the study of its heartwood formation. (+)-Pinoresinol-(+)-lariciresinol reductase from Forsythia intermedia was used as a template for primer construction for reverse transcription-polymerase chain reaction amplifications, which, when followed by homologous hybridization cloning, resulted in the isolation of two distinct classes of putative pinoresinol-lariciresinol reductase cDNA clones from western red cedar. A representative of each class was expressed as a fusion protein with beta-galactosidase and assayed for enzymatic activity. Using both deuterated and radiolabeled (+/-)-pinoresinols as substrates, it was established that each class of cDNA encoded a pinoresinol-lariciresinol reductase of different (opposite) enantiospecificity. Significantly, the protein from one class converted (+)-pinoresinol into (-)-secoisolariciresinol, whereas the other utilized the opposite (-)-enantiomer to give the corresponding (+)-form. This differential substrate specificity raises important questions about the role of each of these individual reductases in heartwood formation, such as whether they are expressed in different cells/tissues or at different stages during heartwood development.

  10. Structural and biochemical properties of cloned and expressed human and rat steroid 5α-reductases

    International Nuclear Information System (INIS)

    Andersson, S.; Russell, D.W.

    1990-01-01

    The microsomal enzyme steroid 5α-reductase is responsible for the conversion of testosterone into the more potent androgen dihydrotestosterone. In man, this steroid acts on a variety of androgen-responsive target tissues to mediate such diverse endocrine processes as male sexual differentiation in the fetus and prostatic growth in men. Here we describe the isolation, structure, and expression of a cDNA encoding the human steroid 5α-reductase. A rat cDNA was used as a hybridization probe to screen a human prostate cDNA library. A 2.1-kilobase cDNA was identified and DNA sequence analysis indicated that the human steroid 5α-reductase was a hydrophobic protein of 259 amino acids with a predicted molecular weight of 29,462. A comparison of the human and rat protein sequences revealed a 60% identity. Transfection of expression vectors containing the human and rat cDNAs into simian COS cells resulted in the synthesis of high levels of steroid 5α-reductase enzyme activity. Both enzymes expressed in COS cells showed similar substrate specificities for naturally occurring steroid hormones. However, synthetic 4-azasteroids demonstrated marked differences in their abilities to inhibit the human and rat steroid 5α-reductases

  11. INHIBITORY ACTIVITY OF FLAVONOIDS ON THE LENS ALDOSE REDUCTASE OF HEALTHY AND DIABETIC RATS

    Directory of Open Access Journals (Sweden)

    M. T. Goodarzi

    2006-05-01

    Full Text Available Aldose reductase is a critical enzyme in the polyol pathway that plays an important role in diabetes mellitus. Inhibition of the activity of this enzyme can prevent cataract in diabetic patients’lenses. In this study the inhibitory effect of two flavonoids, quercetin and naringin, in the activity of aldose reductase in streptozotocin-induced diabetic and healthy rats were investigated. Thirty male rats were divided in six groups. The first, second and third group were healthy rats that received water,quercetin and naringin, respectively. The fourth, fifth and sixth groups were streptozocin-induced diabetic rats that received water, quercetin and naringin, respectively. These rats were fed orally in a definite dose from each substance for 12 days. After this period rats were scarified and their lenses were separated and homogenized. The activity of aldose reductase was measured in each homogenized sample separately. The effect of feeding of these substances in blood sugar was also determined. Aldose reductase activity was reduced 73 and 69 percent in diabetic rats fed by quercetin and naringin, respectively, and the difference compared to control group was significant. In healthy rats this reduction was 63 and 59 percent, respectively, and the difference was significant compared to those who did not receive flavonoids. It was concluded that these substances were effective in reduction of aldose reductase activity in vivo and consequently could delay the progress of cataract.

  12. A Single Mutation Increases the Activity and Stability of Pectobacterium carotovorum Nitrile Reductase.

    Science.gov (United States)

    Zhou, Zheng; Li, Min; Xu, Jian-He; Zhang, Zhi-Jun

    2018-03-02

    Nitrile reductases are considered to be promising and environmentally benign nitrile-reducing biocatalysts to replace traditional metal catalysts. Unfortunately, the catalytic efficiencies of the nitrile reductases reported so far are very low. To date, all attempts to increase the catalytic activity of nitrile reductases by protein engineering have failed. In this work, we successfully increased the specific activity of a nitrile reductase from Pectobacterium carotovorum from 354 to 526 U g prot -1 by engineering the substrate binding pocket; moreover, the thermostability was also improved (≈2-fold), showing half-lives of 140 and 32 h at 30 and 40 °C, respectively. In the bioreduction of 2-amino-5-cyanopyrrolo[2,3-d]pyrimidin-4-one (preQ 0 ) to 2-amino-5-aminomethylpyrrolo[2,3-d]pyrimidin-4-one (preQ 1 ), the variant was advantageous over the wild-type enzyme with a higher reaction rate and complete conversion of the substrate within a shorter period. Homology modeling and docking analysis revealed some possible origins of the increased activity and stability. These results establish a solid basis for future engineering of nitrile reductases to increase the catalytic efficiency further, which is a prerequisite for applying these novel biocatalysts in synthetic chemistry. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Comparative modelling and molecular docking of nitrate reductase from Bacillus weihenstephanensis (DS45

    Directory of Open Access Journals (Sweden)

    R. Seenivasagan

    2016-07-01

    Full Text Available Nitrate reductase catalyses the oxidation of NAD(PH and the reduction of nitrate to nitrite. NR serves as a central point for the integration of metabolic pathways by governing the flux of reduced nitrogen through several regulatory mechanisms in plants, algae and fungi. Bacteria express nitrate reductases that convert nitrate to nitrite, but mammals lack these specific enzymes. The microbial nitrate reductase reduces toxic compounds to nontoxic compounds with the help of NAD(PH. In the present study, our results revealed that Bacillus weihenstephanensis expresses a nitrate reductase enzyme, which was made to generate the 3D structure of the enzyme. Six different modelling servers, namely Phyre2, RaptorX, M4T Server, HHpred, SWISS MODEL and Mod Web, were used for comparative modelling of the structure. The model was validated with standard parameters (PROCHECK and Verify 3D. This study will be useful in the functional characterization of the nitrate reductase enzyme and its docking with nitrate molecules, as well as for use with autodocking.

  14. Overexpression of Nitrate Reductase in Tobacco Delays Drought-Induced Decreases in Nitrate Reductase Activity and mRNA1

    Science.gov (United States)

    Ferrario-Méry, Sylvie; Valadier, Marie-Hélène; Foyer, Christine H.

    1998-01-01

    Transformed (cauliflower mosaic virus 35S promoter [35S]) tobacco (Nicotiana plumbaginifolia L.) plants constitutively expressing nitrate reductase (NR) and untransformed controls were subjected to drought for 5 d. Drought-induced changes in biomass accumulation and photosynthesis were comparable in both lines of plants. After 4 d of water deprivation, a large increase in the ratio of shoot dry weight to fresh weight was observed, together with a decrease in the rate of photosynthetic CO2 assimilation. Foliar sucrose increased in both lines during water stress, but hexoses increased only in leaves from untransformed controls. Foliar NO3− decreased rapidly in both lines and was halved within 2 d of the onset of water deprivation. Total foliar amino acids decreased in leaves of both lines following water deprivation. After 4 d of water deprivation no NR activity could be detected in leaves of untransformed plants, whereas about 50% of the original activity remained in the leaves of the 35S-NR transformants. NR mRNA was much more stable than NR activity. NR mRNA abundance increased in the leaves of the 35S-NR plants and remained constant in controls for the first 3 d of drought. On the 4th d, however, NR mRNA suddenly decreased in both lines. Rehydration at d 3 caused rapid recovery (within 24 h) of 35S-NR transcripts, but no recovery was observed in the controls. The phosphorylation state of the protein was unchanged by long-term drought. There was a strong correlation between maximal extractable NR activity and ambient photosynthesis in both lines. We conclude that drought first causes increased NR protein turnover and then accelerates NR mRNA turnover. Constitutive NR expression temporarily delayed drought-induced losses in NR activity. 35S-NR expression may therefore allow more rapid recovery of N assimilation following short-term water deficit. PMID:9576799

  15. Crystallization and preliminary X-ray diffraction analysis of maize aldose reductase

    Energy Technology Data Exchange (ETDEWEB)

    Kiyota, Eduardo [Laboratório de Biologia Estrutural, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas-SP (Brazil); Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas-SP (Brazil); Sousa, Sylvia Morais de [Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas-SP (Brazil); Santos, Marcelo Leite dos; Costa Lima, Aline da [Laboratório de Biologia Estrutural, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas-SP (Brazil); Menossi, Marcelo [Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas-SP (Brazil); Yunes, José Andrés [Laboratório de Biologia Molecular, Centro Infantil Boldrini, Campinas-SP (Brazil); Aparicio, Ricardo, E-mail: aparicio@iqm.unicamp.br [Laboratório de Biologia Estrutural, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas-SP (Brazil)

    2007-11-01

    Preliminary X-ray diffraction studies of apo maize aldose reductase at 2.0 Å resolution are reported. Maize aldose reductase (AR) is a member of the aldo-keto reductase superfamily. In contrast to human AR, maize AR seems to prefer the conversion of sorbitol into glucose. The apoenzyme was crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 47.2, b = 54.5, c = 100.6 Å and one molecule in the asymmetric unit. Synchrotron X-ray diffraction data were collected and a final resolution limit of 2.0 Å was obtained after data reduction. Phasing was carried out by an automated molecular-replacement procedure and structural refinement is currently in progress. The refined structure is expected to shed light on the functional/enzymatic mechanism and the unusual activities of maize AR.

  16. Sexual side effects of 5-α-reductase inhibitors finasteride and dutasteride: A comprehensive review.

    Science.gov (United States)

    Fertig, Raymond M; Gamret, A Caresse; Darwin, Evan; Gaudi, Sudeep

    2017-11-11

    The 5-α-reductase inhibitors finasteride and dutasteride are frequently used in the treatment of androgenetic alopecia and benign prostatichyperplasia. These drugs are effective at reducing levels of dihydrotestosterone, the primary androgen responsible for the pathogenesis of both these conditions. However, finasteride and dutasteride have also been shown to produce an increase in the incidence of sexual dysfunction, namely, impotence, decreased libido, and ejaculation disorder. The purpose of this study is to review the existing medical literature with regard to the sexual side effects of 5-α-reductase inhibitor therapy. This review is an extensive look at the sexual effects of 5-α-reductase inhibitors and compares outcomes for finasteride versus dutasteride in addition to comparing sexualside effects for each of the different dosages prescribed of finasteride and dutasteride.

  17. Atorvastatin calcium: an addition to HMG-CoA reductase inhibitors.

    Science.gov (United States)

    Chong, P H; Seeger, J D

    1997-01-01

    Atorvastatin calcium is an HMG-coenzyme A (CoA) reductase inhibitor that was approved by the Food and Drug Administration on December 17, 1996. Like other such agents, it inhibits the action of HMG-CoA reductase and thereby decreases endogenous cholesterol synthesis, leading to a decrease in circulating low-density lipoprotein cholesterol. In addition to its effect on lipoprotein profile, atorvastatin reduces triglycerides to a greater extent than other HMG-CoA reductase inhibitors. These actions occur in a dose-dependent fashion. The adverse effect profile is similar to that of other agents in this class. Indications for atorvastatin include primary hypercholesterolemia as well as other lipid disorders.

  18. Crystallization and preliminary X-ray diffraction analysis of maize aldose reductase

    International Nuclear Information System (INIS)

    Kiyota, Eduardo; Sousa, Sylvia Morais de; Santos, Marcelo Leite dos; Costa Lima, Aline da; Menossi, Marcelo; Yunes, José Andrés; Aparicio, Ricardo

    2007-01-01

    Preliminary X-ray diffraction studies of apo maize aldose reductase at 2.0 Å resolution are reported. Maize aldose reductase (AR) is a member of the aldo-keto reductase superfamily. In contrast to human AR, maize AR seems to prefer the conversion of sorbitol into glucose. The apoenzyme was crystallized in space group P2 1 2 1 2 1 , with unit-cell parameters a = 47.2, b = 54.5, c = 100.6 Å and one molecule in the asymmetric unit. Synchrotron X-ray diffraction data were collected and a final resolution limit of 2.0 Å was obtained after data reduction. Phasing was carried out by an automated molecular-replacement procedure and structural refinement is currently in progress. The refined structure is expected to shed light on the functional/enzymatic mechanism and the unusual activities of maize AR

  19. Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2.

    Science.gov (United States)

    Vasconcelos, Marta; Eckert, Helene; Arahana, Venancio; Graef, George; Grusak, Michael A; Clemente, Tom

    2006-10-01

    Soybean (Glycine max Merr.) production is reduced under iron-limiting calcareous soils throughout the upper Midwest regions of the US. Like other dicotyledonous plants, soybean responds to iron-limiting environments by induction of an active proton pump, a ferric iron reductase and an iron transporter. Here we demonstrate that heterologous expression of the Arabidopsis thaliana ferric chelate reductase gene, FRO2, in transgenic soybean significantly enhances Fe(+3) reduction in roots and leaves. Root ferric reductase activity was up to tenfold higher in transgenic plants and was not subjected to post-transcriptional regulation. In leaves, reductase activity was threefold higher in the transgenic plants when compared to control. The enhanced ferric reductase activity led to reduced chlorosis, increased chlorophyll concentration and a lessening in biomass loss in the transgenic events between Fe treatments as compared to control plants grown under hydroponics that mimicked Fe-sufficient and Fe-deficient soil environments. However, the data indicate that constitutive FRO2 expression under non-iron stress conditions may lead to a decrease in plant productivity as reflected by reduced biomass accumulation in the transgenic events under non-iron stress conditions. When grown at Fe(III)-EDDHA levels greater than 10 microM, iron concentration in the shoots of transgenic plants was significantly higher than control. The same observation was found in the roots in plants grown at iron levels higher than 32 microM Fe(III)-EDDHA. These results suggest that heterologous expression of an iron chelate reductase in soybean can provide a route to alleviate iron deficiency chlorosis.

  20. Characterisation of a desmosterol reductase involved in phytosterol dealkylation in the silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Leonora F Ciufo

    Full Text Available Most species of invertebrate animals cannot synthesise sterols de novo and many that feed on plants dealkylate phytosterols (mostly C(29 and C(28 yielding cholesterol (C(27. The final step of this dealkylation pathway involves desmosterol reductase (DHCR24-catalysed reduction of desmosterol to cholesterol. We now report the molecular characterisation in the silkworm, Bombyx mori, of such a desmosterol reductase involved in production of cholesterol from phytosterol, rather than in de novo synthesis of cholesterol. Phylogenomic analysis of putative desmosterol reductases revealed the occurrence of various clades that allowed for the identification of a strong reductase candidate gene in Bombyx mori (BGIBMGA 005735. Following PCR-based cloning of the cDNA (1.6 kb and its heterologous expression in Saccharomyces cerevisae, the recombinant protein catalysed reduction of desmosterol to cholesterol in an NADH- and FAD-dependent reaction.Conceptual translation of the cDNA, that encodes a 58.9 kDa protein, and database searching, revealed that the enzyme belongs to an FAD-dependent oxidoreductase family. Western blotting revealed reductase protein expression exclusively in the microsomal subcellular fraction and primarily in the gut. The protein is peripherally associated with microsomal membranes. 2D-native gel and PAGE analysis revealed that the reductase is part of a large complex with molecular weight approximately 250 kDa. The protein occurs in midgut microsomes at a fairly constant level throughout development in the last two instars, but is drastically reduced during the wandering stage in preparation for metamorphosis. Putative Broad Complex transcription factor-binding sites detectable upstream of the DHCR24 gene may play a role in this down-regulation.

  1. Inhibition of human anthracycline reductases by emodin — A possible remedy for anthracycline resistance

    International Nuclear Information System (INIS)

    Hintzpeter, Jan; Seliger, Jan Moritz; Hofman, Jakub; Martin, Hans-Joerg; Wsol, Vladimir; Maser, Edmund

    2016-01-01

    The clinical application of anthracyclines, like daunorubicin and doxorubicin, is limited by two factors: dose-related cardiotoxicity and drug resistance. Both have been linked to reductive metabolism of the parent drug to their metabolites daunorubicinol and doxorubicinol, respectively. These metabolites show significantly less anti-neoplastic properties as their parent drugs and accumulate in cardiac tissue leading to chronic cardiotoxicity. Therefore, we aimed to identify novel and potent natural inhibitors for anthracycline reductases, which enhance the anticancer effect of anthracyclines by preventing the development of anthracycline resistance. Human enzymes responsible for the reductive metabolism of daunorubicin were tested for their sensitivity towards anthrachinones, in particular emodin and anthraflavic acid. Intense inhibition kinetic data for the most effective daunorubicin reductases, including IC 50 - and K i -values, the mode of inhibition, as well as molecular docking, were compiled. Subsequently, a cytotoxicity profile and the ability of emodin to reverse daunorubicin resistance were determined using multiresistant A549 lung cancer and HepG2 liver cancer cells. Emodin potently inhibited the four main human daunorubicin reductases in vitro. Further, we could demonstrate that emodin is able to synergistically sensitize human cancer cells towards daunorubicin at clinically relevant concentrations. Therefore, emodin may yield the potential to enhance the therapeutic effectiveness of anthracyclines by preventing anthracycline resistance via inhibition of the anthracycline reductases. In symphony with its known pharmacological properties, emodin might be a compound of particular interest in the management of anthracycline chemotherapy efficacy and their adverse effects. - Highlights: • Natural and synthetic compounds were identified as inhibitors for human daunorubicin reductases. • Emodin is a potent inhibitor for human daunorubicin reductases.

  2. BIOLOGICAL ROLE OF ALDO-KETO REDUCTASES IN RETINOIC ACID BIOSYNTHESIS AND SIGNALING

    Directory of Open Access Journals (Sweden)

    F. Xavier eRuiz

    2012-04-01

    Full Text Available Several aldo-keto reductase (AKR enzymes from subfamilies 1B and 1C show retinaldehyde reductase activity, having low Km and kcat values. Only AKR1B10 and 1B12, with all-trans-retinaldehyde, and AKR1C3, with 9-cis-retinaldehyde, display high catalytic efficiency. Major structural determinants for retinaldehyde isomer specificity are located in the external loops (A and C for AKR1B10, and B for AKR1C3, as assessed by site-directed mutagenesis and molecular dynamics. Cellular models have shown that AKR1B and 1C enzymes are well suited to work in vivo as retinaldehyde reductases and to regulate retinoic acid (RA biosynthesis at hormone pre-receptor level. An additional physiological role for the retinaldehyde reductase activity of these enzymes, consistent with their tissue localization, is their participation in β-carotene absorption. Retinaldehyde metabolism may be subjected to subcellular compartmentalization, based on enzyme localization. While retinaldehyde oxidation to RA takes place in the cytosol, reduction to retinol could take place in the cytosol by AKRs or in the membranes of endoplasmic reticulum by microsomal retinaldehyde reductases. Upregulation of some AKR1 enzymes in different cancer types may be linked to their induction by oxidative stress and to their participation in different signaling pathways related to cell proliferation. AKR1B10 and AKR1C3, through their retinaldehyde reductase activity, trigger a decrease in the RA biosynthesis flow, resulting in RA deprivation and consequently lower differentiation, with an increased cancer risk in target tissues. Rational design of selective AKR inhibitors could lead to development of novel drugs for cancer treatment as well as reduction of chemotherapeutic drug resistance.

  3. The electron transfer reactions of NADPH: cytochrome P450 reductase with nonphysiological oxidants.

    Science.gov (United States)

    Cénas, N; Anusevicius, Z; Bironaité, D; Bachmanova, G I; Archakov, A I; Ollinger, K

    1994-12-01

    The steady-state kinetics of oxidation of rat liver NADPH: cytochrome P450 reductase (EC 1.6.2.4) by quinones, aromatic nitrocompounds, ferricyanide, Fe(EDTA)-, and cytochrome c has been studied. The logarithms of bimolecular rate constants of reduction (kcat/Km) of quinones and nitrocompounds increase with the increase in their single-electronreduction potential (E1(7)), reaching a maximum value at E1(7) > -0.15 V. The reactivities of nitroaromatics are about by an order of magnitude lower than the reactivities of quinones. For a series of nitroaromatics including the compounds with previously undetermined E1(7) values, an orthogonality was found between their reactivities toward cytochrome P450 reductase, flavocytochrome b2 (EC 1.1.2.3), and the NADPH: adrenodoxin reductase (EC 1.18.1.2)-adrenodoxin system. This indicates the absence of significant specific interactions during these reactions. The effects of ionic strength on reaction kinetics and the character of inhibition by a product of reaction, NADP+, are in accordance with the reduction of oxidants at the negatively charged site in the surroundings of FMN of P450 reductase. Quinones inactivate oxidized reductase modifying the NADP(H) binding site. The redox cycling of quinones markedly slows the inactivation. The kinetic data presented are consistent with an outer-sphere electron transfer mechanism. The analysis of kinetics of reduction of cytochrome c, ferricyanide, and Fe(EDTA)- using the model of Mauk et al. (A. G. Mauk, R. A. Scott, and H. B. Gray (1980) J. Am. Chem. Soc. 102, 4360-4363) gives calculated distances of FMN from the surface of protein globule, 0.33-0.63 nm. The data from nitroreductase reactions of cytochrome P450 reductase, flavocytochrome b2, and adrenodoxin were used for approximate evaluation of previously unknown E1(7) of nitrocompounds.

  4. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae

    Science.gov (United States)

    Aldehyde reductase gene ARI1 is a recently characterized member of intermediate subfamily under SDR (short-chain dehydrogenase/reductase) superfamily that revealed mechanisms of in situ detoxification of furfural and HMF for tolerance of Saccharomyces cerevisiae. Uncharacterized open reading frames ...

  5. Structure of diaminohydroxyphosphoribosylaminopyrimidine deaminase/5-amino-6-(5-phosphoribosylamino)uracil reductase from Acinetobacter baumannii.

    Science.gov (United States)

    Dawson, Alice; Trumper, Paul; Chrysostomou, Georgios; Hunter, William N

    2013-06-01

    The bifunctional diaminohydroxyphosphoribosylaminopyrimidine deaminase/5-amino-6-(5-phosphoribosylamino)uracil reductase (RibD) represents a potential antibacterial drug target. The structure of recombinant Acinetobacter baumannii RibD is reported in orthorhombic and tetragonal crystal forms at 2.2 and 2.0 Å resolution, respectively. Comparisons with orthologous structures in the Protein Data Bank indicated close similarities. The tetragonal crystal form was obtained in the presence of guanosine monophosphate, which surprisingly was observed to occupy the adenine-binding site of the reductase domain.

  6. Chloroplast Fe(III) chelate reductase activity is essential for seedling viability under iron limiting conditions

    OpenAIRE

    Jeong, Jeeyon; Cohu, Christopher; Kerkeb, Loubna; Pilon, Marinus; Connolly, Erin L.; Guerinot, Mary Lou

    2008-01-01

    Photosynthesis, heme biosynthesis, and Fe-S cluster assembly all take place in the chloroplast, and all require iron. Reduction of iron via a membrane-bound Fe(III) chelate reductase is required before iron transport across membranes in a variety of systems, but to date there has been no definitive genetic proof that chloroplasts have such a reduction system. Here we report that one of the eight members of the Arabidopsis ferric reductase oxidase (FRO) family, FRO7, localizes to the chloropla...

  7. Why Is Mammalian Thioredoxin Reductase 1 So Dependent upon the Use of Selenium?

    OpenAIRE

    Lothrop, Adam P.; Snider, Gregg W.; Ruggles, Erik L.; Hondal, Robert J.

    2014-01-01

    Cytosolic thioredoxin reductase 1 (TR1) is the best characterized of the class of high-molecular weight (M r) thioredoxin reductases (TRs). TR1 is highly dependent upon the rare amino acid selenocysteine (Sec) for the reduction of thioredoxin (Trx) and a host of small molecule substrates, as mutation of Sec to cysteine (Cys) results in a large decrease in catalytic activity for all substrate types. Previous work in our lab and others has shown that the mitochondrial TR (TR3) is much less depe...

  8. Crystallization and preliminary X-ray diffraction studies of ferredoxin reductase from Leptospira interrogans

    International Nuclear Information System (INIS)

    Nascimento, Alessandro S.; Ferrarezi, Thiago; Catalano-Dupuy, Daniela L.; Ceccarelli, Eduardo A.; Polikarpov, Igor

    2006-01-01

    Crystals adequate for X-ray diffraction analysis have been prepared from L. interrogans ferredoxin-NADP + reductase. Ferredoxin-NADP + reductase (FNR) is an FAD-containing enzyme that catalyzes electron transfer between NADP(H) and ferredoxin. Here, results are reported of the recombinant expression, purification and crystallization of FNR from Leptospira interrogans, a parasitic bacterium of animals and humans. The L. interrogans FNR crystals belong to a primitive monoclinic space group and diffract to 2.4 Å resolution at a synchrotron source

  9. Crystallization and preliminary X-ray diffraction studies of ferredoxin reductase from Leptospira interrogans

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Alessandro S.; Ferrarezi, Thiago [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970 (Brazil); Catalano-Dupuy, Daniela L.; Ceccarelli, Eduardo A. [Facultad de Ciencias Bioquímicas y Farmacéuticas, Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario (Argentina); Polikarpov, Igor, E-mail: ipolikarpov@if.sc.usp.br [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970 (Brazil)

    2006-07-01

    Crystals adequate for X-ray diffraction analysis have been prepared from L. interrogans ferredoxin-NADP{sup +} reductase. Ferredoxin-NADP{sup +} reductase (FNR) is an FAD-containing enzyme that catalyzes electron transfer between NADP(H) and ferredoxin. Here, results are reported of the recombinant expression, purification and crystallization of FNR from Leptospira interrogans, a parasitic bacterium of animals and humans. The L. interrogans FNR crystals belong to a primitive monoclinic space group and diffract to 2.4 Å resolution at a synchrotron source.

  10. Is decreased libido associated with the use of HMG-CoA-reductase inhibitors?

    Science.gov (United States)

    de Graaf, L; Brouwers, A H P M; Diemont, W L

    2004-09-01

    To describe patients with decreased libido during use of a HMG-CoA-reductase-inhibitor, and to discuss causality and pharmacological hypotheses for this association by analysis of the adverse drug reactions (ADR) database of the Netherlands Pharmacovigilance Centre Lareb. Eight patients were identified as having decreased libido during use of statins. In two of these cases testosterone levels were determined and appeared to be decreased. Decreased libido is a probable adverse drug reaction of HMG-CoA-reductase-inhibitors and is reversible. The ADR may be caused by low serum testosterone levels, mainly due to intracellular cholesterol depletion.

  11. Alpha 1-blockers vs 5 alpha-reductase inhibitors in benign prostatic hyperplasia. A comparative review

    DEFF Research Database (Denmark)

    Andersen, J T

    1995-01-01

    During recent years, pharmacological treatment of symptomatic benign prostatic hyperplasia (BPH) has become the primary treatment choice for an increasing number of patients. The 2 principal drug classes employed are alpha 1-blockers and 5 alpha-reductase inhibitors. Current information from...... of patients who will respond well to alpha 1-blockers have yet to be identified, and data concerning the long term effects of these drugs are not yet available. 5 alpha-Reductase inhibitors have a slow onset of effect, but treatment leads to improvement in symptoms, reduction of the size of the prostate gland...... or unwilling to undergo surgical resection of the prostate will benefit from such therapy....

  12. Escherichia coli ferredoxin-NADP+ reductase and oxygen-insensitive nitroreductase are capable of functioning as ferric reductase and of driving the Fenton reaction.

    Science.gov (United States)

    Takeda, Kouji; Sato, Junichi; Goto, Kazuyuki; Fujita, Takanori; Watanabe, Toshihiro; Abo, Mitsuru; Yoshimura, Etsuro; Nakagawa, Junichi; Abe, Akira; Kawasaki, Shinji; Niimura, Youichi

    2010-08-01

    Two free flavin-independent enzymes were purified by detecting the NAD(P)H oxidation in the presence of Fe(III)-EDTA and t-butyl hydroperoxide from E. coli. The enzyme that requires NADH or NADPH as an electron donor was a 28 kDa protein, and N-terminal sequencing revealed it to be oxygen-insensitive nitroreductase (NfnB). The second enzyme that requires NADPH as an electron donor was a 30 kDa protein, and N-terminal sequencing revealed it to be ferredoxin-NADP(+) reductase (Fpr). The chemical stoichiometry of the Fenton activities of both NfnB and Fpr in the presence of Fe(III)-EDTA, NAD(P)H and hydrogen peroxide was investigated. Both enzymes showed a one-electron reduction in the reaction forming hydroxyl radical from hydrogen peroxide. Also, the observed Fenton activities of both enzymes in the presence of synthetic chelate iron compounds were higher than their activities in the presence of natural chelate iron compounds. When the Fenton reaction occurs, the ferric iron must be reduced to ferrous iron. The ferric reductase activities of both NfnB and Fpr occurred with synthetic chelate iron compounds. Unlike NfnB, Fpr also showed the ferric reductase activity on an iron storage protein, ferritin, and various natural iron chelate compounds including siderophore. The Fenton and ferric reductase reactions of both NfnB and Fpr occurred in the absence of free flavin. Although the k(cat)/K(m) value of NfnB for Fe(III)-EDTA was not affected by free flavin, the k(cat)/K(m) value of Fpr for Fe(III)-EDTA was 12-times greater in the presence of free FAD than in the absence of free FAD.

  13. Hypothesis onSerenoa repens(Bartram) small extract inhibition of prostatic 5α-reductase through anin silicoapproach on 5β-reductase x-ray structure.

    Science.gov (United States)

    Governa, Paolo; Giachetti, Daniela; Biagi, Marco; Manetti, Fabrizio; De Vico, Luca

    2016-01-01

    Benign prostatic hyperplasia is a common disease in men aged over 50 years old, with an incidence increasing to more than 80% over the age of 70, that is increasingly going to attract pharmaceutical interest. Within conventional therapies, such as α -adrenoreceptor antagonists and 5 α -reductase inhibitor, there is a large requirement for treatments with less adverse events on, e.g., blood pressure and sexual function: phytotherapy may be the right way to fill this need. Serenoa repens standardized extract has been widely studied and its ability to reduce lower urinary tract symptoms related to benign prostatic hyperplasia is comprehensively described in literature. An innovative investigation on the mechanism of inhibition of 5 α -reductase by Serenoa repens extract active principles is proposed in this work through computational methods, performing molecular docking simulations on the crystal structure of human liver 5 β -reductase. The results confirm that both sterols and fatty acids can play a role in the inhibition of the enzyme, thus, suggesting a competitive mechanism of inhibition. This work proposes a further confirmation for the rational use of herbal products in the management of benign prostatic hyperplasia, and suggests computational methods as an innovative, low cost, and non-invasive process for the study of phytocomplex activity toward proteic targets.

  14. Multivalent Chromosomal Expression of the Clostridium botulinum Serotype A Neurotoxin Heavy-Chain Antigen and the Bacillus anthracis Protective Antigen in Lactobacillus acidophilus.

    Science.gov (United States)

    O'Flaherty, Sarah; Klaenhammer, Todd R

    2016-10-15

    Clostridium botulinum and Bacillus anthracis produce potent toxins that cause severe disease in humans. New and improved vaccines are needed for both of these pathogens. For mucosal vaccine delivery using lactic acid bacteria, chromosomal expression of antigens is preferred over plasmid-based expression systems, as chromosomal expression circumvents plasmid instability and the need for antibiotic pressure. In this study, we constructed three strains of Lactobacillus acidophilus NCFM expressing from the chromosome (i) the nontoxic host receptor-binding domain of the heavy chain of Clostridium botulinum serotype A neurotoxin (BoNT/A-Hc), (ii) the anthrax protective antigen (PA), and (iii) both the BoNT/A-Hc and the PA. The BoNT/A-Hc vaccine cassette was engineered to contain the signal peptide from the S-layer protein A from L. acidophilus and a dendritic-cell-targeting peptide. A chromosomal region downstream of lba0889 carrying a highly expressed enolase gene was selected for insertion of the vaccine cassettes. Western blot analysis confirmed the heterologous expression of the two antigens from plasmid and chromosome locations. Stability assays demonstrated loss of the vaccine cassettes from expression plasmids without antibiotic maintenance. RNA sequencing showed high expression of each antigen and that insertion of the vaccine cassettes had little to no effect on the transcription of other genes in the chromosome. This study demonstrated that chromosomal integrative recombinant strains are promising vaccine delivery vehicles when targeted into high-expression chromosomal regions. Levels of expression match high-copy-number plasmids and eliminate the requirement for antibiotic selective maintenance of recombinant plasmids. Clostridium botulinum and Bacillus anthracis produce potent neurotoxins that pose a biochemical warfare concern; therefore, effective vaccines against these bacteria are required. Chromosomal expression of antigens is preferred over plasmid

  15. False Negative Rates of a Macrofoam-Swab Sampling Method with Low Surface Concentrations of Two Bacillus anthracis Surrogates via Real-Time PCR

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, Janine R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Piepel, Gregory F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Amidan, Brett G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sydor, Michael A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deatherage Kaiser, Brooke L [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-01

    Surface sampling for Bacillus anthracis spores has traditionally relied on detection via bacterial cultivation methods. Although effective, this approach does not provide the level of organism specificity that can be gained through molecular techniques. False negative rates (FNR) and limits of detection (LOD) were determined for two B. anthracis surrogates with modified rapid viability-polymerase chain reaction (mRV-PCR) following macrofoam-swab sampling. This study was conducted in parallel with a previously reported study that analyzed spores using a plate-culture method. B. anthracis Sterne (BAS) or B. atrophaeus Nakamura (BG) spores were deposited onto four surface materials (glass, stainless steel, vinyl tile, and plastic) at nine target concentrations (2 to 500 spores/coupon; 0.078 to 19.375 colony-forming units [CFU] per cm²). Mean FNR values for mRV-PCR analysis ranged from 0 to 0.917 for BAS and 0 to 0.875 for BG and increased as spore concentration decreased (over the concentrations investigated) for each surface material. FNRs based on mRV-PCR data were not statistically different for BAS and BG, but were significantly lower for glass than for vinyl tile. FNRs also tended to be lower for the mRV-PCR method compared to the culture method. The mRV-PCR LOD₉₅ was lowest for glass (0.429 CFU/cm² with BAS and 0.341 CFU/cm² with BG) and highest for vinyl tile (0.919 CFU/cm² with BAS and 0.917 CFU/cm² with BG). These mRV-PCR LOD₉₅ values were lower than the culture values (BAS: 0.678 to 1.023 CFU/cm² and BG: 0.820 to 1.489 CFU/cm²). The FNR and LOD₉₅ values reported in this work provide guidance for environmental sampling of Bacillus spores at low concentrations.

  16. Three spinach leaf nitrate reductase-3-hydroxy-3-methylglutaryl-CoA reductase kinases that are regulated by reversible phosphorylation and/or Ca2+ ions.

    Science.gov (United States)

    Douglas, P; Pigaglio, E; Ferrer, A; Halfords, N G; MacKintosh, C

    1997-07-01

    In spinach (Spinacea oleracea L.) leaf extracts, three protein kinases (PKI, PKII and PKIII) were identified each of which phosphorylated spinach nitrate reductase on serine-543, and inactivated the enzyme in the presence of nitrate reductase inhibitor, 14-3-3. PKIII was also very active in phosphorylating and inactivating Arabidopsis (Landsberg erecta) 3-hydroxy-3-methylglutaryl-coenzyme A reductase 1 (HMGR1). PKI and PKII phosphorylated HMGR1 more slowly than PKIII, compared with their relative rates of phosphorylation of nitrate reductase. HMGR1 identical with those that are seen after phosphorylation of serine-577 by the sucrose non-fermenting (SNF1)-like PK, 3-hydroxy-3-methylglutaryl-Co A reductase kinase A (HRK-A), from cauliflower [Dale, Arró, Becerra, Morrice, Boronat, Hardie and Ferrer (1995) Eur. J. Biochem. 233, 506-513]. PKI was Ca2+-dependent when prepared in the absence of protein phosphatase (PP) inhibitors, and largely Ca2+-dependent when prepared in the presence of PP inhibitors (NaF and EGTA). The Ca2+-independent portion of PKI was inactivated by either PP2A or PP2C, while the Ca2+-dependent portion of PKI became increasingly activated during storage, which we presume was mimicking the effect of an unidentified PP. These findings indicate that PK1 is regulated by two functionally distinct phosphorylations. PKI had a molecular mass of 45 kDa on gel filtration and was active towards substrate peptides that terminated at the +2 residue from the phosphorylation site, whereas PKIII was inactive towards these peptides. PKII was Ca2+-stimulated under all conditions tested. PKIII was Ca2+-indepdented, inactivated by PP2A or PP2C, had a requirement for a hydrophobic residue in the +4 position of peptide substrates, had a molecular mass by gel filtration of approximately 140 kDa, and an antibody against the rye SNF1-related PK (RKIN1) recognized a 58 kDa subunit in fractions containing PKIII. These properties of PKIII are identical with those reported

  17. Three spinach leaf nitrate reductase-3-hydroxy-3-methylglutaryl-CoA reductase kinases that are required by reversible phosphorylation and/or Ca2+ ions.

    Science.gov (United States)

    Douglas, P; Pigaglio, E; Ferrer, A; Halfords, N G; MacKintosh, C

    1997-01-01

    In spinach (Spinacea oleracea L.) leaf extracts, three protein kinases (PKI, PKII and PKIII) were identified each of which phosphorylated spinach nitrate reductase on serine-543, and inactivated the enzyme in the presence of nitrate reductase inhibitor, 14-3-3. PKIII was also very active in phosphorylating and inactivating Arabidopsis (Landsberg erecta) 3-hydroxy-3-methylglutaryl-coenzyme A reductase 1 (HMGR1). PKI and PKII phosphorylated HMGR1 more slowly than PKIII, compared with their relative rates of phosphorylation of nitrate reductase. HMGR1 identical with those that are seen after phosphorylation of serine-577 by the sucrose non-fermenting (SNF1)-like PK, 3-hydroxy-3-methylglutaryl-Co A reductase kinase A (HRK-A), from cauliflower [Dale, Arró, Becerra, Morrice, Boronat, Hardie and Ferrer (1995) Eur. J. Biochem. 233, 506-513]. PKI was Ca2+-dependent when prepared in the absence of protein phosphatase (PP) inhibitors, and largely Ca2+-dependent when prepared in the presence of PP inhibitors (NaF and EGTA). The Ca2+-independent portion of PKI was inactivated by either PP2A or PP2C, while the Ca2+-dependent portion of PKI became increasingly activated during storage, which we presume was mimicking the effect of an unidentified PP. These findings indicate that PK1 is regulated by two functionally distinct phosphorylations. PKI had a molecular mass of 45 kDa on gel filtration and was active towards substrate peptides that terminated at the +2 residue from the phosphorylation site, whereas PKIII was inactive towards these peptides. PKII was Ca2+-stimulated under all conditions tested. PKIII was Ca2+-indepdented, inactivated by PP2A or PP2C, had a requirement for a hydrophobic residue in the +4 position of peptide substrates, had a molecular mass by gel filtration of approximately 140 kDa, and an antibody against the rye SNF1-related PK (RKIN1) recognized a 58 kDa subunit in fractions containing PKIII. These properties of PKIII are identical with those reported

  18. Differential stress-induced regulation of two quinone reductases in the brown rot Basidiomycete Gloeophyllum trabeum

    Science.gov (United States)

    Roni Cohen; Melissa R. Suzuki; Kenneth E. Hammel

    2004-01-01

    Quinone reductases (QRDs) have two important functions in the basidiomycete Gloeophyllum trabeum, which causes brown rot of wood. First, a QRD is required to generate biodegradative hydroxyl radicals via redox cycling between two G. trabeum extracellular metabolites, 2,5-dimethoxyhydroquinone (2,5-DMHQ) and 2,5-dimethoxy-1,4-benzoquinone (2,5- DMBQ). Second, because 2,...

  19. A Rational Approach to Identify Inhibitors of Mycobacterium tuberculosis Enoyl Acyl Carrier Protein Reductase

    Czech Academy of Sciences Publication Activity Database

    Chhabria, M. T.; Parmar, K. B.; Brahmkshatriya, Pathik

    2013-01-01

    Roč. 19, č. 21 (2013), s. 3878-3883 ISSN 1381-6128 Institutional support: RVO:61388963 Keywords : mycobacterium tuberculosis * enoyl acyl carrier protein reductase * pharmacophore modeling * molecular docking * binding interactions Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 3.288, year: 2013

  20. Studies on the kinetic mechanism of nitrate reductase from spinach (Spinacea oleracea).

    Science.gov (United States)

    de la Rosa, F F; Palacián, E; Castillo, F

    1980-09-01

    Based on Lineweaver-Burk plots of the initial velocities, at different concentrations of NADH and nitrate, and product inhibition patterns, an Iso Ping Pong Bi Bi steady state kinetic mechanism is proposed for the spinach nitrate reductase. This mechanism incorporates the concept that the oxidized enzyme is present in two isomeric forms.