WorldWideScience

Sample records for antenna positioning analysis

  1. An Optimal Design of Multiple Antenna Positions on Mobile Devices Based on Mutual Coupling Analysis

    Directory of Open Access Journals (Sweden)

    Peerapong Uthansakul

    2011-01-01

    Full Text Available The topic of practical implementation of multiple antenna systems for mobile communications has recently gained a lot of attention. Due to the area constraint on a mobile device, the problem of how to design such a system in order to achieve the best benefit is still a huge challenge. In this paper, genetic algorithm (GA is used to find the optimal antenna positions on a mobile device. Two cases of 3×3 and 4×4 MIMO systems are undertaken. The effect of mutual coupling based on Z-parameter is the main factor to determine the MIMO capacity concerning the objective function of GA search. The results confirm the success of the proposed method to design MIMO antenna positions on a mobile device. Moreover, this paper introduces the method to design the antenna positions for the condition of nondeterministic channel. The concern of channel variation has been included in the process of finding optimal MIMO antenna positions. The results suggest that the averaging position from all GA solutions according to all channel conditions provides the most acceptable benefit.

  2. Stochastic Analysis of the Efficiency of a Wireless Power Transfer System Subject to Antenna Variability and Position Uncertainties.

    Science.gov (United States)

    Rossi, Marco; Stockman, Gert-Jan; Rogier, Hendrik; Vande Ginste, Dries

    2016-07-19

    The efficiency of a wireless power transfer (WPT) system in the radiative near-field is inevitably affected by the variability in the design parameters of the deployed antennas and by uncertainties in their mutual position. Therefore, we propose a stochastic analysis that combines the generalized polynomial chaos (gPC) theory with an efficient model for the interaction between devices in the radiative near-field. This framework enables us to investigate the impact of random effects on the power transfer efficiency (PTE) of a WPT system. More specifically, the WPT system under study consists of a transmitting horn antenna and a receiving textile antenna operating in the Industrial, Scientific and Medical (ISM) band at 2.45 GHz. First, we model the impact of the textile antenna's variability on the WPT system. Next, we include the position uncertainties of the antennas in the analysis in order to quantify the overall variations in the PTE. The analysis is carried out by means of polynomial-chaos-based macromodels, whereas a Monte Carlo simulation validates the complete technique. It is shown that the proposed approach is very accurate, more flexible and more efficient than a straightforward Monte Carlo analysis, with demonstrated speedup factors up to 2500.

  3. Analysis of antenna position measurements and weather station network data during the ALMA long baseline campaign of 2015

    Science.gov (United States)

    Hunter, Todd R.; Lucas, Robert; Broguière, Dominique; Fomalont, Ed B.; Dent, William R. F.; Phillips, Neil; Rabanus, David; Vlahakis, Catherine

    2016-07-01

    In a radio interferometer, the geometrical antenna positions are determined from measurements of the observed delay to each antenna from observations across the sky of many point sources whose positions are known to high accuracy. The determination of accurate antenna positions relies on accurate calibration of the dry and wet delay of the atmosphere above each antenna. For the Atacama Large Millimeter/Submillimeter Array (ALMA), with baseline lengths up to 15 kilometers, the geography of the site forces the height above mean sea level of the more distant antenna pads to be significantly lower than the central array. Thus, both the ground level meteorological values and the total water column can be quite different between antennas in the extended configurations. During 2015, a network of six additional weather stations was installed to monitor pressure, temperature, relative humidity and wind velocity, in order to test whether inclusion of these parameters could improve the repeatability of antenna position determinations in these configurations. We present an analysis of the data obtained during the ALMA Long Baseline Campaign of October through November 2015. The repeatability of antenna position measurements typically degrades as a function of antenna distance. Also, the scatter is more than three times worse in the vertical direction than in the local tangent plane, suggesting that a systematic effect is limiting the measurements. So far we have explored correcting the delay model for deviations from hydrostatic equilibrium in the measured air pressure and separating the partial pressure of water from the total pressure using water vapor radiometer (WVR) data. Correcting for these combined effects still does not provide a good match to the residual position errors in the vertical direction. One hypothesis is that the current model of water vapor may be too simple to fully remove the day-to-day variations in the wet delay. We describe possible new avenues of

  4. Stochastic Analysis of the Efficiency of a Wireless Power Transfer System Subject to Antenna Variability and Position Uncertainties

    Directory of Open Access Journals (Sweden)

    Marco Rossi

    2016-07-01

    Full Text Available The efficiency of a wireless power transfer (WPT system in the radiative near-field is inevitably affected by the variability in the design parameters of the deployed antennas and by uncertainties in their mutual position. Therefore, we propose a stochastic analysis that combines the generalized polynomial chaos (gPC theory with an efficient model for the interaction between devices in the radiative near-field. This framework enables us to investigate the impact of random effects on the power transfer efficiency (PTE of a WPT system. More specifically, the WPT system under study consists of a transmitting horn antenna and a receiving textile antenna operating in the Industrial, Scientific and Medical (ISM band at 2.45 GHz. First, we model the impact of the textile antenna’s variability on the WPT system. Next, we include the position uncertainties of the antennas in the analysis in order to quantify the overall variations in the PTE. The analysis is carried out by means of polynomial-chaos-based macromodels, whereas a Monte Carlo simulation validates the complete technique. It is shown that the proposed approach is very accurate, more flexible and more efficient than a straightforward Monte Carlo analysis, with demonstrated speedup factors up to 2500.

  5. Stochastic Analysis of the Efficiency of a Wireless Power Transfer System Subject to Antenna Variability and Position Uncertainties

    Science.gov (United States)

    Rossi, Marco; Stockman, Gert-Jan; Rogier, Hendrik; Vande Ginste, Dries

    2016-01-01

    The efficiency of a wireless power transfer (WPT) system in the radiative near-field is inevitably affected by the variability in the design parameters of the deployed antennas and by uncertainties in their mutual position. Therefore, we propose a stochastic analysis that combines the generalized polynomial chaos (gPC) theory with an efficient model for the interaction between devices in the radiative near-field. This framework enables us to investigate the impact of random effects on the power transfer efficiency (PTE) of a WPT system. More specifically, the WPT system under study consists of a transmitting horn antenna and a receiving textile antenna operating in the Industrial, Scientific and Medical (ISM) band at 2.45 GHz. First, we model the impact of the textile antenna’s variability on the WPT system. Next, we include the position uncertainties of the antennas in the analysis in order to quantify the overall variations in the PTE. The analysis is carried out by means of polynomial-chaos-based macromodels, whereas a Monte Carlo simulation validates the complete technique. It is shown that the proposed approach is very accurate, more flexible and more efficient than a straightforward Monte Carlo analysis, with demonstrated speedup factors up to 2500. PMID:27447632

  6. Antenna theory: Analysis and design

    Science.gov (United States)

    Balanis, C. A.

    The book's main objective is to introduce the fundamental principles of antenna theory and to apply them to the analysis, design, and measurements of antennas. In a description of antennas, the radiation mechanism is discussed along with the current distribution on a thin wire. Fundamental parameters of antennas are examined, taking into account the radiation pattern, radiation power density, radiation intensity, directivity, numerical techniques, gain, antenna efficiency, half-power beamwidth, beam efficiency, bandwidth, polarization, input impedance, and antenna temperature. Attention is given to radiation integrals and auxiliary potential functions, linear wire antennas, loop antennas, linear and circular arrays, self- and mutual impedances of linear elements and arrays, broadband dipoles and matching techniques, traveling wave and broadband antennas, frequency independent antennas and antenna miniaturization, the geometrical theory of diffraction, horns, reflectors and lens antennas, antenna synthesis and continuous sources, and antenna measurements.

  7. Measurement of LHCD antenna position in Aditya tokamak

    International Nuclear Information System (INIS)

    Ambulkar, K K; Sharma, P K; Virani, C G; Parmar, P R; Thakur, A L; Kulkarni, S V

    2010-01-01

    To drive plasma current non-inductively in ADITYA tokamak, 120 kW pulsed Lower Hybrid Current Drive (LHCD) system at 3.7 GHz has been designed, fabricated and installed on ADITYA tokamak. In this system, the antenna consists of a grill structure, having two rows, each row comprising of four sub-waveguides. The coupling of LHCD power to the plasma strongly depends on the plasma density near the mouth of grill antenna. Thus the grill antenna has to be precisely positioned for efficient coupling. The movement of mechanical bellow, which contracts or expands up to 50mm, governs the movement of antenna. In order to monitor the position of the antenna precisely, the reference position of the antenna with respect to the machine/plasma position has to be accurately determined. Further a mechanical system or an electronic system to measure the relative movement of the antenna with respect to the reference position is also desired. Also due to poor accessibility inside the ADITYA machine, it is impossible to measure physically the reference position of the grill antenna with respect to machine wall, taken as reference position and hence an alternative method has to be adopted to establish these measurements reliably. In this paper we report the design and development of a mechanism, using which the antenna position measurements are made. It also describes a unique method employing which the measurements of the reference position of the antenna with respect to the inner edge of the tokamak wall is carried out, which otherwise was impossible due to poor accessibility and physical constraints. The position of the antenna is monitored using an electronic scale, which is developed and installed on the bellow. Once the reference position is derived, the linear potentiometer, attached to the bellow, measures the linear distance using position transmitter. The accuracy of measurement obtained in our setup is within +/- 0.5 % and the linearity, along with repeatability is excellent.

  8. Low-cost Antenna Positioning System Designed with Axiomatic Design

    Directory of Open Access Journals (Sweden)

    Timothy Foley Joseph

    2017-01-01

    Full Text Available The Engineering Optimization and Modeling Center at Reykjavik University has been carrying out research on antenna CAD, including the simulation-driven design of novel antenna topologies. However, simulation is not enough to validate a design: a custom RF anechoic chamber has been built to quantify antenna performance, particularly in terms of field properties such as radiation patterns. Such experiments require careful positioning of the antenna in the chamber accurately in 3-axis with a short development time, challenging material constraints, and minimal funding. Axiomatic Design Theory principles were applied to develop an automated 3-axis positioner system for a reference antenna and the antenna to be calibrated. Each axis can be individually controlled with a repeatability of 1 degree. This 3000 USD device can be fabricated using easily available components and rapid prototyping tools.

  9. Antenna analysis using neural networks

    Science.gov (United States)

    Smith, William T.

    1992-01-01

    Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern

  10. Antenna theory analysis and design

    CERN Document Server

    Balanis, Constantine A

    2005-01-01

    The discipline of antenna theory has experienced vast technological changes. In response, Constantine Balanis has updated his classic text, Antenna Theory, offering the most recent look at all the necessary topics. New material includes smart antennas and fractal antennas, along with the latest applications in wireless communications. Multimedia material on an accompanying CD presents PowerPoint viewgraphs of lecture notes, interactive review questions, Java animations and applets, and MATLAB features. Like the previous editions, Antenna Theory, Third Edition meets the needs of e

  11. Waveguide Phased Array Antenna Analysis and Synthesis

    NARCIS (Netherlands)

    Visser, H.J.; Keizer, W.P.M.N.

    1996-01-01

    Results of two software packages for analysis and synthesis of waveguide phased array antennas are shown. The antennas consist of arrays of open-ended waveguides where irises can be placed in the waveguide apertures and multiple dielectric sheets in front of the apertures in order to accomplish a

  12. Hyperbolic Positioning with Antenna Arrays and Multi-Channel Pseudolite for Indoor Localization

    Directory of Open Access Journals (Sweden)

    Kenjirou Fujii

    2015-09-01

    Full Text Available A hyperbolic positioning method with antenna arrays consisting of proximately-located antennas and a multi-channel pseudolite is proposed in order to overcome the problems of indoor positioning with conventional pseudolites (ground-based GPS transmitters. A two-dimensional positioning experiment using actual devices is conducted. The experimental result shows that the positioning accuracy varies centimeter- to meter-level according to the geometric relation between the pseudolite antennas and the receiver. It also shows that the bias error of the carrier-phase difference observables is more serious than their random error. Based on the size of the bias error of carrier-phase difference that is inverse-calculated from the experimental result, three-dimensional positioning performance is evaluated by computer simulation. In addition, in the three-dimensional positioning scenario, an initial value convergence analysis of the non-linear least squares is conducted. Its result shows that initial values that can converge to a right position exist at least under the proposed antenna setup. The simulated values and evaluation methods introduced in this work can be applied to various antenna setups; therefore, by using them, positioning performance can be predicted in advance of installing an actual system.

  13. Three-dimensional analysis of antenna sheaths

    International Nuclear Information System (INIS)

    Myra, J.R.; D'Ippolito, D.A.; Ho, Y.L.

    1996-01-01

    The present work is motivated by the importance of r.f. sheaths in determining the antenna-plasma interaction and the sensitivity of the sheaths to the complicated three-dimensional structure of modern ion cyclotron range of frequency (ICRF) antennas. To analyze r.f. sheaths on the plasma facing regions of the launcher, we first calculate the contact points of the tokamak magnetic field lines on the surface of the antenna Faraday screen and nearby limiters for realistic three-dimensional magnetic flux surface and antenna geometries. Next, the r.f. voltage that can drive sheaths at the contact points is determined and used to assess the resulting sheath power dissipation, r.f.-driven sputtering, and r.f.-induced convective cells (which produce edge profile modification). The calculations are embodied in a computer code, ANSAT (antenna sheath analysis tool), and sample ANSAT runs are shown to highlight the physics- and geometry-dependent characteristics of the r.f. sheaths and their relationship to the antenna design. One use of ANSAT is therefore as a design tool, to assess the strengths and weaknesses of a given design with respect to critical voltage handling and edge plasma interaction issues. Additionally, examples are presented where ANSAT has been useful in the analysis and interpretation of ICRF experiments (orig.)

  14. Analysis of equivalent antenna based on FDTD method

    Directory of Open Access Journals (Sweden)

    Yun-xing Yang

    2014-09-01

    Full Text Available An equivalent microstrip antenna used in radio proximity fuse is presented. The design of this antenna is based on multilayer multi-permittivity dielectric substrate which is analyzed by finite difference time domain (FDTD method. Equivalent iterative formula is modified in the condition of cylindrical coordinate system. The mixed substrate which contains two kinds of media (one of them is airtakes the place of original single substrate. The results of equivalent antenna simulation show that the resonant frequency of equivalent antenna is similar to that of the original antenna. The validity of analysis can be validated by means of antenna resonant frequency formula. Two antennas have same radiation pattern and similar gain. This method can be used to reduce the weight of antenna, which is significant to the design of missile-borne antenna.

  15. Effect of Randomness in Element Position on Performance of Communication Array Antennas in Internet of Things

    Directory of Open Access Journals (Sweden)

    Congsi Wang

    2018-01-01

    Full Text Available As a critical component for wireless communication, active phased array antennas face the restrictions of creating effective performance with the effect of randomness in the position of the array element, which are inevitably produced in the manufacturing and operating process of antenna. A new method for efficiently and effectively evaluating the statistic performance of antenna is presented, with consideration of randomness in element position. A coupled structural-electromagnetic statistic model for array antenna is proposed from the viewpoint of electromechanical coupling. Lastly, a 12×12 planar array is illustrated to evaluate the performance of antenna with the saddle-shaped distortion and random position error. The results show that the presented model can obtain the antenna performance quickly and effectively, providing an advantageous guidance for structural design and performance optimization for array antennas in wireless application.

  16. Determining of the phase centre of the real position of GPS receiver antenna

    OpenAIRE

    Eva Pisoňová; Jozef Ornth; Vladimír Sedlák

    2007-01-01

    By continued improvement of measurement methods producers of GPS (Global Positioning System) apparatus will be maybe once upon a time effective to minimize a difference of the phase centre from the geometrical one, because it is probably impossible to make the GPS receiver antenna with zero eccentricity of the phase centre. In the last analysis, we do not prevent from a manufacturing error by any way in eliminate of the possible measurement errors.In the paper there is presented the measureme...

  17. Advanced Communication Technology Satellite (ACTS) multibeam antenna analysis and experiment

    Science.gov (United States)

    Acosta, Roberto J.; Lagin, Alan R.; Larko, Jeffrey M.; Narvaez, Adabelle

    1992-01-01

    One of the most important aspects of a satellite communication system design is the accurate estimation of antenna performance degradation. Pointing error, end coverage gain, peak gain degradation, etc. are the main concerns. The thermal or dynamic distortions of a reflector antenna structural system can affect the far-field antenna power distribution in a least four ways. (1) The antenna gain is reduced; (2) the main lobe of the antenna can be mispointed thus shifting the destination of the delivered power away from the desired locations; (3) the main lobe of the antenna pattern can be broadened, thus spreading the RF power over a larger area than desired; and (4) the antenna pattern sidelobes can increase, thus increasing the chances of interference among adjacent beams of multiple beam antenna system or with antenna beams of other satellites. The in-house developed NASA Lewis Research Center thermal/structural/RF analysis program was designed to accurately simulate the ACTS in-orbit thermal environment and predict the RF antenna performance. The program combines well establish computer programs (TRASYS, SINDA and NASTAN) with a dual reflector-physical optics RF analysis program. The ACTS multibeam antenna configuration is analyzed and several thermal cases are presented and compared with measurements (pre-flight).

  18. Analysis of Microstrip Line Fed Patch Antenna for Wireless Communications

    Directory of Open Access Journals (Sweden)

    Singh Ashish

    2017-11-01

    Full Text Available In this paper, theoretical analysis of microstrip line fed rectangular patch antenna loaded with parasitic element and split-ring resonator is presented. The proposed antenna shows that the dualband operation depends on gap between parasitic element, split-ring resonator, length and width of microstrip line. It is found that antenna resonates at two distinct resonating modes i.e., 0.9 GHz and 1.8 GHz for lower and upper resonance frequencies respectively. The antenna shows dual frequency nature with frequency ratio 2.0. The characteristics of microstrip line fed rectangular patch antenna loaded with parasitic element and split-ring resonator antenna is compared with other prototype microstrip line fed antennas. Further, the theoretical results are compared with simulated and reported experimental results, they are in close agreement.

  19. Method of steering the gain of a multiple antenna global positioning system receiver

    Science.gov (United States)

    Evans, Alan G.; Hermann, Bruce R.

    1992-06-01

    A method for steering the gain of a multiple antenna Global Positioning System (GPS) receiver toward a plurality of a GPS satellites simultaneously is provided. The GPS signals of a known wavelength are processed digitally for a particular instant in time. A range difference or propagation delay between each antenna for GPS signals received from each satellite is first resolved. The range difference consists of a fractional wavelength difference and an integer wavelength difference. The fractional wavelength difference is determined by each antenna's tracking loop. The integer wavelength difference is based upon the known wavelength and separation between each antenna with respect to each satellite position. The range difference is then used to digitally delay the GPS signals at each antenna with respect to a reference antenna. The signal at the reference antenna is then summed with the digitally delayed signals to generate a composite antenna gain. The method searches for the correct number of integer wavelengths to maximize the composite gain. The range differences are also used to determine the attitude of the array.

  20. Analysis of Rectangular Microstrip Antennas with Air Substrates ...

    African Journals Online (AJOL)

    This paper presents an analysis of rectangular microstrip antennas with air substrates. The effect of the substrate thickness on the bandwidth and the efficiency are examined. An additional thin layer supporting the dielectric material is added to the air substrate in order to make the antenna mechanically rigid and easy to ...

  1. Antennas.

    Science.gov (United States)

    1982-03-03

    arc csch csch - 1 Russian English rot curl lg log !i FIVE-METER SPHERICAL MILLIMETER-BAND ANTENNA P.M. Geruni This article presents the basic...rlpe’ I operating band, MHz elliptical Xk, mm X , m fk, MHz z wavgudeeg MHz f =1.2f f =0.95f waegid H X B rip = E40 104.5 56.4 2872 5410 3446 5141 E48...aperture In order to do this, we expand (30) into a series with respect to y. Limiting ourselves to the first three terms of the expansion, we obtain r

  2. FDTD simulation tools for UWB antenna analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2005-02-01

    This paper describes the development of a set of software tools useful for analyzing ultra-wideband (UWB) antennas and structures. These tools are used to perform finite difference time domain (FDTD) simulation of a conical antenna with continuous wave (CW) and UWB pulsed excitations. The antenna is analyzed using spherical coordinate-based FDTD equations that are derived from first principles. The simulation results for CW excitation are compared to simulation and measured results from published sources; the results for UWB excitation are new.

  3. FDTD simulation tools for UWB antenna analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2004-12-01

    This paper describes the development of a set of software tools useful for analyzing ultra-wideband (UWB) antennas and structures. These tools are used to perform finite difference time domain (FDTD) simulation of a conical antenna with continuous wave (CW) and UWB pulsed excitations. The antenna is analyzed using spherical coordinate-based FDTD equations that are derived from first principles. The simulation results for CW excitation are compared to simulation and measured results from published sources; the results for UWB excitation are new.

  4. Determining of the phase centre of the real position of GPS receiver antenna

    Directory of Open Access Journals (Sweden)

    Eva Pisoňová

    2007-06-01

    Full Text Available By continued improvement of measurement methods producers of GPS (Global Positioning System apparatus will be maybe once upon a time effective to minimize a difference of the phase centre from the geometrical one, because it is probably impossible to make the GPS receiver antenna with zero eccentricity of the phase centre. In the last analysis, we do not prevent from a manufacturing error by any way in eliminate of the possible measurement errors.In the paper there is presented the measurement testing practice with aim of the phase centre real position determining of several in a market available GPS receivers in the paper. Investigation up to what standard the GPS receiver antenna phase centre variation achieves to float in an inaccuracy into GPS measurements. Testing was realized on the temporary testing baseline closely village Badín at Banská Bystrica in the Central Slovak Region. GPS receivers Locus Survey System (Ashtech, ProMark2 (Ashtech were tested.

  5. Analysis of a Waveguide-Fed Metasurface Antenna

    Science.gov (United States)

    Smith, David R.; Yurduseven, Okan; Mancera, Laura Pulido; Bowen, Patrick; Kundtz, Nathan B.

    2017-11-01

    The metasurface concept has emerged as an advantageous reconfigurable antenna architecture for beam forming and wave-front shaping, with applications that include satellite and terrestrial communications, radar, imaging, and wireless power transfer. The metasurface antenna consists of an array of metamaterial elements distributed over an electrically large structure, each subwavelength in dimension and with subwavelength separation between elements. In the antenna configuration we consider, the metasurface is excited by the fields from an attached waveguide. Each metamaterial element can be modeled as a polarizable dipole that couples the waveguide mode to radiation modes. Distinct from the phased array and electronically-scanned-antenna architectures, a dynamic metasurface antenna does not require active phase shifters and amplifiers but rather achieves reconfigurability by shifting the resonance frequency of each individual metamaterial element. We derive the basic properties of a one-dimensional waveguide-fed metasurface antenna in the approximation in which the metamaterial elements do not perturb the waveguide mode and are noninteracting. We derive analytical approximations for the array factors of the one-dimensional antenna, including the effective polarizabilities needed for amplitude-only, phase-only, and binary constraints. Using full-wave numerical simulations, we confirm the analysis, modeling waveguides with slots or complementary metamaterial elements patterned into one of the surfaces.

  6. 10 GHz microstrip spanar antennas: an experimental analysis

    International Nuclear Information System (INIS)

    Othman, Mohd Azlishah; Azman, Hazwani; Husain, Mohd Nor; Aziz, Mohamad Zoinol Abidin Abd; Rahim, Yahaya Abd; Pee, Ahmad Nairn Che; Motsidi, Mohamad Radzi; Othman, Mohd Fairuz Iskandar

    2014-01-01

    This paper presents Spanar Antenna designed using CST Microwave Studio Simulation 2011. The proposed antenna was designed to operate at 10 GHz, which suggested return loss, S 11 must be less than -10 dB and voltage standing wave ratio (VSWR) must be less than 2. The best performance of simulation of Spanar Antenna was obtained at a small size of 24.8 mm × 8.0 mm with dimension board of FR4 substrate 31.7 mm × 18.5 mm. The thickness (h) and dielectric constant (εr) of substrate were 1.6 mm and 4.7. An analysis between simulation result and measurement result has been compared in order to see the antenna performance.

  7. Waveform Analysis of UWB GPR Antennas

    Directory of Open Access Journals (Sweden)

    Julia Armesto

    2009-03-01

    Full Text Available Ground Penetrating Radar (GPR systems fall into the category of ultra-wideband (UWB devices. Most GPR equipment covers a frequency range between an octave and a decade by using short-time pulses. Each signal recorded by a GPR gathers a temporal log of attenuated and distorted versions of these pulses (due to the effect of the propagation medium plus possible electromagnetic interferences and noise. In order to make a good interpretation of this data and extract the most possible information during processing, a deep knowledge of the wavelet emitted by the antennas is essential. Moreover, some advanced processing techniques require specific knowledge of this signal to obtain satisfactory results. In this work, we carried out a series of tests in order to determine the source wavelet emitted by a ground-coupled antenna with a 500 MHz central frequency.

  8. FDTD Analysis of U-Slot Rectangular Patch Antenna

    Science.gov (United States)

    Luk, K. M.; Tong, K. F.; Shum, S. M.; Lee, K. F.; Lee, R. Q.

    1997-01-01

    The U-slot rectangular patch antenna (Figure I) has been found experimentally to provide impedance and gain bandwidths of about 300 without the need of stacked or coplanar parasitic elements [1,2]. In this paper, simulation results of the U-slot patch using FDTD analysis are presented. Comparison with measured results are given.

  9. Analysis and synthesis of (SAR) waveguide phased array antennas

    Science.gov (United States)

    Visser, H. J.

    1994-02-01

    This report describes work performed due to ESA contract No. 101 34/93/NL/PB. Started is with a literature study on dual polarized waveguide radiators, resulting in the choice for the open ended square waveguide. After a thorough description of the mode matching infinite waveguide array analysis method - including finiteness effects - that forms the basis for all further described analysis and synthesis methods, the accuracy of the analysis software is validated by comparison with measurements on two realized antennas. These antennas have centered irises in the waveguide apertures and a dielectric wide angle impedance matching sheet in front of the antenna. A synthesis method, using simulated annealing and downhill simplex, is described next and different antenna designs, based on the analysis of a single element in an infinite array environment, are presented. Next, designs of subarrays are presented. Shown is the paramount importance of including the array environment in the design of a subarray. A microstrip patch waveguide exciter and subarray feeding network are discussed and the depth of the waveguide radiator is estimated. Chosen is a rectangular grid array with waveguides of 2.5 cm depth without irises and without dielectric sheet, grouped in linear 8 elements subarrays.

  10. Dispersion analysis of spaced antenna scintillation measurement

    Directory of Open Access Journals (Sweden)

    M. Grzesiak

    2009-07-01

    Full Text Available We present a dispersion analysis of the phase of GPS signals received at high latitude. Basic theoretical aspects for spectral analysis of two-point measurement are given. To account for nonstationarity and statistical robustness a power distribution of the windowed Fourier transform cross-spectra as a function of frequency and phase is analysed using the Radon transform.

  11. Analysis of the Emitted Wavelet of High-Resolution Bowtie GPR Antennas

    Directory of Open Access Journals (Sweden)

    Manuel Pereira

    2009-06-01

    Full Text Available Most Ground Penetrating Radars (GPR cover a wide frequency range by emitting very short time wavelets. In this work, we study in detail the wavelet emitted by two bowtie GPR antennas with nominal frequencies of 800 MHz and 1 GHz. Knowledge of this emitted wavelet allows us to extract as much information as possible from recorded signals, using advanced processing techniques and computer simulations. Following previously published methodology used by Rial et al. [1], which ensures system stability and reliability in data acquisition, a thorough analysis of the wavelet in both time and frequency domain is performed. Most of tests were carried out with air as propagation medium, allowing a proper analysis of the geometrical attenuation factor. Furthermore, we attempt to determine, for each antenna, a time zero in the records to allow us to correctly assign a position to the reflectors detected by the radar. Obtained results indicate that the time zero is not a constant value for the evaluated antennas, but instead depends on the characteristics of the material in contact with the antenna.

  12. Method and apparatus for positioning a satellite antenna from a remote well logging location

    International Nuclear Information System (INIS)

    Toellner, R.L.; Copland, G.V.

    1987-01-01

    An automatic system for positioning a Ku band microwave antenna accurately to within approximately 0.1 degrees to point at a particular satellite located among others having as close as 2 degree angular spacing in geosynchronous earth orbit from a remote location for establishing a Ku band microwave communication link from the remote location via the satellite is described comprising: a Ku band microwave antenna having a gimbal mount adapted to move in at least azimuth and elevation; means for driving the gimbal mount in azimuth and means for driving the gimbal mount in elevation; means for sensing a satellite signal detected by the antenna and for producing an output signal representative of the strength of the satellite signal and a separate output signal indicative of a satellite code or signature; inclinometer means for measuring the actual elevation angle of the elevation gimbal with respect to vertical and for generating an output signal representative thereof; means for measuring the azimuth angle of the azimuth gimbal relative to a fixed reference and for generating an output signal representative thereof; computer means capable of receiving input data comprising the earth latitude and longitude of a remote location and a satellite position and capable of receiving as inputs the strength representative signal; means for pointing the elevation gimbal to a fixed direction and for scanning the azimuth gimbal to a computed direction based on the earth latitude and longitude and the satellite position signals; and wherein the computer means further includes means capable of receiving the input signal indicative of a satellite code or signature and means for comparing the code or signature input signal with a predetermined reference code or signature signal in the memory of the computer means

  13. Modeling and analysis of a large deployable antenna structure

    Science.gov (United States)

    Chu, Zhengrong; Deng, Zongquan; Qi, Xiaozhi; Li, Bing

    2014-02-01

    One kind of large deployable antenna (LDA) structure is proposed by combining a number of basic deployable units in this paper. In order to avoid vibration caused by fast deployment speed of the mechanism, a braking system is used to control the spring-actuated system. Comparisons between the LDA structure and a similar structure used by the large deployable reflector (LDR) indicate that the former has potential for use in antennas with up to 30 m aperture due to its lighter weight. The LDA structure is designed to form a spherical surface found by the least square fitting method so that it can be symmetrical. In this case, the positions of the terminal points in the structure are determined by two principles. A method to calculate the cable network stretched on the LDA structure is developed, which combines the original force density method and the parabolic surface constraint. Genetic algorithm is applied to ensure that each cable reaches a desired tension, which avoids the non-convergence issue effectively. We find that the pattern for the front and rear cable net must be the same when finding the shape of the rear cable net, otherwise anticlastic surface would generate.

  14. Bridging the Gap between RF and Optical Patch Antenna Analysis via the Cavity Model.

    Science.gov (United States)

    Unal, G S; Aksun, M I

    2015-11-02

    Although optical antennas with a variety of shapes and for a variety of applications have been proposed and studied, they are still in their infancy compared to their radio frequency (rf) counterparts. Optical antennas have mainly utilized the geometrical attributes of rf antennas rather than the analysis tools that have been the source of intuition for antenna engineers in rf. This study intends to narrow the gap of experience and intuition in the design of optical patch antennas by introducing an easy-to-understand and easy-to-implement analysis tool in rf, namely, the cavity model, into the optical regime. The importance of this approach is not only its simplicity in understanding and implementation but also its applicability to a broad class of patch antennas and, more importantly, its ability to provide the intuition needed to predict the outcome without going through the trial-and-error simulations with no or little intuitive guidance by the user.

  15. Structural Modeling and Analysis on Dynamic Characteristics of Antenna Pedestal in Airborne SAR

    Directory of Open Access Journals (Sweden)

    He Li-ping

    2012-06-01

    Full Text Available Finite element modeling and structural dynamic characteristics of antenna pedestal in airborne SAR were studied in this paper. The Finite element model of antenna pedestal in airborne SAR was set up on the basis of structural dynamic theory, then, the key technologies of dynamic simulation were pointed out, and the modal analysis and transient analysis were carried out. Simulation results show that the dynamic characteristics of antenna pedestal in airborne SAR can meet the requirements of servo bandwidth and structural strength. The fast finite element modeling and simulation method proposed in this paper are of great significance to the weight reducing design of antenna pedestal in airborne SAR.

  16. Analysis of the stress-deformed condition of the disassembly parabolic antenna

    Science.gov (United States)

    Odinets, M. N.; Kaygorodtseva, N. V.; Krysova, I. V.

    2018-01-01

    Active development of satellite communications and computer-aided design systems raises the problem of designing parabolic antennas on a new round of development. The aim of the work was to investigate the influence of the design of the mirror of a parabolic antenna on its endurance under wind load. The research task was an automated analysis of the stress-deformed condition of various designs of computer models of a paraboloid mirror (segmented or holistic) at modeling the exploitation conditions. The peculiarity of the research was that the assembly model of the antenna’s mirror was subjected to rigid connections on the contacting surfaces of the segments and only then the finite element grid was generated. The analysis showed the advantage of the design of the demountable antenna, which consists of cyclic segments, in front of the construction of the holistic antenna. Calculation of the stress-deformed condition of the antennas allows us to conclude that dividing the design of the antenna’s mirror on parabolic and cyclic segments increases it strength and rigidity. In the future, this can be used to minimize the mass of antenna and the dimensions of the disassembled antenna. The presented way of modeling a mirror of a parabolic antenna using to the method of the finite-element analysis can be used in the production of antennas.

  17. PARAMETRIC ANALYSIS OF A MINIATURIZED INVERTED II SHAPED ANTENNA FOR WIRELESS SENSOR NETWORK APPLICATIONS

    Directory of Open Access Journals (Sweden)

    M. Shanmugapriya

    2015-06-01

    Full Text Available A compact and simple design of a CPW-fed planar antenna for wireless sensor network antenna application with a better size reduction is presented. The proposed antenna consists of an inverted ? shaped metal patch on a printed circuit board fed by a 50-O coplanar waveguide (CPW. The parametric analysis of length and width are made. The designed antenna’s physical dimensions are 32 mm (length x 26 mm (width x 1.6 mm (height. The antenna structure has been modeled and fabricated and its performance has been evaluated using a method of moment based electromagnetic simulator, IE3D .The return loss of -22.5 dB and VSWR of 1.34 dB are noted. The radiation pattern of the antenna proves that it radiates in all direction. The antenna is fabricated and tested and the measured results go in good agreement with simulated one.

  18. Analysis and design of the Alfven wave antenna system for the SUNIST spherical tokamak

    International Nuclear Information System (INIS)

    Tan Yi; Gao Zhe; He Yexi

    2009-01-01

    Analysis and design of the Alfven wave antenna system for the SUNIST spherical tokamak are presented. Two candidate antenna concepts, folded and unfolded, are analyzed and compared with each other. In the frequency range of Alfven resonance the impedance spectrums of both two concept antennas for major modes are numerically calculated in a 1-D MHD framework. The folded concept is chosen for engineering design. The antenna system is designed to be simple and requires least modification to the vacuum vessel. The definition of the antenna shape is guided by the analyses with constraints of existing hardware layouts. Each antenna unit consists of two stainless steel straps with a thickness of 1 mm. A number of boron nitride tiles are assembled together as the side limiters for plasma shielding. Estimation shows that the structure is robust enough to withstand the electromagnetic force and the heat load for typical discharge duty cycles.

  19. multiangulation position estimation performance analysis using

    African Journals Online (AJOL)

    HOD

    multiangulation PE error is 50% lower than that of the directional rotating antenna system. Furthermore, the ... system is an example of a wireless positioning system that has ..... Table 2: PE error for some selection source locations. No. Range ...

  20. New Flexible Medical Compact Antenna: Design and Analysis

    Directory of Open Access Journals (Sweden)

    Yann Mahe

    2012-01-01

    Full Text Available Some results on embedded antennas for medical wireless communication systems are presented. Medical telemetry can advantageously assist medical diagnostics. For example, you can better locate a diseased area by monitoring temperature inside the human body. In order to establish efficient wireless links in such an environment, a special attention should be paid to the antenna design. It is required to be of a low profile, very small regardless of the working frequency—434 MHz in the ISM band, safe, and cost effective. Design of the as-considered antenna is proposed based on a simple model. The approach has been demonstrated for a compact flexible antenna with a factor of 10 with respect to the half-wave antenna, rolling up inside an ingestible pill. Measured and calculated impedance behaviour and radiation characteristics of the modified patch are determined. Excellent agreement was found between experiment and theory.

  1. Linear antenna of an arbitrary orientation and position in cylindric screen

    International Nuclear Information System (INIS)

    Prijmenko, S.D.; Papkovich, V.G.; Khizhnyak, N.A.

    1991-01-01

    An equation of the linear antenna in cylindric screen is formulated. Using the averaging method a solution of this equation for the antenna of arbitrary orientation which does not contact the screen walls or contacts them in one or two ends is received. The obtained asymptotic expression for stream permits to describe in a single manner the case of resonance and non-resonance scattering. These results may be applied in design of UHF and accelerating installations using cylindric screens charged with linear vibrators. 9 refs. (author)

  2. Manufacturing error sensitivity analysis and optimal design method of cable-network antenna structures

    Science.gov (United States)

    Zong, Yali; Hu, Naigang; Duan, Baoyan; Yang, Guigeng; Cao, Hongjun; Xu, Wanye

    2016-03-01

    Inevitable manufacturing errors and inconsistency between assumed and actual boundary conditions can affect the shape precision and cable tensions of a cable-network antenna, and even result in failure of the structure in service. In this paper, an analytical sensitivity analysis method of the shape precision and cable tensions with respect to the parameters carrying uncertainty was studied. Based on the sensitivity analysis, an optimal design procedure was proposed to alleviate the effects of the parameters that carry uncertainty. The validity of the calculated sensitivities is examined by those computed by a finite difference method. Comparison with a traditional design method shows that the presented design procedure can remarkably reduce the influence of the uncertainties on the antenna performance. Moreover, the results suggest that especially slender front net cables, thick tension ties, relatively slender boundary cables and high tension level can improve the ability of cable-network antenna structures to resist the effects of the uncertainties on the antenna performance.

  3. Analysis and design of efficient planar leaky-wave antennas

    NARCIS (Netherlands)

    Ettore, M.

    2008-01-01

    This thesis deals with the effective design of planar leaky-wave antennas. The work describes a methodology based on the polar expansion of Green's function representations to address very different geometrical configurations which might appear to have little in common. In fact leaky waves with

  4. Analysis of Silver Ink Bow-Tie RFID Tag Antennas Printed on Paper Substrates

    Directory of Open Access Journals (Sweden)

    Sari Merilampi

    2007-01-01

    Full Text Available In this study, polymeric silver inks, paper substrates, and screen printing were used to produce prototype Bow-Tie tags. Because of increasing interest in applying passive UHF-RFID systems in paper industry, the Bow-Tie antenna used in this study was designed to work through paper. The maximum reliable read ranges of the tags were measured thorough stacked paper and also in air. The analysis and functioning of the antenna design are also discussed. All inks and paper substrates were suitable as antenna material and the prototype tag antennas had good reading performance. The maximum reliable read ranges were quite the same as for copper and aluminum tags studied elsewhere. This means that printed UHF tags are competitive solutions for the identification of simple mass products.

  5. Low-frequency computational electromagnetics for antenna analysis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, E.K. (Los Alamos National Lab., NM (USA)); Burke, G.J. (Lawrence Livermore National Lab., CA (USA))

    1991-01-01

    An overview of low-frequency, computational methods for modeling the electromagnetic characteristics of antennas is presented here. The article presents a brief analytical background, and summarizes the essential ingredients of the method of moments, for numerically solving low-frequency antenna problems. Some extensions to the basic models of perfectly conducting objects in free space are also summarized, followed by a consideration of some of the same computational issues that affect model accuracy, efficiency and utility. A variety of representative computations are then presented to illustrate various modeling aspects and capabilities that are currently available. A fairly extensive bibliography is included to suggest further reference material to the reader. 90 refs., 27 figs.

  6. Finite-element-analysis of fields radiated from ICRF antenna

    International Nuclear Information System (INIS)

    Yamanaka, Kaoru; Sugihara, Ryo.

    1984-04-01

    In several simple geometries, electromagnetic fields radiated from a loop antenna, on which a current oscillately flows across the static magnetic field B-vector 0 , are calculated by the finite element method (FEM) as well as by analytic methods in a cross section of a plasma cylinder. A finite wave number along B-vector 0 is assumed. Good agreement between FEM and the analytic solutions is obtained, which indicates the accuracy of FEM solutions. The method is applied to calculations of fields from a half-turn antenna and reasonable results are obtained. It is found that a straightforward application of FEM to problems in an anisotropic medium may bring about erroneous results and that an appropriate coordinate transformation is needed for FEM to become applicable. (author)

  7. Theoretical analysis on radiation and reception characteristics of an oblate spheroidal antenna for electron plasma waves

    International Nuclear Information System (INIS)

    Ohnuki, S.; Adachi, S.; Ohnuma, T.

    1978-01-01

    The radiation and reception characteristics of the oblate spheroidal antenna for electron plasma waves are theoretically investigated. The analysis is carried out as a boundary-value problem. The formulas for the radiation and reception characteristics such as radiation impedance, electron charge distributions, radiated wave potential, directional properties, and receiving voltage of the oblate spheroidal antenna are analytically obtained. As a result, it is concluded that the radiation and reception characteristics of the antennas are not uniquely determined by k/sub p/a (k/sub p/ is the wave number of an electron plasma wave, and a is the radius of the circular-plate antenna), but are determined by two out of three factors, k/sub p/a, zeta (radius divided by Debye length), and ω/ω/sub p/ (angular signal frequency to angular plasma frequency). This conclusion is in marked contrast to the conventional theory in which the charge distribution on the antenna is assumed a priori as uniform and, thus, the antenna characteristics are uniquely determined by k/sub p/a. It is claimed that the experimental results obtained hitherto support the present new theory

  8. Inkjet Printed Planar Coil Antenna Analysis for NFC Technology Applications

    Directory of Open Access Journals (Sweden)

    I. Ortego

    2012-01-01

    Full Text Available The aim of this paper is to examine the potential of inkjet printing technology for the fabrication of Near Field Communication (NFC coil antennas. As inkjet printing technology enables deposition of a different number of layers, an accurate adjustment of the printed conductive tracks thickness is possible. As a consequence, input resistance and Q factor can be finely tuned as long as skin depth is not surpassed while keeping the same inductance levels. This allows the removal of the typical damping resistance present in current NFC inductors. A general methodology including design, simulation, fabrication, and measurement is presented for rectangular, planar-spiral inductors working at 13.56 MHz. Analytical formulas, computed numerical models, and measured results for antenna input impedance are compared. Reflection coefficient is designated as a figure of merit to analyze the correlation among them, which is found to be below −10 dB. The obtained results demonstrate the suitability of this technology in the fabrication of low cost, environmentally friendly NFC coils on flexible substrates.

  9. Tunable Platform Tolerant Antenna Design for RFID and IoT Applications Using Characteristic Mode Analysis

    Directory of Open Access Journals (Sweden)

    Abubakar Sharif

    2018-01-01

    Full Text Available Radio frequency identification (RFID is a key technology to realize IoT (Internet of Things dreams. RFID technology has been emerging in sensing, identification, tracking, and localization of goods. In order to tag a huge number of things, it is cost-effective to use one RFID antenna for tagging different things. Therefore, in this paper a platform tolerant RFID tag antenna with tunable capability is proposed. The proposed tag antenna is designed and optimized using characteristic mode analysis (CMA. Moreover, this tag antenna consists of a folded patch wrapped around FR 4 substrate and a feeding loop element printed on a paper substrate. The inductive feeding loop is stacked over folded patch and it provides impedance match with RFID chip. Because of separate radiating and feeding element, this tag antenna has a versatility of impedance matching with any RFID chip. Furthermore, this tag is able to cover American RFID band (902–928 MHz and can be tuned to European RFID band (865–868 MHz by adding tunable strips. In order to demonstrate platform tolerant operation, the read range of RFID tag is measured by mounting it on different materials. The maximum read range of RFID tag is 4.5 m in free space or on dielectrics and 6.5 m above 200 × 200 mm2 metal plate, respectively.

  10. Josephson admittance spectroscopy application for frequency analysis of broadband THz antennas

    International Nuclear Information System (INIS)

    Volkov, O Yu; Divin, Yu Yu; Gubankov, V N; Gundareva, I I; Pavlovskiy, V V

    2010-01-01

    Application of Josephson admittance spectroscopy for the spectral analysis of a broad-band log-periodic superconducting antenna was demonstrated at the frequency range from 50 to 700 GHz. The [001]-tilt YBa 2 Cu 3 O 7-x bicrystal Josephson junctions, integrated with sinuous log-periodic YBa 2 Cu 3 O 7-x antennas, were fabricated on NdGaO 3 bicrystal substrates. A real part of the antenna admittance ReY(f) as a function of the frequency f was reconstructed from the modification of the dc current-voltage characteristic of the junction, induced by the antenna. Resonance features were observed in the recovered ReY(f)-spectra with a periodicity in the logarithmic frequency scale, corresponding to log-periodic geometry of the antenna. The ReY(f)-spectra, recovered by Josephson spectroscopy, were compared with the ReY(f)-spectra, obtained by CAD simulation, and both spectra were shown to be similar in their main features. A value of 23 was obtained for an effective permittivity of the NdGaO3 bicrystal substrates by fitting simulated data to those obtained from Josephson spectroscopy.

  11. Analysis of Resonance Response Performance of C-Band Antenna Using Parasitic Element

    Science.gov (United States)

    Islam, M. T.; Misran, N.; Mandeep, J. S.

    2014-01-01

    Analysis of the resonance response improvement of a planar C-band (4–8 GHz) antenna is proposed using parasitic element method. This parasitic element based method is validated for change in the active and parasitic antenna elements. A novel dual-band antenna for C-band application covering 5.7 GHz and 7.6 GHz is designed and fabricated. The antenna is composed of circular parasitic element with unequal microstrip lines at both sides and a rectangular partial ground plane. A fractional bandwidth of 13.5% has been achieved from 5.5 GHz to 6.3 GHz (WLAN band) for the lower band. The upper band covers from 7.1 GHz to 8 GHz with a fractional bandwidth of 12%. A gain of 6.4 dBi is achieved at the lower frequency and 4 dBi is achieved at the upper frequency. The VSWR of the antenna is less than 2 at the resonance frequency. PMID:24895643

  12. Radio antennas

    Science.gov (United States)

    Gibson, S. W.

    This book is concerned with providing an explanation of the function of an antenna without delving too deeply into the mathematics or theory. The characteristics of an antenna are examined, taking into account aspects of antenna radiation, wave motion on the antenna, resistance in the antenna, impedance, the resonant antenna, the effect of the ground, polarization, radiation patterns, coupling effects between antenna elements, and receiving vs. transmitting. Aspects of propagation are considered along with the types of antennas, transmission lines, matching devices, questions of antenna design, antennas for the lower frequency bands, antennas for more than one band, limited space antennas, VHF antennas, and antennas for 20, 15, and 10 meters. Attention is given to devices for measuring antenna parameters, approaches for evaluating the antenna, questions of safety, and legal aspects.

  13. Full-Wave Analysis of Microstrip Antennas in Three-Layered Spherical Media

    Directory of Open Access Journals (Sweden)

    Tao Yu

    2013-01-01

    Full Text Available A model of three-layered spherical microstrip antenna has been analyzed based on Rao-Wilton-Glisson (RWG triangular basis functions using mixed potential integral equation (MPIE. Firstly, the model of antenna and the dyadic Green’s function in spherical microstrip antennas are given at the beginning of this paper. Then, due to the infinite series convergence problem, asymptotic extraction approach is presented to accelerate the Green’s functions convergence speed when source and field points are located in the same layer and different layers. The convergence speed can be accelerated observably by using this method. Finally, in order to simplify impedance matrix elements calculation at the junction of the probe and patch, a novel division fashion of pair of triangles is adopted in this paper. The input impedance result obtained shows the validity and effectiveness of the analysis method comparing with published data.

  14. Analysis and suppression of reflections in far-field antenna measurement ranges

    OpenAIRE

    Sierra Castañer, Manuel; Cano Facila, Francisco Jose; Foged, Lars Jacob; Saccardi, Francesco; Nader Kawassaki, Guilherme; Raimundi, Lucas dos Reis; Vilela Rezende, Stefano Albino

    2013-01-01

    This paper presents the analysis of the reflections in two kind of spherical far field ranges: one if the classical acquisition where the AUT is rotated and the second one corresponds to the systems where the AUT is fixed and the antenna probe is rotated. In large far field systems this is not possible, but this can be used to the measurement of small antennas, for instance, with the SATIMO StarGate system. In both cases, it is assumed that only one frequency is acquired and the results shoul...

  15. Compact Antenna Range

    Data.gov (United States)

    Federal Laboratory Consortium — Facility consists of a folded compact antenna range including a computer controlled three axis position table, parabolic reflector and RF sources for the measurement...

  16. Time domain analysis of thin-wire antennas over lossy ground using the reflection-coefficient approximation

    NARCIS (Netherlands)

    Fernández Pantoja, M.; Yarovoy, A.G.; Rubio Bretones, A.; González García, S.

    2009-01-01

    This paper presents a procedure to extend the methods of moments in time domain for the transient analysis of thin-wire antennas to include those cases where the antennas are located over a lossy half-space. This extended technique is based on the reflection coefficient (RC) approach, which

  17. Performance analysis of commercial multiple-input-multiple-output access point in distributed antenna system.

    Science.gov (United States)

    Fan, Yuting; Aighobahi, Anthony E; Gomes, Nathan J; Xu, Kun; Li, Jianqiang

    2015-03-23

    In this paper, we experimentally investigate the throughput of IEEE 802.11n 2x2 multiple-input-multiple-output (MIMO) signals in a radio-over-fiber-based distributed antenna system (DAS) with different fiber lengths and power imbalance. Both a MIMO-supported access point (AP) and a spatial-diversity-supported AP were separately employed in the experiments. Throughput measurements were carried out with wireless users at different locations in a typical office environment. For the different fiber length effect, the results indicate that MIMO signals can maintain high throughput when the fiber length difference between the two remote antenna units (RAUs) is under 100 m and falls quickly when the length difference is greater. For the spatial diversity signals, high throughput can be maintained even when the difference is 150 m. On the other hand, the separation of the MIMO antennas allows additional freedom in placing the antennas in strategic locations for overall improved system performance, although it may also lead to received power imbalance problems. The results show that the throughput performance drops in specific positions when the received power imbalance is above around 13 dB. Hence, there is a trade-off between the extent of the wireless coverage for moderate bit-rates and the area over which peak bit-rates can be achieved.

  18. Antenna Controller Replacement Software

    Science.gov (United States)

    Chao, Roger Y.; Morgan, Scott C.; Strain, Martha M.; Rockwell, Stephen T.; Shimizu, Kenneth J.; Tehrani, Barzia J.; Kwok, Jaclyn H.; Tuazon-Wong, Michelle; Valtier, Henry; Nalbandi, Reza; hide

    2010-01-01

    The Antenna Controller Replacement (ACR) software accurately points and monitors the Deep Space Network (DSN) 70-m and 34-m high-efficiency (HEF) ground-based antennas that are used to track primarily spacecraft and, periodically, celestial targets. To track a spacecraft, or other targets, the antenna must be accurately pointed at the spacecraft, which can be very far away with very weak signals. ACR s conical scanning capability collects the signal in a circular pattern around the target, calculates the location of the strongest signal, and adjusts the antenna pointing to point directly at the spacecraft. A real-time, closed-loop servo control algorithm performed every 0.02 second allows accurate positioning of the antenna in order to track these distant spacecraft. Additionally, this advanced servo control algorithm provides better antenna pointing performance in windy conditions. The ACR software provides high-level commands that provide a very easy user interface for the DSN operator. The operator only needs to enter two commands to start the antenna and subreflector, and Master Equatorial tracking. The most accurate antenna pointing is accomplished by aligning the antenna to the Master Equatorial, which because of its small size and sheltered location, has the most stable pointing. The antenna has hundreds of digital and analog monitor points. The ACR software provides compact displays to summarize the status of the antenna, subreflector, and the Master Equatorial. The ACR software has two major functions. First, it performs all of the steps required to accurately point the antenna (and subreflector and Master Equatorial) at the spacecraft (or celestial target). This involves controlling the antenna/ subreflector/Master-Equatorial hardware, initiating and monitoring the correct sequence of operations, calculating the position of the spacecraft relative to the antenna, executing the real-time servo control algorithm to maintain the correct position, and

  19. Design and analysis of a lightweight prestressed antenna back-up structure

    Science.gov (United States)

    Ma, Zengxiang; Yang, Dehua; Cheng, Jingquan

    2010-07-01

    The planned Square Kilometer Array (SKA) includes three thousand 15m antennas. The radio flux density from the sun is stronger, so that a solar array, such as Frequency-Agile Solar Radiotelescope (FASR) with hundreds of dishes can have smaller dish size. Therefore, light weight, low cost dish design is of vital importance. The reflecting surface supported by an antenna back-up structure, generally, should have an RMS surface error less than λ/20 (λ. is the operating wavelength). For resisting gravitational, wind, and ice-snow loadings, an antenna dish also requires reasonable mode frequencies. In this paper, different low cost small or medium back-up structure designs are discussed, including double-layer truss design and prestressed dish design. Based on discussion, an innovative light weight, prestressed back-up structure is proposed for small or medium aperture antennas. Example of a small 4.5m aperture dish design working below 3GHz is presented. This design is a one-layer prestressed truss structure with low weight, ease installation, and low manufacture cost. Structural analysis and modal extraction results show the structure is much stiffer than the same structure without prestressed loading.

  20. Analysis of the effect of mobile phone base station antenna loading on localized SAR and its consequences for measurements.

    Science.gov (United States)

    Hansson, Björn; Thors, Björn; Törnevik, Christer

    2011-12-01

    In this work, the effect of antenna element loading on the localized specific absorption rate (SAR) has been analyzed for base station antennas. The analysis was conducted in order to determine whether localized SAR measurements of large multi-element base station antennas can be conducted using standardized procedures and commercially available equipment. More specifically, it was investigated if the antenna shifting measurement procedure, specified in the European base station exposure assessment standard EN 50383, will produce accurate localized SAR results for base station antennas larger than the specified measurement phantom. The obtained results show that SAR accuracy is affected by the presence of lossy material within distances of one wavelength from the tested antennas as a consequence of coupling and redistribution of transmitted power among the antenna elements. It was also found that the existing standardized phantom is not optimal for SAR measurements of large base station antennas. A new methodology is instead proposed based on a larger, box-shaped, whole-body phantom. Copyright © 2011 Wiley Periodicals, Inc.

  1. ERO modeling and sensitivity analysis of locally enhanced beryllium erosion by magnetically connected antennas

    Science.gov (United States)

    Lasa, A.; Borodin, D.; Canik, J. M.; Klepper, C. C.; Groth, M.; Kirschner, A.; Airila, M. I.; Borodkina, I.; Ding, R.; Contributors, JET

    2018-01-01

    Experiments at JET showed locally enhanced, asymmetric beryllium (Be) erosion at outer wall limiters when magnetically connected ICRH antennas were in operation. A first modeling effort using the 3D erosion and scrape-off layer impurity transport modeling code ERO reproduced qualitatively the experimental outcome. However, local plasma parameters—in particular when 3D distributions are of interest—can be difficult to determine from available diagnostics and so erosion / impurity transport modeling input relies on output from other codes and simplified models, increasing uncertainties in the outcome. In the present contribution, we introduce and evaluate the impact of improved models and parameters with largest uncertainties of processes that impact impurity production and transport across the scrape-off layer, when simulated in ERO: (i) the magnetic geometry has been revised, for affecting the separatrix position (located 50-60 mm away from limiter surface) and thus the background plasma profiles; (ii) connection lengths between components, which lead to shadowing of ion fluxes, are also affected by the magnetic configuration; (iii) anomalous transport of ionized impurities, defined by the perpendicular diffusion coefficient, has been revisited; (iv) erosion yields that account for energy and angular distributions of background plasma ions under the present enhanced sheath potential and oblique magnetic field, have been introduced; (v) the effect of additional erosion sources, such as charge-exchange neutral fluxes, which are dominant in recessed areas like antennas, has been evaluated; (vi) chemically assisted release of Be in molecular form has been included. Sensitivity analysis highlights a qualitative effect (i.e. change in emission patterns) of magnetic shadowing, anomalous diffusion, and inclusion of neutral fluxes and molecular release of Be. The separatrix location, and energy and angular distribution of background plasma fluxes impact erosion

  2. Low-profile natural and metamaterial antennas analysis methods and applications

    CERN Document Server

    Nakano, Hisamatsu

    2017-01-01

    This book presents the full range of low-profile antennas that use novel elements and take advantage of new concepts in antenna implementation, including metamaterials. Typically formed by constructing lattices of simple elements, metamaterials possess electromagnetic properties not found in naturally occurring materials, and show great promise in a number of low-profile antenna implementations. Introductory chapters define various natural and metamaterial-based antennas and provide the fundamentals of writing computer programs based on the method of moments (MoM) and the finite-difference time-domain method (FDTDM). Chapters then discuss low-profile natural antennas classified into base station antennas, mobile card antennas, beam-forming antennas, and satellite-satellite and earth-satellite communications antennas. Final chapters look at various properties of low-profile metamaterial-based ant nnas, revealing the strengths and limitations of the metamaterial-based straight line antenna (metaline antenna), m...

  3. Surface accuracy analysis and mathematical modeling of deployable large aperture elastic antenna reflectors

    Science.gov (United States)

    Coleman, Michael J.

    One class of deployable large aperture antenna consists of thin light-weight parabolic reflectors. A reflector of this type is a deployable structure that consists of an inflatable elastic membrane that is supported about its perimeter by a set of elastic tendons and is subjected to a constant hydrostatic pressure. A design may not hold the parabolic shape to within a desired tolerance due to an elastic deformation of the surface, particularly near the rim. We can compute the equilibrium configuration of the reflector system using an optimization-based solution procedure that calculates the total system energy and determines a configuration of minimum energy. Analysis of the equilibrium configuration reveals the behavior of the reflector shape under various loading conditions. The pressure, film strain energy, tendon strain energy, and gravitational energy are all considered in this analysis. The surface accuracy of the antenna reflector is measured by an RMS calculation while the reflector phase error component of the efficiency is determined by computing the power density at boresight. Our error computation methods are tailored for the faceted surface of our model and they are more accurate for this particular problem than the commonly applied Ruze Equation. Previous analytical work on parabolic antennas focused on axisymmetric geometries and loads. Symmetric equilibria are not assumed in our analysis. In addition, this dissertation contains two principle original findings: (1) the typical supporting tendon system tends to flatten a parabolic reflector near its edge. We find that surface accuracy can be significantly improved by fixing the edge of the inflated reflector to a rigid structure; (2) for large membranes assembled from flat sheets of thin material, we demonstrate that the surface accuracy of the resulting inflated membrane reflector can be improved by altering the cutting pattern of the flat components. Our findings demonstrate that the proper choice

  4. The Effect of Antenna Position Errors on Redundant-Baseline Calibration of HERA

    Science.gov (United States)

    Orosz, Naomi; Dillon, Joshua; Ewall-Wice, Aaron; Parsons, Aaron; HERA Collaboration

    2018-01-01

    HERA (the Hydrogen Epoch of Reionization Array) is a large, highly-redundant radio interferometer in South Africa currently being built out to 350 14-m dishes. Its mission is to probe large scale structure during and prior to the epoch of reionization using the 21 cm hyperfine transition of neutral hydrogen. The array is designed to be calibrated using redundant baselines of known lengths. However, the dishes can deviate from ideal positions, with errors on the order of a few centimeters. This potentially increases foreground contamination of the 21 cm power spectrum in the cleanest part of Fourier space. The calibration algorithm treats groups of baselines that should be redundant, but are not due to position errors, as if they actually are. Accurate, precise calibration is critical because the foreground signals are 100,000 times stronger than the reionization signal. We explain the origin of this effect and discuss weighting strategies to mitigate it.

  5. Phased array antenna control

    Science.gov (United States)

    Doland, G. D. (Inventor)

    1978-01-01

    Several new and useful improvements in steering and control of phased array antennas having a small number of elements, typically on the order of 5 to 17 elements are provided. Among the improvements are increasing the number of beam steering positions, reducing the possibility of phase transients in signals received or transmitted with the antennas, and increasing control and testing capacity with respect to the antennas.

  6. Thermo-mechanical analysis of the ICRH antenna for the ignitor experiment

    International Nuclear Information System (INIS)

    Salvetti, M.F.; Berruti, T.; Gola, M.M.

    2005-01-01

    This paper presents the design of the ion cyclotron resonance heating (ICRH) system of the ignitor machine. In addition, the paper presents relevant calculations and the design solutions adopted for the ICRH antenna straps. The thermal-mechanical analysis of the structure is illustrated. The displacements and stresses due to thermal loading and to dynamic loads induced during plasma vertical disruptions events (VDE) are calculated. The capability of carrying out both the assembly and maintenance of the antennas' components in full remote handling (RH) conditions is one of the specifications to which the design has to comply. A mechanical design that guarantees ease of operation is discussed. The proposed solution minimizes the variety of movements required for the manipulator

  7. Design and analysis of high gain array antenna for wireless communication applications

    Directory of Open Access Journals (Sweden)

    Sri Jaya LAKSHMI

    2015-05-01

    Full Text Available The array of antennas generally used for directing the radiated power towards a desired angular sector. Arrays can be used to synthesize a required pattern that cannot be achieved with a single element. The geometrical arrangement, number of elements, phases of the array elements and relative amplitudes depends on the angular pattern. This paper is focused on the issues related to the design and implementation of 4×1 array microstrip antenna with aperture coupled corporate feed for wireless local area network applications. Parametric analysis with change in element spacing is attempted in this work to understand the directional characteristics of the radiation pattern. Gain of more than 14 db and the efficiency more than 93% is achieved from the current design at desired frequency band.

  8. Analysis of axially symmetric wire antennas by the use of exact kernel of electric field integral equation

    Directory of Open Access Journals (Sweden)

    Krneta Aleksandra J.

    2016-01-01

    Full Text Available The paper presents a new method for the analysis of wire antennas with axial symmetry. Truncated cones have been applied to precisely model antenna geometry, while the exact kernel of the electric field integral equation has been used for computation. Accuracy and efficiency of the method has been further increased by the use of higher order basis functions for current expansion, and by selecting integration methods based on singularity cancelation techniques for the calculation of potential and impedance integrals. The method has been applied to the analysis of a typical dipole antenna, thick dipole antenna and a coaxial line. The obtained results verify the high accuracy of the method. [Projekat Ministarstva nauke Republike Srbije, br. TR-32005

  9. Cellular Reflectarray Antenna

    Science.gov (United States)

    Romanofsky, Robert R.

    2010-01-01

    The cellular reflectarray antenna is intended to replace conventional parabolic reflectors that must be physically aligned with a particular satellite in geostationary orbit. These arrays are designed for specified geographical locations, defined by latitude and longitude, each called a "cell." A particular cell occupies nominally 1,500 square miles (3,885 sq. km), but this varies according to latitude and longitude. The cellular reflectarray antenna designed for a particular cell is simply positioned to align with magnetic North, and the antenna surface is level (parallel to the ground). A given cellular reflectarray antenna will not operate in any other cell.

  10. Efficient 3D/1D self-consistent integral-equation analysis of ICRH antennae

    International Nuclear Information System (INIS)

    Maggiora, R.; Vecchi, G.; Lancellotti, V.; Kyrytsya, V.

    2004-01-01

    This work presents a comprehensive account of the theory and implementation of a method for the self-consistent numerical analysis of plasma-facing ion-cyclotron resonance heating (ICRH) antenna arrays. The method is based on the integral-equation formulation of the boundary-value problem, solved via a weighted-residual scheme. The antenna geometry (including Faraday shield bars and a recess box) is fairly general and three-dimensional (3D), and the plasma is in the one-dimensional (1D) 'slab' approximation; finite-Larmor radius effects, as well as plasma density and temperature gradients, are considered. Feeding via the voltages in the access coaxial lines is self consistently accounted throughout and the impedance or scattering matrix of the antenna array obtained therefrom. The problem is formulated in both the dual space (physical) and spectral (wavenumber) domains, which allows the extraction and simple handling of the terms that slow the convergence in the spectral domain usually employed. This paper includes validation tests of the developed code against measured data, both in vacuo and in the presence of plasma. An example of application to a complex geometry is also given. (author)

  11. Multibeam smart antenna field trial experiments in mobile radio environments

    Science.gov (United States)

    Perini, Patrick

    1996-01-01

    Several types of high gain multibeam antennas were tested and compared to traditional sector and omni antennas in various mobile radio environments. A vehicle equipped with a mobile transmitter drove in several mobile radio environments while the received signal strength (RSS) was recorded on multiple antenna channels attached to multibeam, sector and omni directional antennas. The RSS data recorded included the fast (rayleigh) fading and was averaged into local means based on the mobile's position/speed. Description of the experiment and analysis of the gain improvement, average RSS, diversity gain are presented.

  12. Design of a Class of Antennas Utilizing MEMS, EBG and Septum Polarizers including Near-field Coupling Analysis

    Science.gov (United States)

    Kim, Ilkyu

    Recent developments in mobile communications have led to an increased appearance of short-range communications and high data-rate signal transmission. New technologies provides the need for an accurate near-field coupling analysis and novel antenna designs. An ability to effectively estimate the coupling within the near-field region is required to realize short-range communications. Currently, two common techniques that are applicable to the near-field coupling problem are 1) integral form of coupling formula and 2) generalized Friis formula. These formulas are investigated with an emphasis on straightforward calculation and accuracy for various distances between the two antennas. The coupling formulas are computed for a variety of antennas, and several antenna configurations are evaluated through full-wave simulation and indoor measurement in order to validate these techniques. In addition, this research aims to design multi-functional and high performance antennas based on MEMS (Microelectromechanical Systems) switches, EBG (Electromagnetic Bandgap) structures, and septum polarizers. A MEMS switch is incorporated into a slot loaded patch antenna to attain frequency reconfigurability. The resonant frequency of the patch antenna can be shifted using the MEM switch, which is actuated by the integrated bias networks. Furthermore, a high gain base-station antenna utilizing beam-tilting is designed to maximize gain for tilted beam applications. To realize this base-station antenna, an array of four dipole-EBG elements is constructed to implement a fixed down-tilt main beam with application in base station arrays. An improvement of the operating range with the EBG-dipole array is evaluated using a simple linkbudget analysis. The septum polarizer has been widely used in circularly polarized antenna systems due to its simple and compact design and high quality of circularity. In this research, the sigmoid function is used to smoothen the edge in the septum design, which

  13. Analysis of plasma coupling with the prototype DIII-D ICRF antenna

    International Nuclear Information System (INIS)

    Ryan, P.M.; Hoffman, D.J.; Bigelow, T.S.; Baity, F.W.; Gardner, W.L.; Mayberry, M.J.; Rothe, K.E.

    1988-01-01

    Coupling to plasma in the H-mode is essential to the success of future ignited machines such as CIT. To ascertain voltage and current requirements for high-power second harmonic heating (2 MW in a 35- by 50-cm port), coupling to the DIII-D tokamak with a prototype compact loop antenna has been measured. The results show good loading for L-mode and limiter plasmas, but coupling 2 MW to an H-mode plasma demands voltages and currents near the limit of present technology. We report the technological analysis and progress that allow coupling of these power densities. 5 refs., 4 figs

  14. Analysis of plasma coupling with the prototype DIII-D ICRF antenna

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, P.M.; Hoffman, D.J.; Bigelow, T.S.; Baity, F.W.; Gardner, W.L.; Mayberry, M.J.; Rothe, K.E.

    1988-01-01

    Coupling to plasma in the H-mode is essential to the success of future ignited machines such as CIT. To ascertain voltage and current requirements for high-power second harmonic heating (2 MW in a 35- by 50-cm port), coupling to the DIII-D tokamak with a prototype compact loop antenna has been measured. The results show good loading for L-mode and limiter plasmas, but coupling 2 MW to an H-mode plasma demands voltages and currents near the limit of present technology. We report the technological analysis and progress that allow coupling of these power densities. 5 refs., 4 figs.

  15. Value Engineering and Function Analysis: Frameworks for Innovation in Antenna Systems

    Directory of Open Access Journals (Sweden)

    Hamid Reza Fartookzadeh

    2018-04-01

    Full Text Available Value engineering (VE and function analysis (FA are technological tools for the functional enhancement and cost reduction of engineering projects. They also help to overcome mental inertia by acknowledging the voice of the customer in complicated systems. Antenna engineering, providing electromagnetic remote links, is an important area in engineering science, with a large number of innovative concepts. However, managing innovative ideas to improve performance, reliability, quality, safety, and reduce life cycle costs, is still a work in progress. This research was designed to apply VE and FA as frameworks for innovative ideas in antenna systems, especially with regard to imaging and radar systems. FA diagrams free a designers’ mind from tools to instead focus on purpose, which can help them to obtain better ideas for solutions to problems. It was identified that there were several options available for functionality enhancement and cost reduction. The required functionalities of the components of antenna systems, and their advantages and limitations were indicated. In addition, it was identified that some of the advantages and limitations appeared for combinations of the components. Alternative methods for applications, such as polarization conversion and the separation of outgoing and incoming electromagnetic waves, were studied. Circular polarization (CP is important for two-way communication, since left-handed circularly polarized waves usually return with right-handed CP from targets. Therefore, various methods for producing CP were discussed, such as metamaterial-based linear to circular polarization converters and waveguide polarizers. Also, potential extra applications for these systems were explained. Two examples were: (1 merging multiple systems with different operating frequencies using multiband components; and (2 applying a feeding system for multiple reflectors using surfaces that reflect half of the wave and transmit the other

  16. Directional borehole antenna - Theory

    International Nuclear Information System (INIS)

    Falk, L.

    1992-02-01

    A directional antenna has been developed for the borehole radar constructed during phase 2 of the Stripa project. The new antenna can determine the azimuth of a strong reflector with an accuracy of about 3 degrees as confirmed during experiments in Stripa, although the ratio of borehole diameter to wavelength is small, about 0.03. The antenna synthesizes the effect of a loop antenna rotating in the borehole from four signals measured in turn by a stationary antenna. These signals are also used to calculate an electric dipole signal and a check sum which is used to examine the function of the system. The theory of directional antennas is reviewed and used to design an antenna consisting of four parallel wires. The radiation pattern of this antenna is calculated using transmission line theory with due regard to polarization, which is of fundamental importance for the analysis of directional data. In particular the multipole expansion of the field is calculated to describe the antenna radiation pattern. Various sources of error, e.g. the effect of the borehole, are discussed and the methods of calibrating the antenna are reviewed. The ambiguity inherent in a loop antenna can be removed by taking the phase of the signal into account. Typical reflectors in rock, e.g. fracture zones an tunnels, may be modelled as simple geometrical structures. The corresponding analysis is described and exemplified on measurements from Stripa. Radar data is nowadays usually analyzed directly on the computer screen using the program RADINTER developed within the Stripa project. An algorithm for automatic estimation of the parameters of a reflector have been tested with some success. The relation between measured radar data and external coordinates as determined by rotational indicators is finally expressed in terms of Euler angles. (au)

  17. Thermal and mechanical analysis of ITER-relevant LHCD antenna elements

    International Nuclear Information System (INIS)

    Marfisi, L.; Goniche, M.; Hamlyn-Harris, C.; Hillairet, J.; Artaud, J.F.; Bae, Y.S.; Belo, J.; Berger-By, G.; Bernard, J.M.; Cara, Ph.; Cardinali, A.; Castaldo, C.; Ceccuzzi, S.; Cesario, R.; Decker, J.; Delpech, L.; Ekedahl, A.; Garcia, J.; Garibaldi, P.; Guilhem, D.

    2011-01-01

    A 20 MW Lower Hybrid Current Drive system using an antenna based on the Passive-Active Multijunction (PAM) concept is envisaged on ITER. This paper gives an overview of the mechanical analysis, modeling and design carried out on two major elements of the antenna: the grill front face, and the RF feed-through or windows. The front face will have to withstand high heat and fast neutrons fluxes directly from the plasma. It will be actively cooled and present a beryllium coating upon ITER requirement. The RF window being a critical safety importance class component (SIC) because of its tritium confinement function, two of them will be put in series on each line to achieve a double barrier. A design of a water cooled 5 GHz CW RF 'pillbox' window capable of sustaining 500 kW of transmitted power is proposed. Both studies allow to move forward, and focus on critical issues, such as manufacturing processes and R and D associated programs including tests of mock-ups.

  18. Time domain analysis of thin-wire antennas over lossy ground using the reflection-coefficient approximation

    Science.gov (United States)

    FernáNdez Pantoja, M.; Yarovoy, A. G.; Rubio Bretones, A.; GonzáLez GarcíA, S.

    2009-12-01

    This paper presents a procedure to extend the methods of moments in time domain for the transient analysis of thin-wire antennas to include those cases where the antennas are located over a lossy half-space. This extended technique is based on the reflection coefficient (RC) approach, which approximates the fields incident on the ground interface as plane waves and calculates the time domain RC using the inverse Fourier transform of Fresnel equations. The implementation presented in this paper uses general expressions for the RC which extend its range of applicability to lossy grounds, and is proven to be accurate and fast for antennas located not too near to the ground. The resulting general purpose procedure, able to treat arbitrarily oriented thin-wire antennas, is appropriate for all kind of half-spaces, including lossy cases, and it has turned out to be as computationally fast solving the problem of an arbitrary ground as dealing with a perfect electric conductor ground plane. Results show a numerical validation of the method for different half-spaces, paying special attention to the influence of the antenna to ground distance in the accuracy of the results.

  19. 3-D analysis on arbitrarily-shaped ICRF antennas and Faraday shields

    International Nuclear Information System (INIS)

    Chen, G.L.; Whealton, J.H.; Baity, F.W.; Hoffman, D.J.; Owens, T.L.

    1986-01-01

    Cavity antennas with Faraday shields are proposed to couple ion cyclotron radio frequency power for heating fusion plasmas. This application requires small, high-power, low-frequency antennas. The results are presented of a theoretical study of the ICRF antennas being developed for this purpose at the Radio Frequency Test Facility (RFTF). The objectives of this work are to optimize experimental designs and to confirm test results

  20. Tunable Platform Tolerant Antenna Design for RFID and IoT Applications Using Characteristic Mode Analysis

    OpenAIRE

    Sharif, Abubakar; Ouyang, Jun; Yang, Feng; Long, Rui; Ishfaq, Muhammad Kamran

    2018-01-01

    Radio frequency identification (RFID) is a key technology to realize IoT (Internet of Things) dreams. RFID technology has been emerging in sensing, identification, tracking, and localization of goods. In order to tag a huge number of things, it is cost-effective to use one RFID antenna for tagging different things. Therefore, in this paper a platform tolerant RFID tag antenna with tunable capability is proposed. The proposed tag antenna is designed and optimized using characteristic mode anal...

  1. Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets

    International Nuclear Information System (INIS)

    Tamagnone, M.; Gómez-Díaz, J. S.; Perruisseau-Carrier, J.; Mosig, J. R.

    2012-01-01

    Resonant graphene antennas used as true interfaces between terahertz (THz) space waves and a source/detector are presented. It is shown that in addition to the high miniaturization related to the plasmonic nature of the resonance, graphene-based THz antenna favorably compare with typical metal implementations in terms of return loss and radiation efficiency. Graphene antennas will contribute to the development of miniature, efficient, and potentially transparent all-graphene THz transceivers for emerging communication and sensing application.

  2. Analysis of Circularly Polarized Hemispheroidal Dielectric Resonator Antenna Phased Arrays Using the Method of Auxiliary Sources

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2007-01-01

    The method of auxiliary sources is employed to model and analyze probe-fed hemispheroidal dielectric resonator antennas and arrays. Circularly polarized antenna elements of different designs are analyzed, and impedance bandwidths of up to 14.7% are achieved. Selected element designs are subsequen......The method of auxiliary sources is employed to model and analyze probe-fed hemispheroidal dielectric resonator antennas and arrays. Circularly polarized antenna elements of different designs are analyzed, and impedance bandwidths of up to 14.7% are achieved. Selected element designs...

  3. Design, simulation and analysis a microstrip antenna using PU-EFB substrate

    Science.gov (United States)

    Mahmud, S. N. S.; Jusoh, M. A.; Jasim, S. E.; Zamani, A. H.; Abdullah, M. H.

    2018-04-01

    A low cost, light weight and easy to fabricate are the most important factor for future antennas. Microstrip patch antennas offer these advantages and suitable for communication and sensor application. This paper presents a design of simple microstrip patch antenna working on operating frequency of 2.4 GHz. The designed process has been carried out using MATLAB and HFSS software by entering 2.3 for the dielectric constant of PU-EFB. The results showed that high return loss, low bandwidth and good antenna radiation efficiency of which are -21.98 dB, 0.28 dB and 97.33%, respectively.

  4. Variability of Surface Reflection Amplitudes of GPR Horn Antenna Depending on Distance between Antenna and Surface

    Directory of Open Access Journals (Sweden)

    Komačka Jozef

    2016-05-01

    Full Text Available The study focused on variability of surface reflections amplitudes of GPR horn antenna in relation to distance between an antenna and a surface is presented in the paper. The air-coupled antenna with the central frequency of 1 GHz was used in the investigation. Four types of surfaces (dry pavement, wet pavement, metal plate and composite layer from gypsum and wood were tested. The distance of antenna above the surfaces was changed in the range from 37.5 cm to 53.5 cm. The amplitudes of negative and positive peaks and their variability were analysed in relation to the distance of antenna above the surfaces. Moreover, the influence of changes in the peaks of negative and positive amplitudes on the total amplitudes was assessed. It was found out the amplitudes of negative peaks for all investigated surfaces were relatively consistent in the range from 40.5 cm to 48.5 cm and the moderate decline was identified in the case of amplitudes of positive peaks in the range of distances from 37.5 cm to 51.5 cm. This decline influences the tendency of total amplitudes. Based on the results of analysis it can be stated the distance of air-coupled antenna above the surface can influence the value of total amplitude and the differences depend on the type of surface.

  5. Electrically floating, near vertical incidence, skywave antenna

    Science.gov (United States)

    Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.

    2014-07-08

    An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.

  6. Analysis of Naval Ammunition Stock Positioning

    Science.gov (United States)

    2015-12-01

    not manipulated to be in favor of any system based on the assumption that stock positioned closer to demand would result in more favorable delivery...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT ANALYSIS OF NAVAL AMMUNITION STOCK POSITIONING...professional report 4. TITLE AND SUBTITLE ANALYSIS OF NAVAL AMMUNITION STOCK POSITIONING 5. FUNDING NUMBERS 6. AUTHOR(S) David Sharp and Eric

  7. Energy Efficiency Analysis of Antenna Selection Techniques in Massive MIMO-OFDM System with Hardware Impairments

    Directory of Open Access Journals (Sweden)

    Anuj Singal

    2018-01-01

    Full Text Available In massive multiple-input multiple-output (M-MIMO systems, a large number of antennas increase system complexity as well as the cost of hardware. In this paper, we propose an M-MIMO-OFDM model using per-subcarrier antenna selection and bulk antenna selection schemes to mitigate these problems. Also, we derive a new uplink and downlink energy efficiency (EE equation for the M-MIMO-OFDM system by taking into consideration the antenna selection schemes, power scaling factor (g=0.25,  0.5, and a range of hardware impairments {κBS, κUEϵ (0, 0.052, 0.12}. In addition, we investigate a trend of EE by varying various parameters like number of base station antennas (BSAs, SNR, level of hardware impairments, total circuit power consumption, power optimization, antenna selection schemes, and power scaling factor in the proposed M-MIMO-OFDM model. The simulation results thus obtained show that the EE increases with increase in the value of SNR. Also, it increases abruptly up to 100 number of BSA. However, the increase in the EE is not significant in the range of 125 to 400 number of BSA. Further, the bulk antenna selection technique has comparatively more EE than the per-subcarrier antenna selection. Moreover, EE gaps between antenna selection schemes decrease with increase in the value of hardware impairments and power scaling factor. However, as the hardware degradation effect increases, the EE of the bulk antenna selection scheme suffers more degradation as compared to the Per-subcarrier antenna selection scheme. It has also been observed that EE performance is inversely proportional to the total circuit power consumption (λ+γ and it increases with the power optimization.

  8. Evaluation and Performance Analysis of 3D Printing Technique for Ka-Band Antenna Production

    DEFF Research Database (Denmark)

    Armendariz, Unai; Rommel, Simon; Rodríguez Páez, Juan Sebastián

    2016-01-01

    This paper presents the design and fabrication of 3D printed WR-28 waveguide horn antennas operating in the Ka-band frequency range between 26.5GHz and 40GHz. Three antennas are fabricated from polylactide acid filaments in conductive and non-conductive variants; the latter is covered...

  9. Antenna toolkit

    CERN Document Server

    Carr, Joseph

    2006-01-01

    Joe Carr has provided radio amateurs and short-wave listeners with the definitive design guide for sending and receiving radio signals with Antenna Toolkit 2nd edition.Together with the powerful suite of CD software, the reader will have a complete solution for constructing or using an antenna - bar the actual hardware! The software provides a simple Windows-based aid to carrying out the design calculations at the heart of successful antenna design. All the user needs to do is select the antenna type and set the frequency - a much more fun and less error prone method than using a con

  10. Specific absorption rate analysis of broadband mobile antenna with negative index metamaterial

    Science.gov (United States)

    Alam, Touhidul; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul

    2016-03-01

    This paper presents a negative index metamaterial-inspired printed mobile wireless antenna that can support most mobile applications such as GSM, UMTS, Bluetooth and WLAN frequency bands. The antenna consists of a semi-circular patch, a 50Ω microstrip feed line and metamaterial ground plane. The antenna occupies a very small space of 37 × 47 × 0.508 mm3, making it suitable for mobile wireless application. The perceptible novelty shown in this proposed antenna is that reduction of specific absorption rate using the negative index metamaterial ground plane. The proposed antenna reduced 72.11 and 75.53 % of specific absorption rate at 1.8 and 2.4 GHz, respectively.

  11. Transient analysis of cutoff waveguide antenna in three-dimensional space

    International Nuclear Information System (INIS)

    Kashiwa, Tatsuya; Yoshida, Norinobu; Fukai, Ichiro

    1986-01-01

    Recently, the exciting system for electric power heating as seen in nuclear fusion plasma heating and medical purpose has been actively studied and developed. Since such system treats basically a neighborhood field, various problems unlike conventional exciting system for communication arise. In such situation, the structure having the waveguides of simple and robust construction as the main body has been proposed. In this exciting system including the condition of media, the complex distribution of a neighborhood field based on a three-dimensional structure exerts an important effect on the characteristics. Especially in large power excitation, the higher mode of relatively small power distribution cannot be neglected. Besides, also a transient field distribution exerts an important effect on the characteristics, and the time response analysis is required. In this analysis, by the three-dimensional time response analysis method using Bergeron method, the unified analysis of the total system comprising a cutoff waveguide, a coaxial exciting part and a heating region was carried out for determining a radiation neighborhood electromagnetic field by a cutoff waveguide antenna. (Kako, I.)

  12. Design and analysis of a deployable truss for the large modular mesh antenna

    Science.gov (United States)

    Meguro, Akira

    This paper describes the design and deployment analysis for large deployable modular mesh antennas. Key design criteria are deployability, and the driving force and latching moment requirements. Reaction forces and moments due to mesh and cable network seriously influence the driving force. These forces and moments can be precisely estimated by means of analyzing the cable network using Cable Structure Analyzer (CASA). Deployment analysis is carried out using Dynamic Analysis and Design System (DADS). The influence of alignment errors on the driving reaction force can be eliminated by replacing the joint element with a spring element. The joint slop is also modeled using a discontinuous spring elements. Their design approach for three types of deployable modules and the deployment characterstics of three Bread-Board Models based on those designs are also presented. In order to study gravity effects on the deployment characteristics and the effects of the gravity compensation method, ground deployment analysis is carried out. A planned deployment test that will use aircraft parabolic flight to simulate a micro-gravity environment is also described.

  13. Microwave antenna holography

    Science.gov (United States)

    Rochblatt, David J.; Seidel, Boris L.

    1992-01-01

    This microwave holography technique utilizes the Fourier transform relation between the complex far field radiation pattern of an antenna and the complex aperture field distribution. Resulting aperture phase and amplitude distribution data can be used to precisely characterize various crucial performance parameters, including panel alignment, panel shaping, subreflector position, antenna aperture illumination, directivity at various frequencies, and gravity deformation effects. The methodology of data processing presented here was successfully applied to the Deep Space Network (DSN) 34-m beam waveguide antennas. The antenna performance was improved at all operating frequencies by reducing the main reflector mechanical surface rms error to 0.43 mm. At Ka-band (32 GHz), the estimated improvement is 4.1 dB, resulting in an aperture efficiency of 52 percent. The performance improvement was verified by efficiency measurements and additional holographic measurements.

  14. Efficient Placement of Directional Antennas

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Feng [Los Alamos National Laboratory; Kasiviswanathan, Shiva [Los Alamos National Laboratory

    2010-09-20

    Directional antenna is an technology for the proliferation of wireless networks. In centralized wireless network, wireless devices communicate through base stations. Directed antennas are placed on base stations and form a backbone of communication. The communication between base stations and wireless devices can be interfered due to a large number of wireless device. Methodically positioning and orienting directed antennas can help to reduce the interference while saving energy. An integer linear programming is developed for siting and directing antennas on multiple base stations, and this formulation can be extended to model non-overlapping channels. Through the integer programming formulation, optimal antenna positions can be used to analyze the performance of directed antennas with different parameters like the number base stations and the number of non-overlapping channels.

  15. Analysis of a Compact Wideband Slotted Antenna for Ku Band Applications

    Directory of Open Access Journals (Sweden)

    M. R. Ahsan

    2014-01-01

    Full Text Available The design procedure and physical module of a compact wideband patch antenna for Ku band application are presented in this paper. Finite element method based on 3D electromagnetic field solver has been utilized for the designing and analyzing process of proposed microstrip line fed modified E-H shaped electrically small patch antenna. After successful completion of the design process through various simulations, the proposed antenna has been fabricated on printed circuit board (PCB and its characteristics have been studied. The parameters of the proposed antenna prototype have been measured in standard far-field rectangular shape anechoic measurement compartment. It is apparent from the measured antenna parameters that the proposed antenna achieved almost stable variation of radiation pattern over the entire operational band with 1380 MHz of -10 dB return loss bandwidth. The maximum gain of 7.8 dBi and 89.97% average efficiency within the operating band from 17.15 GHz to 18.53 GHz ensure the suitability of the proposed antenna for Ku band applications.

  16. Analysis of 4-strap ICRF Antenna Performance in Alcator C-Mod

    International Nuclear Information System (INIS)

    Schilling, G.; Wukitch, S.J.; Boivin, R.L.; Goetz, J.A.; Hosea, J.C.; Irby, J.H.; Lin, Y.; Parisot, A.; Porkolab, M.; Wilson, J.R.

    2003-01-01

    A 4-strap ICRF antenna was designed and fabricated for plasma heating and current drive in the Alcator C-Mod tokamak. Initial upgrades were carried out in 2000 and 2001, which eliminated surface arcing between the metallic protection tiles and reduced plasma-wall interactions at the antenna front surface. A boron nitride septum was added at the antenna midplane to intersect electric fields resulting from radio-frequency sheath rectification, which eliminated antenna corner heating at high power levels. The current feeds to the radiating straps were reoriented from an E||B to E parallel B geometry, avoiding the empirically observed ∼15 kV/cm field limit and raising antenna voltage holding capability. Further modifications were carried out in 2002 and 2003. These included changes to the antenna current strap, the boron nitride tile mounting geometry, and shielding the BN-metal interface from the plasma. The antenna heating efficiency, power, and voltage characteristics under these various configurations will be presented

  17. Multi-spectrum and transmit-antenna switched diversity schemes for spectrum sharing systems: A performance analysis

    KAUST Repository

    Sayed, Mostafa

    2012-12-01

    In spectrum sharing systems, a secondary user (SU) is allowed to share the spectrum with a primary licensed user under the condition that the interference at the the primary user receiver (PU-Rx) is below a predetermined threshold. Joint primary spectrum and transmit antenna selection diversity schemes can be utilized as an efficient way to meet the quality of service (QoS) demands of the SUs while satisfying the interference constraint. In this paper, we consider a secondary link comprised of a secondary transmitter (SU-Tx) equipped with multiple antennas and a single-antenna secondary receiver (SU-Rx) sharing the same spectrum with a number of primary users (PUs) operating at distinct spectra. We present a performance analysis for two primary spectrum and transmit antenna switched selection schemes with different amount of feedback requirements. In particular, assuming Rayleigh fading and BPSK transmission, we derive approximate BER expressions for the presented schemes. For the sake of comparison, we also derive a closed-form BER expression for the optimal selection scheme that selects the best pair in terms of the SU-Rx signal-to-noise ratio (SNR) which has the disadvantage of high feedback requirements. Finally, our results are verified with numerical simulations. © 2012 IEEE.

  18. Analysis of dynamics of vulcanian activity of Ubinas volcano, using multicomponent seismic antennas

    Science.gov (United States)

    Inza, L. A.; Métaxian, J. P.; Mars, J. I.; Bean, C. J.; O'Brien, G. S.; Macedo, O.; Zandomeneghi, D.

    2014-01-01

    A series of 16 vulcanian explosions occurred at Ubinas volcano between May 24 and June 14, 2009. The intervals between explosions were from 2.1 h to more than 6 days (mean interval, 33 h). Considering only the first nine explosions, the average time interval was 7.8 h. Most of the explosions occurred after a short time interval (MUSIC-3C algorithm to estimate the slowness vector for the first waves that composed the explosion signals recorded by the two antennas assuming propagation in a homogeneous medium. The initial part of the explosions was dominated by two frequencies, at 1.1 Hz and 1.5 Hz, for which we identified two separated sources located at 4810 m and 3890 m +/- 390 altitude, respectively. The position of these two sources was the same for the full 16 explosions. This implies the reproduction of similar mechanisms in the conduit. Based on the eruptive mechanisms proposed for other volcanoes of the same type, we interpret the position of these two sources as the limits of the conduit portion that was involved in the fragmentation process. Seismic data and ground deformation recorded simultaneously less than 2 km from the crater showed a decompression movement 2 s prior to each explosion. This movement can be interpreted as gas leakage at the level of the cap before its destruction. The pressure drop generated in the conduit could be the cause of the fragmentation process that propagated deeper. Based on these observations, we interpret the position of the highest source as the part of the conduit under the cap, and the deeper source as the limit of the fragmentation zone.

  19. Analysis of a Combined Antenna Arrays and Reverse-Link Synchronous DS-CDMA System over Multipath Rician Fading Channels

    Directory of Open Access Journals (Sweden)

    Kim Yong-Seok

    2005-01-01

    Full Text Available We present the BER analysis of antenna array (AA receiver in reverse-link asynchronous multipath Rician channels and analyze the performance of an improved AA system which applies a reverse-link synchronous transmission technique (RLSTT in order to effectively make a better estimation of covariance matrices at a beamformer-RAKE receiver. In this work, we provide a comprehensive analysis of user capacity which reflects several important factors such as the ratio of the specular component power to the Rayleigh fading power, the shape of multipath intensity profile, and the number of antennas. Theoretical analysis demonstrates that for the case of a strong specular path's power or for a high decay factor, the employment of RLSTT along with AA has the potential of improving the achievable capacity by an order of magnitude.

  20. Performance Analysis of Mobile Ad Hoc Unmanned Aerial Vehicle Communication Networks with Directional Antennas

    Directory of Open Access Journals (Sweden)

    Abdel Ilah Alshbatat

    2010-01-01

    Full Text Available Unmanned aerial vehicles (UAVs have the potential of creating an ad hoc communication network in the air. Most UAVs used in communication networks are equipped with wireless transceivers using omnidirectional antennas. In this paper, we consider a collection of UAVs that communicate through wireless links as a mobile ad-hoc network using directional antennas. The network design goal is to maximize the throughput and minimize the end-to-end delay. In this respect, we propose a new medium access control protocol for a network of UAVs with directional antennas. We analyze the communication channel between the UAVs and the effect of aircraft attitude on the network performance. Using the optimized network engineering tool (OPNET, we compare our protocol with the IEEE 802.11 protocol for omnidirectional antennas. The simulation results show performance improvement in end-to-end delay as well as throughput.

  1. TCM Analysis of Defected Ground Structures for MIMO Antenna Designs in Mobile Terminals

    KAUST Repository

    Ghalib, Asim; Sharawi, Mohammad S.

    2017-01-01

    In this paper, the theory of characteristic modes (TCM) is used for the first time to analyze the behavior of defected ground structures (DGS) when added to antenna designs. A properly designed DGS introduces currents opposite in direction

  2. An algorithm for the analysis of inductive antennas of arbitrary cross-section for heating in the ion cyclotron range of frequencies

    International Nuclear Information System (INIS)

    Lehrman, I.S.; Colestock, P.L.

    1986-10-01

    The application of Ion Cyclotron Range of Frequency (ICRF) heating to near ignited plasmas will require launching structures that will be capable of withstanding the harsh plasma environment. The recessed antenna configuration is expected to provide sufficient protection for the structure, but to date no analysis has been done to determine if adequate coupling can be achieved in such a configuration. In this work we present a method for determining the current distribution for the antenna in the direction transverse to current flow and predict antenna loading in the presence of plasma. Antennas of arbitrary cross section are analyzed above ground planes of arbitrary shape. Results from ANDES, the ANtenna DESign code, are presented and compared to experimental results

  3. Analysis of Vector Quantizers Using Transformed Codebooks with Application to Feedback-Based Multiple Antenna Systems

    Directory of Open Access Journals (Sweden)

    Bhaskar D. Rao

    2008-07-01

    Full Text Available Transformed codebooks are obtained by a transformation of a given codebook to best match the statistical environment at hand. The procedure, though suboptimal, has recently been suggested for feedback of channel state information (CSI in multiple antenna systems with correlated channels because of their simplicity and effectiveness. In this paper, we first consider the general distortion analysis of vector quantizers with transformed codebooks. Bounds on the average system distortion of this class of quantizers are provided. It exposes the effects of two kinds of suboptimality introduced by the transformed codebook, namely, the loss caused by suboptimal point density and the loss caused by mismatched Voronoi shape. We then focus our attention on the application of the proposed general framework to providing capacity analysis of a feedback-based MISO system over spatially correlated fading channels. In particular, with capacity loss as an objective function, upper and lower bounds on the average distortion of MISO systems with transformed codebooks are provided and compared to that of the optimal channel quantizers. The expressions are examined to provide interesting insights in the high and low SNR regime. Numerical and simulation results are presented which confirm the tightness of the distortion bounds.

  4. The Analysis of a Wideband Strip-Helical Antenna with 1.1 Turns

    Directory of Open Access Journals (Sweden)

    Xihui Tang

    2016-01-01

    Full Text Available A wideband strip-helical antenna with 1.1 turns is analyzed numerically and experimentally. By replacing the traditional wire helix with wide metallic strip, the forward traveling current on the strip helix with about one turn smoothly decays to the minimum value at the open end of the helix. Therefore, the strip helix can excite a wideband circular polarization (CP wave with 50-ohm impedance matching. The proposed antenna is printed on a hollow-cylinder with a substrate relative permittivity of εr=2.2 and a thickness of h=0.5 mm. A 50 Ω coaxial cable is directly connected to excite the strip-helical antenna without any additional impedance matching section. The ground plane is placed below the antenna in order to provide a directional radiation pattern. To demonstrate this method, a prototype of 1.1-turn strip-helical antenna is tested. The test shows that the proposed antenna can reach an overlapped bandwidth of 46% with height of 0.52λ0, where λ0 is the wavelength in free space at the center operation frequency.

  5. TOPLHA: an accurate and efficient numerical tool for analysis and design of LH antennas

    International Nuclear Information System (INIS)

    Milanesio, D.; Lancellotti, V.; Meneghini, O.; Maggiora, R.; Vecchi, G.; Bilato, R.

    2007-01-01

    Auxiliary ICRF heating systems in tokamaks often involve large complex antennas, made up of several conducting straps hosted in distinct cavities that open towards the plasma. The same holds especially true in the LH regime, wherein the antennas are comprised of arrays of many phased waveguides. Upon observing that the various cavities or waveguides couple to each other only through the EM fields existing over the plasma-facing apertures, we self-consistently formulated the EM problem by a convenient set of multiple coupled integral equations. Subsequent application of the Method of Moments yields a highly sparse algebraic system; therefore formal inversion of the system matrix happens to be not so memory demanding, despite the number of unknowns may be quite large (typically 10 5 or so). The overall strategy has been implemented in an enhanced version of TOPICA (Torino Polytechnic Ion Cyclotron Antenna) and in a newly developed code named TOPLHA (Torino Polytechnic Lower Hybrid Antenna). Both are simulation and prediction tools for plasma facing antennas that incorporate commercial-grade 3D graphic interfaces along with an accurate description of the plasma. In this work we present the new proposed formulation along with examples of application to real life large LH antenna systems

  6. TCM Analysis of Defected Ground Structures for MIMO Antenna Designs in Mobile Terminals

    KAUST Repository

    Ghalib, Asim

    2017-08-14

    In this paper, the theory of characteristic modes (TCM) is used for the first time to analyze the behavior of defected ground structures (DGS) when added to antenna designs. A properly designed DGS introduces currents opposite in direction to the original characteristic modes (CM) currents thus reducing mutual coupling. TCM is also applied to multiple-inputmultiple- output (MIMO) antenna systems to develop a systematic approach that can predict whether the isolation can be enhanced further or not. For this purpose two 4-element and one 2-element MIMO designs, i.e. monopole and planar inverted-F antennas (PIFA) are studied. The addition of different antenna elements affects the CM significantly as well as differently. Some of the CM excited on the antenna surface contribute to the coupling between the antenna ports that is why they can be classified as coupling modes. To improve the isolation, the DGS should be introduced at certain locations that blocks the coupling modes but at the same time does not affect the non-coupling modes. If their is no such location or the current on the surface of the chassis for coupling and non-coupling modes is approximately same, the isolation cannot be enhanced further. Using this approach, isolation was improved on an average by 11 dB in all the designs considered, giving the most isolation enhancement following a systematic way compared to other works.

  7. Analysis and Design of a Novel Multiband Antenna for Mobile Terminals

    Directory of Open Access Journals (Sweden)

    Yuan Yao

    2015-01-01

    Full Text Available A multiband planar terminal antenna with a compact size of 40 mm × 24 mm is proposed in this paper. This antenna consists of a monopole patch with two slots on it and a meandering strip loaded on the top. Two parasitic stubs and a branch on the ground are used to adjust and widen the impedance bandwidth of the antenna. Simulations and measurements are carried out to study the antenna performances in terms of impedance matching, efficiency, gain, and radiation patterns. Both of simulation and measurement results are shown to illustrate the good performance of the proposed antenna. The antenna can operate at 450–474 MHz, 860–1040 MHz, 1705–2428 MHz, and 2500–2710 MHz. These operating bandwidths cover GSM900, DCS, PCS, UMTS, LTE2500, and LTE’s low frequency band (450–470 MHz. It is very suitable for multifunctional terminal applications in wireless communication systems.

  8. Design and Analysis of Ultra-wideband Micro Strip Patch Antenna with Notch Band Characteristics

    Directory of Open Access Journals (Sweden)

    Kumar Omprakash

    2016-01-01

    Full Text Available A new design of ultra-wideband (UWB micro strip patch antenna with notch band characteristic for wireless local area network (WLAN application is presented in this paper. The proposed antenna consists of a rectangular patch with a partial ground plane that is fed by 50 Ω micro strip line. A notch band function is created by inserting overlapped one U-shape and one C-shape slot on the radiator patch, added additional patch to the ground plane side and slit in truncated ground plane. The proposed antenna potentially minimized frequency interference between WLAN and UWB system. This antenna with the size of 26 mm × 32 mm (W×L and the simulated results show that the antenna can operate over the frequency band between 3.1 and 10.45 GHz for voltage standing wave ratio (VSWR > 2 with band notch 5.06-5.825 GHz. Besides in the working band, the antenna shows good radiation pattern in the H-plane and the E-plane and has good time domain characteristic.

  9. Slot-Coupled Barbel Antenna

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Lüthje; Jakobsen, Kaj Bjarne

    2016-01-01

    A novel slot-coupled barbel antenna is designed and analyzed. A sensitivity analysis performed in order to improve the bandwidth, while the center frequency is kept constant.......A novel slot-coupled barbel antenna is designed and analyzed. A sensitivity analysis performed in order to improve the bandwidth, while the center frequency is kept constant....

  10. Isolated and coupled superquadric loop antennas for mobile communications applications

    Science.gov (United States)

    Jensen, Michael A.; Rahmat-Samii, Yahya

    1993-01-01

    This work provides an investigation of the performance of loop antennas for use in mobile communications applications. The analysis tools developed allow for high flexibility by representing the loop antenna as a superquadric curve, which includes the case of circular, elliptical, and rectangular loops. The antenna may be in an isolated environment, located above an infinite ground plane, or placed near a finite conducting plate or box. In cases where coupled loops are used, the two loops may have arbitrary relative positions and orientations. Several design examples are included to illustrate the versatility of the analysis capabilities. The performance of coupled loops arranged in a diversity scheme is also evaluated, and it is found that high diversity gain can be achieved even when the antennas are closely spaced.

  11. Conformal, wearable, thin microwave antenna for sub-skin and skin surface monitoring

    Science.gov (United States)

    Converse, Mark C.; Chang, John T.; Duoss, Eric B.

    2017-05-16

    A wearable antenna is operably positioned on a wearer's skin and is operably connected the wearer's tissue. A first antenna matched to the wearer's tissue is operably positioned on the wearer's skin. A second antenna matched to the air is operably positioned on the wearer's skin. Transmission lines connect the first antenna and the second antenna.

  12. Statistical analysis of electromagnetic radiation measurements in the vicinity of GSM/UMTS base station antenna masts.

    Science.gov (United States)

    Koprivica, Mladen; Neskovic, Natasa; Neskovic, Aleksandar; Paunovic, George

    2014-01-01

    As a result of dense installations of public mobile base station, additional electromagnetic radiation occurs in the living environment. In order to determine the level of radio-frequency radiation generated by base stations, extensive electromagnetic field strength measurements were carried out for 664 base station locations. Base station locations were classified into three categories: indoor, masts and locations with installations on buildings. Having in mind the large percentage (47 %) of sites with antenna masts, a detailed analysis of this location category was performed, and the measurement results were presented. It was concluded that the total electric field strength in the vicinity of base station antenna masts in no case exceeded 10 V m(-1), which is quite below the International Commission on Non-Ionizing Radiation Protection reference levels. At horizontal distances >50 m from the mast bottom, the median and maximum values were <1 and 2 V m(-1), respectively.

  13. Statistical analysis of electromagnetic radiation measurements in the vicinity of GSM/UMTS base station antenna masts

    International Nuclear Information System (INIS)

    Koprivica, M.; Neskovic, N.; Neskovic, A.; Paunovic, G.

    2014-01-01

    As a result of dense installations of public mobile base station, additional electromagnetic radiation occurs in the living environment. In order to determine the level of radio-frequency radiation generated by base stations, extensive electromagnetic field strength measurements were carried out for 664 base station locations. Base station locations were classified into three categories: indoor, masts and locations with installations on buildings. Having in mind the large percentage (47 %) of sites with antenna masts, a detailed analysis of this location category was performed, and the measurement results were presented. It was concluded that the total electric field strength in the vicinity of base station antenna masts in no case exceeded 10 V m -1 , which is quite below the International Commission on Non-Ionizing Radiation Protection reference levels. At horizontal distances >50 m from the mast bottom, the median and maximum values were -1 , respectively. (authors)

  14. Subreflector extension for improved efficiencies in Cassegrain antennas - GTD/PO analysis. [Geometrical Theory of Diffraction/Physical Optics

    Science.gov (United States)

    Rahmat-Samii, Yahya

    1986-01-01

    Both offset and symmetric Cassegrain reflector antennas are used in satellite and ground communication systems. It is known that the subreflector diffraction can degrade the performance of these reflectors. A geometrical theory of diffraction/physical optics analysis technique is used to investigate the effects of the extended subreflector, beyond its optical rim, on the reflector efficiency and far-field patterns. Representative numerical results are shown for an offset Cassegrain reflector antenna with different feed illumination tapers and subreflector extensions. It is observed that for subreflector extensions as small as one wavelength, noticeable improvements in the overall efficiencies can be expected. Useful design data are generated for the efficiency curves and far-field patterns.

  15. Application of the SWE-to-PWE antenna diagnostics technique to an offset reflector antenna

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Frandsen, Aksel; Breinbjerg, Olav

    2008-01-01

    Electrical and mechanical errors in an antenna may seriously affect the antenna's performance. Although their presence is usually detected by anomalies in the antenna's far-field pattern, their identification is normally possible only through an analysis of the antenna's extreme near field....... The reconstruction of the extreme near field on the basis of near- or far-field measurements is thus an essential step in antenna diagnostics....

  16. Stochastic and sensitivity analysis of shape error of inflatable antenna reflectors

    Science.gov (United States)

    San, Bingbing; Yang, Qingshan; Yin, Liwei

    2017-03-01

    Inflatable antennas are promising candidates to realize future satellite communications and space observations since they are lightweight, low-cost and small-packaged-volume. However, due to their high flexibility, inflatable reflectors are difficult to manufacture accurately, which may result in undesirable shape errors, and thus affect their performance negatively. In this paper, the stochastic characteristics of shape errors induced during manufacturing process are investigated using Latin hypercube sampling coupled with manufacture simulations. Four main random error sources are involved, including errors in membrane thickness, errors in elastic modulus of membrane, boundary deviations and pressure variations. Using regression and correlation analysis, a global sensitivity study is conducted to rank the importance of these error sources. This global sensitivity analysis is novel in that it can take into account the random variation and the interaction between error sources. Analyses are parametrically carried out with various focal-length-to-diameter ratios (F/D) and aperture sizes (D) of reflectors to investigate their effects on significance ranking of error sources. The research reveals that RMS (Root Mean Square) of shape error is a random quantity with an exponent probability distribution and features great dispersion; with the increase of F/D and D, both mean value and standard deviation of shape errors are increased; in the proposed range, the significance ranking of error sources is independent of F/D and D; boundary deviation imposes the greatest effect with a much higher weight than the others; pressure variation ranks the second; error in thickness and elastic modulus of membrane ranks the last with very close sensitivities to pressure variation. Finally, suggestions are given for the control of the shape accuracy of reflectors and allowable values of error sources are proposed from the perspective of reliability.

  17. Design, Analysis, and Verification of Ka-Band Pattern Reconfigurable Patch Antenna Using RF MEMS Switches

    Directory of Open Access Journals (Sweden)

    Zhongliang Deng

    2016-08-01

    Full Text Available This paper proposes a radiating pattern reconfigurable antenna by employing RF Micro-electromechanical Systems (RF MEMS switches. The antenna has a low profile and small size of 4 mm × 5 mm × 0.4 mm, and mainly consists of one main patch, two assistant patches, and two RF MEMS switches. By changing the RF MEMS switches operating modes, the proposed antenna can switch among three radiating patterns (with main lobe directions of approximately −17.0°, 0° and +17.0° at 35 GHz. The far-field vector addition model is applied to analyse the pattern. Comparing the measured results with analytical and simulated results, good agreements are obtained.

  18. Performance Analysis of Blind Beamforming Algorithms in Adaptive Antenna Array in Rayleigh Fading Channel Model

    International Nuclear Information System (INIS)

    Yasin, M; Akhtar, Pervez; Pathan, Amir Hassan

    2013-01-01

    In this paper, we analyze the performance of adaptive blind algorithms – i.e. Kaiser Constant Modulus Algorithm (KCMA), Hamming CMA (HAMCMA) – with CMA in a wireless cellular communication system using digital modulation technique. These blind algorithms are used in digital signal processor of adaptive antenna to make it smart and change weights of the antenna array system dynamically. The simulation results revealed that KCMA and HAMCMA provide minimum mean square error (MSE) with 1.247 dB and 1.077 dB antenna gain enhancement, 75% reduction in bit error rate (BER) respectively over that of CMA. Therefore, KCMA and HAMCMA algorithms give a cost effective solution for a communication system

  19. Performance Analysis of Compact FD-MIMO Antenna Arrays in a Correlated Environment

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2017-03-06

    Full dimension multiple-input-multiple-output (FDMIMO) is one of the key technologies proposed in the 3rd Generation Partnership Project (3GPP) for the fifth generation (5G) communication systems. The reason can be attributed to its ability to yield significant performance gains through the deployment of active antenna elements at the base station in the vertical as well as the conventional horizontal directions, enabling several elevation beamforming strategies. The resulting improvement in spectral efficiency largely depends on the orthogonality of the sub-channels constituting the FD-MIMO system. Accommodating a large number of antenna elements with sufficient spacing poses several constraints for practical implementation, making it imperative to consider compact antenna arrangements that minimize the overall channel correlation. Two such configurations considered in this work are the uniform linear array (ULA) and the uniform circular array (UCA) of antenna ports, where each port is mapped to a group of physical antenna elements arranged in the vertical direction. The generalized analytical expression for the spatial correlation function (SCF) for the UCA is derived, exploiting results on spherical harmonics and Legendre polynomials. The mutual coupling between antenna dipoles is accounted for and the resulting SCF is also presented. The second part of this work compares the spatial correlation and mutual information (MI) performance of the ULA and UCA configurations in the 3GPP 3D urban-macro and urban-micro cell scenarios, utilizing results from Random Matrix Theory (RMT) on the deterministic equivalent of the MI for the Kronecker channel model. Simulation results study the performance patterns of the two arrays as a function of several channel and array parameters and identify applications and environments suitable for the deployment of each array.

  20. Performance analysis for W-band antenna alignment using accurate mechanical beam steering

    DEFF Research Database (Denmark)

    Morales Vicente, Alvaro; Rodríguez Páez, Juan Sebastián; Gallardo, Omar

    2017-01-01

    This article presents a study of antenna alignment impact on bit error rate for a wireless link between two directive W-band horn antennas where one of them is mechanically steered by a Stewart platform. Such a technique is applied to find the optimal alignment between transmitter and receiver...... with an accuracy of 18 both in azimuth and elevation angles. The maximum degree of misalignment which can be tolerated is also reported for different values of optical power in the generation of W-band signals by photonic up-conversion. (C) 2017 Wiley Periodicals, Inc....

  1. Modern lens antennas for communications engineering

    CERN Document Server

    Thornton, John

    2012-01-01

    The aim of this book is to present the modern design principles and analysis of lens antennas. It gives graduates and RF/Microwave professionals the design insights in order to make full use of lens antennas.  Why do we want to write a book in lens antennas? Because this topic has not been thoroughly publicized, its importance is underestimated. As antennas play a key role in communication systems, recent development in wireless communications would indeed benefit from the characteristics of lens antennas: low profile, and low cost etc.  The major advantages of lens antennas are na

  2. A Unified Algorithm for Channel Imbalance and Antenna Phase Center Position Calibration of a Single-Pass Multi-Baseline TomoSAR System

    Directory of Open Access Journals (Sweden)

    Yuncheng Bu

    2018-03-01

    Full Text Available The multi-baseline synthetic aperture radar (SAR tomography (TomoSAR system is employed in such applications as disaster remote sensing, urban 3-D reconstruction, and forest carbon storage estimation. This is because of its 3-D imaging capability in a single-pass platform. However, a high 3-D resolution of TomoSAR is based on the premise that the channel imbalance and antenna phase center (APC position are precisely known. If this is not the case, the 3-D resolution performance will be seriously degraded. In this paper, a unified algorithm for channel imbalance and APC position calibration of a single-pass multi-baseline TomoSAR system is proposed. Based on the maximum likelihood method, as well as the least squares and the damped Newton method, we can calibrate the channel imbalance and APC position. The algorithm is suitable for near-field conditions, and no phase unwrapping operation is required. The effectiveness of the proposed algorithm has been verified by simulation and experimental results.

  3. Analysis of Resistive-Vee Dipole Antennas for Producing Polarization Diversity

    Science.gov (United States)

    2014-08-01

    3 1.2 Existing Circular Polarization GPR Technologies . . . . . . . . . . . . . 4 1.2.1 Crossed-Dipole Antennas...8 1.3 Proposed Circular Polarization GPR System . . . . . . . . . . . . . . . . 10 1.4 Outline...reshaped RVD with the Kim resistive profile is marked by the square. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Figure 89

  4. Performance Analysis of Compact FD-MIMO Antenna Arrays in a Correlated Environment

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain; Kammoun, Abla; Debbah, Merouane; Alouini, Mohamed-Slim

    2017-01-01

    coupling between antenna dipoles is accounted for and the resulting SCF is also presented. The second part of this work compares the spatial correlation and mutual information (MI) performance of the ULA and UCA configurations in the 3GPP 3D urban

  5. On the Control of Surface Waves in Integrated Antennas : Analysis and Design Exploiting Artificial Dielectric Layers

    NARCIS (Netherlands)

    Syed, W.H.

    2015-01-01

    Planar printed antenna technologies, due to their light weight, low profile, cost effectiveness and ease of connection with the active devices (e.g., amplifiers etc.), are becoming an attractive solution for the commercial data-hungry applications, such as 60 GHz high-data rate communication.

  6. Circularly polarized antennas

    CERN Document Server

    Gao, Steven; Zhu, Fuguo

    2013-01-01

    This book presents a comprehensive insight into the design techniques for different types of CP antenna elements and arrays In this book, the authors address a broad range of topics on circularly polarized (CP) antennas. Firstly, it introduces to the reader basic principles, design techniques and characteristics of various types of CP antennas, such as CP patch antennas, CP helix antennas, quadrifilar helix antennas (QHA), printed quadrifilar helix antennas (PQHA), spiral antenna, CP slot antennas, CP dielectric resonator antennas, loop antennas, crossed dipoles, monopoles and CP horns. Adva

  7. Job Evaluation with the Position Analysis Questionnaire

    Science.gov (United States)

    Harris, Alma F.; Matson, G. Albion

    1976-01-01

    Assessment of the Position Analysis Questionnaire (PAQ) at a four-year state college with 8,000 students indicates that the PAQ job evaluation method is sufficiently valid and has enough unique advantages to warrant its serious consideration for use by college and university personnel administrators. (LBH)

  8. Positive Behavior Support and Applied Behavior Analysis

    Science.gov (United States)

    Johnston, J. M.; Foxx, R. M.; Jacobson, J. W.; Green, G.; Mulick, J. A.

    2006-01-01

    This article reviews the origins and characteristics of the positive behavior support (PBS) movement and examines those features in the context of the field of applied behavior analysis (ABA). We raise a number of concerns about PBS as an approach to delivery of behavioral services and its impact on how ABA is viewed by those in human services. We…

  9. Exact performance analysis of MIMO cognitive radio systems using transmit antenna selection

    KAUST Repository

    Tourki, Kamel

    2014-03-01

    We consider in this paper, a spectrum sharing cognitive radio system with a ratio selection scheme; where one out of N independent-and-identically- distributed transmit antennas is selected such that the ratio of the secondary transmitter (ST) to the secondary receiver (SR) channel gain to the interference from the ST to the primary receiver (PR) channel gain is maximized. Although previous works considered perfect, outdated, or partial channel state information at the transmitter, we stress that using such assumptions may lead to a feedback overhead for updating the SR with the ST-PR interference channel estimation. Considering only statistical knowledge of the ST-PR channel gain, we investigate a ratio selection scheme using a mean value (MV)-based power allocation strategy referred to as MV-based scheme. We first provide the exact statistics in terms of probability density function and cumulative distribution function of the secondary channel gain as well as of the interference channel gain. Furthermore, we derive exact cumulative density function of the received signal-to-noise ratio at the SR where the ST uses a power allocation based on instantaneous perfect channel state information (CSI) referred to as CSI-based scheme. These statistics are then used to derive exact closed form expressions of the outage probability, symbol error rate, and ergodic capacity of the secondary system when the interference channel from the primary transmitter (PT) to the SR is ignored. Furthermore, an asymptotical analysis is also carried out for the MV-based scheme as well as for the CSI-based scheme to derive the generalized diversity gain for each. Subsequently, we address the performance analysis based on exact statistics of the combined signal-to-interference-plus- noise ratio at the SR of the more challenging case; when the PT-SR interference channel is considered. Numerical results in a Rayleigh fading environment manifest that the MV-based scheme outperforms the CSI

  10. Thermal analysis of the in-vessel components of the ITER plasma-position reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Quental, P. B., E-mail: pquental@ipfn.tecnico.ulisboa.pt; Policarpo, H.; Luís, R.; Varela, P. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)

    2016-11-15

    The ITER plasma position reflectometry system measures the edge electron density profile of the plasma, providing real-time supplementary contribution to the magnetic measurements of the plasma-wall distance. Some of the system components will be in direct sight of the plasma and therefore subject to plasma and stray radiation, which may cause excessive temperatures and stresses. In this work, thermal finite element analysis of the antenna and adjacent waveguides is conducted with ANSYS V17 (ANSYS® Academic Research, Release 17.0, 2016). Results allow the identification of critical temperature points, and solutions are proposed to improve the thermal behavior of the system.

  11. Inflatable antenna for earth observing systems

    Science.gov (United States)

    Wang, Hong-Jian; Guan, Fu-ling; Xu, Yan; Yi, Min

    2010-09-01

    This paper describe mechanical design, dynamic analysis, and deployment demonstration of the antenna , and the photogrammetry detecting RMS of inflatable antenna surface, the possible errors results form the measurement are also analysed. Ticra's Grasp software are used to predict the inflatable antenna pattern based on the coordinates of the 460 points on the parabolic surface, the final results verified the whole design process.

  12. Design of LTCC Based Fractal Antenna

    KAUST Repository

    AdbulGhaffar, Farhan

    2010-09-01

    The thesis presents a Sierpinski Carpet fractal antenna array designed at 24 GHz for automotive radar applications. Miniaturized, high performance and low cost antennas are required for this application. To meet these specifications a fractal array has been designed for the first time on Low Temperature Co-fired Ceramic (LTCC) based substrate. LTCC provides a suitable platform for the development of these antennas due to its properties of vertical stack up and embedded passives. The complete antenna concept involves integration of this fractal antenna array with a Fresnel lens antenna providing a total gain of 15dB which is appropriate for medium range radar applications. The thesis also presents a comparison between the designed fractal antenna and a conventional patch antenna outlining the advantages of fractal antenna over the later one. The fractal antenna has a bandwidth of 1.8 GHz which is 7.5% of the centre frequency (24GHz) as compared to 1.9% of the conventional patch antenna. Furthermore the fractal design exhibits a size reduction of 53% as compared to the patch antenna. In the end a sensitivity analysis is carried out for the fractal antenna design depicting the robustness of the proposed design against the typical LTCC fabrication tolerances.

  13. Antenna analysis and boundary conditions for Alfven wave studies in tokamaks

    International Nuclear Information System (INIS)

    Ross, D.W.; Li Yanming; Mahajan, S.M.; Michie, R.B.

    1986-01-01

    Previous studies of Alfven wave heating which employed kinetic theory are extended in order to take into account antenna configurations, in cylindrical geometry, consisting of arbitrary shell currents and their associated radial feeders. For each Fourier component of the form exp [-i(lzeta-mtheta)], the shell current consists of a divergence-free part having the helicity of the mode (l, m), plus an orthogonal part requiring the feeders. It is shown, both analytically and by including the full current in the numerical code, that only the divergence-free part of the current contributes significantly to the plasma response and antenna loading. The important effect of the feeders is to cancel the contribution from the surface current perpendicular to the helicity. This explicitly verifies results reported previously. (author)

  14. Antenna analysis and boundary conditions for Alfven wave studies in tokamaks

    International Nuclear Information System (INIS)

    Ross, D.W.; Li, Y.M.; Mahajan, S.M.; Michie, R.B.

    1985-07-01

    Previous studies of Alfven wave heating which employed kinetic theory are extended to take into account antenna configurations, in cylindrical geometry, consisting of arbitrary shell currents and their associated radial feeders. For each Fourier component of the form esp/-i(l zeta - m theta)/, the shell current consists of a divergence-free part having the helicity of the mode (l,m), plus an orthogonal part requiring the feeders. It is shown, both analtically and by including the full current in the numerical code, that only the divergence-free part of the current contributes significantly to the plasma response and antenna loading. The important effect of the feeders is to cancel the contribution from the surface current perpendicular to the helicity. This explicitly verifies results reported previously

  15. ICRF plasma production in Tore Supra: analysis of antenna coupling and plasma properties

    International Nuclear Information System (INIS)

    Beaumont, B.; Becoulet, A.; Lyssoivan, A.

    1999-01-01

    A study of RF plasma production frequency range ω. 2ω ci has been undertaken on Tore Supra taking into account antenna coupling predictions of theory and the TEXTOR-94 database. Two scenarios for RF discharges have been tested (fixed frequency of the RF generator): operation with pure toroidal magnetic field, at standard and lower B T and operation in the magnetic configuration with a small vertical (B V ) field superimposed on B T (B V T ). (authors)

  16. Performance Analysis of Wavelet Based MC-CDMA System with Implementation of Various Antenna Diversity Schemes

    OpenAIRE

    Islam, Md. Matiqul; Kabir, M. Hasnat; Ullah, Sk. Enayet

    2012-01-01

    The impact of using wavelet based technique on the performance of a MC-CDMA wireless communication system has been investigated. The system under proposed study incorporates Walsh Hadamard codes to discriminate the message signal for individual user. A computer program written in Mathlab source code is developed and this simulation study is made with implementation of various antenna diversity schemes and fading (Rayleigh and Rician) channel. Computer simulation results demonstrate that the p...

  17. Reduction of the In-Band RCS of Microstrip Patch Antenna by Using Offset Feeding Technique

    Directory of Open Access Journals (Sweden)

    Weiwei Xu

    2014-01-01

    Full Text Available This paper presents a method for implementing a low in-band scattering design for microstrip patch antennas based on the analysis of structural mode scattering and radiation characteristics. The antenna structure is first designed to have the lowest structural mode scattering in a desired frequency band. The operating frequency band of the antenna is then changed to coincide with that of the lowest structural mode scattering by adjusting the feed position on the antenna (offset feeding to achieve an antenna with low in-band radar cross section (RCS. In order to reduce the level of cross polarization of the antenna caused by offset feeding, symmetry feeding structures for both single patch antennas and two-patch arrays are proposed. Examples that show the efficiency of the method are given, and the results illustrate that the in-band RCS of the proposed antennas can be reduced by as much as 17 dBsm for plane waves impinging from the normal direction compared to patch antennas fed by conventional methods.

  18. Superluminal antenna

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, John; Earley, Lawrence M.; Krawczyk, Frank L.; Potter, James M.; Romero, William P.; Wang, Zhi-Fu

    2018-04-17

    A superluminal antenna element integrates a balun element to better impedance match an input cable or waveguide to a dielectric radiator element, thus preventing stray reflections and consequent undesirable radiation. For example, a dielectric housing material can be used that has a cutout area. A cable can extend into the cutout area. A triangular conductor can function as an impedance transition. An additional cylindrical element functions as a sleeve balun to better impedance match the radiator element to the cable.

  19. Design and Analysis of Printed Yagi-Uda Antenna and Two-Element Array for WLAN Applications

    Directory of Open Access Journals (Sweden)

    Cai Run-Nan

    2012-01-01

    Full Text Available A printed director antenna with compact structure is proposed. The antenna is fed by a balanced microstrip-slotline and makes good use of space to reduce feeding network area and the size of antenna. According to the simulation results of CST MICROWAVE STUDIO software, broadband characteristics and directional radiation properties of the antenna are explained. The operating bandwidth is 1.8 GHz–3.5 GHz with reflection coefficient less than −10 dB. Antenna gain in band can achieve 4.5–6.8 dBi, and the overall size of antenna is smaller than 0.34λ0×0.58λ0. Then the antenna is developed to a two-element antenna array, working frequency and relative bandwidth of which are 2.15–2.87 GHz and 28.7%, respectively. Compared with antenna unit, the gain of the antenna array has increased by 2 dB. Thus the proposed antenna has characteristics of compact structure, relatively small size, and wideband, and it can be widely used in PCS/UMTS/WLAN/ WiMAX fields.

  20. Electromagnetic analysis of the Faraday shield of the EAST ICRF antenna

    International Nuclear Information System (INIS)

    Yang Qingxi; Song Yuntao; Wu Songtao; Zhao Yanping

    2011-01-01

    Faraday shield is one of the important components of ICRF antenna for EAST. In view of the structural safety of the Faraday shield, the electromagnetic and structural analyses for the Faraday shield have been carried out by applying the finite element method and the formulas under the cases of plasma disruption and vertical displacement event (VDE). Results of the electromagnetic forces, the stresses distribution as well as the deformation in the Faraday shield have been obtained under the two cases. They meet the design requirements and provide the theoretical basis for the structural safety evaluation of the Faraday shield. (authors)

  1. Antenna array geometry optimization for a passive coherent localisation system

    Science.gov (United States)

    Knott, Peter; Kuschel, Heiner; O'Hagan, Daniel

    2012-11-01

    Passive Coherent Localisation (PCL), also known as Passive Radar, making use of RF sources of opportunity such as Radio or TV Broadcasting Stations, Cellular Phone Network Base Stations, etc. is an advancing technology for covert operation because no active radar transmitter is required. It is also an attractive addition to existing active radar stations because it has the potential to discover low-flying and low-observable targets. The CORA (Covert Radar) experimental passive radar system currently developed at Fraunhofer-FHR features a multi-channel digital radar receiver and a circular antenna array with separate elements for the VHF- and the UHF-range and is used to exploit alternatively Digital Audio (DAB) or Video Broadcasting (DVB-T) signals. For an extension of the system, a wideband antenna array is being designed for which a new discone antenna element has been developed covering the full DVB-T frequency range. The present paper describes the outline of the system and the numerical modelling and optimisation methods applied to solve the complex task of antenna array design: Electromagnetic full wave analysis is required for the parametric design of the antenna elements while combinatorial optimization methods are applied to find the best array positions and excitation coefficients for a regular omni-directional antenna performance. The different steps are combined in an iterative loop until the optimum array layout is found. Simulation and experimental results for the current system will be shown.

  2. Broadband standard dipole antenna for antenna calibration

    Science.gov (United States)

    Koike, Kunimasa; Sugiura, Akira; Morikawa, Takao

    1995-06-01

    Antenna calibration of EMI antennas is mostly performed by the standard antenna method at an open-field test site using a specially designed dipole antenna as a reference. In order to develop broadband standard antennas, the antenna factors of shortened dipples are theoretically investigated. First, the effects of the dipole length are analyzed using the induced emf method. Then, baluns and loads are examined to determine their influence on the antenna factors. It is found that transformer-type baluns are very effective for improving the height dependence of the antenna factors. Resistive loads are also useful for flattening the frequency dependence. Based on these studies, a specification is developed for a broadband standard antenna operating in the 30 to 150 MHz frequency range.

  3. Analysis of the phase control of the ITER ICRH antenna array. Influence on the load resilience and radiated power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Messiaen, A., E-mail: a.messiaen@fz-juelich.de; Ongena, J.; Vervier, M. [Laboratory for Plasma Physics, ERM-KMS, TEC partner, Cycle, B1000-Brussels (Belgium); Swain, D. [US ITER Team, ORNL (United States)

    2015-12-10

    The paper analyses how the phasing of the ITER ICRH 24 strap array evolves from the power sources up to the strap currents of the antenna. The study of the phasing control and coherence through the feeding circuits with prematching and automatic matching and decoupling network is made by modeling starting from the TOPICA matrix of the antenna array for a low coupling plasma profile and for current drive phasing (worst case for mutual coupling effects). The main results of the analysis are: (i) the strap current amplitude is well controlled by the antinode V{sub max} amplitude of the feeding lines, (ii) the best toroidal phasing control is done by the adjustment of the mean phase of V{sub max} of each poloidal straps column, (iii) with well adjusted system the largest strap current phasing error is ±20°, (iv) the effect on load resilience remains well below the maximum affordable VSWR of the generators, (v) the effect on the radiated power spectrum versus k{sub //} computed by means of the coupling code ANTITER II remains small for the considered cases.

  4. Design of broadband single polarized antenna

    Science.gov (United States)

    Shin, Phoo Kho; Aziz, Mohamad Zoinol Abidin Abd.; Ahmad, Badrul Hisham; Ramli, Mohamad Hafize Bin; Fauzi, Noor Azamiah Md; Malek, Mohd Fareq Abd

    2015-05-01

    In practical wireless communication application, bandwidth enhancement becomes one of the major design considerations. At the same time, circular polarized (CP) antenna received much attention for the applications of modern wireless communication system when compared to linear polarized (LP) antenna. This is because CP antenna can reduce the multipath effect. Hence, broadband antenna with operating frequency at 2.4GHz for WLAN application is proposed. The proposed antenna is done by using L-probe amendment with rectangular patch. The rectangular patch and copper ground plane is separated with 10mm air gap. This approach is used to enhance the bandwidth and the gain of the proposed antenna. The bandwidth of the designed antenna is more than 200MHz which meet broadband application. The return loss for the antenna is below -10dB to achieved 90% matching efficiency. The position of L-probe feed is altered in order to obtained different polarizations. The broadband antenna had been designed and simulated by using Computer Simulation Technology (CST) software. In this paper, the comparison for single polarized antenna with the design of non-inverted patch and inverted patch is discussed. The characteristics of the S-parameter, axial ratio, gain, surface current for each designed antenna are analyzed.

  5. Analysis of Arbitrary Reflector Antennas Applying the Geometrical Theory of Diffraction Together with the Master Points Technique

    Directory of Open Access Journals (Sweden)

    María Jesús Algar

    2013-01-01

    Full Text Available An efficient approach for the analysis of surface conformed reflector antennas fed arbitrarily is presented. The near field in a large number of sampling points in the aperture of the reflector is obtained applying the Geometrical Theory of Diffraction (GTD. A new technique named Master Points has been developed to reduce the complexity of the ray-tracing computations. The combination of both GTD and Master Points reduces the time requirements of this kind of analysis. To validate the new approach, several reflectors and the effects on the radiation pattern caused by shifting the feed and introducing different obstacles have been considered concerning both simple and complex geometries. The results of these analyses have been compared with the Method of Moments (MoM results.

  6. A Fast Adaptive Receive Antenna Selection Method in MIMO System

    Directory of Open Access Journals (Sweden)

    Chaowei Wang

    2013-01-01

    Full Text Available Antenna selection has been regarded as an effective method to acquire the diversity benefits of multiple antennas while potentially reduce hardware costs. This paper focuses on receive antenna selection. According to the proportion between the numbers of total receive antennas and selected antennas and the influence of each antenna on system capacity, we propose a fast adaptive antenna selection algorithm for wireless multiple-input multiple-output (MIMO systems. Mathematical analysis and numerical results show that our algorithm significantly reduces the computational complexity and memory requirement and achieves considerable system capacity gain compared with the optimal selection technique in the same time.

  7. Antennas in inhomogeneous media

    CERN Document Server

    Galejs, Janis; Fock, V A; Wait, J R

    2013-01-01

    Antennas in Inhomogeneous Media details the methods of analyzing antennas in such inhomogeneous media. The title covers the complex geometrical configurations along with its variational formulations. The coverage of the text includes various conditions the antennas are subjected to, such as antennas in the interface between two media; antennas in compressible isotropic plasma; and linear antennas in a magnetoionic medium. The selection also covers insulated loops in lossy media; slot antennas with a stratified dielectric or isotropic plasma layers; and cavity-backed slot antennas. The book wil

  8. Effect of Parasitic Element on 408 MHz Antenna for Radio Astronomy Application

    Directory of Open Access Journals (Sweden)

    Radial Anwar

    2014-01-01

    Full Text Available Antenna is one of the important subsystem components in a radio telescope system. In this paper, analysis on the effect of parasitic element on 408 MHz antenna in a radio telescope system is presented. Higher gain up to 10.24 dBi with reduction on beamwidth size has been achieved by optimizing the position of parasitic element relative to the driven element. The proposed antenna is suitable to be utilized in a transient radio telescope array.

  9. Electromagnetic Field Analysis of an Electric Dipole Antenna Based on a Surface Integral Equation in Multilayered Dissipative Media

    Directory of Open Access Journals (Sweden)

    Yidong Xu

    2017-07-01

    Full Text Available In this paper, a novel method based on the Poggio–Miller–Chang-Harrington–Wu–Tsai (PMCHWT integral equation is presented to study the electromagnetic fields excited by vertical or horizontal electric dipoles in the presence of a layered region which consists of K-layered dissipative media and the air above. To transform the continuous integral equation into a block tridiagonal matrix with the feature of convenient solution, the Rao–Wilton–Glisson (RWG functions are introduced as expansion and testing functions. The electromagnetic fields excited by an electric dipole are calculated and compared with the available results, where the electric dipole antenna is buried in the non-planar air–sea–seabed, air–rock–earth–mine, and multilayered sphere structures. The analysis and computations demonstrate that the method exhibits high accuracy and solving performance in the near field propagation region.

  10. A Compact Multiple Notched Ultra-Wide Band Antenna with an Analysis of the CSRR-TO-CSRR Coupling for Portable UWB Applications.

    Science.gov (United States)

    Rahman, MuhibUr; Ko, Dong-Sik; Park, Jung-Dong

    2017-09-25

    We present a compact ultra-wideband (UWB) antenna integrated with sharp notches with a detailed analysis of the mutual coupling of the multiple notch resonators. By utilizing complementary split ring resonators (CSRR) on the radiating semi-circular patch, we achieve the sharp notch-filtering of various bands within the UWB band without increasing the antenna size. The notched frequency bands include WiMAX, INSAT, and lower and upper WLAN. In order to estimate the frequency shifts of the notch due to the coupling of the nearby CSRRs, an analysis of the coupling among the multiple notch resonators is carried out and we construct the lumped-circuit equivalent model. The time domain analysis of the proposed antenna is performed to show its validity on the UWB application. The measured frequency response of the input port corresponds quite well with the calculations and simulations. The radiation pattern of the implemented quad-notched UWB antenna is nearly omnidirectional in the passband.

  11. Analysis And Simulation Of Low Profile Planar Inverted - F Antenna Design For WLAN Operation In Portable Devices

    Directory of Open Access Journals (Sweden)

    Zaw Htet Lwin

    2015-08-01

    Full Text Available This paper presents a compact planar invertedF antenna PIFA design for WLAN operation in portable devices. The proposed design has size of 8 x 21 mm and provides peak directive gain of 5.78dBi with the peak return loss of -33.89dB and input impedance of 50.28amp8486. It covers a 10dB return loss bandwidth of 410MHz 2.37GHz 2.789GHz. Its VSWR varies from 1.96 to 1.93 within the antenna return loss bandwidth. As the dimension of the proposed antenna is very small the antenna is promising to be embedded within the different portable devices employing WiFi applications. This paper includes the return loss as a function of frequency with varying the different parameters VSWR input resistance radiation pattern and current distribution of the proposed antenna.

  12. Structural-electromagnetic bidirectional coupling analysis of space large film reflector antennas

    Science.gov (United States)

    Zhang, Xinghua; Zhang, Shuxin; Cheng, ZhengAi; Duan, Baoyan; Yang, Chen; Li, Meng; Hou, Xinbin; Li, Xun

    2017-10-01

    As used for energy transmission, a space large film reflector antenna (SLFRA) is characterized by large size and enduring high power density. The structural flexibility and the microwave radiation pressure (MRP) will lead to the phenomenon of structural-electromagnetic bidirectional coupling (SEBC). In this paper, the SEBC model of SLFRA is presented, then the deformation induced by the MRP and the corresponding far field pattern deterioration are simulated. Results show that, the direction of the MRP is identical to the normal of the reflector surface, and the magnitude is proportional to the power density and the square of cosine incident angle. For a typical cosine function distributed electric field, the MRP is a square of cosine distributed across the diameter. The maximum deflections of SLFRA linearly increase with the increasing microwave power densities and the square of the reflector diameters, and vary inversely with the film thicknesses. When the reflector diameter becomes 100 m large and the microwave power density exceeds 102 W/cm2, the gain loss of the 6.3 μm-thick reflector goes beyond 0.75 dB. When the MRP-induced deflection degrades the reflector performance, the SEBC should be taken into account.

  13. Magnetic antenna excitation of whistler modes. IV. Receiving antennas and reciprocity

    Energy Technology Data Exchange (ETDEWEB)

    Stenzel, R. L., E-mail: stenzel@physics.ucla.edu; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

    2015-07-15

    Antenna radiation patterns are an important property of antennas. Reciprocity holds in free space and the radiation patterns for exciting and receiving antennas are the same. In anisotropic plasmas, radiation patterns are complicated by the fact that group and phase velocities differ and certain wave properties like helicity depend on the direction of wave propagation with respect to the background magnetic field B{sub 0}. Interference and wave focusing effects are different than in free space. Reciprocity does not necessarily hold in a magnetized plasma. The present work considers the properties of various magnetic antennas used for receiving whistler modes. It is based on experimental data from exciting low frequency whistler modes in a large uniform laboratory plasma. By superposition of linear waves from different antennas, the radiation patterns of antenna arrays are derived. Plane waves are generated and used to determine receiving radiation patterns of different receiving antennas. Antenna arrays have radiation patterns with narrow lobes, whose angular position can be varied by physical rotation or electronic phase shifting. Reciprocity applies to broadside antenna arrays but not to end fire arrays which can have asymmetric lobes with respect to B{sub 0}. The effect of a relative motion between an antenna and the plasma has been modeled by the propagation of a short wave packet moving along a linear antenna array. An antenna moving across B{sub 0} has a radiation pattern characterized by an oscillatory “whistler wing.” A receiving antenna in motion can detect any plane wave within the group velocity resonance cone. The radiation pattern also depends on loop size relative to the wavelength. Motional effects prevent reciprocity. The concept of the radiation pattern loses its significance for wave packets since the received signal does not only depend on the antenna but also on the properties of the wave packet. The present results are of fundamental

  14. Magnetic antenna excitation of whistler modes. IV. Receiving antennas and reciprocity

    International Nuclear Information System (INIS)

    Stenzel, R. L.; Urrutia, J. M.

    2015-01-01

    Antenna radiation patterns are an important property of antennas. Reciprocity holds in free space and the radiation patterns for exciting and receiving antennas are the same. In anisotropic plasmas, radiation patterns are complicated by the fact that group and phase velocities differ and certain wave properties like helicity depend on the direction of wave propagation with respect to the background magnetic field B 0 . Interference and wave focusing effects are different than in free space. Reciprocity does not necessarily hold in a magnetized plasma. The present work considers the properties of various magnetic antennas used for receiving whistler modes. It is based on experimental data from exciting low frequency whistler modes in a large uniform laboratory plasma. By superposition of linear waves from different antennas, the radiation patterns of antenna arrays are derived. Plane waves are generated and used to determine receiving radiation patterns of different receiving antennas. Antenna arrays have radiation patterns with narrow lobes, whose angular position can be varied by physical rotation or electronic phase shifting. Reciprocity applies to broadside antenna arrays but not to end fire arrays which can have asymmetric lobes with respect to B 0 . The effect of a relative motion between an antenna and the plasma has been modeled by the propagation of a short wave packet moving along a linear antenna array. An antenna moving across B 0 has a radiation pattern characterized by an oscillatory “whistler wing.” A receiving antenna in motion can detect any plane wave within the group velocity resonance cone. The radiation pattern also depends on loop size relative to the wavelength. Motional effects prevent reciprocity. The concept of the radiation pattern loses its significance for wave packets since the received signal does not only depend on the antenna but also on the properties of the wave packet. The present results are of fundamental interest and of

  15. Plasma antennas: dynamically configurable antennas for communications

    International Nuclear Information System (INIS)

    Borg, G.; Harris, J.

    1999-01-01

    In recent years, the rapid growth in both communications and radar systems has led to a concomitant growth in the possible applications and requirements of antennas. These new requirements include compactness and conformality, rapid reconfigurability for directionality and frequency agility. For military applications, antennas should also allow low absolute or out-of-band radar cross-section and facilitate low probability of intercept communications. Investigations have recently begun worldwide on the use of ionised gases or plasmas as the conducting medium in antennas that could satisfy these requirements. Such plasma antennas may even offer a viable alternative to metal in existing applications when overall technical requirements are considered. A recent patent for ground penetrating radar claims the invention of a plasma antenna for the transmission of pulses shorter than 100 ns in which it is claimed that current ringing is avoided and signal processing simplified compared with a metal antenna. A recent US ONR tender has been issued for the design and construction of a compact and rapidly reconfigurable antenna for dynamic signal reception over the frequency range 1 - 45 GHz based on plasma antennas. Recent basic physics experiments at ANU have demonstrated that plasma antennas can attain adequate efficiency, predictable radiation patterns and low base-band noise for HF and VHF communications. In this paper we describe the theory of the low frequency plasma antenna and present a few experimental results

  16. From Text to Political Positions: Text analysis across disciplines

    NARCIS (Netherlands)

    Kaal, A.R.; Maks, I.; van Elfrinkhof, A.M.E.

    2014-01-01

    ABSTRACT From Text to Political Positions addresses cross-disciplinary innovation in political text analysis for party positioning. Drawing on political science, computational methods and discourse analysis, it presents a diverse collection of analytical models including pure quantitative and

  17. Energy-Efficiency Analysis of Per-Subcarrier Antenna Selection with Peak-Power Reduction in MIMO-OFDM Wireless Systems

    Directory of Open Access Journals (Sweden)

    Ngoc Phuc Le

    2014-01-01

    Full Text Available The use of per-subcarrier antenna subset selection in OFDM wireless systems offers higher system capacity and/or improved link reliability. However, the implementation of the conventional per-subcarrier selection scheme may result in significant fluctuations of the average power and peak power across antennas, which affects the potential benefits of the system. In this paper, power efficiency of high-power amplifiers and energy efficiency in per-subcarrier antenna selection MIMO-OFDM systems are investigated. To deliver the maximum overall power efficiency, we propose a two-step strategy for data-subcarrier allocation. This strategy consists of an equal allocation of data subcarriers based on linear optimization and peak-power reduction via cross-antenna permutations. For analysis, we derive the CCDF (complementary cumulative distribution function of the power efficiency as well as the analytical expressions of the average power efficiency. It is proved from the power-efficiency perspective that the proposed allocation scheme outperforms the conventional scheme. We also show that the improvement in the power efficiency translates into an improved capacity and, in turn, increases energy efficiency of the proposed system. Simulation results are provided to validate our analyses.

  18. Moving Forward: Positive Behavior Support and Applied Behavior Analysis

    Science.gov (United States)

    Tincani, Matt

    2007-01-01

    A controversy has emerged about the relationship between positive behavior support and applied behavior analysis. Some behavior analysts suggest that positive behavior support and applied behavior analysis are the same (e.g., Carr & Sidener, 2002). Others argue that positive behavior support is harmful to applied behavior analysis (e.g., Johnston,…

  19. Optimized dipole antennas on photonic band gap crystals

    International Nuclear Information System (INIS)

    Cheng, S.D.; Biswas, R.; Ozbay, E.; McCalmont, S.; Tuttle, G.; Ho, K.

    1995-01-01

    Photonic band gap crystals have been used as a perfectly reflecting substrate for planar dipole antennas in the 12--15 GHz regime. The position, orientation, and driving frequency of the dipole antenna on the photonic band gap crystal surface, have been optimized for antenna performance and directionality. Virtually no radiated power is lost to the photonic crystal resulting in gains and radiation efficiencies larger than antennas on other conventional dielectric substrates. copyright 1995 American Institute of Physics

  20. Optimization of the FAST ICRF antenna using TOPICA code

    International Nuclear Information System (INIS)

    Sorba, M.; Milanesio, D.; Maggiora, R.; Tuccillo, A.

    2010-01-01

    Ion Cyclotron Resonance Heating is one of the most important auxiliary heating systems in most plasma confinement experiments. Because of this, the need for very accurate design of ion cyclotron (IC) launchers has dramatically grown in recent years. Furthermore, a reliable simulation tool is a crucial request in the successful design of these antennas, since full testing is impossible outside experiments. One of the most advanced and validated simulation codes is TOPICA, which offers the possibility to handle the geometrical level of detail of a real antenna in front of an accurately described plasma scenario. Adopting this essential tool made possible to reach a refined design of ion cyclotron radio frequency antenna for the FAST (Fusion Advanced Studies Torus) experiment . Starting from a streamlined antenna model and then following well-defined refinement procedures, an optimized launcher design in terms of power delivered to plasma has been finally achieved. The computer-assisted geometry refinements allowed an increase in the performances of the antenna and notably in power handling: the extent of the gained improvements were not experienced in the past, essentially due to the absence of predictive tools capable of analyzing the detailed effects of antenna geometry in plasma facing conditions. Thus, with the help of TOPICA code, it has been possible to comply with the FAST experiment requirements in terms of vacuum chamber constraints and power delivered to plasma. Once an antenna geometry was optimized with a reference plasma profile, the analysis of the performances of the launcher has been extended with respect to two plasma scenarios. Exploiting all TOPICA features, it has been possible to predict the behavior of the launcher in real operating conditions, for instance varying the position of the separatrix surface. In order to fulfil the analysis of the FAST IC antenna, the study of the RF potentials, which depend on the parallel electric field computation

  1. Antenna for passive RFID tags

    Science.gov (United States)

    Schiopu, Paul; Manea, Adrian; Cristea, Ionica; Grosu, Neculai; Vladescu, Marian; Craciun, Anca-Ileana; Craciun, Alexandru

    2015-02-01

    Minuscule devices, called RFID tags are attached to objects and persons and emit information which positioned readers may capture wirelessly. Many methods of identification have been used, but that of most common is to use a unique serial number for identification of person or object. RFID tags can be characterized as either active or passive [1,2]. Traditional passive tags are typically in "sleep" state until awakened by the reader's emitted field. In passive tags, the reader's field acts to charge the capacitor that powers the badge and this can be a combination of antenna and barcodes obtained with SAW( Surface Acoustic Wave) devices [1,2,3] . The antenna in an RFID tag is a conductive element that permits the tag to exchange data with the reader. The paper contribution are targeted to antenna for passive RFID tags. The electromagnetic field generated by the reader is somehow oriented by the reader antenna and power is induced in the tag only if the orientation of the tag antenna is appropriate. A tag placed orthogonal to the reader yield field will not be read. This is the reason that guided manufacturers to build circular polarized antenna capable of propagating a field that is alternatively polarized on all planes passing on the diffusion axis. Passive RFID tags are operated at the UHF frequencies of 868MHz (Europe) and 915MHz (USA) and at the microwave frequencies of 2,45 GHz and 5,8 GHz . Because the tags are small dimensions, in paper, we present the possibility to use circular polarization microstrip antenna with fractal edge [2].

  2. Preparing ITER ICRF: development and analysis of the load resilient matching systems based on antenna mock-up measurements

    International Nuclear Information System (INIS)

    Messiaen, A.; Vervier, M.; Dumortier, P.; Grine, D.; Lamalle, P.U.; Durodie, F.; Koch, R.; Louche, F.; Weynants, R.

    2009-01-01

    The reference design for the ICRF antenna of ITER is constituted by a tight array of 24 straps grouped in eight triplets. The matching network must be load resilient for operation in ELMy discharges and must have antenna spectrum control for heating or current drive operation. The load resilience is based on the use of either hybrid couplers or conjugate-T circuits. However, the mutual coupling between the triplets at the low expected loading strongly counteracts the load resilience and the spectrum control. Using a mock-up of the ITER antenna array with adjustable water load matching solutions are designed. These solutions are derived from transmission line modelling based on the measured scattering matrix and are finally tested. We show that the array current spectrum can be controlled by the anti-node voltage distribution and that suitable decoupler circuits can not only neutralize the adverse mutual coupling effects but also monitor this anti-node voltage distribution. A matching solution using four 3 dB hybrids and the antenna current spectrum feedback control by the decouplers provides outstanding performance if each pair of poloidal triplets undergoes a same load variation. Finally, it is verified by modelling that this matching scenario has the same antenna spectrum and load resilience performances as the antenna array loaded by plasma as described by the TOPICA simulation. This is true for any phasing and frequency in the ITER frequency band. The conjugate-T solution is presently considered as a back-up option.

  3. An Approach for Smart Antenna Testbed

    Science.gov (United States)

    Kawitkar, R. S.; Wakde, D. G.

    2003-07-01

    The use of wireless, mobile, personal communications services are expanding rapidly. Adaptive or "Smart" antenna arrays can increase channel capacity through spatial division. Adaptive antennas can also track mobile users, improving both signal range and quality. For these reasons, smart antenna systems have attracted widespread interest in the telecommunications industry for applications to third generation wireless systems.This paper aims to design and develop an advanced antennas testbed to serve as a common reference for testing adaptive antenna arrays and signal combining algorithms, as well as complete systems. A flexible suite of off line processing software should be written using matlab to perform system calibration, test bed initialization, data acquisition control, data storage/transfer, off line signal processing and analysis and graph plotting. The goal of this paper is to develop low complexity smart antenna structures for 3G systems. The emphasis will be laid on ease of implementation in a multichannel / multi-user environment. A smart antenna test bed will be developed, and various state-of-the-art DSP structures and algorithms will be investigated.Facing the soaring demand for mobile communications, the use of smart antenna arrays in mobile communications systems to exploit spatial diversity to further improve spectral efficiency has recently received considerable attention. Basically, a smart antenna array comprises a number of antenna elements combined via a beamforming network (amplitude and phase control network). Some of the benefits that can be achieved by using SAS (Smart Antenna System) include lower mobile terminal power consumption, range extension, ISI reduction, higher data rate support, and ease of integration into the existing base station system. In terms of economic benefits, adaptive antenna systems employed at base station, though increases the per base station cost, can increase coverage area of each cell site, thereby reducing

  4. Multiple Interference Cancellation Performance for GPS Receivers with Dual-Polarized Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Moeness G. Amin

    2008-11-01

    Full Text Available This paper examines the interference cancellation performance in global positioning system (GPS receivers equipped with dual-polarized antenna arrays. In dense jamming environment, different types of interferers can be mitigated by the dual-polarized antennas, either acting individually or in conjunction with other receiver antennas. We apply minimum variance distorntionless response (MVDR method to a uniform circular dual-polarized antenna array. The MVDR beamformer is constructed for each satellite. Analysis of the eigenstructures of the covariance matrix and the corresponding weight vector polarization characteristics are provided. Depending on the number of jammers and jammer polarizations, the array chooses to expend its degrees of freedom to counter the jammer polarization or/and use phase coherence to form jammer spatial nulls. Results of interference cancellations demonstrate that applying multiple MVDR beamformers, each for one satellite, has a superior cancellation performance compared to using only one MVDR beamformer for all satellites in the field of view.

  5. A Single Atom Antenna

    International Nuclear Information System (INIS)

    Trinter, Florian; Williams, Joshua B; Weller, Miriam; Waitz, Markus; Pitzer, Martin; Voigtsberger, Jörg; Schober, Carl; Kastirke, Gregor; Müller, Christian; Goihl, Christoph; Burzynski, Phillip; Wiegandt, Florian; Wallauer, Robert; Kalinin, Anton; Schmidt, Lothar Ph H; Schöffler, Markus S; Jahnke, Till; Dörner, Reinhard; Chiang, Ying-Chih; Gokhberg, Kirill

    2015-01-01

    Here we demonstrate the smallest possible implementation of an antenna-receiver complex which consists of a single (helium) atom acting as the antenna and a second (neon) atom acting as a receiver. (paper)

  6. Antenna Pattern Range (APR)

    Data.gov (United States)

    Federal Laboratory Consortium — TheAntenna Pattern Range (APR)features a non-metallic arch with a trolley to move the transmit antenna from the horizon to zenith. At the center of the ground plane,...

  7. Equipment: Antenna systems

    Science.gov (United States)

    Petrie, L. E.

    1986-03-01

    Some antenna fundamentals as well as definitions of the principal terms used in antenna engineering are described. Methods are presented for determining the desired antenna radiation patterns for HF communication circuit or service area. Sources for obtaining or computing radiation pattern information are outlined. Comparisons are presented between the measured and computed radiation patterns. The effect of the properties of the ground on the antenna gain and the pattern are illustrated for several types of antennas. Numerous examples are given of the radiation patterns for typical antennas used on short, intermediate and long distance circuits for both mobile and fixed service operations. The application of adaptive antenna arrays and active antennas in modern HF communication systems are briefly reviewed.

  8. A Modal Approach to Compact MIMO Antenna Design

    Science.gov (United States)

    Yang, Binbin

    MIMO (Multiple-Input Multiple-Output) technology offers new possibilities for wireless communication through transmission over multiple spatial channels, and enables linear increases in spectral efficiency as the number of the transmitting and receiving antennas increases. However, the physical implementation of such systems in compact devices encounters many physical constraints mainly from the design of multi-antennas. First, an antenna's bandwidth decreases dramatically as its electrical size reduces, a fact known as antenna Q limit; secondly, multiple antennas closely spaced tend to couple with each other, undermining MIMO performance. Though different MIMO antenna designs have been proposed in the literature, there is still a lack of a systematic design methodology and knowledge of performance limits. In this dissertation, we employ characteristic mode theory (CMT) as a powerful tool for MIMO antenna analysis and design. CMT allows us to examine each physical mode of the antenna aperture, and to access its many physical parameters without even exciting the antenna. For the first time, we propose efficient circuit models for MIMO antennas of arbitrary geometry using this modal decomposition technique. Those circuit models demonstrate the powerful physical insight of CMT for MIMO antenna modeling, and simplify MIMO antenna design problem to just the design of specific antenna structural modes and a modal feed network, making possible the separate design of antenna aperture and feeds. We therefore develop a feed-independent shape synthesis technique for optimization of broadband multi-mode apertures. Combining the shape synthesis and circuit modeling techniques for MIMO antennas, we propose a shape-first feed-next design methodology for MIMO antennas, and designed and fabricated two planar MIMO antennas, each occupying an aperture much smaller than the regular size of lambda/2 x lambda/2. Facilitated by the newly developed source formulation for antenna stored

  9. Reflectarray antennas theory, designs, and applications

    CERN Document Server

    Nayeri, Payam; Elsherbeni, Atef Z

    2018-01-01

    This book provides engineers with a comprehensive review of the state-of-the-art in reflectarray antenna research and development. The authors describe, in detail, design procedures for a wide range of applications, including broadband, multi-band, multi-beam, contour-beam, beam-scanning, and conformal reflectarray antennas. They provide sufficient coverage of basic reflectarray theory to fully understand reflectarray antenna design and analysis such that the readers can pursue reflectarray research on their own. Throughout the book numerous illustrative design examples including numerical and experimental results are provided. Featuring in-depth theoretical analysis along with practical design examples, Reflectarray Antennas is an excellent text/reference for engineering graduate students, researchers, and engineers in the field of antennas. It belongs on the bookshelves of university libraries, research institutes, and industrial labs and research facilities.

  10. Cartographic Analysis of Antennas and Towers: A Novel Approach to Improving the Implementation and Data Transmission of mHealth Tools on Mobile Networks.

    Science.gov (United States)

    Brown Iii, William; Ibitoye, Mobolaji; Bakken, Suzanne; Schnall, Rebecca; Balán, Iván; Frasca, Timothy; Carballo-Diéguez, Alex

    2015-06-04

    Most mHealth tools such as short message service (SMS), mobile apps, wireless pill counters, and ingestible wireless monitors use mobile antennas to communicate. Limited signal availability, often due to poor antenna infrastructure, negatively impacts the implementation of mHealth tools and remote data collection. Assessing the antenna infrastructure prior to starting a study can help mitigate this problem. Currently, there are no studies that detail whether and how the antenna infrastructure of a study site or area is assessed. To address this literature gap, we analyze and discuss the use of a cartographic analysis of antennas and towers (CAAT) for mobile communications for geographically assessing mobile antenna and tower infrastructure and identifying signal availability for mobile devices prior to the implementation of an SMS-based mHealth pilot study. An alpha test of the SMS system was performed using 11 site staff. A CAAT for the study area's mobile network was performed after the alpha test and pre-implementation of the pilot study. The pilot study used a convenience sample of 11 high-risk men who have sex with men who were given human immunodeficiency virus test kits for testing nonmonogamous sexual partners before intercourse. Product use and sexual behavior were tracked through SMS. Message frequency analyses were performed on the SMS text messages, and SMS sent/received frequencies of 11 staff and 11 pilot study participants were compared. The CAAT helped us to successfully identify strengths and weaknesses in mobile service capacity within a 3-mile radius from the epicenters of four New York City boroughs. During the alpha test, before CAAT, 1176/1202 (97.84%) text messages were sent to staff, of which 26/1176 (2.21%) failed. After the CAAT, 2934 messages were sent to pilot study participants and none failed. The CAAT effectively illustrated the research area's mobile infrastructure and signal availability, which allowed us to improve study setup and

  11. Error Analysis of Determining Airplane Location by Global Positioning System

    OpenAIRE

    Hajiyev, Chingiz; Burat, Alper

    1999-01-01

    This paper studies the error analysis of determining airplane location by global positioning system (GPS) using statistical testing method. The Newton Rhapson method positions the airplane at the intersection point of four spheres. Absolute errors, relative errors and standard deviation have been calculated The results show that the positioning error of the airplane varies with the coordinates of GPS satellite and the airplane.

  12. Comparative Analysis of Light-Harvesting Antennae and State Transition in chlorina and cpSRP Mutants1[OPEN

    Science.gov (United States)

    Wang, Peng

    2016-01-01

    State transitions in photosynthesis provide for the dynamic allocation of a mobile fraction of light-harvesting complex II (LHCII) to photosystem II (PSII) in state I and to photosystem I (PSI) in state II. In the state I-to-state II transition, LHCII is phosphorylated by STN7 and associates with PSI to favor absorption cross-section of PSI. Here, we used Arabidopsis (Arabidopsis thaliana) mutants with defects in chlorophyll (Chl) b biosynthesis or in the chloroplast signal recognition particle (cpSRP) machinery to study the flexible formation of PS-LHC supercomplexes. Intriguingly, we found that impaired Chl b biosynthesis in chlorina1-2 (ch1-2) led to preferentially stabilized LHCI rather than LHCII, while the contents of both LHCI and LHCII were equally depressed in the cpSRP43-deficient mutant (chaos). In view of recent findings on the modified state transitions in LHCI-deficient mutants (Benson et al., 2015), the ch1-2 and chaos mutants were used to assess the influence of varying LHCI/LHCII antenna size on state transitions. Under state II conditions, LHCII-PSI supercomplexes were not formed in both ch1-2 and chaos plants. LHCII phosphorylation was drastically reduced in ch1-2, and the inactivation of STN7 correlates with the lack of state transitions. In contrast, phosphorylated LHCII in chaos was observed to be exclusively associated with PSII complexes, indicating a lack of mobile LHCII in chaos. Thus, the comparative analysis of ch1-2 and chaos mutants provides new evidence for the flexible organization of LHCs and enhances our understanding of the reversible allocation of LHCII to the two photosystems. PMID:27663408

  13. Comparative Analysis of Light-Harvesting Antennae and State Transition in chlorina and cpSRP Mutants.

    Science.gov (United States)

    Wang, Peng; Grimm, Bernhard

    2016-11-01

    State transitions in photosynthesis provide for the dynamic allocation of a mobile fraction of light-harvesting complex II (LHCII) to photosystem II (PSII) in state I and to photosystem I (PSI) in state II. In the state I-to-state II transition, LHCII is phosphorylated by STN7 and associates with PSI to favor absorption cross-section of PSI. Here, we used Arabidopsis (Arabidopsis thaliana) mutants with defects in chlorophyll (Chl) b biosynthesis or in the chloroplast signal recognition particle (cpSRP) machinery to study the flexible formation of PS-LHC supercomplexes. Intriguingly, we found that impaired Chl b biosynthesis in chlorina1-2 (ch1-2) led to preferentially stabilized LHCI rather than LHCII, while the contents of both LHCI and LHCII were equally depressed in the cpSRP43-deficient mutant (chaos). In view of recent findings on the modified state transitions in LHCI-deficient mutants (Benson et al., 2015), the ch1-2 and chaos mutants were used to assess the influence of varying LHCI/LHCII antenna size on state transitions. Under state II conditions, LHCII-PSI supercomplexes were not formed in both ch1-2 and chaos plants. LHCII phosphorylation was drastically reduced in ch1-2, and the inactivation of STN7 correlates with the lack of state transitions. In contrast, phosphorylated LHCII in chaos was observed to be exclusively associated with PSII complexes, indicating a lack of mobile LHCII in chaos Thus, the comparative analysis of ch1-2 and chaos mutants provides new evidence for the flexible organization of LHCs and enhances our understanding of the reversible allocation of LHCII to the two photosystems. © 2016 American Society of Plant Biologists. All Rights Reserved.

  14. Review of Large Spacecraft Deployable Membrane Antenna Structures

    Science.gov (United States)

    Liu, Zhi-Quan; Qiu, Hui; Li, Xiao; Yang, Shu-Li

    2017-11-01

    The demand for large antennas in future space missions has increasingly stimulated the development of deployable membrane antenna structures owing to their light weight and small stowage volume. However, there is little literature providing a comprehensive review and comparison of different membrane antenna structures. Space-borne membrane antenna structures are mainly classified as either parabolic or planar membrane antenna structures. For parabolic membrane antenna structures, there are five deploying and forming methods, including inflation, inflation-rigidization, elastic ribs driven, Shape Memory Polymer (SMP)-inflation, and electrostatic forming. The development and detailed comparison of these five methods are presented. Then, properties of membrane materials (including polyester film and polyimide film) for parabolic membrane antennas are compared. Additionally, for planar membrane antenna structures, frame shapes have changed from circular to rectangular, and different tensioning systems have emerged successively, including single Miura-Natori, double, and multi-layer tensioning systems. Recent advances in structural configurations, tensioning system design, and dynamic analysis for planar membrane antenna structures are investigated. Finally, future trends for large space membrane antenna structures are pointed out and technical problems are proposed, including design and analysis of membrane structures, materials and processes, membrane packing, surface accuracy stability, and test and verification technology. Through a review of large deployable membrane antenna structures, guidance for space membrane-antenna research and applications is provided.

  15. Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas - part 1: design and performance analysis

    NARCIS (Netherlands)

    Meijerink, Arjan; Roeloffzen, C.G.H.; Meijerink, Roland; Zhuang, L.; Marpaung, D.A.I.; Bentum, Marinus Jan; Burla, M.; Verpoorte, Jaco; Jorna, Pieter; Huizinga, Adriaan; van Etten, Wim

    2010-01-01

    A novel optical beamformer concept is introduced that can be used for seamless control of the reception angle in broadband wireless receivers employing a large phased array antenna (PAA). The core of this beamformer is an optical beamforming network (OBFN), using ring resonator-based broadband

  16. Effect on the Tritium Breeding Ratio due to a distributed ICRF antenna in a DEMO reactor

    International Nuclear Information System (INIS)

    Garcia, A.; Noterdaeme, J.-M.; Fischer, U.; Dies, J.

    2016-01-01

    This thesis reports results of MCNP-5 calculations, with the nuclear data library FENDL-2.1, to assess the effect on the Tritium Breeding Ratio (TBR) due to a distributed Ion Cyclotron Range of Frequencies (ICRF) antenna integrated in the blanket of a DEMO fusion power reactor. A preliminary design of the antenna with a reference configuration of the DEMO reactor was used together with a parametric analysis for different parameters that strongly affect the TBR. These are the type of breeding blanket (Helium Cooled Pebble Bed, Helium Cooled Lithium Lead and Water Cooled Lithium Lead), the covering ratio of the straps of the antenna (the ratio between the surface of all the straps and the projected surface of the antenna slot: 0.49, 0.72 and 0.94), the antenna radial thickness (20 cm and 40 cm), the thickness of the straps (2 cm, 4 cm and a double layer of 0.2 cm plus 2.5 cm with the composition of the First Wall), and finally the poloidal position of the antenna (0°, which is the equatorial port, 40° and 90°, which is the upper port). For an antenna with a full toroidal circumference of 360°, located poloidaly at 40° with a poloidal extension of 1 m and a total First Wall surface of 67 m"2, the reduction of the TBR is −0.35% for a HCPB blanket concept, −0.53% for a HCLL blanket concept and −0.51% for a WCLL blanket concept. In all cases covered by the parametric analysis, the loss of TBR remains below 0.61%. Such a distributed ICRF antenna has thus only a marginal effect on the TBR for a DEMO reactor.

  17. Effect on the Tritium Breeding Ratio due to a distributed ICRF antenna in a DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A., E-mail: albert.garcia.hp@gmail.com [Max-Planck-Institut für Plasmaphysik (IPP), Garching (Germany); Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Polytechnic University of Catalonia (UPC), Barcelona (Spain); Department of Applied Physics, Ghent University, Ghent (Belgium); Noterdaeme, J.-M. [Max-Planck-Institut für Plasmaphysik (IPP), Garching (Germany); Department of Applied Physics, Ghent University, Ghent (Belgium); Fischer, U. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Dies, J. [Polytechnic University of Catalonia (UPC), Barcelona (Spain)

    2016-11-15

    This thesis reports results of MCNP-5 calculations, with the nuclear data library FENDL-2.1, to assess the effect on the Tritium Breeding Ratio (TBR) due to a distributed Ion Cyclotron Range of Frequencies (ICRF) antenna integrated in the blanket of a DEMO fusion power reactor. A preliminary design of the antenna with a reference configuration of the DEMO reactor was used together with a parametric analysis for different parameters that strongly affect the TBR. These are the type of breeding blanket (Helium Cooled Pebble Bed, Helium Cooled Lithium Lead and Water Cooled Lithium Lead), the covering ratio of the straps of the antenna (the ratio between the surface of all the straps and the projected surface of the antenna slot: 0.49, 0.72 and 0.94), the antenna radial thickness (20 cm and 40 cm), the thickness of the straps (2 cm, 4 cm and a double layer of 0.2 cm plus 2.5 cm with the composition of the First Wall), and finally the poloidal position of the antenna (0°, which is the equatorial port, 40° and 90°, which is the upper port). For an antenna with a full toroidal circumference of 360°, located poloidaly at 40° with a poloidal extension of 1 m and a total First Wall surface of 67 m{sup 2}, the reduction of the TBR is −0.35% for a HCPB blanket concept, −0.53% for a HCLL blanket concept and −0.51% for a WCLL blanket concept. In all cases covered by the parametric analysis, the loss of TBR remains below 0.61%. Such a distributed ICRF antenna has thus only a marginal effect on the TBR for a DEMO reactor.

  18. Design of a remote steering antenna for ECRH heating in the stellarator Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Plaum, B., E-mail: plaum@igvp.uni-stuttgart.de [Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie (IGVP), Univ. Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart (Germany); Lechte, C.; Kasparek, W.; Gaiser, S.; Zeitler, A. [Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie (IGVP), Univ. Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart (Germany); Erckmann, V. [Max-Planck-Institut für Plasmaphysik, EURATOM-IPP, D-17491 Greifswald (Germany); Weißgerber, M. [Max-Planck-Institut für Plasmaphysik, EURATOM-IPP, D-85748 Garching (Germany); Bechtold, A. [NTG Neue Technologie GmbH & Co KG, D-63571 Gelnhausen (Germany); Busch, M.; Szcepaniak, B. [Galvano-T electroplating-electroforming GmbH, D-51570 Windeck-Rosbach (Germany)

    2015-10-15

    Highlights: • We report about the design activities for the remote steering antennas for the stellarator W7-X. • The integration into the W7-X system and the manufacturing procedure are described. • Simulations and loss measurements for the waveguide walls were done and are in good agreement. • A method for extending the steering range is presented. • A mechanical deformation analysis showed that the deformation is not critical for the beam quality. - Abstract: For the ECRH heating system of the stellarator Wendelstein 7-X, two remote steering antennas are developed and manufactured. The principle of remote steering antennas is based on the imaging characteristics of corrugated rectangular waveguides, which is well understood and can accurately be simulated. Several details, however, require deeper investigation. The antenna needs a miter-bend and a 24 mm gap. The positions of these elements need to be chosen carefully to reduce losses and stray radiation. The antennas are manufactured from copper by electroforming. This allows to integrate all components, including the corrugated inner walls and the cooling channels, in one vacuum-tight piece. This paper reviews the design process of the remote steering antennas for W7-X as well as technological issues and experimental results from test pieces.

  19. Experiments with dipole antennas

    International Nuclear Information System (INIS)

    Kraftmakher, Yaakov

    2009-01-01

    Employment of a data-acquisition system for data collection and calculations makes experiments with antennas more convenient and less time consuming. The determined directional patterns of the dipole antennas of different lengths are in reasonable agreement with theory. The enhancement of the signal by using a reflector is demonstrated, and a variant of the Yagi-Uda antenna is explored. The experiments are suitable as laboratory works and classroom demonstrations, and are attractive for student projects.

  20. Band-notched spiral antenna

    Science.gov (United States)

    Jeon, Jae; Chang, John

    2018-03-13

    A band-notched spiral antenna having one or more spiral arms extending from a radially inner end to a radially outer end for transmitting or receiving electromagnetic radiation over a frequency range, and one or more resonance structures positioned adjacent one or more segments of the spiral arm associated with a notch frequency band or bands of the frequency range so as to resonate and suppress the transmission or reception of electromagnetic radiation over said notch frequency band or bands.

  1. Analysis of Financial Position Based on the Balance Sheet

    OpenAIRE

    Spineanu-Georgescu Luciana

    2011-01-01

    Analysis of financial position based on the balance sheet is mainly aimed at assessing the extent to which financial structure chosen by the firm, namely, financial resources, covering the needs reflected in the balance sheet financed. This is done through an analysis known as horizontal analysis balance sheet financial imbalances.

  2. Data analysis of photon beam position at PLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Ko, J.; Shin, S., E-mail: tlssh@postech.ac.kr; Huang, Jung-Yun; Kim, D.; Kim, C.; Kim, Ilyou; Lee, T.-Y.; Park, C.-D.; Kim, K. R. [Pohang Accelerator Laboratory, Pohang, Kyungbuk 790-834 (Korea, Republic of); Cho, Moohyun [Department of Physics, POSTECH, Pohang, Kyungbuk 790-834 (Korea, Republic of)

    2016-07-27

    In the third generation light source, photon beam position stability is critical issue on user experiment. Generally photon beam position monitors have been developed for the detection of the real photon beam position and the position is controlled by feedback system in order to keep the reference photon beam position. In the PLS-II, photon beam position stability for front end of particular beam line, in which photon beam position monitor is installed, has been obtained less than rms 1μm for user service period. Nevertheless, detail analysis for photon beam position data in order to demonstrate the performance of photon beam position monitor is necessary, since it can be suffers from various unknown noises. (for instance, a back ground contamination due to upstream or downstream dipole radiation, undulator gap dependence, etc.) In this paper, we will describe the start to end study for photon beam position stability and the Singular Value Decomposition (SVD) analysis to demonstrate the reliability on photon beam position data.

  3. Analysis of near-field components of a plasmonic optical antenna and their contribution to quantum dot infrared photodetector enhancement.

    Science.gov (United States)

    Gu, Guiru; Vaillancourt, Jarrod; Lu, Xuejun

    2014-10-20

    In this paper, we analyze near-field vector components of a metallic circular disk array (MCDA) plasmonic optical antenna and their contribution to quantum dot infrared photodetector (QDIP) enhancement. The near-field vector components of the MCDA optical antenna and their distribution in the QD active region are simulated. The near-field overlap integral with the QD active region is calculated at different wavelengths and compared with the QDIP enhancement spectrum. The x-component (E(x)) of the near-field vector shows a larger intensity overlap integral and stronger correlation with the QDIP enhancement than E(z) and thus is determined to be the major near-field component to the QDIP enhancement.

  4. Independent Peer Review of Communications, Navigation, and Networking re-Configurable Testbed (CoNNeCT) Project Antenna Pointing Subsystem (APS) Integrated Gimbal Assembly (IGA) Structural Analysis

    Science.gov (United States)

    Raju, Ivatury S.; Larsen, Curtis E.; Pellicciotti, Joseph W.

    2010-01-01

    Glenn Research Center Chief Engineer's Office requested an independent review of the structural analysis and modeling of the Communications, Navigation, and Networking re-Configurable Testbed (CoNNeCT) Project Antenna Pointing Subsystem (APS) Integrated Gimbal Assembly (IGA) to be conducted by the NASA Engineering and Safety Center (NESC). At this time, the IGA had completed its critical design review (CDR). The assessment was to be a peer review of the NEi-NASTRAN1 model of the APS Antenna, and not a peer review of the design and the analysis that had been completed by the GRC team for CDR. Thus, only a limited amount of information was provided on the structural analysis. However, the NESC team had difficulty separating analysis concerns from modeling issues. The team studied the NASTRAN model, but did not fully investigate how the model was used by the CoNNeCT Project and how the Project was interpreting the results. The team's findings, observations, and NESC recommendations are contained in this report.

  5. Using Social Network Analysis to Investigate Positive EOL Communication.

    Science.gov (United States)

    Xu, Jiayun; Yang, Rumei; Wilson, Andrew; Reblin, Maija; Clayton, Margaret F; Ellington, Lee

    2018-04-30

    End of life (EOL) communication is a complex process involving the whole family and multiple care providers. Applications of analysis techniques that account for communication beyond the patient and patient/provider, will improve clinical understanding of EOL communication. To introduce the use of social network analysis to EOL communication data, and to provide an example of applying social network analysis to home hospice interactions. We provide a description of social network analysis using social network analysis to model communication patterns during home hospice nursing visits. We describe three social network attributes (i.e. magnitude, directionality, and reciprocity) in the expression of positive emotion among hospice nurses, family caregivers, and hospice cancer patients. Differences in communication structure by primary family caregiver gender and across time were also examined. Magnitude (frequency) in the expression of positive emotion occurred most often between nurses and caregivers or nurses and patients. Female caregivers directed more positive emotion to nurses, and nurses directed more positive emotion to other family caregivers when the primary family caregiver was male. Reciprocity (mutuality) in positive emotion declined towards day of death, but increased on day of actual patient death. There was variation in reciprocity by the type of positive emotion expressed. Our example demonstrates that social network analysis can be used to better understand the process of EOL communication. Social network analysis can be expanded to other areas of EOL research, such as EOL decision-making and health care teamwork. Copyright © 2018. Published by Elsevier Inc.

  6. Analysis of SAR distribution in human head of antenna used in wireless power transform based on magnetic resonance.

    Science.gov (United States)

    Gong, Feixiang; Wei, Zhiqiang; Cong, Yanping; Chi, Haokun; Yin, Bo; Sun, Mingui

    2017-07-20

    In this paper, a novel wireless power transfer antenna system was designed for human head implantable devices. The antenna system used the structure of three plates and four coils and operated at low frequencies to transfer power via near field. In order to verify the electromagnetic radiation safety on the human head, the electromagnetic intensity and specific absorption rate (SAR) were studied by finite-difference-time-domain (FDTD) method. A three-layer model of human head including skin, bone and brain tissues was constructed. The transmitting and receiving antenna were set outside and inside the model. The local and average SAR were simulated at the resonance frequency of 18.67 MHz in two situations, in one scenario both transmitting and receiving coil worked, while in the other scenario only the transmitting coil worked. The results showed that the maximum of 10 g SAR average value of human thoracic were 0.142 W/kg and 0.148 W/kg, respectively, both were lower than the international safety standards for human body of the ICNIRP and FCC, which verified the safety of the human body in wireless power transmission based on magnetic coupling resonance.

  7. DIAGNOSIS OF FINANCIAL POSITION BY BALANCE SHEET ANALYSIS - CASE STUDY

    OpenAIRE

    Hada Teodor; Marginean Radu

    2013-01-01

    This study aims to elucidate and to exemplify an important technique for assessing the economic entities, namely the fundamental analysis of the balance sheet, in several significant aspects. The analysis of financial data reported in the balance sheet are, for an economic entity, the basis of a principle diagnosis by determining specific indicators of economic and financial analysis. This analysis aims to provide an insight into the companyâ€(tm)s financial position. The stated aim of this s...

  8. Compact Triple-Band Antenna Employing Simplified MTLs for Wireless Applications

    Directory of Open Access Journals (Sweden)

    Zhangjing Wang

    2016-01-01

    Full Text Available A compact triple-band asymmetric coplanar waveguide- (ACPW- fed antenna based on simplified metamaterial transmission lines (SMTLs is proposed in this paper. The antenna consists of two SMTL unit cells of the same dimension. Three operating bands, which cover UMTS in the 1.76 GHz band and WLAN in the 5.2 GHz and 5.8 GHz, are achieved when the zeroth-order and first-positive-order modes appear. The characteristics of the proposed transmission line metamaterial structure are studied in detail by circuit analysis and dispersion analysis. The working mechanism and radiation performances of the antenna are examined and illustrated at the three operating bands, respectively. A prototype designed on FR4 substrate with dielectric constant 4.3 occupies an overall size of 12.55 × 22.7 × 1.6 mm3 and is constructed and successfully measured.

  9. Microwave RF antennas and circuits nonlinearity applications in engineering

    CERN Document Server

    Aluf, Ofer

    2017-01-01

    This book describes a new concept for analyzing RF/microwave circuits, which includes RF/microwave antennas. The book is unique in its emphasis on practical and innovative microwave RF engineering applications. The analysis is based on nonlinear dynamics and chaos models and shows comprehensive benefits and results. All conceptual RF microwave circuits and antennas are innovative and can be broadly implemented in engineering applications. Given the dynamics of RF microwave circuits and antennas, they are suitable for use in a broad range of applications. The book presents analytical methods for microwave RF antennas and circuit analysis, concrete examples, and geometric examples. The analysis is developed systematically, starting with basic differential equations and their bifurcations, and subsequently moving on to fixed point analysis, limit cycles and their bifurcations. Engineering applications include microwave RF circuits and antennas in a variety of topological structures, RFID ICs and antennas, micros...

  10. Handbook of antenna technologies

    CERN Document Server

    Liu, Duixian; Nakano, Hisamatsu; Qing, Xianming; Zwick, Thomas

    2016-01-01

    The Handbook of Antenna Technologies aims to present the rapid development of antenna technologies, particularly in the past two decades, and also showcasing the newly developed technologies and the latest applications. The handbook will provide readers with the comprehensive updated reference information covering theory, modeling and optimization methods, design and measurement, new electromagnetic materials, and applications of antennas. The handbook will widely cover not only all key antenna design issues but also fundamentals, issues related to antennas (transmission, propagation, feeding structure, materials, fabrication, measurement, system, and unique design challenges in specific applications). This handbook will benefit the readers as a full and quick technical reference with a high-level historic review of technology, detailed technical descriptions and the latest practical applications.

  11. GPS antenna designs

    Science.gov (United States)

    Laube, Samuel J. P.

    1987-05-01

    Application of the current GPS NAVSTAR system to civilian service requires that a right hand, circularly polarized, -160 dBW spread spectrum signal be received from an orbiting satellite, where the antenna environment is also moving. This presents a design challenge when inexpensive antennas are desired. The intent of this survey is to provide information on the antennas mentioned and to construct and test prototypes to determine whether the choice made by the industry, the quadrifilar helix, is the best. The helix antenna is currently the low cost standard for GPS. Prototype versions were constructed using 12 gauge wire and subminiature coaxial hardline. The constructed antennas were tested using a signal generator and a reference turnstile. A spectrum analyzer was used to measure the level of the received signal.

  12. Magneto-Electric Dipole Antenna Arrays

    OpenAIRE

    Gupta, Shulabh; Jiang, Li Jun; Caloz, Christophe

    2014-01-01

    A planar magneto-electric (ME) dipole antenna array is proposed and demonstrated by both full-wave analysis and experiments. The proposed structure leverages the infinite wavelength propagation characteristic of composite right/left-handed (CRLH) transmission lines to form high-gain magnetic radiators combined with radial conventional electric radiators, where the overall structure is excited by a single differential feed. The traveling-wave type nature of the proposed ME-dipole antenna enabl...

  13. Antenna Deployment for the Localization of Partial Discharges in Open-Air Substations

    Science.gov (United States)

    Robles, Guillermo; Fresno, José Manuel; Sánchez-Fernández, Matilde; Martínez-Tarifa, Juan Manuel

    2016-01-01

    Partial discharges are ionization processes inside or on the surface of dielectrics that can unveil insulation problems in electrical equipment. The charge accumulated is released under certain environmental and voltage conditions attacking the insulation both physically and chemically. The final consequence of a continuous occurrence of these events is the breakdown of the dielectric. The electron avalanche provokes a derivative of the electric field with respect to time, creating an electromagnetic impulse that can be detected with antennas. The localization of the source helps in the identification of the piece of equipment that has to be decommissioned. This can be done by deploying antennas and calculating the time difference of arrival (TDOA) of the electromagnetic pulses. However, small errors in this parameter can lead to great displacements of the calculated position of the source. Usually, four antennas are used to find the source but the array geometry has to be correctly deployed to have minimal errors in the localization. This paper demonstrates, by an analysis based on simulation and also experimentally, that the most common layouts are not always the best options and proposes a simple antenna layout to reduce the systematic error in the TDOA calculation due to the positions of the antennas in the array. PMID:27092501

  14. Proteome Analysis of the Hemolymph, Mushroom Body, and Antenna Provides Novel Insight into Honeybee Resistance against Varroa Infestation.

    Science.gov (United States)

    Hu, Han; Bienefeld, Kaspar; Wegener, Jakob; Zautke, Fred; Hao, Yue; Feng, Mao; Han, Bin; Fang, Yu; Wubie, Abebe Jenberie; Li, Jianke

    2016-08-05

    Varroa destructor has been identified as a major culprit responsible for the losses of millions of honeybee colonies. Varroa sensitive hygiene (VSH) is a suite of behaviors from adult bees to suppress mite reproduction by uncapping and/or removing mite infested pupae from a sealed brood. Despite the efforts to elucidate the molecular underpinnings of VSH, they remain largely unknown. We investigated the proteome of mushroom bodies (MBs) and antennae of adult bees with and without VSH from a stock selected for VSH based on their response to artificially Varroa-infected brood cells by near-infrared camera observation. The pupal hemolymph proteome was also compared between the VSH-line and the line that was not selected for VSH. The identified 8609 proteins in the hemolymph, MBs, and antennae represent the most depth coverage of the honeybee proteome (>55%) to date. In the hemolymph, the VSH-line adapts a unique strategy to boost the social immunity and drive pupal organogenesis by enhancing energy metabolism and protein biosynthesis. In MBs, the up-regulated proteins implicated in neuronal sensitivity suggest their roles to promote the execution of VSH by activation of synaptic vesicles and calcium channel activities. In antennae, the highly expressed proteins associated with sensitivity of olfactory senses and signal transmissions signify their roles by inputting a strong signal to the MBs for initiating VSH. These observations illustrate that the enhanced social immunities and olfactory and neuronal sensitivity play key roles in the combat against Varroa infestation. The identified candidate markers may be useful for accelerating marker-associated selection for VSH to aid in resistance to a parasite responsible for decline in honeybee health.

  15. Data analysis of inertial sensor for train positioning detection system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Jin; Park, Sung Soo; Lee, Jae Ho; Kang, Dong Hoon [Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2015-02-15

    Train positioning detection information is fundamental for high-speed railroad inspection, making it possible to simultaneously determine the status and evaluate the integrity of railroad equipment. This paper presents the results of measurements and an analysis of an inertial measurement unit (IMU) used as a positioning detection sensors. Acceleration and angular rate measurements from the IMU were analyzed in the amplitude and frequency domains, with a discussion on vibration and train motions. Using these results and GPS information, the positioning detection of a Korean tilting train express was performed from Naju station to Illo station on the Honam-line. The results of a synchronized analysis of sensor measurements and train motion can help in the design of a train location detection system and improve the positioning detection performance.

  16. COMPETITIVE SOCIAL POSITION OF THE COUNTRY: A COMPARATIVE ANALYSIS

    Directory of Open Access Journals (Sweden)

    I. Chornodid

    2014-01-01

    Full Text Available The article reveals the essence of the country's competitive position, a comparative analysis according to international indexes and indicators is provided. Also the competitive social benefits of the country are described. The real situation of the competitive social benefits is considered on international standards and assessments. The estimation of the position of Ukraine is given in terms of freedom, network readiness index, the index of competitiveness of travel and tourism.

  17. A Modal Description of Multiport Antennas

    Directory of Open Access Journals (Sweden)

    Jonathan J. Lynch

    2011-01-01

    Full Text Available This paper presents a modal description of multiport antennas that leads directly to a rigorous network representation and simple quadratic expressions for gain, efficiency, and effective area. The analysis shows that the transmitting and receiving properties of an element antenna array are exactly described by a 2×2 element scattering matrix together with a set of orthonormal mode functions and accounts for effects such as mutual coupling, scattering, reflection, and losses. The approach is quite general, only requiring that the antenna be finite and reciprocal. The scattering network description simplifies accounting of power flow while retaining a close connection to the physical antenna characteristics. The orthonormal mode functions provide a complete basis for radiated and received fields, facilitating beamforming. The theory provides rigorous definitions of input-output signals and links them to the underlying electromagnetics in a straightforward manner.

  18. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances.

    Science.gov (United States)

    Alarifi, Abdulrahman; Al-Salman, AbdulMalik; Alsaleh, Mansour; Alnafessah, Ahmad; Al-Hadhrami, Suheer; Al-Ammar, Mai A; Al-Khalifa, Hend S

    2016-05-16

    In recent years, indoor positioning has emerged as a critical function in many end-user applications; including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals. Ultra WideBand (UWB) is an emerging technology in the field of indoor positioning that has shown better performance compared to others. In order to set the stage for this work, we provide a survey of the state-of-the-art technologies in indoor positioning, followed by a detailed comparative analysis of UWB positioning technologies. We also provide an analysis of strengths, weaknesses, opportunities, and threats (SWOT) to analyze the present state of UWB positioning technologies. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space.

  19. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances †

    Science.gov (United States)

    Alarifi, Abdulrahman; Al-Salman, AbdulMalik; Alsaleh, Mansour; Alnafessah, Ahmad; Al-Hadhrami, Suheer; Al-Ammar, Mai A.; Al-Khalifa, Hend S.

    2016-01-01

    In recent years, indoor positioning has emerged as a critical function in many end-user applications; including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals. Ultra WideBand (UWB) is an emerging technology in the field of indoor positioning that has shown better performance compared to others. In order to set the stage for this work, we provide a survey of the state-of-the-art technologies in indoor positioning, followed by a detailed comparative analysis of UWB positioning technologies. We also provide an analysis of strengths, weaknesses, opportunities, and threats (SWOT) to analyze the present state of UWB positioning technologies. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space. PMID:27196906

  20. Relational interaction in occupational therapy: Conversation analysis of positive feedback.

    Science.gov (United States)

    Weiste, Elina

    2018-01-01

    The therapeutic relationship is an important factor for good therapy outcomes. The primary mediator of a beneficial therapy relationship is clinician-client interaction. However, few studies identify the observable interactional attributes of good quality relational interactions, e.g. offering the client positive feedback. The present paper aims to expand current understanding of relational interaction by analyzing the real-time interactional practices therapists use for offering positive feedback, an important value in occupational therapy. The analysis is based on the conversation analysis of 15 video-recorded occupational therapy encounters in psychiatric outpatient clinics. Two types of positive feedback were identified. In aligning feedback, therapists encouraged and complimented clients' positive perspectives on their own achievements in adopting certain behaviour, encouraging and supporting their progress. In redirecting feedback, therapists shifted the perspective from clients' negative experiences to their positive experiences. This shift was interactionally successful if they laid the foundation for the shift in perspective and attuned their expressions to the clients' emotional states. Occupational therapists routinely provide their clients with positive feedback. Awareness of the interactional attributes related to positive feedback is critically important for successful relational interaction.

  1. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances

    Directory of Open Access Journals (Sweden)

    Abdulrahman Alarifi

    2016-05-01

    Full Text Available In recent years, indoor positioning has emerged as a critical function in many end-user applications; including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals. Ultra WideBand (UWB is an emerging technology in the field of indoor positioning that has shown better performance compared to others. In order to set the stage for this work, we provide a survey of the state-of-the-art technologies in indoor positioning, followed by a detailed comparative analysis of UWB positioning technologies. We also provide an analysis of strengths, weaknesses, opportunities, and threats (SWOT to analyze the present state of UWB positioning technologies. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space.

  2. Performance analysis for IEEE 802.11 distributed coordination function in radio-over-fiber-based distributed antenna systems.

    Science.gov (United States)

    Fan, Yuting; Li, Jianqiang; Xu, Kun; Chen, Hao; Lu, Xun; Dai, Yitang; Yin, Feifei; Ji, Yuefeng; Lin, Jintong

    2013-09-09

    In this paper, we analyze the performance of IEEE 802.11 distributed coordination function in simulcast radio-over-fiber-based distributed antenna systems (RoF-DASs) where multiple remote antenna units (RAUs) are connected to one wireless local-area network (WLAN) access point (AP) with different-length fiber links. We also present an analytical model to evaluate the throughput of the systems in the presence of both the inter-RAU hidden-node problem and fiber-length difference effect. In the model, the unequal delay induced by different fiber length is involved both in the backoff stage and in the calculation of Ts and Tc, which are the period of time when the channel is sensed busy due to a successful transmission or a collision. The throughput performances of WLAN-RoF-DAS in both basic access and request to send/clear to send (RTS/CTS) exchange modes are evaluated with the help of the derived model.

  3. Smart antennas in aerospace applications

    NARCIS (Netherlands)

    Verpoorte, Jaco; Schippers, Harmen; Roeloffzen, C.G.H.; Marpaung, D.A.I.

    2010-01-01

    The interest in Smart Antennas for aerospace applications is growing. This paper describes smart antennas which can be used on aircraft. Two aerospace applications are discussed in more detail: a phased array antenna with optical beam forming and a large vibrating phased array antenna with

  4. A Compact Flexible and Frequency Reconfigurable Antenna for Quintuple Applications

    Directory of Open Access Journals (Sweden)

    M. U. Hassan

    2017-09-01

    Full Text Available A novel, compact coplanar waveguide fed flexible antenna is presented. The proposed design uses flexible Rogers RT/duroid 5880 (0.508mm thickness as a substrate with small size of 30×28.4 mm^2. Two switches are integrated on the antenna surface to change the current distribution which consequently changes the resonance frequency under different conditions of switches, thereby making it a frequency reconfigurable antenna. The antenna design is simulated on CST®MWS®. The proposed antenna exhibits VSWR less than 2 and appreciable radiation patterns with positive gain over desired frequency bands. Good agreement exists between simulated and measured results. On the basis of results, the proposed antenna is envisioned to be deployed for the following applications; aeronautical radio navigation [4.3 GHz], AMT fixed services [4.5 GHz], WLAN [5.2 GHz], Unlicensed WiMAX [5.8 GHz] and X-band [7.5 GHz].

  5. Dual-Band Compact Planar Antenna for a Low-Cost WLAN USB Dongle

    Directory of Open Access Journals (Sweden)

    Maurício Henrique Costa Dias

    2014-01-01

    Full Text Available Among the present technologies for WLAN devices, USB dongles still play a noticeable role. One major design challenge regards the antenna, which unavoidably has to comply with a very small volume available and sometimes should also allow multiband operation. In this scope, the present work discusses a dual-band WiFi compact planar IFA-based antenna design for a low-cost USB dongle application. Like most of the related published solutions, the methodology for deriving the present proposition was assisted by the use of an antenna analysis software. A prototype was assembled and tested in order to qualify the radiator design. Practical operation conditions were considered in the tests, such as the influence of the dongle case and the effect of the notebook itself. The results complied with the design constraints, presenting an impedance match quite stable regardless of the stick position alongside a laptop base.

  6. THE DEVELOPMENT AND BACKGROUND OF THE POSITION ANALYSIS QUESTIONNAIRE

    Science.gov (United States)

    The report deals with the background and the development of the Position Analysis Questionnaire ( PAQ ), which was used as the basic job analysis...instrument in the research program. The PAQ (Form A) used in the study includes 189 job elements of an essentially ’worker-oriented’ nature, these elements...characterize certain aspects of the context within which human work is performed. The job elements of the PAQ have been used as the basis for deriving various

  7. Antennas from theory to practice

    CERN Document Server

    Huang, Yi

    2008-01-01

    Practical, concise and complete reference for the basics of modern antenna design Antennas: from Theory to Practice discusses the basics of modern antenna design and theory. Developed specifically for engineers and designers who work with radio communications, radar and RF engineering, this book offers practical and hands-on treatment of antenna theory and techniques, and provides its readers the skills to analyse, design and measure various antennas. Key features: Provides thorough coverage on the basics of transmission lines, radio waves and propag

  8. Analysis of double stub tuner control stability in a phased array antenna with strong cross-coupling

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, G.M., E-mail: wallaceg@mit.edu [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States); Hillairet, J. [CEA-IRFM, Saint-Paul-lez-Durance (France); Koert, P.; Lin, Y.; Shiraiwa, S.; Wukitch, S.J. [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States)

    2014-11-15

    Highlights: • A novel method for reducing reflection coefficients for LHCD launchers is proposed and evaluated. • Numerical models of antenna behavior with stub tuning are analyzed. • The system is found to be stable under most realistic operating conditions. - Abstract: Active stub tuning with a fast ferrite tuner (FFT) has greatly increased the effectiveness of fusion ion cyclotron range of frequency (ICRF) systems (50–100 MHz) by allowing for the antenna system to respond dynamically to changes in the plasma load impedance such as during the L–H transition or edge localized modes (ELMs). A high power waveguide double-stub tuner is under development for use with the Alcator C-Mod lower hybrid current drive (LHCD) system at 4.6 GHz. The amplitude and relative phase shift between adjacent columns of an LHCD antenna are critical for control of the launched n{sub ||} spectrum. Adding a double-stub tuning network will perturb the phase and amplitude of the forward wave particularly if the unmatched reflection coefficient is high. This effect can be compensated by adjusting the phase of the low power microwave drive for each klystron amplifier. Cross-coupling of the reflected power between columns of the launcher must also be considered. The problem is simulated by cascading a scattering matrix for the plasma provided by a linear coupling model with the measured launcher scattering matrix and that of the FFTs. The solution is advanced in an iterative manner similar to the time-dependent behavior of the real system. System performance is presented under a range of edge density conditions from under-dense to over-dense and a range of launched n{sub ||}. Simulations predict power reflection coefficients (Γ{sup 2}) of less than 1% with no contamination of the n{sub ||} spectrum. Instability of the FFT tuning network can be problematic for certain plasma conditions and relative phasings, but reducing the control gain of the FFT network stabilizes the system.

  9. Buoyant Cable Antenna System

    National Research Council Canada - National Science Library

    Gerhard, Erich M

    2008-01-01

    .... For instance, in one embodiment two oppositely extending curves each float and each are pressed by the water in a balanced manner to provide a stable platform for one or more antennas which can be...

  10. Micropatch Antenna Phase Shifting

    National Research Council Canada - National Science Library

    Thursby, Michael

    2000-01-01

    .... We have been looking at the ability of embedded element to adjust the phase shift seen by the element with the goal of being able to remove the phase shifting devices from the antenna and replace...

  11. Micropatch Antenna Phase Shifting

    National Research Council Canada - National Science Library

    Thursby, Michael

    1999-01-01

    .... We have been looking at the ability of embedded element to adjust the phase shift seen by the element wit the goal of being able to remove the phase shifting devices from the antenna and replace...

  12. Positive Behavior Support and Applied Behavior Analysis: A Familial Alliance

    Science.gov (United States)

    Dunlap, Glen; Carr, Edward G.; Horner, Robert H.; Zarcone, Jennifer R.; Schwartz, Ilene

    2008-01-01

    Positive behavior support (PBS) emerged in the mid-1980s as an approach for understanding and addressing problem behaviors. PBS was derived primarily from applied behavior analysis (ABA). Over time, however, PBS research and practice has incorporated evaluative methods, assessment and intervention procedures, and conceptual perspectives associated…

  13. [Positive deviance: concept analysis using the evolutionary approach of Rodgers].

    Science.gov (United States)

    Létourneau, Josiane; Alderson, Marie; Caux, Chantal; Richard, Lucie

    2013-06-01

    Positive deviance is a relatively new concept in healthcare. Since 2006, it has been applied to infection control in order to increase the awareness to good hand hygiene practices. This article focus on presenting analytical results of this concept using the evolutionary approach of Rodgers based on the philosophical postulate that concepts are dynamical and changing with time. For doing so, a census of the writings in nursing, medicine and psychology was carried out. By going through the CINAHL, Medline and PsyclNFO databases using positive deviance as a keyword for the time period: 1975 to May 2012, and in accordance with the method of Rodgers, ninety articles were retained (30 per discipline). The analysis enables one to notice that positive deviance described as an individual characteristic at first, is now used as a behavioral changing approach in nursing and medicine as well. At the end of the analysis and apart from this article, positive deviance will be used in order to study the practice of nurses that adheres to hand hygiene despite limiting constraints within hospital. We will then be able to continue the development of this concept in order to bring it, as Rodgers recommends, beyond the analysis. It would then be an important contribution to good nursing practices in the field of infection control and prevention.

  14. Frequency selective surfaces based high performance microstrip antenna

    CERN Document Server

    Narayan, Shiv; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on performance enhancement of printed antennas using frequency selective surfaces (FSS) technology. The growing demand of stealth technology in strategic areas requires high-performance low-RCS (radar cross section) antennas. Such requirements may be accomplished by incorporating FSS into the antenna structure either in its ground plane or as the superstrate, due to the filter characteristics of FSS structure. In view of this, a novel approach based on FSS technology is presented in this book to enhance the performance of printed antennas including out-of-band structural RCS reduction. In this endeavor, the EM design of microstrip patch antennas (MPA) loaded with FSS-based (i) high impedance surface (HIS) ground plane, and (ii) the superstrates are discussed in detail. The EM analysis of proposed FSS-based antenna structures have been carried out using transmission line analogy, in combination with the reciprocity theorem. Further, various types of novel FSS structures are considered in desi...

  15. Recent Developments of Reflectarray Antennas in Dual-Reflector Configurations

    Directory of Open Access Journals (Sweden)

    Carolina Tienda

    2012-01-01

    Full Text Available Recent work on dual-reflector antennas involving reflectarrays is reviewed in this paper. Both dual-reflector antenna with a reflectarray subreflector and dual-reflectarrays antennas with flat or parabolic main reflectarray are considered. First, a general analysis technique for these two configurations is described. Second, results for beam scanning and contoured-beam applications in different frequency bands are shown and discussed. The performance and capabilities of these antennas are shown by describing some practical design cases for radar, satellite communications, and direct broadcast satellite (DBS applications.

  16. Predicting positional error of MLC using volumetric analysis

    International Nuclear Information System (INIS)

    Hareram, E.S.

    2008-01-01

    IMRT normally using multiple beamlets (small width of the beam) for a particular field to deliver so that it is imperative to maintain the positional accuracy of the MLC in order to deliver integrated computed dose accurately. Different manufacturers have reported high precession on MLC devices with leaf positional accuracy nearing 0.1 mm but measuring and rectifying the error in this accuracy is very difficult. Various methods are used to check MLC position and among this volumetric analysis is one of the technique. Volumetric approach was adapted in our method using primus machine and 0.6cc chamber at 5 cm depth In perspex. MLC of 1 mm error introduces an error of 20%, more sensitive to other methods

  17. Analysis of Links Positions in Landing Gear Mechanism

    Science.gov (United States)

    Brewczyński, D.; Tora, G.

    2014-08-01

    This article contains a kinematic analysis of an aircraft chassis mechanism in a range of positions. The mechanism of the chassis is made up of several smaller subsystems with different functions. The first mechanism is used to eject the chassis before landing (touchdown) and fold it to hatchway after the lift off. The second mechanism is designed to perform rotation of the crossover with the wheel, in order to adjust the position of the wheel to fit it in the limited space in the hold. The third mechanism allows movement of the chassis resulting from the change in length of the damper. To determine the position of the following links of the mechanism calculus of vectors was applied in which unit vectors were used to represent the angular position of the links. The aim of the analysis is to determine the angle of convergence and the angle of heel wheels as a function of the variable length of hydraulic cylinder, length of the shock absorber, length of the regulations rods

  18. On the interference rejection capabilities of triangular antenna array for cellular base stations

    KAUST Repository

    Atat, Rachad; Shakir, Muhammad; Alouini, Mohamed-Slim

    2012-01-01

    In this paper, we present the performance analysis of the triangular antenna arrays in terms of the interference rejection capability. In this context, we derive an expression to calculate the spatial interference suppression coefficient for the triangular antenna array with variable number of antenna elements. The performance of the triangular antenna array has been compared with the circular antenna array with respect to interference suppression performance, steering beam pattern, beamwidth and directivity. Simulation results show that the triangular array with large number of elements produces a sharper beamwidth and better interference suppression performance than the circular antenna array. © 2012 IEEE.

  19. On the interference rejection capabilities of triangular antenna array for cellular base stations

    KAUST Repository

    Atat, Rachad

    2012-03-01

    In this paper, we present the performance analysis of the triangular antenna arrays in terms of the interference rejection capability. In this context, we derive an expression to calculate the spatial interference suppression coefficient for the triangular antenna array with variable number of antenna elements. The performance of the triangular antenna array has been compared with the circular antenna array with respect to interference suppression performance, steering beam pattern, beamwidth and directivity. Simulation results show that the triangular array with large number of elements produces a sharper beamwidth and better interference suppression performance than the circular antenna array. © 2012 IEEE.

  20. Modeling of compact loop antennas

    International Nuclear Information System (INIS)

    Baity, F.W.

    1987-01-01

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak

  1. Antenna for Ultrawideband Channel Sounding

    DEFF Research Database (Denmark)

    Zhekov, Stanislav Stefanov; Tatomirescu, Alexandru; Pedersen, Gert F.

    2016-01-01

    A novel compact antenna for ultrawideband channel sounding is presented. The antenna is composed of a symmetrical biconical antenna modified by adding a cylinder and a ring to each cone. A feeding coaxial cable is employed during the simulations in order to evaluate and reduce its impact on the a......A novel compact antenna for ultrawideband channel sounding is presented. The antenna is composed of a symmetrical biconical antenna modified by adding a cylinder and a ring to each cone. A feeding coaxial cable is employed during the simulations in order to evaluate and reduce its impact...

  2. Does Andrews facial analysis predict esthetic sagittal maxillary position?

    Science.gov (United States)

    Resnick, Cory M; Daniels, Kimberly M; Vlahos, Maryann

    2018-04-01

    Cephalometric analyses have limited utility in planning maxillary sagittal position for orthognathic surgery. In Six Elements of Orofacial Harmony, Andrews quantified maxillary position relative to forehead projection and angulation and proposed an ideal relationship. The purpose of this study was to investigate the ability of this technique to predict esthetic sagittal maxillary position. Survey study including a male and female with straight facial profiles, normal maxillary incisor angulations, and Angle's Class I. Maxillary position was modified on lateral photographs to create 5 images for each participant with incisor-goal anterior limit line (GALL) distances of -4, -2, 0, +2, and +4 mm. A series of health care professionals and laypeople were asked to rate each photo in order of attractiveness. A total of 100 complete responses were received. Incisor-GALL distances of +4 mm (41%) and +2 mm (40%) were most commonly considered "most esthetic" for the female volunteer (P < .001). For the male volunteer, there were 2 peak "most esthetic" responses: incisor-GALL distances of 0 mm (37%) and -4 mm (32%) (P < .001). Respondents considered maxillary incisor position 2 to 4 mm anterior to GALL most attractive in a woman and 0 to 4 mm posterior to GALL most esthetic in a man. Using these modified target distances, this analysis may be useful for orthognathic surgery planning. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Frequency-agile antennas for wireless communications

    CERN Document Server

    Petosa, Aldo

    2013-01-01

    Mobile data subscriptions are expected to more than double and mobile wireless traffic to increase by more than tenfold over the next few years. Proliferation of smart phones, tablets, and other portable devices are placing greater demands for services such as web browsing, global positioning, video streaming, and video telephony. Many of the proposed solutions to deal with these demands will have a significant impact on antenna designs. Antennas with frequency agility are considered a promising technology to help implement these new solutions.This book provides readers with a sense of the cap

  4. Discriminant analysis of maintaining a vertical position in the water

    Directory of Open Access Journals (Sweden)

    Bratuša Zoran

    2015-01-01

    Full Text Available Water polo is the only sports game that takes place in the water. During the outplay, a vertical body position with the two basic mechanisms of the leg work - a breaststroke leg kick and an eggbeater leg kick, prevails. Starting from the significance of a vertical position during the game play, the methods of assessing physical preparedness of the athletes of all the categories also include the evaluation of maintaining a vertical position and consequently the load of the leg muscles. The measurements are performed during the maintenance of a vertical position (swimming in place through one of the specified mechanisms of leg work, i.e. a vertical position technique. The aim of this paper was to determine the application of different mechanisms of the leg kicks in maintaining a vertical position with young water polo players in relation to their position. The study included 29 selected junior water polo players (age_15.8 ± 0.8 years; BH_185.2 ± 5.3cm and BW_81.7 ± 7.7kg. The measurements were performed during the tests of swimming in place at the maximum intensity lasting 10 seconds, by the breaststroke and eggbeater leg kicks. The isometric tensiometry tests were used for the measurements. The results were analysed by the application of descriptive statistics, and the kinetic selection characteristic was defined by the application of discriminant analysis. Higher average values were achieved with the breaststroke leg kick technique Fmax, ImpF and RFD (avgFmaxLEGGBK =157.46±19.93N; avgImpF_LEGGBK =45.43±10.64Ns; avgRFD_LEGGBK=337.85±80.73N/s; avgFmaxLBKICK=227.18±49.17N; avgImpF_LBKICK=55.99±14.59Ns; avgRFD_LBKICK=545.47±159.15N/s. After discriminant analysis, the results have shown that the eggbeater leg kick is a selection technique, whereas the force - Fmax is a kinetic selection variable. Based on the obtained results and the analyses performed it may be concluded that a training factor dominant for maintaining a vertical position by

  5. Novel Microstrip Patch Antennas with Frequency Agility, Polarization Reconfigurability, Dual Null Steering Capability and Phased Array Antenna with Beam Steering Performance

    Science.gov (United States)

    Babakhani, Behrouz

    optimization method uses particle swarm optimization (PSO) combined with pattern search (PS) to find the optimum modes excitation ratio which minimizes the received power at the null positions. The calculated coefficients were applied to the multimode antenna using an analog BFN. This design shows an independent dual null steering with null depth of around 20 dB. Discussion about the proposed antennas included detailed theoretical analysis, numerical simulation and optimizations, beam forming and null steering algorithms, fabrication of the antennas and its control/beamforming feed networks along with the associated bias networks, microcontroller units, and finally its characterization (impedance matching, gain and 2D and 3D radiation patterns). The research work was performed at the Antenna and Microwave Lab (AML) which has the required resources including full wave analysis tools, PCB milling machine, surface mount component soldering station, vector network analyzers, and far-field/spherical near-field radiation pattern measurement system.

  6. Zeroth order resonator (ZOR) based RFID antenna design

    Science.gov (United States)

    Masud, Muhammad Mubeen

    Meander-line and multi-layer antennas have been used extensively to design compact UHF radio frequency identification (RFID) tags; however the overall size reduction of meander-line antennas is limited by the amount of parasitic inductance that can be introduced by each meander-line segment, and multi-layer antennas can be too costly. In this study, a new compact antenna topology for passive UHF RFID tags based on zeroth order resonant (ZOR) design techniques is presented. The antenna consists of lossy coplanar conductors and either inter-connected inter-digital capacitor (IDC) or shunt inductor unit-cells with a ZOR frequency near the operating frequency of the antenna. Setting the ZOR frequency near the operating frequency is a key component in the design process because the unit-cells chosen for the design are inductive at the operating frequency. This makes the unit-cells very useful for antenna miniaturization. These new designs in this work have several benefits: the coplanar layout can be printed on a single layer, matching inductive loops that reduce antenna efficiency are not required and ZOR analysis can be used for the design. Finally, for validation, prototype antennas are designed, fabricated and tested.

  7. X-ray trace element analysis with positive ion beams

    International Nuclear Information System (INIS)

    Davis, R.H.

    1973-01-01

    A new trace element analysis having the advantage that many elements may be detected in a single measurement, based on positive charged particle induced X-ray florescence and on the production of X-rays by heavy ions, is described. Because of the large cross-sections for the production of discrete X-ray and the low yield of continuum radiation, positive charged particle X-ray florescence is a competitive, fast, analytic tool. In the experiment a beam of positive charged particles from an accelerator was directed toward a target. X-rays induced by the bombardment were detected by a Si(Li) detector the ouput from which was amplified and sorted in a multichannel analyzer. For rapid data handling and analysis, the multichannel analyzer or ADC unit was connected to an on-line computer. A large variety of targets prepared in collaboration with the oceanographers have been studied and spectra obtained for different particles having the same velocity are presented to show that the yield of discrete X-rays increases at least as rapidly as Z 2 . While protons of several MeV appear to be already competitive further advantage may be gained by heavy ions at lower energies since the continuum is reduced while the peak ''signals'' retain strength due to the Z 2 dependence. (S.B.)

  8. Women's Status and World-System Position: An Exploratory Analysis

    Directory of Open Access Journals (Sweden)

    Richard York

    2015-08-01

    Full Text Available Our aim here is to strengthen the links between the world-systems perspective and research ongender inequality. Grounding our analysis in theories assessing the connections between genderrelationships and world-system processes, we empirically explore (] the extent to whichwomen's status in nations overlaps with the world-system position of those nations and (2 theinfluence of women's status within nations on a variety of national characteristics. We find thatwomen's status has a moderately strong association with world-system position, which suggeststhat macro-comparative research may confound the respective effects on a variety of socialcharacteristics of women's status and world-system position if indicators of both factors are notincluded in analyses. We also find that, controlling for world-system position, GDP per capita,and urbanization, in nations where women have higher status (variously measured, total fertilityrates, infant mortality rates, military expenditures, and inflows of foreign direct investinent arelower, and public health care expenditures and per capita meat consumption are higher. Theseresults suggest that women's status likely has social effects that can be seen on the macro-level,and that world-systems analysts should pay more attention to theories of gender in their research.

  9. POSITIVE AND NEGATIVE EFFECTS ANALYSIS IN ABUSE OF DOMINANCE

    Directory of Open Access Journals (Sweden)

    Mihai MĂRGINEAN

    2017-12-01

    Full Text Available Abuse of a dominant position is a threat to the functioning of the free market. This is the reason why we have proposed to highlight the impact of this particular anti-competitive practice in the European Union area. The aim of this paper is to present, from a theoretical and practical approach, the implications and the effects of this type of behavior and also to highlight the main actors in this process. In order to achieve these goals, we will use the content analysis to compress the effects of the abuse of dominant position in two categories: positive and negative effects. The historical method to emphasize the historical origins of the concepts and institutions involved. The comparative method will be used to nominate specific features, concepts or institutions that we will analyze and also it will help us to analyze the evolution that have occurred over time in terms of their development and to highlight certain advantages or disadvantages in terms of choice of competition policy on the abuse of a dominant position. In this paper we will notice that both the companies and the market itself are facing with companies that use anti-competitive since 1900. These kind of practices are harmful both for competition and for consumers, so that should not be allowed to expand. In this context, the European Commission imposed a set of rules that all operators must comply in order to protect, maintain and stimulate competition in the Single Market and to promote fair competition.

  10. Design and investigation of sectoral circular disc monopole fractal antenna and its backscattering

    Directory of Open Access Journals (Sweden)

    Raj Kumar

    2017-02-01

    Full Text Available This article presents the design of sectoral circular disc fractal antenna. The proposed antenna has been excited using CPW – feed. The measured result of this antenna offers the ultra wideband characteristics from 3.265 GHz to 15.0 GHz. The measured and simulated results are compared and found in good agreement. The impedance match of the antenna throughout the band is improved by incorporating the rectangular slots in the ground plane. The measured radiation patterns of this antenna are nearly omni-directional in H-plane and bidirectional in E-plane. The backscattering of antenna is also discussed and calculated for antenna mode and structural mode scattering. This type of antenna is useful for UWB system, microwave imaging and vehicular radar, precision positioning location.

  11. Stretchable antenna for wearable electronics

    KAUST Repository

    Hussain, Muhammad Mustafa; Hussain, Aftab Mustansir; Shamim, Atif; Ghaffar, Farhan Abdul

    2017-01-01

    Various examples are provided for stretchable antennas that can be used for applications such as wearable electronics. In one example, a stretchable antenna includes a flexible support structure including a lateral spring section having a proximal

  12. Dynamic Flaps Electronic Scan Antenna

    National Research Council Canada - National Science Library

    Gonzalez, Daniel

    2000-01-01

    A dynamic FLAPS(TM) electronic scan antenna was the focus of this research. The novelty S of this SBIR resides in the use of plasma as the main component of this dynamic X-Band phased S array antenna...

  13. Wireless Distributed Antenna MIMO

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to system applications of multicore optical fibers. One embodiment relates to a base transceiver station for a wireless telecommunication system comprising a plurality of antenna units arranged in a MIMO configuration and adapted for transmission and/or reception...... of radio-frequency signals, an optical transmitter in the form of an electro-optic conversion unit for each of said plurality of antenna units, each electro-optic conversion unit adapted for converting an RF signal into an optical signal, a plurality of a single core optical fibers for guiding the optical...

  14. Printed MIMO antenna engineering

    CERN Document Server

    Sharawi, Mohammad S

    2014-01-01

    Wireless communications has made a huge leap during the past two decades. The multiple-input-multiple-output (MIMO) technology was proposed in the 1990's as a viable solution that can overcome the data rate limit experienced by single-input-single-output (SISO) systems. This resource is focused on printed MIMO antenna system design. Printed antennas are widely used in mobile and handheld terminals due to their conformity with the device, low cost, good integration within the device elements and mechanical parts, as well as ease of fabrication.A perfect design companion for practicing engineers

  15. Non-standard antennas

    CERN Document Server

    Le Chevalier, Francois; Staraj, Robert

    2013-01-01

    This book aims at describing the wide variety of new technologies and concepts of non-standard antenna systems - reconfigurable, integrated, terahertz, deformable, ultra-wideband, using metamaterials, or MEMS,  etc, and how they open the way to a wide range of applications, from personal security and communications to multifunction radars and towed sonars, or satellite navigation systems, with space-time diversity on transmit and receive. A reference book for designers  in this lively scientific community linking antenna experts and signal processing engineers.

  16. DSN Microwave Antenna Holography

    Science.gov (United States)

    Rochblatt, D. J.; Seidel, B. L.

    1984-01-01

    The DSN microwave antenna holography project will obtain three-dimensional pictures of the large DSN antenna surfaces. These pictures must be of suffi icient resolution to allow adjustment of the reflector panels to an rms surface of 0.5 mm (0.25 mm, goal). The major parameters and equations needed to define a holographic measurement system are outlined and then the proof of concept demonstration measurement that was made at DSS-43 (Australia) that resulted in contour maps with spatial resolution of 7 m in the aperture plane and resolution orthogonal to the aperture plane of 0.7 mm was discussed.

  17. Optical response of bowtie antennas

    Science.gov (United States)

    Guo, Ying-Nan; Pan, Shi; Li, Xu-Feng; Wang, Shuo; Wang, Qiao

    2010-10-01

    Optical properties of bowtie antennas are investigated using a numerical method of finite-difference time-domain (FDTD). The optical response in the antenna feed gap is simulated as functions of its geometry parameters (flare angle, arm length, apex width, thickness, gap dimension, as well as the index of substrate), which provide a clear guideline to exploit such antenna structures in practice.

  18. On the Impact of a Quadratic Acceleration Term in the Analysis of Position Time Series

    Science.gov (United States)

    Bogusz, Janusz; Klos, Anna; Bos, Machiel Simon; Hunegnaw, Addisu; Teferle, Felix Norman

    2016-04-01

    The analysis of Global Navigation Satellite System (GNSS) position time series generally assumes that each of the coordinate component series is described by the sum of a linear rate (velocity) and various periodic terms. The residuals, the deviations between the fitted model and the observations, are then a measure of the epoch-to-epoch scatter and have been used for the analysis of the stochastic character (noise) of the time series. Often the parameters of interest in GNSS position time series are the velocities and their associated uncertainties, which have to be determined with the highest reliability. It is clear that not all GNSS position time series follow this simple linear behaviour. Therefore, we have added an acceleration term in the form of a quadratic polynomial function to the model in order to better describe the non-linear motion in the position time series. This non-linear motion could be a response to purely geophysical processes, for example, elastic rebound of the Earth's crust due to ice mass loss in Greenland, artefacts due to deficiencies in bias mitigation models, for example, of the GNSS satellite and receiver antenna phase centres, or any combination thereof. In this study we have simulated 20 time series with different stochastic characteristics such as white, flicker or random walk noise of length of 23 years. The noise amplitude was assumed at 1 mm/y-/4. Then, we added the deterministic part consisting of a linear trend of 20 mm/y (that represents the averaged horizontal velocity) and accelerations ranging from minus 0.6 to plus 0.6 mm/y2. For all these data we estimated the noise parameters with Maximum Likelihood Estimation (MLE) using the Hector software package without taken into account the non-linear term. In this way we set the benchmark to then investigate how the noise properties and velocity uncertainty may be affected by any un-modelled, non-linear term. The velocities and their uncertainties versus the accelerations for

  19. Evaluation of a quarterwave stub antenna for TIROS satellite application

    Science.gov (United States)

    Stogner, L. B.

    1980-06-01

    The TIROS-N quarterwave stub antenna communicated accurate position locations during low power level operations based on data processed by the Local User's Terminal (LUT) and Service ARGOS. This style of antenna is the marine mammal transmitter package. The antenna gain and radiation pattern and vertical polarization enhance the applicability. However, for marine mammal transmitter applications, a spring at the base of the antenna is required to provide flexibility and protection to the animal and the antenna must serve as a seawater sensor requiring it to be insulated from the seawater environment except at the sensory location. These problems appear solved for the NIMBUS system, and the TIROS system will be designed accordingly.

  20. Mechanical design of the second ICRF antenna for EAST

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.Q., E-mail: yangqx@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Song, Y.T.; Wu, S.T.; Zhao, Y.P.; Zhang, J.X.; Wang, Z.W. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer The second ICRF antenna of EAST is capable of coupling higher power than the former ICRF antenna due to it has been designed with four current straps. Black-Right-Pointing-Pointer Many cooling channels have been designed for the key components of faraday shied, current strap, baffles and transmission lines, which can remove the dissipated RF loss power and incoming heat loads on them and make ICRF antenna being capable of coupling higher power in constant wave operation. Black-Right-Pointing-Pointer Extra structure via cantilever support beam has been designed to support the forepart of the ICRF antenna. Black-Right-Pointing-Pointer Numerical analysis by applying the thermo-mechanical coupling method have been applied to analyze for the key components of ICRF antenna. - Abstract: In order to satisfy the requirements of heating plasma on EAST project, 3 MW ion cyclotron range of frequency (ICRF) heating system will be available at the second stage. Based on this requirement, the second ICRF antenna, has been designed for EAST. The antenna which is planned to operate with a frequency ranging from 30 MHz to 110 MHz, comprises four poloidal current straps. The antenna has many cooling channels inside the current straps, faraday shield and baffle to remove the dissipated RF loss power and incoming plasma heat loads. The antenna is supported via a cantilever support box to the external support structure. Its assembly is plugged in the port and fixed on the support box. External slideway and bellows allow the antenna to be able to move in the radial direction. The key components of the second ICRF antenna has been designed together with structural and thermal analysis presented.

  1. Modelling of bow-tie microstrip antennas using modified locally conformal FDTD method

    NARCIS (Netherlands)

    George, J.

    2000-01-01

    An analysis of bow-tie microstrip antennas is presented based on the use of the modified locally conformal finite-difference time-domain (FDTD) method. This approach enables the number of cells along the antenna length and width to be chosen independently of the antenna central width, which helps to

  2. Statistical analysis of RHIC beam position monitors performance

    Science.gov (United States)

    Calaga, R.; Tomás, R.

    2004-04-01

    A detailed statistical analysis of beam position monitors (BPM) performance at RHIC is a critical factor in improving regular operations and future runs. Robust identification of malfunctioning BPMs plays an important role in any orbit or turn-by-turn analysis. Singular value decomposition and Fourier transform methods, which have evolved as powerful numerical techniques in signal processing, will aid in such identification from BPM data. This is the first attempt at RHIC to use a large set of data to statistically enhance the capability of these two techniques and determine BPM performance. A comparison from run 2003 data shows striking agreement between the two methods and hence can be used to improve BPM functioning at RHIC and possibly other accelerators.

  3. Statistical analysis of RHIC beam position monitors performance

    Directory of Open Access Journals (Sweden)

    R. Calaga

    2004-04-01

    Full Text Available A detailed statistical analysis of beam position monitors (BPM performance at RHIC is a critical factor in improving regular operations and future runs. Robust identification of malfunctioning BPMs plays an important role in any orbit or turn-by-turn analysis. Singular value decomposition and Fourier transform methods, which have evolved as powerful numerical techniques in signal processing, will aid in such identification from BPM data. This is the first attempt at RHIC to use a large set of data to statistically enhance the capability of these two techniques and determine BPM performance. A comparison from run 2003 data shows striking agreement between the two methods and hence can be used to improve BPM functioning at RHIC and possibly other accelerators.

  4. Stereotactic technique of RF antenna implantation for brain hyperthermia

    International Nuclear Information System (INIS)

    Takahashi, H.; Uzuka, T.; Grinev, I.; Tanaka, R.

    2005-01-01

    Full text: We have tried 13.56 MHz RF interstitial hyperthermia for the patients with malignant brain tumor. The purpose of this report is to assess the complication risk rate and the achievement yield of stereotactic procedure for RF antenna implantation into the deep-seated brain tumor. One hundred and twenty-five patients underwent 144 stereotactic RF antenna implantation procedures for interstitial hyperthermia for malignant brain tumors at Niigata University, Japan. One hundred and eight patients had malignant gliomas (54 primary, 54 recurrent), 24 had metastatic tumors, 5 had malignant lymphomas, 5 had meningiomas and 2 had miscellaneous tumors. Indication of this trial was the tumor with inoperative deep-seated tumor or elderly patients. RF antennas and catheters for thermistor probes were set into the tumor with stereotactic apparatus under local anesthesia. Postoperative CT scan underwent in order to assess the accuracy of antenna setting and to check the complications. The hyperthermic treatment underwent with a single antenna in 85 patients, 2 antennas in 43 patients, 3 in 2, 4 in 12, 5 in 1 and 6 antennas in 1 patient. Appropriate RF antenna positioning was obtained in 138 of 144 procedures (95.8 %). Six patients incurred complications (4.2 %). Three patients suffered intratumoral hemorrhage. RF antennas were set into the inappropriate position in 2 cases, hyperthermia was not achieved. One patient occurred with liquorrhea. However, six patients (4.2 %) incurred complications, stereotactic RF antenna setting was a safe and reliable technique of the hyperthermic treatment for the patients with malignant brain tumors. (author)

  5. Recent developments in ICRF antenna modelling

    International Nuclear Information System (INIS)

    Lamalle, P.U.; Messiaen, A.M.; Dumortier, P.; Louche, F.

    2005-01-01

    The antennas presently developed for ICRF heating of the ITER plasma consist of a tightly packed array of a large number of radiating straps, in order to deliver a high power density without exceeding radio-frequency voltage standoffs. Recently developed commercial software has enabled important progress in the coupling analysis and optimisation of such demanding systems. Approximations allowing to convincingly include a realistic plasma description in these codes are discussed. Application of the resulting numerical tools is illustrated by simulation of the existing JET A2 ICRF array, with the goal to validate simulations for future antennas. Advances in the design of realistic test bed conditions, using salted water as a means of creating plasma-relevant antenna loading, and the appropriate scaling of a mockup are also presented. (author)

  6. Electromagnetic reciprocity in antenna theory

    CERN Document Server

    Stumpf, Martin

    2018-01-01

    The reciprocity theorem is among the most intriguing concepts in wave field theory and has become an integral part of almost all standard textbooks on electromagnetic (EM) theory. This book makes use of the theorem to quantitatively describe EM interactions concerning general multiport antenna systems. It covers a general reciprocity-based description of antenna systems, their EM scattering properties, and further related aspects. Beginning with an introduction to the subject, Electromagnetic Reciprocity in Antenna Theory provides readers first with the basic prerequisites before offering coverage of the equivalent multiport circuit antenna representations, EM coupling between multiport antenna systems and their EM interactions with scatterers, accompanied with the corresponding EM compensation theorems.

  7. Low-Profile Multiband and Flush-Mountable Wideband Antennas for HF/VHF and K/Ka Band Applications

    Science.gov (United States)

    Garrido Lopez, David

    This thesis introduces several novel antenna systems with extended performance capabilities achieved by either enabling multiple operation bands or by widening the bandwidth. Proposed theoretical concepts are successfully tested through simulations and experiments with excellent agreement are demonstrated. The designs developed in this thesis research are low-profile or flush mountable, enabling simple platform integration. In the HF/VHF bands, the development of a novel low-profile multiband antenna for vehicular applications is presented. Specifically, an inverted-F antenna is used as a driven element, to operate at the lowest frequency of 27 MHz, whereas two parasitic elements are built as inverted-L monopoles to enable resonances at 49 and 53 MHz. To eliminate the need for an external matching network, an offset feeding technique is used. When the antenna is mounted on a vehicle and bent to follow its profile, a very low-profile is achieved (lambda/44) while good impedance and far-field performance are maintained across all three bands. The developed antenna system is not only electrically smallest among others found in the literature, but it is easily modified for other band selections and tuning of each band can be readily achieved. Vehicular antennas are often used for high power applications, which may cause exposure of nearby individuals to possibly dangerous electromagnetic fields. To assess this hazard, the RF exposure of a vehicle's crew is discussed and an original and fast modeling approach for prediction thereof is demonstrated. The modeling approach is based on eigenmode analysis for acquiring a range of frequencies where the shielding effectiveness of a vehicle cabin is expected to be lower than average. This approach is typically much faster and requires less computational resources as compared to classical full-wave analyses. This analysis also shows that the position of an antenna system is critical and must be considered when high-power RF

  8. Statistical Modeling of Antenna: Urban Equipment Interactions for LTE Access Points

    Directory of Open Access Journals (Sweden)

    Xin Zeng

    2012-01-01

    Full Text Available The latest standards for wireless networks such as LTE are essentially based on small cells in order to achieve a large network capacity. This applies for antennas to be deployed at street level or even within buildings. However, antennas are commonly designed, simulated, and measured in ideal conditions, which is not the real situation for most applications where antennas are often deployed in proximity to objects acting as disturbers. In this paper, three conventional wireless access point scenarios (antenna-wall, antenna-shelter, and antenna lamppost are investigated for directional or omnidirectional antennas. The paper first addresses the definition of three performance indicators for such scenarios and secondly uses such parameters towards the statistical analysis of the interactions between the wall and the antennas.

  9. A Design of 45-Degree Dual-Polarization Broadband Plane Station Antenna

    Directory of Open Access Journals (Sweden)

    Jianming Zhou

    2015-01-01

    Full Text Available A new broadband planar dual-polarization base station antenna is proposed, the antenna consists of two broadband plane coplanar base station antenna units, and so it has features of plane antenna. Two broadband plane station antenna units can, respectively, form double polarization in the direction. We analyzed the relative positions between the two antenna units and their effects on the performances of the antenna, especially for the influence of isolation. Broadband antenna has the characteristics of the broadband station antenna, and bandwidth is also guaranteed. The measured results show that the antenna can obtain 45% relative bandwidth, and 30 dB isolation degree also can be got, and the radiation performance is also good. Measurement results confirmed that the antenna gain can be guaranteed among 48% relative bandwidth, 15 dB of gain is got among bandwidth of 1.69–2.78 GHz, the isolation degree of different polarization method can reach 30 dB, and the measurement gain of two polarization methods of antenna both can reach 8.5 dBi.

  10. Comparative analysis of positive and negative attitudes toward statistics

    Science.gov (United States)

    Ghulami, Hassan Rahnaward; Ab Hamid, Mohd Rashid; Zakaria, Roslinazairimah

    2015-02-01

    Many statistics lecturers and statistics education researchers are interested to know the perception of their students' attitudes toward statistics during the statistics course. In statistics course, positive attitude toward statistics is a vital because it will be encourage students to get interested in the statistics course and in order to master the core content of the subject matters under study. Although, students who have negative attitudes toward statistics they will feel depressed especially in the given group assignment, at risk for failure, are often highly emotional, and could not move forward. Therefore, this study investigates the students' attitude towards learning statistics. Six latent constructs have been the measurement of students' attitudes toward learning statistic such as affect, cognitive competence, value, difficulty, interest, and effort. The questionnaire was adopted and adapted from the reliable and validate instrument of Survey of Attitudes towards Statistics (SATS). This study is conducted among engineering undergraduate engineering students in the university Malaysia Pahang (UMP). The respondents consist of students who were taking the applied statistics course from different faculties. From the analysis, it is found that the questionnaire is acceptable and the relationships among the constructs has been proposed and investigated. In this case, students show full effort to master the statistics course, feel statistics course enjoyable, have confidence that they have intellectual capacity, and they have more positive attitudes then negative attitudes towards statistics learning. In conclusion in terms of affect, cognitive competence, value, interest and effort construct the positive attitude towards statistics was mostly exhibited. While negative attitudes mostly exhibited by difficulty construct.

  11. The Application of Structured Job Analysis Information Based on the Position Analysis Questionnaire (PAQ).

    Science.gov (United States)

    Position Analysis Questionnaire ( PAQ ). This job analysis instrument consists of 187 job elements organized into six divisions. In the analysis of a job...with the PAQ the relevance of the individual elements to the job are rated using any of several rating scales such as importance, or time.

  12. Multiple Antenna Systems with Inherently Decoupled Radiators

    DEFF Research Database (Denmark)

    Pelosi, Mauro; Knudsen, Mikael B.; Pedersen, Gert Frølund

    2012-01-01

    In multiple antenna systems mutual coupling needs to be minimized. We propose an alternative novel decoupling technique, investigating several multiple antenna configurations for small handsets through measurements and numerical simulations. The influence of different novel designs on performance...... metrics such as total loss, antenna isolation and envelope correlation coefficient are investigated. By varying antenna impedance bandwidth and antenna location with respect to the handset, both Planar Inverted F Antenna (PIFA) and Inverted F Antennas (IFA) were investigated in different UMTS frequency...

  13. On the electrical equivalent circuits of gravitational-wave antennas

    International Nuclear Information System (INIS)

    Pallottino, G.V.; Pizzella, G.; Rome Univ.

    1978-01-01

    The electrical equivalent circuit of a Weber gravitational-wave antenna with piezoelectric transducers is derived for the various longitudinal normal modes by using the Lagrangian formalism. The analysis is applied to the antenna without piezoelectric ceramics, as well as with one or more ceramics operated in both passive and active mode. Particular attention is given to the dissipation problem in order to obtain an expression of the overall merit factor directly related to the physics of the actual dissipation processes. As an example the results are applied to a cylindrical bar with two ceramics: one for calibrating the antenna, the other as sensor of the motion. The values of the physical parameters and of the pertinent parameters of the equivalent circuit for the small antenna (20 kg) and those (predicted) for the intermediate antenna (390 kg) of the Rome group are given in the appendix. (author)

  14. Protein complex prediction via dense subgraphs and false positive analysis.

    Directory of Open Access Journals (Sweden)

    Cecilia Hernandez

    Full Text Available Many proteins work together with others in groups called complexes in order to achieve a specific function. Discovering protein complexes is important for understanding biological processes and predict protein functions in living organisms. Large-scale and throughput techniques have made possible to compile protein-protein interaction networks (PPI networks, which have been used in several computational approaches for detecting protein complexes. Those predictions might guide future biologic experimental research. Some approaches are topology-based, where highly connected proteins are predicted to be complexes; some propose different clustering algorithms using partitioning, overlaps among clusters for networks modeled with unweighted or weighted graphs; and others use density of clusters and information based on protein functionality. However, some schemes still require much processing time or the quality of their results can be improved. Furthermore, most of the results obtained with computational tools are not accompanied by an analysis of false positives. We propose an effective and efficient mining algorithm for discovering highly connected subgraphs, which is our base for defining protein complexes. Our representation is based on transforming the PPI network into a directed acyclic graph that reduces the number of represented edges and the search space for discovering subgraphs. Our approach considers weighted and unweighted PPI networks. We compare our best alternative using PPI networks from Saccharomyces cerevisiae (yeast and Homo sapiens (human with state-of-the-art approaches in terms of clustering, biological metrics and execution times, as well as three gold standards for yeast and two for human. Furthermore, we analyze false positive predicted complexes searching the PDBe (Protein Data Bank in Europe database in order to identify matching protein complexes that have been purified and structurally characterized. Our analysis shows

  15. Antenna Beam Pattern Characteristics of HAPS User Terminal

    Science.gov (United States)

    Ku, Bon-Jun; Oh, Dae Sub; Kim, Nam; Ahn, Do-Seob

    High Altitude Platform Stations (HAPS) are recently considered as a green infrastructure to provide high speed multimedia services. The critical issue of HAPS is frequency sharing with satellite systems. Regulating antenna beam pattern using adaptive antenna schemes is one of means to facilitate the sharing with a space receiver for fixed satellite services on the uplink of a HAPS system operating in U bands. In this letter, we investigate antenna beam pattern characteristics of HAPS user terminals with various values of scan angles of main beam, null position angles, and null width.

  16. Transcriptome sequencing and positive selected genes analysis of Bombyx mandarina.

    Directory of Open Access Journals (Sweden)

    Tingcai Cheng

    Full Text Available The wild silkworm Bombyx mandarina is widely believed to be an ancestor of the domesticated silkworm, Bombyx mori. Silkworms are often used as a model for studying the mechanism of species domestication. Here, we performed transcriptome sequencing of the wild silkworm using an Illumina HiSeq2000 platform. We produced 100,004,078 high-quality reads and assembled them into 50,773 contigs with an N50 length of 1764 bp and a mean length of 941.62 bp. A total of 33,759 unigenes were identified, with 12,805 annotated in the Nr database, 8273 in the Pfam database, and 9093 in the Swiss-Prot database. Expression profile analysis found significant differential expression of 1308 unigenes between the middle silk gland (MSG and posterior silk gland (PSG. Three sericin genes (sericin 1, sericin 2, and sericin 3 were expressed specifically in the MSG and three fibroin genes (fibroin-H, fibroin-L, and fibroin/P25 were expressed specifically in the PSG. In addition, 32,297 Single-nucleotide polymorphisms (SNPs and 361 insertion-deletions (INDELs were detected. Comparison with the domesticated silkworm p50/Dazao identified 5,295 orthologous genes, among which 400 might have experienced or to be experiencing positive selection by Ka/Ks analysis. These data and analyses presented here provide insights into silkworm domestication and an invaluable resource for wild silkworm genomics research.

  17. Broadband Monopole Antenna

    Science.gov (United States)

    2017-09-14

    December 2017 The below identified patent application is available for licensing. Requests for information should be addressed to...CROSS REFERENCE TO OTHER PATENT APPLICATIONS [0002] United States Patent Application Ser. No. 15/220,692 filed on July 27, 2016 is incorporated by...antenna operating near 2.5 GHz to obtain an octave of bandwidth. One solution for this is given by Werner et al. in United States Patent

  18. Application Research of Horn Array Multi-Beam Antenna in Reference Source System for Satellite Interference Location

    Science.gov (United States)

    Zhou, Ping; Lin, Hui; Zhang, Qi

    2018-01-01

    The reference source system is a key factor to ensure the successful location of the satellite interference source. Currently, the traditional system used a mechanical rotating antenna which leaded to the disadvantages of slow rotation and high failure-rate, which seriously restricted the system’s positioning-timeliness and became its obvious weaknesses. In this paper, a multi-beam antenna scheme based on the horn array was proposed as a reference source for the satellite interference location, which was used as an alternative to the traditional reference source antenna. The new scheme has designed a small circularly polarized horn antenna as an element and proposed a multi-beamforming algorithm based on planar array. Moreover, the simulation analysis of horn antenna pattern, multi-beam forming algorithm and simulated satellite link cross-ambiguity calculation have been carried out respectively. Finally, cross-ambiguity calculation of the traditional reference source system has also been tested. The comparison between the results of computer simulation and the actual test results shows that the scheme is scientific and feasible, obviously superior to the traditional reference source system.

  19. Analysis and Design of a Speed and Position System for Maglev Vehicles

    Directory of Open Access Journals (Sweden)

    Zhiqiang Long

    2012-06-01

    Full Text Available This paper mainly researches one method of speed and location detection for maglev vehicles. As the maglev train doesn’t have any physical contact with the rails, it has to use non-contact measuring methods. The technology based on the inductive loop-cable could fulfill the requirement by using an on-board antenna which could detect the alternating magnetic field produced by the loop-cable on rails. This paper introduces the structure of a speed and position system, and analyses the electromagnetic field produced by the loop-cable. The equivalent model of the loop-cable is given and the most suitable component of the magnetic flux density is selected. Then the paper also compares the alternating current (AC resistance and the quality factor between two kinds of coils which the antenna is composed of. The effect of the rails to the signal receiving is also researched and then the structure of the coils is improved. Finally, considering the common-mode interference, 8-word coils are designed and analyzed.

  20. Analysis and design of a speed and position system for maglev vehicles.

    Science.gov (United States)

    Dai, Chunhui; Dou, Fengshan; Song, Xianglei; Long, Zhiqiang

    2012-01-01

    This paper mainly researches one method of speed and location detection for maglev vehicles. As the maglev train doesn't have any physical contact with the rails, it has to use non-contact measuring methods. The technology based on the inductive loop-cable could fulfill the requirement by using an on-board antenna which could detect the alternating magnetic field produced by the loop-cable on rails. This paper introduces the structure of a speed and position system, and analyses the electromagnetic field produced by the loop-cable. The equivalent model of the loop-cable is given and the most suitable component of the magnetic flux density is selected. Then the paper also compares the alternating current (AC) resistance and the quality factor between two kinds of coils which the antenna is composed of. The effect of the rails to the signal receiving is also researched and then the structure of the coils is improved. Finally, considering the common-mode interference, 8-word coils are designed and analyzed.

  1. Research on radiation characteristics of dipole antenna modulation by sub-wavelength inhomogeneous plasma layer

    Directory of Open Access Journals (Sweden)

    Fanrong Kong

    2018-02-01

    Full Text Available The modulation and enhancement effect of sub-wavelength plasma structures on compact antennas exhibits obvious technological advantage and considerable progress. In order to extend the availability of this technology under complex and actual environment with inhomogeneous plasma structure, a numerical simulation analysis based on finite element method has been conducted in this paper. The modulation function of the antenna radiation with sub-wavelength plasma layer located at different positions was investigated, and the inhomogeneous plasma layer with multiple electron density distribution profiles were employed to explore the effect of plasma density distribution on the antenna radiation. It has been revealed that the optical near-field modulated distance and reduced plasma distribution are more beneficial to enhance the radiation. On the basis above, an application-focused research about communication through the plasma sheath surrounding a hypersonic vehicle has been carried out aiming at exploring an effective communication window. The relevant results devote guiding significance in the field of antenna radiation modulation and enhancement, as well as the development of communication technology in hypersonic flight.

  2. Research on radiation characteristics of dipole antenna modulation by sub-wavelength inhomogeneous plasma layer

    Science.gov (United States)

    Kong, Fanrong; Chen, Peiqi; Nie, Qiuyue; Zhang, Xiaoning; Zhang, Zhen; Jiang, Binhao

    2018-02-01

    The modulation and enhancement effect of sub-wavelength plasma structures on compact antennas exhibits obvious technological advantage and considerable progress. In order to extend the availability of this technology under complex and actual environment with inhomogeneous plasma structure, a numerical simulation analysis based on finite element method has been conducted in this paper. The modulation function of the antenna radiation with sub-wavelength plasma layer located at different positions was investigated, and the inhomogeneous plasma layer with multiple electron density distribution profiles were employed to explore the effect of plasma density distribution on the antenna radiation. It has been revealed that the optical near-field modulated distance and reduced plasma distribution are more beneficial to enhance the radiation. On the basis above, an application-focused research about communication through the plasma sheath surrounding a hypersonic vehicle has been carried out aiming at exploring an effective communication window. The relevant results devote guiding significance in the field of antenna radiation modulation and enhancement, as well as the development of communication technology in hypersonic flight.

  3. Dual-mode plasmonic nanorod type antenna based on the concept of a trapped dipole.

    Science.gov (United States)

    Panaretos, Anastasios H; Werner, Douglas H

    2015-04-06

    In this paper we theoretically investigate the feasibility of creating a dual-mode plasmonic nanorod antenna. The proposed design methodology relies on adapting to optical wavelengths the principles of operation of trapped dipole antennas, which have been widely used in the low MHz frequency range. This type of antenna typically employs parallel LC circuits, also referred to as "traps", which are connected along the two arms of the dipole. By judiciously choosing the resonant frequency of these traps, as well as their position along the arms of the dipole, it is feasible to excite the λ/2 resonance of both the original dipole as well as the shorter section defined by the length of wire between the two traps. This effectively enables the dipole antenna to have a dual-mode of operation. Our analysis reveals that the implementation of this concept at the nanoscale requires that two cylindrical pockets (i.e. loading volumes) be introduced along the length of the nanoantenna, inside which plasmonic core-shell particles are embedded. By properly selecting the geometry and constitution of the core-shell particle as well as the constitution of the host material of the two loading volumes and their position along the nanorod, the equivalent effect of a resonant parallel LC circuit can be realized. This effectively enables a dual-mode operation of the nanorod antenna. The proposed methodology introduces a compact approach for the realization of dual-mode optical sensors while at the same time it clearly illustrates the inherent tuning capabilities that core-shell particles can offer in a practical framework.

  4. Antenna conditioning with insulating antenna tiles in Phaedrus-T

    International Nuclear Information System (INIS)

    Intrator, T.; Probert, P.; Doczy, M.; Diebold, D.; Brouchous, D.

    1994-01-01

    In the course of our Alfven wave heating and current drive experiments several different two and four strap antennas have been installed in Phaedrus-T. The motivation focusing the redesign of the antenna into a four strap design was to enable traveling wave phasing, and to reduce the k parallel ∼0 component of the wavenumber spectrum, and consequent edge power deposition. The latest modifications to the 4 strap antenna have dramatically improved its behavior, and enabled us to suppress its RF power induced impurity generation. The remaining gas reflux fueling is significant and is not local to the antenna

  5. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    International Nuclear Information System (INIS)

    Bhardwaj, Dheeraj; Saraswat, Shriti; Gulati, Gitansh; Shekhar, Snehanshu; Joshi, Kanika; Sharma, Komal

    2016-01-01

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S_1_1) have been investigated. The antenna design is primarily focused on achieving a dual band operation.

  6. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Dheeraj, E-mail: dbhardwaj.bit@gmail.com [Department of Physics, BIT-Mesra-Jaipur Campus, Jaipur 302017 (India); Saraswat, Shriti, E-mail: saraswat.srishti@gmail.com; Gulati, Gitansh, E-mail: gitanshgulati@gmail.com; Shekhar, Snehanshu, E-mail: snehanshushekhar.bit@gmail.com; Joshi, Kanika, E-mail: kanika.karesh@gmail.com [Department of Electronics & Communication, BIT-Mesra-Jaipur Campus, Jaipur 302017 (India); Sharma, Komal, E-mail: kbhardwaj18@gmail.com [Department of Physics, Swami Keshvanand Institute of Technology, Jaipur 302017 (India)

    2016-03-09

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S{sub 11}) have been investigated. The antenna design is primarily focused on achieving a dual band operation.

  7. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    Science.gov (United States)

    Bhardwaj, Dheeraj; Saraswat, Shriti; Gulati, Gitansh; Shekhar, Snehanshu; Joshi, Kanika; Sharma, Komal

    2016-03-01

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S11) have been investigated. The antenna design is primarily focused on achieving a dual band operation.

  8. Analysis of Hall Probe Precise Positioning with Cylindrical Permanent Magnet

    International Nuclear Information System (INIS)

    Belicev, P.; Vorozhtsov, A.S.; Vorozhtsov, S.B.

    2007-01-01

    Precise positioning of a Hall probe for cyclotron magnetic field mapping, using cylindrical permanent magnets, was analyzed. The necessary permanent magnet parameters in order to achieve ±20 μm position precision, were determined. (author)

  9. Stretchable antenna for wearable electronics

    KAUST Repository

    Hussain, Muhammad Mustafa

    2017-04-13

    Various examples are provided for stretchable antennas that can be used for applications such as wearable electronics. In one example, a stretchable antenna includes a flexible support structure including a lateral spring section having a proximal end and at a distal end; a metallic antenna disposed on at least a portion of the lateral spring section, the metallic antenna extending along the lateral spring section from the proximal end; and a metallic feed coupled to the metallic antenna at the proximal end of the lateral spring section. In another example, a method includes patterning a polymer layer disposed on a substrate to define a lateral spring section; disposing a metal layer on at least a portion of the lateral spring section, the metal layer forming an antenna extending along the portion of the lateral spring section; and releasing the polymer layer and the metal layer from the substrate.

  10. A Compact UWB Diversity Antenna

    Directory of Open Access Journals (Sweden)

    Hui Zhao

    2014-01-01

    Full Text Available A compact printed ultrawideband (UWB diversity antenna with a size of 30 mm × 36 mm operating at a frequency range of 3.1–10.6 GHz is proposed. The antenna is composed of two semielliptical monopoles fed by two microstrip lines. Two semicircular slots, two rectangular slots, and one stub are introduced in the ground plane to adjust the impedance bandwidth of the antenna and improve the isolation between two feeding ports. The simulated and measured results show that impedance bandwidth of the proposed antenna can cover the whole UWB band with a good isolation of < −15 dB. The radiation patterns, peak antenna gain, and envelope correlation coefficient are also measured and discussed. The measured results show that the proposed antenna can be a good candidate for some portable MIMO/diversity UWB applications.

  11. Leisure and positive development of youth: The time use analysis

    Directory of Open Access Journals (Sweden)

    Pešić Jelena

    2012-01-01

    Full Text Available The aim of this study was to examine how young people in Serbia are using free time and how their activities are beneficial, from the standpoint of a positive development. We have analyzed the amount of time youth daily spend in a different categories of activities, based on the degree of mental and physical engagement, the primary purpose of the activities and the degree of structured ness. The 24-hour time diary method was applied: subjects chronologically described, at half-hourly intervals, their activities in one working and one weekend day. The data analysis was based on a typical day reconstruction approach. The research was conducted on a representative sample of high school students (N = 922, stratified by region, age and type of school. The analysis revealed that young people spend most of their leisure time in activities that do not require a particular mental or physical engagement. In a hypothetical average day of Serbian teenagers, the most represented activities are aimed at fun and relaxation, as well as unstructured socializing with peers. Far less time is spent in individual or organized activities, aimed at the actualization of creative potentials and development of interests and competencies (extracurricular activities, hobbies, volunteering, etc.. It is evident that young people spend most of their free time in unstructured activities, without supervision and systematic guidance by adults. We believe that a gloomy picture of youth leisure time could be, at least partly, attributed to the lack of socio-cultural support for more developmentally enriching ways of spending time, in the form of organized activities at school and in the community.

  12. A component analysis of positive behaviour support plans.

    Science.gov (United States)

    McClean, Brian; Grey, Ian

    2012-09-01

    Positive behaviour support (PBS) emphasises multi-component interventions by natural intervention agents to help people overcome challenging behaviours. This paper investigates which components are most effective and which factors might mediate effectiveness. Sixty-one staff working with individuals with intellectual disability and challenging behaviours completed longitudinal competency-based training in PBS. Each staff participant conducted a functional assessment and developed and implemented a PBS plan for one prioritised individual. A total of 1,272 interventions were available for analysis. Measures of challenging behaviour were taken at baseline, after 6 months, and at an average of 26 months follow-up. There was a significant reduction in the frequency, management difficulty, and episodic severity of challenging behaviour over the duration of the study. Escape was identified by staff as the most common function, accounting for 77% of challenging behaviours. The most commonly implemented components of intervention were setting event changes and quality-of-life-based interventions. Only treatment acceptability was found to be related to decreases in behavioural frequency. No single intervention component was found to have a greater association with reductions in challenging behaviour.

  13. Geodetic antenna calibration test in the Antarctic environment

    Science.gov (United States)

    Grejner-Brzezinska, A.; Vazquez, E.; Hothem, L.

    2006-01-01

    sessions, a reference station was occupied continuously with the Ashtech D/M choke ring antenna, while the second station was occupied by the tested antennas, one 3-day session for each antenna type. The coordinate differences were produced using software optimized for the analysis of data collected over short baselines. Each solution incorporated the NGS antenna calibration data appropriate for each antenna model. Hourly and 24-hour solutions were analyzed for repeatability and compared to the standard baseline coordinate differences. No significant variation was observed when comparing the same type of antennas and when switching antennas at the test site using daily solutions. An mm-level scatter can be observed comparing different antennas over the 1-hour solutions; it is smaller for the horizontal components, as compared to the vertical direction. At this point, it can be concluded that the standard antenna calibration models from NGS used for each antenna involved in this test did not result in any significant variation in the daily results, but with some in the hourly results. Thus, based on this fact, the antenna types tested here could be used in the future TAMDEF campaigns, where 24-hour solutions are normally used for deformation monitoring. These results can serve as good guidance to any future use of GPS equipment in Antarctica.

  14. Minimum Q Electrically Small Antennas

    DEFF Research Database (Denmark)

    Kim, O. S.

    2012-01-01

    Theoretically, the minimum radiation quality factor Q of an isolated resonance can be achieved in a spherical electrically small antenna by combining TM1m and TE1m spherical modes, provided that the stored energy in the antenna spherical volume is totally suppressed. Using closed-form expressions...... for a multiarm spherical helix antenna confirm the theoretical predictions. For example, a 4-arm spherical helix antenna with a magnetic-coated perfectly electrically conducting core (ka=0.254) exhibits the Q of 0.66 times the Chu lower bound, or 1.25 times the minimum Q....

  15. ICRF current drive by using antenna phase control

    International Nuclear Information System (INIS)

    Kishimoto, Y.; Itoh, K.

    1987-01-01

    A global analysis of current drive in tokamaks by using waves in the ion cyclotron range of frequencies (ICRF), considering the entire antenna-plasma system, is presented. A phase shifted antenna array is used to inject toroidal momentum into the electrons. Within the context of quasi-linear theory, a Fokker-Planck calculation is combined with an ICRF wave propagation-absorption analysis which includes kinetic effects and realistic boundary conditions. The radial profile of the current induced by the mode converted ion Bernstein wave and by the magnetosonic fast wave is obtained, together with the global current drive efficiency (total induced current/total emitted power from the antennas) in the high density and temperature plasma regime. The phase dependence of the global efficiency is investigated by changing the launching conditions such as the total antenna number and the antenna spacing. In medium size tokamaks, the electron power absorption and the associated driven current are found to be affected considerably by the plasma cavity resonance. It is also found that the global efficiency is sensitive to the antenna spacing. When the antenna spacing is increased, the global efficiency is reduced by counter current generation. (author)

  16. Analysis of tag-position bias in MPSS technology

    Directory of Open Access Journals (Sweden)

    Rattray Magnus

    2006-04-01

    Full Text Available Abstract Background Massively Parallel Signature Sequencing (MPSS technology was recently developed as a high-throughput technology for measuring the concentration of mRNA transcripts in a sample. It has previously been observed that the position of the signature tag in a transcript (distance from 3' end can affect the measurement, but this effect has not been studied in detail. Results We quantify the effect of tag-position bias in Classic and Signature MPSS technology using published data from Arabidopsis, rice and human. We investigate the relationship between measured concentration and tag-position using nonlinear regression methods. The observed relationship is shown to be broadly consistent across different data sets. We find that there exist different and significant biases in both Classic and Signature MPSS data. For Classic MPSS data, genes with tag-position in the middle-range have highest measured abundance on average while genes with tag-position in the high-range, far from the 3' end, show a significant decrease. For Signature MPSS data, high-range tag-position genes tend to have a flatter relationship between tag-position and measured abundance. Thus, our results confirm that the Signature MPSS method fixes a substantial problem with the Classic MPSS method. For both Classic and Signature MPSS data there is a positive correlation between measured abundance and tag-position for low-range tag-position genes. Compared with the effects of mRNA length and number of exons, tag-position bias seems to be more significant in Arabadopsis. The tag-position bias is reflected both in the measured abundance of genes with a significant tag count and in the proportion of unexpressed genes identified. Conclusion Tag-position bias should be taken into consideration when measuring mRNA transcript abundance using MPSS technology, both in Classic and Signature MPSS methods.

  17. Heating profiles on ICRF antenna Faraday shields

    International Nuclear Information System (INIS)

    Taylor, D.J.; Baity, F.W.; Hahs, C.L. Riemer, B.W.; Ryan, D.M.; Williamson, D.E.

    1992-01-01

    Poor definition of the heating profiles that occur during normal operation of Faraday shields for ion cyclotron resonant frequency (ICRF) antennas has complicated the mechanical design of ICRF system components. This paper reports that at Oak Ridge National Laboratory (ORNL), Faraday shield analysis is being used in defining rf heating profiles. In recent numerical analyses of proposed hardware for the Burning Plasma Experiment (BPX) and DIII-D, rf magnetic fields at Faraday shield surfaces were calculated, providing realistic predictions of the induced skin currents flowing on the shield elements and the resulting dissipated power profile. Detailed measurements on mock-ups of the Faraday shields for DIII-D and the Tokamak Fusion Test Reactor (TFTR) confirmed the predicted magnetic field distributions. A conceptual design for an uncooled Faraday shield for the BPX ion cyclotron resonance heating (ICRH) antenna, which should withstand the proposed long-pulse operation, has been completed. The analytical effort is described in detail, with emphasis on the design work for the BPX ICRH antenna conceptual design and for the replacement Faraday shield for the DIII-D FWCD antenna. Results of analyses are shown, and configuration issues involved in component modeling are discussed

  18. Passive Microwave Components and Antennas

    DEFF Research Database (Denmark)

    State-of-the-art microwave systems always require higher performance and lower cost microwave components. Constantly growing demands and performance requirements of industrial and scientific applications often make employing traditionally designed components impractical. For that reason, the design...... and development process remains a great challenge today. This problem motivated intensive research efforts in microwave design and technology, which is responsible for a great number of recently appeared alternative approaches to analysis and design of microwave components and antennas. This book highlights...... techniques. Modelling and computations in electromagnetics is a quite fast-growing research area. The recent interest in this field is caused by the increased demand for designing complex microwave components, modeling electromagnetic materials, and rapid increase in computational power for calculation...

  19. Miniaturization of Multiple-Layer Folded Patch Antennas

    DEFF Research Database (Denmark)

    Zhang, Jiaying; Breinbjerg, Olav

    2009-01-01

    A new folded patch antenna with multiple layers was developed in this paper, by folding the patch in a proper way, and a highly miniaturized antenna can be realized. The multiple layer patch with 4-layer and 6-layer are designed and evaluated at 2.4 GHz, 915 MHz, and 415 MHz respectively. Then a 4...... layer patch is fabricated and measured to validate the design method. The theoretical analysis, design and simulations, fabrications, as well as the measurements are presented in this paper. All the results show that the folded patch antenna is a good candidate in making a highly miniaturized compact...

  20. Evolution of the large Deep Space Network antennas

    Science.gov (United States)

    Imbriale, William A.

    1991-12-01

    The evolution of the largest antenna of the US NASA Deep Space Network (DSN) is described. The design, performance analysis, and measurement techniques, beginning with its initial 64-m operation at S-band (2295 MHz) in 1966 and continuing through the present ka-band (32-GHz) operation at 70 m, is described. Although their diameters and mountings differ, these parabolic antennas all employ a Cassegrainian feed system, and each antenna dish surface is constructed of precision-shaped perforated-aluminum panels that are secured to an open steel framework

  1. Ultra wide band antennas

    CERN Document Server

    Begaud, Xavier

    2013-01-01

    Ultra Wide Band Technology (UWB) has reached a level of maturity that allows us to offer wireless links with either high or low data rates. These wireless links are frequently associated with a location capability for which ultimate accuracy varies with the inverse of the frequency bandwidth. Using time or frequency domain waveforms, they are currently the subject of international standards facilitating their commercial implementation. Drawing up a complete state of the art, Ultra Wide Band Antennas is aimed at students, engineers and researchers and presents a summary of internationally recog

  2. Antennas on circular cylinders

    DEFF Research Database (Denmark)

    Knudsen, H. L.

    1959-01-01

    On the basis of the results obtained by Silver and Saunders [4] for the field radiated from an arbitrary slot in a perfectly conducting circular cylinder, expressions have been derived for the field radiated by a narrow helical slot, with an arbitrary aperture field distribution, in a circular...... antenna in a circular cylinder. By a procedure similar to the one used by Silver and Saunders, expressions have been derived for the field radiated from an arbitrary surface current distribution on a cylinder surface coaxial with a perfectly conducting cylinder. The cases where the space between the two...

  3. Ultra wideband antennas design, methodologies, and performance

    CERN Document Server

    Galvan-Tejada, Giselle M; Jardón Aguilar, Hildeberto

    2015-01-01

    Ultra Wideband Antennas: Design, Methodologies, and Performance presents the current state of the art of ultra wideband (UWB) antennas, from theory specific for these radiators to guidelines for the design of omnidirectional and directional UWB antennas. Offering a comprehensive overview of the latest UWB antenna research and development, this book:Discusses the developed theory for UWB antennas in frequency and time domainsDelivers a brief exposition of numerical methods for electromagnetics oriented to antennasDescribes solid-planar equivalen

  4. Positioning Theory and Discourse Analysis: Some Tools for Social Interaction Analysis

    Directory of Open Access Journals (Sweden)

    Francisco Tirado

    2007-05-01

    Full Text Available This article outlines positioning theory as a discursive analysis of interaction, focusing on the topic of conflict. Moreover, said theory is applied to a new work environment for the social sciences: virtual spaces. The analysis is organized in the following way. First, the major key psychosocial issues which define the topic of conflict are reviewed. Then, virtual environments are presented as a new work space for the social sciences. Thirdly, a synthesis of positioning theory and its FOUCAULTian legacy is conducted, while appreciating its particular appropriateness for analyzing conflictive interaction in virtual environments. An empiric case is then presented. This consists of an analysis of interactive sequences within a specific virtual environment: the Universitat Oberta de Catalunya (UOC Humanitats i Filologia Catalana studies forum. Through positioning theory, the production and effects that a conflictive interaction sequence has on the community in which it is produced are understood and explained. URN: urn:nbn:de:0114-fqs0702317

  5. To increase controllability of a large flexible antenna by modal optimization

    Science.gov (United States)

    Wang, Feng; Wang, Pengpeng; Jiang, Wenjian

    2017-12-01

    Large deployable antennas are widely used in aerospace engineering to meet the envelop limit of rocket fairing. The high flexibility and low damping of antenna has proposed critical requirement not only for stability control of the antenna itself, but also for attitude control of the satellite. This paper aims to increase controllability of a large flexible antenna by modal optimization. Firstly, Sensitivity analysis of antenna modal frequencies to stiffness of support structure and stiffness of scanning mechanism are conducted respectively. Secondly, Modal simulation results of antenna frequencies are given, influences of scanning angles on moment of inertia and modal frequencies are evaluated, and modal test is carried out to validate the simulation results. All the simulation and test results show that, after modal optimization the modal characteristic of the large deployable antenna meets the controllability requirement well.

  6. Numerical Simulation of Dual-Channel Communication of Column Plasma Antenna Excited by a Surface Wave

    International Nuclear Information System (INIS)

    Duanmu Gang; Zhao Changming; Liang Chao; Xu Yuemin

    2014-01-01

    This paper focuses on the application of plasma as wireless antenna. In order to reveal the radiation characteristics of column plasma antenna, we chose the finite-difference time-domain (FDTD) numerical analysis method to simulate radiation impedance and efficiencies of each channel for a few sets of plasma densities and plasma collision frequencies. Simulation results demonstrate that a plasma antenna shares similar characteristics with a metallic antenna in radiation impedance and efficiency of each channel when an appropriate setting is adopted. Unlike a metallic antenna, a plasma antenna is capable of realizing such functions as dynamic reconfiguration, digital control and dual-channel communication. Thus it is possible to carry out dual-channel communication by plasma antenna, indicating a new path for modern intelligent communication. (plasma technology)

  7. Design and Fabrication of a Reconfigurable MEMS-Based Antenna

    KAUST Repository

    Martinez, Miguel Angel Galicia

    2011-06-22

    This thesis presents the design and fabrication of a customized in house Micro-Electro-Mechanical-Systems (MEMS) process based on-chip antenna that is both frequency and polarization reconfigurable. It is designed to work at both 60 GHz and 77 GHz through MEMS switches. This antenna can also work in both horizontal and vertical linear polarizations by utilizing a moveable plate. The design is intended for Wireless Personal Area Networks (WPAN) and automotive radar applications. Typical on-chip antennas are inefficient and difficult to reconfigure. Therefore, the focus of this work is to develop an efficient on-chip antenna solution, which is reconfigurable in frequency and in polarization. A fractal bowtie antenna is employed for this thesis, which achieves frequency reconfigurability through MEMS switches. The design is simulated in industry standard Electromagnetic (EM) simulator Ansoft HFSS. A novel concept for horizontal to vertical linear polarization agility is introduced which incorporates a moveable polymer plate. For this work, a microprobe is used to move the plate from the horizontal to vertical position. For testing purposes, a novel mechanism has been designed in order to feed the antenna with RF-probes in both horizontal and vertical positions. A simulated gain of approximately 0 dB is achieved at both target frequencies (60 and 77 GHz), in both horizontal and vertical positions. In all the cases mentioned above (both frequencies and positions), the antenna is well matched (< -10 dB) to the 50 Ω system impedance. Similarly, the radiation nulls are successfully shifted by changing the position of the antenna from horizontal to vertical. The complete design and fabrication of the reconfigurable MEMS antenna has been done at KAUST facilities. Some challenges have been encountered during its realization due to the immaturity of the customized MEMS fabrication process. Nonetheless, a first fabrication attempt has highlighted such shortcomings. According

  8. The Ultrawideband Leaky Lens Antenna

    NARCIS (Netherlands)

    Bruni, S.; Neto, A.; Marliani, F.

    2007-01-01

    A novel directive and nondispersive antenna is presented: the ultrawideband (UWB) leaky lens. It is based on the broad band Cherenkov radiation occurring at a slot printed between different infinite homogeneous dielectrics. The first part of the paper presents the antenna concept and the UWB design.

  9. Antennas for light and plasmons

    NARCIS (Netherlands)

    Dikken, D.J.W.

    2015-01-01

    Antennas have been used for over a century as emitters, scatterers and receivers of electromagnetic waves. All wireless communication devices, such as radio, mobile phones and satellite communication are strongly dependent on the capability of an antenna to localize propagating electromagnetic waves

  10. Optically Controlled Phased Array Antenna

    National Research Council Canada - National Science Library

    Garafalo, David

    1998-01-01

    .... The antenna is a 3-foot by 9 foot phased array capable of a scan angle of 120 degrees. The antenna was designed to be conformal to the cargo door of a large aircraft and is designed to operate in the frequency range of 830 - 1400 MHz with a 30...

  11. Backfire antennas with dipole elements

    DEFF Research Database (Denmark)

    Nielsen, Erik Dragø; Pontoppidan, Knud

    1970-01-01

    A method is set up for a theoretical investigation of arbitrary backfire antennas based upon dipole structures. The mutual impedance between the dipole elements of the antenna is taken into account, and the field radiated due to a surface wave reflector of finite extent is determined by calculating...

  12. GNSS Positioning Performance Analysis Using PSO-RBF Estimation Model

    Directory of Open Access Journals (Sweden)

    Jgouta Meriem

    2017-06-01

    Full Text Available Positioning solutions need to be more precise and available. The most frequent method used nowadays includes a GPS receiver, sometimes supported by other sensors. Generally, GPS and GNSS suffer from spreading perturbations that produce biases on pseudo-range measurements. With a view to optimize the use of the satellites received, we offer a positioning algorithm with pseudo range error modelling with the contribution of an appropriate filtering process. Extended Kalman Filter, The Rao- Blackwellized filter are among the most widely used algorithms to predict errors and to filter the high frequency noise. This paper describes a new method of estimating the pseudo-range errors based on the PSO-RBF model which achieves an optimal training criterion. This model is appropriate of its method to predict the GPS corrections for accurate positioning, it reduce the positioning errors at high velocities by more than 50% compared to the RLS or EKF methods.

  13. High Performance Circularly Polarized Microstrip Antenna

    Science.gov (United States)

    Bondyopadhyay, Probir K. (Inventor)

    1997-01-01

    A microstrip antenna for radiating circularly polarized electromagnetic waves comprising a cluster array of at least four microstrip radiator elements, each of which is provided with dual orthogonal coplanar feeds in phase quadrature relation achieved by connection to an asymmetric T-junction power divider impedance notched at resonance. The dual fed circularly polarized reference element is positioned with its axis at a 45 deg angle with respect to the unit cell axis. The other three dual fed elements in the unit cell are positioned and fed with a coplanar feed structure with sequential rotation and phasing to enhance the axial ratio and impedance matching performance over a wide bandwidth. The centers of the radiator elements are disposed at the corners of a square with each side of a length d in the range of 0.7 to 0.9 times the free space wavelength of the antenna radiation and the radiator elements reside in a square unit cell area of sides equal to 2d and thereby permit the array to be used as a phased array antenna for electronic scanning and is realizable in a high temperature superconducting thin film material for high efficiency.

  14. Analysis of the Pallet Clamping Conditions in Work Positioning

    OpenAIRE

    L. A. Kolesnikov

    2016-01-01

    Pallets of automatic transfer lines serve as the technological and work-transfer equipment. However, their design is based on the general principles of designing machine accessories. Calculation of the basic design parameters of work based on their functioning features is fairly relevant.In pallet transfer movement over work positioning there is a mismatch between axes of the basic bushing of a pallet and the clamping locks of positioning. The paper identifies the factors influencing it, and ...

  15. DEA deformed stretchable patch antenna

    International Nuclear Information System (INIS)

    Jiang, X-J; Jalali Mazlouman, S; Menon, C; Mahanfar, A; Vaughan, R G

    2012-01-01

    A stretchable patch antenna (SPA) whose frequency is tuned by a planar dielectric elastomer actuator (DEA) is presented in this paper. This mechanically reconfigurable antenna system has a configuration resembling a pre-stretched silicone belt. Part of the belt is embedded with a layer of conductive liquid metal to form the patch antenna. Part of the belt is sandwiched between conductive electrodes to form the DEA. Electrical activation of the DEA results in a contraction of the patch antenna, and as a result, in a variation of its resonance frequency. Design and fabrication steps of this system are presented. Measurement results for deformation, resonance frequency variation and efficiency of the patch antenna are also presented. (paper)

  16. The ICRF antennas for TFTR

    International Nuclear Information System (INIS)

    Hoffman, D.J.; Colestock, P.L.; Gardner, W.L.; Hosea, J.C.; Nagy, A.; Stevens, J.; Swain, D.W.; Wilson, J.R.

    1988-01-01

    Two compact loop antennas have been designed to provide ion cyclotron resonant frequency (ICRF) heating for TFTR. The antennas can convey a total of 10 MW to accomplish core heating in either high-density or high-temperature plasmas. The near-term goal of heating TFTR plasmas and the longer-term goals of ease in handling (for remote maintenance) and high reliability (in an inaccessible tritium tokamak environment) were major considerations in the antenna designs. The compact loop configuration facilitates handling because the antennas fit completely through their ports. Conservative design and extensive testing were used to attain the reliability required for TFTR. This paper summarizes how these antennas will accomplish these goals. 5 figs, 1 tab

  17. Interference in wireless ad hoc networks with smart antennas

    KAUST Repository

    Alabdulmohsin, Ibrahim

    2014-08-01

    In this paper, we show that the use of directional antennas in wireless ad hoc networks can actually increase interference due to limitations of virtual carrier sensing. We derive a simple mathematical expression for interference in both physical and virtual carrier sense networks, which reveals counter-intuitively that receivers in large dense networks with directional antennas can experience larger interference than in omnidirectional networks unless the beamwidth is sufficiently small. Validity of mathematical analysis is confirmed using simulations.

  18. An Analysis of Social Studies Education Faculty Positions

    Science.gov (United States)

    Bennett, Linda; Scholes, Roberta; Barrow, Lloyd H.

    2007-01-01

    The purpose of the study was to determine the responsibilities and qualifications of social studies education faculty positions as listed in The Chronicle of Higher Education during the 2004-2005 academic year. Many of the listings conveyed expectations for social studies educators to teach undergraduate courses, supervise interns, write grants…

  19. Analysis of the Pallet Clamping Conditions in Work Positioning

    Directory of Open Access Journals (Sweden)

    L. A. Kolesnikov

    2016-01-01

    Full Text Available Pallets of automatic transfer lines serve as the technological and work-transfer equipment. However, their design is based on the general principles of designing machine accessories. Calculation of the basic design parameters of work based on their functioning features is fairly relevant.In pallet transfer movement over work positioning there is a mismatch between axes of the basic bushing of a pallet and the clamping locks of positioning. The paper identifies the factors influencing it, and defines the conditions to ensure the trouble-free clamping lock. The circular and rhombic clamping of pallet is simultaneous. Further, a clamping load is calculated from the pallet mass (together with the work-piece and the geometric parameters of the pallet clamping.The paper reveals three movement stages of the clamping lock in a vertical plane when setting the pallet in work positioning:- a clamping lock free play till it encounters with the location bushing;- a clamping lock play length when the lead-in chamfer contacts the bushing chamfer;- a clamping lock play length over the circular surface of bushing.The study of this process has allowed us to calculate the time of pallet clamping and dynamic loads acting on the clamping lock. These calculations made it possible to calculate the required diameter of the clamping lock. The presented calculations allow a reasonable assigning the main design parameters of work positioning for the pallet automatic lines.

  20. A comparative analysis of perceived stigma among HIV-positive ...

    African Journals Online (AJOL)

    Data regarding positive feelings of selfworth and self-deprecation, stress related to body image, and personal control were also collected in Ghana and the southeastern USA.The sample consisted of 55 men from Ghana and 55 men from the southeastern USA. Results indicate that values for the scales measuring stigma ...

  1. Frequency scanning microstrip antennas

    DEFF Research Database (Denmark)

    Danielsen, Magnus; Jørgensen, Rolf

    1979-01-01

    The principles of using radiating microstrip resonators as elements in a frequency scanning antenna array are described. The resonators are cascade-coupled. This gives a scan of the main lobe due to the phase-shift in the resonator in addition to that created by the transmission line phase......-shift. Experimental results inX-band, in good agreement with the theory, show that it is possible to scan the main lobe an angle ofpm30degby a variation of the frequencypm300MHz, and where the 3 dB beamwidth is less than10deg. The directivity was 14.7 dB, while the gain was 8.1 dB. The efficiency might be improved...

  2. Utilization of antenna arrays in HF systems

    Directory of Open Access Journals (Sweden)

    Louis Bertel

    2009-06-01

    Full Text Available

    Different applications of radio systems are based on the implementation of antenna arrays. Classically, radio direction

    finding operates with a multi channel receiving system connected to an array of receiving antennas. More

    recently, MIMO architectures have been proposed to increase the capacity of radio links by the use of antenna

    arrays at both the transmitter and receiver.

    The first part of this paper describes some novel experimental work carried out to examine the feasibility of applying

    MIMO techniques for communications within the HF radio band. A detailed correlation analysis of a variety

    of different antenna array configurations is presented. The second section of the paper also deals with HF

    MIMO communications, focusing on the problem from a modelling point of view. The third part presents a sensitivity

    analysis of different antenna array structures for HF direction finding applications. The results demonstrate

    that when modelling errors, heterogeneous antenna arrays are more robust in comparison to homogeneous structures


  3. Present and future position of neutron activation analysis

    International Nuclear Information System (INIS)

    de Bruin, M.

    1992-01-01

    Results are presented of the performance of INAA and RNAA and when compared with other spectrometric methods for trace element analysis. Indications are given for further developments aiming at exploiting the advantage and reducing the drawbacks of these two analysis technique. (author) 12 refs.; 2 figs.; 1 tab

  4. Wideband and UWB Antennas for Wireless Applications: A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    Renato Cicchetti

    2017-01-01

    Full Text Available A comprehensive review concerning the geometry, the manufacturing technologies, the materials, and the numerical techniques, adopted for the analysis and design of wideband and ultrawideband (UWB antennas for wireless applications, is presented. Planar, printed, dielectric, and wearable antennas, achievable on laminate (rigid and flexible, and textile dielectric substrates are taken into account. The performances of small, low-profile, and dielectric resonator antennas are illustrated paying particular attention to the application areas concerning portable devices (mobile phones, tablets, glasses, laptops, wearable computers, etc. and radio base stations. This information provides a guidance to the selection of the different antenna geometries in terms of bandwidth, gain, field polarization, time-domain response, dimensions, and materials useful for their realization and integration in modern communication systems.

  5. Gsm 1900Umts Printed Monopole Antenna For Mobile Base Station

    Directory of Open Access Journals (Sweden)

    Nyi Nyi Lwin

    2015-08-01

    Full Text Available In this paper printed rectangular monopole antenna which is basically printed microstrip patch antenna with partial ground plane is designed for mobile base station. The substrate FR4 with a relative permittivity of 4.4 and thickness 1.8 is used in design. In addition the printed monopole antenna is of low profile in appearance and suitable for most application. The proposed antenna can cover GSM1900 1850-1990 MHz and UMTS 1920-2170 MHz bands. Design and simulation processes are carried out with the aid of FEKO software which is used for the analysis of electromagnetic problems. Simulation results of the return loss gain and radiation patterns are presented.

  6. Composite GPS Patch Antenna for the AR Bandwidth Enhancement

    Directory of Open Access Journals (Sweden)

    Minkil Park

    2016-01-01

    Full Text Available A composite Global Positioning System (GPS patch antenna with a quadrature 3 dB hybrid coupler was designed and implemented for working RHCP and had a broadband axial ratio (AR bandwidth. We designed two patches as a FR-4 patch and 1.5 mm thickness thin ceramic patch with a quadrature 3 dB hybrid coupler. A CP radiation pattern was achieved, and the AR bandwidth improved by incorporating a quadrature 3 dB hybrid coupler feed structure in a micro-strip patch antenna. SMD by chip elements was applied to the quadrature 3 dB hybrid coupler. For the composite FR-4 and ceramic patch antennas, the VSWR measurement showed a 2 : 1 ratio over the entire design band, and the 3 dB AR bandwidth was 295 and 580 MHz for the FR-4 patch and ceramic patch antennas, respectively. The antenna gains for the composite FR-4 and ceramic patch antennas were measured as 1.36–2.75 and 1.47–2.71 dBi with 15.11–25.3% and 19.25–28.45% efficiency, respectively.

  7. Characterization of local heat fluxes around ICRF antennas on JET

    Energy Technology Data Exchange (ETDEWEB)

    Campergue, A.-L. [Ecole Nationale des Ponts et Chaussées, F77455 Marne-la-Vallée (France); Jacquet, P.; Monakhov, I.; Arnoux, G.; Brix, M.; Sirinelli, A. [Euratom/CCFE Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Bobkov, V. [Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Milanesio, D. [Politecnico di Torino, Department of Electronics, Torino (Italy); Colas, L. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Collaboration: JET-EFDA Contributors

    2014-02-12

    When using Ion Cyclotron Range of Frequency (ICRF) heating, enhanced power deposition on Plasma-Facing Components (PFCs) close to the antennas can occur. Experiments have recently been carried out on JET with the new ITER-Like-Wall (ILW) to characterize the heat fluxes on the protection of the JET ICRF antennas, using Infra-Red (IR) thermography measurement. The measured heat flux patterns along the poloidal limiters surrounding powered antennas were compared to predictions from a simple RF sheath rectification model. The RF electric field, parallel to the static magnetic field in front of the antenna, was evaluated using the TOPICA code, integrating a 3D flattened model of the JET A2 antennas. The poloidal density variation in front of the limiters was obtained from the mapping of the Li-beam or edge reflectometry measurements using the flux surface geometry provided by EFIT equilibrium reconstruction. In many cases, this simple model can well explain the position of the maximum heat flux on the different protection limiters and the heat-flux magnitude, confirming that the parallel RF electric field and the electron plasma density in front of the antenna are the main driving parameters for ICRF-induced local heat fluxes.

  8. Positional instability analysis of tokamak plasmas by ERATO

    International Nuclear Information System (INIS)

    Kumagai, Michikazu; Tsunematsu, Toshihide; Tokuda, Shinji; Takeda, Tatsuoki

    1983-06-01

    The stability of axisymmetric modes of a tokamak plasma(positional instabilities) is analyzed for the Solov'ev equilibrium by using the linear ideal MHD code ERATO-J. The dependence of the stability on various parameters, i.e., the ellipticity and triangularity of the plasma cross-section, the aspect ratio, the safety factor at the magnetic axis, and the distance between the plasma and a conducting shell is investigated. Comparison of the results with those by the rigid model shows that the stability condition derived from the rigid model in terms of the decay index(n-index) of the external equilibrating field is a good approximation for the plasma with small triangular deformation. Also the results are compared with those of the rigid displacement model and applicability of the various models on the positional instability analyses is discussed. (author)

  9. Metamaterial antennas: the most successful metamaterial technology?

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2015-01-01

    The Thomson Reuters Web of Science™ lists more than 1500 journal articles related to metamaterial antennas from 2001 to 2015; this paper overviews some major objectives of such antennas.......The Thomson Reuters Web of Science™ lists more than 1500 journal articles related to metamaterial antennas from 2001 to 2015; this paper overviews some major objectives of such antennas....

  10. 47 CFR 73.510 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 73.510 Section 73.510... Noncommercial Educational FM Broadcast Stations § 73.510 Antenna systems. (a) All noncommercial educational... § 73.316 concerning antenna systems contained in subpart B of this part. (b) Directional antenna. No...

  11. Reconfigurable antenna using plasma reflector

    Science.gov (United States)

    Jusoh, Mohd Taufik; Ahmad, Khairol Amali; Din, Muhammad Faiz Md; Hashim, Fakroul Ridzuan

    2018-02-01

    This paper presents the feasibility study and design of plasma implementation in industrial, scientific and medical (ISM) communication band. A reflector antenna with rounded shaped is proposed to collimate beam in particular direction radiated by a quarter wave antenna operating at 2.4GHz. The simulations result has shown that by using plasma as the reflector elements, the gain, directivity and radiation patterns are identical with metal elements with only small different in the broadside direction. The versatility of the antenna is achievable by introducing electrical reconfigurable option to change the beam pattern.

  12. Absorption Efficiency of Receiving Antennas

    DEFF Research Database (Denmark)

    Andersen, Jørgen Bach; Frandsen, Aksel

    2005-01-01

    A receiving antenna with a matched load will always scatter some power. This paper sets an upper and a lower bound on the absorption efficiency (absorbed power over sum of absorbed and scattered powers), which lies between 0 and 100% depending on the directivities of the antenna and scatter...... patterns. It can approach 100% as closely as desired, although in practice this may not be an attractive solution. An example with a small endfire array of dipoles shows an efficiency of 93%. Several examples of small conical horn antennas are also given, and they all have absorption efficiencies less than...

  13. Reconfigurable Antenna for Medical Applications

    Directory of Open Access Journals (Sweden)

    Elizabeth RUFUS

    2009-12-01

    Full Text Available Microwave imaging systems offer much promise for biomedical applications such as cancer detection because of their good penetration, non invasive and non ionizing nature and low cost. The resolution is one of the major problems faced in such systems, which can be improved by applying signal processing techniques. The key element for the microwave imaging system is the antenna. This paper present a fractal antenna which has low profile, light weight and is easy to be fabricated. It has been successfully demonstrated to have multiband characteristics. The simulated results show that the proposed antenna has very good radiation characteristics suitable for imaging applications.

  14. Large inflated-antenna system

    Science.gov (United States)

    Hinson, W. F.; Keafer, L. S.

    1984-01-01

    It is proposed that for inflatable antenna systems, technology feasibility can be demonstrated and parametric design and scalability (scale factor 10 to 20) can be validated with an experiment using a 16-m-diameter antenna attached to the Shuttle. The antenna configuration consists of a thin film cone and paraboloid held to proper shape by internal pressure and a self-rigidizing torus. The cone and paraboloid would be made using pie-shaped gores with the paraboloid being coated with aluminum to provide reflectivity. The torus would be constructed using an aluminum polyester composite that when inflated would erect to a smooth shell that can withstand loads without internal pressure.

  15. Structural analysis for LMFBR applications[Indian position paper

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-05-01

    Firstly, we discuss the use of elastic analysis for structural design of LMFBR components. The elastic analysis methods have been used for structural design of the Fast Breeder Test Reactor as well as the proposed prototype Test Breeder Reactor. The design of Fast Breeder Test Reactor which is nearing completion is the same as that of Rapsodie. Nevertheless, the design had to he checked against the latest design codes available, namely the ASME Code case 1592. This paper however, is confined to Structural analysis of PFBR components. The problems faced in the design of some of the components, in particular, the inner vessel (plenum separator) are discussed. As far as design codes are concerned, we make use of ASME Code Section III and the Code Case N-47, for high temperature design. The problem faced in the use of these rules are also described along with the description of analysis. Studies in the field of cyclic loading include extension of Bree's breakdown and plastic cycling criteria for ratchet free operation to biaxial stress fields. In other fields, namely, inelastic analysis, piping analysis in the creep regime etc. we are only at a start.

  16. Eliminating bias in rainfall estimates from microwave links due to antenna wetting

    Science.gov (United States)

    Fencl, Martin; Rieckermann, Jörg; Bareš, Vojtěch

    2014-05-01

    Commercial microwave links (MWLs) are point-to-point radio systems which are widely used in telecommunication systems. They operate at frequencies where the transmitted power is mainly disturbed by precipitation. Thus, signal attenuation from MWLs can be used to estimate path-averaged rain rates, which is conceptually very promising, since MWLs cover about 20 % of surface area. Unfortunately, MWL rainfall estimates are often positively biased due to additional attenuation caused by antenna wetting. To correct MWL observations a posteriori to reduce the wet antenna effect (WAE), both empirically and physically based models have been suggested. However, it is challenging to calibrate these models, because the wet antenna attenuation depends both on the MWL properties (frequency, type of antennas, shielding etc.) and different climatic factors (temperature, due point, wind velocity and direction, etc.). Instead, it seems straight forward to keep antennas dry by shielding them. In this investigation we compare the effectiveness of antenna shielding to model-based corrections to reduce the WAE. The experimental setup, located in Dübendorf-Switzerland, consisted of 1.85-km long commercial dual-polarization microwave link at 38 GHz and 5 optical disdrometers. The MWL was operated without shielding in the period from March to October 2011 and with shielding from October 2011 to July 2012. This unique experimental design made it possible to identify the attenuation due to antenna wetting, which can be computed as the difference between the measured and theoretical attenuation. The theoretical path-averaged attenuation was calculated from the path-averaged drop size distribution. During the unshielded periods, the total bias caused by WAE was 0.74 dB, which was reduced by shielding to 0.39 dB for the horizontal polarization (vertical: reduction from 0.96 dB to 0.44 dB). Interestingly, the model-based correction (Schleiss et al. 2013) was more effective because it reduced

  17. Flying Boresight for Advanced Testing and Calibration of Tracking Antennas and Flight Path Simulations

    Science.gov (United States)

    Hafner, D.

    2015-09-01

    The application of ground-based boresight sources for calibration and testing of tracking antennas usually entails various difficulties, mostly due to unwanted ground effects. To avoid this problem, DLR MORABA developed a small, lightweight, frequency-adjustable S-band boresight source, mounted on a small remote-controlled multirotor aircraft. Highly accurate GPS-supported, position and altitude control functions allow both, very steady positioning of the aircraft in mid-air, and precise waypoint-based, semi-autonomous flights. In contrast to fixed near-ground boresight sources this flying setup enables to avoid obstructions in the Fresnel zone between source and antenna. Further, it minimizes ground reflections and other multipath effects which can affect antenna calibration. In addition, the large operating range of a flying boresight simplifies measurements in the far field of the antenna and permits undisturbed antenna pattern tests. A unique application is the realistic simulation of sophisticated flight paths, including overhead tracking and demanding trajectories of fast objects such as sounding rockets. Likewise, dynamic tracking tests are feasible which provide crucial information about the antenna pedestal performance — particularly at high elevations — and reveal weaknesses in the autotrack control loop of tracking antenna systems. During acceptance tests of MORABA's new tracking antennas, a manned aircraft was never used, since the Flying Boresight surpassed all expectations regarding usability, efficiency, and precision. Hence, it became an integral part of MORABA's standard antenna setup and calibration procedures.

  18. A Reconfigurable WiMAX Antenna for Directional and Broadside Application

    Directory of Open Access Journals (Sweden)

    M. Jusoh

    2013-01-01

    Full Text Available A novel reconfigurable compact patch array antenna for directional and broadside application is proposed. The presented antenna has successfully been able to function for directional beam at 320° or 35° and divisive broadside beam at 43° and 330°. This is realized in the unique form of aperture coupled spiral feeding technique and positioning of the radiating elements at 0°, 90,° and 180°. The switchable feature is effectively performed by the configuration of three PIN diodes. All PIN diodes are positioned at the specific location of the aperture coupled structure. It is discovered in simulation that the switches can be represented with a copper strip line or touchstone (TS block . The proposed antenna design operates at 2.37 GHz to 2.41 GHz and has a maximum gain of 6.4 dB and efficiency of 85.97%. Such antenna produces a broadside HPBW with a wider bandwidth covering from −90° to 90° compared to the normal microstrip antenna which could only provide HPBW of −50° to 50°. Moreover, the proposed antenna has small physical dimension of 100 mm by 100 mm. The simulation and measurement results have successfully exhibited the idea of the presented antenna performance. Therefore, the antenna is sufficiently competent in the smart WiMAX antenna application.

  19. Combline antenna modeling for plasma heating

    International Nuclear Information System (INIS)

    Nelson, S.D.; Kamin, G.; Van Maren, R.; Poole, B.; Moeller, C.; Phelps, D.

    1996-01-01

    The combline antenna for plasma heating, as proposed by General Atomics(1), has unique potential for solving many plasma drive problems. The benefit of the combline design is the utilization of the coupling between elements that avoids a more cumbersome multidrive system. This design is being investigated using computational EM modeling codes in the 100 endash 400 MHz band using resources at General Atomics and LLNL. Preliminary experimental results, using a combline mockup, agree well with 3D modeling efforts including resonant frequency alignment and amplitudes. These efforts have been expanded into an endeavor to optimize the combline design using both time and frequency domain codes. This analysis will include plasma coupling but to date has been limited to antenna effects. The combline antenna system is modeled in 3D using a combination of computational tools in the time domain, for temporal feature isolation purposes, and in the frequency domain, for resonant structure analysis. Both time and frequency domain modeling details include the Faraday shield elements, the strap elements, and the feed structure. copyright 1996 American Institute of Physics

  20. ANALYSIS OF MARKOV NETWORK WITH INCOMES, POSITIVE AND NEGATIVE MESSAGES

    Directory of Open Access Journals (Sweden)

    V. V. Naumenko

    2014-01-01

    Full Text Available Markov queuing network with income in transient regime is considered. It has positive and negative messages, which can be used in forecasting income of information and telecommunication systems and networks affected by viruses. Investigations are carried out in the cases when incomes from transitions between network states are deterministic functions dependent on states, or they are random variables with given mean values. In the last case it is assumed that all network systems operate in a high load mode. An example is given.

  1. Automatic analysis of intrinsic positional verification films brachytherapy using MATLAB

    International Nuclear Information System (INIS)

    Quiros Higueras, J. D.; Marco Blancas, N. de; Ruiz Rodriguez, J. C.

    2011-01-01

    One of the essential tests in quality control of brachytherapy equipment is verification auto load intrinsic positional radioactive source. A classic method for evaluation is the use of x-ray film and measuring the distance between the marks left by autoradiography of the source with respect to a reference. In our center has developed an automated method of measurement by the radiochromic film scanning and implementation of a macro developed in Matlab, in order to optimize time and reduce uncertainty in the measurement. The purpose of this paper is to describe the method developed, assess their uncertainty and quantify their advantages over the manual method. (Author)

  2. ISEV position paper: extracellular vesicle RNA analysis and bioinformatics

    Directory of Open Access Journals (Sweden)

    Andrew F. Hill

    2013-12-01

    Full Text Available Extracellular vesicles (EVs are the collective term for the various vesicles that are released by cells into the extracellular space. Such vesicles include exosomes and microvesicles, which vary by their size and/or protein and genetic cargo. With the discovery that EVs contain genetic material in the form of RNA (evRNA has come the increased interest in these vesicles for their potential use as sources of disease biomarkers and potential therapeutic agents. Rapid developments in the availability of deep sequencing technologies have enabled the study of EV-related RNA in detail. In October 2012, the International Society for Extracellular Vesicles (ISEV held a workshop on “evRNA analysis and bioinformatics.” Here, we report the conclusions of one of the roundtable discussions where we discussed evRNA analysis technologies and provide some guidelines to researchers in the field to consider when performing such analysis.

  3. Optimal placement of MIMO antenna pairs with different quality factors in smart-phone platforms

    DEFF Research Database (Denmark)

    Tatomirescu, Alexandru; Alrabadi, Osama; Pedersen, Gert Frølund

    2013-01-01

    In this contribution, an investigation on the use of tunable antennas for a compact implementation of multi input multi output (MIMO) phones has been done. The position of the exciting elements has been investigated as well as the antenna's bandwidth impact on the mutual coupling. It has been sho...

  4. German position paper on structural analysis for LMFBR applications

    International Nuclear Information System (INIS)

    Angerbauer, A.; Link, F.

    1983-01-01

    During the design period of the German LMFBR, the SNR-300, extensive work had been done in the field of elastic and inelastic analysis. Furthermore, special design rules have been developed. A review of these activities and their state-of-the art is outlined in this paper

  5. Inflatable Antennas Support Emergency Communication

    Science.gov (United States)

    2010-01-01

    Glenn Research Center awarded Small Business Innovation Research (SBIR) contracts to ManTech SRS Technologies, of Newport Beach, California, to develop thin film inflatable antennas for space communication. With additional funding, SRS modified the concepts for ground-based inflatable antennas. GATR (Ground Antenna Transmit and Receive) Technologies, of Huntsville, Alabama, licensed the technology and refined it to become the world s first inflatable antenna certified by the Federal Communications Commission. Capable of providing Internet access, voice over Internet protocol, e-mail, video teleconferencing, broadcast television, and other high-bandwidth communications, the systems have provided communication during the wildfires in California, after Hurricane Katrina in Mississippi, and following the 2010 Haiti earthquake.

  6. Calculation of the self-consistent current distribution and coupling of an RF antenna array

    International Nuclear Information System (INIS)

    Ballico, M.; Puri, S.

    1993-10-01

    A self-consistent calculation of the antenna current distribution and fields in an axisymmetric cylindrical geometry for the ICRH antenna-plasma coupling problem is presented. Several features distinguish this calculation from other codes presently available. 1. Variational form: The formulation of the self consistent antenna current problem in a variational form allows good convergence and stability of the algorithm. 2. Multiple straps: Allows modelling of (a) the current distribution across the width of the strap (by dividing it up into sub straps) (b) side limiters and septum (c) antenna cross-coupling. 3. Analytic calculation of the antenna field and calculation of the antenna self-consistent current distribution, (given the surface impedance matrix) gives rapid calculation. 4. Framed for parallel computation on several different parallel architectures (as well as serial) gives a large speed improvement to the user. Results are presented for both Alfven wave heating and current drive antenna arrays, showing the optimal coupling to be achieved for toroidal mode numbers 8< n<10 for typical ASDEX upgrade plasmas. Simulations of the ASDEX upgrade antenna show the importance of the current distribution across the antenna and of image currents flowing in the side limiters, and an analysis of a proposed asymmetric ITER antenna is presented. (orig.)

  7. Extensions of positive definite functions applications and their harmonic analysis

    CERN Document Server

    Jorgensen, Palle E T; Tian, Feng

    2016-01-01

    This monograph deals with the mathematics of extending given partial data-sets obtained from experiments; Experimentalists frequently gather spectral data when the observed data is limited, e.g., by the precision of instruments; or by other limiting external factors. Here the limited information is a restriction, and the extensions take the form of full positive definite function on some prescribed group. It is therefore both an art and a science to produce solid conclusions from restricted or limited data. While the theory of is important in many areas of pure and applied mathematics, it is difficult for students and for the novice to the field, to find accessible presentations which cover all relevant points of view, as well as stressing common ideas and interconnections. We have aimed at filling this gap, and we have stressed hands-on-examples.

  8. Dual-Band Split-Ring Antenna Design for WLAN Applications

    OpenAIRE

    BAŞARAN, S. Cumhur; ERDEMLİ, Yunus E.

    2014-01-01

    A dual-band microstrip antenna based on split-ring elements is introduced for WLAN (2.4/5.2 GHz) applications. The proposed split-ring antenna (SRA) has a compact novel design which provides about 2% impedance-bandwidth without a need for additional matching network. Analysis and design of the proposed microstrip antenna is carried out by means of full-wave simulators based on the finite-element method.

  9. Living antennas on communication satellites

    DEFF Research Database (Denmark)

    Lumholt, Michael

    2003-01-01

    Crises change the global pattern of communication. The communications problems occur because the satellites are optimized to cover specific geographic areas, and these areas cannot be altered once the satellites are in Earth orbit. An effective solution to the problem is to equip communication sa...... satellites with "living" antennas that can adjust their radiation coverage areas according to the new demands. The development of living antennas is, therefore, among the focus areas identified and supported by the European Space Agency, ESA....

  10. Antenna design for mobile devices

    CERN Document Server

    Zhang, Zhijun

    2017-01-01

    - Integrates state-of-the-art technologies with a special section for step-by-step antenna design - Features up-to-date bio-safety and electromagnetic compatibility regulation compliance and latest standards - Newly updated with MIMO antenna design, measurements and requirements - Accessible to readers of many levels, from introductory to specialist - Written by a practicing expert who has hired and trained numerous engineers

  11. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  12. Verification of the Solar Dynamics Observatory High Gain Antenna Pointing Algorithm Using Flight Data

    Science.gov (United States)

    Bourkland, Kristin L.; Liu, Kuo-Chia

    2011-01-01

    , and sends the command to the GCE at 5 Hz. This command contains the number of gimbals steps for that ACS cycle, the direction of motion, the spacing of the steps, and the delay before taking the first step. The AIA and HMI instruments are sensitive to spacecraft jitter. Pre-flight analysis showed that jitter from the motion of the HGAs was a cause of concern. Three jitter mitigation techniques were developed to overcome the effects of jitter from different sources. The first method is the random step delay, which avoids gimbal steps hitting a cadence on a jitter-critical mode by pseudo-randomly delaying the first gimbal step in an ACS cycle. The second method of jitter mitigation is stagger stepping, which forbids the two antennas from taking steps during the same ACS cycle in order to avoid constructively adding jitter from two antennas. The third method is the inclusion of an instrument No Step Request (NSR), which allows the instruments to request a stoppage in gimbal stepping during the times when they are taking images. During the commissioning phase of the mission, a jitter test was performed onboard the spacecraft. Various sources of jitter, such as the reaction wheels, the High Gain Antenna motors, and the motion of the instrument filter wheels, were examined to determine the level of their effect on the instruments. During the HGA portion of the test, the jitter amplitudes from the single step of a gimbal were examined, as well as the amplitudes due to the execution of various gimbal rates. These jitter levels are compared with the gimbal jitter allocations for each instrument. Additionally, the jitter test provided insight into a readback delay that exists with the GCE. Pre-flight analysis suggested that gimbal steps scheduled to occur during the later portion of an ACS cycle would not be read during that cycle, resulting in a delay in the telemetered current gimbal position. Flight data from the jitter test confirmed this expectation. Analysis is

  13. Antennas for mobile satellite communications

    Science.gov (United States)

    Huang, John

    1991-12-01

    A NASA sponsored program, called the Mobile Satellite (MSAT) system, has prompted the development of several innovative antennas at L-band frequencies. In the space segment of the MSAT system, an efficient, light weight, circularly polarized microstrip array that uses linearly polarized elements was developed as a multiple beam reflector feed system. In the ground segment, a low-cost, low-profile, and very efficient microstrip Yagi array was developed as a medium-gain mechanically steered vehicle antenna. Circularly shaped microstrip patches excited at higher-order modes were also developed as low-gain vehicle antennas. A more recent effort called for the development of a 20/30 GHz mobile terminal antenna for future-generation mobile satellite communications. To combat the high insertion loss encountered at 20/30 GHz, series-fed Monolithic Microwave Integrated Circuit (MMIC) microstrip array antennas are currently being developed. These MMIC arrays may lead to the development of several small but high-gain Ka-band antennas for the Personal Access Satellite Service planned for the 2000s.

  14. PROCEDURE FOR ANALYSIS AND EVALUATION OF MARKET POSITION PRODUCTION ORGANIZATION

    Directory of Open Access Journals (Sweden)

    A. N. Polozova

    2014-01-01

    Full Text Available Summary. Methodical procedures economic monitoring market position of industrial organization, particularly those relating to food production, including the 5 elements: matrix «component of business processes», matrix «materiality – efficiency», matrix «materiality – relevant», matrix emption and hindering factors matrix operation scenarios. Substantiated components assess the strengths and weaknesses of the business activities of organizations that characterize the state of internal business environment on the elements: production, organization, personnel, finance, marketing. The advantages of the matrix «materiality – relevance» consisting of 2 materiality level - high and low, and 3 directions relevance – «no change», «gain importance in the future», «lose importance in the future». Presented the contents of the matrix «scenarios functioning of the organization», involving 6 attribute levels, 10 classes of scenarios, 19 activities, including an optimistic and pessimistic. The evaluation of primary classes of scenarios, characterized by the properties of «development», «dynamic equilibrium», «quality improvement», «competitiveness», «favorable realization of opportunities», «competition resistance».

  15. Palliative Sedation: An Analysis of International Guidelines and Position Statements.

    Science.gov (United States)

    Gurschick, Lauren; Mayer, Deborah K; Hanson, Laura C

    2015-09-01

    To describe the suggested clinical practice of palliative sedation as it is presented in the literature and discuss available guidelines for its use. CINAHL, PubMed, and Web of Science were searched for publications since 1997 for recommended guidelines and position statements on palliative sedation as well as data on its provision. Keywords included palliative sedation, terminal sedation, guidelines, United States, and end of life. Inclusion criteria were palliative sedation policies, frameworks, guidelines, or discussion of its practice, general or oncology patient population, performance of the intervention in an inpatient unit, for humans, and in English. Exclusion criteria were palliative sedation in children, acute illness, procedural, or burns, and predominantly ethical discussions. Guidelines were published by American College of Physicians-American Society of Internal Medicine (2000), Hospice and Palliative Nurses Association (2003), American Academy of Hospice and Palliative Medicine (2006), American Medical Association (2008), Royal Dutch Medical Association (2009), European Association for Palliative Care (2009), National Hospice and Palliative Care Organization (2010), and National Comprehensive Cancer Network (2012). Variances throughout guidelines include definitions of the practice, indications for its use, continuation of life-prolonging therapies, medications used, and timing/prognosis. The development and implementation of institutional-based guidelines with clear stance on the discussed variances is necessary for consistency in practice. Data on provision of palliative sedation after implementation of guidelines needs to be collected and disseminated for a better understanding of the current practice in the United States. © The Author(s) 2014.

  16. Optical Dark-Field and Electron Energy Loss Imaging and Spectroscopy of Symmetry-Forbidden Modes in Loaded Nanogap Antennas.

    Science.gov (United States)

    Brintlinger, Todd; Herzing, Andrew A; Long, James P; Vurgaftman, Igor; Stroud, Rhonda; Simpkins, B S

    2015-06-23

    We have produced large numbers of hybrid metal-semiconductor nanogap antennas using a scalable electrochemical approach and systematically characterized the spectral and spatial character of their plasmonic modes with optical dark-field scattering, electron energy loss spectroscopy with principal component analysis, and full wave simulations. The coordination of these techniques reveal that these nanostructures support degenerate transverse modes which split due to substrate interactions, a longitudinal mode which scales with antenna length, and a symmetry-forbidden gap-localized transverse mode. This gap-localized transverse mode arises from mode splitting of transverse resonances supported on both antenna arms and is confined to the gap load enabling (i) delivery of substantial energy to the gap material and (ii) the possibility of tuning the antenna resonance via active modulation of the gap material's optical properties. The resonant position of this symmetry-forbidden mode is sensitive to gap size, dielectric strength of the gap material, and is highly suppressed in air-gapped structures which may explain its absence from the literature to date. Understanding the complex modal structure supported on hybrid nanosystems is necessary to enable the multifunctional components many seek.

  17. Design of UAVs-Based 3D Antenna Arrays for a Maximum Performance in Terms of Directivity and SLL

    Directory of Open Access Journals (Sweden)

    Jesus Garza

    2016-01-01

    Full Text Available This paper presents a design of UAVs-based 3D antenna arrays for a maximum performance in terms of directivity and side lobe level (SLL. This paper illustrates how to model the UAVs formation flight using 3D nonuniform antenna arrays. This design of 3D antenna arrays considers the optimization of the positions of the antenna elements to model the UAVs formation flight. In this case, a disk patch antenna is chosen to be used as element in each UAV. The disk patch antenna is formulated by the well-known cavity model. The synthesis process is carried out by the method of Differential Evolution for Multiobjective Optimization (DEMO. Furthermore, a comparison of the performance of 3D nonuniform antenna arrays is provided with respect to the most conventional arrays (circular, planar, linear, and the cubic for UAVs formation flight.

  18. Development of film antenna for diversity reception; Diversity taio film antenna no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Shigeta, K; Taniguchi, T; Kubota, K [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    Based on the principle of capacitance-loaded window antennas, a new film antenna construction pasting an antenna element on a defogger element printed on a rear window was found. The film antennas show high reception performance, and can be used as television diversity antennas or a VICS-FM multiplex antenna. This paper describes the antenna design concept, the antenna construction and the application to a recreational vehicle which styling is 1.3-Box wagon for the electric accessory. 2 refs., 11 figs.

  19. Performance Comparison Of Triangle Antenna of 60 GHz for 5G Wireless Communication Network

    Directory of Open Access Journals (Sweden)

    Aishah A.S.

    2017-01-01

    Full Text Available In this paper microstrip triangle with slot antenna for 5G wireless communication network are proposed. The microstip triangle antenna is design and operating 60 GHz milimeter-wave frequency band and it's suitable for 5G wireless communication. The substrates are chosen in the design, which are RogerRT5880 with copper thickness 0.035 mm to analyze their effect toward milimeter-wave performance on the designed. The designed and analysis is performed by using CST Microwave Studio. The lowest return loss of the antenna is -24.75dB which is triangle with slot and the maximum gain obtained is 6.82 db at the 59.68GHz for this antenna. The antenna is considering the gain, return loss and size, the microstrip antenna can be a suitable candidate for the 5G wireless application for short range high speed communication.

  20. Some Recent Developments of Microstrip Antenna

    Directory of Open Access Journals (Sweden)

    Yong Liu

    2012-01-01

    Full Text Available Although the microstrip antenna has been extensively studied in the past few decades as one of the standard planar antennas, it still has a huge potential for further developments. The paper suggests three areas for further research based on our previous works on microstrip antenna elements and arrays. One is exploring the variety of microstrip antenna topologies to meet the desired requirement such as ultrawide band (UWB, high gain, miniaturization, circular polarization, multipolarized, and so on. Another is to apply microstrip antenna to form composite antenna which is more potent than the individual antenna. The last is growing towards highly integration of antenna/array and feeding network or operating at relatively high frequencies, like sub-millimeter wave or terahertz (THz wave regime, by using the advanced machining techniques. To support our points of view, some examples of antennas developed in our group are presented and discussed.

  1. Liquid Crystal Bow-Tie Microstrip antenna for Wireless Communication Applications

    Directory of Open Access Journals (Sweden)

    B.T.P.Madhav

    2014-06-01

    Full Text Available In this paper we presented the design and analysis of Bow-Tie antenna on liquid crystal substrate, which is suitable for the Bluetooth/WLAN-2.4/WiBree/ZigBee applications. The Omni-directional radiation patterns along with moderate gain make the proposed antenna suitable for above mentioned applications. Details of the antenna design and simulated results Return loss, Input impedance, Radiation Patterns, E-Field, H-Field and Current Distributions, VSWR are presented and discussed. The proposed antenna is simulated at 2.4 GHz using Ansoft HFSS-11.

  2. Balance Maintenance in the Upright Body Position: Analysis of Autocorrelation

    Directory of Open Access Journals (Sweden)

    Stodolka¹ Jacek

    2016-04-01

    Full Text Available The present research aimed to analyze values of the autocorrelation function measured for different time values of ground reaction forces during stable upright standing. It was hypothesized that if recording of force in time depended on the quality and way of regulating force by the central nervous system (as a regulator, then the application of autocorrelation for time series in the analysis of force changes in time function would allow to determine regulator properties and its functioning. The study was performed on 82 subjects (students, athletes, senior and junior soccer players and subjects who suffered from lower limb injuries. The research was conducted with the use of two Kistler force plates and was based on measurements of ground reaction forces taken during a 15 s period of standing upright while relaxed. The results of the autocorrelation function were statistically analyzed. The research revealed a significant correlation between a derivative extreme and velocity of reaching the extreme by the autocorrelation function, described as gradient strength. Low correlation values (all statistically significant were observed between time of the autocorrelation curve passing through 0 axis and time of reaching the first peak by the said function. Parameters computed on the basis of the autocorrelation function are a reliable means to evaluate the process of flow of stimuli in the nervous system. Significant correlations observed between the parameters of the autocorrelation function indicate that individual parameters provide similar properties of the central nervous system.

  3. The effect of active antennas on the hot-restrike of high intensity discharge lamps

    International Nuclear Information System (INIS)

    Hoebing, T; Bergner, A; Ruhrmann, C; Mentel, J; Awakowicz, P; Koch, B; Manders, F

    2014-01-01

    The ignition voltage of high intensity discharge (HID) lamps with mercury as the buffer gas may rise from 3 kV for the cold state up to more than 15 kV for a hot lamp. By coating a lamp burner with an electrically conductive layer, which operates as an active antenna, the ignition voltage of HID lamps can be significantly reduced. An active antenna connected to one of the lamp electrodes transports the potential from this electrode to the vicinity of the opposite electrode and generates an enhanced electric field inside the burner. On applying a symmetrically shaped ignition pulse, a weak pre-discharge within the first half-cycle produces free charge carriers initiating ignition of the lamp within the subsequent second half-cycle. The authors present a set-up for electrical and optical investigations of hot-restrike in HID lamps. The ignition voltage is measured for two different polarities as a function of the cooldown time. An analysis of its reduction is given. Furthermore, the pre-discharge is investigated by means of short-time photography. It is demonstrated that a negative polarity of the active antenna within the first half-cycle and a positive polarity within the second one is the most effective succession. (paper)

  4. Antenna Miniaturization with MEMS Tunable Capacitors

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2014-01-01

    In today’s mobile device market, there is a strong need for efficient antenna miniaturization. Tunable antennas are a very promising way to reduce antenna volume while enlarging its operating bandwidth. MEMS tunable capacitors are state-ofthe- art in terms of insertion loss and their characterist......In today’s mobile device market, there is a strong need for efficient antenna miniaturization. Tunable antennas are a very promising way to reduce antenna volume while enlarging its operating bandwidth. MEMS tunable capacitors are state-ofthe- art in terms of insertion loss...

  5. High Precision Control of Ship-Mounted Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Mohsen, Soltani; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal

    2007-01-01

    The telecommunication on a modern merchandise ship is maintained by means of satellite communication. The task of the tracking system is to position the on-board antenna toward a chosen satellite. The control system is capable of rejecting the external disturbances which affect on the under...

  6. Development and test of decoupler for ICRF antenna in EAST

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gen, E-mail: chengen@ipp.ac.cn; Mao, Yuzhou; Zhao, Yanping; Yuan, Shuai; Zhang, Xinjun; Qing, Chengming

    2016-06-15

    Highlights: • The mechanism of decoupler for ICRF antenna is proposed. • Three candidate assembly positions for the decouper can be used. • The performance relies on the ohmic dissipation and the assembly position of decoupler. - Abstract: Ion Cyclotron Range of Frequency (ICRF) heating has been adopted in EAST tokamak as one of main auxiliary heating methods. The ICRF antenna usually consists of multiple launching elements because of limited port and space of tokamak device. Mutual coupling between straps has been observed in previous EAST ICRF current drive experiments. Due to adverse effects of such mutual coupling, many issues induced by cross power cannot be ignored, such as power imbalance in feed lines, high voltage standing wave ratio (VSWR), and etc. To restrain such mutual coupling, A device named decoupler was developed and tested in EAST ICRF system. According to the admittance matrix of load, three assembly positions (oscillation position, optimum position, and smooth position) along transmission line for the decoupler were taken into account and tested. The test results showed that ohmic dissipation in decoupler could not be neglected, which partly influenced the decoupling performance. The oscillation position and optimum position could restrain such adverse effects of ohmic dissipation and showed good decoupling performance. However, they cannot ensure the steady operation during H-mod due to the load variation. Finally, the smooth position has been adopted for EAST I port antenna because of steady decoupling performance comprised with engineering error and load resilience, which sincerely enhance the capability of system operation.

  7. Synthesis of Volumetric Ring Antenna Array for Terrestrial Coverage Pattern

    Directory of Open Access Journals (Sweden)

    Alberto Reyna

    2014-01-01

    Full Text Available This paper presents a synthesis of a volumetric ring antenna array for a terrestrial coverage pattern. This synthesis regards the spacing among the rings on the planes X-Y, the positions of the rings on the plane X-Z, and uniform and concentric excitations. The optimization is carried out by implementing the particle swarm optimization. The synthesis is compared with previous designs by resulting with proper performance of this geometry to provide an accurate coverage to be applied in satellite applications with a maximum reduction of the antenna hardware as well as the side lobe level reduction.

  8. Synthesis of Volumetric Ring Antenna Array for Terrestrial Coverage Pattern

    Science.gov (United States)

    Reyna, Alberto; Panduro, Marco A.; Del Rio Bocio, Carlos

    2014-01-01

    This paper presents a synthesis of a volumetric ring antenna array for a terrestrial coverage pattern. This synthesis regards the spacing among the rings on the planes X-Y, the positions of the rings on the plane X-Z, and uniform and concentric excitations. The optimization is carried out by implementing the particle swarm optimization. The synthesis is compared with previous designs by resulting with proper performance of this geometry to provide an accurate coverage to be applied in satellite applications with a maximum reduction of the antenna hardware as well as the side lobe level reduction. PMID:24701150

  9. Research on calibration error of carrier phase against antenna arraying

    Science.gov (United States)

    Sun, Ke; Hou, Xiaomin

    2016-11-01

    It is the technical difficulty of uplink antenna arraying that signals from various quarters can not be automatically aligned at the target in deep space. The size of the far-field power combining gain is directly determined by the accuracy of carrier phase calibration. It is necessary to analyze the entire arraying system in order to improve the accuracy of the phase calibration. This paper analyzes the factors affecting the calibration error of carrier phase of uplink antenna arraying system including the error of phase measurement and equipment, the error of the uplink channel phase shift, the position error of ground antenna, calibration receiver and target spacecraft, the error of the atmospheric turbulence disturbance. Discuss the spatial and temporal autocorrelation model of atmospheric disturbances. Each antenna of the uplink antenna arraying is no common reference signal for continuous calibration. So it must be a system of the periodic calibration. Calibration is refered to communication of one or more spacecrafts in a certain period. Because the deep space targets are not automatically aligned to multiplexing received signal. Therefore the aligned signal should be done in advance on the ground. Data is shown that the error can be controlled within the range of demand by the use of existing technology to meet the accuracy of carrier phase calibration. The total error can be controlled within a reasonable range.

  10. Miniaturization design and implementation of magnetic field coupled RFID antenna

    Science.gov (United States)

    Hu, Tiling

    2013-03-01

    The development of internet of things has brought new opportunities and challenges to the application of RFID tags. Moreover, the Miniaturization application trend of tags at present has become the mainstream of development. In this paper, the double-layer design is to reduce the size of HF antenna, and the magnetic null point of magnetic reconnection region between the RLC resonant circuit and the reader provides sufficient energy to the miniaturization of antenna. The calculated and experimental results show that the miniaturization of HF antennas can meet the reading and writing requirement of the international standard ISO/IEC14443 standard. The results of this paper may make a positive contribution to the applications of RFID technology.

  11. Compact Low Frequency Radio Antenna

    Science.gov (United States)

    Punnoose, Ratish J.

    2008-11-11

    An antenna is disclosed that comprises a pair of conductive, orthogonal arches and a pair of conductive annular sector plates, wherein adjacent legs of each arch are fastened to one of the annular sector plates and the opposite adjacent pair of legs is fastened to the remaining annular sector plate. The entire antenna structure is spaced apart from a conductive ground plane by a thin dielectric medium. The antenna is driven by a feed conduit passing through the conductive ground plane and dielectric medium and attached to one of the annular sector plates, wherein the two orthogonal arched act as a pair of crossed dipole elements. This arrangement of elements provides a radiation pattern that is largely omni-directional above the horizon.

  12. Biogenic Amines in Insect Antennae

    Directory of Open Access Journals (Sweden)

    Marianna I. Zhukovskaya

    2017-06-01

    Full Text Available Insect antenna is a multisensory organ, each modality of which can be modulated by biogenic amines. Octopamine (OA and its metabolic precursor tyramine (TA affect activity of antennal olfactory receptor neurons. There is some evidence that dopamine (DA modulates gustatory neurons. Serotonin can serve as a neurotransmitter in some afferent mechanosensory neurons and both as a neurotransmitter and neurohormone in efferent fibers targeted at the antennal vessel and mechanosensory organs. As a neurohormone, serotonin affects the generation of the transepithelial potential by sensillar accessory cells. Other possible targets of biogenic amines in insect antennae are hygro- and thermosensory neurons and epithelial cells. We suggest that the insect antenna is partially autonomous in the sense that biologically active substances entering its hemolymph may exert their effects and be cleared from this compartment without affecting other body parts.

  13. Body-insensitive Multi-Mode MIMO Terminal Antenna of Double-Ring Structure

    DEFF Research Database (Denmark)

    Zhao, Kun; Zhang, Shuai; Ishimiya, Katsunori

    2015-01-01

    of mobile terminals. With the multimode excitation, the MIMO cellular antenna can operate at 830-900 MHz, 1700-2200 MHz, and 2400-2700 MHz, for 2G, 3G, and LTE bands, respectively. The MIMO Wi-Fi antenna can cover two Wi-Fi bands from 2.4 to 2.5 GHz and from 5.2 to 5.8 GHz. The effect of a user's body......In this paper, we propose a novel multimode multi-input multi-output (MIMO) antenna system composed of a dual-element MIMO cellular antenna and dual-element MIMO Wi-Fi antenna for mobile terminal applications. The antenna system has a double-ring structure and can be integrated with the metal frame...... on the MIMO cellular antenna is investigated on CTIA standard phantoms and a real user. Since our antenna mainly operates in the loop mode, it has a much lower efficiency loss than conventional mobile antennas in both talking and data modes. Our theoretical analysis and experiments have shown that our design...

  14. Effects of cosmic-ray-induced cascades on the ultracryogenic antenna NAUTILUS

    International Nuclear Information System (INIS)

    Astone, P.; Bonifazi, P.; Frasca, S.; Cosmelli, C.; Bassan, M.; Coccia, E.; Fafone, V.; Castellazzi, D.; Marini, A.; Carelli, P.

    1995-07-01

    The gravitational wave antenna Nautilus has been provided with a cosmic-ray veto system. The expected number of events from the interactions of high- energy hadrons and muons and multihadron showers with the antenna are shown together with examples from the data analysis of the search for coincidences between the two detectors

  15. Planar, Faceted and Curved Array Antenna Research at TNO Physics and Electronics Laboratory

    NARCIS (Netherlands)

    Visser, H.J.

    1999-01-01

    An overview is presented of research carried out at TNO Physics and Electronics Laboratory in the field of phased anay antennas. Started is with a brief historical overview and a presentation of the antenna measurement facilities. Then full wave analysis methods for infinite planar waveguide arrays

  16. Design of LTCC Based Fractal Antenna

    KAUST Repository

    AdbulGhaffar, Farhan

    2010-01-01

    The thesis presents a Sierpinski Carpet fractal antenna array designed at 24 GHz for automotive radar applications. Miniaturized, high performance and low cost antennas are required for this application. To meet these specifications a fractal array

  17. Wireless interrogation of passive antenna sensors

    International Nuclear Information System (INIS)

    Deshmukh, S; Huang, H

    2010-01-01

    Recently, we discovered that the resonant frequency of a microstrip patch antenna is sensitive to mechanical strains or crack presence in the ground plane. Based on this principle, antenna sensors have been demonstrated to measure strain and detect crack in metallic structures. This paper presents a wireless method to remotely interrogate a dual-frequency antenna sensor. An interrogation horn antenna was used to irradiate the antenna sensor with a linear chirp microwave signal. By implementing a light-activated switch at the sensor node and performing signal processing of the backscattered signals, the resonant frequencies of the antenna sensor along both polarizations can be measured remotely. Since the antenna sensor does not need a local power source and can be interrogated wirelessly, electric wiring can be eliminated. The sensor implementation, the signal processing and the experimental setup that validate the remote interrogation of the antenna sensor are presented. A power budget model has also been established to estimate the maximum interrogation range

  18. Statistical monitoring of linear antenna arrays

    KAUST Repository

    Harrou, Fouzi; Sun, Ying

    2016-01-01

    The paper concerns the problem of monitoring linear antenna arrays using the generalized likelihood ratio (GLR) test. When an abnormal event (fault) affects an array of antenna elements, the radiation pattern changes and significant deviation from

  19. Accurate determination of antenna directivity

    DEFF Research Database (Denmark)

    Dich, Mikael

    1997-01-01

    The derivation of a formula for accurate estimation of the total radiated power from a transmitting antenna for which the radiated power density is known in a finite number of points on the far-field sphere is presented. The main application of the formula is determination of directivity from power......-pattern measurements. The derivation is based on the theory of spherical wave expansion of electromagnetic fields, which also establishes a simple criterion for the required number of samples of the power density. An array antenna consisting of Hertzian dipoles is used to test the accuracy and rate of convergence...

  20. Mobile Phone Antenna Performance 2016

    DEFF Research Database (Denmark)

    Pedersen, Gert F.

    This study investigates the antenna performance of a number of mobile phones widely used in the Nordic Countries. The study is supported by the Nordic Council of Ministers. The antenna performance of the phones is vital for the phones ability to ensure radio coverage in low signal situations....... The study is based on the mobile systems in the Nordic mobile networks and on both speech and data services. The selected phone models are among the most popular new phones at the time of this study....

  1. Constructing Unfinalizability: A Subject Positioning Analysis of a Couple's Therapy Session Hosted by Tom Andersen.

    Science.gov (United States)

    Guilfoyle, Michael

    2018-03-08

    The notion of subject positions is a useful tool in thinking through therapeutic interactions. In this article, I discuss positioning as an everyday phenomenon, and highlight the relational and social power dynamics that shape the subject positions persons may inhabit. Analysis is presented of the positional dynamics that play out in the couple's therapy session facilitated by Tom Andersen. Analysis suggests that Andersen adopts a not-knowing, uncertain, and curious position, while constructing the couple as competent, unfinalizable persons able to negotiate the choice-points that arise in front of them. However, if subject positions are grounded in social power dynamics, the session leaves a particular question unanswered: How will these emergent positions take hold outside of the consulting room? © 2018 American Association for Marriage and Family Therapy.

  2. Estimation of complex permittivity using loop antenna

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna.......A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna....

  3. System and circuit models for microwave antennas

    OpenAIRE

    Sobhy, Mohammed; Sanz-Izquierdo, Benito; Batchelor, John C.

    2007-01-01

    This paper describes how circuit and system models are derived for antennas from measurement of the input reflection coefficient. Circuit models are used to optimize the antenna performance and to calculate the radiated power and the transfer function of the antenna. System models are then derived for transmitting and receiving antennas. The most important contribution of this study is to show how microwave structures can be integrated into the simulation of digital communication systems. Thi...

  4. Graphene-based Yagi-Uda antenna with reconfigurable radiation patterns

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yongle, E-mail: wuyongle138@gmail.com; Qu, Meijun; Jiao, Lingxiao; Liu, Yuanan [School of Electronic Engineering, Beijing Key Laboratory of Work Safety Intelligent Monitoring, Beijing University of Posts and Telecommunications, P. O. Box. 282, Beijing, 100876 (China); Ghassemlooy, Zabih [Optical Communications Research Group, NCRLab, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST (United Kingdom)

    2016-06-15

    This paper presents a radiation pattern reconfigurable Yagi-Uda antenna based on graphene operating at terahertz frequencies. The antenna can be reconfigured to change the main beam pattern into two or four different radiation directions. The proposed antenna consists of a driven dipole radiation conductor, parasitic strips and embedded graphene. The hybrid graphene-metal implementation enables the antenna to have dynamic surface conductivity, which can be tuned by changing the chemical potentials. Therefore, the main beam direction, the resonance frequency, and the front-to-back ratio of the proposed antenna can be controlled by tuning the chemical potentials of the graphene embedded in different positions. The proposed two-beam reconfigurable Yagi-Uda antenna can achieve excellent unidirectional symmetrical radiation pattern with the front-to-back ratio of 11.9 dB and the10-dB impedance bandwidth of 15%. The different radiation directivity of the two-beam reconfigurable antenna can be achieved by controlling the chemical potentials of the graphene embedded in the parasitic stubs. The achievable peak gain of the proposed two-beam reconfigurable antenna is about 7.8 dB. Furthermore, we propose a four-beam reconfigurable Yagi-Uda antenna, which has stable reflection-coefficient performance although four main beams in reconfigurable cases point to four totally different directions. The corresponding peak gain, front-to-back ratio, and 10-dB impedance bandwidth of the four-beam reconfigurable antenna are about 6.4 dB, 12 dB, and 10%, respectively. Therefore, this novel design method of reconfigurable antennas is extremely promising for beam-scanning in terahertz and mid-infrared plasmonic devices and systems.

  5. Numerical Study of Planar GPR Antenna Measurements

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    The formulation of planar near-field measurements of GPR antennas determines the plane-wave spectra of the GPR antenna in terms of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical study investigates how the formulation is affected by (1...

  6. Theory of antennas for gravitational radiation

    International Nuclear Information System (INIS)

    Hirakawa, Hiromasa; Narihara, Kazumichi; Fujimoto, Masakatsu.

    1976-01-01

    A theory of antennas for gravitational radiation is presented. On the basis of the eigenmode system and the structure symmetry, the emission and reception characteristics and the directivity pattern of antennas are treated. The antenna thermal noise is discussed in connection with the coupling constant of vibration sensors and with the effect of cold-damping. (auth.)

  7. 47 CFR 78.105 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 78.105 Section 78.105... SERVICE Technical Regulations § 78.105 Antenna systems. (a) For fixed stations operating in the 12.7-13.2... planes. (2) New periscope antenna systems will be authorized upon a certification that the radiation, in...

  8. 47 CFR 74.641 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 74.641 Section 74.641... Stations § 74.641 Antenna systems. (a) For fixed stations operating above 2025 MHz, the following standards... elevation planes. (2) New periscope antenna systems will be authorized upon a certification that the...

  9. Collapsible structure for an antenna reflector

    Science.gov (United States)

    Trubert, M. R. (Inventor)

    1973-01-01

    A collapsible support for an antenna reflector for use in supporting spacecraft antennas is described. The support has a regid base and a number of struts which are pivoted at the base. The deployment of the struts and their final configuration for supporting the antenna are illustrated.

  10. Adaptive Nulling in Hybrid Reflector Antennas

    Science.gov (United States)

    1992-09-01

    correction of reflector distortion and vernier beamsteering, MEEE Trans. Antennas Propagat, 36:1351-1358. 4 Cherrette , A.R., et al (1989) Compensation of...Propagat, 36:1351-1358. 4. Cherrette , A.R., et al (1989) Compensation of reflector antenna surface distortion using an array feed,IEEE Trans. Antennas

  11. Fundamentals of antennas concepts and applications

    CERN Document Server

    Christodoulou, Christos G

    2001-01-01

    This tutorial explains antenna design and application for various systems, including communications, remote sensing, radar, and biomedicine. It describes basic wire and array antennas in detail and introduces other types such as reflectors, lenses, horns, Yagi, microstrip, and frequency-independent antennas. Integration issues and technical challenges are discussed. Aimed at students, engineers, researchers, and technical professionals.

  12. Putting the positive in health psychology: a content analysis of three journals.

    Science.gov (United States)

    Schmidt, Christa K; Raque-Bogdan, Trisha L; Piontkowski, Sarah; Schaefer, Kathryn L

    2011-05-01

    This content analysis investigated the inclusion of positive psychological constructs in research published in three leading health psychology journals. A list of positive constructs relevant to health psychology was compiled and their inclusion in these journals was examined. It was found that although there has been a sharp increase in recent years, only 3 percent of all articles published (114 of 3789) included the study of overtly positive constructs. The constructs that have been most and least studied in health psychology were identified and are discussed. This analysis provides insight into the foundations of positive health psychology and identifies future directions.

  13. An active antenna for ELF magnetic fields

    Science.gov (United States)

    Sutton, John F.; Spaniol, Craig

    1994-01-01

    The work of Nikola Tesla, especially that directed toward world-wide electrical energy distribution via excitation of the earth-ionosphere cavity resonances, has stimulated interest in the study of these resonances. Not only are they important for their potential use in the transmission of intelligence and electrical power, they are important because they are an integral part of our natural environment. This paper describes the design of a sensitive, untuned, low noise active antenna which is uniquely suited to modern earth-ionosphere cavity resonance measurements employing fast-Fourier transform techniques for near-real-time data analysis. It capitalizes on a little known field-antenna interaction mechanism. Recently, the authors made preliminary measurements of the magnetic fields in the earth-ionosphere cavity. During the course of this study, the problem of designing an optimized ELF magnetic field sensor presented itself. The sensor would have to be small, light weight (for portable use), and capable of detecting the 5-50 Hz picoTesla-level signals generated by the natural excitations of the earth-ionosphere cavity resonances. A review of the literature revealed that past researchers had employed very large search coils, both tuned and untuned. Hill and Bostick, for example, used coils of 30,000 turns wound on high permeability cores of 1.83 m length, weighing 40 kg. Tuned coils are unsuitable for modern fast-Fourier transform data analysis techniques which require a broad spectrum input. 'Untuned' coils connected to high input impedance voltage amplifiers exhibit resonant responses at the resonant frequency determined by the coil inductance and the coil distributed winding capacitance. Also, considered as antennas, they have effective areas equal only to their geometrical areas.

  14. Directional antenna array (DAA) for communications, control, and data link protection

    Science.gov (United States)

    Molchanov, Pavlo A.; Contarino, Vincent M.

    2013-06-01

    A next generation of Smart antennas with point-to-point communication and jam, spoof protection capability by verification of spatial position is offered. A directional antenna array (DAA) with narrow irradiation beam provides counter terrorism protection for communications, data link, control and GPS. Communications are "invisible" to guided missiles because of 20 dB smaller irradiation outside the beam and spatial separation. This solution can be implemented with current technology. Directional antennas have higher gain and can be multi-frequency or have wide frequency band in contrast to phase antenna arrays. This multi-directional antenna array provides a multi-functional communication network and simultaneously can be used for command control, data link and GPS.

  15. A Butterfly-Shaped Wideband Microstrip Patch Antenna for Wireless Communication

    Directory of Open Access Journals (Sweden)

    Liling Sun

    2015-01-01

    Full Text Available A novel butterfly-shaped patch antenna for wireless communication is introduced in this paper. The antenna is designed for wideband wireless communications and radio-frequency identification (RFID systems. Two symmetrical quasi-circular arms and two symmetrical round holes are incorporated into the patch of a microstrip antenna to expand its bandwidth. The diameter and position of the circular slots are optimized to achieve a wide bandwidth. The validity of the design concept is demonstrated by means of a prototype having a bandwidth of about 40.1%. The return loss of the butterfly-shaped antenna is greater than 10 dB between 4.15 and 6.36 GHz. The antenna can serve simultaneously most of the modern wireless communication standards.

  16. A Small Planar Antenna for 4G Mobile Phone Application

    Directory of Open Access Journals (Sweden)

    Hu Jian-rong

    2016-01-01

    Full Text Available The analysis and design of a small planar multiband antenna operating in the 4G frequency bands are presented. The numerical and experimental results demonstrated that the proposed antenna satisfies the requirement of 6 dB return loss for the impedance bandwidth of the LTE700/LTE2300/LTE2500 and WiMAX3500 bands. The gains at 750 MHz/2.3 GHz/2.6 GHz/3.5 GHz are 2.1 dBi/4.9 dBi/4.7 dBi/4.3 dBi, respectively. The measured radiation patterns verify the suitability of the antenna to be employed in mobile phones. The dimensions of the radiant patch are 49 × 10 mm2. The proposed antenna can be easily fabricated and customized to various 4G mobile phones as a compact internal antenna.

  17. Smart reconfigurable parabolic space antenna for variable electromagnetic patterns

    Science.gov (United States)

    Kalra, Sahil; Datta, Rituparna; Munjal, B. S.; Bhattacharya, Bishakh

    2018-02-01

    An application of reconfigurable parabolic space antenna for satellite is discussed in this paper. The present study focuses on shape morphing of flexible parabolic antenna actuated with Shape Memory Alloy (SMA) wires. The antenna is able to transmit the signals to the desired footprint on earth with a desired gain value. SMA wire based actuation with a locking device is developed for a precise control of Antenna shape. The locking device is efficient to hold the structure in deformed configuration during power cutoff from the system. The maximum controllable deflection at any point using such actuation system is about 25mm with a precision of ±100 m. In order to control the shape of the antenna in a closed feedback loop, a Proportional, Integral and Derivative (PID) based controller is developed using LabVIEW (NI) and experiments are performed. Numerical modeling and analysis of the structure is carried out using finite element software ABAQUS. For data reduction and fast computation, stiffness matrix generated by ABAQUS is condensed by Guyan Reduction technique and shape optimization is performed using Non-dominated Sorting Genetic Algorithm (NSGA-II). The matching in comparative study between numerical and experimental set-up shows efficacy of our method. Thereafter, Electro-Magnetic (EM) simulations of the deformed shape is carried out using electromagnetic field simulation, High Frequency Structure Simulator (HFSS). The proposed design is envisaged to be very effective for multipurpose application of satellite system in the future missions of Indian Space Research Organization (ISRO).

  18. A New Agile Radiating System Called Electromagnetic Band Gap Matrix Antenna

    Directory of Open Access Journals (Sweden)

    Hussein Abou Taam

    2014-01-01

    Full Text Available Civil and military applications are increasingly in need for agile antenna devices which respond to wireless telecommunications, radars, and electronic warfare requirements. The objective of this paper is to design a new agile antenna system called electromagnetic band gap (EBG matrix. The working principle of this antenna is based on the radiating aperture theory and constitutes the subject of an accepted CNRS patent. In order to highlight the interest and the originality of this antenna, we present a comparison between it and a classical patch array only for the (one-dimensional 1D configuration by using a rigorous full wave simulation (CST Microwave software. In addition, EBG matrix antenna can be controlled by specific synthesis algorithms. These algorithms use inside their; optimization loop an analysis procedure to evaluate the radiation pattern. The analysis procedure is described and validated at the end of this paper.

  19. The Derivation of Job Compensation Index Values from the Position Analysis Questionnaire (PAQ). Report No. 6.

    Science.gov (United States)

    McCormick, Ernest J.; And Others

    The study deals with the job component method of establishing compensation rates. The basic job analysis questionnaire used in the study was the Position Analysis Questionnaire (PAQ) (Form B). On the basis of a principal components analysis of PAQ data for a large sample (2,688) of jobs, a number of principal components (job dimensions) were…

  20. The Antenna Bride and Bridegroom

    Science.gov (United States)

    2007-03-01

    ALMA Achieves Major Milestone With Antenna-Link Success The Atacama Large Millimeter/submillimeter Array (ALMA), an international telescope project, reached a major milestone on 2 March, when two 12-m ALMA prototype antennas were first linked together as an integrated system to observe an astronomical object. "This achievement results from the integration of many state-of-the-art components from Europe and North America and bodes well for the success of ALMA in Chile", said Catherine Cesarsky, ESO's Director General. ESO PR Photo 10/07 ESO PR Photo 10/07 The Prototype Antennas The milestone achievement, technically termed 'First Fringes', came at the ALMA Test Facility (ATF), located near Socorro in New Mexico. Faint radio waves emitted by the planet Saturn were collected by two ALMA prototype antennas, then processed by new, high-tech electronics to turn the two antennas into a single, high-resolution telescope system, called an interferometer. The planet's radio emissions at a frequency of 104 gigahertz were tracked by the ALMA system for more than an hour. Such pairs of antennas are the basic building blocks of the multi-antenna imaging system ALMA. In such a system, the signals recorded by each antenna are electronically combined with the signals of every other antenna to form a multitude of pairs. Each pair contributes unique information that is used to build a highly detailed image of the astronomical object under observation. When completed in the year 2012, ALMA will have 66 antennas. "Our congratulations go to the dedicated team of scientists, engineers and technicians who produced this groundbreaking achievement for ALMA. Much hard work and many long hours went into this effort, and we appreciate it all. This team should be very proud today," said NRAO Director Fred K.Y. Lo. "With this milestone behind us, we now can proceed with increased confidence toward completing ALMA," he added. ALMA, located at an elevation of 5,000m in the Atacama Desert of

  1. Photogrammetry Of A Parabolic Antenna

    Science.gov (United States)

    Merrick, W. D.; Lansing, F. L.; Stoller, F. W.; Lobb, V. B.

    1988-01-01

    Surface measured with accuracy better than 10 to the negative fifth power times diameter. Report describes use of advanced close-range photogrammetry to determine deviations of 34-m-diameter antenna main reflector and subreflector from nominal paraboloidal shapes. Measurements enable removal of linear offsets and angular misalignments of subreflector, with consequent increase of 4 percent in aperture efficiency.

  2. Tunable Antennas for Mobile Devices

    DEFF Research Database (Denmark)

    Morris, Art; Barrio, Samantha Caporal Del; Shin, J

    2014-01-01

    Modern mobile terminal design has been driven by the user interface and broadband connectivity. Real world RF performance has substantially fallen recently which impacts data rates, battery life and often causes lost connections. This has been caused by changing antenna location and reduced anten...

  3. Wireless Communication with Multiple Antennas

    Indian Academy of Sciences (India)

    2013-07-05

    Emre Telatar, “Capacity of Multi-antenna Gaussian Channels,” European. Transactions on Telecommunications, vol.10, No.6, pp.585-595, 1999. Similar diminishing-return behaviour with M fixed. B. Sundar Rajan (ECE). IASc Talk ...

  4. Coupling between minimum scattering antennas

    DEFF Research Database (Denmark)

    Andersen, J.; Lessow, H; Schjær-Jacobsen, Hans

    1974-01-01

    Coupling between minimum scattering antennas (MSA's) is investigated by the coupling theory developed by Wasylkiwskyj and Kahn. Only rotationally symmetric power patterns are considered, and graphs of relative mutual impedance are presented as a function of distance and pattern parameters. Crossed...

  5. Positioning of Nuclear Fuel Assemblies by Means of Image Analysis on Tomographic Data

    International Nuclear Information System (INIS)

    Troeng, Mats

    2005-06-01

    A tomographic measurement technique for nuclear fuel assemblies has been developed at the Department of Radiation Sciences at Uppsala University. The technique requires highly accurate information about the position of the measured nuclear fuel assembly relative to the measurement equipment. In experimental campaigns performed earlier, separate positioning measurements have therefore been performed in connection to the tomographic measurements. In this work, another positioning approach has been investigated, which requires only the collection of tomographic data. Here, a simplified tomographic reconstruction is performed, whereby an image is obtained. By performing image analysis on this image, the lateral and angular position of the fuel assembly can be determined. The position information can then be used to perform a more accurate tomographic reconstruction involving detailed physical modeling. Two image analysis techniques have been developed in this work. The stability of the two techniques with respect to some central parameters has been studied. The agreement between these image analysis techniques and the previously used positioning technique was found to meet the desired requirements. Furthermore, it has been shown that the image analysis techniques offer more detailed information than the previous technique. In addition, its off-line analysis properties reduce the need for valuable measurement time. When utilizing the positions obtained from the image analysis techniques in tomographic reconstructions of the rod-by-rod power distribution, the repeatability of the reconstructed values was improved. Furthermore, the reconstructions resulted in better agreement to theoretical data

  6. Low profile conformal antenna arrays on high impedance substrate

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book presents electromagnetic (EM) design and analysis of dipole antenna array over high impedance substrate (HIS). HIS is a preferred substrate for low-profile antenna design, owing to its unique boundary conditions. Such substrates permit radiating elements to be printed on them without any disturbance in the radiation characteristics. Moreover HIS provides improved impedance matching, enhanced bandwidth, and increased broadside directivity owing to total reflection from the reactive surface and high input impedance. This book considers different configurations of HIS for array design on planar and non-planar high-impedance surfaces. Results are presented for cylindrical dipole, printed dipole, and folded dipole over single- and double-layered square-patch-based HIS and dogbone-based HIS. The performance of antenna arrays is analyzed in terms of performance parameters such as return loss and radiation pattern. The design presented shows acceptable return loss and mainlobe gain of radiation pattern. Thi...

  7. Numerical Simulation of Antennas with Improved Integral Equation Method

    International Nuclear Information System (INIS)

    Ma Ji; Fang Guang-You; Lu Wei

    2015-01-01

    Simulating antennas around a conducting object is a challenge task in computational electromagnetism, which is concerned with the behaviour of electromagnetic fields. To analyze this model efficiently, an improved integral equation-fast Fourier transform (IE-FFT) algorithm is presented in this paper. The proposed scheme employs two Cartesian grids with different size and location to enclose the antenna and the other object, respectively. On the one hand, IE-FFT technique is used to store matrix in a sparse form and accelerate the matrix-vector multiplication for each sub-domain independently. On the other hand, the mutual interaction between sub-domains is taken as the additional exciting voltage in each matrix equation. By updating integral equations several times, the whole electromagnetic system can achieve a stable status. Finally, the validity of the presented method is verified through the analysis of typical antennas in the presence of a conducting object. (paper)

  8. Low profile frequency agile MIMO slot antenna with TCM characterization

    KAUST Repository

    Ghalib, Asim

    2017-06-07

    In this paper, a frequency reconfigurable multiple-input-multiple-output (MIMO) slot antenna is presented. The proposed design is low profile and compact with wide tunability range, covering several well-known frequency bands from 1800 MHz to 2450 MHz. The frequency reconfigurability is achieved by loading the annular slot with varactor diodes. The antenna system is also analyzed for MIMO performance metrics. Moreover, the effect of circular slot antenna on the chassis modes is also investigated using the theory of characteristic modes (TCM). The physical principle behind frequency reconfigurability is also investigated using TCM analysis. An interesting finding is observed using varactor diodes for frequency reconfigurability, that is the reactive impedance loading does not alter the modal significance (MS) plots but only aid in the input impedance matching at different frequency bands.

  9. An evaluation of the Positive Emotional Experiences Scale: A preliminary analysis

    Directory of Open Access Journals (Sweden)

    Rene van Wyk

    2016-11-01

    Full Text Available Orientation: The positive organisational behaviour movement emphasises the advantages of psychological strengths in business. The psychological virtues of positive emotional experiences can potentially promote human strengths to the advantages of business functioning and the management of work conditions. This is supported by Fredrickson’s broaden-and-build theory that emphasises the broadening of reactive thought patterns through experiences of positive emotions. Research purpose: A preliminary psychometric evaluation of a positive measurement of dimensions of emotional experiences in the workplace, by rephrasing the Kiefer and Barclay Toxic Emotional Experiences Scale. Motivation for the study: This quantitative Exploratory Factor Analysis investigates the factorial structure and reliability of the Positive Emotional Experiences Scale, a positive rephrased version of the Toxic Emotional Experiences Scale. Research approach, design and method: This Exploratory Factor Analysis indicates an acceptable three-factor model for the Positive Emotional Experiences Scale. These three factors are: (1 psychological recurrent positive state, (2 social connectedness and (3 physical refreshed energy, with strong Cronbach’s alphas of 0.91, 0.91 and 0.94, respectively. Main findings: The three-factor model of the Positive Emotional Experiences Scale provides a valid measure in support of Fredrickson’s theory of social, physical and psychological endured personal resources that build positive emotions. Practical/Managerial implications: Knowledge gained on positive versus negative emotional experiences could be applied by management to promote endured personal resources that strengthen positive emotional experiences. Contribution/value-add: The contribution of this rephrased Positive Emotional Experiences Scale provides a reliable measure of assessment of the social, physical and endured psychological and personal resources identified in Fredrickson

  10. Finite difference time domain modeling of spiral antennas

    Science.gov (United States)

    Penney, Christopher W.; Beggs, John H.; Luebbers, Raymond J.

    1992-01-01

    The objectives outlined in the original proposal for this project were to create a well-documented computer analysis model based on the finite-difference, time-domain (FDTD) method that would be capable of computing antenna impedance, far-zone radiation patterns, and radar cross-section (RCS). The ability to model a variety of penetrable materials in addition to conductors is also desired. The spiral antennas under study by this project meet these requirements since they are constructed of slots cut into conducting surfaces which are backed by dielectric materials.

  11. Theory of the JET ICRH antenna

    International Nuclear Information System (INIS)

    Theilhaber, K.

    1984-01-01

    The JET antenna has been conceived as a 'limiter antenna', completely recessed in a lateral frame which has the dual purpose of protecting the conductors and limiting the plasma radius. The coupling of this antenna is calculated in slab geometry, using a variational formulation which finds the self-consistent currents in the antenna elements. Full account is taken of the modes excited inside the limiter frame and of their coupling to waves in the inhomogeneous plasma. This yields the antenna impedance as a function of frequency and the field structure inside the plasma, including power fluxes and dispersion, as a function of penetration. (author)

  12. Microstrip Antenna Design for Femtocell Coverage Optimization

    Directory of Open Access Journals (Sweden)

    Afaz Uddin Ahmed

    2014-01-01

    Full Text Available A mircostrip antenna is designed for multielement antenna coverage optimization in femtocell network. Interference is the foremost concern for the cellular operator in vast commercial deployments of femtocell. Many techniques in physical, data link and network-layer are analysed and developed to settle down the interference issues. A multielement technique with self-configuration features is analyzed here for coverage optimization of femtocell. It also focuses on the execution of microstrip antenna for multielement configuration. The antenna is designed for LTE Band 7 by using standard FR4 dielectric substrate. The performance of the proposed antenna in the femtocell application is discussed along with results.

  13. Forward Scattering of Loaded and Unloaded Antennas

    DEFF Research Database (Denmark)

    Gustafsson, Mats; Andersen, Jørgen Bach; Kristensson, Gerhard

    2012-01-01

    Forward scattering of antennas is related to antenna performance via the forward-scattering sum rule. The forward-scattering sum rule is an integral identity that shows that a weighted integral of the extinction cross section over all spectrum is proportional to the static polarizability...... of the antenna structure. Here, the forward-scattering sum rule is experimentally verified for loaded, short-circuit, and open-circuit cylindrical dipole antennas. It is also shown that the absorption efficiency cannot be greater than 1/2 for reciprocal linearly polarized lossless matched antennas...... with a symmetric radiation pattern in the forward and backward directions....

  14. Multi-antenna synthetic aperture radar

    CERN Document Server

    Wang, Wen-Qin

    2013-01-01

    Synthetic aperture radar (SAR) is a well-known remote sensing technique, but conventional single-antenna SAR is inherently limited by the minimum antenna area constraint. Although there are still technical issues to overcome, multi-antenna SAR offers many benefits, from improved system gain to increased degrees-of-freedom and system flexibility. Multi-Antenna Synthetic Aperture Radar explores the potential and challenges of using multi-antenna SAR in microwave remote sensing applications. These applications include high-resolution imaging, wide-swath remote sensing, ground moving target indica

  15. Miniaturized Planar Split-Ring Resonator Antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2009-01-01

    on how small this antenna can be. In practice, the lower bound is set by losses in utilized materials and manufacturing inaccuracies. As an example, an antenna of ka=0.09 was designed, fabricated and tested. Although the initially fabricated antenna prototype had the input impedance of 43 ohms......, it was subsequently tuned to 50 ohms simply by cutting out the excessive arm length. This tuning technique is especially useful in practical applications, since it allows the antenna to be tuned in-place and thereby compensate for various inaccuracies as well as for an antenna environment....

  16. COMWIN Antenna System Fiscal Year 2000 Report

    National Research Council Canada - National Science Library

    Adams, R

    2000-01-01

    .... The Joint Tactical Radio (JTR) requires this frequency. The figure of merit to determine whether the radio is efficient in the band is a Standing Wave Ratio (VSWR) of less than 3:1. The COMWIN antenna system would consist of three antennas. The first antenna, in the form of a vest, would operate in the 30- to 500-MHz band. The helmet antenna would operate in the 500- to 2000 MHz band. An antenna that runs down the edges would operate in the 2- to 30-MHz band.

  17. Measurement of Antenna Bore-Sight Gain

    Science.gov (United States)

    Fortinberry, Jarrod; Shumpert, Thomas H.

    2016-01-01

    The absolute or free-field gain of a simple antenna can be approximated using standard antenna theory formulae or for a more accurate prediction, numerical methods may be employed to solve for antenna parameters including gain. Both of these methods will result in relatively reasonable estimates but in practice antenna gain is usually verified and documented via measurements and calibration. In this paper, a relatively simple and low-cost, yet effective means of determining the bore-sight free-field gain of a VHF/UHF antenna is proposed by using the Brewster angle relationship.

  18. Benchmark simulations of ICRF antenna coupling

    International Nuclear Information System (INIS)

    Louche, F.; Lamalle, P. U.; Messiaen, A. M.; Compernolle, B. van; Milanesio, D.; Maggiora, R.

    2007-01-01

    The paper reports on ongoing benchmark numerical simulations of antenna input impedance parameters in the ion cyclotron range of frequencies with different coupling codes: CST Microwave Studio, TOPICA and ANTITER 2. In particular we study the validity of the approximation of a magnetized plasma slab by a dielectric medium of suitably chosen permittivity. Different antenna models are considered: a single-strap antenna, a 4-strap antenna and the 24-strap ITER antenna array. Whilst the diagonal impedances are mostly in good agreement, some differences between the mutual terms predicted by Microwave Studio and TOPICA have yet to be resolved

  19. Satellite Antenna Pointing Procedure Driven by the Ground Service Quality

    Science.gov (United States)

    Yasui, Yoshitsugu

    A satellite antenna alignment technique is proposed to ensure terrestrial service quality for users. The antenna bore sight orientation is calculated directly from measured data acquired from general ground receivers, which intercept the communication radio waves from any position on the earth's surface. The method coordinates the satellite pointing parameters with signal strength at the receivers while considering location-specific geographical and antenna radiation characteristics and control accuracy. The theoretical development and its validity are examined in the course of equation derivation. Actual measured data of an existing satellite at the maneuver was applied to the method, and the capability was demonstrated and verified. With the wide diversity of satellite usage, such as for mobile communications, temporary network deployment or post-launch positioning accommodations, the proposed method provides a direct evaluation of satellite communication performance at the service level, in conjunction with using high frequency spot beam antennas, which are highly susceptible to pointing gain. This can facilitate swift and flexible satellite service planning and deployment for operators.

  20. The effects of an edgeline on speed and lateral position: a meta-analysis

    NARCIS (Netherlands)

    van Driel, Cornelie J.G.; Davidse, Ragnhild J.; van Maarseveen, Martin F.A.M.

    2004-01-01

    This paper presents a meta-analysis of studies that have evaluated the effects of an edgeline on speed and lateral position of motorised road users. Together with many other study characteristics, 41 estimates of the effects of an edgeline on speed and 65 on lateral position were extracted from the

  1. Group Delay of High Q Antennas

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Pedersen, Gert Frølund

    2013-01-01

    Group Delay variations versus frequency is an essential factor which can cause distortion and degradation in the signals. Usually this is an issue in wideband communication systems, such as satellite communication systems, which are used for transmitting wideband data. However, group delay can also...... become an issue, when working with high Q antennas, because of the steep phase shift over the frequency. In this paper, it is measured how large group delay variations can become, when going from a low Q antenna to a high Q antenna. The group delay of a low Q antenna is shown to be around 1.3 ns, whereas...... a high Q antenna has group delay of around 22 ns. It is due to this huge group delay variation characteristics of high Q antennas, that signal distortion might occur in the radio system with high Q antennas....

  2. SKB - PNC. Development of tunnel radar antennas

    International Nuclear Information System (INIS)

    Falk, L.

    1991-07-01

    Tunnel antennas for the RAMAC borehole radar system have been developed and tested in the field. The antennas are of the loaded dipole type and the receiver and transmitter electronics have been rebuilt to screen them from the antennas. A series of measurements has demonstrated that the radar pulse is short and well shaped and relatively free from ringing, even compared with the existing borehole antennas. Two antenna sets were tested: one centered at 60 MHz and another above 100 MHz. Both produced excellent radar pictures when tested in tunnels in Stripa mine. The antennas have been designed to be easy to carry, since the signal quality often depends on the way the antenna is held relative to electric conductors in the tunnels. (au) (46 figs., 57 refs.)

  3. Improvement of antenna decoupling in radar systems

    Science.gov (United States)

    Anchidin, Liliana; Topor, Raluca; Tamas, Razvan D.; Dumitrascu, Ana; Danisor, Alin; Berescu, Serban

    2015-02-01

    In this paper we present a type of antipodal Vivaldi antenna design, which can be used for pulse radiation in UWB communication. The Vivaldi antenna is a special tapered slot antenna with planar structure which is easily to be integrated with transmitting elements and receiving elements to form a compact structure. When the permittivity is very large, the wavelength of slot mode is so short that the electromagnetic fields concentrate in the slot to form an effective and balanced transmission line. Due to its simple structure and small size the Vivaldi antennas are one of the most popular designs used in UWB applications. However, for a two-antenna radar system, there is a high mutual coupling between two such antennas due to open configuration. In this paper, we propose a new method for reducing this effect. The method was validated by simulating a system of two Vivaldi antennas in front of a standard target.

  4. The Cluster Analysis of Jobs Based on Data from the Position Analysis Questionnaire (PAQ). Report No. 7.

    Science.gov (United States)

    DeNisi, Angelo S.; McCormick, Ernest J.

    The Position Analysis Questionnaire (PAQ) is a structured job analysis procedure that provides for the analysis of jobs in terms of each of 187 job elements, these job elements being grouped into six divisions: information input, mental processes, work output, relationships with other persons, job context, and other job characteristics. Two…

  5. Recent adaptive events in human brain revealed by meta-analysis of positively selected genes.

    Directory of Open Access Journals (Sweden)

    Yue Huang

    Full Text Available BACKGROUND AND OBJECTIVES: Analysis of positively-selected genes can help us understand how human evolved, especially the evolution of highly developed cognitive functions. However, previous works have reached conflicting conclusions regarding whether human neuronal genes are over-represented among genes under positive selection. METHODS AND RESULTS: We divided positively-selected genes into four groups according to the identification approaches, compiling a comprehensive list from 27 previous studies. We showed that genes that are highly expressed in the central nervous system are enriched in recent positive selection events in human history identified by intra-species genomic scan, especially in brain regions related to cognitive functions. This pattern holds when different datasets, parameters and analysis pipelines were used. Functional category enrichment analysis supported these findings, showing that synapse-related functions are enriched in genes under recent positive selection. In contrast, immune-related functions, for instance, are enriched in genes under ancient positive selection revealed by inter-species coding region comparison. We further demonstrated that most of these patterns still hold even after controlling for genomic characteristics that might bias genome-wide identification of positively-selected genes including gene length, gene density, GC composition, and intensity of negative selection. CONCLUSION: Our rigorous analysis resolved previous conflicting conclusions and revealed recent adaptation of human brain functions.

  6. Electromagnetic simulations of the ASDEX Upgrade ICRF Antenna with the TOPICA code

    International Nuclear Information System (INIS)

    Krivska, A.; Milanesio, D.; Bobkov, V.; Braun, F.; Noterdaeme, J.-M.

    2009-01-01

    Accurate and efficient simulation tools are necessary to optimize the ICRF antenna design for a set of operational conditions. The TOPICA code was developed for performance prediction and for the analysis of ICRF antenna systems in the presence of plasma, given realistic antenna geometries. Fully 3D antenna geometries can be adopted in TOPICA, just as in available commercial codes. But while those commercial codes cannot operate with a plasma loading, the TOPICA code correctly accounts for realistic plasma loading conditions, by means of the coupling with 1D FELICE code. This paper presents the evaluation of the electric current distribution on the structure, of the parallel electric field in the region between the straps and the plasma and the computation of sheaths driving RF potentials. Results of TOPICA simulations will help to optimize and re-design the ICRF ASDEX Upgrade antenna in order to reduce tungsten (W) sputtering attributed to the rectified sheath effect during ICRF operation.

  7. Impact of Mutual Coupling and Polarization of Antennas on BER Performances of Spatial Multiplexing MIMO Systems

    Directory of Open Access Journals (Sweden)

    Jianfeng Zheng

    2012-01-01

    Full Text Available This paper is aimed at studying the impacts of mutual coupling, matching networks, and polarization of antennas on performances of Multiple-Input Multiple-Output (MIMO systems employing Spatial Multiplexing (SM. In particular, the uncoded average Bit Error Rate (BER of MIMO systems is investigated. An accurate signal analysis framework based on circuit network parameters is presented to describe the transmit/receive characteristics of the matched/unmatched antenna array. The studied arrays consist of matched/unmatched compact copolarization and polarization diversity antenna array. Monte-Carlo numerical simulations are used to study the BER performances of the SM MIMO systems using maximum-likelihood and/or zero-forcing detection schemes. The simulation results demonstrate that the use of matching networks can improve the BER performance of SM MIMO systems significantly, and the BER performance deterioration due to antenna orientation randomness can be compensated by use of polarization diversity antenna arrays.

  8. Review on Millimeter Wave Antennas- Potential Candidate for 5G Enabled Applications

    Directory of Open Access Journals (Sweden)

    M. A. Matin

    2016-12-01

    Full Text Available The millimeter wave (mmWave band is considered as the potential candidate for high speed communication services in 5G networks due to its huge bandwidth. Moreover, mmWave frequencies lead to miniaturization of RF front end including antennas. In this article, we provide an overview of recent research achievements of millimeter-wave antenna design along with the design considerations for compact antennas and antennas in package/on chip, mostly in the 60 GHz band is described along with their inherent benefits and challenges. A comparative analysis of various designs is also presented. The antennas with wide bandwidth, high-gain, compact size and low profile with easiness of integration in-package or on-chip with other components are required for 5G enabled applications.

  9. Deviations in CBERS-4 Satellite Direction Components From The Electromagnetic Disturbance of Communication Antennas

    Science.gov (United States)

    Heilmann, A.; Fernandes, C.

    2017-10-01

    The CBERS-4 is a low Earth orbit satellite, with a set of antennas S-band/UHF for communication almost omni-direcional. For the electromagnetic radiation from transmission antennas, was developed a model of electromagnetic disturbance considering the antennas theory and the laws of the conservation energy-momentum. Was propagated the orbit of the CBERS-4 satellite considering your state vector from the March 14, 2016, at 11h 14m 15.23s using the equation of motion in the form of cartesian components. From the state vector of the CBERS-4 satellite was possible to propagate the orbit for different periods, without disturbance (considering just the problem of two bodies) and with a disturbance of electromagnetic origin. The model of reaction of electromagnetic acceleration on the satellite depends on only the type of antenna. Quadrifilar and parabolic propeller antennas were considered in this paper. Using the equation of motion of the satellite based on the method of Runge-Kutta of fourth and fifth degree, the effect disturber this modeling was applied on the CBERS-4 considering the mass of satellite, characteristics of antenna, power irradiated and gain maximum of antenna. The final analysis discusses the values of components in the direction (radial, cross and normal) and the coordinates X-Y-Z considering the case disturbed to both antennas.

  10. Deep convolutional neural network based antenna selection in multiple-input multiple-output system

    Science.gov (United States)

    Cai, Jiaxin; Li, Yan; Hu, Ying

    2018-03-01

    Antenna selection of wireless communication system has attracted increasing attention due to the challenge of keeping a balance between communication performance and computational complexity in large-scale Multiple-Input MultipleOutput antenna systems. Recently, deep learning based methods have achieved promising performance for large-scale data processing and analysis in many application fields. This paper is the first attempt to introduce the deep learning technique into the field of Multiple-Input Multiple-Output antenna selection in wireless communications. First, the label of attenuation coefficients channel matrix is generated by minimizing the key performance indicator of training antenna systems. Then, a deep convolutional neural network that explicitly exploits the massive latent cues of attenuation coefficients is learned on the training antenna systems. Finally, we use the adopted deep convolutional neural network to classify the channel matrix labels of test antennas and select the optimal antenna subset. Simulation experimental results demonstrate that our method can achieve better performance than the state-of-the-art baselines for data-driven based wireless antenna selection.

  11. A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection.

    Science.gov (United States)

    Syed, Avez; Aldhaheri, Rabah W

    2016-01-01

    A low-cost coplanar waveguide fed compact ultrawideband (UWB) antenna with band rejection characteristics for wireless local area network (WLAN) is proposed. The notch band characteristic is achieved by etching half wavelength C-shaped annular ring slot in the radiating patch. By properly choosing the radius and position of the slot, the notch band can be adjusted and controlled. With an overall size of 18.7 mm × 17.6 mm, the antenna turns out to be one of the smallest UWB antennas with band-notched characteristics. It has a wide fractional bandwidth of 130% (2.9-13.7 GHz) with VSWR applications.

  12. An Extended Positioning Analysis of a Pre-Service Teacher's "Better Life" Small Story

    Science.gov (United States)

    Barkhuizen, Gary

    2010-01-01

    The analysis of narrative data in applied linguistics has focused to varying degrees on their content, form, and context, with content and thematic analyses being the focus in much of the narrative research in language learning and teaching (Pavlenko 2007). The aim of this article is to report on a positioning analysis of a small story about the…

  13. A Comparison of Holistic versus Decomposed Rating of Position Analysis Questionnaire Work Dimensions.

    Science.gov (United States)

    Butler, Stephanie K.; Harvey, Robert J.

    1988-01-01

    Examined technique for improving cost-effectiveness of Position Analysis Questionnaire (PAQ) in job analysis. Professional job analysts, industrial psychology graduate students familiar with PAQ, and PAQ-unfamiliar undergraduates made direct holistic ratings of PAQ dimensions for four familiar jobs. Comparison of holistic ratings with decomposed…

  14. Antenna concepts for interstellar search systems

    International Nuclear Information System (INIS)

    Basler, R.P.; Johnson, G.L.; Vondrak, R.R.

    1977-01-01

    An evaluation is made of microwave receiving systems designed to search for signals from extraterrestrial intelligence. Specific design concepts are analyzed parametrically to determine whether the optimum antenna system location is on earth, in space, or on the moon. Parameters considered include the hypothesized number of transmitting civilizations, the number of stars that must be searched to give any desired probability of receiving a signal, the antenna collecting area, the search time, the search range, and the cost. This analysis suggests that search systems based on the moon are not cost-competitive, if the search is extended only a few hundred light years from the earth, a Cyclops-type array on earth may be the most cost-effective system, for a search extending to 500 light years or more, a substantial cost and search-time advantage can be achieved with a large spherical reflector in space with multiple feeds, radio frequency interference shields can be provided for space systems, and cost can range from a few hundred million to tens of billions of dollars, depending on the parameter values assumed

  15. Antenna Arrays and Automotive Applications

    CERN Document Server

    Rabinovich, Victor

    2013-01-01

    This book throws a lifeline to designers wading through mounds of antenna array patents looking for the most suitable systems for their projects. Drastically reducing the research time required to locate solutions to the latest challenges in automotive communications, it sorts and systematizes material on cutting-edge antenna arrays that feature multi-element communication systems with enormous potential for the automotive industry. These new systems promise to make driving safer and more efficient, opening up myriad applications, including vehicle-to-vehicle traffic that prevents collisions, automatic toll collection, vehicle location and fine-tuning for cruise control systems. This book’s exhaustive coverage begins with currently deployed systems, frequency ranges and key parameters. It proceeds to examine system geometry, analog and digital beam steering technology (including "smart" beams formed in noisy environments), maximizing signal-to-noise ratios, miniaturization, and base station technology that ...

  16. Broadband Cylindrical Antenna and Method

    Science.gov (United States)

    2016-07-27

    May 2017 The below identified patent application is available for licensing. Requests for information should be addressed to: TECHNOLOGY...CROSS REFERENCE TO OTHER PATENT APPLICATIONS [0002] None. BACKGROUND OF THE INVENTION (1) Field of the Invention [0003] The present invention is...Slotted cylinder antennas have been proposed in submarine applications before. For example, in U.S. Patent No. 6,127,983, Rivera and Josypenko disclose

  17. Miniaturization of Spherical Magnetodielectric Antennas

    DEFF Research Database (Denmark)

    Hansen, Troels Vejle

    ; Arbitrary order of the spherical wave, arbitrary radius of the spherical antenna, as well as arbitrarily large core permeability and/or permittivity, given an inversely proportional frequency variation of the imaginary part(s) and an arbitrary dispersion of the real part(s) - thus describing both lossless...... with a magnetic loss tangent of 1 and relative permeability of 300 yield Q/e equal 65% of the Chu lower bound, with a simultaneous e of 71%....

  18. Hybrid Maritime Satellite Communication Antenna

    DEFF Research Database (Denmark)

    Smith, Thomas Gunst

    Hybrid antennas for a maritime satellite communication terminal with simultaneous operation at L- and Ka-band have been investigated. The frequency bands of interest are 1; 525:0 1; 660:5 MHz (RX+TX, RHCP), 19:7 20:2 (RX, LHCP) and 29:5 30:0 GHz (TX, RHCP), which are all part of the Inmarsat BGAN...

  19. Reconfigurable dual-band metamaterial antenna based on liquid crystals

    Science.gov (United States)

    Che, Bang-Jun; Meng, Fan-Yi; Lyu, Yue-Long; Wu, Qun

    2018-05-01

    In this paper, a novel reconfigurable dual-band metamaterial antenna with a continuous beam that is electrically steered in backward to forward directions is first proposed by employing a liquid crystal (LC)-loaded tunable extended composite right-/left-handed (E-CRLH) transmission line (TL). The frequency-dependent property of the E-CRLH TL is analyzed and a compact unit cell based on the nematic LC is proposed to realize the tunable dual band characteristics. The phase constant of the proposed unit cell can be dynamically continuously tuned from negative to positive values in two operating bands by changing the bias voltage of the loaded LC material. A resulting dual band fixed-frequency beam steering property has been predicted by numerical simulations and experimentally verified. The measured results show that the fabricated reconfigurable antenna features an electrically controlled continuous beam steering from backward  ‑16° to forward  +13° at 7.2 GHz and backward  ‑9° to forward  +17° at 9.4 GHz, respectively. This electrically controlled beam steering range turns out to be competitive with the previously reported single band reconfigurable antennas. Besides, the measured and simulated results of the proposed reconfigurable dual-band metamaterial antenna are in good agreement.

  20. The Job Dimensions Underlying the Job Elements of the Position Analysis Questionnaire (PAQ) (Form B).

    Science.gov (United States)

    The study was concerned with the identification of the job dimension underlying the job elements of the Position Analysis Questionnaire ( PAQ ), Form B...The PAQ is a structured job analysis instrument consisting of 187 worker-oriented job elements which are divided into six a priori major divisions...The statistical procedure of principal components analysis was used to identify the job dimensions of the PAQ . Forty-five job dimensions were

  1. Analysis of the crystalline characteristics of nc-Si:H thin film using a hyperthermal neutral beam generated by an inclined slot-excited antenna

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong-Bae; Kim, Young-Woo; Kim, Dae Chul; Kim, Jongsik; Hong, Seung Pyo; Yoo, Suk Jae; Oh, Kyoung Suk, E-mail: ksoh@nfri.re.kr

    2013-11-29

    The deposition of hydrogenated nano-crystal silicon (nc-Si:H) thin film for manufacturing quantum dot solar cells, which has received attention due to the use of this film third-generation solar cells, is studied here. A hyperthermal neutral beam (HNB) generated by an inclined slot-excited antenna plasma source is used to reduce damage to the silicon thin film and deposition of the crystalline thin film is carried out on a substrate at a low temperature (< 200 °C). The size and the crystalline fraction of the nc-Si:H of the deposited thin film were analyzed by scanning transmission electron microscopy and a Raman microscope. As a result, silicon crystals 1–10 nm in size were observed in the amorphous silicon matrix. According to previous studies, the size and the crystalline fraction of nc-Si:H in deposited thin films increase as the hydrogen flow rate is increased. However, the increment of hydrogen flow rate decreases the deposition rate rapidly. The size and the crystalline fraction of nc-Si:H are adjustable by varying the substrate temperature and HNB energy without a change of the hydrogen flow rate. There are optimum conditions between the HNB energy and the substrate temperature for an appropriate amount of nc-Si:H in silicon thin film. - Highlights: • The appropriate hyperthermal neutral beam energy seems to assist film formation. • The Si crystal size can be adjusted by varying hyperthermal neutral beam energy. • The nc-Si:H 1 ∼ 10 in nm size was observed in the amorphous silicon matrix.

  2. Research on optic antenna of space laser communication networking

    Science.gov (United States)

    Meng, Li-Xin; Li, Long; Zhang, Li-zhong; Zhao, Shan-shan; Jiang, Hui-lin

    2013-08-01

    With the highlights of the high transmission rate, large capacity, strong anti-interference and anti-capture ability, good security and small light, space laser communication becomes an important hotspot. At present, the focus of research of the laser communication system is point to point communication structure. However, from the application point of view, both the realization of space laser communication among multiple points and the establishment of the information transmission network can really have the practical value. Aiming at the problem of space laser communication network, this article puts forward the general idea about optical antenna to achieve multiple tracking goals at the same time. Through the analysis of the optical antenna, and the comparing of the current commonly used mirror driving mechanism, a new mirror driving mechanism is designed. The azimuth motion, containing circular grating feedback, is driven by torque motor,voice coil motor of fan produces pitch motion that has fan-shaped grating feedback, so that compression of the structure size to improve the efficiency of the reflector assembly. Through the establishment of the driving mechanism and the kinematic model of 3D entity, the relationship between the single drive azimuth and pitch angle following the angle of incident light is explained. The biggest ideal view area affecting the optical antenna is obtained by the simulation analysis of the kinematics model using MATLAB. The several factors of field overlap area and blind area offers a theoretical basis for structure optimization and control system for the subsequent optical antenna design.

  3. Layout Of Antennas And Cables In A Large Array

    Science.gov (United States)

    Logan, Ronald T., Jr.

    1995-01-01

    Layout devised to minimize total land area occupied by large phased array of antennas and to minimize total length of cables in array. In original intended application, array expanded version of array of paraboloidal-dish microwave communication antennas of Deep Space Network. Layout also advantageous for other phased arrays of antennas and antenna elements, including notably printed-circuit microwave antenna arrays.

  4. Multiwavelength study of Chandra X-ray sources in the Antennae

    Science.gov (United States)

    Clark, D. M.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. L.; Barry, D. J.; Ptak, A. F.; Colbert, E. J. M.

    2011-01-01

    We use Wide-field InfraRed Camera (WIRC) infrared (IR) images of the Antennae (NGC 4038/4039) together with the extensive catalogue of 120 X-ray point sources to search for counterpart candidates. Using our proven frame-tie technique, we find 38 X-ray sources with IR counterparts, almost doubling the number of IR counterparts to X-ray sources that we first identified. In our photometric analysis, we consider the 35 IR counterparts that are confirmed star clusters. We show that the clusters with X-ray sources tend to be brighter, Ks≈ 16 mag, with (J-Ks) = 1.1 mag. We then use archival Hubble Space Telescope (HST) images of the Antennae to search for optical counterparts to the X-ray point sources. We employ our previous IR-to-X-ray frame-tie as an intermediary to establish a precise optical-to-X-ray frame-tie with <0.6 arcsec rms positional uncertainty. Due to the high optical source density near the X-ray sources, we determine that we cannot reliably identify counterparts. Comparing the HST positions to the 35 identified IR star cluster counterparts, we find optical matches for 27 of these sources. Using Bruzual-Charlot spectral evolutionary models, we find that most clusters associated with an X-ray source are massive, and young, ˜ 106 yr.

  5. The Application of Structured Job Analysis Information Based on the Position Analysis Questionnaire (PAQ). Final Report No. 9.

    Science.gov (United States)

    McCormick, Ernest J.

    The Position Analysis Questionnaire (PAQ) is a job analysis instrument consisting of 187 job elements organized into six divisions. The PAQ was used in the eight studies summarized in this final report. The studies were: (1) ratings of the attribute requirements of PAQ job elements, (2) a series of principal components analyses of these attribute…

  6. Methodological Approach to Company Cash Flows Target-Oriented Forecasting Based on Financial Position Analysis

    OpenAIRE

    Sergey Krylov

    2012-01-01

    The article treats a new methodological approach to the company cash flows target-oriented forecasting based on its financial position analysis. The approach is featured to be universal and presumes application of the following techniques developed by the author: financial ratio values correction techniques and correcting cash flows techniques. The financial ratio values correction technique assumes to analyze and forecast company financial position while the correcting cash flows technique i...

  7. Gram-negative and -positive bacteria differentiation in blood culture samples by headspace volatile compound analysis.

    Science.gov (United States)

    Dolch, Michael E; Janitza, Silke; Boulesteix, Anne-Laure; Graßmann-Lichtenauer, Carola; Praun, Siegfried; Denzer, Wolfgang; Schelling, Gustav; Schubert, Sören

    2016-12-01

    Identification of microorganisms in positive blood cultures still relies on standard techniques such as Gram staining followed by culturing with definite microorganism identification. Alternatively, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry or the analysis of headspace volatile compound (VC) composition produced by cultures can help to differentiate between microorganisms under experimental conditions. This study assessed the efficacy of volatile compound based microorganism differentiation into Gram-negatives and -positives in unselected positive blood culture samples from patients. Headspace gas samples of positive blood culture samples were transferred to sterilized, sealed, and evacuated 20 ml glass vials and stored at -30 °C until batch analysis. Headspace gas VC content analysis was carried out via an auto sampler connected to an ion-molecule reaction mass spectrometer (IMR-MS). Measurements covered a mass range from 16 to 135 u including CO2, H2, N2, and O2. Prediction rules for microorganism identification based on VC composition were derived using a training data set and evaluated using a validation data set within a random split validation procedure. One-hundred-fifty-two aerobic samples growing 27 Gram-negatives, 106 Gram-positives, and 19 fungi and 130 anaerobic samples growing 37 Gram-negatives, 91 Gram-positives, and two fungi were analysed. In anaerobic samples, ten discriminators were identified by the random forest method allowing for bacteria differentiation into Gram-negative and -positive (error rate: 16.7 % in validation data set). For aerobic samples the error rate was not better than random. In anaerobic blood culture samples of patients IMR-MS based headspace VC composition analysis facilitates bacteria differentiation into Gram-negative and -positive.

  8. Antenna development for astroparticle and radioastronomy experiments

    Energy Technology Data Exchange (ETDEWEB)

    Charrier, Didier, E-mail: charrier@emn.fr [Subatech, Ecole des Mines de Nantes - CNRS/IN2P3 - Universite de Nantes (France)

    2012-01-11

    An active dipole antenna is in operation since five years at the Nancay radio Observatory (France) in the CODALEMA experiment. A new version of this active antenna has been developed, whose shape gave its name of 'Butterfly' antenna. Compared to the previous version, this new antenna has been designed to be more efficient at low frequencies, which could permit the detection of atmospheric showers at large distances. Despite a size of only 2 m Multiplication-Sign 1 m in each polarization, its sensitivity is excellent in the 30-80 MHz bandwidth. Three antennas in dual polarization were installed on the CODALEMA experiment, and four other have been recently installed on the Auger area in the scope of the AERA project. The main characteristics of the Butterfly antenna are detailed with an emphasis on its key features which make it a good candidate for the low frequency radioastronomy and the radio detection of transients induced by high energy cosmic rays.

  9. Millimeter-wave antennas configurations and applications

    CERN Document Server

    du Preez, Jaco

    2016-01-01

    This book comprehensively reviews the state of the art in millimeter-wave antennas, traces important recent developments and provides information on a wide range of antenna configurations and applications. While fundamental theoretical aspects are discussed whenever necessary, the book primarily focuses on design principles and concepts, manufacture, measurement techniques, and practical results. Each of the various antenna types scalable to millimeter-wave dimensions is considered individually, with coverage of leaky-wave and surface-wave antennas, printed antennas, integrated antennas, and reflector and lens systems. The final two chapters address the subject from a systems perspective, providing an overview of supporting circuitry and examining in detail diverse millimeter-wave applications, including high-speed wireless communications, radio astronomy, and radar. The vast amount of information now available on millimeter-wave systems can be daunting for researchers and designers entering the field. This b...

  10. A Review of Antennas for Picosatellite Applications

    Directory of Open Access Journals (Sweden)

    Abdul Halim Lokman

    2017-01-01

    Full Text Available Cube Satellite (CubeSat technology is an attractive emerging alternative to conventional satellites in radio astronomy, earth observation, weather forecasting, space research, and communications. Its size, however, poses a more challenging restriction on the circuitry and components as they are expected to be closely spaced and very power efficient. One of the main components that will require careful design for CubeSats is their antennas, as they are needed to be lightweight, small in size, and compact or deployable for larger antennas. This paper presents a review of antennas suitable for picosatellite applications. An overview of the applications of picosatellites will first be explained, prior to a discussion on their antenna requirements. Material and antenna topologies which have been used will be subsequently discussed prior to the presentation of several deployable configurations. Finally, a perspective and future research work on CubeSat antennas will be discussed in the conclusion.

  11. Metamaterial Embedded Wearable Rectangular Microstrip Patch Antenna

    Directory of Open Access Journals (Sweden)

    J. G. Joshi

    2012-01-01

    Full Text Available This paper presents an indigenous low-cost metamaterial embedded wearable rectangular microstrip patch antenna using polyester substrate for IEEE 802.11a WLAN applications. The proposed antenna resonates at 5.10 GHz with a bandwidth and gain of 97 MHz and 4.92 dBi, respectively. The electrical size of this antenna is 0.254λ×0.5λ. The slots are cut in rectangular patch to reduce the bending effect. This leads to mismatch the impedance at WLAN frequency band; hence, a metamaterial square SRR is embedded inside the slot. A prototype antenna has been fabricated and tested, and the measured results are presented in this paper. The simulated and measured results of the proposed antenna are found to be in good agreement. The bending effect on the performance of this antenna is experimentally verified.

  12. Spherical near-field antenna measurements — The most accurate antenna measurement technique

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2016-01-01

    The spherical near-field antenna measurement technique combines several advantages and generally constitutes the most accurate technique for experimental characterization of radiation from antennas. This paper/presentation discusses these advantages, briefly reviews the early history and present...

  13. Embodied positioning/discourse analysis of a research based leadership development forum

    DEFF Research Database (Denmark)

    Bager, Ann

    2018-01-01

    The present article engages a discourse analysis of identity work as it is accomplished in a research and dialogue based leadership development forum in a university setting. It displays how different interactional setups in a positioning exercise prompt diverse spaces of possibilities that shape...... the identity work in situ. Through a micro-generic positioning analysis of the participants’ small story efforts (M. Bamberg, 2006; M. Bamberg & Georgakopoulou, 2008) combined with an analysis of dialogicality and other-orientation (Bakhtin, 1986; Linell, 2009) it is shown how counter and complicit discourses...... as a natural positive phenomenon with attached emancipating consequences. It aspires to emphasize both the boarder (D) and the local (d) dimensions of discourse, which is increasingly pursued and recommended within the field of interaction, dialogue and discourse studies. (Bager, 2013; Bager et al...

  14. The multilevel analysis of surface acting and mental health: A moderation of positive group affective tone

    Science.gov (United States)

    Lee, Meng-Shiu; Huang, Jui-Chan; Wu, Tzu-Jung

    2017-06-01

    The purpose of this study is to investigate the relationship among surface acting, mental health, and positive group affective tone. According to the prior theory, this study attempts to establish a comprehensive research framework among these variables, and furthermore tests the moderating effect of positive group affective tone. Data were collected from 435 employees in 52 service industrial companies by questionnaire, and this study conducted multilevel analysis. The results showed that surface acting will negatively affect the mental health. In addition, the positive group affective tone have significant moderating effect on the relationship among surface acting and mental health. Finally, this study discusses managerial implications and highlights future research suggestions.

  15. VAlidation STandard antennas: Past, present and future

    DEFF Research Database (Denmark)

    Drioli, Luca Salghetti; Ostergaard, A; Paquay, M

    2011-01-01

    designed for validation campaigns of antenna measurement ranges. The driving requirements of VAST antennas are their mechanical stability over a given operational temperature range and with respect to any orientation of the gravity field. The mechanical design shall ensure extremely stable electrical....../V-band of telecom satellites. The paper will address requirements for future VASTs and possible architecture for multi-frequency Validation Standard antennas....

  16. International Mapping of Antenna-Measurement Facilities

    DEFF Research Database (Denmark)

    Boccia, Luigi; Breinbjerg, Olav; Di Massa, Giuseppe

    2006-01-01

    This paper presents a comprehensive international mapping of antenna-measurement facilities. This initiative, conducted within the framework of the Antenna Centre of Excellence (ACE) of the European Union, is oriented toward all institutions having research, development, or operational activities...... measurements, in particular from the wireless communication industry, to identify and contact antenna-measurement facilities. The first phase of the mapping showed a significant and encouraging reaction to this initiative, with more than 50 European facilities currently registered. The next phase aims...

  17. Porous textile antenna designs for improved wearability

    Science.gov (United States)

    Shahariar, Hasan; Soewardiman, Henry; Muchler, Clifford A.; Adams, Jacob J.; Jur, Jesse S.

    2018-04-01

    Textile antennas are an integral part of the next generation personalized wearable electronics system. However, the durability of textile antennas are rarely discussed in the literature. Typical textile antennas are prone to damage during normal wearable user scenarios, washing, and heat cycling over time. Fabricating a durable, washable, flexible, and breathable (like textile materials) antenna is challenging due to the incompatibility of the mechanical properties of conductive materials and soft textile materials. This paper describes a scalable screen printing process on an engineered nonwoven substrate to fabricate microstrip patch antennas with enhanced durability. This work used an Evolon® nonwoven substrate with low surface roughness (˜Ra = 18 μm) and high surface area (˜2.05 mm2 mm-2 of fabric area) compared to traditional textile materials, which allows the ink to penetrate evenly in the fiber bulk with its strong capillary wicking force and enhances print resolution. The composite layer of ink and fiber is conductive and enables the antennas to maintain high mechanical flexibility without varying its RF (Radio Frequency) properties. Additionally, the antennas are packaged by laminating porous polyurethane web to make the device durable and washable. The fully packaged antennas maintain the structural flexibility and RF functionality after 15 cycles of washing and drying. To improve the air permeability and enhance flexibility the antenna is also modified by incorporating holes in the both patch and ground layer of the antenna. The antennas were analyzed before and after submerging in water to observe the effect of wetting and drying with respect to frequency response. The porous antenna with holes recovered 3x times faster than the one without holes (solid) from fully wet state (saturated with water) to the dry state, demonstrating its potential use as a moisture sensor system.

  18. Reconfigurable antennas radiations using plasma Faraday cage

    OpenAIRE

    Barro , Oumar Alassane; Himdi , Mohamed; Lafond , Olivier

    2015-01-01

    International audience; This letter presents a new reconfigurable plasma antenna associated with a Faraday cage. The Faraday cage is realized using a fluorescent lamp. A patch antenna with a broadside radiation pattern or a monopole antenna with an end-fire radiation pattern , operating at 2.45 GHz, is placed inside Faraday cage. The performance of the reconfigurable system is observed in terms of input reflection coefficient, gain and radiation pattern via simulation and measurement. It is s...

  19. Resonance of Superconducting Microstrip Antenna with Aperture in the Ground Plane

    Directory of Open Access Journals (Sweden)

    S. Benkouda

    2013-08-01

    Full Text Available This paper presents a rigorous full-wave analysis of a high Tc superconducting rectangular microstrip antenna with a rectangular aperture in the ground plane. To include the effect of the superconductivity of the microstrip patch in the full-wave analysis, a complex surface impedance is considered. The proposed approach is validated by comparing the computed results with previously published data. Results showing the effect of the aperture on the resonance of the superconducting microstrip antenna are given.

  20. Design of reconfigurable antennas using graph models

    CERN Document Server

    Costantine, Joseph; Christodoulou, Christos G; Christodoulou, Christos G

    2013-01-01

    This lecture discusses the use of graph models to represent reconfigurable antennas. The rise of antennas that adapt to their environment and change their operation based on the user's request hasn't been met with clear design guidelines. There is a need to propose some rules for the optimization of any reconfigurable antenna design and performance. Since reconfigurable antennas are seen as a collection of self-organizing parts, graph models can be introduced to relate each possible topology to a corresponding electromagnetic performance in terms of achieving a characteristic frequency of oper

  1. Handbook of smart antennas for RFID systems

    CERN Document Server

    2010-01-01

    The Handbook of Smart Antennas for RFID Systems is a single comprehensive reference on the smart antenna technologies applied to RFID. This book will provide a timely reference book for researchers and students in the areas of both smart antennas and RFID technologies. It is the first book to combine two of the most important wireless technologies together in one book. The handbook will feature chapters by leading experts in both academia and industry offering an in-depth description of terminologies and concepts related to smart antennas in various RFID systems applications.

  2. Thermal Loss in High-Q Antennas

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Bahramzy, Pevand; Svendsen, Simon

    2014-01-01

    Tunable antennas are very promising for future generations of mobile communications, where antennas are required to cover a wide range operating bands. This letter aims at characterizing the loss mechanism of tunable antennas. Tunable antennas typically exhibit a high Quality factor (Q), which ca...... lead to thermal loss due to the conductivity of the metal. The investigation shows that copper loss is non-negligible for high Q values. In the proposed design the copper loss is 2 dB, for a Q of 260 at 700 MHz....

  3. MILA Antenna Control Unit Replacement Project

    Science.gov (United States)

    Bresette, Jeremy

    2007-01-01

    The Air to Ground Subsystem (AGS) Antenna Control Units at the MILA Ground Network Tracking Station are at end-of-life and are being replaced. AGS consists of two antennas at MILA (Quad-Helix and Teltrac). Software was taken from the existing Subsystem Controller and modified for the Antenna Control Unit (ACU). The software is capable of receiving and sending commands to and from the ACU. Moving the azimuth clockwise, counterclockwise, moving the elevation up or down, turning servo power on and off, and inputting azimuth and elevation angles are commands that the antenna can receive.

  4. A Design of Double Broadband MIMO Antenna

    Directory of Open Access Journals (Sweden)

    Yanfeng Geng

    2015-01-01

    Full Text Available The MIMO antenna applied to LTE mobile system should be miniaturization and can work in the current communication frequency band; isolation between each antenna unit also should be good so as to reduce loss of radio wave energy and improve the antenna performance of the MIMO system. This paper puts forward the design scheme of a broadband MIMO double antenna. And the design of antenna unit and debugging and related technical measures, such as bending antenna bracket, are both presented; the integration design of high isolation of ultra broadband MIMO antenna is realized on the plate with the volume of 100 × 52 × 0.8 mm3; antenna working bands are 698 MHz~960 MHz and 1710 MHz~2700 MHz; in the whole spectrum, the 10 dB of port isolation can be basically achieved; in low frequency band, the isolation degree of antenna port can reach 12 dB.

  5. Vivaldi Antenna for RF Energy Harvesting

    Directory of Open Access Journals (Sweden)

    J. Schneider

    2016-12-01

    Full Text Available Energy harvesting is a future technology for capturing ambient energy from the environment to be recycled to feed low-power devices. A planar antipodal Vivaldi antenna is presented for gathering energy from GSM, WLAN, UMTS and related applications. The designed antenna has the potential to be used in energy harvesting systems. Moreover, the antenna is suitable for UWB applications, because it operates according to FCC regulations (3.1 – 10.6 GHz. The designed antenna is printed on ARLON 600 substrate and operates in frequency band from 0.810 GHz up to more than 12 GHz. Experimental results show good conformity with simulated performance.

  6. Genome-wide analysis of positively selected genes in seasonal and non-seasonal breeding species.

    Directory of Open Access Journals (Sweden)

    Yuhuan Meng

    Full Text Available Some mammals breed throughout the year, while others breed only at certain times of year. These differences in reproductive behavior can be explained by evolution. We identified positively-selected genes in two sets of species with different degrees of relatedness including seasonal and non-seasonal breeding species, using branch-site models. After stringent filtering by sum of pairs scoring, we revealed that more genes underwent positive selection in seasonal compared with non-seasonal breeding species. Positively-selected genes were verified by cDNA mapping of the positive sites with the corresponding cDNA sequences. The design of the evolutionary analysis can effectively lower the false-positive rate and thus identify valid positive genes. Validated, positively-selected genes, including CGA, DNAH1, INVS, and CD151, were related to reproductive behaviors such as spermatogenesis and cell proliferation in non-seasonal breeding species. Genes in seasonal breeding species, including THRAP3, TH1L, and CMTM6, may be related to the evolution of sperm and the circadian rhythm system. Identification of these positively-selected genes might help to identify the molecular mechanisms underlying seasonal and non-seasonal reproductive behaviors.

  7. Dynamic Positioning Capability Analysis for Marine Vessels Based on A DPCap Polar Plot Program

    Science.gov (United States)

    Wang, Lei; Yang, Jian-min; Xu, Sheng-wen

    2018-03-01

    Dynamic positioning capability (DPCap) analysis is essential in the selection of thrusters, in their configuration, and during preliminary investigation of the positioning ability of a newly designed vessel dynamic positioning system. DPCap analysis can help determine the maximum environmental forces, in which the DP system can counteract in given headings. The accuracy of the DPCap analysis is determined by the precise estimation of the environmental forces as well as the effectiveness of the thrust allocation logic. This paper is dedicated to developing an effective and efficient software program for the DPCap analysis for marine vessels. Estimation of the environmental forces can be obtained by model tests, hydrodynamic computation and empirical formulas. A quadratic programming method is adopted to allocate the total thrust on every thruster of the vessel. A detailed description of the thrust allocation logic of the software program is given. The effectiveness of the new program DPCap Polar Plot (DPCPP) was validated by a DPCap analysis for a supply vessel. The present study indicates that the developed program can be used in the DPCap analysis for marine vessels. Moreover, DPCap analysis considering the thruster failure mode might give guidance to the designers of vessels whose thrusters need to be safer.

  8. Feasibility of antenna-to-antenna isolation measurements at S-band in the Facility for Antenna and Radar-cross-section Measurements (FARM)

    Energy Technology Data Exchange (ETDEWEB)

    Brock, Billy C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-01-01

    Frequency-domain antenna-coupling measurements performed in the compact-range room of the FARM, will actually be dominated by reflected components from the ceiling, floor, walls, etc., not the direct freespace coupling. Consequently, signal processing must be applied to the frequency-domain data to extract the direct free-space coupling. The analysis presented above demonstrates that it is possible to do so successfully.

  9. A 3D printed helical antenna with integrated lens

    KAUST Repository

    Farooqui, Muhammad Fahad; Shamim, Atif

    2015-01-01

    A novel antenna configuration comprising a helical antenna with an integrated lens is demonstrated in this work. The antenna is manufactured by a unique combination of 3D printing of plastic material (ABS) and inkjet printing of silver nano

  10. Inkjet-Printed Ultra Wide Band Fractal Antennas

    KAUST Repository

    Maza, Armando Rodriguez

    2012-01-01

    reduction, a Cantor-based fractal antenna which performs a larger bandwidth compared to previously published UWB Cantor fractal monopole antenna, and a 3D loop fractal antenna which attains miniaturization, impedance matching and multiband characteristics

  11. Development of Novel Integrated Antennas for CubeSats

    Data.gov (United States)

    National Aeronautics and Space Administration — The antenna system on a small satellite is a critical component, as a failure of the antenna can lead to mission failure. Present antenna systems are typically wire...

  12. A Competitive Strategic Position Analysis of Major Container Ports in Southeast Asia

    Directory of Open Access Journals (Sweden)

    Viet Linh Dang

    2017-03-01

    Full Text Available The importance of planning strategies to achieve higher competitiveness has become more apparent in the context of seaports since seaports have been encountering quickly changing and highly competitive business environments. Therefore, the strategic competitive position of seaports needs to be investigated using strategic positioning methods. The purpose of this study was to analyze the competitive positions of the top 20 container ports of five countries in the Association of Southeast Asian Nations (ASEAN-5 in six years from 2009 to 2014 using dynamic portfolio analysis. This study aims to fill the gap in research on the competitive strategic position and analysis of Southeast Asian container ports in order to allow seaport operators to visualize the position and progress of selected ports as well as to predict the future development possibilities of seaports. The findings revealed effective operations at the following ports that retained their dominant positions during the duration of the study: Port Klang, Tanjung Pelepas (Malaysia, Manila (the Philippines, Laem Chabang (Thailand, and Tan Cang Sai Gon (Vietnam. However, findings revealed a common deterioration at other ports studied.

  13. Resonant Elements for Tunable Reflectarray Antenna Design

    Directory of Open Access Journals (Sweden)

    M. Y. Ismail

    2012-01-01

    Full Text Available This paper presents an accurate analysis of different configurations of reflectarray resonant elements that can be used for the design of passive and tunable reflectarrays. Reflection loss and bandwidth performances of these reflectarray elements have been analyzed in the X-band frequency range with the Finite Integral Method technique, and the results have been verified by the waveguide scattering parameter measurements. The results demonstrate a reduction in the phase errors offering an increased static linear phase range of 225° which allows to improve the bandwidth performance of single layer reflectarray antenna. Moreover a maximum dynamic phase range of 320° and a volume reduction of 22.15% have been demonstrated for a 10 GHz reflectarray element based on the use of rectangular patch with an embedded circular slot.

  14. Receive antenna selection for underlay cognitive radio with instantaneous interference constraint

    KAUST Repository

    Hanif, Muhammad Fainan

    2015-06-01

    Receive antenna selection is a low complexity scheme to reap diversity benefits.We analyze the performance of a receive antenna selection scheme in spectrum sharing systems where the antenna that results in highest signal-to-interference plus noise ratio at the secondary receiver is selected to improve the performance of secondary transmission. Exact and asymptotic behaviours of the received SINR are derived for both general and interference limited scenarios over general fading environment. These results are then applied to the outage and average bit error rate analysis when the secondary transmitter changes the transmit power in finite discrete levels to satisfy the instantaneous interference constraint at the primary receiver.

  15. Optimal left ventricular lead position assessed with phase analysis on gated myocardial perfusion SPECT

    International Nuclear Information System (INIS)

    Boogers, Mark J.; Chen, Ji; Garcia, Ernest V.; Bommel, Rutger J. van; Borleffs, C.J.W.; Schalij, Martin J.; Wall, Ernst E. van der; Bax, Jeroen J.; Dibbets-Schneider, Petra; Hiel, Bernies van der; Younis, Imad Al

    2011-01-01

    The aim of the current study was to evaluate the relationship between the site of latest mechanical activation as assessed with gated myocardial perfusion SPECT (GMPS), left ventricular (LV) lead position and response to cardiac resynchronization therapy (CRT). The patient population consisted of consecutive patients with advanced heart failure in whom CRT was currently indicated. Before implantation, 2-D echocardiography and GMPS were performed. The echocardiography was performed to assess LV end-systolic volume (LVESV), LV end-diastolic volume (LVEDV) and LV ejection fraction (LVEF). The site of latest mechanical activation was assessed by phase analysis of GMPS studies and related to LV lead position on fluoroscopy. Echocardiography was repeated after 6 months of CRT. CRT response was defined as a decrease of ≥15% in LVESV. Enrolled in the study were 90 patients (72% men, 67±10 years) with advanced heart failure. In 52 patients (58%), the LV lead was positioned at the site of latest mechanical activation (concordant), and in 38 patients (42%) the LV lead was positioned outside the site of latest mechanical activation (discordant). CRT response was significantly more often documented in patients with a concordant LV lead position than in patients with a discordant LV lead position (79% vs. 26%, p<0.01). After 6 months, patients with a concordant LV lead position showed significant improvement in LVEF, LVESV and LVEDV (p<0.05), whereas patients with a discordant LV lead position showed no significant improvement in these variables. Patients with a concordant LV lead position showed significant improvement in LV volumes and LV systolic function, whereas patients with a discordant LV lead position showed no significant improvements. (orig.)

  16. Identifying Skill Requirements for GIS Positions: A Content Analysis of Job Advertisements

    Science.gov (United States)

    Hong, Jung Eun

    2016-01-01

    This study identifies the skill requirements for geographic information system (GIS) positions, including GIS analysts, programmers/developers/engineers, specialists, and technicians, through a content analysis of 946 GIS job advertisements from 2007-2014. The results indicated that GIS job applicants need to possess high levels of GIS analysis…

  17. An Analysis of CONUS Based Deployment of Pseudolites for Positioning, Navigation and Timing (PNT) Systems

    Science.gov (United States)

    2015-09-17

    incorporate a master “ time - keeper ” or reference transmitter that other receiver/transmitters can synchronize with. Currently, GPS provides about 1 m...AN ANALYSIS OF CONUS BASED DEPLOYMENT OF PSEUDOLITES FOR POSITIONING, NAVIGATION AND TIMING (PNT...NAVIGATION AND TIMING (PNT) SYSTEMS THESIS Presented to the Faculty Department of Systems Engineering and Management Graduate School of

  18. Stacker’s Crane Position Fixing Based on Real Time Image Processing and Analysis

    Directory of Open Access Journals (Sweden)

    Kmeid Saad

    2015-06-01

    Full Text Available This study illustrates the usage of stacker cranes and image processing in automated warehouse systems. The aim is to use real time image processing and analysis for a stacker’s crane position fixing in order to use it as a pick-up and delivery system (P/D, to be controlled by a programmable logic controller unit (PLC.

  19. The effect of altered road markings on speed and lateral position : a meta-analysis.

    NARCIS (Netherlands)

    Davidse, R.J. Driel, C.J.G. van & Goldenbeld, C.

    2004-01-01

    This report describes the results of a meta-analysis of a number of small-scale studies into the effects of changed road markings on the speed and lateral position of motor vehicles. It was examined whether predictions can be made about the general effects of altered road markings. Several kinds of

  20. Attribute Ratings and Profiles of the Job Elements of the Position Analysis Questionnaire (PAQ).

    Science.gov (United States)

    Marquardt, Lloyd D.; McCormick, Ernest J.

    The primary purpose of this study was to obtain estimates of the human attribute requirements of the job elements of the Position Analysis Questionnaire (PAQ). A secondary purpose was to explore the reliability of job-related ratings as a function of the number of raters. A taxonomy of 76 human attributes was used and ratings of the relevance of…

  1. Can Raters with Reduced Job Descriptive Information Provide Accurate Position Analysis Questionnaire (PAQ) Ratings?

    Science.gov (United States)

    Friedman, Lee; Harvey, Robert J.

    1986-01-01

    Job-naive raters provided with job descriptive information made Position Analysis Questionnaire (PAQ) ratings which were validated against ratings of job analysts who were also job content experts. None of the reduced job descriptive information conditions enabled job-naive raters to obtain either acceptable levels of convergent validity with…

  2. Experimental application of QCD antennas

    International Nuclear Information System (INIS)

    Bobrovskyi, Sergei

    2010-02-01

    A serious problem in searches for new physics at the LHC is the rejection of QCD induced multijet events. In this thesis the formalism of QCD antenna variables based on the SPHEL approximation of QCD matrix elements is applied for the rst time on experimentally reconstructed jets in order to discriminate QCD from supersymmetric processes. The new observables provide additional information with respect to traditional event shape variables. Albeit correlated with experimentally measured missing transverse energy, the variables can be used to improve the signal to background ratio. (orig.)

  3. Experimental application of QCD antennas

    Energy Technology Data Exchange (ETDEWEB)

    Bobrovskyi, Sergei

    2010-02-15

    A serious problem in searches for new physics at the LHC is the rejection of QCD induced multijet events. In this thesis the formalism of QCD antenna variables based on the SPHEL approximation of QCD matrix elements is applied for the rst time on experimentally reconstructed jets in order to discriminate QCD from supersymmetric processes. The new observables provide additional information with respect to traditional event shape variables. Albeit correlated with experimentally measured missing transverse energy, the variables can be used to improve the signal to background ratio. (orig.)

  4. Solar energy collection by antennas

    Energy Technology Data Exchange (ETDEWEB)

    Corkish, R.; Green, M.A.; Puzzer, T. [University of New South Wales, Sydney (Australia). Centre for Advanced Silicon Photovoltaics and Photonics

    2002-12-01

    The idea of collecting solar electromagnetic radiation with antenna-rectifier (rectenna) structures was proposed three decades ago but has not yet been achieved. The idea has been promoted as having potential to achieve efficiency approaching 100% but thermodynamic considerations imply a lower limit of 85.4% for a non-frequency-selective rectenna and 86.8% for one with infinite selectivity, assuming maximal concentration in each case. This paper reviews the history and technical context of solar rectennas and discusses the major issues: thermodynamic efficiency limits, rectifier operation at optical frequencies, harmonics production and electrical noise. (author)

  5. Pattern Synthesis of Dual-band Shared Aperture Interleaved Linear Antenna Arrays

    Directory of Open Access Journals (Sweden)

    H. Guo

    2014-09-01

    Full Text Available This paper presents an approach to improve the efficiency of an array aperture by interleaving two different arrays in the same aperture area. Two sub-arrays working at different frequencies are interleaved in the same linear aperture area. The available aperture area is efficiently used. The element positions of antenna array are optimized by using Invasive Weed Optimization (IWO to reduce the peak side lobe level (PSLL of the radiation pattern. To overcome the shortness of traditional methods which can only fulfill the design of shared aperture antenna array working at the same frequency, this method can achieve the design of dual-band antenna array with wide working frequency range. Simulation results show that the proposed method is feasible and efficient in the synthesis of dual-band shared aperture antenna array.

  6. Design and Development of Compact Microstrip Patch Antenna for Wireless Applications

    Directory of Open Access Journals (Sweden)

    R. Nagendra

    2017-09-01

    Full Text Available In this paper, a novel dual band microstrip patch antenna based on composite patch antenna and radiating part. By selecting a suitable offset feed position, it is feasible to provide 50Ω characteristic impedance and thus making better impedance matching. The proposed antenna has been improved broader bandwidth by using RT Duroid substrate. The radiating part is plays a important role in creating a lower operating band (2.45 GHz in addition to achieve miniaturization. The proposed antenna has to be fabricated with RT / Duroid substrate and dimensions of 19 × 22 × 0.8 mm. The measured -10 dB bandwidth of 200 MHz at 2.45 GHz and 990 MHz at 5.45 GHz, which is quite useful for Industrial, Scientific and Medical (ISM and WLAN applications.

  7. The impact of the microphone position on the frequency analysis of snoring sounds.

    Science.gov (United States)

    Herzog, Michael; Kühnel, Thomas; Bremert, Thomas; Herzog, Beatrice; Hosemann, Werner; Kaftan, Holger

    2009-08-01

    Frequency analysis of snoring sounds has been reported as a diagnostic tool to differentiate between different sources of snoring. Several studies have been published presenting diverging results of the frequency analyses of snoring sounds. Depending on the position of the used microphones, the results of the frequency analysis of snoring sounds vary. The present study investigated the influence of different microphone positions on the outcome of the frequency analysis of snoring sounds. Nocturnal snoring was recorded simultaneously at six positions (air-coupled: 30 cm middle, 100 cm middle, 30 cm lateral to both sides of the patients' head; body contact: neck and parasternal) in five patients. The used microphones had a flat frequency response and a similar frequency range (10/40 Hz-18 kHz). Frequency analysis was performed by fast Fourier transformation and frequency bands as well as peak intensities (Peaks 1-5) were detected. Air-coupled microphones presented a wider frequency range (60 Hz-10 kHz) compared to contact microphones. The contact microphone at cervical position presented a cut off at frequencies above 300 Hz, whereas the contact microphone at parasternal position revealed a cut off above 100 Hz. On an exemplary base, the study demonstrates that frequencies above 1,000 Hz do appear in complex snoring patterns, and it is emphasised that high frequencies are imported for the interpretation of snoring sounds with respect to the identification of the source of snoring. Contact microphones might be used in screening devices, but for a natural analysis of snoring sounds the use of air-coupled microphones is indispensable.

  8. Large space antenna communications systems: Integrated Langley Research Center/Jet Propulsion Laboratory development activities. 2: Langley Research Center activities

    Science.gov (United States)

    Cambell, T. G.; Bailey, M. C.; Cockrell, C. R.; Beck, F. B.

    1983-01-01

    The electromagnetic analysis activities at the Langley Research Center are resulting in efficient and accurate analytical methods for predicting both far- and near-field radiation characteristics of large offset multiple-beam multiple-aperture mesh reflector antennas. The utilization of aperture integration augmented with Geometrical Theory of Diffraction in analyzing the large reflector antenna system is emphasized.

  9. Influence of magnetic window for mitigating on antenna performance in plasma

    International Nuclear Information System (INIS)

    Xing Xiaojun; Zhao Qing; Zheng Ling; Tang Jianming; Chen Yuxu; Liu Shuzhang

    2013-01-01

    The communication blackout caused by the plasma sheath around a hypersonic vehicle flying in atmosphere is a problem to aerospace vehicles. When a vehicle enters the communication blackout phase, it loses all communication including GPS signals, data telemetry, and voice communication. The communication blackout becomes an even more critical issue with development of re-entry vehicles missions. During such missions, the communication loss caused by radio blackout introduces significant problems related to the vehicle's safety. This paper analyzes the interaction of electromagnetic waves with plasma in an external magnetic field in theory. The external magnetic field can improve the transmission of electromagnetic waves in plasma from the theoretical analysis. The magnetic window antenna which is designed by integrating the permanent magnet and the helical antenna is proposed. The performance of the helical antenna and magnetic window antenna in plasma is studied. The simulation results show that using the magnetic window antenna can weaken the influence on the antenna performance in plasma. The magnetic window antenna makes it possible for electromagnetic waves to spread in plasma. This provides another way to solve the problem of spacecraft re-entry blackout. (authors)

  10. Implementation and investigation of circular slot UWB antenna with dual-band-notched characteristics

    Directory of Open Access Journals (Sweden)

    DadashZadeh Gholamreza

    2011-01-01

    Full Text Available Abstract The design and analysis of an ultra wideband aperture antenna with dual-band-notched characteristics are presented. The proposed antenna consists of a circular ring exciting stub on the front side and a circular slot on the back ground plane. By utilizing a parasitic strip and a T-shaped stub on the antenna structure, two notched bands of 850 MHz (3.5-4.35 GHz and 900 MHz (5.05-5.95 GHz are achieved. The proposed antenna is fabricated and measured. Measured results show that this antenna operates from 2.3 GHz to upper 11 GHz for voltage standing wave ratio less than 2, except two frequency notched bands of 3.5-4.35 and 5.05-5.95 GHz. Moreover, the experimental results show that proposed antenna has stable radiation patterns and constant gain. A conceptual circuit model, which is based on the measured impedance of the proposed antenna, is also shown to investigate the dual-band-notched characteristics.

  11. RF current distribution and topology of RF sheath potentials in front of ICRF antennae

    International Nuclear Information System (INIS)

    Colas, L.; Heuraux, S.; Bremond, S.; Bosia, G.

    2005-01-01

    The 2D (radial/poloidal) spatial topology of RF-induced convective cells developing radially in front of ion cyclotron range of frequency (ICRF) antennae is investigated, in relation to the spatial distribution of RF currents over the metallic structure of the antenna. This is done via a Green's function, determined from the ICRF wave coupling equations, and well-suited to open field lines extending toroidally far away on both sides of the antenna. Using such formalism, combined with a full-wave calculation using the 3D antenna code ICANT (Pecoul S. et al 2000 Comput. Phys. Commun. 146 166-87), two classes of convective cells are analysed. The first one appears in front of phased arrays of straps, and depending on the strap phasing, its topology is interpreted using the poloidal profiles of either the RF current or the RF voltage of the strip line theory. The other class of convective cells is specific to antenna box corners and is evidenced for the first time. Based on such analysis, general design rules are worked out in order to reduce the RF-sheath potentials, which generalize those proposed in the earlier literature, and concrete antenna design options are tested numerically. The merits of aligning all strap centres on the same (tilted) flux tube, and of reducing the antenna box toroidal conductivity in its lower and upper parts, are discussed

  12. Transparent solar antenna of 28 GHz using transparent conductive oxides (TCO) thin film

    International Nuclear Information System (INIS)

    Mohd Ali, N I; Misran, N; Mansor, M F; Jamlos, M F

    2017-01-01

    This paper presents the analysis of 28GHz solar patch antenna using the variations of transparent conductive oxides (TCO) thin film as the radiating patch. Solar antenna is basically combining the function of antenna and solar cell into one device and helps to maximize the usage of surface area. The main problem of the existing solar antenna is the radiating patch which made of nontransparent material, such as copper, shadowing the solar cell and degrades the total solar efficiency. Hence, by using the transparent conductive oxides (TCO) thin film as the radiating patch, this problem can be tackled. The TCO thin film used is varied to ITO, FTO, AgHT-4, and AgHT-8 along with glass as substrate. The simulation of the antenna executed by using Computer Simulation Technology (CST) Microwave Studio software demonstrated at 28 GHz operating frequency for 5G band applications. The performance of the transparent antennas is compared with each other and also with the nontransparent patch antenna that using Rogers RT5880 as substrate, operating at the same resonance frequency and then, the material that gives the best performance is identified. (paper)

  13. Transparent solar antenna of 28 GHz using transparent conductive oxides (TCO) thin film

    Science.gov (United States)

    Ali, N. I. Mohd; Misran, N.; Mansor, M. F.; Jamlos, M. F.

    2017-05-01

    This paper presents the analysis of 28GHz solar patch antenna using the variations of transparent conductive oxides (TCO) thin film as the radiating patch. Solar antenna is basically combining the function of antenna and solar cell into one device and helps to maximize the usage of surface area. The main problem of the existing solar antenna is the radiating patch which made of nontransparent material, such as copper, shadowing the solar cell and degrades the total solar efficiency. Hence, by using the transparent conductive oxides (TCO) thin film as the radiating patch, this problem can be tackled. The TCO thin film used is varied to ITO, FTO, AgHT-4, and AgHT-8 along with glass as substrate. The simulation of the antenna executed by using Computer Simulation Technology (CST) Microwave Studio software demonstrated at 28 GHz operating frequency for 5G band applications. The performance of the transparent antennas is compared with each other and also with the nontransparent patch antenna that using Rogers RT5880 as substrate, operating at the same resonance frequency and then, the material that gives the best performance is identified.

  14. Determination of antenna factors using a three-antenna method at open-field test site

    Science.gov (United States)

    Masuzawa, Hiroshi; Tejima, Teruo; Harima, Katsushige; Morikawa, Takao

    1992-09-01

    Recently NIST has used the three-antenna method for calibration of the antenna factor of an antenna used for EMI measurements. This method does not require the specially designed standard antennas which are necessary in the standard field method or the standard antenna method, and can be used at an open-field test site. This paper theoretically and experimentally examines the measurement errors of this method and evaluates the precision of the antenna-factor calibration. It is found that the main source of the error is the non-ideal propagation characteristics of the test site, which should therefore be measured before the calibration. The precision of the antenna-factor calibration at the test site used in these experiments, is estimated to be 0.5 dB.

  15. 47 CFR 74.737 - Antenna location.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna location. 74.737 Section 74.737 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... Booster Stations § 74.737 Antenna location. (a) An applicant for a new low power TV, TV translator, or TV...

  16. 47 CFR 74.1237 - Antenna location.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna location. 74.1237 Section 74.1237 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... FM Broadcast Booster Stations § 74.1237 Antenna location. (a) An applicant for a new station to be...

  17. 3D printed helical antenna with lens

    KAUST Repository

    Farooqui, Muhammad Fahad; Shamim, Atif

    2016-01-01

    of 3D and 2D inkjet printing of dielectric and metallic inks respectively, we demonstrate a Fresnel lens that has been monolithically integrated to a non-planar antenna (helix) for the first time. Antenna measurements show that the integration of a

  18. 47 CFR 73.753 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 73.753 Section 73.753 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES International Broadcast Stations § 73.753 Antenna systems. All international broadcasting stations shall operate...

  19. Active patch antennas for transponder applications

    Energy Technology Data Exchange (ETDEWEB)

    Biffi Gentili, G; Avitabile, G; Bonifacio, F; Salvador, C [Florence Univ. (Italy). Dip. di Ingegneria Elettronica

    1996-01-01

    The paper deals with two patch antenna structures that are mainly taught for short range link and non-contact identification system (RFID). The proposed antennas were developed by starting from an original concept of cross-polarization usefully applicable, in compliance with european for transponder applications are described and experimental results are reported.

  20. Multiband Patch Antenna for Femtocell Application

    Directory of Open Access Journals (Sweden)

    M. R. Zaman

    2014-01-01

    Full Text Available A microstrip patch antenna for multiple LTE (long term evaluation frequency bands for femtocell application is proposed in this paper. Distributed antenna solution (DAS has been introduced in cellular network to achieve homogenous indoor coverage. Femtocell is the latest extension to these solutions. It is a smart solution to both coverage and capacity scales. Femtocell operation in LTE band is occupied by higher frequency bands. For multiband femtocell application, miniature antenna design is quite essential. The antenna proposed here is composed of basic monopole structure with two parasitic elements at both sides of the active element. A rectangular slot is introduced at the ground plane of the proposed antenna. The antenna is designed using ElnoS HK light CCL substrate material of relative permittivity of 9.4, dielectric loss-tangent of 0.003 and thickness of 3 mm. The S11 response of the antenna is shown to have a bandwidth of 1.01 GHz starting from 1.79 GHz to 2.8 GHz. The characteristics of the antenna are analysed using Ansoft HFSS software.

  1. Antenna Design Exploiting the Duplex Isolation

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Pedersen, Gert Frølund

    2013-01-01

    A novel design addressing the antenna bandwidth issue for future communication standards on handsets is presented. It consists of a tunableantenna- pair for operation with a tunable front-end. The antennas are narrow-band and frequency-reconfigurable. This Letter focuses on the low communication ...

  2. Wireless SAW Sensors Having Integrated Antennas

    Science.gov (United States)

    Gallagher, Mark (Inventor); Malocha, Donald C. (Inventor)

    2015-01-01

    A wireless surface acoustic wave sensor includes a piezoelectric substrate, a surface acoustic wave device formed on the substrate, and an antenna formed on the substrate. In some embodiments, the antenna is formed on the surface of the substrate using one or more of photolithography, thin film processing, thick film processing, plating, and printing.

  3. Qualifications and Competencies for Population Health Management Positions: A Content Analysis of Job Postings.

    Science.gov (United States)

    Meyer, Melanie

    2017-12-01

    The need for population health management expertise has increased as the health care industry shifts toward value-based care. However, many organizations report hiring gaps as they seek to fill positions. The purpose of this study was to analyze the types of population health management positions for which health care organizations are hiring, including qualifications and competencies required for these positions. A content analysis was conducted on 271 job postings collected during a 2-month period. A typology of qualifications and competencies was developed based on the content analysis. Profiles were generated for the top 5 job title classifications: directors, coordinators, care managers, analysts, and specialists. This study highlights the investment health care organizations are making in population health management and the prominent role these positions are playing in the health care environment today. Many organizations are building out population health management teams resulting in multiple positions at different levels being added. As the market demands competent candidates who are equipped with specialized population health expertise as well as practical experience in program development, technology applications, care management, and analytics, professional education programs will need to adapt curricula to address the required areas. Competencies for specific job title classifications may need further evaluation and refinement over time. Study results can be used by organizations for strategic planning, by educators to target needed qualifications and competencies, and by researchers and policy advisors to assess progress toward value-based care.

  4. GPS Antenna Data Needed : GPS Adjacent Band Compatibility Workshop Volpe Center, Cambridge MA

    Science.gov (United States)

    2014-09-18

    Topics. 1. Technical Objective: Receiver Antenna Mask and Electronics Data. 2. Definition of Receiver Antenna Mask. 3. Use of Receiver Antenna Mask. 4. Approaches to Generate the Antenna Mask. 5. Request for Receiver Antenna Data. 6. Next Steps.

  5. Super wideband characteristics of monopolar patch antenna

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2013-12-01

    Full Text Available A simple method of acquiring super wideband characteristics for monopolar patch antenna is proposed. Through adopting a modified cone as feeding and radiating structure, the monopolar patch antenna can reach the impedance bandwidth of more than 1:23.4 for voltage standing wave ratio (VSWR ≤ 2. In the whole operating band, the antenna has the like-monopole omnidirectional radiation patterns and the peak gains of 3.8–8.7 dB. Meanwhile, the height of the antenna is just 0.074λ(c, and the diameter of the radiated body is 0.205λ(c, which is smaller than other ultra-wideband omnidirectional antenna.

  6. Textile UWB Antenna Bending and Wet Performances

    Directory of Open Access Journals (Sweden)

    Mai A. R. Osman

    2012-01-01

    Full Text Available The vision and ideas of wearable computing systems describe future electronic systems as an integral part of our everyday clothing that provides the wearer with such intelligent personal assistants. Recently, there has been growing interest in the antenna community to merge between wearable systems technology, ultrawideband (UWB technology and textile technology. This work aimed to make closer steps towards real wearability by investigating the possibilities of designing wearable UWB antenna where textile materials are used for the substrate as well as the conducting parts of the designed antenna. Two types of conducting materials have been used for conducting parts, while a nonconducting fabric has been used as antenna substrate material. A set of comparative results of the proposed design were presented and discussed. Moreover, effects on the return loss by means of measurements for each fabricated antenna prototype under bent and fully wet conditions were discussed in more details.

  7. Present and future JET ICRF antennae

    International Nuclear Information System (INIS)

    Kaye, A.; Brown, T.; Bhatnagar, V.; Crawley, P.; Jacquinot, J.; Lobel, R.; Plancoulaine, J.; Rebut, P.H.; Wade, T.; Walker, C.

    1994-01-01

    Since the initial operation of the JET ICRF system in 1985, up to 22 MW has been coupled to the plasma, many heating scenarios have been demonstrated and the main technological problem of RF-specific impurity production overcome. Many developments of the antennae have taken place over this period, notably the replacement of the water-cooled nickel screens with indirectly cooled beryllium screens, and the forthcoming installation of eight new A2 antennae for operation during the pumped divertor phase of JET. The A2 antennae include enhanced provision for fast wave current drive experiments on JET. This paper describes the beryllium screens, the technological results from operation and subsequent inspection of these screens, the design of the A2 antennae and the results from high power RF testing of a model of the A2 antenna. (orig.)

  8. 5G MIMO Conformal Microstrip Antenna Design

    Directory of Open Access Journals (Sweden)

    Qian Wang

    2017-01-01

    Full Text Available With the development of wireless communication technology, 5G will develop into a new generation of wireless mobile communication systems. MIMO (multiple-input multiple-output technology is expected to be one of the key technologies in the field of 5G wireless communications. In this paper, 4 pairs of microstrip MIMO conformal antennas of 35 GHz have been designed. Eight-element microstrip Taylor antenna array with series-feeding not only achieves the deviation of the main lobe of the pattern but also increases the bandwidth of the antenna array and reduces sidelobe. MIMO antennas have been fabricated and measured. Measurement results match the simulation results well. The return loss of the antenna at 35 GHz is better than 20 dB, the first sidelobe level is −16 dB, and the angle between the main lobe and the plane of array is 60°.

  9. Target Localization with a Single Antenna via Directional Multipath Exploitation

    Directory of Open Access Journals (Sweden)

    Ali H. Muqaibel

    2015-01-01

    Full Text Available Target localization in urban sensing can benefit from angle dependency of the pulse shape at a radar receiver antenna. We propose a localization approach that utilizes the embedded directivity in ultra-wideband (UWB antennas to estimate target positions. A single radar unit sensing operation of indoor targets surrounded by interior walls is considered, where interior wall multipaths are exploited to provide target cross-range. This exploitation assumes resolvability of the multipath components, which is made possible by the virtue of using UWB radar signals. The proposed approach is most attractive when only few multipaths are detectable due to propagation obstructions or owing to low signal-to-noise ratios. Both simulated and experimental data are used to demonstrate the effectiveness of the proposed approach.

  10. Correction of failure in antenna array using matrix pencil technique

    International Nuclear Information System (INIS)

    Khan, SU; Rahim, MKA

    2017-01-01

    In this paper a non-iterative technique is developed for the correction of faulty antenna array based on matrix pencil technique (MPT). The failure of a sensor in antenna array can damage the radiation power pattern in terms of sidelobes level and nulls. In the developed technique, the radiation pattern of the array is sampled to form discrete power pattern information set. Then this information set can be arranged in the form of Hankel matrix (HM) and execute the singular value decomposition (SVD). By removing nonprincipal values, we obtain an optimum lower rank estimation of HM. This lower rank matrix corresponds to the corrected pattern. Then the proposed technique is employed to recover the weight excitation and position allocations from the estimated matrix. Numerical simulations confirm the efficiency of the proposed technique, which is compared with the available techniques in terms of sidelobes level and nulls. (paper)

  11. Trait and State Positive Emotional Experience in Schizophrenia: A Meta-Analysis

    Science.gov (United States)

    Yan, Chao; Cao, Yuan; Zhang, Yang; Song, Li-Ling; Cheung, Eric F. C.; Chan, Raymond C. K.

    2012-01-01

    Background Prior meta-analyses indicated that people with schizophrenia show impairment in trait hedonic capacity but retain their state hedonic experience (valence) in laboratory-based assessments. Little is known about what is the extent of differences for state positive emotional experience (especially arousal) between people with schizophrenia and healthy controls. It is also not clear whether negative symptoms and gender effect contribute to the variance of positive affect. Methods and Findings The current meta-analysis examined 21 studies assessing state arousal experience, 40 studies measuring state valence experience, and 47studies assessing trait hedonic capacity in schizophrenia. Patients with schizophrenia demonstrated significant impairment in trait hedonic capacity (Cohen’s d = 0.81). However, patients and controls did not statistically differ in state hedonic (valence) as well as exciting (arousal) experience to positive stimuli (Cohen’s d = −0.24 to 0.06). They also reported experiencing relatively robust state aversion and calmness to positive stimuli compared with controls (Cohen’s d = 0.75, 0.56, respectively). Negative symptoms and gender contributed to the variance of findings in positive affect, especially trait hedonic capacity in schizophrenia. Conclusions Our findings suggest that schizophrenia patients have no deficit in state positive emotional experience but impairment in “noncurrent” hedonic capacity, which may be mediated by negative symptoms and gender effect. PMID:22815785

  12. Sensitivity of the Positive and Negative Syndrome Scale (PANSS) in Detecting Treatment Effects via Network Analysis.

    Science.gov (United States)

    Esfahlani, Farnaz Zamani; Sayama, Hiroki; Visser, Katherine Frost; Strauss, Gregory P

    2017-12-01

    Objective: The Positive and Negative Syndrome Scale is a primary outcome measure in clinical trials examining the efficacy of antipsychotic medications. Although the Positive and Negative Syndrome Scale has demonstrated sensitivity as a measure of treatment change in studies using traditional univariate statistical approaches, its sensitivity to detecting network-level changes in dynamic relationships among symptoms has yet to be demonstrated using more sophisticated multivariate analyses. In the current study, we examined the sensitivity of the Positive and Negative Syndrome Scale to detecting antipsychotic treatment effects as revealed through network analysis. Design: Participants included 1,049 individuals diagnosed with psychotic disorders from the Phase I portion of the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) study. Of these participants, 733 were clinically determined to be treatment-responsive and 316 were found to be treatment-resistant. Item level data from the Positive and Negative Syndrome Scale were submitted to network analysis, and macroscopic, mesoscopic, and microscopic network properties were evaluated for the treatment-responsive and treatment-resistant groups at baseline and post-phase I antipsychotic treatment. Results: Network analysis indicated that treatment-responsive patients had more densely connected symptom networks after antipsychotic treatment than did treatment-responsive patients at baseline, and that symptom centralities increased following treatment. In contrast, symptom networks of treatment-resistant patients behaved more randomly before and after treatment. Conclusions: These results suggest that the Positive and Negative Syndrome Scale is sensitive to detecting treatment effects as revealed through network analysis. Its findings also provide compelling new evidence that strongly interconnected symptom networks confer an overall greater probability of treatment responsiveness in patients with

  13. Antenna complexes protect Photosystem I from Photoinhibition

    Science.gov (United States)

    Alboresi, Alessandro; Ballottari, Matteo; Hienerwadel, Rainer; Giacometti, Giorgio M; Morosinotto, Tomas

    2009-01-01

    Background Photosystems are composed of two moieties, a reaction center and a peripheral antenna system. In photosynthetic eukaryotes the latter system is composed of proteins belonging to Lhc family. An increasing set of evidences demonstrated how these polypeptides play a relevant physiological function in both light harvesting and photoprotection. Despite the sequence similarity between antenna proteins associated with the two Photosystems, present knowledge on their physiological role is mostly limited to complexes associated to Photosystem II. Results In this work we analyzed the physiological role of Photosystem I antenna system in Arabidopsis thaliana both in vivo and in vitro. Plants depleted in individual antenna polypeptides showed a reduced capacity for photoprotection and an increased production of reactive oxygen species upon high light exposure. In vitro experiments on isolated complexes confirmed that depletion of antenna proteins reduced the resistance of isolated Photosystem I particles to high light and that the antenna is effective in photoprotection only upon the interaction with the core complex. Conclusion We show that antenna proteins play a dual role in Arabidopsis thaliana Photosystem I photoprotection: first, a Photosystem I with an intact antenna system is more resistant to high light because of a reduced production of reactive oxygen species and, second, antenna chlorophyll-proteins are the first target of high light damages. When photoprotection mechanisms become insufficient, the antenna chlorophyll proteins act as fuses: LHCI chlorophylls are degraded while the reaction center photochemical activity is maintained. Differences with respect to photoprotection strategy in Photosystem II, where the reaction center is the first target of photoinhibition, are discussed. PMID:19508723

  14. Optimization of Antenna Current Feeding for the Alfvén Eigenmodes Active Diagnostic System of JET

    Science.gov (United States)

    Albarracin Manrique, Marcos A.; Ruchko, L.; Pires, C. J. A.; Galvão, R. M. O.; Elfimov, A. G.

    2018-04-01

    The possibility of exploring proper phasing of the feeding currents in the existing antenna of the Alfvén Eigenmodes Active Diagnostic system of JET, to excite pure toroidal spectra of Toroidal Alfvén Eigenmodes, is numerically investigated. Special attention is given to the actual perturbed fields excited in the plasma, which are calculated self-consistently using the antenna version of the CASTOR code. It is found that due to the close spacing of the JET antenna modules and quasi degeneracy of modes with medium to high values of the toroidal mode number n, although a proper choice of the phasing of the feeding currents of the antenna modules indeed leads to an increase of the perturbed fields of the selected mode, modes with nearby values of n are also excited with large amplitudes, so that a scheme to proper select the detected modes remains necessary. A scheme using different antenna position distribution is proposed to achieve successful optimization.

  15. Segmental Musculoskeletal Examinations using Dual-Energy X-Ray Absorptiometry (DXA: Positioning and Analysis Considerations

    Directory of Open Access Journals (Sweden)

    Nicolas H. Hart, Sophia Nimphius, Tania Spiteri, Jodie L. Cochrane, Robert U. Newton

    2015-09-01

    Full Text Available Musculoskeletal examinations provide informative and valuable quantitative insight into muscle and bone health. DXA is one mainstream tool used to accurately and reliably determine body composition components and bone mass characteristics in-vivo. Presently, whole body scan models separate the body into axial and appendicular regions, however there is a need for localised appendicular segmentation models to further examine regions of interest within the upper and lower extremities. Similarly, inconsistencies pertaining to patient positioning exist in the literature which influence measurement precision and analysis outcomes highlighting a need for standardised procedure. This paper provides standardised and reproducible: 1 positioning and analysis procedures using DXA and 2 reliable segmental examinations through descriptive appendicular boundaries. Whole-body scans were performed on forty-six (n = 46 football athletes (age: 22.9 ± 4.3 yrs; height: 1.85 ± 0.07 cm; weight: 87.4 ± 10.3 kg; body fat: 11.4 ± 4.5 % using DXA. All segments across all scans were analysed three times by the main investigator on three separate days, and by three independent investigators a week following the original analysis. To examine intra-rater and inter-rater, between day and researcher reliability, coefficients of variation (CV and intraclass correlation coefficients (ICC were determined. Positioning and segmental analysis procedures presented in this study produced very high, nearly perfect intra-tester (CV ≤ 2.0%; ICC ≥ 0.988 and inter-tester (CV ≤ 2.4%; ICC ≥ 0.980 reliability, demonstrating excellent reproducibility within and between practitioners. Standardised examinations of axial and appendicular segments are necessary. Future studies aiming to quantify and report segmental analyses of the upper- and lower-body musculoskeletal properties using whole-body DXA scans are encouraged to use the patient positioning and image analysis procedures

  16. The Digital Motion Control System for the Submillimeter Array Antennas

    Science.gov (United States)

    Hunter, T. R.; Wilson, R. W.; Kimberk, R.; Leiker, P. S.; Patel, N. A.; Blundell, R.; Christensen, R. D.; Diven, A. R.; Maute, J.; Plante, R. J.; Riddle, P.; Young, K. H.

    2013-09-01

    We describe the design and performance of the digital servo and motion control system for the 6-meter parabolic antennas of the Submillimeter Array (SMA) on Mauna Kea, Hawaii. The system is divided into three nested layers operating at a different, appropriate bandwidth. (1) A rack-mounted, real-time Unix system runs the position loop which reads the high resolution azimuth and elevation encoders and sends velocity and acceleration commands at 100 Hz to a custom-designed servo control board (SCB). (2) The microcontroller-based SCB reads the motor axis tachometers and implements the velocity loop by sending torque commands to the motor amplifiers at 558 Hz. (3) The motor amplifiers implement the torque loop by monitoring and sending current to the three-phase brushless drive motors at 20 kHz. The velocity loop uses a traditional proportional-integral-derivative (PID) control algorithm, while the position loop uses only a proportional term and implements a command shaper based on the Gauss error function. Calibration factors and software filters are applied to the tachometer feedback prior to the application of the servo gains in the torque computations. All of these parameters are remotely adjustable in the software. The three layers of the control system monitor each other and are capable of shutting down the system safely if a failure or anomaly occurs. The Unix system continuously relays the antenna status to the central observatory computer via reflective memory. In each antenna, a Palm Vx hand controller displays the complete system status and allows full local control of the drives in an intuitive touchscreen user interface. The hand controller can also be connected outside the cabin, a major convenience during the frequent reconfigurations of the interferometer. Excellent tracking performance ( 0.3‧‧ rms) is achieved with this system. It has been in reliable operation on 8 antennas for over 10 years and has required minimal maintenance.

  17. Telecommunications Antennas for the Juno Mission to Jupiter

    Science.gov (United States)

    Vacchione, Joseph D.; Kruid, Ronald C.; Prata, Aluizio, Jr.; Amaro, Luis R.; Mittskus, Anthony P.

    2012-01-01

    The Juno Mission to Jupiter requires a full sphere of coverage throughout its cruise to and mission at Jupiter. This coverage is accommodated through the use of five (5) antennas; forward facing low gain, medium gain, and high gain antennas, and an aft facing low gain antenna along with an aft mounted low gain antenna with a torus shaped antenna pattern. Three of the antennas (the forward low and medium gain antennas) are classical designs that have been employed on several prior NASA missions. Two of the antennas employ new technology developed to meet the Juno mission requirements. The new technology developed for the low gain with torus shaped radiation pattern represents a significant evolution of the bicone antenna. The high gain antenna employs a specialized surface shaping designed to broaden the antenna's main beam at Ka-band to ease the requirements on the spacecraft's attitude control system.

  18. On the performance of spectrum sharing systems with multiple antennas

    KAUST Repository

    Yang, Liang

    2012-01-01

    In this paper, we study the capacity of spectrum sharing (SS) multiple-input multiple-output (MIMO) systems over Rayleigh fading channels. More specifically, we present closed-form capacity formulas for such systems with and without optimal power and rate adaptation. A lower bound on the capacity is also derived to characterize the scaling law of the capacity. Results show that increasing the number of antennas has a negative effect on the system capacity in the low signal-to-noise (SNR) regime and the scaling law at high SNR is similar to the conventional MIMO systems. In addition, a lower bound on the capacity of the SS keyhole MIMO channels is analyzed. We also present a capacity analysis of SS MIMO maximal ratio combining (MRC) systems and the results show that the capacity of such systems always decreases with the increase of the number of antennas. Numerical results are finally given to illustrate our analysis. © 2012 ICST.

  19. Algorithm of reducing the false positives in IDS based on correlation Analysis

    Science.gov (United States)

    Liu, Jianyi; Li, Sida; Zhang, Ru

    2018-03-01

    This paper proposes an algorithm of reducing the false positives in IDS based on correlation Analysis. Firstly, the algorithm analyzes the distinguishing characteristics of false positives and real alarms, and preliminary screen the false positives; then use the method of attribute similarity clustering to the alarms and further reduces the amount of alarms; finally, according to the characteristics of multi-step attack, associated it by the causal relationship. The paper also proposed a reverse causation algorithm based on the attack association method proposed by the predecessors, turning alarm information into a complete attack path. Experiments show that the algorithm simplifies the number of alarms, improve the efficiency of alarm processing, and contribute to attack purposes identification and alarm accuracy improvement.

  20. Pulse shape analysis and position determination in segmented HPGe detectors: The AGATA detector library

    Energy Technology Data Exchange (ETDEWEB)

    Bruyneel, B. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Service de Physique Nucleaire, CEA Saclay, Gif-sur-Yvette (France); Birkenbach, B.; Reiter, P. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany)

    2016-03-15

    The AGATA Detector Library (ADL) was developed for the calculation of signals from highly segmented large volume high-purity germanium (HPGe) detectors. ADL basis sets comprise a huge amount of calculated position-dependent detector pulse shapes. A basis set is needed for Pulse Shape Analysis (PSA). By means of PSA the interaction position of a γ -ray inside the active detector volume is determined. Theoretical concepts of the calculations are introduced and cover the relevant aspects of signal formation in HPGe. The approximations and the realization of the computer code with its input parameters are explained in detail. ADL is a versatile and modular computer code; new detectors can be implemented in this library. Measured position resolutions of the AGATA detectors based on ADL are discussed. (orig.)