WorldWideScience

Sample records for anopheles funestus species

  1. Thermal limits of wild and laboratory strains of two African malaria vector species, Anopheles arabiensis and Anopheles funestus

    Directory of Open Access Journals (Sweden)

    Lyons Candice L

    2012-07-01

    Full Text Available Abstract Background Malaria affects large parts of the developing world and is responsible for almost 800,000 deaths annually. As climates change, concerns have arisen as to how this vector-borne disease will be impacted by changing rainfall patterns and warming temperatures. Despite the importance and controversy surrounding the impact of climate change on the potential spread of this disease, little information exists on the tolerances of several of the vector species themselves. Methods Using a ramping protocol (to assess critical thermal limits - CT and plunge protocol (to assess lethal temperature limits - LT information on the thermal tolerance of two of Africa’s important malaria vectors, Anopheles arabiensis and Anopheles funestus was collected. The effects of age, thermal acclimation treatment, sex and strain (laboratory versus wild adults were investigated for CT determinations for each species. The effects of age and sex for adults and life stage (larvae, pupae, adults were investigated for LT determinations. Results In both species, females are more tolerant to low and high temperatures than males; larvae and pupae have higher upper lethal limits than do adults. Thermal acclimation of adults has large effects in some instances but small effects in others. Younger adults tend to be more tolerant of low or high temperatures than older age groups. Long-standing laboratory colonies are sufficiently similar in thermal tolerance to field-collected animals to provide reasonable surrogates when making inferences about wild population responses. Differences between these two vectors in their thermal tolerances, especially in larvae and pupae, are plausibly a consequence of different habitat utilization. Conclusions Limited plasticity is characteristic of the adults of these vector species relative to others examined to date, suggesting limited scope for within-generation change in thermal tolerance. These findings and the greater tolerance

  2. Sibling species of the Anopheles funestus group, and their infection with malaria and lymphatic filarial parasites, in archived and newly collected specimens from northeastern Tanzania

    DEFF Research Database (Denmark)

    Derua, Yahya A; Alifrangis, Michael; Magesa, Stephen M;

    2015-01-01

    , and Anopheles leesoni, with the first being by far the most common (overall 94.4%). When comparing archived specimens from 2005-2007 to those from 2008-2012, a small but statistically significant decrease in proportion of An. funestus s.s. was noted, but otherwise observed temporal changes in sibling species......BACKGROUND: Studies on the East African coast have shown a recent dramatic decline in malaria vector density and change in composition of sibling species of the Anopheles gambiae complex, paralleled by a major decline in malaria incidence. In order to better understand the ongoing changes in vector......-parasite dynamics in the area, and to allow for appropriate adjustment of control activities, the present study examined the composition, and malaria and lymphatic filarial infection, of sibling species of the Anopheles funestus group. Similar to the An. gambiae complex, the An. funestus group contains important...

  3. Pyrethroid resistance in an Anopheles funestus population from Uganda.

    Directory of Open Access Journals (Sweden)

    John C Morgan

    Full Text Available BACKGROUND: The susceptibility status of Anopheles funestus to insecticides remains largely unknown in most parts of Africa because of the difficulty in rearing field-caught mosquitoes of this malaria vector. Here we report the susceptibility status of the An. funestus population from Tororo district in Uganda and a preliminary characterisation of the putative resistance mechanisms involved. METHODOLOGY/PRINCIPAL FINDINGS: A new forced egg laying technique used in this study significantly increased the numbers of field-caught females laying eggs and generated more than 4000 F1 adults. WHO bioassays indicated that An. funestus in Tororo is resistant to pyrethroids (62% mortality after 1 h exposure to 0.75% permethrin and 28% mortality to 0.05% deltamethrin. Suspected DDT resistance was also observed with 82% mortality. However this population is fully susceptible to bendiocarb (carbamate, malathion (organophosphate and dieldrin with 100% mortality observed after exposure to each of these insecticides. Sequencing of a fragment of the sodium channel gene containing the 1014 codon conferring pyrethroid/DDT resistance in An. gambiae did not detect the L1014F kdr mutation but a correlation between haplotypes and resistance phenotype was observed indicating that mutations in other exons may be conferring the knockdown resistance in this species. Biochemical assays suggest that resistance in this population is mediated by metabolic resistance with elevated level of GSTs, P450s and pNPA compared to a susceptible strain of Anopheles gambiae. RT-PCR further confirmed the involvement of P450s with a 12-fold over-expression of CYP6P9b in the Tororo population compared to the fully susceptible laboratory colony FANG. CONCLUSION: This study represents the first report of pyrethroid/DDT resistance in An. funestus from East Africa. With resistance already reported in southern and West Africa, this indicates that resistance in An. funestus may be more widespread

  4. Cuticle thickening associated with pyrethroid resistance in the major malaria vector Anopheles funestus

    Directory of Open Access Journals (Sweden)

    Coetzee M

    2010-08-01

    Full Text Available Abstract Background Malaria in South Africa is primarily transmitted by Anopheles funestus Giles. Resistance to pyrethroid insecticides in An. funestus in northern Kwazulu/Natal, South Africa, and in neighbouring areas of southern Mozambique enabled populations of this species to increase their ranges into areas where pyrethroids were being exclusively used for malaria control. Pyrethroid resistance in southern African An. funestus is primarily conferred by monooxygenase enzyme metabolism. However, selection for this resistance mechanism is likely to have occurred in conjunction with other factors that improve production of the resistance phenotype. A strong candidate is cuticle thickening. This is because thicker cuticles lead to slower rates of insecticide absorption, which is likely to increase the efficiency of metabolic detoxification. Results Measures of mean cuticle thickness in laboratory samples of female An. funestus were obtained using scanning electron microscopy (SEM. These females were drawn from a laboratory colony carrying the pyrethroid resistance phenotype at a stable rate, but not fixed. Prior to cuticle thickness measurements, these samples were characterised as either more or less tolerant to permethrin exposure in one experiment, and either permethrin resistant or susceptible in another experiment. There was a significant and positive correlation between mean cuticle thickness and time to knock down during exposure to permethrin. Mean cuticle thickness was significantly greater in those samples characterised either as more tolerant or resistant to permethrin exposure compared to those characterised as either less tolerant or permethrin susceptible. Further, insecticide susceptible female An. funestus have thicker cuticles than their male counterparts. Conclusion Pyrethroid tolerant or resistant An. funestus females are likely to have thicker cuticles than less tolerant or susceptible females, and females generally have

  5. Identification and analysis of Single Nucleotide Polymorphisms (SNPs in the mosquito Anopheles funestus, malaria vector

    Directory of Open Access Journals (Sweden)

    Hemingway Janet

    2007-01-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are the most common source of genetic variation in eukaryotic species and have become an important marker for genetic studies. The mosquito Anopheles funestus is one of the major malaria vectors in Africa and yet, prior to this study, no SNPs have been described for this species. Here we report a genome-wide set of SNP markers for use in genetic studies on this important human disease vector. Results DNA fragments from 50 genes were amplified and sequenced from 21 specimens of An. funestus. A third of specimens were field collected in Malawi, a third from a colony of Mozambican origin and a third form a colony of Angolan origin. A total of 494 SNPs including 303 within the coding regions of genes and 5 indels were identified. The physical positions of these SNPs in the genome are known. There were on average 7 SNPs per kilobase similar to that observed in An. gambiae and Drosophila melanogaster. Transitions outnumbered transversions, at a ratio of 2:1. The increased frequency of transition substitutions in coding regions is likely due to the structure of the genetic code and selective constraints. Synonymous sites within coding regions showed a higher polymorphism rate than non-coding introns or 3' and 5'flanking DNA with most of the substitutions in coding regions being observed at the 3rd codon position. A positive correlation in the level of polymorphism was observed between coding and non-coding regions within a gene. By genotyping a subset of 30 SNPs, we confirmed the validity of the SNPs identified during this study. Conclusion This set of SNP markers represents a useful tool for genetic studies in An. funestus, and will be useful in identifying candidate genes that affect diverse ranges of phenotypes that impact on vector control, such as resistance insecticide, mosquito behavior and vector competence.

  6. Observations on the swarming and mating behaviour of Anopheles funestus from southern Mozambique

    Directory of Open Access Journals (Sweden)

    Thompson R

    2003-02-01

    Full Text Available Abstract Background Control of malaria by the release of genetically modified mosquitoes refractory to transmission is now becoming a possibility. In many areas of Africa, Anopheles gambiae is found together with an equally important vector, An. funestus. Given their sympatry and the likelihood of a similar mating period some aspects of the mating behaviour of An. gambiae s.l. and An. funestus are likely to differ. We therefore attempted to characterise the swarming behaviour of An. funestus and to determine if any aspects of the observed behaviour differed from that recorded for the M form of An. gambiae from São Tomé. Methods In March – May 2002 the swarming, mating, house exiting and resting behaviour of Anopheles funestus was studied by direct observation in Mozambique. Swarming males and insects in copula were collected by sweep net. Wing lengths of males collected resting, exiting houses, swarming and mating were measured and the wingbeat frequency distribution of individual insects, in free flight confined inside netting covered paper cups, was also determined. Results Mono-specific swarms occurred at sunset in relatively open areas close to houses used for resting. Mating pairs were seen 11 ± 3.7 min after the start of swarming. The number of total pairs observed being inversely proportional to the time difference between the start of swarming and the first pairing. The great majority of females mated before feeding. Male or female size did not appear to affect mating success or other behaviours. During the study, ambient temperatures decreased and female, but not male, wing size increased. At 516 Hz, the flight tone of female An. funestus was similar to the 497 Hz of the local An. gambiae. Males dispersed if light or dark artificial horizontal markers were placed underneath naturally occurring swarms. Conclusion Differential response to markers would be sufficient for swarming in An. funestus and An. gambiae s.l. to occur in

  7. High level of pyrethroid resistance in an Anopheles funestus population of the Chokwe District in Mozambique.

    Directory of Open Access Journals (Sweden)

    Nelson Cuamba

    Full Text Available BACKGROUND: Although Anopheles funestus is difficult to rear, it is crucial to analyse field populations of this malaria vector in order to successfully characterise mechanisms of insecticide resistance observed in this species in Africa. In this study we carried out a large-scale field collection and rearing of An. funestus from Mozambique in order to analyse its susceptibility status to insecticides and to broadly characterise the main resistance mechanisms involved in natural populations. METHODOLOGY/PRINCIPAL FINDINGS: 3,000 F(1 adults were obtained through larval rearing. WHO susceptibility assays indicated a very high resistance to pyrethroids with no mortality recorded after 1 h 30 min exposure and less than 50% mortality at 3 h 30 min. Resistance to the carbamate, bendiocarb was also noted, with 70% mortality after 1h exposure. In contrast, no DDT resistance was observed, indicating that no kdr-type resistance was involved. The sequencing of the acetylcholinesterase gene indicated the absence of the G119S and F455W mutations associated with carbamate and organophosphate resistance. This could explain the absence of malathion resistance in this population. Both biochemical assays and quantitative PCR implicated up-regulated P450 genes in pyrethroid resistance, with GSTs playing a secondary role. The carbamate resistance observed in this population is probably conferred by the observed altered AChE with esterases also involved. CONCLUSION/SIGNIFICANCE: The high level of pyrethroid resistance in this population despite the cessation of pyrethroid use for IRS in 1999 is a serious concern for resistance management strategies such as rotational use of insecticides. As DDT has now been re-introduced for IRS, susceptibility to DDT needs to be closely monitored to prevent the appearance and spread of resistance to this insecticide.

  8. Pyrethroid resistance in southern African Anopheles funestus extends to Likoma Island in Lake Malawi

    Directory of Open Access Journals (Sweden)

    Edwardes M

    2010-12-01

    Full Text Available Abstract Background A mosquito survey was carried out on the island of Likoma in Lake Malawi with a view to collecting baseline data to determine the feasibility of implementing an integrated malaria vector control programme. No vector control interventions are currently being applied on the island apart from the sporadic use of treated and untreated bed nets. Results Large numbers of Anopheles funestus were found resting inside houses. WHO susceptibility tests were carried out on wild caught females and 1-5 day old F-1 female progeny. Wild caught females were tested on deltamethrin (77.8% mortality and bendiocarb (56.4% mortality. Female progeny were tested on deltamethrin (41.4% mortality, permethrin (40.4%, bendiocarb (52.5%, propoxur (7.4%, malathion, fenitrothion, DDT, dieldrin (all 100% and pirimiphos-methyl (98.9%. The malaria parasite rate was 4.9%. A small number of Anopheles arabiensis were also collected. Conclusion This locality is 1,500 km north of the currently known distribution of pyrethroid resistant An. funestus in southern Africa. The susceptibility results mirror those found in southern Mozambique and South African populations, but are markedly different to An. funestus populations in Uganda, indicating that the Malawi resistance has spread from the south.

  9. Recent reduction in the water level of Lake Victoria has created more habitats for Anopheles funestus

    Directory of Open Access Journals (Sweden)

    Futami Kyoko

    2008-07-01

    Full Text Available Abstract Background The water level of Lake Victoria has fallen more than 1.5 m since 1998, revealing a narrow strip of land along the shore. This study determined whether the recent drop in the water level has created additional breeding grounds for malaria vectors. Methods The recent and past shorelines were estimated using landmarks and a satellite image. The locations of breeding habitats were recorded using a GPS unit during the high and low lake water periods. GIS was used to determine whether the breeding habitats were located on newly emerged land between the new and old shorelines. Results Over half of the breeding habitats existed on newly emerged land. Fewer habitats for the Anopheles gambiae complex were found during the low water level period compared to the high water period. However, more habitats for Anopheles funestus were found during the high water level period, and they were all located on the newly emerged land. Conclusion The recent reduction in water level of Lake Victoria has increased the amount of available habitat for A. funestus. The results suggest that the water drop has substantially affected the population of this malaria vector in the Lake Victoria basin, particularly because the lake has a long shoreline that may harbour many new breeding habitats.

  10. The Role of Oxidative Stress in the Longevity and Insecticide Resistance Phenotype of the Major Malaria Vectors Anopheles arabiensis and Anopheles funestus.

    Directory of Open Access Journals (Sweden)

    Shüné V Oliver

    Full Text Available Oxidative stress plays numerous biological roles, both functional and pathological. The role of oxidative stress in various epidemiologically relevant biological traits in Anopheles mosquitoes is not well established. In this study, the effects of oxidative stress on the longevity and insecticide resistance phenotype in the major malaria vector species An. arabiensis and An. funestus were examined. Responses to dietary copper sulphate and hydrogen peroxide were used as proxies for the oxidative stress phenotype by determining the effect of copper on longevity and hydrogen peroxide lethal dose. Glutathione peroxidase and catalase activities were determined colorimetrically. Oxidative burden was quantified as protein carbonyl content. Changes in insecticide resistance phenotype were monitored by WHO bioassay. Insecticide resistant individuals showed an increased capacity for coping with oxidative stress, mediated by increased glutathione peroxidase and catalase activity. This effect was observed in both species, as well as in laboratory strains and F1 individuals derived from wild-caught An. funestus mothers. Phenotypic capacity for coping with oxidative stress was greatest in strains with elevated Cytochrome P450 activity. Synergism of oxidative stress defence enzymes by dietary supplementation with haematin, 3-Amino-1, 2, 4-triazole and Sodium diethyldithiocarbamate significantly increased pyrethroid-induced mortality in An. arabiensis and An. funestus. It is therefore concluded that defence against oxidative stress underlies the augmentation of the insecticide resistance phenotype associated with multiple blood-feeding. This is because multiple blood-feeding ultimately leads to a reduction of oxidative stress in insecticide resistant females, and also reduces the oxidative burden induced by DDT and pyrethroids, by inducing increased glutathione peroxidase activity. This study highlights the importance of oxidative stress in the longevity and

  11. African water storage pots for the delivery of the Entomopathogenic fungus Metarhizium anisopliae to the Malaria vectors Anopheles gambiae s.s. and Anopheles funestus

    NARCIS (Netherlands)

    Farenhorst, M.; Farina, D.; Scholte, E.J.; Takken, W.; Hunt, R.H.; Coetzee, M.; Knols, B.G.J.

    2008-01-01

    We studied the use of African water storage pots for point source application of Metarhizium anisopliae against the malaria vectors Anopheles gambiae s.s. and An. funestus. Clay pots were shown to be attractive resting sites for male and female An. gambiae s.s. and were not repellent after impregnat

  12. Multiple Insecticide Resistance in the Malaria Vector Anopheles funestus from Northern Cameroon Is Mediated by Metabolic Resistance Alongside Potential Target Site Insensitivity Mutations

    Science.gov (United States)

    Menze, Benjamin D.; Riveron, Jacob M.; Ibrahim, Sulaiman S.; Irving, Helen; Antonio-Nkondjio, Christophe; Awono-Ambene, Parfait H.; Wondji, Charles S.

    2016-01-01

    Background Despite the recent progress in establishing the patterns of insecticide resistance in the major malaria vector Anopheles funestus, Central African populations of this species remain largely uncharacterised. To bridge this important gap and facilitate the implementation of suitable control strategies against this vector, we characterised the resistance patterns of An. funestus population from northern Cameroon. Methods and Findings Collection of indoor-resting female mosquitoes in Gounougou (northern Cameroon) in 2012 and 2015 revealed a predominance of An. funestus during dry season. WHO bioassays performed using F1 An. funestus revealed that the population was multiple resistant to several insecticide classes including pyrethroids (permethrin, deltamethrin, lambda-cyhalothrin and etofenprox), carbamates (bendiocarb) and organochlorines (DDT and dieldrin). However, a full susceptibility was observed against the organophosphate malathion. Bioassays performed with 2015 collection revealed that resistance against pyrethroids and DDT is increasing. PBO synergist assays revealed a significant recovery of susceptibility for all pyrethroids but less for DDT. Analysis of the polymorphism of a portion of the voltage-gated sodium channel gene (VGSC) revealed the absence of the L1014F/S kdr mutation but identified 3 novel amino acid changes I877L, V881L and A1007S. However, no association was established between VGSC polymorphism and pyrethroid/DDT resistance. The DDT resistant 119F-GSTe2 allele (52%) and the dieldrin resistant 296S-RDL allele (45%) were detected in Gounougou. Temporal analysis between 2006, 2012 and 2015 collections revealed that the 119F-GSTe2 allele was relatively stable whereas a significant decrease is observed for 296S-RDL allele. Conclusion This multiple resistance coupled with the temporal increased in resistance intensity highlights the need to take urgent measures to prolong the efficacy of current insecticide-based interventions against

  13. The Influence of Insecticide Resistance, Age, Sex, and Blood Feeding Frequency on Thermal Tolerance of Wild and Laboratory Phenotypes of Anopheles funestus (Diptera: Culicidae).

    Science.gov (United States)

    Lyons, C L; Oliver, S V; Hunt, R H; Coetzee, M

    2016-03-01

    Resistance to insecticides is a global phenomenon and is increasing at an unprecedented rate. How resistant and susceptible strains of malaria vectors might differ in terms of life history and basic biology is often overlooked, despite the potential importance of such information in light of changing climates. Here, we investigated the upper thermal limits (ULT50) of wild and laboratory strains of Anopheles funestus Giles mosquitoes, including resistance status, sex, age, and blood feeding status as potential factors influencing ULT50. No significant differences in ULT50 were observed between strains displaying different resistance patterns, nor was there a significant difference between wild and laboratory strains. In some instances, strains showed a senescence response, displaying decreased ULT50 with an increase in age, and differences between males and females (females displaying higher ULT50 than males). Blood feeding did not seem to influence ULT50 in any way. For An. funestus, it seems evident that there is no cost to resistance despite what is displayed in other anopheline species. This could have significant impacts for vector control, with resistant populations of An. funestus performing just as well, if not better, than susceptible strains, especially under changing environmental conditions such as those expected to occur with climate change. PMID:26718714

  14. Molecular tools for studying the major malaria vector Anopheles funestus: improving the utility of the genome using a comparative poly(A) and Ribo-Zero RNAseq analysis

    OpenAIRE

    WEEDALL, GARETH D.; Irving, Helen; Hughes, Margaret A.; Wondji, Charles S.

    2015-01-01

    Background Next-generation sequencing (NGS) offers great opportunities for studying the biology of insect vectors of disease. Prerequisites for successful analyses include high quality annotated genome assemblies and that techniques designed for use with model organisms be tested and optimised for use with these insects. We aimed to test and improve genomic tools for studying the major malaria vector Anopheles funestus. Results To guide future RNAseq transcriptomic studies of An. funestus, we...

  15. Wide cross-reactivity between Anopheles gambiae and Anopheles funestus SG6 salivary proteins supports exploitation of gSG6 as a marker of human exposure to major malaria vectors in tropical Africa

    Directory of Open Access Journals (Sweden)

    Petrarca Vincenzo

    2011-07-01

    Full Text Available Abstract Background The Anopheles gambiae gSG6 is an anopheline-specific salivary protein which helps female mosquitoes to efficiently feed on blood. Besides its role in haematophagy, gSG6 is immunogenic and elicits in exposed individuals an IgG response, which may be used as indicator of exposure to the main African malaria vector A. gambiae. However, malaria transmission in tropical Africa is sustained by three main vectors (A. gambiae, Anopheles arabiensis and Anopheles funestus and a general marker, reflecting exposure to at least these three species, would be especially valuable. The SG6 protein is highly conserved within the A. gambiae species complex whereas the A. funestus homologue, fSG6, is more divergent (80% identity with gSG6. The aim of this study was to evaluate cross-reactivity of human sera to gSG6 and fSG6. Methods The A. funestus SG6 protein was expressed/purified and the humoral response to gSG6, fSG6 and a combination of the two antigens was compared in a population from a malaria hyperendemic area of Burkina Faso where both vectors were present, although with a large A. gambiae prevalence (>75%. Sera collected at the beginning and at the end of the high transmission/rainy season, as well as during the following low transmission/dry season, were analysed. Results According to previous observations, both anti-SG6 IgG level and prevalence decreased during the low transmission/dry season and showed a typical age-dependent pattern. No significant difference in the response to the two antigens was found, although their combined use yielded in most cases higher IgG level. Conclusions Comparative analysis of gSG6 and fSG6 immunogenicity to humans suggests the occurrence of a wide cross-reactivity, even though the two proteins carry species-specific epitopes. This study supports the use of gSG6 as reliable indicator of exposure to the three main African malaria vectors, a marker which may be useful to monitor malaria transmission

  16. Assessment of Anopheles salivary antigens as individual exposure biomarkers to species-specific malaria vector bites

    Directory of Open Access Journals (Sweden)

    Ali Zakia M I

    2012-12-01

    Full Text Available Abstract Background Malaria transmission occurs during the blood feeding of infected anopheline mosquitoes concomitant with a saliva injection into the vertebrate host. In sub-Saharan Africa, most malaria transmission is due to Anopheles funestus s.s and to Anopheles gambiae s.l. (mainly Anopheles gambiae s.s. and Anopheles arabiensis. Several studies have demonstrated that the immune response against salivary antigens could be used to evaluate individual exposure to mosquito bites. The aim of this study was to assess the use of secreted salivary proteins as specific biomarkers of exposure to An. gambiae and/or An. funestus bites. Methods For this purpose, salivary gland proteins 6 (SG6 and 5′nucleotidases (5′nuc from An. gambiae (gSG6 and g-5′nuc and An. funestus (fSG6 and f-5′nuc were selected and produced in recombinant form. The specificity of the IgG response against these salivary proteins was tested using an ELISA with sera from individuals living in three Senegalese villages (NDiop, n = 50; Dielmo, n = 38; and Diama, n = 46 that had been exposed to distinct densities and proportions of the Anopheles species. Individuals who had not been exposed to these tropical mosquitoes were used as controls (Marseille, n = 45. Results The IgG responses against SG6 recombinant proteins from these two Anopheles species and against g-5′nucleotidase from An. gambiae, were significantly higher in Senegalese individuals compared with controls who were not exposed to specific Anopheles species. Conversely, an association was observed between the level of An. funestus exposure and the serological immune response levels against the f-5′nucleotidase protein. Conclusion This study revealed an Anopheles salivary antigenic protein that could be considered to be a promising antigenic marker to distinguish malaria vector exposure at the species level. The epidemiological interest of such species-specific antigenic markers is discussed.

  17. Biting behaviour of Anopheles funestus populations in Mutare and Mutasa districts, Manicaland province, Zimbabwe: Implications for the malaria control programme

    Directory of Open Access Journals (Sweden)

    Shadreck Sande

    2016-01-01

    Interpretation & conclusion: The present work highlighted important information on the host-seeking behaviour, blood meal sources and infection rates in An. funestus. The information would be helpful in improving the vector control strategies.

  18. Studies on the bionomics of male Anopheles gambiae Giles and male Anopheles funestus Giles from southern Mozambique

    DEFF Research Database (Denmark)

    Charlwood, J D

    2011-01-01

    Little is known about the fitness of wild male mosquitoes, the females of which are vectors of malaria. The problem of studying male biology has been exacerbated by difficulties associated with catching them. In southern Mozambique, however, almost the entire adult population of An. funestus and An...... strategies of sterile or genetically modified mosquitoes....

  19. QSAR analyses of DDT analogues and their in silico validation using molecular docking study against voltage-gated sodium channel of Anopheles funestus.

    Science.gov (United States)

    Saini, V; Kumar, A

    2014-01-01

    DDT has enjoyed the reputation of a successful pesticide in disease control programme and agricultural practices along with the serious opposition and ban later on due to its biomagnification and toxic action against non-target organisms. The present work was carried out to develop QSAR models for analysing DDT analogues for their pesticidal activity and in silico validation of these models. A 2D-QSAR model was generated using stepwise with multiple regression, and the model with a value of r(2) = 0.7324; q(2) = 0.6215; pred r(2) = 0.7038, containing five descriptors, was selected for further study. The 3D QSAR with CoMFA analysis showed that steric contribution of 21% and electrostatic contribution of about 79% were required for larvicidal activity of DDT analogues. A set of 3430 molecules was generated using the basic DDT skeleton as template, and these were evaluated for their mosquito larvicidal activity using the generated QSAR models and DDT as standard. Eleven molecules were selected for in silico validation of these models. For this, a docking study of the selected molecules against the homology-modelled voltage-gated sodium channel of Anopheles funestus was conducted. The study showed that the activities of these analogues as predicted by 2D-QSAR, 3D-QSAR with CoMFA and dock score were observed to be well correlated.

  20. QSAR analyses of DDT analogues and their in silico validation using molecular docking study against voltage-gated sodium channel of Anopheles funestus.

    Science.gov (United States)

    Saini, V; Kumar, A

    2014-01-01

    DDT has enjoyed the reputation of a successful pesticide in disease control programme and agricultural practices along with the serious opposition and ban later on due to its biomagnification and toxic action against non-target organisms. The present work was carried out to develop QSAR models for analysing DDT analogues for their pesticidal activity and in silico validation of these models. A 2D-QSAR model was generated using stepwise with multiple regression, and the model with a value of r(2) = 0.7324; q(2) = 0.6215; pred r(2) = 0.7038, containing five descriptors, was selected for further study. The 3D QSAR with CoMFA analysis showed that steric contribution of 21% and electrostatic contribution of about 79% were required for larvicidal activity of DDT analogues. A set of 3430 molecules was generated using the basic DDT skeleton as template, and these were evaluated for their mosquito larvicidal activity using the generated QSAR models and DDT as standard. Eleven molecules were selected for in silico validation of these models. For this, a docking study of the selected molecules against the homology-modelled voltage-gated sodium channel of Anopheles funestus was conducted. The study showed that the activities of these analogues as predicted by 2D-QSAR, 3D-QSAR with CoMFA and dock score were observed to be well correlated. PMID:25271473

  1. Frequent blood-feeding and restrictive sugar-feeding behavior enhance the malaria vector potential of Anopheles gambiae s.l. and An. funestus (Diptera:Culicidae) in western Kenya.

    Science.gov (United States)

    Beier, J C

    1996-07-01

    Natural blood-feeding and sugar-feeding behaviors were investigated for populations of Anopheles gambiae s.l. and An. funestus Giles at 2 sites in western Kenya. During peak levels of malaria parasite transmission, > 85% of 1,569 indoor-resting females contained fresh blood meals. Findings that up to 55.4% of blood-fed resting females and 72.0% of host-seeking females had either stage IV or V oocytes provided strong evidence that females were refeeding before oviposition. Such gonotrophic discordance was common throughout the year for both An. gambiae s.l. and An. funestus. Determinations of gonotrophic cycles for freshly blood-fed mosquitoes collected inside houses indicated that only 60.0% of 1,287 An. gambiae s.l. and 60.0% of 974 An. funestus oviposited eggs after a single blood meal. The timing of oviposition was irregular as indicated by relatively high coefficients of variation for An. gambiae s.l. (44.0%) and An. funestus (35.9%). Associated with frequent blood feeding was a surprisingly low rate of sugar feeding; only 6.3% of 1,183 indoor-resting and only 14.4% of 236 host-seeking anophelines were positive for fructose. Natural patterns of frequent blood feeding, year-round gonotrophic discordance, irregular oviposition cycles, and limited sugar feeding illustrate that anopheline mosquitoes have complex behavioral and physiologic means for adapting to their environment. In western Kenya, for example, adaptations for frequent blood feeding by An. gambiae s.l. and An. funestus potentiates their ability to transmit malaria parasites, well beyond that predicted by standard measures of vectorial capacity. PMID:8699456

  2. Unexpected diversity of Anopheles species in Eastern Zambia: implications for evaluating vector behavior and interventions using molecular tools.

    Science.gov (United States)

    Lobo, Neil F; St Laurent, Brandyce; Sikaala, Chadwick H; Hamainza, Busiku; Chanda, Javan; Chinula, Dingani; Krishnankutty, Sindhu M; Mueller, Jonathan D; Deason, Nicholas A; Hoang, Quynh T; Boldt, Heather L; Thumloup, Julie; Stevenson, Jennifer; Seyoum, Aklilu; Collins, Frank H

    2015-12-09

    The understanding of malaria vector species in association with their bionomic traits is vital for targeting malaria interventions and measuring effectiveness. Many entomological studies rely on morphological identification of mosquitoes, limiting recognition to visually distinct species/species groups. Anopheles species assignments based on ribosomal DNA ITS2 and mitochondrial DNA COI were compared to morphological identifications from Luangwa and Nyimba districts in Zambia. The comparison of morphological and molecular identifications determined that interpretations of species compositions, insecticide resistance assays, host preference studies, trap efficacy, and Plasmodium infections were incorrect when using morphological identification alone. Morphological identifications recognized eight Anopheles species while 18 distinct sequence groups or species were identified from molecular analyses. Of these 18, seven could not be identified through comparison to published sequences. Twelve of 18 molecularly identified species (including unidentifiable species and species not thought to be vectors) were found by PCR to carry Plasmodium sporozoites - compared to four of eight morphological species. Up to 15% of morphologically identified Anopheles funestus mosquitoes in insecticide resistance tests were found to be other species molecularly. The comprehension of primary and secondary malaria vectors and bionomic characteristics that impact malaria transmission and intervention effectiveness are fundamental in achieving malaria elimination.

  3. Feeding and indoor resting behaviour of the mosquito Anopheles longipalpis in an area of hyperendemic malaria transmission in southern Zambia

    OpenAIRE

    Kent, R.J.; Coetzee, M.; Mharakurwa, S.; Norris, D. E.

    2006-01-01

    Anopheles longipalpis (Theobald) (Diptera: Culicidae) is a predominantly zoophilic mosquito that has not been implicated in malaria transmission. However, this species was collected indoors with An. funestus s.l. in southern Zambia, where transmission of Plasmodium falciparum is hyperendemic, and we initially misidentified it morphologically and molecularly as An. funestus s.l. The indoor resting density and blood-feeding behaviour of An. longipalpis were investigated during the 2004 – 05 and...

  4. Widespread pyrethroid and DDT resistance in the major malaria vector Anopheles funestus in East Africa is driven by metabolic resistance mechanisms.

    Directory of Open Access Journals (Sweden)

    Charles Mulamba

    Full Text Available BACKGROUND: Establishing the extent, geographical distribution and mechanisms of insecticide resistance in malaria vectors is a prerequisite for resistance management. Here, we report a widespread distribution of insecticide resistance in the major malaria vector An. funestus across Uganda and western Kenya under the control of metabolic resistance mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: Female An. funestus collected throughout Uganda and western Kenya exhibited a Plasmodium infection rate between 4.2 to 10.4%. Widespread resistance against both type I (permethrin and II (deltamethrin pyrethroids and DDT was observed across Uganda and western Kenya. All populations remain highly susceptible to carbamate, organophosphate and dieldrin insecticides. Knockdown resistance plays no role in the pyrethroid and DDT resistance as no kdr mutation associated with resistance was detected despite the presence of a F1021C replacement. Additionally, no signature of selection was observed on the sodium channel gene. Synergist assays and qRT-PCR indicated that metabolic resistance plays a major role notably through elevated expression of cytochrome P450s. DDT resistance mechanisms differ from West Africa as the L119F-GSTe2 mutation only explains a small proportion of the genetic variance to DDT resistance. CONCLUSION: The extensive distribution of pyrethroid and DDT resistance in East African An. funestus populations represents a challenge to the control of this vector. However, the observed carbamate and organophosphate susceptibility offers alternative solutions for resistance management.

  5. The susceptibility of five African Anopheles species to Anabaena PCC 7120 expressing Bacillus thuringiensis subsp. israelensis mosquitocidal cry genes

    Directory of Open Access Journals (Sweden)

    Ketseoglou Irene

    2012-10-01

    Full Text Available Abstract Background Malaria, one of the leading causes of death in Africa, is transmitted by the bite of an infected female Anopheles mosquito. Problems associated with the development of resistance to chemical insecticides and concerns about the non-target effects and persistence of chemical insecticides have prompted the development of environmentally friendly mosquito control agents. The aim of this study was to evaluate the larvicidal activity of a genetically engineered cyanobacterium, Anabaena PCC 7120#11, against five African Anopheles species in laboratory bioassays. Findings There were significant differences in the susceptibility of the anopheline species to PCC 7120#11. The ranking of the larvicidal activity of PCC 7120#11 against species in the An. gambiae complex was: An. merus An. arabiensis An. gambiae An. quadriannulatus, where 50. The LC50 of PCC 7120#11 against the important malaria vectors An. gambiae and An. arabiensis was 12.3 × 105 cells/ml and 8.10 × 105 cells/ml, respectively. PCC 7120#11 was not effective against An. funestus, with less than 50% mortality obtained at concentrations as high as 3.20 × 107 cells/ml. Conclusions PCC 7120#11 exhibited good larvicidal activity against larvae of the An. gambiae complex, but relatively weak larvicidal activity against An. funestus. The study has highlighted the importance of evaluating a novel mosquitocidal agent against a range of malaria vectors so as to obtain a clear understanding of the agent’s spectrum of activity and potential as a vector control agent.

  6. Anopheles (Anopheles) petragnani Del Vecchio 1939-a new mosquito species for Germany.

    Science.gov (United States)

    Becker, Norbert; Pfitzner, Wolf Peter; Czajka, Christina; Kaiser, Achim; Weitzel, Thomas

    2016-07-01

    The so far known species of the Anopheles Claviger Complex, Anopheles claviger s.s. and Anopheles petragnani, can only be distinguished by partial overlapping characteristics of immature stages and by nucleotide sequence variation of the genomic ribosomal DNA (rDNA) internal transcribed spacer 2 (ITS2) region. The known distribution of An. petragnani is so far restricted to the western Mediterranean region, whereas An. claviger s.s. occurs across most of Europe, up to the Middle East and North Africa. In our study, we investigated the larval mosquito fauna in rock pools of the Murg valley (Black Forest, Germany) once a month from April to December 2015.Among other species, larvae belonging to the Anopheles Claviger Complex were found. The fourth instar larvae were morphologically identified by chaetotaxy of the head and abdomen. The results were confirmed by a multiplex PCR and additional sequencing of the amplificates.Of the 1289 collected larvae from the rock pools, seven belonged to the Anopheles Claviger Complex. Five individuals were determined morphologically as An. petragnani and two as An. claviger s.s. The associated mosquito fauna comprised of Aedes japonicus japonicus (548 individuals), Culex pipiens s.l. and Culex torrentium (493 individuals) and Culex hortensis (241 individuals).This is the first record of An. petragnani north of the Alps. Further studies will reveal whether this is an isolated population of An. petragnani and if the investigated rock pool breeding sites represent typical habitats of this species in temperate regions in Central Europe.

  7. On the conspecificity of Anopheles fluviatilis species S with Anopheles minimus species C

    Indian Academy of Sciences (India)

    O P Singh; D Chandra; N Nanda; S K Sharma; Pe Than Htun; T Adak; S K Subbarao; A P Dash

    2006-12-01

    Anopheles fluviatilis and An. minimus complexes, each comprising of at least three sibling species, are closely related and important malaria vectors in Oriental Region. Recently An. fluviatilis species S, which is a highly efficient malaria vector in India, has been made conspecific with An. minimus species C (senior synonym) on the basis of homology in 335 base pair nucleotide sequence of D3 domain of 28S ribosomal DNA (rDNA). We examined the conspecificity of these two nominal species by obtaining and analysing the DNA sequences of nuclear ribosomal loci internal transcribed spacer 2 (ITS2) and D2-D3 domain of 28S rDNA (28S-D2/D3) from those of An. fluviatilis S and An. minimus C. We found that the sequences of An. fluviatilis S are appreciably different from those of An. minimus C with pair-wise distance (Kimura-2-parametre model) of 3.6 and 0.7% for loci ITS2 and 28S-D2/D3, respectively. Pair-wise distance and phylogenetic analyses using ITS2 sequences of members of Minimus and Fluviatilis Complexes revealed that An. fluviatilis S is distantly related to An. minimus C as compared to any other members of the Fluviatilis Complex. These findings suggest that the two nominal species, An. fluviatilis S and An. minimus C, do not merit synonymy. The study also confirms that the reported species An. fluviatilis X is synonym with species S.

  8. Nigeria Anopheles vector database: an overview of 100 years' research.

    Directory of Open Access Journals (Sweden)

    Patricia Nkem Okorie

    Full Text Available Anopheles mosquitoes are important vectors of malaria and lymphatic filariasis (LF, which are major public health diseases in Nigeria. Malaria is caused by infection with a protozoan parasite of the genus Plasmodium and LF by the parasitic worm Wuchereria bancrofti. Updating our knowledge of the Anopheles species is vital in planning and implementing evidence based vector control programs. To present a comprehensive report on the spatial distribution and composition of these vectors, all published data available were collated into a database. Details recorded for each source were the locality, latitude/longitude, time/period of study, species, abundance, sampling/collection methods, morphological and molecular species identification methods, insecticide resistance status, including evidence of the kdr allele, and P. falciparum sporozoite rate and W. bancrofti microfilaria prevalence. This collation resulted in a total of 110 publications, encompassing 484,747 Anopheles mosquitoes in 632 spatially unique descriptions at 142 georeferenced locations being identified across Nigeria from 1900 to 2010. Overall, the highest number of vector species reported included An. gambiae complex (65.2%, An. funestus complex (17.3%, An. gambiae s.s. (6.5%. An. arabiensis (5.0% and An. funestus s.s. (2.5%, with the molecular forms An. gambiae M and S identified at 120 locations. A variety of sampling/collection and species identification methods were used with an increase in molecular techniques in recent decades. Insecticide resistance to pyrethroids and organochlorines was found in the main Anopheles species across 45 locations. Presence of P. falciparum and W. bancrofti varied between species with the highest sporozoite rates found in An. gambiae s.s, An. funestus s.s. and An. moucheti, and the highest microfilaria prevalence in An. gambiae s.l., An. arabiensis, and An. gambiae s.s. This comprehensive geo-referenced database provides an essential baseline on

  9. Anopheles salivary gland proteomes from major malaria vectors

    Directory of Open Access Journals (Sweden)

    Fontaine Albin

    2012-11-01

    Full Text Available Abstract Background Antibody responses against Anopheles salivary proteins can indicate individual exposure to bites of malaria vectors. The extent to which these salivary proteins are species-specific is not entirely resolved. Thus, a better knowledge of the diversity among salivary protein repertoires from various malaria vector species is necessary to select relevant genus-, subgenus- and/or species-specific salivary antigens. Such antigens could be used for quantitative (mosquito density and qualitative (mosquito species immunological evaluation of malaria vectors/host contact. In this study, salivary gland protein repertoires (sialomes from several Anopheles species were compared using in silico analysis and proteomics. The antigenic diversity of salivary gland proteins among different Anopheles species was also examined. Results In silico analysis of secreted salivary gland protein sequences retrieved from an NCBInr database of six Anopheles species belonging to the Cellia subgenus (An. gambiae, An. arabiensis, An. stephensi and An. funestus and Nyssorhynchus subgenus (An. albimanus and An. darlingi displayed a higher degree of similarity compared to salivary proteins from closely related Anopheles species. Additionally, computational hierarchical clustering allowed identification of genus-, subgenus- and species-specific salivary proteins. Proteomic and immunoblot analyses performed on salivary gland extracts from four Anopheles species (An. gambiae, An. arabiensis, An. stephensi and An. albimanus indicated that heterogeneity of the salivary proteome and antigenic proteins was lower among closely related anopheline species and increased with phylogenetic distance. Conclusion This is the first report on the diversity of the salivary protein repertoire among species from the Anopheles genus at the protein level. This work demonstrates that a molecular diversity is exhibited among salivary proteins from closely related species despite their

  10. Dynamics of immature stages of Anopheles arabiensis and other mosquito species (Diptera: Culicidae) in relation to rice cropping in a rice agro-ecosystem in Kenya.

    Science.gov (United States)

    Mwangangi, Joseph; Shililu, Josephat; Muturi, Ephantus; Gu, Weidong; Mbogo, Charles; Kabiru, Ephantus; Jacob, Benjamin; Githure, John; Novak, Robert

    2006-12-01

    We determined changes in species composition and densities of immature stages of Anopheles arabiensis mosquitoes in relation to rice growth cycle in order to generate data for developing larval control strategies in rice ecosystems. Experimental rice paddies (6.3m x 3.15m) exposed to natural colonization of mosquitoes were sampled weekly for two rice growing cycles between February 2004 and March 2005. Overall, 21,325 Anopheles larvae were collected, of which 91.9% were 1st and 2nd instars and 8.1% were 3rd and 4th instars. An. arabiensis was the predominant species (84.1%) with other species, An. pharoensis (13.5%), An. funestus (2.1%), An. coustani (0.3%), and An. maculipalpis (0.1%) accounting for only a small proportion of the anophelines collected. Culex quinquefasciatus (65.7%) was the predominant species among the non-anopheline species. Others species collected included: C. annulioris (9.9%), C. poicilipes (7.3%), C. tigripes (7.2%), C. duttoni (0.6%), Aedes aegypti (5.3%), Ae. cumminsii (3.5%), and Ae. vittatus (0.7%). The densities of the major anopheline species were closely related to rice stage and condition of the rice field. An. arabiensis, the predominant species, was most abundant over a three-week period after transplanting. Low densities of larvae were collected during the late vegetative, reproductive, and ripening phases of rice. An increase in larval density ten days post-transplanting was found to correlate with the application of fertilizer (sulphate of ammonia). Culicine and aedine species densities were significantly higher during the post-harvesting period. Our results suggest that the transplanting stage is favorable for the growth of immature stages of An. arabiensis and provides a narrow window for targeted larval intervention in rice. PMID:17249341

  11. Mosquitoes of Anopheles hyrcanus (Diptera, Culicidae) Group: Species Diagnostic and Phylogenetic Relationships.

    Science.gov (United States)

    Khrabrova, Natalia V; Andreeva, Yulia V; Sibataev, Anuarbek K; Alekseeva, Svetlana S; Esenbekova, Perizat A

    2015-09-01

    Herein, we report the results of study of Anopheles species in Primorsk and Khabarovsk regions of Russia. Three species of the Anopheles hyrcanus group: An. kleini, An. pullus, and An. lesteri were identified by molecular taxonomic diagnostics for the first time in Russia. Surprisingly, An. sinensis, which earlier was considered the only species of Anopheles in Russian Far East, was not observed. We analyzed nucleotide variation in the 610-bp fragment of the 5' end of the cytochrome c oxidase subunit I (COI) region. All species possessed a distinctive set of COI sequences. A maximum likelihood phylogenetic tree was constructed for members of the hyrcanus group. The examined Anopheles hyrcanus group members could be divided into two major subgroups: subgroup 1 (An. hyrcanus and An. pullus) and subgroup 2 (An. sinensis, An. kleini, and An. lesteri), which were found to be monophyletic.

  12. Mosaic genome architecture of the Anopheles gambiae species complex.

    Directory of Open Access Journals (Sweden)

    Rui Wang-Sattler

    Full Text Available BACKGROUND: Attempts over the last three decades to reconstruct the phylogenetic history of the Anopheles gambiae species complex have been important for developing better strategies to control malaria transmission. METHODOLOGY: We used fingerprint genotyping data from 414 field-collected female mosquitoes at 42 microsatellite loci to infer the evolutionary relationships of four species in the A. gambiae complex, the two major malaria vectors A. gambiae sensu stricto (A. gambiae s.s. and A. arabiensis, as well as two minor vectors, A. merus and A. melas. PRINCIPAL FINDINGS: We identify six taxonomic units, including a clear separation of West and East Africa A. gambiae s.s. S molecular forms. We show that the phylogenetic relationships vary widely between different genomic regions, thus demonstrating the mosaic nature of the genome of these species. The two major malaria vectors are closely related and closer to A. merus than to A. melas at the genome-wide level, which is also true if only autosomes are considered. However, within the Xag inversion region of the X chromosome, the M and two S molecular forms are most similar to A. merus. Near the X centromere, outside the Xag region, the two S forms are highly dissimilar to the other taxa. Furthermore, our data suggest that the centromeric region of chromosome 3 is a strong discriminator between the major and minor malaria vectors. CONCLUSIONS: Although further studies are needed to elucidate the basis of the phylogenetic variation among the different regions of the genome, the preponderance of sympatric admixtures among taxa strongly favor introgression of different genomic regions between species, rather than lineage sorting of ancestral polymorphism, as a possible mechanism.

  13. Reconsideration of Anopheles rivulorum as a vector of Plasmodium falciparum in western Kenya: some evidence from biting time, blood preference, sporozoite positive rate, and pyrethroid resistance

    Directory of Open Access Journals (Sweden)

    Kawada Hitoshi

    2012-10-01

    Full Text Available Abstract Background Anopheles gambiae, An. arabiensis, and An. funestus are widespread malaria vectors in Africa. Anopheles rivulorum is the next most widespread species in the An. funestus group. The role of An. rivulorum as a malaria vector has not been fully studied, although it has been found to be a minor or opportunistic transmitter of Plasmodium falciparum. Methods Mosquitoes were collected indoors over a 12-hour period using a light source attached to a rotating bottle collector in order to determine peak activity times and to provide DNA for meal source identification. Gravid female mosquitoes were collected indoors via an aspirator to generate F1 progeny for testing insecticidal susceptibility. Blood meal sources were identified using a multiplexed PCR assay for human and bovine cytochrome-B, and by matching sequences generated with primers targeting vertebrate and mammalian cytochrome-B segments to the Genbank database. Results Anopheles rivulorum fed on human blood in the early evening between 18:00 and 20:00, when insecticide-treated bed nets are not in use, and the presence of Plasmodium falciparum sporozoites in 0.70% of the An. rivulorum individuals tested was demonstrated. Susceptibility to permethrin, deltamethrin, and DDT is higher in An. rivulorum (84.8%, 91.4%, and 100%, respectively than in An. funestus s.s. (36.8%, 36.4%, and 70%, respectively, whereas mortality rates for propoxur and fenitrothion were 100% for both species. Resistance to pyrethroids was very high in An. funestus s.s. and the potential of the development of high resistance was suspected in An. rivulorum. Conclusion Given the tendency for An. rivulorum to be active early in the evening, the presence of P. falciparum in the species, and the potential for the development of pyrethroid resistance, we strongly advocate reconsideration of the latent ability of this species as an epidemiologically important malaria vector.

  14. Limited usefulness of microsatellite markers from the malaria vector Anopheles gambiae when applied to the closely related species Anopheles melas.

    Science.gov (United States)

    Deitz, Kevin C; Reddy, Vamsi P; Reddy, Michael R; Satyanarayanah, Neha; Lindsey, Michael W; Overgaard, Hans J; Jawara, Musa; Caccone, Adalgisa; Slotman, Michel A

    2012-07-01

    Anopheles melas is a brackish water mosquito found in coastal West Africa where it is a dominant malaria vector locally. In order to facilitate genetic studies of this species, 45 microsatellite loci originally developed for Anopheles gambiae were sequenced in An. melas. Those that were suitable based on repeat number and flanking regions were examined in 2 natural populations from Equatorial Guinea. Only 15 loci were eventually deemed suitable as polymorphic markers in An. melas populations. These loci were screened in 4 populations from a wider geographic range. Heterozygosity estimates ranged from 0.18 to 0.79, and 2.5-15 average alleles were observed per locus, yielding 13 highly polymorphic markers and 2 loci with lower variability. To examine the usefulness of microsatellite markers when applied in a sibling species, the original An. gambiae specific markers were used to amplify 5 loci in An. melas. Null alleles were found for 1 An. gambiae marker. We discuss the pitfalls of using microsatellite loci across closely related species and conclude that in addition to the problem of null alleles associated with this practice, many loci may prove to be of very limited use as polymorphic markers even when used in a sibling species. PMID:22593601

  15. Isoenzymatic variability among five Anopheles species belonging to the Nyssorhynchus and Anopheles subgenera of the Amazon region, Brazil

    Directory of Open Access Journals (Sweden)

    Joselita Maria Mendes dos Santos

    2003-03-01

    Full Text Available An isoenzymatic comparative analysis of the variability and genetics differentiation among Anopheles species was done in populations of An. (Nys. intermedius and An. (Ano. mattogrossensis of the Anopheles subgenus, and of An. darlingi, An. albitarsis and An. triannulatus of the Nyssorhynchus subgenus, with the aim of detecting differences between both subgenera and of estimating the degree of genetic intere specific divergence. Samples from Macapá, State of Amapá and Janauari Lake, near Manaus, State of Amazonas, were analyzed for eight isoenzymatic loci. Analysis revealed differences in the average number of alleles per locus (1.6-2.3 and heterozygosity (0.060-0.284. However, the proportion of polymorphic loci was the same for An. (Nys. darlingi, An. (Nys. triannulatus and An. (Ano. mattogrossensis (50%, but differed for An. (Nys. albitarsis (62.5% and An. (Ano. intermedius (25%. Only the IDH1 (P > 0.5 locus in all species studied was in Hardy-Weinberg equilibrium. The fixation index demonstrated elevated genetic structuring among species, based on values of Fst = 0.644 and genetic distance (0.344-0.989. Genetic difference was higher between An. (Nys. triannulatus and An. (Ano. intermedius (0.989 and smaller between An. (Nys. albitarsis sensu lato and An. (Nys. darlingi (0.344. The data show interspecific genetic divergence which differs from the phylogenetic hypothesis based on morphological characters.

  16. Mermithid nematodes found in adult Anopheles from southeastern Senegal

    Directory of Open Access Journals (Sweden)

    Kobylinski Kevin C

    2012-06-01

    Full Text Available Abstract Background Over two dozen mermithid nematodes have been described parasitizing mosquitoes worldwide, however, only two species were found in Africa. Mermithid nematodes kill their mosquito host upon emergence, which suggests that they could be developed as biological control agents of mosquitoes. Both Romanomermis culicivorax and Romanomermis iyengari have been reared for mass release to control numerous Anopheles species vector populations, and in one instance this may have led to reduced malaria prevalence in a human population. Methods Anopheles mosquitoes were collected during a malaria study in southeastern Senegal. Two different adult blood fed mosquitoes had a single mermithid nematode emerge from their anus while they were being held post-capture. Primers from the 18 S rDNA were developed to sequence nematode DNA and screen mosquitoes for mermithid DNA. 18 S rDNA from the Senegalese mermithid and other mermithid entries in GenBank were used to create a Maximum Parsimony tree of the Mermithidae family. Results The mermithid was present in 1.8% (10/551 of the sampled adult Anopheles species in our study area. The mermithid was found in An. gambiae s.s., An. funestus, and An. rufipes from the villages of Ndebou, Boundoucondi, and Damboucoye. Maximum parsimony analysis confirmed that the nematode parasites found in Anopheles were indeed mermithid parasites, and of the mermithid sequences available in GenBank, they are most closely related to Strelkovimermis spiculatus. Conclusions To our knowledge, this is the first report of mermithids from adult Anopheles mosquitoes in Senegal. The mermithid appears to infect Anopheles mosquitoes that develop in diverse larval habitats. Although maximum parsimony analysis determined the mermithid was closely related to Strelkovimermis spiculatus, several characteristics of the mermithid were more similar to the Empidomermis genus. Future mermithid isolations will hopefully allow: formal

  17. Species-specific chemosensory gene expression in the olfactory organs of the malaria vector Anopheles gambiae

    NARCIS (Netherlands)

    Hodges, Theresa K.; Cosme, Luciano V.; Athrey, Giridhar; Pathikonda, Sharmila; Takken, Willem; Slotman, Michel A.

    2014-01-01

    Background: The malaria mosquito Anopheles gambiae has a high preference for human hosts, a characteristic that contributes greatly to its capacity for transmitting human malaria. A sibling species, An. quadriannulatus, has a quite different host preference and feeds mostly on bovids. For this re

  18. The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae.

    Science.gov (United States)

    Kumar, Sanjeev; Christophides, George K; Cantera, Rafael; Charles, Bradley; Han, Yeon Soo; Meister, Stephan; Dimopoulos, George; Kafatos, Fotis C; Barillas-Mury, Carolina

    2003-11-25

    Malaria transmission depends on the competence of some Anopheles mosquitoes to sustain Plasmodium development (susceptibility). A genetically selected refractory strain of Anopheles gambiae blocks Plasmodium development, melanizing, and encapsulating the parasite in a reaction that begins with tyrosine oxidation, and involves three quantitative trait loci. Morphological and microarray mRNA expression analysis suggest that the refractory and susceptible strains have broad physiological differences, which are related to the production and detoxification of reactive oxygen species. Physiological studies corroborate that the refractory strain is in a chronic state of oxidative stress, which is exacerbated by blood feeding, resulting in increased steady-state levels of reactive oxygen species, which favor melanization of parasites as well as Sephadex beads. PMID:14623973

  19. Taxonomy Icon Data: Anopheles stephensi [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Anopheles stephensi Anopheles stephensi Arthropoda Anopheles_stephensi_L.png Anopheles_stephen...si_NL.png Anopheles_stephensi_S.png Anopheles_stephensi_NS.png http://biosciencedbc.jp/taxonomy_i...con/icon.cgi?i=Anopheles+stephensi&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Anopheles+stephensi&...t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Anopheles+stephensi&t=S htt...p://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Anopheles+stephensi&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=149 ...

  20. Description of Anopheles gabonensis, a new species potentially involved in rodent malaria transmission in Gabon, Central Africa.

    Science.gov (United States)

    Rahola, Nil; Makanga, Boris; Yangari, Patrick; Jiolle, Davy; Fontenille, Didier; Renaud, François; Ollomo, Benjamin; Ayala, Diego; Prugnolle, Franck; Paupy, Christophe

    2014-12-01

    The genus Anopheles includes mosquito vectors of human malaria and arboviruses. In sub-Saharan Africa, the anopheline fauna is rich of nearly 150 species, few of which are anthropophilic and capable of transmitting pathogens to humans. Some of the remaining species are found in forests far from human environments and are vectors of wildlife pathogens. The diversity and the biology of these species have yet to be fully described. As a contribution to furthering knowledge of sylvan Anophelinae, using morphological and molecular tools we describe a new Anopheles species collected in Gabon (Central Africa), which we have named Anopheles gabonensis n. sp. We also molecularly screened this species to detect infections by Plasmodium parasites. The results showed the species to have been infected by Plasmodium vinckei, a rodent parasite. We discuss the role of An. gabonensis n. sp. in the transmission of P. vinckei in the rainforest areas of Central Africa and its potential to transfer pathogens to humans.

  1. Observations on sporozoite detection in naturally infected sibling species of the Anopheles culicifacies complex and variant of Anopheles stephensi in India

    Indian Academy of Sciences (India)

    Susanta Kumar Ghosh; Satyanarayan Tiwari; Kamaraju Raghavendra; Tiruchinapalli Sundaraj; Aditya Prasad Dash

    2008-09-01

    Sporozoites were detected in naturally infected sibling species of the primary rural vector Anopheles culicifacies complex in two primary health centres (PHCs) and a variant of the urban vector Anopheles stephensi in Mangalore city, Karnataka, south India while carrying out malaria outbreak investigations from 1998–2006. Sibling species of An. culicifacies were identified based on the banding patterns on ovarian polytene chromosomes, and variants of An. stephensi were identified based on the number of ridges on the egg floats. Sporozoites were detected in the salivary glands by the dissection method. Of the total 334 salivary glands of An. culicifacies dissected, 17 (5.08%) were found to be positive for sporozoites. Of the 17 positive samples, 11 were suitable for sibling species analysis; 10 were species A (an efficient vector) and 1 was species B (a poor vector). Out of 46 An. stephensi dissected, one was sporozoite positive and belonged to the type form (an efficient vector). In malaria epidemiology this observation is useful for planning an effective vector control programme, because each sibling species/variant differs in host specificity, susceptibility to malarial parasites, breeding habitats and response to insecticides.

  2. Cytogenetic evidence for a species complex within Anopheles pseudopunctipennis theobald (Diptera: Culicidae).

    Science.gov (United States)

    Coetzee, M; Estrada-Franco, J G; Wunderlich, C A; Hunt, R H

    1999-04-01

    Anopheles pseudopunctipennis was collected from Acapulco, Mexico and Sallee River, Grenada, West Indies and used in cross-mating experiments. Larvae from the cross, Mexico female X Grenada male, died in the third instar. However, adult progeny were obtained from the reciprocal cross Grenada female x Mexico male. These hybrid males had testes with apparently normal appearance but some without viable sperm. Polytene chromosomes obtained from hybrid females exhibited extensive asynapsis of the X chromosomes. Previously undescribed fixed inversion differences between the two populations were noted on the X chromosome. It is concluded that the two populations belong to different species. The Grenada population is designated An. pseudopunctipennis species C, since it is the third taxon recognized in this species complex.

  3. Random amplified polymorphic DNA (RAPD) markers readily distinguish cryptic mosquito species (Diptera: Culicidae: Anopheles).

    Science.gov (United States)

    Wilkerson, R C; Parsons, T J; Albright, D G; Klein, T A; Braun, M J

    1993-01-01

    The usefulness of random amplified polymorphic DNA (RAPD) was examined as a potential tool to differentiate cryptic mosquito species. It proved to be a quick, effective means of finding genetic markers to separate two laboratory populations of morphologically indistinguishable African malaria vectors, Anopheles gambiae and An. arabiensis. In an initial screening of fifty-seven RAPD primers, 377 bands were produced, 295 of which differed between the two species. Based on criteria of interpretability, simplicity and reproducibility, thirteen primers were chosen for further screening using DNA from thirty individuals of each species. Seven primers produced diagnostic bands, five of which are described here. Some problematic characteristics of RAPD banding patterns are discussed and approaches to overcome these are suggested. PMID:8269099

  4. Shift in species composition in the Anopheles gambiae complex after implementation of long-lasting insecticidal nets in Dielmo, Senegal.

    Science.gov (United States)

    Sougoufara, S; Harry, M; Doucouré, S; Sembène, P M; Sokhna, C

    2016-09-01

    Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are the cornerstones of malaria vector control. However, the effectiveness of these control tools depends on vector ecology and behaviour, which also largely determine the efficacy of certain Anopheles mosquitoes (Diptera: Culicidae) as vectors. Malaria vectors in sub-Saharan Africa are primarily species of the Anopheles gambiae complex, which present intraspecific differences in behaviour that affect how they respond to vector control tools. The focus of this study is the change in species composition in the An. gambiae complex after the implementation of LLINs in Dielmo, Senegal. The main findings referred to dramatic decreases in the proportions of Anopheles coluzzii and An. gambiae after the introduction of LLINs, and an increase in the proportion of Anopheles arabiensis. Two years after LLINs were first introduced, An. arabiensis remained the most prevalent species and An. gambiae had begun to rebound. This indicated a need to develop additional vector control tools that can target the full range of malaria vectors. PMID:27058993

  5. [The Anopheles fauna and the transmission of human malaria in Kinshasa (Zaire)].

    Science.gov (United States)

    Karch, S; Asidi, N; Manzambi, Z M; Salaun, J J

    1992-01-01

    A longitudinal epidemiological study of malaria and its vectors was conducted in Kinshasa. 264 night-bite collections on human bait (1,056 man nights) and 384 collections of the house-resting fauna were carried out from April 1989 to October 1990. The anophelian fauna was identified and inventoried, 7 Anopheles species were found: Anopheles gambiae, An. funestus, An. paludis, An. hancocki, An. counstani, An. brunnipes, and An. nili. A single species, An. gambiae s. l. is responsible for the transmission of malaria, it represents 93.27% of the anopheline fauna. The average number of anophele bites man day was 16.28 bites/man/night, it varied between 1 b/m/n in urban area to 26.05 b/m/n in semi-rural area. The average of the sporozoite index for An. gambiae was 3.3%, but it varied from 0% in the urban area to 6.52% in the semi-rural area. The entomological inoculation rate (h) was 197 infective bites per year. This rate fluctuated from 1 infective bite each 128 nights in urban area to 1.7 infective night-bite in semi-rural area. Other epidemiological index were also determined: the level of daily survival rate (p = 8.75 days), the vectorial capacity of 17.97 and the Macdonald's stability 3.5 bites on man taken by a vector during its entire lifetime.

  6. Sequencing and analysis of the complete mitochondrial genome in Anopheles culicifacies species B (Diptera: Culicidae).

    Science.gov (United States)

    Hua, Ya-Qiong; Yan, Zhen-Tian; Fu, Wen-Bo; He, Qi-Yi; Zhou, Yong; Chen, Bin

    2016-07-01

    The complete mitochondrial genome sequence of Anopheles culicifacial species B was sequenced in this study. The length of the mitochondrial genome is 15 330 bp, which contains 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and a non-coding control region. The gene order and the gene composition are consistent with those previously reported for other mosquito species. The initiation codon of the PCGs complies with the ATN rule except for COI using TCG and ND5 using GTG as a start codon, and the termination codon is TAA or imcomplete, an only T. The total base composition is 40.4% A, 38.1% T, 12.4% C, and 9.1% G. The phylogenetic tree based on the sequences of 13 protein-coding genes showed that these species were classified into two clades, corresponding to the subgenus Cellia and subgenus Nyssorhynchus. An. culicifacies species B of Myzomyia Series was clustered with An. gambiae of Pyretophorus Series with a high bootstrap value of 100%. The complete mitogenome data can provide a basis for molecular identification and phylogenetic studies of mosquito species. PMID:26114319

  7. The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae

    OpenAIRE

    Kumar, Sanjeev; Christophides, George K.; Cantera, Rafael; Charles, Bradley; Han, Yeon Soo; Meister, Stephan; Dimopoulos, George; Kafatos, Fotis C.; Barillas-Mury, Carolina

    2003-01-01

    Malaria transmission depends on the competence of some Anopheles mosquitoes to sustain Plasmodium development (susceptibility). A genetically selected refractory strain of Anopheles gambiae blocks Plasmodium development, melanizing, and encapsulating the parasite in a reaction that begins with tyrosine oxidation, and involves three quantitative trait loci. Morphological and microarray mRNA expression analysis suggest that the refractory and susceptible strains have broad physiological differe...

  8. Composition, abundance and aspects of temporal variation in the distribution of Anopheles species in an area of Eastern Amazonia

    Directory of Open Access Journals (Sweden)

    Ledayane Mayana Costa Barbosa

    2014-06-01

    Full Text Available Introduction The diverse and complex environmental conditions of the Amazon Basin favor the breeding and development of Anopheles species. This study aimed to describe the composition, abundance and temporal frequency of Anopheles species and to correlate these factors with precipitation, temperature and relative humidity. Methods The study was conducted in the District of Coração, State of Amapá, Brazil. Samples were collected monthly during three consecutive nights, from 6:00 PM to 10:00 PM, from December 2010 to November 2011. In addition, four 12-hour collections (i.e., 6:00 PM to 6:00 AM were performed during this period. Results A total of 1,230 Anopheles specimens were collected. In the monthly collections, Anopheles darlingi was the predominant species, followed by An. braziliensis and An. albitarsis s.l., whereas An. darlingi, An. peryassui and An. braziliensis were the most frequent species collected in the 12-hour collections. The greatest number of anophelines was collected in September (the dry season. The highest frequency of anophelines was observed for An. darlingi during September, when there were the least rainfalls of the year, along with lower relative humidity and higher temperatures. There was little variation in the abundance of this species in other months, with the exception of slight increases in February, July and August. Conclusions The major malaria vectors, An. darlingi and An. albitarsis s.l. (likely An. marajoara, were the most abundant species collected in the study area. Consequently, prevention and control measures should be taken to prevent malaria outbreaks in the District of Coração.

  9. The relationship between wing length, blood meal volume, and fecundity for seven colonies of Anopheles species housed at the Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.

    Science.gov (United States)

    Phasomkusolsil, Siriporn; Pantuwattana, Kanchana; Tawong, Jaruwan; Khongtak, Weeraphan; Kertmanee, Yossasin; Monkanna, Nantaporn; Klein, Terry A; Kim, Heung-Chul; McCardle, Patrick W

    2015-12-01

    Established colonies of Anopheles campestris, Anopheles cracens, Anopheles dirus, Anopheles kleini, Anopheles minimus, Anopheles sawadwongporni, and Anopheles sinensis are maintained at the Armed Forces Research Institute of Medical Sciences (AFRIMS). Females were provided blood meals on human blood containing citrate as an anticoagulant using an artificial membrane feeder. The mean wing length, used as an estimate of body size, for each species was compared to blood-feeding duration (time), blood meal volume, and numbers of eggs oviposited. Except for An. campestris and An. cracens, there were significant interspecies differences in wing length. The mean blood meal volumes (mm(3)) of An. kleini and An. sinensis were significantly higher than the other 5 species. For all species, the ratios of unfed females weights/blood meal volumes were similar (range: 0.76-0.88), except for An. kleini (1.08) and An. cracens (0.52), that were significantly higher and lower, respectively. Adult females were allowed to feed undisturbed for 1, 3, and 5min intervals before blood feeding was interrupted. Except for An. campestris and An. sawadwongporni, the number of eggs oviposited were significantly higher for females that fed for 3min when compared to those that only fed for 1min. This information is critical to better understand the biology of colonized Anopheles spp. and their role in the transmission of malaria parasites as they relate to the relative size of adult females, mean volumes of blood of engorged females for each of the anopheline species, and the effect of blood feeding duration on specific blood meal volumes and fecundity.

  10. Role of Culex and Anopheles mosquito species as potential vectors of rift valley fever virus in Sudan outbreak, 2007

    Directory of Open Access Journals (Sweden)

    Galal Fatma H

    2010-03-01

    Full Text Available Abstract Background Rift Valley fever (RVF is an acute febrile arthropod-borne viral disease of man and animals caused by a member of the Phlebovirus genus, one of the five genera in the family Bunyaviridae. RVF virus (RVFV is transmitted between animals and human by mosquitoes, particularly those belonging to the Culex, Anopheles and Aedes genera. Methods Experiments were designed during RVF outbreak, 2007 in Sudan to provide an answer about many raised questions about the estimated role of vector in RVFV epidemiology. During this study, adult and immature mosquito species were collected from Khartoum and White Nile states, identified and species abundance was calculated. All samples were frozen individually for further virus detection. Total RNA was extracted from individual insects and RVF virus was detected from Culex, Anopheles and Aedes species using RT-PCR. In addition, data were collected about human cases up to November 24th, 2007 to asses the situation of the disease in affected states. Furthermore, a historical background of the RVF outbreaks was discussed in relation to global climatic anomalies and incriminated vector species. Results A total of 978 mosquitoes, belonging to 3 genera and 7 species, were collected during Sudan outbreak, 2007. Anopheles gambiae arabiensis was the most frequent species (80.7% in White Nile state. Meanwhile, Cx. pipiens complex was the most abundant species (91.2% in Khartoum state. RT-PCR was used and successfully amplified 551 bp within the M segment of the tripartite negative-sense single stranded RNA genome of RVFV. The virus was detected in female, male and larval stages of Culex and Anopheles species. The most affected human age interval was 15-29 years old followed by ≥ 45 years old, 30-44 years old, and then 5-14 years old. Regarding to the profession, housewives followed by farmers, students, shepherd, workers and the free were more vulnerable to the infection. Furthermore, connection between

  11. INSECTICIDAL ACTIVITIES OF ESSENTIAL OILS EXTRACTED FROM THREE SPECIES OF POACEAE ON ANOPHELES GAMBIAE SPP, MAJOR VECTOR OF MALARIA

    Directory of Open Access Journals (Sweden)

    Dominique C. K. Sohounhloué

    2010-12-01

    Full Text Available In this paper, the insecticidal activities on Anopheles gambiae spp of the essential oils (EO extracted from the dry leaves of some species collected in Benin were studied. The essential oil yields are 2.8, 1.7 and 1.4�0respectively for Cymbopogon schoanenthus (L. Spreng (CS, Cymbopogon citratus Stapf. (CC and Cymbopogon giganteus (Hochst. Chiov (CG. The GC/MS analysis showed that the EO of CS had a larger proportion in oxygenated monoterpenes (86.3�20whereas those of the sheets of CC and CG are relatively close proportions (85.5�0and 82.7�0respectively with. The piperitone (68.5�  2-carene (11.5� and -eudesmol (4.6�20are the major components of the EO of CS while trans para-mentha-1(7,8-dien-2-ol (31.9� trans para-mentha-2,8-dien-1-ol (19.6� cis para-mentha-2,8-dien-1-ol (7.2� trans piperitol (6.3�20and limonene (6.3�20prevailed in the EO of CG. The EO of CC revealed a rich composition in geranial (41.3� neral (33� myrcene (10.4� and geraniol (6.6� The biological tests have shown that these three EO induced 100�0mortality of Anopheles gambiae to 1.1, 586.58 and 1549 µg•cm-2 respectively for CC, CS and CG. These effects are also illustrated by weak lethal concentration for 50�0anopheles population (CC: 0.306; CS: 152.453 and CG: 568.327 µg•cm-2 in the same order of reactivity. The EO of CC appeared most active on two stocks (sensitive and resistant of Anopheles gambiae.

  12. Reactive oxygen species modulate Anopheles gambiae immunity against bacteria and Plasmodium.

    Science.gov (United States)

    Molina-Cruz, Alvaro; DeJong, Randall J; Charles, Bradley; Gupta, Lalita; Kumar, Sanjeev; Jaramillo-Gutierrez, Giovanna; Barillas-Mury, Carolina

    2008-02-01

    The involvement of reactive oxygen species (ROS) in mosquito immunity against bacteria and Plasmodium was investigated in the malaria vector Anopheles gambiae. Strains of An. gambiae with higher systemic levels of ROS survive a bacterial challenge better, whereas reduction of ROS by dietary administration of antioxidants significantly decreases survival, indicating that ROS are required to mount effective antibacterial responses. Expression of several ROS detoxification enzymes increases in the midgut and fat body after a blood meal. Furthermore, expression of several of these enzymes increases to even higher levels when mosquitoes are fed a Plasmodium berghei-infected meal, indicating that the oxidative stress after a blood meal is exacerbated by Plasmodium infection. Paradoxically, a complete lack of induction of catalase mRNA and lower catalase activity were observed in P. berghei-infected midguts. This suppression of midgut catalase expression is a specific response to ookinete midgut invasion and is expected to lead to higher local levels of hydrogen peroxide. Further reduction of catalase expression by double-stranded RNA-mediated gene silencing promoted parasite clearance by a lytic mechanism and reduced infection significantly. High mosquito mortality is often observed after P. berghei infection. Death appears to result in part from excess production of ROS, as mortality can be decreased by oral administration of uric acid, a strong antioxidant. We conclude that ROS modulate An. gambiae immunity and that the mosquito response to P. berghei involves a local reduction of detoxification of hydrogen peroxide in the midgut that contributes to limit Plasmodium infection through a lytic mechanism. PMID:18065421

  13. Parasite killing in malaria non-vector mosquito Anopheles culicifacies species B: implication of nitric oxide synthase upregulation.

    Directory of Open Access Journals (Sweden)

    Sonam Vijay

    Full Text Available BACKGROUND: Anopheles culicifacies, the main vector of human malaria in rural India, is a complex of five sibling species. Despite being phylogenetically related, a naturally selected subgroup species B of this sibling species complex is found to be a poor vector of malaria. We have attempted to understand the differences between vector and non-vector Anopheles culicifacies mosquitoes in terms of transcriptionally activated nitric oxide synthase (AcNOS physiologies to elucidate the mechanism of refractoriness. Identification of the differences between genes and gene products that may impart refractory phenotype can facilitate development of novel malaria transmission blocking strategies. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a study on phylogenetically related susceptible (species A and refractory (species B sibling species of An. culicifacies mosquitoes to characterize biochemical and molecular differences in AcNOS gene and gene elements and their ability to inhibit oocyst growth. We demonstrate that in species B, AcNOS specific activity and nitrite/nitrates in mid-guts and haemolymph were higher as compared to species A after invasion of the mid-gut by P. vivax at the beginning and during the course of blood feeding. Semiquantitative RT-PCR and real time PCR data of AcNOS concluded that this gene is more abundantly expressed in midgut of species B than in species A and is transcriptionally upregulated post blood meals. Dietary feeding of L-NAME along with blood meals significantly inhibited midgut AcNOS activity leading to an increase in oocyst production in An. culicifacies species B. CONCLUSIONS/SIGNIFICANCE: We hypothesize that upregulation of mosquito innate cytotoxicity due to NOS in refractory strain to Plasmodium vivax infection may contribute to natural refractoriness in An. culicifacies mosquito population. This innate capacity of refractory mosquitoes could represent the ancestral function of the mosquito immune system against

  14. Reactive oxygen species detoxification by catalase is a major determinant of fecundity in the mosquito Anopheles gambiae

    OpenAIRE

    DeJong, Randall J.; Miller, Lisa M; Molina-Cruz, Alvaro; Gupta, Lalita; Kumar, Sanjeev; Barillas-Mury, Carolina

    2007-01-01

    The mosquito Anopheles gambiae is a primary vector of Plasmodium parasites in Africa. The effect of aging on reproductive output in A. gambiae females from three strains that differ in their ability to melanize Plasmodium and in their systemic levels of hydrogen peroxide (H2O2), a reactive oxygen species (ROS), was analyzed. The number of eggs oviposited after the first blood meal decreases with age in all strains; however, this decline was much more pronounced in the G3 (unselected) and R (r...

  15. Vector species composition and malaria infectivity rates in Mkuzi, Muheza District, north-eastern Tanzania

    DEFF Research Database (Denmark)

    Kweka, E J; Mahande, A M; Nkya, W M M;

    2008-01-01

    Entomological surveys were conducted in Mkuzi village in Muheza District, north-east Tanzania from April to September 2003. The objectives were to determine the species composition and infectivity rates of mosquitoes in Mkuzi village. Mosquito collection was done using CDC light trap and pyrethrum...... spray catch (PSC) techniques. The light trap: spray catch ratio was 2.2:1. A total of 2157 mosquitoes were collected (light trap = 1483; PSC = 674). Anopheles gambiae s.s. accounted for 56.7% (N = 1224) of all mosquitoes collected. Other species were An. funestus complex (19.2%) and Culex...... quinquefasciatus (24.1%).The mosquito density per room was 74.15 and 33.7 for light trap and PSC techniques, respectively. A total of 1637 Anopheles mosquitoes were tested for circumsporozoite protein by Enzyme linked Immunosobent Assay (ELISA). The overall infectivity rate for circumsporozoite protein for P...

  16. A molecular phylogeny of Anopheles annulipes (Diptera: Culicidae) sensu lato: the most species-rich anopheline complex.

    Science.gov (United States)

    Foley, D H; Wilkerson, R C; Cooper, R D; Volovsek, M E; Bryan, J H

    2007-04-01

    The Australasian Annulipes Complex is the most species-rich among Anopheles mosquitoes, with at least 15 sibling species suspected. Members of this complex are the most likely vectors of malaria in the past in southern Australia and are involved in the spread of myxomatosis among rabbits. In this, the first comprehensive molecular study of the Annulipes Complex, 23 ITS2 rDNA variants were detected from collections throughout Australia and Papua New Guinea, including diagnostic variants for the previously identified An. annulipes species A-G. Specimens of each ITS2 variant were sequenced for portions of the mitochondrial COI, COII and nuclear EF-1alpha genes. Partitioned Bayesian and Maximum Parsimony analyses confirmed the monophyly of the Annulipes Complex and revealed at least 17 clades that we designate species A-Q. These species belong to two major clades, one in the north and one mainly in the south, suggesting that climate was a driver of species radiation. We found that 65% (11) of the 17 sibling species recorded here had unique COI sequences, suggesting that DNA barcoding will be useful for diagnosing species within the Annulipes Complex. A comparison of the taxa revealed morphological characters that may be diagnostic for some species. Our results substantially increase the size of the subgenus Cellia in Australasia, and will assist species-level studies of the Annulipes Complex. PMID:17126567

  17. Genetic diversity in two sibling species of the Anopheles punctulatus group of mosquitoes on Guadalcanal in the Solomon Islands

    Directory of Open Access Journals (Sweden)

    Harada Masakazu

    2008-11-01

    Full Text Available Abstract Background The mosquito Anopheles irenicus, a member of the Anopheles punctulatus group, is geographically restricted to Guadalcanal in the Solomon Islands. It shows remarkable morphological similarities to one of its sibling species, An. farauti sensu stricto (An. farauti s.s., but is dissimilar in host and habitat preferences. To infer the genetic variations between these two species, we have analyzed mitochondrial cytochrome oxidase subunit II (COII and nuclear ribosomal internal transcribed spacer 2 (ITS2 sequences from Guadalcanal and from one of its nearest neighbours, Malaita, in the Solomon Islands. Results An. farauti s.s. was collected mostly from brackish water and by the human bait method on both islands, whereas An. irenicus was only collected from fresh water bodies on Guadalcanal Island. An. irenicus is distributed evenly with An. farauti s.s. (ΦSC = 0.033, 0.38% and its range overlaps in three of the seven sampling sites. However, there is a significant population genetic structure between the species (ΦCT = 0.863, P ST = 0.865, P FST = 0.878, P An. irenicus is a monophyletic species, not a hybrid, and is closely related to the An. farauti s.s. on Guadalcanal. The time estimator suggests that An. irenicus diverged from the ancestral An. farauti s.s. on Guadalcanal within 29,000 years before present (BP. An. farauti s.s. expanded much earlier on Malaita (texp = 24,600 BP than the populations on Guadalcanal (texp = 16,800 BP for An. farauti s.s. and 14,000 BP for An. irenicus. Conclusion These findings suggest that An. irenicus and An. farauti s.s. are monophyletic sister species living in sympatry, and their populations on Guadalcanal have recently expanded. Consequently, the findings further suggest that An. irenicus diverged from the ancestral An. farauti s.s. on Guadalcanal.

  18. Some characteristics of the larval breeding sites of Anopheles culicifacies species B and E in Sri Lanka

    Directory of Open Access Journals (Sweden)

    S.N. Surendran & R. Ramasamy

    2005-06-01

    Full Text Available Background & objectives : Anopheles culicifacies Giles, the major malaria vector in Sri Lanka, existsas a species complex comprising two sympatric sibling species— species B and E. Species E is reportedto be the major vector of Plasmodium vivax and P. falciparum parasites in Sri Lanka, whilst speciesB is a poor or nonvector as in India. Knowledge of the breeding habits of the two sibling species canhelp in designing optimal vector control strategies. Hence, a survey was conducted in Sri Lanka tostudy the preferential breeding habitats of An. culicifacies species B and E.Methods: Immature forms of An. culicifacies were collected from identified breeding sites in malariousdistricts. Collected larvae were typed for their sibling species status based on mitotic Y-chromosomestructure. Data was analysed using Statistical Package for Social Science version 10.0.Results: An. culicifacies immature forms were found in 23 collection sites. Among these samples19 were found to have species E and four to have species B. All species B larvae were collected fromTonigala village in the Puttalam district. None of the 23 sites was found to have both species B and E.Species E, the major vector of malaria, appears to breed in variety of breeding sites which can be of anindication of its adaptive variation to exploit breeding sites with varying limnological characteristics.Interpretation & conclusion: The present findings have to be taken into account when formulatingmore effective larval control measures. They also show the need for a detailed study of possibledifferent preferences for larval breeding sites between species B and E.

  19. DNA Barcodes indicate members of the Anopheles fluviatilis (Diptera: Culicidae) species complex to be conspecific in India.

    Science.gov (United States)

    Pradeep Kumar, N; Krishnamoorthy, N; Sahu, S S; Rajavel, A R; Sabesan, S; Jambulingam, P

    2013-05-01

    Anopheles fluviatilis, a major vector of malaria in India has been described as a complex of three sibling species members, named as S, T and U, based on variations in chromosomal inversions. Also, ribosomal DNA markers (repetitive Internal Transcribed Spacer 2 (ITS2) and 28S D3 region) were described to differentiate these three sibling species members. However, controversies prevail on the genetic isolation status of these cryptic species. Hence, we evaluated this taxonomic incongruence employing DNA barcoding, the well established methodology for species identification, using 60 An. fluviatilis sensu lato specimens, collected from two malaria endemic eastern states of India. These specimens were also subjected to sibling species characterization by ITS2 and D3 DNA markers. The former marker identified 31 specimens among these as An. fluviatilis S and 21 as An. fluviatilis T. Eight specimens amplified DNA fragments specific for both S and T. The D3 marker characterized 39 specimens belonging to species S and 21 to species T. Neither marker identified species U. Neighbor Joining analysis of mitochondrial cytochrome c oxidase gene 1 sequences (the DNA barcode) categorized all the 60 specimens into a single operational taxonomic unit, their Kimura 2 parameter (K2P) genetic variability being only 0.8%. The genetic differentiation (FST ) and gene flow (Nm ) estimates were 0.00799 and 62.07, respectively, indicating these two 'species' (S & T) as genetically con-specific intermixing populations with negligible genetic differentiation. Earlier investigations have refuted the existence of species U. Also, this study demonstrated that An. fluviatilis and the closely related An. minimus could be taxonomically differentiated by the DNA Barcode approach (K2P = 5.0%). PMID:23398631

  20. Molecular species identification, host preference and detection of myxoma virus in the Anopheles maculipennis complex (Diptera: Culicidae) in southern England, UK.

    OpenAIRE

    Brugman, VA; Hernández-Triana, LM; Prosser, SW; Weland, C; Westcott, DG; Fooks, AR; Johnson, N

    2015-01-01

    Background Determining the host feeding patterns of mosquitoes by identifying the origin of their blood-meals is an important part of understanding the role of vector species in current and future disease transmission cycles. Collecting large numbers of blood-fed mosquitoes from the field is difficult, therefore it is important to maximise the information obtained from each specimen. This study aimed to use mosquito genome sequence to identify the species within Anopheles maculipennis sensu l...

  1. Molecular taxonomy provides new insights into anopheles species of the neotropical arribalzagia series.

    Directory of Open Access Journals (Sweden)

    Giovan F Gómez

    Full Text Available Phylogenetic analysis of partial mitochondrial cytochrome oxidase c subunit I (COI and nuclear internal transcribed spacer 2 (ITS2 sequences were used to evaluate initial identification and to investigate phylogenetic relationships of seven Anopheles morphospecies of the Arribalzagia Series from Colombia. Phylogenetic trees recovered highly supported clades for An. punctimaculas.s., An. calderoni, An. malefactor s.l., An. neomaculipalpus, An. apicimacula s.l., An. mattogrossensis and An. peryassui. This study provides the first molecular confirmation of An. malefactorfrom Colombia and discovered conflicting patterns of divergence for the molecular markers among specimens from northeast and northern Colombia suggesting the presence of two previously unrecognized Molecular Operational Taxonomic Units (MOTUs. Furthermore, two highly differentiated An. apicimacula MOTUs previously found in Panama were detected. Overall, the combined molecular dataset facilitated the detection of known and new Colombian evolutionary lineages, and constitutes the baseline for future research on their bionomics, ecology and potential role as malaria vectors.

  2. Genetic diversity in two sibling species of the Anopheles punctulatus group of mosquitoes on Guadalcanal in the Solomon Islands

    Science.gov (United States)

    2008-01-01

    Background The mosquito Anopheles irenicus, a member of the Anopheles punctulatus group, is geographically restricted to Guadalcanal in the Solomon Islands. It shows remarkable morphological similarities to one of its sibling species, An. farauti sensu stricto (An. farauti s.s.), but is dissimilar in host and habitat preferences. To infer the genetic variations between these two species, we have analyzed mitochondrial cytochrome oxidase subunit II (COII) and nuclear ribosomal internal transcribed spacer 2 (ITS2) sequences from Guadalcanal and from one of its nearest neighbours, Malaita, in the Solomon Islands. Results An. farauti s.s. was collected mostly from brackish water and by the human bait method on both islands, whereas An. irenicus was only collected from fresh water bodies on Guadalcanal Island. An. irenicus is distributed evenly with An. farauti s.s. (ΦSC = 0.033, 0.38%) and its range overlaps in three of the seven sampling sites. However, there is a significant population genetic structure between the species (ΦCT = 0.863, P < 0.01; ΦST = 0.865, P < 0.01 and FST = 0.878, P < 0.01). Phylogenetic analyses suggest that An. irenicus is a monophyletic species, not a hybrid, and is closely related to the An. farauti s.s. on Guadalcanal. The time estimator suggests that An. irenicus diverged from the ancestral An. farauti s.s. on Guadalcanal within 29,000 years before present (BP). An. farauti s.s. expanded much earlier on Malaita (texp = 24,600 BP) than the populations on Guadalcanal (texp = 16,800 BP for An. farauti s.s. and 14,000 BP for An. irenicus). Conclusion These findings suggest that An. irenicus and An. farauti s.s. are monophyletic sister species living in sympatry, and their populations on Guadalcanal have recently expanded. Consequently, the findings further suggest that An. irenicus diverged from the ancestral An. farauti s.s. on Guadalcanal. PMID:19025663

  3. Cladistic analysis of the subgenus Anopheles (Anopheles) Meigen (Diptera: Culicidae) based on morphological characters.

    Science.gov (United States)

    Collucci, Eliana; Sallum, Maria Anice Mureb

    2007-06-01

    In the present study, we used morphological characters to estimate phylogenetic relationships among members of the subgenus Anopheles Meigen. Phylogenetic analyses were carried out for 36 species of Anopheles (Anopheles). An. (Stethomyia) kompi Edwards, An. (Lophopodomyia) gilesi (Peryassú), Bironella hollandi Taylor, An. (Nyssorhynchus) oswaldoi (Peryassú) and An. (Cellia) maculatus Theobald were employed as outgroups. One hundred one characters of the external morphology of the adult male, adult female, fourth-instar larva, and pupa were scored and analyzed under the parsimony criterion in PAUP. Phylogenetic relationships among the series and several species informal groups of Anopheles (Anopheles) were hypothesized. The results suggest that Anopheles (Anopheles) is monophyletic. Additionally, most species groups included in the analysis were demonstrated to be monophyletic.

  4. Cladistic analysis of the subgenus Anopheles (Anopheles Meigen (Diptera: Culicidae based on morphological characters

    Directory of Open Access Journals (Sweden)

    Eliana Collucci

    2007-06-01

    Full Text Available In the present study, we used morphological characters to estimate phylogenetic relationships among members of the subgenus Anopheles Meigen. Phylogenetic analyses were carried out for 36 species of Anopheles (Anopheles. An. (Stethomyia kompi Edwards, An. (Lophopodomyia gilesi (Peryassú, Bironella hollandi Taylor, An. (Nyssorhynchus oswaldoi (Peryassú and An. (Cellia maculatus Theobald were employed as outgroups. One hundred one characters of the external morphology of the adult male, adult female, fourth-instar larva, and pupa were scored and analyzed under the parsimony criterion in PAUP. Phylogenetic relationships among the series and several species informal groups of Anopheles (Anopheles were hypothesized. The results suggest that Anopheles (Anopheles is monophyletic. Additionally, most species groups included in the analysis were demonstrated to be monophyletic.

  5. rDNA-ITS2 based species-diagnostic polymerase chain reaction assay for identification of sibling species of Anopheles fluviatilis in Iran.

    Science.gov (United States)

    Dezfouli, S R Naddaf; Oshaghi, M A; Vatandoost, H; Assmar, M

    2003-01-01

    A species-specific polymerase chain reaction (PCR) assay using primers already designed, based on differences in the nucleotides of the second internal transcribed spacer (ITS2), was used to identify the species composition of the Anopheles fluviatilis complex in Iran. All the amplified DNA samples obtained from specimens collected from different areas using different collection methods yielded to a fragment of 450 bp size, a PCR product corresponding to the species denoted as Y. Some 21 ITS2 region of Iranian specimens were sequenced and compared with the already published sequence data of species Y from India. The sequence data of the Iranian specimens were 100% identical to that of the Indian specimens, and hence confirmed the PCR assay results. Species Y is presumably species T in India, which has no role in the transmission of malaria, whereas mosquitos of An. fluviatilis are known as a secondary vector in Iran. This conflict will remain to be solved by further biological and molecular studies.

  6. The Anopheles gambiae oxidation resistance 1 (OXR1 gene regulates expression of enzymes that detoxify reactive oxygen species.

    Directory of Open Access Journals (Sweden)

    Giovanna Jaramillo-Gutierrez

    Full Text Available BACKGROUND: OXR1 is an ancient gene, present in all eukaryotes examined so far that confers protection from oxidative stress by an unknown mechanism. The most highly conserved region of the gene is the carboxyl-terminal TLDc domain, which has been shown to be sufficient to prevent oxidative damage. METHODOLOGY/PRINCIPAL FINDINGS: OXR1 has a complex genomic structure in the mosquito A. gambiae, and we confirm that multiple splice forms are expressed in adult females. Our studies revealed that OXR1 regulates the basal levels of catalase (CAT and glutathione peroxidase (Gpx expression, two enzymes involved in detoxification of hydrogen peroxide, giving new insight into the mechanism of action of OXR1. Gene silencing experiments indicate that the Jun Kinase (JNK gene acts upstream of OXR1 and also regulates expression of CAT and GPx. Both OXR1 and JNK genes are required for adult female mosquitoes to survive chronic oxidative stress. OXR1 silencing decreases P. berghei oocyst formation. Unexpectedly, JNK silencing has the opposite effect and enhances Plasmodium infection in the mosquito, suggesting that JNK may also mediate some, yet to be defined, antiparasitic response. CONCLUSION: The JNK pathway regulates OXR1 expression and OXR1, in turn, regulates expression of enzymes that detoxify reactive oxygen species (ROS in Anopheles gambiae. OXR1 silencing decreases Plasmodium infection in the mosquito, while JNK silencing has the opposite effect and enhances infection.

  7. Reactive oxygen species detoxification by catalase is a major determinant of fecundity in the mosquito Anopheles gambiae.

    Science.gov (United States)

    DeJong, Randall J; Miller, Lisa M; Molina-Cruz, Alvaro; Gupta, Lalita; Kumar, Sanjeev; Barillas-Mury, Carolina

    2007-02-13

    The mosquito Anopheles gambiae is a primary vector of Plasmodium parasites in Africa. The effect of aging on reproductive output in A. gambiae females from three strains that differ in their ability to melanize Plasmodium and in their systemic levels of hydrogen peroxide (H2O2), a reactive oxygen species (ROS), was analyzed. The number of eggs oviposited after the first blood meal decreases with age in all strains; however, this decline was much more pronounced in the G3 (unselected) and R (refractory to Plasmodium infection) strains than in the S (highly susceptible to Plasmodium) strain. Reduction of ROS levels in G3 and R females by administration of antioxidants reversed this age-related decline in fecundity. The S and G3 strains were fixed for two functionally different catalase alleles that differ at the second amino acid position (Ser2Trp). Biochemical analysis of recombinant proteins revealed that the Trp isoform has lower specific activity and higher Km than the Ser isoform, indicating that the former is a less efficient enzyme. The Trp-for-Ser substitution appears to destabilize the functional tetrameric form of the enzyme. Both alleles are present in the R strain, and Ser/Ser females had significantly higher fecundity than Trp/Trp females. Finally, a systemic reduction in catalase activity by dsRNA-mediated knockdown significantly reduced the reproductive output of mosquito females, indicating that catalase plays a central role in protecting the oocyte and early embryo from ROS damage. PMID:17284604

  8. The Anopheles gambiae Oxidation Resistance 1 (OXR1) Gene Regulates Expression of Enzymes That Detoxify Reactive Oxygen Species

    Science.gov (United States)

    Jaramillo-Gutierrez, Giovanna; Molina-Cruz, Alvaro; Kumar, Sanjeev; Barillas-Mury, Carolina

    2010-01-01

    Background OXR1 is an ancient gene, present in all eukaryotes examined so far that confers protection from oxidative stress by an unknown mechanism. The most highly conserved region of the gene is the carboxyl-terminal TLDc domain, which has been shown to be sufficient to prevent oxidative damage. Methodology/Principal Findings OXR1 has a complex genomic structure in the mosquito A. gambiae, and we confirm that multiple splice forms are expressed in adult females. Our studies revealed that OXR1 regulates the basal levels of catalase (CAT) and glutathione peroxidase (Gpx) expression, two enzymes involved in detoxification of hydrogen peroxide, giving new insight into the mechanism of action of OXR1. Gene silencing experiments indicate that the Jun Kinase (JNK) gene acts upstream of OXR1 and also regulates expression of CAT and GPx. Both OXR1 and JNK genes are required for adult female mosquitoes to survive chronic oxidative stress. OXR1 silencing decreases P. berghei oocyst formation. Unexpectedly, JNK silencing has the opposite effect and enhances Plasmodium infection in the mosquito, suggesting that JNK may also mediate some, yet to be defined, antiparasitic response. Conclusion The JNK pathway regulates OXR1 expression and OXR1, in turn, regulates expression of enzymes that detoxify reactive oxygen species (ROS) in Anopheles gambiae. OXR1 silencing decreases Plasmodium infection in the mosquito, while JNK silencing has the opposite effect and enhances infection. PMID:20567517

  9. Reactive oxygen species detoxification by catalase is a major determinant of fecundity in the mosquito Anopheles gambiae

    Science.gov (United States)

    DeJong, Randall J.; Miller, Lisa M.; Molina-Cruz, Alvaro; Gupta, Lalita; Kumar, Sanjeev; Barillas-Mury, Carolina

    2007-01-01

    The mosquito Anopheles gambiae is a primary vector of Plasmodium parasites in Africa. The effect of aging on reproductive output in A. gambiae females from three strains that differ in their ability to melanize Plasmodium and in their systemic levels of hydrogen peroxide (H2O2), a reactive oxygen species (ROS), was analyzed. The number of eggs oviposited after the first blood meal decreases with age in all strains; however, this decline was much more pronounced in the G3 (unselected) and R (refractory to Plasmodium infection) strains than in the S (highly susceptible to Plasmodium) strain. Reduction of ROS levels in G3 and R females by administration of antioxidants reversed this age-related decline in fecundity. The S and G3 strains were fixed for two functionally different catalase alleles that differ at the second amino acid position (Ser2Trp). Biochemical analysis of recombinant proteins revealed that the Trp isoform has lower specific activity and higher Km than the Ser isoform, indicating that the former is a less efficient enzyme. The Trp-for-Ser substitution appears to destabilize the functional tetrameric form of the enzyme. Both alleles are present in the R strain, and Ser/Ser females had significantly higher fecundity than Trp/Trp females. Finally, a systemic reduction in catalase activity by dsRNA-mediated knockdown significantly reduced the reproductive output of mosquito females, indicating that catalase plays a central role in protecting the oocyte and early embryo from ROS damage. PMID:17284604

  10. Chromosomal inversions, natural selection and adaptation in the malaria vector Anopheles funestus

    NARCIS (Netherlands)

    Ayala, Diego; Fontaine, Michael C; Cohuet, Anna; Fontenille, Didier; Vitalis, Renaud; Simard, Frédéric

    2011-01-01

    Chromosomal polymorphisms, such as inversions, are presumably involved in the rapid adaptation of populations to local environmental conditions. Reduced recombination between alternative arrangements in heterozygotes may protect sets of locally adapted genes, promoting ecological divergence and pote

  11. Molasses as a source of carbon dioxide for attracting the malaria mosquitoes Anopheles gambiae and Anopheles funestus

    OpenAIRE

    Mweresa, C. K.; Omusula, P.; Otieno, B.; Loon, van, R.R.; Takken, W.; Mukabana, W.R.

    2014-01-01

    Background. Most odour baits for haematophagous arthropods contain carbon dioxide (CO2). The CO2 is sourced artificially from the fermentation of refined sugar (sucrose), dry ice, pressurized gas cylinders or propane. These sources of CO2 are neither cost-effective nor sustainable for use in remote areas of sub-Saharan Africa. In this study, molasses was evaluated as a potential substrate for producing CO2 used as bait for malaria mosquitoes. Methods. The attraction of laboratory-reared and w...

  12. Male motion coordination in swarming Anopheles gambiae and Anopheles coluzzii

    Science.gov (United States)

    The Anopheles gambiae species complex comprises the primary vectors of malaria in much of sub-Saharan Africa; most of the mating in these species occurs in swarms composed almost entirely of males. Intermittent, parallel flight patterns in such swarms have been observed, but a detailed description o...

  13. Fine pathogen discrimination within the APL1 gene family protects Anopheles gambiae against human and rodent malaria species.

    Directory of Open Access Journals (Sweden)

    Christian Mitri

    2009-09-01

    Full Text Available Genetically controlled resistance of Anopheles gambiae mosquitoes to Plasmodium falciparum is a common trait in the natural population, and a cluster of natural resistance loci were mapped to the Plasmodium-Resistance Island (PRI of the A. gambiae genome. The APL1 family of leucine-rich repeat (LRR proteins was highlighted by candidate gene studies in the PRI, and is comprised of paralogs APL1A, APL1B and APL1C that share > or =50% amino acid identity. Here, we present a functional analysis of the joint response of APL1 family members during mosquito infection with human and rodent Plasmodium species. Only paralog APL1A protected A. gambiae against infection with the human malaria parasite P. falciparum from both the field population and in vitro culture. In contrast, only paralog APL1C protected against the rodent malaria parasites P. berghei and P. yoelii. We show that anti-P. falciparum protection is mediated by the Imd/Rel2 pathway, while protection against P. berghei infection was shown to require Toll/Rel1 signaling. Further, only the short Rel2-S isoform and not the long Rel2-F isoform of Rel2 confers protection against P. falciparum. Protection correlates with the transcriptional regulation of APL1A by Rel2-S but not Rel2-F, suggesting that the Rel2-S anti-parasite phenotype results at least in part from its transcriptional control over APL1A. These results indicate that distinct members of the APL1 gene family display a mutually exclusive protective effect against different classes of Plasmodium parasites. It appears that a gene-for-pathogen-class system orients the appropriate host defenses against distinct categories of similar pathogens. It is known that insect innate immune pathways can distinguish between grossly different microbes such as Gram-positive bacteria, Gram-negative bacteria, or fungi, but the function of the APL1 paralogs reveals that mosquito innate immunity possesses a more fine-grained capacity to distinguish between

  14. Factors affecting fungus-induced larval mortality in Anopheles gambiae and Anopheles stephensi

    NARCIS (Netherlands)

    Bukhari, S.T.; Middelman, A.; Koenraadt, C.J.M.; Takken, W.; Knols, B.G.J.

    2010-01-01

    Background Entomopathogenic fungi have shown great potential for the control of adult malaria vectors. However, their ability to control aquatic stages of anopheline vectors remains largely unexplored. Therefore, how larval characteristics (Anopheles species, age and larval density), fungus (species

  15. Insecticidal potency of Aspergillus terreus against larvae and pupae of three mosquito species Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti.

    Science.gov (United States)

    Ragavendran, Chinnasamy; Natarajan, Devarajan

    2015-11-01

    Microbial control agents offer alternatives to chemical pest control, as they can be more selective than chemical insecticides. The present study evaluates the mosquito larvicidal and pupicidal potential of fungus mycelia using ethyl acetate and methanol solvent extracts produced by Aspergillus terreus against Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti. The A. terreus mycelia were extracted after 15 days from Sabouraud dextrose broth medium. The ethyl acetate extracts showed lethal concentration that kills 50% of the exposed larvae (LC50) and lethal concentration that kills 90% of the exposed larvae (LC90) values of the first, second, third, and fourth instar larvae of An. stephensi (LC50 = 97.410, 102.551, 29.802, and 8.907; LC90 = 767.957, 552.546, 535.474, and 195.677 μg/ml), Cx. quinquefasciatus (LC50 = 89.584, 74.689, 68.265, and 67.40; LC90 = 449.091, 337.355, 518.793, and 237.347 μg/ml), and Ae. aegypti (LC50 = 83.541, 84.418, 80.407, and 95.926; LC90 = 515.464, 443.167, 387.910, and 473.998 μg/ml). Pupicidal activity of mycelium extracts was tested against An. stephensi (LC50 = 25.228, LC90 = 140.487), Cx. quinquefasciatus (LC50 = 54.525, LC90 = 145.366), and Ae. aegypti (LC50 = 10.536, LC90 = 63.762 μg/ml). At higher concentration (500 μg/ml), mortality starts within the first 6 h of exposure. One hundred percent mortality occurs at 24-h exposure. The overall result observed that effective activity against selected mosquito larvae and pupae after 24 h was a dose and time-dependent activity. These ensure that the resultant mosquito population reduction is substantial even where the larvicidal and pupicidal potential is minimal. The FTIR spectra of ethyl acetate extract reflect prominent peaks (3448.32, 3000.36, 2914.59, 2118.73, 1668.21, 1436.87, 1409.02, 954.33, 901.13, and 704.67 cm(-1)). The spectra showed a sharp absorption band at 1314.66 cm(-1) assigned to wagging vibration of

  16. Insecticidal potency of Aspergillus terreus against larvae and pupae of three mosquito species Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti.

    Science.gov (United States)

    Ragavendran, Chinnasamy; Natarajan, Devarajan

    2015-11-01

    Microbial control agents offer alternatives to chemical pest control, as they can be more selective than chemical insecticides. The present study evaluates the mosquito larvicidal and pupicidal potential of fungus mycelia using ethyl acetate and methanol solvent extracts produced by Aspergillus terreus against Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti. The A. terreus mycelia were extracted after 15 days from Sabouraud dextrose broth medium. The ethyl acetate extracts showed lethal concentration that kills 50% of the exposed larvae (LC50) and lethal concentration that kills 90% of the exposed larvae (LC90) values of the first, second, third, and fourth instar larvae of An. stephensi (LC50 = 97.410, 102.551, 29.802, and 8.907; LC90 = 767.957, 552.546, 535.474, and 195.677 μg/ml), Cx. quinquefasciatus (LC50 = 89.584, 74.689, 68.265, and 67.40; LC90 = 449.091, 337.355, 518.793, and 237.347 μg/ml), and Ae. aegypti (LC50 = 83.541, 84.418, 80.407, and 95.926; LC90 = 515.464, 443.167, 387.910, and 473.998 μg/ml). Pupicidal activity of mycelium extracts was tested against An. stephensi (LC50 = 25.228, LC90 = 140.487), Cx. quinquefasciatus (LC50 = 54.525, LC90 = 145.366), and Ae. aegypti (LC50 = 10.536, LC90 = 63.762 μg/ml). At higher concentration (500 μg/ml), mortality starts within the first 6 h of exposure. One hundred percent mortality occurs at 24-h exposure. The overall result observed that effective activity against selected mosquito larvae and pupae after 24 h was a dose and time-dependent activity. These ensure that the resultant mosquito population reduction is substantial even where the larvicidal and pupicidal potential is minimal. The FTIR spectra of ethyl acetate extract reflect prominent peaks (3448.32, 3000.36, 2914.59, 2118.73, 1668.21, 1436.87, 1409.02, 954.33, 901.13, and 704.67 cm(-1)). The spectra showed a sharp absorption band at 1314.66 cm(-1) assigned to wagging vibration of

  17. Evaluation of a eucalyptus-based repellent against Anopheles spp. in Tanzania.

    Science.gov (United States)

    Trigg, J K

    1996-06-01

    A eucalyptus-based insect repellent (PMD) with the principal active ingredient p-menthane-3,8-diol was evaluated in the field in comparison with deet. In human landing catches in Tanzania, 3 formulations of PMD were tested against Anopheles gambiae and An. funestus. Repellents, applied to the legs and feet at doses chosen as used in practice, gave complete protection from biting for between 6 and 7.75 h, depending upon the formulation type, with no significant difference between PMD and deet in terms of efficacy and duration of protection. PMID:8827599

  18. Incomplete concerted evolution and reproductive isolation at the rDNA locus uncovers nine cryptic species within Anopheles longirostris from Papua New Guinea

    Directory of Open Access Journals (Sweden)

    Cooper Robert D

    2010-12-01

    Full Text Available Abstract Background Nuclear ribosomal DNA (rDNA genes and transcribed spacers are highly utilized as taxonomic markers in metazoans despite the lack of a cohesive understanding of their evolution. Here we follow the evolution of the rDNA second internal transcribed spacer (ITS2 and the mitochondrial DNA cytochrome oxidase I subunit in the malaria mosquito Anopheles longirostris from Papua New Guinea (PNG. This morphospecies inhabits a variety of ecological environments indicating that it may comprise a complex of morphologically indistinguishable species. Using collections from over 70 sites in PNG, the mtDNA was assessed via direct DNA sequencing while the ITS2 was assessed at three levels - crude sequence variation through restriction digest, intragenomic copy variant organisation (homogenisation through heteroduplex analysis and DNA sequencing via cloning. Results Genetic evaluation of over 300 individuals revealed that A. longirostris comprises eight ITS2 PCR-RFLP genotypes and nine ITS2 heteroduplex genotypes showing distinct copy variant organization profiles after PCR amplification. Seven of these nine genotypes were found to be sympatric with other genotypes. Phylogenetic analysis of cloned ITS2 PCR products and mtDNA COI confirmed all nine clades with evidence of reproductive isolation at the rDNA locus. Compensatory base changes in the ITS2 secondary structure or in pseudoknots were absent when closely related species were assessed. Individuals from each ITS2 genotype showed the same copy variant heteroduplex profile suggesting that the rDNA array is fixed within each genotype. Conclusion The centromere-proximal position of the rDNA array in Anopheles mosquitoes has probably reduced interchromosomal recombination leaving intrachromosomal events responsible for the observed pattern of concerted evolution we see in these mosquitoes. The stability of these intragenomic ITS2 copy variants within individuals and interbreeding populations

  19. Variations in susceptibility to common insecticides and resistance mechanisms among morphologically identified sibling species of the malaria vector Anopheles subpictus in Sri Lanka

    Directory of Open Access Journals (Sweden)

    Surendran Sinnathamby N

    2012-02-01

    Full Text Available Abstract Background Anopheles subpictus s.l., an important malaria vector in Sri Lanka, is a complex of four morphologically identified sibling species A-D. Species A-D reportedly differ in bio-ecological traits that are important for vector control. We investigated possible variations that had not been reported previously, in the susceptibility to common insecticides and resistance mechanisms among the An. subpictus sibling species. Methods Adult An. subpictus were collected from localities in four administrative districts in the dry zone of Sri Lanka. Single female isoprogeny lines were established and sibling species status determined according to reported egg morphology. World Health Organization's standard protocols were used for insecticide bioassays and biochemical assays to determine insecticide susceptibility and resistance mechanisms. Susceptibility of mosquitoes was tested against DDT (5%, malathion (4%, deltamethrin (0.05% and λ-cyhalothrin (0.05%. Biochemical basis for resistance was determined through assaying for esterase, glutathione-S-transferase and monooxygenase activities and the insensitivity of acetycholinesterase (AChE to propoxur inhibition. Results All sibling species were highly resistant to DDT. However there were significant differences among the sibling species in their susceptibility to the other tested insecticides. Few species A could be collected for testing, and where testing was possible, species A tended to behave more similarly to species C and D than to B. Species B was more susceptible to all the tested insecticides than the other sibling species. This difference may be attributed to the predominance of species B in coastal areas where selection pressure due to indoor residual spraying of insecticides (IRS was lower. However there were significant differences between the more inland species C and D mainly towards pyrethroids. Higher GST activities in species C and D might have contributed to their greater

  20. Bionomics of Anopheles spp. (Diptera: Culicidae) in a malaria endemic region of Sukabumi, West Java, Indonesia.

    Science.gov (United States)

    Stoops, Craig A; Rusmiarto, Saptoro; Susapto, Dwiko; Munif, Amurl; Andris, Heri; Barbara, Kathryn A; Sukowati, Supratman

    2009-12-01

    A 15-month bionomic study of Anopheles species was conducted in two ecologically distinct villages (coastal and upland) of Sukabumi District, West Java, Indonesia from June 2006 to September 2007. Mosquitoes were captured using human-landing collections at both sites. During the study, a total of 17,100 Anopheles mosquitoes comprising 13 Anopheles species were caught: 9,151 at the coastal site and 7,949 at the upland site. Anopheles barbirostris, Anopheles maculatus, and Anopheles vagus were the predominant species caught at the coastal site, and Anopheles aconitus, Anopheles barbirostris, and An. maculatus predominated in the upland site. Overall, species were exophagic at both sites, but there was variation between species. Anopheles aconitus was endophagic at the coastal site, exophagic at the upland site, collected most often in April 2007 and had a peak landing time between 22:00 and 23:00. Anopheles sundaicus was only collected at the coastal site, exophagic, collected most often in October 2006, and had a peak landing time between 19:00 and 20:00. Potential malaria vector species such An. aconitus, An. maculatus, and An. sundaicus were present throughout the year. None of the 7,770 Anopheles tested using CSP-ELISA were positive for malaria, although the risk for malaria outbreaks in Sukabumi district remains high.

  1. The abundance and host-seeking behavior of culicine species (Diptera: Culicidae) and Anopheles sinensis in Yongcheng city, people's Republic of China

    Science.gov (United States)

    2011-01-01

    Background The knowledge of mosquito species diversity and the level of anthropophily exhibited by each species in a region are of great importance to the integrated vector control. Culicine species are the primary vectors of Japanese encephalitis (JE) virus and filariasis in China. Anopheles sinensis plays a major role in the maintenance of Plasmodium vivax malaria transmission in China. The goal of this study was to compare the abundance and host-seeking behavior of culicine species and An. sinensis in Yongcheng city, a representative region of P. vivax malaria. Specifically, we wished to determine the relative attractiveness of different animal baits versus human bait to culicine species and An. sinensis. Results Culex tritaeniorhynchus was the most prevalent mosquito species and An. sinensis was the sole potential vector of P. vivax malaria in Yongcheng city. There were significant differences (P < 0.01) in the abundance of both An. sinensis and Cx. tritaeniorhynchus collected in distinct baited traps. The relative attractiveness of animal versus human bait was similar towards both An. sinensis and Cx. tritaeniorhynchus. The ranking derived from the mean number of mosquitoes per bait indicated that pigs, goats and calves frequently attracted more mosquitoes than the other hosts tested (dogs, humans, and chickens). These trends were similar across all capture nights at three distinct villages. The human blood index (HBI) of female An. sinensis was 2.94% when computed with mixed meals while 3.70% computed with only the single meal. 19:00~21:00 was the primary peak of host-seeking female An. sinensis while 4:00~5:00 was the smaller peak at night. There was significant correlation between the density of female An. sinensis and the average relative humidity (P < 0.05) in Wangshanzhuang village. Conclusions Pigs, goats and calves were more attractive to An. sinensis and Cx. tritaeniorhynchus than dogs, humans, and chickens. Female An. sinensis host-seeking activity

  2. The abundance and host-seeking behavior of culicine species (Diptera: Culicidae and Anopheles sinensis in Yongcheng city, people's Republic of China

    Directory of Open Access Journals (Sweden)

    Liu Xiao-Bo

    2011-11-01

    Full Text Available Abstract Background The knowledge of mosquito species diversity and the level of anthropophily exhibited by each species in a region are of great importance to the integrated vector control. Culicine species are the primary vectors of Japanese encephalitis (JE virus and filariasis in China. Anopheles sinensis plays a major role in the maintenance of Plasmodium vivax malaria transmission in China. The goal of this study was to compare the abundance and host-seeking behavior of culicine species and An. sinensis in Yongcheng city, a representative region of P. vivax malaria. Specifically, we wished to determine the relative attractiveness of different animal baits versus human bait to culicine species and An. sinensis. Results Culex tritaeniorhynchus was the most prevalent mosquito species and An. sinensis was the sole potential vector of P. vivax malaria in Yongcheng city. There were significant differences (P An. sinensis and Cx. tritaeniorhynchus collected in distinct baited traps. The relative attractiveness of animal versus human bait was similar towards both An. sinensis and Cx. tritaeniorhynchus. The ranking derived from the mean number of mosquitoes per bait indicated that pigs, goats and calves frequently attracted more mosquitoes than the other hosts tested (dogs, humans, and chickens. These trends were similar across all capture nights at three distinct villages. The human blood index (HBI of female An. sinensis was 2.94% when computed with mixed meals while 3.70% computed with only the single meal. 19:00~21:00 was the primary peak of host-seeking female An. sinensis while 4:00~5:00 was the smaller peak at night. There was significant correlation between the density of female An. sinensis and the average relative humidity (P Conclusions Pigs, goats and calves were more attractive to An. sinensis and Cx. tritaeniorhynchus than dogs, humans, and chickens. Female An. sinensis host-seeking activity mainly occurred from 19:00 to 21:00. Thus

  3. Biting behavior of Anopheles mosquitoes in Costa Marques, Rondonia, Brazil

    Directory of Open Access Journals (Sweden)

    Terry A. Klein

    1991-03-01

    Full Text Available Mosquito collections were made in and near Costa Marques, Rondonia, Brazil, to determine anopheline anthropophilic/zoophilic behavior. Collections from a non-illuminated, bovine-baited trap and indoor and outdoor human-bait collections were compared. Anopheles darlingi and Anopheles deaneorum were more anthropophilic than the other anophelines collected. The remainder of the Anopheles species were collected much morefrequently in bovine-baited traps than in human-bait collections. Anopheles darlingi and An. deaneorum were more frequently collected inside houses than the other anopheline species. But, when collections were made in a house with numerous openings in the walls, there were few differences in the percentages of each species biting man indoors versus outdoors. Anopheles darlingi was the predominant mosquito collected, both inside and outside houses, and had the strongest anthropophilic feeding behavior of the anophelines present.Para determinar o comportamento antropofilico e zoofilico dos anofelinos, foram capturados mosquitos na periferia e na zona urbana de Costa Marques, Rondônia, Brasil. Foram comparadas as capturas feitas à noite, com iscas bovinas e humanas, dentro efora de casa. O Anopheles darlingi e o Anopheles deaneorumforam mais antropojilicos do que os outros anofelinos capturados. O restante das espécies anofelinas foi capturado mais freqüentemente nas iscas bovinas do que nas humanas. Anopheles darlingi e Anopheles deaneorumforam capturados dentro de casa com mais freqüência do que as outras espécies anofelinas. Porém, quando a captura foi feita em casas com muitas aberturas nas paredes houve pouca diferença nas porcentagens de cada espécie sugadora de humanos dentro efora de casa. Anopheles darlingi foi o mosquito capturado com mais freqüência, dentro e fora de casa, e apresentava maior antropofilia em relação aos outros anofelinos presentes.

  4. Mathematical evaluation of community level impact of combining bed nets and indoor residual spraying upon malaria transmission in areas where the main vectors are Anopheles arabiensis mosquitoes

    Directory of Open Access Journals (Sweden)

    Okumu Fredros O

    2013-01-01

    whether they are delivered as LLINs or IRS. The insecticidal action of LLINs and IRS probably already approaches their absolute limit of potential impact upon this persistent vector so personal protection of nets should be enhanced by improving the physical integrity and durability. Combining LLINs and non-pyrethroid IRS in residual transmission systems may nevertheless be justified as a means to manage insecticide resistance and prevent potential rebound of not only An. arabiensis, but also more potent, vulnerable and historically important species such as Anopheles gambiae and Anopheles funestus.

  5. Adaptation through chromosomal inversions in Anopheles

    Directory of Open Access Journals (Sweden)

    Diego eAyala

    2014-05-01

    Full Text Available Chromosomal inversions have been repeatedly involved in local adaptation in a large number of animals and plants. The ecological and behavioral plasticity of Anopheles species - human malaria vectors - is mirrored by high amounts of polymorphic inversions. The adaptive significance of chromosomal inversions has been consistently attested by strong and significant correlations between their frequencies and a number of phenotypic traits. Here, we provide an extensive literature review of the different adaptive traits associated with chromosomal inversions in the genus Anopheles. Traits having important consequences for the success of present and future vector control measures, such as insecticide resistance and behavioral changes, are discussed.

  6. Linking land cover and species distribution models to project potential ranges of malaria vectors: an example using Anopheles arabiensis in Sudan and Upper Egypt

    Directory of Open Access Journals (Sweden)

    Fuller Douglas O

    2012-08-01

    Full Text Available Abstract Background Anopheles arabiensis is a particularly opportunistic feeder and efficient vector of Plasmodium falciparum in Africa and may invade areas outside its normal range, including areas separated by expanses of barren desert. The purpose of this paper is to demonstrate how spatial models can project future irrigated cropland and potential, new suitable habitat for vectors such as An. arabiensis. Methods Two different but complementary spatial models were linked to demonstrate their synergy for assessing re-invasion potential of An. arabiensis into Upper Egypt as a function of irrigated cropland expansion by 2050. The first model (The Land Change Modeler was used to simulate changes in irrigated cropland using a Markov Chain approach, while the second model (MaxEnt uses species occurrence points, land cover and other environmental layers to project probability of species presence. Two basic change scenarios were analysed, one involving a more conservative business-as-usual (BAU assumption and second with a high probability of desert-to-cropland transition (Green Nile to assess a broad range of potential outcomes by 2050. Results The results reveal a difference of 82,000 sq km in potential An. arabiensis range between the BAU and Green Nile scenarios. The BAU scenario revealed a highly fragmented set of small, potential habitat patches separated by relatively large distances (maximum distance = 64.02 km, mean = 12.72 km, SD = 9.92, while the Green Nile scenario produced a landscape characterized by large patches separated by relatively shorter gaps (maximum distance = 49.38, km, mean = 4.51 km, SD = 7.89 that may be bridged by the vector. Conclusions This study provides a first demonstration of how land change and species distribution models may be linked to project potential changes in vector habitat distribution and invasion potential. While gaps between potential habitat patches remained large in the

  7. The Anopheles albitarsis complex with the recognition of Anopheles oryzalimnetes Wilkerson and Motoki, n. sp. and Anopheles janconnae Wilkerson and Sallum, n. sp. (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Maysa Tiemi Motoki

    2009-09-01

    Full Text Available The Anopheles (Nyssorhynchus albitarsis complex includes six species: An. albitarsis, Anopheles oryzalimnetes Wilkerson and Motoki, n. sp., Anopheles marajoara, Anopheles deaneorum, Anopheles janconnae Wilkerson and Sallum, n. sp. and An. albitarsis F. Except for An. deaneorum, species of the complex are indistinguishable when only using morphology. The problematic distinction among species of the complex has made study of malaria transmission and ecology of An. albitarsis s.l. difficult. Consequently, involvement of species of the An. albitarsis complex in human Plasmodium transmission is not clear throughout its distribution range. With the aim of clarifying the taxonomy of the above species, with the exception of An. albitarsis F, we present comparative morphological and morphometric analyses, morphological redescriptions of three species and description of two new species using individuals from populations in Brazil, Paraguay, Argentina and Venezuela. The study included characters from adult females, males, fourth-instar larvae, pupae and male genitalia of An. albitarsis, An. marajoara, An. deaneorum and An. oryzalimnetes n. sp. For An. janconnae n. sp. only characters of the female, male and male genitalia were analyzed. Fourth-instar larvae, pupae and male genitalia characteristics of all five species are illustrated. Bionomics and distribution data are given based on published literature records.

  8. The fine-scale genetic structure of the malaria vectors Anopheles funestus and Anopheles gambiae (Diptera: Culicidae) in the north-eastern part of Tanzania

    NARCIS (Netherlands)

    Gélin, P.; Magalon, H.; Drakeley, C.; Maxwell, C.; Magesa, S.; Takken, W.; Boëte, C.

    2016-01-01

    Understanding the impact of altitude and ecological heterogeneity at a fine scale on the populations of malaria vectors is essential to better understand and anticipate eventual epidemiological changes. It could help to evaluate the spread of alleles conferring resistance to insecticides and also

  9. Distribuição das espécies do gênero Anopheles (Diptera, Culicidae no Estado do Maranhão, Brasil Distribution of species from genus Anopheles (Diptera, Culicidae in the State of Maranhão, Brazil

    Directory of Open Access Journals (Sweden)

    José M. Macário Rebêlo

    2007-12-01

    Full Text Available Estudou-se a distribuição e diversidade de espécies de Anopheles em 123 municípios do Estado do Maranhão, Brasil. O método básico foi a captura de fêmeas dentro e nos arredores das habitações humanas, em intervalos compreendidos entre 18h e 6h, no período de janeiro de 1992 a dezembro de 2001. Foram capturados 84.467 exemplares distribuídos em 24 espécies, com o predomínio de A. triannulatus sensu lato (20.788, A. darlingi (19.083, A. nuneztovari (16.884, A. albitarsis s.l. (14.352, A. aquasalis (8.202 e A. evansae (2.885. As outras 18 espécies juntas representaram apenas 2,7%. As espécies encontradas no maior número de municípios foram: A. albitarsis s.l. (109 municípios, A. triannulatus s.l. (106, A. nuneztovari (93, A. darlingi (87 e A. evansae (64. A riqueza e a ampla distribuição das espécies de anofelinos no Maranhão concordam com a posição geográfica do estado, entre as macrorregiões que caracterizam o Brasil, resultando em uma fauna mista, com elementos representativos dessas regiões.We studied the distribution and diversity of Anopheles species in 123 counties (municipalities in the State of Maranhão, Brazil. The basic method consisted of capturing female specimens inside and around human dwellings between 6 PM and 6 AM from January 1992 to December 2001. A total of 84,467 specimens belonging to 24 species were captured, with a predominance of A. triannulatus sensu lato (20,788, A. darlingi (19,083, A. nuneztovari (16,884, A. albitarsis s.l. (14,352, A. aquasalis (8.202, and A. evansae (2,885. The other 18 species together accounted for only 2.7% of the total. The species found in the most counties were A. albitarsis s.l. (109 counties, A. triannulatus s.l. (106, A. nuneztovari (93, A. darlingi (87, and A. evansae (64. The richness and wide distribution of anopheline species in Maranhão agree with the State's geographic position among Brazil's macro-regions, resulting in a mixed fauna with representative

  10. The complete mitochondrial genome of Anopheles minimus (Diptera: Culicidae) and the phylogenetics of known Anopheles mitogenomes.

    Science.gov (United States)

    Hua, Ya-Qiong; Ding, Yi-Ran; Yan, Zhen-Tian; Si, Feng-Ling; Luo, Qian-Chun; Chen, Bin

    2016-06-01

    Anopheles minimus is an important vector of human malaria in southern China and Southeast Asia. The phylogenetics of mosquitoes has not been well resolved, and the mitochondrial genome (mtgenome) has proven to be an important marker in the study of evolutionary biology. In this study, the complete mtgenome of An. minimus was sequenced for the first time. It is 15 395 bp long and encodes 37 genes, including 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs) and a non-coding region. The gene organization is consistent with those of known Anopheles mtgenomes. The mtgenome performs a clear bias in nucleotide composition with a positive AT-skew and a negative GC-skew. All 13 PCGs prefer to use the codon UUA (Leu), ATN as initiation codon but cytochrome-oxidase subunit 1 (COI) and ND5, with TCG and GTG, and TAA as termination codon, but COI, COII, COIII and ND4, all with the incomplete T. tRNAs have the typical clover-leaf structure, but tRNA(Ser(AGN)) is consistent with known Anopheles mtgenomes. The control region includes a conserved T-stretch and a (TA)n stretch, and has the highest A+T content at 93.1%. The phylogenetics of An. minimus with 18 other Anopheles species was constructed by maximum likelihood and Bayesian inference, based on concatenated PCG sequences. The subgenera, Cellia and Anopheles, and Nyssorhynchus and Kerteszia have mutually close relationships, respectively. The Punctulatus group and Leucosphyrus group of Neomyzomyia Series, and the Albitarsis group of Albitarsis Series were suggested to be monophyletic. The monophyletic status of the subgenera, Cellia, Anopheles, Nyssorhynchus and Kerteszia need to be further elucidated. PMID:26852698

  11. Espécies de Anopheles no município de Pinheiro (Maranhão, área endêmica de malária Species of Anopheles in Pinheiro municipality (Maranhão, endemic area of malaria

    Directory of Open Access Journals (Sweden)

    Yrla Nívea Oliveira-Pereira

    2000-10-01

    Full Text Available A riqueza, abundância relativa, flutuação sazonal, preferência por ambiente (peri e intradomicílio e horários de hematofagismo de espécies de Anopheles foram estudados no município de Pinheiro, Maranhão. As fêmeas foram capturadas mensalmente sobre iscas humanas de maio/1998 a abril/1999, das 18 às 6 horas. Foram coletados 1.321 espécimens pertencentes a 10 espécies de Anopheles, todas do subgênero Nyssorhynchus: A. argyritarsis com 62%, A. darlingi (21,7%, A. albitarsis (4,5%, A. galvaoi (4%, A. triannulatus (3,1% e A. evansae (2,8%. As espécies A. nuneztovari, A. braziliensis, A. rondoni e A. strodei representaram juntas 1,9%. Os anofelinos ocorreram o ano todo, não havendo diferença significativa no número de exemplares capturados entre as estações chuvosa (51,7% e seca (48,3%. A freqüência dos anofelinos no peridomicílio foi significativamente maior (p The Anophelae species of the municipal district of Pinheiro, Maranhão State, Brazil, were studied, considering their variety, relative abundance, seasonal fluctuation, preference by the peri and intra domiciles as well as the hours of hematophagism. The females were captured using human bait, on a monthly basis from May/1998 to April/1999, from 6 p.m. to 6 a.m. A total of 1,321 specimens of 10 species were captured, all belonging to the subgenus Nyssorhynchus. The most frequent species were A. argyritarsis (62%, A. darlingi (21.7%, A. albitarsis (4.5%, A. galvaoi (4.0%, A. triannulatus (3.1% and A. evansae (2.8%. The species A. nuneztovari, A. braziliensis, A. rondoni and A. strodei together represented 1.9%. The anophelines occurred all year round, with no significant difference in the number of specimens captured between the rainy (51.7% and dry season (48.3%. The frequency of the females in the peridomicile was significantly higher (p < 0.01 (82%, than in the intradomicile (18%, preferring to suck blood at dusk and in the first hours of the night.

  12. Comparative susceptibility to Plasmodium falciparum of the molecular forms M and S of Anopheles gambiae and Anopheles arabiensis

    Directory of Open Access Journals (Sweden)

    Boudin Christian

    2011-09-01

    Full Text Available Abstract Background The different taxa belonging to Anopheles gambiae complex display phenotypic differences that may impact their contribution to malaria transmission. More specifically, their susceptibility to infection, resulting from a co-evolution between parasite and vector, might be different. The aim of this study was to compare the susceptibility of M and S molecular forms of Anopheles gambiae and Anopheles arabiensis to infection by Plasmodium falciparum. Methods F3 progenies of Anopheles gambiae s.l. collected in Senegal were infected, using direct membrane feeding, with P. falciparum gametocyte-containing blood sampled on volunteer patients. The presence of oocysts was determined by light microscopy after 7 days, and the presence of sporozoite by ELISA after 14 days. Mosquito species and molecular forms were identified by PCR. Results The oocyst rate was significantly higher in the molecular S form (79.07% than in the M form (57.81%, Fisher's exact test p Anopheles arabiensis (55.38%, Fisher's exact test vs. S group p An. gambiae S form (1.72 ± 0.26 than in the An. gambiae M form (0.64 ± 0.04, p An. arabiensis group (0.58 ± 0.04, vs. S group, p Anopheles arabiensis 50.85%, Fisher's exact test vs. S group p Conclusion Infected in the same experimental conditions, the molecular form S of An. gambiae is more susceptible to infection by P. falciparum than the molecular form M of An. gambiae and An. arabiensis.

  13. "Use of Random Amplified Polymorphic DNA Polymerase Chain Reaction (RAPD-PCR and ITS2 PCR assays for differentiation of populations and putative sibling species of Anopheles fluviatilis (Diptera: Culicidae in Iran"

    Directory of Open Access Journals (Sweden)

    SR Naddaf Dezfouli

    2002-09-01

    Full Text Available Anopheles fluviatilis complex is known to be a vector of malaria in Iran. Since mosquitoes of this species cover a wide geographical range in Iran, they might have evolved into different separated populations. Random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR assay was used to differentiate geographic populations of this species. DNA was extracted from individual mosquitoes from 8 localities in 4 south and southeast provinces and amplified in PCR reactions using 18 single primers of arbitrary nucleotide sequence. Results of RAPD-PCR showed that Kazeroun populations could simply be differentiated from other populations using a diagnostic fragment amplified with primer UBC-306. But other populations could not be differentiated either visually or by means of statistical analysis. Moreover ITS2 fragments of some selected specimens were amplified using a pair of universal primer and sequenced as a key standard for detection of putative sibling species. Sequence analysis of the ITS2 fragments revealed a very high (100% homology among the populations. These findings are crucial in epidemiological studies concerning relatedness of geographic populations and vector movement in the region. Results of RAPD-PCR and ITS2 analysis suggest that this taxon in Iran comprises of only one species with a low genetic variation among geographic populations.

  14. Factors affecting fungus-induced larval mortality in Anopheles gambiae and Anopheles stephensi

    Directory of Open Access Journals (Sweden)

    Takken Willem

    2010-01-01

    Full Text Available Abstract Background Entomopathogenic fungi have shown great potential for the control of adult malaria vectors. However, their ability to control aquatic stages of anopheline vectors remains largely unexplored. Therefore, how larval characteristics (Anopheles species, age and larval density, fungus (species and concentration and environmental effects (exposure duration and food availability influence larval mortality caused by fungus, was studied. Methods Laboratory bioassays were performed on the larval stages of Anopheles gambiae and Anopheles stephensi with spores of two fungus species, Metarhizium anisopliae and Beauveria bassiana. For various larval and fungal characteristics and environmental effects the time to death was determined and survival curves established. These curves were compared by Kaplan Meier and Cox regression analyses. Results Beauveria bassiana and Metarhizium anisopliae caused high mortality of An. gambiae and An. stephensi larvae. However, Beauveria bassiana was less effective (Hazard ratio (HR Metarhizium anisopliae. Anopheles stephensi and An. gambiae were equally susceptible to each fungus. Older larvae were less likely to die than young larvae (HR Conclusions This study shows that both fungus species have potential to kill mosquitoes in the larval stage, and that mortality rate depends on fungus species itself, larval stage targeted, larval density and amount of nutrients available to the larvae. Increasing the concentration of fungal spores or reducing the exposure time to spores did not show a proportional increase and decrease in mortality rate, respectively, because the spores clumped together. As a result spores did not provide uniform coverage over space and time. It is, therefore, necessary to develop a formulation that allows the spores to spread over the water surface. Apart from formulation appropriate delivery methods are also necessary to avoid exposing non-target organisms to fungus.

  15. Comparative biology and reproductive behaviour of a laboratory-adapted Redco strain of Anopheles Gambiae Giles (Diptera; culicidae and wild populations of the same species

    International Nuclear Information System (INIS)

    The sterile insect technique involves mass rearing of male insects for sterility purpose. This heavily relies on male fitness and genetic compatibility of laboratory-adapted male insects and the wild to ensure successful competition with their male counterpart in the wild. Uniform environment in the laboratory as compared to the wild conditions might lead to genetic drift which might lead to reduced sexual competitiveness, fitness, morphological changes or changes in the sexual behaviour of mosquitoes. This work investigated the sexual compatibility, morphometry and sexual behaviour of laboratory-adapted strain and wild strain of Anopheles gambiae under laboratory conditions. These measurements were done by observing swarm formation, genitalia rotation, percentage insemination, fecundity, fertility, wing length, wing width, thoracic width, body length, body size index and wing size index. Morphometric studies of laboratory-adapted and wild strain of Anopheles gambiae were carried out by observing the wing length, body length and thoracic length under Lecia 4D stereoscope in order to find out variations in the body size between the two strains. The results showed significant difference between thoracic width and wing length between the laboratory-adapted strain and wild strain. Indices such as body size index and wing length index also showed significant difference between the two strains; laboratory-adapted REDCO strain (BSI 4.45 ± 0.10, p = 0.010 ; WSI 1.92 ± 0.07, p = 0.026) and wild REDCO strain ( 4.08 ± 0.10, p = 0.010 ; WSI 1.73 ± 0.04, p = 0.026 ). Body length of laboratory-adapted male mosquitoes (4.24 ± 0.05, p = 0.462) was not significantly different from its thoracic width, wing length, and wing width. The wild strain on the other hand had significant difference between its body length (4.19 ± 0.04, p = 0.462), thoracic width (0.096 ± 0.02, p = 0.002 ) and wing length (2.99 ± 0.03, p = 0.050 ). In the mating experiment, egg production in each of

  16. Molecular Marker Confirmation for Member of Anopheles barbirostris Van Der Wulp 1884 in Different Localities

    Directory of Open Access Journals (Sweden)

    Tri Baskoro Tunggul Satoto

    2015-11-01

    Full Text Available Vector and non-vector forms of Anopheles barbirostris have been recognized in Indonesia. However, because of their similarity in morphology, they were considered to be a single species. This information has led to the hypothesis that Anopheles barbirostris is a complex of species, which are morphologically indistinguishable from each other by ordinary methods. Objectives of the research was to identify the member of Anopheles barbirostris by PCR Assay. Samples were taken from two localities in Java, two in Sulawesi, two in Flores Indonesia, one from Thailand, one from China. The study was to develop a PCR-based technique of rDNA ITS2 region. Results showed that there are at least four species within the Anopheles barbirostris population studied, namely Anopheles barbirostris species DW, DX, DY and DZ. The length of the sequence amplified for species W, species X, species Y, and species Z were 339bps, 247bps, 165bps. and 157bps, respectively. Verification of the method was carried out with 270 mosquitoes from eight different field-collection sites using various sampling methods. Samples collected from Singaraja-Flores were identified as species W and X. All specimens collected from human bite outdoors were identified as species X; this species showed to be predominant among indoor light trap, indoor human bite and indoor resting collections Samples from Reo-Flores were identified as species W and X. All specimens from Manado and Palopo in Sulawesiwere identified as species Z. Similarly only species Y was found in samples from Thailand, while specimens from Salaman and Jambu in Java were identified as species W or species X. These species-specific molecular markers for the Anopheles barbirostris, complex appear to be reliable over a wide geographical area. However, larger number of samples is still needed from throughout the range of this species.Key words: Anopheles barbirostris, ITS2, PCR, Specific primer diagnostic

  17. Combining two-dimensional gel electrophoresis and metabolomic data in support of dry-season survival in the two main species of the malarial mosquito Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Hidalgo K.

    2015-12-01

    Full Text Available In dry savannahs of West-Africa, the malarial mosquitoes of the Anopheles gambiae sensu stricto complex annually survive the harsh desiccating conditions of the dry season. However, the physiological and biochemical mechanisms underlying how these mosquitoes survive such desiccating conditions are still undefined, and controversial. In this context, we provide the first work examining both proteomic and metabolomic changes in the two molecular forms of A. gambiae s.s (M and S forms experimentally exposed to the rainy and dry season conditions as they experience in the field. Protein abundances of the mosquitoes were measured using a two-dimensional fluorescence difference gel electrophoresis (2D DIGE coupled with a matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF and tandem mass spectrometry (MS for protein identification. These assays were conducted by Applied Biomics (http://www.appliedbiomics.com, Applied Biomics, Inc. Hayward, CA, USA, and the mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org via the PRIDE partner repository with the dataset identifier PXD000294. The metabolomic analysis was conducted using both Acquity UPLC® system (for amino acid identification, and a gas-chromatography-mass spectrometry platform (for sugars identification. Metabolomic fingerprintings were assessed in the University of Rennes 1, UMR CNRS 6553 EcoBio (France. A detailed interpretation of the obtained data can be found in Hidalgo et al. (2014 [1] (Journal of Insect Physiology (2014.

  18. The evolution of the Anopheles 16 genomes project

    NARCIS (Netherlands)

    Neafsey, Daniel E.; Christophides, George K.; Collins, Frank H.; Emrich, Scott J.; Fontaine, Michael C.; Gelbart, William; Hahn, Matthew W.; Howell, Paul I.; Kafatos, Fotis C.; Lawson, Daniel; Muskavitch, Marc A. T.; Waterhouse, Robert M.; Williams, Louise J.; Besansky, Nora J.

    2013-01-01

    We report the imminent completion of a set of reference genome assemblies for 16 species of Anopheles mosquitoes. In addition to providing a generally useful resource for comparative genomic analyses, these genome sequences will greatly facilitate exploration of the capacity exhibited by some Anophe

  19. Variability and genetic differentiation among Anopheles (Ano. intermedius Chagas, 1908 and Anopheles (Ano. mattogrossensis Lutz & Neiva, 1911 (Diptera: Culicidae from the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Joselita Maria Mendes dos Santos

    2005-10-01

    Full Text Available Anopheles (Anopheles intermedius and Anopheles (Ano. mattogrossensis are Brazilian anopheline species belonging to the scarcely studied Anopheles subgenus. Few studies have been done on the genetic differentiation of these species. Both species have been found infected by Plasmodium and are sympatric with other anopheline species from the Nyssorhynchus subgenus. Eighteen enzymatic loci were analyzed in larval specimens of An. intermedius and An. mattogrossensis aiming to estimate the variability and genetic differentiation between these species. An. mattogrossensis population showed higher genetic variability (P = 44.4 and Ho = 0.081 ± 0.031 than that of An. intermedius (P = 33.3 and Ho = 0.048 ± 0.021. Most analyzed loci showed genotypic frequencies according to Hardy-Weinberg equilibrium, except for LAP1 and LAP2 in An. intermedius, and EST1 and PGM loci in An. mattogrossensis. The genetic distance between these species (D = 0.683 was consistent with the inter-specific values reported for Anopheles subgenus. We verified that the polymorphism and heterozygosity percentile values found in both species and compared to those in the literature, showed no relation between the level of isozyme variability and geographical distribution. The low variability found in these two species is probably more related to the niche they occupy than to their geographic distribution.

  20. Molecular comparison of topotypic specimens confirms Anopheles (Nyssorhynchus dunhami Causey (Diptera: Culicidae in the Colombian Amazon

    Directory of Open Access Journals (Sweden)

    Freddy Ruiz

    2010-11-01

    Full Text Available The presence of Anopheles (Nyssorhynchus dunhami Causey in Colombia (Department of Amazonas is confirmed for the first time through direct comparison of mtDNA cytochrome c oxidase I (COI barcodes and nuclear rDNA second internal transcribed spacer (ITS2 sequences with topotypic specimens of An. dunhami from Tefé, Brazil. An. dunhami was identified through retrospective correlation of DNA sequences following misidentification as Anopheles nuneztovari s.l. using available morphological keys for Colombian mosquitoes. That An. dunhami occurs in Colombia and also possibly throughout the Amazon Basin, is of importance to vector control programs, as this non-vector species is morphologically similar to known malaria vectors including An. nuneztovari, Anopheles oswaldoi and Anopheles trinkae. Species identification of An. dunhami and differentiation from these closely related species are highly robust using either DNA ITS2 sequences or COI DNA barcode. DNA methods are advocated for future differentiation of these often sympatric taxa in South America.

  1. Efficacy of essential oil from Cananga odorata (Lamk.) Hook.f. & Thomson (Annonaceae) against three mosquito species Aedes aegypti (L.), Anopheles dirus (Peyton and Harrison), and Culex quinquefasciatus (Say).

    Science.gov (United States)

    Soonwera, Mayura

    2015-12-01

    The essential oil of Cananga odorata flowers was evaluated for oviposition-deterrent, ovicidal, insecticidal, and repellent activities toward three mosquito species: Aedes aegypti, Anopheles dirus, and Culex quinquefasciatus. Oviposition deterrence of the oil was evaluated on gravid females using oviposition deterrence bioassay. The results showed that 10 % Ca. odorata exhibited high percent effective repellency against oviposition at 99.4 % to Ae. aegypti, 97.1 % to An. dirus, and 100 % to Cx. quinquefasciatus. Ca. odorata oil was tested for ovicidal activity. Regression equations revealed that the ovicidal rates were positively correlated with the concentrations of the essential oil. As the concentration of essential oil increased from 1, 5, and up to 10 % concentration, the ovicidal rate increased accordingly. Larvicidal activity of the oils was used on immature stages (third and fourth instar lavae and pupae). The maximum larval mortality was found with 10 % Ca. odorata against immature stages, and there were LC50 values ranged from 10.4 to 10.5 % (for Ae. aegypti), odorata oil had high knockdown rates against the three mosquito species at 96 % (for Ae. aegypti), 98.4 % (for An. dirus), and 100 % (for Cx. quinquefasciatus), with EC50 values of 6.2, 4.7, and 5.4 %, respectively. It gave moderate mortality rates after 24 and 48 h of exposure. Ca. odorata oil was assessed for repellency to females by using the modified K&D module. Ten percent Ca. odorata oil gave the strongest value against Ae. aegypti, An. dirus, and Cx. quinquefasciatus, with percentage repellency of 66, 92, and 90 %, respectively. This study demonstrates the potential for the essential oil of Ca. odorata essential oil to be used as a botanical insecticide against three mosquito species. PMID:26337270

  2. Efficacy of essential oil from Cananga odorata (Lamk.) Hook.f. & Thomson (Annonaceae) against three mosquito species Aedes aegypti (L.), Anopheles dirus (Peyton and Harrison), and Culex quinquefasciatus (Say).

    Science.gov (United States)

    Soonwera, Mayura

    2015-12-01

    The essential oil of Cananga odorata flowers was evaluated for oviposition-deterrent, ovicidal, insecticidal, and repellent activities toward three mosquito species: Aedes aegypti, Anopheles dirus, and Culex quinquefasciatus. Oviposition deterrence of the oil was evaluated on gravid females using oviposition deterrence bioassay. The results showed that 10 % Ca. odorata exhibited high percent effective repellency against oviposition at 99.4 % to Ae. aegypti, 97.1 % to An. dirus, and 100 % to Cx. quinquefasciatus. Ca. odorata oil was tested for ovicidal activity. Regression equations revealed that the ovicidal rates were positively correlated with the concentrations of the essential oil. As the concentration of essential oil increased from 1, 5, and up to 10 % concentration, the ovicidal rate increased accordingly. Larvicidal activity of the oils was used on immature stages (third and fourth instar lavae and pupae). The maximum larval mortality was found with 10 % Ca. odorata against immature stages, and there were LC50 values ranged from 10.4 to 10.5 % (for Ae. aegypti), <1 % (for An. dirus), and <1 % (for Cx. quinquefasciatus). Adulticidal properties were evaluated with unfed females. Ten percent Ca. odorata oil had high knockdown rates against the three mosquito species at 96 % (for Ae. aegypti), 98.4 % (for An. dirus), and 100 % (for Cx. quinquefasciatus), with EC50 values of 6.2, 4.7, and 5.4 %, respectively. It gave moderate mortality rates after 24 and 48 h of exposure. Ca. odorata oil was assessed for repellency to females by using the modified K&D module. Ten percent Ca. odorata oil gave the strongest value against Ae. aegypti, An. dirus, and Cx. quinquefasciatus, with percentage repellency of 66, 92, and 90 %, respectively. This study demonstrates the potential for the essential oil of Ca. odorata essential oil to be used as a botanical insecticide against three mosquito species.

  3. Fauna and some biological characteristics of Anopheles mosquitoes (Diptera:Culicidae) in Kalaleh County, Golestan Province, northeast of lran

    Institute of Scientific and Technical Information of China (English)

    Aioub Sofizadeh; Hamideh Edalat; Mohammad Reza Abai; Ahmad Ali Hanafi-Bojd

    2016-01-01

    Objective: To determine fauna and some ecological aspects of Anopheles mosquitoes in northeast of Iran. Methods: In this descriptive study, 3 villages in Kalaleh County were selected in different geographical zones. Anopheles mosquitoes were collected biweekly from May to October using standard dipping method for larvae, and hand catch, total catch, artificial pit shelter as well as night-biting collections on human and animal baits for adults. Results: Totally 399 larvae and 2 602 adults of Anopheles mosquitoes were collected and identified as 2 species: Anopheles superpictus s.l. (An. superpictus s.l.) and Anopheles maculipennis s.l. The dominant species was An. superpictus s.l. (92.1%). Activity of these mosquitoes found to be started from middle of May and extended till September with two peaks of activity in July and August. Conclusions: An. superpictus s.l. as one of the main malaria vectors in Iran as well as some other parts of the world is the dominant species in the study area. This species has high potential for transmission and possibility of establishing a transmission cycle with low abundance. Other species, Anopheles maculipennis s.l. also has introduced as a malaria vector in northern parts of Iran. As this Anopheles is a complex species, genetic studies are recommended to determine the members of this complex in the study area.

  4. Highly evolvable malaria vectors : the genomes of 16 Anopheles mosquitoes

    OpenAIRE

    Neafsey, Daniel E; Waterhouse, Robert M.; Abai, Mohammad R.; Aganezov, Sergey S.; Alekseyev, Max A.; Allen, James E.; Amon, James; Arcà, Bruno; Arensburger, Peter; Artemov, Gleb; Assour, Lauren A.; Basseri, Hamidreza; Berlin, Aaron; Birren, Bruce W.; Blandin, Stephanie A.

    2015-01-01

    Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning similar to 100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromos...

  5. Biting patterns and host preference of Anopheles epiroticus in Chang Island, Trat Province, Eastern Thailand

    OpenAIRE

    Ritthison, W.; Tainchum, K.; Manguin, Sylvie; Bangs, M.J.; Chareonviriyaphap, T.

    2014-01-01

    A study of species diversity of Anopheles mosquitoes, biting patterns, and seasonal abundance of important mosquito vectors was conducted in two villages of Chang Island, Trat Province, in eastern Thailand, one located along the coast and the other in the low hills of the central interior of the island. Of 5,399 captured female anophelines, 70.25% belong to the subgenus Cellia and remaining specimens to the subgenus Anopheles. Five important putative malaria vectors were molecularly identifie...

  6. Entomological indices of Anopheles gambiae sensu lato at a rural community in south-west Nigeria

    OpenAIRE

    M.A.E. Noutcha; C.I. Anumdu

    2009-01-01

    Background & objectives: Investigations were conducted to obtain key entomological indices of Anopheles gambiae s.l. at Igbo-Ora, a rural community in south-west Nigeria. Methods: Mosquitoes were caught daily for a week from rooms where tenants had slept the previous night in each of the four months June, July (2001), and August, September (2002). Anopheles gambiae s.l. sibling species were PCR-identified, the blood meal origin was determined by direct ELISA, and the circumsporozoite antigen ...

  7. Bacterial diversity associated with wild caught Anopheles mosquitoes from Dak Nong Province, Vietnam using culture and DNA fingerprint.

    Directory of Open Access Journals (Sweden)

    Chung Thuy Ngo

    Full Text Available Microbiota of Anopheles midgut can modulate vector immunity and block Plasmodium development. Investigation on the bacterial biodiversity in Anopheles, and specifically on the identification of bacteria that might be used in malaria transmission blocking approaches, has been mainly conducted on malaria vectors of Africa. Vietnam is an endemic country for both malaria and Bancroftian filariasis whose parasitic agents can be transmitted by the same Anopheles species. No information on the microbiota of Anopheles mosquitoes in Vietnam was available previous to this study.The culture dependent approach, using different mediums, and culture independent (16S rRNA PCR - TTGE method were used to investigate the bacterial biodiversity in the abdomen of 5 Anopheles species collected from Dak Nong Province, central-south Vietnam. Molecular methods, sequencing and phylogenetic analysis were used to characterize the microbiota.The microbiota in wild-caught Anopheles was diverse with the presence of 47 bacterial OTUs belonging to 30 genera, including bacterial genera impacting Plasmodium development. The bacteria were affiliated with 4 phyla, Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria, the latter being the dominant phylum. Four bacterial genera are newly described in Anopheles mosquitoes including Coxiella, Yersinia, Xanthomonas, and Knoellia. The bacterial diversity per specimen was low ranging from 1 to 4. The results show the importance of pairing culture and fingerprint methods to better screen the bacterial community in Anopheles mosquitoes.Sampled Anopheles species from central-south Vietnam contained a diverse bacterial microbiota that needs to be investigated further in order to develop new malaria control approaches. The combination of both culture and DNA fingerprint methods allowed a thorough and complementary screening of the bacterial community in Anopheles mosquitoes.

  8. Bacterial Diversity Associated with Wild Caught Anopheles Mosquitoes from Dak Nong Province, Vietnam Using Culture and DNA Fingerprint

    Science.gov (United States)

    Ngo, Chung Thuy; Aujoulat, Fabien; Veas, Francisco; Jumas-Bilak, Estelle; Manguin, Sylvie

    2015-01-01

    Background Microbiota of Anopheles midgut can modulate vector immunity and block Plasmodium development. Investigation on the bacterial biodiversity in Anopheles, and specifically on the identification of bacteria that might be used in malaria transmission blocking approaches, has been mainly conducted on malaria vectors of Africa. Vietnam is an endemic country for both malaria and Bancroftian filariasis whose parasitic agents can be transmitted by the same Anopheles species. No information on the microbiota of Anopheles mosquitoes in Vietnam was available previous to this study. Method The culture dependent approach, using different mediums, and culture independent (16S rRNA PCR – TTGE) method were used to investigate the bacterial biodiversity in the abdomen of 5 Anopheles species collected from Dak Nong Province, central-south Vietnam. Molecular methods, sequencing and phylogenetic analysis were used to characterize the microbiota. Results and Discussion The microbiota in wild-caught Anopheles was diverse with the presence of 47 bacterial OTUs belonging to 30 genera, including bacterial genera impacting Plasmodium development. The bacteria were affiliated with 4 phyla, Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria, the latter being the dominant phylum. Four bacterial genera are newly described in Anopheles mosquitoes including Coxiella, Yersinia, Xanthomonas, and Knoellia. The bacterial diversity per specimen was low ranging from 1 to 4. The results show the importance of pairing culture and fingerprint methods to better screen the bacterial community in Anopheles mosquitoes. Conclusion Sampled Anopheles species from central-south Vietnam contained a diverse bacterial microbiota that needs to be investigated further in order to develop new malaria control approaches. The combination of both culture and DNA fingerprint methods allowed a thorough and complementary screening of the bacterial community in Anopheles mosquitoes. PMID:25747513

  9. Factors influencing the spatial distribution of Anopheles larvae in Coimbatore District, Tamil Nadu, India.

    Science.gov (United States)

    Arjunan, Naresh Kumar; Kadarkarai, Murugan; Kumar, Shobana; Pari, Madhiyazhagan; Thiyagarajan, Nataraj; Vincent, C Thomas; Barnard, Donald R

    2015-12-01

    Malaria causes extensive morbidity and mortality in humans and results in significant economic losses in India. The distribution of immature malaria-transmitting Anopheles mosquitoes was studied in 17 villages in Coimbatore District as a prelude to the development and implementation of vector control strategies that are intended to reduce the risk of human exposure to potentially infectious mosquitoes. Eight Anopheles species were recorded. The most numerous species were Anopheles vagus, Anopheles subpictus, and Anopheles hyrcanus. The location of mosquito development sites and the density of larvae in each village was evaluated for correlation with selected demographic, biologic, and land use parameters using remote sensing and geographic information systems (GIS) technology. We found the number of mosquito development sites in a village and the density of larvae in such sites to be positively correlated with human population density but not the surface area (km(2)) of the village. The number of mosquito development sites and the density of larvae in each site were not correlated. Data from this study are being used to construct a GIS-based mapping system that will enable the location of aquatic habitats with Anopheles larvae in the Coimbatore District, Tamil Nadu, India as target sites for the application of vector control. PMID:26364718

  10. Resistance Mechanisms of Anopheles stephensi (Diptera: Culicidae) to Temephos

    OpenAIRE

    Aboozar Soltani; Hassan Vatandoost; MohammadAli Oshaghi; Naseh Maleki-Ravasan; AhmadAli Enayati; Fatemeh Asgarian

    2014-01-01

    Background: Anopheles stephensi is a sub-tropical species and has been considered as one of the most important vector of human malaria throughout the Middle East and South Asian region including the malarious areas of southern Iran. Current reports confirmed An. stephensi resistance to temephos in Oman and India. However, there is no comprehensive research on mechanisms of temephos resistance in An. stephensi in the literature. This study was designed in order to clarify the enzymatic and mol...

  11. In depth annotation of the Anopheles gambiae mosquito midgut transcriptome

    OpenAIRE

    Padrón, Alejandro; Molina-Cruz, Alvaro; Quinones, Mariam; Ribeiro, José MC; Ramphul, Urvashi; Rodrigues, Janneth; Shen, Kui; Haile, Ashley; Ramirez, José Luis; Barillas-Mury, Carolina

    2014-01-01

    Background Genome sequencing of Anopheles gambiae was completed more than ten years ago and has accelerated research on malaria transmission. However, annotation needs to be refined and verified experimentally, as most predicted transcripts have been identified by comparative analysis with genomes from other species. The mosquito midgut—the first organ to interact with Plasmodium parasites—mounts effective antiplasmodial responses that limit parasite survival and disease transmission. High-th...

  12. DDT-resistance in Anopheles stephensi.

    Science.gov (United States)

    DAVIDSON, G; JACKSON, C E

    1961-01-01

    In view of the increasing number of reports from different parts of the world indicating resistance to DDT in both adults and larvae of Anopheles stephensi, an important malaria vector, a series of laboratory studies has been carried out on the degree, the pattern and the mode of inheritance of resistance in this species. A DDT-resistant strain from Iraq and a susceptible strain from India were used.In four sets of observations made in the course of tests on both adults and larvae a monofactorial type of inheritance was indicated, and the factor involved was shown to be dependent for its expression on the genetic background.DDT-resistance in A. stephensi appears to be similar in most respects to that in A. sundaicus. PMID:13883789

  13. The Anopheles community and the role of Anopheles minimus on malaria transmission on the China-Myanmar border

    OpenAIRE

    Yu, Guo; Yan, Guiyun; Zhang, Naixin; Zhong, Daibin; Wang, Ying(School of Physics, Shandong University, Jinan, 250100, PR China); He, Zhengbo; Yan, Zhentian; Fu, Wenbo; Yang, Feilong; Chen, Bin

    2013-01-01

    Abstract Background Malaria around the China-Myanmar border is a serious health problem in the countries of South-East Asia. An. minimus is a principle malaria vector with a wide geographic distribution in this area. Malaria is endemic along the boundary between Yunnan province in China and the Kachin State of Myanmar where the local Anopheles community (species composition) and the malaria transmission vectors have never been clarified. ...

  14. Investigation on Anopheles Species and Their Composition in Villages at Different Altitudes of Motuo County, Tibet Autonomous Region%西藏墨脱县不同海拔地区按蚊构成调查

    Institute of Scientific and Technical Information of China (English)

    武松; 汤林华; 周水森; 黄芳; 许国君; 王多全; 蒋伟康; 卓玛央金

    2011-01-01

    , the mosquitoes were killed by chloroform and dried on silica-gel, and transported to the laboratory where they were stored at -20X1. Species of Anopheles maculatus complex were identified with multiple PCR method. Results 5 410 anopheline mosquitoes were collected. Two mosquitoes were captured in high altitude village, one was Anopheles gigas baUieyi, while the other was damaged and unable to identify. There were 541 (36.9%) An. Pseudowillmori, 906 An. Will-mori (61.7%) and 21 An. Peditaeniatus (1.4%) collected in semi-high altitude villages; 260 (763%) An.pseudowillmori, 2 Anwillmori (0.6%) and 79 An. Peditaeniatus (232%) trapped in middle altitude village; and 3 265 (90.7%) An. Pseudow-illitnori, 19 An. Willmori (05%) and 315 An. Peditaeniatus (8.8%) trapped in low altitude villages. Conclusion An.Pseudowtilmori, An. Willmori and An.peditaeniatus make the main anopheline composition. The proportion of An. Willmori is higher than An. Pseudowtilmori in semi-high alititude villages, while An. Pseudowtilmori take the absolute predominance in middle and low altitude villages.

  15. Was Anopheles donaldi a vector of malaria in Kuala Lumpur, Malaysia, in the past?

    Science.gov (United States)

    Reid, J A

    1980-01-01

    Anopheles donaldi Reid, a member of the A. barbirostris species group, is a vector of human filariasis and probably malaria. The discovery of some old specimens of this species, collected in Kuala Lumpur town where it no longer occurs, together with evidence from the literature about past malaria in the town, suggest that donaldi may have played a part in transmitting that malaria.

  16. A simplified high-throughput method for pyrethroid knock-down resistance (kdr) detection in Anopheles gambiae

    OpenAIRE

    Walker Edward D; Black William C; Randle Nadine P; McCall P J; Ranson Hilary; Lynd Amy; Donnelly Martin J

    2005-01-01

    Abstract Background A single base pair mutation in the sodium channel confers knock-down resistance to pyrethroids in many insect species. Its occurrence in Anopheles mosquitoes may have important implications for malaria vector control especially considering the current trend for large scale pyrethroid-treated bednet programmes. Screening Anopheles gambiae populations for the kdr mutation has become one of the mainstays of programmes that monitor the development of insecticide resistance. Th...

  17. Field evaluation of deet against Anopheles farauti at Ndendo (Santa Cruz) Island, Solomon Islands.

    Science.gov (United States)

    Frances, S P; Bugoro, H; Butafa, C; Cooper, R D

    2010-09-01

    Field efficacy studies comparing two formulations of deet (N,N-diethyl-3-methylbenzamide) against mosquitoes were conducted on Ndendo Island, Solomon Islands. The repellent study was conducted at Pala village in November 2008, and the only mosquito species collected was Anopheles farauti Laveran. A formulation containing 35% deet in a gel provided >95% protection for 2 h, whereas a formulation containing 40% deet in ethanol in a spray applicator provided >95% for only 1 h. This field study demonstrated again that repellents containing deet provide a relatively short period of complete protection against Anopheles spp. PMID:20939380

  18. Olfaction in the malaria mosquito Anopheles gambiae : Electrophysiology and identification of kairomones

    NARCIS (Netherlands)

    Meijerink, J.

    1999-01-01

    Female mosquitoes of the species Anopheles gambiae Giles sensu stricto are important vectors of human malaria in Africa. It is generally assumed that they locate their human host by odours. These odours are detected by olfactory receptor neurons situated within cuticular extensions on the antenna. T

  19. Ecology of Anopheles stephensi in a malarious area, southeast of Iran.

    Science.gov (United States)

    Mehravaran, Ahmad; Vatandoost, Hassan; Oshaghi, Mohammad Ali; Abai, Mohammad Reza; Edalat, Hamideh; Javadian, Ezatoddin; Mashayekhi, Minoo; Piazak, Norair; Hanafi-Bojd, Ahmad Ali

    2012-01-01

    District of Jiroft is situated in south-east of Iran which is one of the malarious regions. Anopheles stephensi is considered as one of the main malaria vector in this region. Ecology of this species was studied in the area to understand its vector behavior for implementation of effective vector control measures. Different methods like total catch, pit shelter, night bite collection on human and animal, larval dipping methods were used for species identification, seasonal activity, anthropophilic index and egg morphological characteristics. Anthropophilicity index was assessed by ELISA test. Activity of Anopheles species started at the beginning of April, and its peak occurs in late spring. The larvae were found in the river bed with pools, stagnant streams, slow foothill streams, temporary pools, and slowly moving water with and without vegetation, drainage containers of air conditioner and palm irrigation canals. From different methods of adult collection, it was found that spray sheet collection is the appropriate method. ELISA testing of 144 blood meals of females revealed the anthropophilicity of 11.8% indicating host preference on animal, mainly cow. Ridge length and their number on the egg floats confirmed Anopheles stephensi mysorensis form. This study showed that Anopheles stephensi is the main vector of malaria in the region, although some other species may play a role. Our findings could provide a valuable clue for epidemiology and control of malaria in the southeast of Iran. PMID:22267381

  20. Ecology of Anopheles Stephensi in a Malarious Area, Southeast of Iran

    Directory of Open Access Journals (Sweden)

    Norair Piazak

    2012-01-01

    Full Text Available District of Jiroft is situated in south-east of Iran which is one of the malarious regions. Anopheles stephensi is considered as one of the main malaria vector in this region. Ecology of this species was studied in the area to understand its vector behavior for implementation of effective vector control measures. Different methods like total catch, pit shelter, night bite collection on human and animal, larval dipping methods were used for species identification, seasonal activity, anthropophilic index and egg morphological characteristics. Anthropophilicity index was assessed by ELISA test. Activity of Anopheles species started at the beginning of April, and its peak occurs in late spring. The larvae were found in the river bed with pools, stagnant streams, slow foothill streams, temporary pools, and slowly moving water with and without vegetation, drainage containers of air conditioner and palm irrigation canals. From different methods of adult collection, it was found that spray sheet collection is the appropriate method. ELISA testing of 144 blood meals of females revealed the anthropophilicity of 11.8% indicating host preference on animal, mainly cow. Ridge length and their number on the egg floats confirmed Anopheles stephensi mysorensis form. This study showed that Anopheles stephensi is the main vector of malaria in the region, although some other species may play a role. Our findings could provide a valuable clue for epidemiology and control of malaria in the southeast of Iran.

  1. Diversity and transmission competence in lymphatic filariasis vectors in West Africa, and the implications for accelerated elimination of Anopheles-transmitted filariasis

    OpenAIRE

    de Souza Dziedzom K; Koudou Benjamin; Kelly-Hope Louise A; Wilson Michael D; Bockarie Moses J; Boakye Daniel A

    2012-01-01

    Abstract Lymphatic Filariasis (LF) is targeted for elimination by the Global Programme for the Elimination of Lymphatic Filariasis (GPELF). The strategy adopted is based on the density dependent phenomenon of Facilitation, which hypothesizes that in an area where the vector species transmitting Wuchereria bancrofti are Anopheles mosquitoes, it is feasible to eliminate LF using Mass Drug Administration (MDA) because of the inability of Anopheles species to transmit low-density microfilaraemia....

  2. Identification of field caught Anopheles gambiae s.s. and Anopheles arabiensis by TaqMan single nucleotide polymorphism genotyping

    Directory of Open Access Journals (Sweden)

    Bayoh Nabie M

    2007-02-01

    Full Text Available Abstract Background Identification of Anopheles gambiae s.s. and Anopheles arabiensis from field-collected Anopheles gambiae s.l. is often necessary in basic and applied research, and in operational control programmes. The currently accepted method involves use of standard polymerase chain reaction amplification of ribosomal DNA (rDNA from the 3' 28S to 5' intergenic spacer region of the genome, and visual confirmation of amplicons of predicted size on agarose gels, after electrophoresis. This report describes development and evaluation of an automated, quantitative PCR method based upon TaqMan™ single nucleotide polymorphism (SNP genotyping. Methods Standard PCR, and TaqMan SNP genotyping with newly designed primers and fluorophore-labeled probes hybridizing to sequences of complementary rDNA specific for either An. gambiae s.s. or An. arabiensis, were conducted in three experiments involving field-collected An. gambiae s.l. from western Kenya, and defined laboratory strains. DNA extraction was from a single leg, sonicated for five minutes in buffer in wells of 96-well PCR plates. Results TaqMan SNP genotyping showed a reaction success rate, sensitivity, and species specificity comparable to that of standard PCR. In an extensive field study, only 29 of 3,041 (0.95% were determined to be hybrids by TaqMan (i.e., having rDNA sequences from both species, however, all but one were An. arabiensis by standard PCR, suggesting an acceptably low (ca. 1% error rate for TaqMan genotyping in mistakenly identifying species hybrids. Conclusion TaqMan SNP genotyping proved to be a sensitive and rapid method for identification of An. gambiae s.l. and An. arabiensis, with a high success rate, specific results, and congruence with the standard PCR method.

  3. Evaluation of Insecticides Susceptibility and Malaria Vector Potential of Anopheles annularis s.l. and Anopheles vagus in Assam, India

    Science.gov (United States)

    Dhiman, Sunil; Yadav, Kavita; Rabha, Bipul; Goswami, Diganta; Hazarika, S.; Tyagi, Varun

    2016-01-01

    During the recent past, development of DDT resistance and reduction to pyrethroid susceptibility among the malaria vectors has posed a serious challenge in many Southeast Asian countries including India. Current study presents the insecticide susceptibility and knock-down data of field collected Anopheles annularis sensu lato and An. vagus mosquito species from endemic areas of Assam in northeast India. Anopheles annularis s.l. and An. vagus adult females were collected from four randomly selected sentinel sites in Orang primary health centre (OPHC) and Balipara primary health centre (BPHC) areas, and used for testing susceptibility to DDT, malathion, deltamethrin and lambda-cyhalothrin. After insecticide susceptibility tests, mosquitoes were subjected to VectorTest™ assay kits to detect the presence of malaria sporozoite in the mosquitoes. An. annularis s.l. was completely susceptible to deltamethrin, lambda-cyhalothrin and malathion in both the study areas. An. vagus was highly susceptible to deltamethrin in both the areas, but exhibited reduced susceptibility to lambda-cyhalothrin in BPHC. Both the species were resistant to DDT and showed very high KDT50 and KDT99 values for DDT. Probit model used to calculate the KDT50 and KDT99 values did not display normal distribution of percent knock-down with time for malathion in both the mosquito species in OPHC (pp = 0.0), and also for deltamethrin to An. vagus in BPHC area (χ2 = 15.4; p = 0.004). Minimum infection rate (MIR) of Plasmodium sporozoite for An. vagus was 0.56 in OPHC and 0.13 in BPHC, while for An. annularis MIR was found to be 0.22 in OPHC. Resistance management strategies should be identified to delay the expansion of resistance. Testing of field caught Anopheles vectors from different endemic areas for the presence of malaria sporozoite may be useful to ensure their role in malaria transmission. PMID:27010649

  4. Evaluation of Insecticides Susceptibility and Malaria Vector Potential of Anopheles annularis s.l. and Anopheles vagus in Assam, India.

    Directory of Open Access Journals (Sweden)

    Sunil Dhiman

    Full Text Available During the recent past, development of DDT resistance and reduction to pyrethroid susceptibility among the malaria vectors has posed a serious challenge in many Southeast Asian countries including India. Current study presents the insecticide susceptibility and knock-down data of field collected Anopheles annularis sensu lato and An. vagus mosquito species from endemic areas of Assam in northeast India. Anopheles annularis s.l. and An. vagus adult females were collected from four randomly selected sentinel sites in Orang primary health centre (OPHC and Balipara primary health centre (BPHC areas, and used for testing susceptibility to DDT, malathion, deltamethrin and lambda-cyhalothrin. After insecticide susceptibility tests, mosquitoes were subjected to VectorTest™ assay kits to detect the presence of malaria sporozoite in the mosquitoes. An. annularis s.l. was completely susceptible to deltamethrin, lambda-cyhalothrin and malathion in both the study areas. An. vagus was highly susceptible to deltamethrin in both the areas, but exhibited reduced susceptibility to lambda-cyhalothrin in BPHC. Both the species were resistant to DDT and showed very high KDT50 and KDT99 values for DDT. Probit model used to calculate the KDT50 and KDT99 values did not display normal distribution of percent knock-down with time for malathion in both the mosquito species in OPHC (p<0.05 and An. vagus in BPHC (χ2 = 25.3; p = 0.0, and also for deltamethrin to An. vagus in BPHC area (χ2 = 15.4; p = 0.004. Minimum infection rate (MIR of Plasmodium sporozoite for An. vagus was 0.56 in OPHC and 0.13 in BPHC, while for An. annularis MIR was found to be 0.22 in OPHC. Resistance management strategies should be identified to delay the expansion of resistance. Testing of field caught Anopheles vectors from different endemic areas for the presence of malaria sporozoite may be useful to ensure their role in malaria transmission.

  5. Microsporidium Infecting Anopheles supepictus (Diptera: Culicidae Larvae

    Directory of Open Access Journals (Sweden)

    Seyed-Mohammad Omrani

    2016-01-01

    Full Text Available Background: Microsporidia are known to infect a wide variety of animals including mosquitoes (Diptera: Cu­licidae. In a recent study on the mosquito fauna of Chahar Mahal and Bakhtiari Province, at the central western part of Iran, a few larvae of Anopheles superpictus were infected with a microsporidium-resembled microorganism. Cur­rent investigation deals with the identification of the responsible microorganism at the genus level.Methods: Fresh infected larvae were collected from the field. After determining the species identity they were dis­sected to extract their infective contents. Wet preparations were checked for general appearance and the size of the pathogenic microorganism. Fixed preparations were stained with Geimsa and Ryan-Blue modified Trichrome tech­niques to visualize further morphological characters. The obtained light microscopy data were used in the identifica­tion process.Results: The infected larvae were bulged by a whitish material filling the involved segments corresponding to a microsporidium infection. Bottle-shaped semioval spores ranged 4.33±0.19×2.67±0.12 and 4.18±0.43×2.45±0.33 micron in wet and fixed preparations, respectively. They were mostly arranged in globular structures comprised of 8 spores. These data was in favor of a species from the genus Parathelohania in the family Ambliosporidae.Conclusion: This is the first report of a microsporidium infection in An. superpictus. The causative agent is diag­nosed as a member of the genus Parathelohania. Further identification down to the species level needs to determine its ultrastructural characteristics and the comparative analysis of ss rRNA sequence data. It is also necessary to un­derstand the detail of the components of the transmission cycle.

  6. Confirmation of Anopheles (Anopheles calderoni Wilkerson, 1991 (Diptera: Culicidae in Colombia and Ecuador through molecular and morphological correlation with topotypic material

    Directory of Open Access Journals (Sweden)

    Ranulfo González

    2010-12-01

    Full Text Available The morphologically similar taxa Anopheles calderoni, Anopheles punctimacula, Anopheles malefactor and Anopheles guarao are commonly misidentified. Isofamilies collected in Valle de Cauca, Colombia, showed morphological characters most similar to An. calderoni, a species which has never previously been reported in Colombia. Although discontinuity of the postsubcostal pale spots on the costa (C and first radial (R1 wing veins is purportedly diagnostic for An. calderoni, the degree of overlap of the distal postsubcostal spot on C and R1 were variable in Colombian specimens (0.003-0.024. In addition, in 98.2% of larvae, seta 1-X was located off the saddle and seta 3-C had 4-7 branches in 86.7% of specimens examined. Correlation of DNA sequences of the second internal transcribed spacer and mtDNA cytochrome c oxidase subunit I gene (COI barcodes (658 bp of the COI gene generated from Colombian progeny material and wild-caught mosquitoes from Ecuador with those from the Peruvian type series of An. calderoni confirmed new country records. DNA barcodes generated for the closely related taxa, An. malefactor and An. punctimacula are also presented for the first time. Examination of museum specimens at the University of the Valle, Colombia, revealed the presence of An. calderoni in inland localities across Colombia and at elevations up to 1113 m.

  7. Evaluation of Insecticides Susceptibility and Malaria Vector Potential of Anopheles annularis s.l. and Anopheles vagus in Assam, India.

    Science.gov (United States)

    Dhiman, Sunil; Yadav, Kavita; Rabha, Bipul; Goswami, Diganta; Hazarika, S; Tyagi, Varun

    2016-01-01

    During the recent past, development of DDT resistance and reduction to pyrethroid susceptibility among the malaria vectors has posed a serious challenge in many Southeast Asian countries including India. Current study presents the insecticide susceptibility and knock-down data of field collected Anopheles annularis sensu lato and An. vagus mosquito species from endemic areas of Assam in northeast India. Anopheles annularis s.l. and An. vagus adult females were collected from four randomly selected sentinel sites in Orang primary health centre (OPHC) and Balipara primary health centre (BPHC) areas, and used for testing susceptibility to DDT, malathion, deltamethrin and lambda-cyhalothrin. After insecticide susceptibility tests, mosquitoes were subjected to VectorTest™ assay kits to detect the presence of malaria sporozoite in the mosquitoes. An. annularis s.l. was completely susceptible to deltamethrin, lambda-cyhalothrin and malathion in both the study areas. An. vagus was highly susceptible to deltamethrin in both the areas, but exhibited reduced susceptibility to lambda-cyhalothrin in BPHC. Both the species were resistant to DDT and showed very high KDT50 and KDT99 values for DDT. Probit model used to calculate the KDT50 and KDT99 values did not display normal distribution of percent knock-down with time for malathion in both the mosquito species in OPHC (puseful to ensure their role in malaria transmission. PMID:27010649

  8. Ecology of Anopheles Stephensi in a Malarious Area, Southeast of Iran

    OpenAIRE

    Norair Piazak; Minoo Mashayekhi; Ezatoddin Javadian; Hamideh Edalat; Mohammad Reza Abai; Mohammad Ali Oshaghi; Hassan Vatandoost; Ahmad Mehravaran; Ahmad Ali Hanafi-Bojd

    2012-01-01

    District of Jiroft is situated in south-east of Iran which is one of the malarious regions. Anopheles stephensi is considered as one of the main malaria vector in this region. Ecology of this species was studied in the area to understand its vector behavior for implementation of effective vector control measures. Different methods like total catch, pit shelter, night bite collection on human and animal, larval dipping methods were used for species identification, seasonal activity, anthropoph...

  9. Chemical composition and insecticidal activity of plant essential oils from Benin against Anopheles gambiae (Giles)

    OpenAIRE

    Bossou, Annick; Mangelinckx, Sven; Yedomonhan, Hounnankpon; Boko, Pelagie M; Akogbeto, Martin C; De Kimpe, Norbert; Avlessi, Felicien; Sohounhloue, Dominique CK

    2013-01-01

    Background Insecticide resistance in sub-Saharan Africa and especially in Benin is a major public health issue hindering the control of the malaria vectors. Each Anopheles species has developed a resistance to one or several classes of the insecticides currently in use in the field. Therefore, it is urgent to find alternative compounds to conquer the vector. In this study, the efficacies of essential oils of nine plant species, which are traditionally used to avoid mosquito bites in Benin, we...

  10. Locomotor behavioral responses of Anopheles minimus and Anopheles harrisoni to alpha-cypermethrin in Thailand.

    Science.gov (United States)

    Malaithong, Naritsara; Tisgratog, Rungarun; Tainchum, Krajana; Prabaripai, Atchariya; Juntarajumnong, Waraporn; Bangs, Michael J; Chareonviriyaphap, Theeraphap

    2011-09-01

    Excito-repellency responses of 3 test populations, representing 2 sibling species within the Minimus Complex, Anopheles minimus and An. harrisoni, were characterized for contact irritant and noncontact repellent actions of chemicals during and after exposure to alpha-cypermethrin at half the recommended field (0.010 g/m2), the recommended field (0.020 g/m2), and double the recommended field concentration (0.040 g/m2), using an excito-repellency escape chamber system. Two field populations of An. minimus and An. harrisoni collected from the malaria-endemic areas in Tak and Kanchanuburi provinces in western Thailand, respectively, were tested along with a laboratory population of An. minimus maintained since 1993. Females of all 3 test populations rapidly escaped after direct contact with treated surfaces for each concentration. In general, increased escape responses in the An. minimus test populations were proportionate to increased insecticide dosages. The greatest escape response for An. harrisoni was observed at the operational field concentration of alpha-cypermethrin. The noncontact repellency response to alpha-cypermethrin was comparatively weak for all 3 test populations, but significantly different from each paired contact test and respective noncontact controls. We conclude that strong contact irritancy is a major action of alpha-cypermethrin, whereas noncontact repellency plays no role in the escape responses of 2 species in the Minimus Complex in Thailand.

  11. Resistance Status of the Malaria Vector Mosquitoes, Anopheles stephensi and Anopheles subpictus Towards Adulticides and Larvicides in Arid and Semi-Arid Areas of India

    OpenAIRE

    Tikar, S. N.; M J Mendki; Sharma, A K; D. Sukumaran; Veer, Vijay; Prakash, Shri; Parashar, B. D.

    2011-01-01

    Susceptibility studies of malaria vectors Anopheles stephensi Liston (Diptera: Culicidae) and An. subpictus Grassi collected during 2004–2007 from various locations of Arid and Semi-Arid Zone of India were conducted by adulticide bioassay of DDT, malathion, deltamethrin and larvicide bioassay of fenthion, temephos, chlorpyriphos and malathion using diagnostic doses. Both species from all locations exhibited variable resistance to DDT and malathion from majority of location. Adults of both the...

  12. Biology & control of Anopheles culicifacies Giles 1901.

    Science.gov (United States)

    Sharma, V P; Dev, V

    2015-05-01

    Malaria epidemiology is complex due to multiplicity of disease vectors, sibling species complex and variations in bionomical characteristics, vast varied terrain, various ecological determinants. There are six major mosquito vector taxa in India, viz. Anopheles culicifacies, An. fluviatilis, An. stephensi, An. minimus, An. dirus and An. sundaicus. Among these, An. culicifacies is widely distributed and considered the most important vector throughout the plains and forests of India for generating bulk of malaria cases (>60% annually). Major malaria epidemics are caused by An. culicifaices. It is also the vector of tribal malaria except parts of Odisha and Northeastern States of India. An. culicifacies has been the cause of perennial malaria transmission in forests, and over the years penetrated the deforested areas of Northeast. An. culicifacies participates in malaria transmission either alone or along with An. stephensi or An. fluviatilis. The National Vector Borne Disease Control Programme (NVBDCP) spends about 80 per cent malaria control budget annually in the control of An. culicifacies, yet it remains one of the most formidable challenges in India. With recent advances in molecular biology there has been a significant added knowledge in understanding the biology, ecology, genetics and response to interventions, requiring stratification for cost-effective and sustainable malaria control. Research leading to newer interventions that are evidence-based, community oriented and sustainable would be useful in tackling the emerging challenges in malaria control. Current priority areas of research should include in-depth vector biology and control in problem pockets, preparation of malaria-risk maps for focused and selective interventions, monitoring insecticide resistance, cross-border initiative and data sharing, and coordinated control efforts for achieving transmission reduction, and control of drug-resistant malaria. The present review on An. culicifacies

  13. New selenoproteins identified in silico from the genome of Anopheles gambiae

    Institute of Scientific and Technical Information of China (English)

    JIANG Liang; LIU Qiong; CHEN Ping; GAO ZhongHong; XU HuiBi

    2007-01-01

    Selenoprotein is biosynthesized by the incorporation of selenocysteine into proteins, where the TGA codon in the open reading frame does not act as a stop signal but is translated into selenocysteine. The dual functions of TGA result in mis-annotation or lack of selenoproteins in the sequenced genomes of many species. Available computational tools fail to correctly predict selenoproteins. Thus, we developed a new method to identify selenoproteins from the genome of Anopheles gambiae computationally.Based on released genomic information, several programs were edited with PERL language to identify selenocysteine insertion sequence (SECIS) element, the coding potential of TGA codons, and cysteine-containing homologs of selenoprotein genes. Our results showed that 11365 genes were terminated with TGA codons, 918 of which contained SECIS elements. Similarity search revealed that 58genes contained Sec/Cys pairs and similar flanking regions around in-frame TGA codons. Finally, 7genes were found to fully meet requirements for selenoproteins, although they have not been annotated as selenoproteins in NCBI databases. Deduced from their basic properties, the newly found selenoproteins in the genome of Anopheles gambiae are possibly related to in vivo oxidation tolerance and protein regulation in order to interfere with anopheles' vectorial capacity of Plasmodium. This study may also provide theoretical bases for the prevention of malaria from anopheles transmission.

  14. Anophelism in a former malaria area of northeastern Spain.

    Directory of Open Access Journals (Sweden)

    Rubén Bueno-Marí

    2013-12-01

    Full Text Available A field study on diversity and distribution of anophelines currently present in a past endemic malaria area of Spain was carried out in order to identify possible risk areas of local disease transmission.Multiple larval sites were sampled from June to October of 2011 in the Region of Somontano de Barbastro (Northeastern Spain. The sampling effort was fixed at 10 minutes which included the active search for larvae in each biotope visited.A total of 237 larval specimens belonging to four Anopheles species (Anopheles atroparvus, An. claviger, An. maculipennis and An. petragnani were collected and identified.Malaria receptivity in the study area is high, especially in the area of Cinca river valley, due to the abundance of breeding sites of An. atroparvus very close to human settlements. Although current socio-economic conditions in Spain reduce possibilities of re-emergence of malaria transmission, it is evident that certain entomological and epidemiological vigilance must be maintained and even increased in the context of current processes of climate change and globalization.

  15. Seasonality and Locality Affect the Diversity of Anopheles gambiae and Anopheles coluzzii Midgut Microbiota from Ghana.

    Science.gov (United States)

    Akorli, Jewelna; Gendrin, Mathilde; Pels, Nana Adjoa P; Yeboah-Manu, Dorothy; Christophides, George K; Wilson, Michael D

    2016-01-01

    Symbiotic bacteria can have important implications in the development and competence of disease vectors. In Anopheles mosquitoes, the composition of the midgut microbiota is largely influenced by the larval breeding site, but the exact factors shaping this composition are currently unknown. Here, we examined whether the proximity to urban areas and seasons have an impact on the midgut microbial community of the two major malaria vectors in Africa, An. coluzzii and An. gambiae. Larvae and pupae were collected from selected habitats in two districts of Ghana during the dry and rainy season periods. The midgut microbiota of adults that emerged from these collections was determined by 454-pyrosequencing of the 16S ribosomal DNA. We show that in both mosquito species, Shewanellaceae constituted on average of 54% and 73% of the midgut microbiota from each site in the dry and rainy season, respectively. Enterobacteriaceae was found in comparatively low abundance below 1% in 22/30 samples in the dry season, and in 25/38 samples in the rainy season. Our data indicate that seasonality and locality significantly affect both the diversity of microbiota and the relative abundance of bacterial families with a positive impact of dry season and peri-urban settings.

  16. Seasonality and Locality Affect the Diversity of Anopheles gambiae and Anopheles coluzzii Midgut Microbiota from Ghana

    Science.gov (United States)

    Gendrin, Mathilde; Pels, Nana Adjoa P.; Yeboah-Manu, Dorothy; Christophides, George K.; Wilson, Michael D.

    2016-01-01

    Symbiotic bacteria can have important implications in the development and competence of disease vectors. In Anopheles mosquitoes, the composition of the midgut microbiota is largely influenced by the larval breeding site, but the exact factors shaping this composition are currently unknown. Here, we examined whether the proximity to urban areas and seasons have an impact on the midgut microbial community of the two major malaria vectors in Africa, An. coluzzii and An. gambiae. Larvae and pupae were collected from selected habitats in two districts of Ghana during the dry and rainy season periods. The midgut microbiota of adults that emerged from these collections was determined by 454-pyrosequencing of the 16S ribosomal DNA. We show that in both mosquito species, Shewanellaceae constituted on average of 54% and 73% of the midgut microbiota from each site in the dry and rainy season, respectively. Enterobacteriaceae was found in comparatively low abundance below 1% in 22/30 samples in the dry season, and in 25/38 samples in the rainy season. Our data indicate that seasonality and locality significantly affect both the diversity of microbiota and the relative abundance of bacterial families with a positive impact of dry season and peri-urban settings. PMID:27322614

  17. Genomic Dark Matter Illuminated: Anopheles Y Chromosomes.

    Science.gov (United States)

    Redmond, Seth N; Neafsey, Daniel E

    2016-08-01

    Hall et al. have strategically used long-read sequencing technology to characterize the structure and highly repetitive content of the Y chromosome in Anopheles malaria mosquitoes. Their work confirms that this important but elusive heterochromatic sex chromosome is evolving extremely rapidly and harbors a remarkably small number of genes.

  18. Genomic Dark Matter Illuminated: Anopheles Y Chromosomes.

    Science.gov (United States)

    Redmond, Seth N; Neafsey, Daniel E

    2016-08-01

    Hall et al. have strategically used long-read sequencing technology to characterize the structure and highly repetitive content of the Y chromosome in Anopheles malaria mosquitoes. Their work confirms that this important but elusive heterochromatic sex chromosome is evolving extremely rapidly and harbors a remarkably small number of genes. PMID:27263828

  19. Genomic islands of speciation in Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available The African malaria mosquito, Anopheles gambiae sensu stricto (A. gambiae, provides a unique opportunity to study the evolution of reproductive isolation because it is divided into two sympatric, partially isolated subtaxa known as M form and S form. With the annotated genome of this species now available, high-throughput techniques can be applied to locate and characterize the genomic regions contributing to reproductive isolation. In order to quantify patterns of differentiation within A. gambiae, we hybridized population samples of genomic DNA from each form to Affymetrix GeneChip microarrays. We found that three regions, together encompassing less than 2.8 Mb, are the only locations where the M and S forms are significantly differentiated. Two of these regions are adjacent to centromeres, on Chromosomes 2L and X, and contain 50 and 12 predicted genes, respectively. Sequenced loci in these regions contain fixed differences between forms and no shared polymorphisms, while no fixed differences were found at nearby control loci. The third region, on Chromosome 2R, contains only five predicted genes; fixed differences in this region were also verified by direct sequencing. These "speciation islands" remain differentiated despite considerable gene flow, and are therefore expected to contain the genes responsible for reproductive isolation. Much effort has recently been applied to locating the genes and genetic changes responsible for reproductive isolation between species. Though much can be inferred about speciation by studying taxa that have diverged for millions of years, studying differentiation between taxa that are in the early stages of isolation will lead to a clearer view of the number and size of regions involved in the genetics of speciation. Despite appreciable levels of gene flow between the M and S forms of A. gambiae, we were able to isolate three small regions of differentiation where genes responsible for ecological and behavioral

  20. Spatial association between malaria vector species richness and malaria in Colombia.

    Science.gov (United States)

    Fuller, Douglas O; Alimi, Temitope; Herrera, Socrates; Beier, John C; Quiñones, Martha L

    2016-06-01

    Malaria transmission in Colombia is highly variable in space and time. Using a species distribution model, we mapped potential distribution of five vector species including Anopheles albimanus, Anopheles calderoni, Anopheles darlingi, Anopheles neivai, and Anopheles nuneztovari in five Departments of Colombia where malaria transmission remains problematic. We overlaid the range maps of the five species to reveal areas of sympatry and related per-pixel species richness to mean annual parasite index (API) for 2011-2014 mapped by municipality (n = 287). The relationship between mean number of vector species per municipality and API was evaluated using a Poisson regression, which revealed a highly significant relationship between species richness and API (p = 0 for Wald Chi-Square statistic). The results suggest that areas of relatively high transmission in Colombia typically contain higher number of vector species than areas with unstable transmission and that future elimination strategies should account for vector species richness. PMID:26970373

  1. Paridade de Anopheles cruzii em Floresta Ombrófila Densa no Sul do Brasil Anopheles cruzii parity in dense rain forest in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Ana Caroline Dalla Bona

    2006-12-01

    Full Text Available OBJETIVO: Conhecer a paridade e desenvolvimento ovariano da espécie Anopheles cruzii, durante os períodos estacionais. MÉTODOS: As capturas foram realizadas quinzenalmente, no período matutino, de abril/2004 a abril/2005, no Parque Estadual do Palmito, município de Paranaguá litoral do Estado do Paraná. Mosquitos adultos foram capturados usando a técnica pouso homem. As dissecções foram feitas utilizando-se a técnica de Detinova e de Polovodova e a avaliação do desenvolvimento folicular, segundo os critérios de Christophers e Mer. RESULTADOS: Foram dissecadas 208 fêmeas de Anopheles cruzii. A maioria das fêmeas dissecadas nas estações eram nulíparas. Sendo que 14,4% eram nulíparas com folículo além do estádio II de Christophers & Mer, o que evidencia o exercício da hematofagia previamente à primeira oviposição. Observou-se que as populações de Anopheles cruzii são constituídas de indivíduos jovens, talvez em razão da alta mortalidade de fêmeas paridas. CONCLUSÕES: A provável discordância gonotrófica das fêmeas dissecadas é importante do ponto de vista epidemiológico, considerando que a fêmea pode procurar mais de um hospedeiro para completar a maturação dos seus ovos.OBJECTIVE: To determine the parity and ovarian development of Anopheles cruzii species during the seasons. METHODS: Collections were carried out fortnightly in the morning in the Palmito State Park in the municipality of Paranaguá, Southern Brazil, between April 2004 and April 2005. Adult mosquitoes were captured using human landing rate. Dissections were performed using Detinova's and Polovodova's methods and follicular development was assessed following Christophers and Mer's criteria. RESULTS: A total of 208 specimens of Anopheles cruzii were dissected. Most females dissected were nulliparous in the seasons; 14.4% of them were found to be nulliparous above Christophers and Mer's stage II, which shows previous blood meal prior to the

  2. Identification of a Bacillus thuringiensis Cry11Ba toxin-binding aminopeptidase from the mosquito, Anopheles quadrimaculatus

    Directory of Open Access Journals (Sweden)

    Abdullah Mohd

    2006-05-01

    Full Text Available Abstract Background Aminopeptidase N (APN type proteins isolated from several species of lepidopteran insects have been implicated as Bacillus thuringiensis (Bt toxin-binding proteins (receptors for Cry toxins. We examined brush border membrane vesicle (BBMV proteins from the mosquito Anopheles quadrimaculatus to determine if APNs from this organism would bind mosquitocidal Cry toxins that are active to it. Results A 100-kDa protein with APN activity (APNAnq 100 was isolated from the brush border membrane of Anopheles quadrimaculatus. Native state binding analysis by surface plasmon resonance shows that APNAnq 100 forms tight binding to a mosquitocidal Bt toxin, Cry11Ba, but not to Cry2Aa, Cry4Ba or Cry11Aa. Conclusion An aminopeptidase from Anopheles quadrimaculatus mosquitoes is a specific binding protein for Bacillus thuringiensis Cry11Ba.

  3. Man-biting activity of Anopheles (Nyssorhynchus albimanus and An. (Kerteszia neivai (Diptera: Culicidae in the Pacific Lowlands of Colombia

    Directory of Open Access Journals (Sweden)

    Yezid Solarte

    1996-04-01

    Full Text Available The daily man-biting activity of Anopheles (Nyssorhynchus albimanus and An. (Kerteszia neivai was determined in four ecologically distinct settlements of the Naya River, Department of Valle, Colombia. Differences were found among the settlements with respect to the mosquito species present, intradomiciliary and extradomiciliary biting activity and population densities.

  4. Invasion of Wolbachia into Anopheles and Other Insect Germlines in an Ex vivo Organ Culture System

    OpenAIRE

    Hughes, Grant L.; Andrew D Pike; Ping Xue; Jason L Rasgon

    2012-01-01

    The common bacterial endosymbiont Wolbachia manipulates its host's reproduction to promote its own maternal transmission, and can interfere with pathogen development in many insects making it an attractive agent for the control of arthropod-borne disease. However, many important species, including Anopheles mosquitoes, are uninfected. Wolbachia can be artificially transferred between insects in the laboratory but this can be a laborious and sometimes fruitless process. We used a simple ex viv...

  5. Olfaction in the malaria mosquito Anopheles gambiae : Electrophysiology and identification of kairomones

    OpenAIRE

    Meijerink, J

    1999-01-01

    Female mosquitoes of the species Anopheles gambiae Giles sensu stricto are important vectors of human malaria in Africa. It is generally assumed that they locate their human host by odours. These odours are detected by olfactory receptor neurons situated within cuticular extensions on the antenna. These cuticular extensions, called sensilla, contain numerous pores through which the odours can enter the sensillum and reach the olfactory receptor neuron membrane. Despite the fact that these mos...

  6. Comparison of the functional features of the pump organs of Anopheles sinensis and Aedes togoi

    OpenAIRE

    Young-Ran Ha; Seung-Chul Lee; Seung-Jun Seo; Jeongeun Ryu; Dong-Kyu Lee; Sang-Joon Lee

    2015-01-01

    Mosquitoes act as vectors for severe tropical diseases. Mosquito-borne diseases are affected by various factors such as environmental conditions, host body susceptibility, and mosquito feeding behavior. Among these factors, feeding behavior is affected by the feeding pump system located inside the mosquito head and also depends on the species of mosquito. Therefore, the 3D morphological structures of the feeding pumps of Aedes togoi and Anopheles sinensis were comparatively investigated using...

  7. Rhodopsin coexpression in UV photoreceptors of Aedes aegypti and Anopheles gambiae mosquitoes

    OpenAIRE

    Hu, Xiaobang; Leming, Matthew T; Whaley, Michelle A.; O'Tousa, Joseph E.

    2014-01-01

    Differential rhodopsin gene expression within specialized R7 photoreceptor cells divides the retinas of Aedes aegypti and Anopheles gambiae mosquitoes into distinct domains. The two species express the rhodopsin orthologs Aaop8 and Agop8, respectively, in a large subset of these R7 photoreceptors that function as ultraviolet receptors. We show here that a divergent subfamily of mosquito rhodopsins, Aaop10 and Agop10, is coexpressed in these R7 photoreceptors. The properties of the A. aegypti ...

  8. The impact of insecticides management linked with resistance expression in Anopheles spp. populations

    OpenAIRE

    Guilherme Liberato da Silva; Thiago Nunes Pereira; Noeli Juarez Ferla; Onilda Santos da Silva

    2016-01-01

    Abstract The resistance of some species of Anopheles to chemical insecticides is spreading quickly throughout the world and has hindered the actions of prevention and control of malaria. The main mechanism responsible for resistance in these insects appears to be the target site known as knock-down resistance (kdr), which causes mutations in the sodium channel. Even so, many countries have made significant progress in the prevention of malaria, focusing largely on vector control through long-...

  9. Anopheles darlingi and Anopheles marajoara (Diptera: Culicidae susceptibility to pyrethroids in an endemic area of the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Allan Kardec Ribeiro Galardo

    2015-12-01

    Full Text Available Abstract: INTRODUCTION: This study aimed to evaluate the susceptibility of Anopheles darlingi Root (1926 and Anopheles marajoara Galvão & Damasceno (1942 to pyrethroids used by the National Malaria Control Program in Brazil. METHODS: Mosquitoes from Amapá, Brazilian Amazon, were assessed for resistance to cypermethrin, deltamethrin, and alpha-cypermethrin. Insecticide-impregnated bottles were used as suggested by the CDC/Atlanta. RESULTS: Diagnostic dose for Anopheles darlingi was 12.5µg/bottle during 30 min of exposure. Concentrations for Anopheles marajoara were 20µg/bottle of cypermethrin and deltamethrin and 12.5µg/bottle of alpha-cypermethrin. CONCLUSIONS : No resistance was recorded for Anopheles darlingi , but Anopheles marajoara requires attention.

  10. Insecticide resistance status in Anopheles gambiae in southern Benin

    Directory of Open Access Journals (Sweden)

    Corbel Vincent

    2010-03-01

    Full Text Available Abstract Background The emergence of pyrethroid resistance in Anopheles gambiae has become a serious concern to the future success of malaria control. In Benin, the National Malaria Control Programme has recently planned to scaling up long-lasting insecticidal nets (LLINs and indoor residual spraying (IRS for malaria prevention. It is, therefore, crucial to monitor the level and type of insecticide resistance in An. gambiae, particularly in southern Benin where reduced efficacy of insecticide-treated nets (ITNs and IRS has previously been reported. Methods The protocol was based on mosquito collection during both dry and rainy seasons across forty districts selected in southern Benin. Bioassay were performed on adults collected from the field to assess the susceptibility of malaria vectors to insecticide-impregnated papers (permethrin 0.75%, delthamethrin 0.05%, DDT 4%, and bendiocarb 0.1% following WHOPES guidelines. The species within An. gambiae complex, molecular form and presence of kdr and ace-1 mutations were determined by PCR. Results Strong resistance to permethrin and DDT was found in An. gambiae populations from southern Benin, except in Aglangandan where mosquitoes were fully susceptible (mortality 100% to all insecticides tested. PCR showed the presence of two sub-species of An. gambiae, namely An. gambiae s.s, and Anopheles melas, with a predominance for An. gambiae s.s (98%. The molecular M form of An. gambiae was predominant in southern Benin (97%. The kdr mutation was detected in all districts at various frequency (1% to 95% whereas the Ace-1 mutation was found at a very low frequency (≤ 5%. Conclusion This study showed a widespread resistance to permethrin in An. gambiae populations from southern Benin, with a significant increase of kdr frequency compared to what was observed previously in Benin. The low frequency of Ace-1 recorded in all populations is encouraging for the use of bendiocarb as an alternative insecticide to

  11. Humoral response to the Anopheles gambiae salivary protein gSG6: a serological indicator of exposure to Afrotropical malaria vectors.

    Directory of Open Access Journals (Sweden)

    Cinzia Rizzo

    Full Text Available Salivary proteins injected by blood feeding arthropods into their hosts evoke a saliva-specific humoral response which can be useful to evaluate exposure to bites of disease vectors. However, saliva of hematophagous arthropods is a complex cocktail of bioactive factors and its use in immunoassays can be misleading because of potential cross-reactivity to other antigens. Toward the development of a serological marker of exposure to Afrotropical malaria vectors we expressed the Anopheles gambiae gSG6, a small anopheline-specific salivary protein, and we measured the anti-gSG6 IgG response in individuals from a malaria hyperendemic area of Burkina Faso, West Africa. The gSG6 protein was immunogenic and anti-gSG6 IgG levels and/or prevalence increased in exposed individuals during the malaria transmission/rainy season. Moreover, this response dropped during the intervening low transmission/dry season, suggesting it is sensitive enough to detect variation in vector density. Members of the Fulani ethnic group showed higher anti-gSG6 IgG response as compared to Mossi, a result consistent with the stronger immune reactivity reported in this group. Remarkably, anti-gSG6 IgG levels among responders were high in children and gradually declined with age. This unusual pattern, opposite to the one observed with Plasmodium antigens, is compatible with a progressive desensitization to mosquito saliva and may be linked to the continued exposure to bites of anopheline mosquitoes. Overall, the humoral anti-gSG6 IgG response appears a reliable serological indicator of exposure to bites of the main African malaria vectors (An. gambiae, Anopheles arabiensis and, possibly, Anopheles funestus and it may be exploited for malaria epidemiological studies, development of risk maps and evaluation of anti-vector measures. In addition, the gSG6 protein may represent a powerful model system to get a deeper understanding of molecular and cellular mechanisms underlying the

  12. The Anopheles dirus complex: spatial distribution and environmental drivers

    Directory of Open Access Journals (Sweden)

    Defourny Pierre

    2007-03-01

    Full Text Available Abstract Background The Anopheles dirus complex includes efficient malaria vectors of the Asian forested zone. Studies suggest ecological and biological differences between the species of the complex but variations within species suggest possible environmental influences. Behavioural variation might determine vector capacity and adaptation to changing environment. It is thus necessary to clarify the species distributions and the influences of environment on behavioural heterogeneity. Methods A literature review highlights variation between species, influences of environmental drivers, and consequences on vector status and control. The localisation of collection sites from the literature and from a recent project (MALVECASIA produces detailed species distributions maps. These facilitate species identification and analysis of environmental influences. Results The maps give a good overview of species distributions. If species status partly explains behavioural heterogeneity, occurrence and vectorial status, some environmental drivers have at least the same importance. Those include rainfall, temperature, humidity, shade, soil type, water chemistry and moon phase. Most factors are probably constantly favourable in forest. Biological specificities, behaviour and high human-vector contact in the forest can explain the association of this complex with high malaria prevalence, multi-drug resistant Plasmodium falciparum and partial control failure of forest malaria in Southeast Asia. Conclusion Environmental and human factors seem better than species specificities at explaining behavioural heterogeneity. Although forest seems essential for mosquito survival, adaptations to orchards and wells have been recorded. Understanding the relationship between landscape components and mosquito population is a priority in foreseeing the influence of land-cover changes on malaria occurrence and in shaping control strategies for the future.

  13. Laboratory studies on the olfactory behaviour of Anopheles quadriannulatus

    NARCIS (Netherlands)

    Pates, H.V.; Takken, W.; Curtis, C.F.

    2005-01-01

    The host preference of Anopheles quadriannulatus Theobald (Diptera: Culicidae), the zoophilic member of the malaria mosquito complex Anopheles gambiae Giles, was investigated in a dual-choice olfactometer. Naïve female mosquitoes were exposed to CO2, acetone, 1-octen-3-ol, and skin emanations from c

  14. The neotype of anopheles albitarsis (Diptera: culicidae O neótipo de Anopheles albitarsis (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Maria Goreti Rosa-Freitas

    1989-09-01

    Full Text Available Anopheles albitarsis neotype is described from specimens collected in Baradero, Argentina, in Shannon's trap, in horse and pig stables and on the progeny of engorded females. The description includes illustrations of adult female, male and female genitalias, scanning electron miscroscopy of the eggs and complete chaetotaxy of pupa and larva. The importance for electing a neotype is based on the realization that An. albitarsis is a complex of cryptic species. It is an attempt to provide typt-locality specimens with which other memebers of the group can be compared.O neótipo de Anopheles albitarsis é descrito a partir de espécimens coletados em armadilha tipo Shannon, em estábulos de cavalos e porcos e progênies de fêmeas ingurgitadas em Baradero, Argentina, localidade-tipo da espécie. A descrição inclui ilustrações da fêmea adulda, genitálias masculina e feminina, ovos em microscopia eletrônica de varredura e da quetotaxia completa das larvas de 4º estádio e pupas. A eleição de um neótipo para albitarsis baseia-se em dados recentes que apontam a espécie como um complexo de espécies crípticas, o que evidencia a importância de uma descrição detalhada de espécimens da localidade-tipo com o qual outros membros do grupo possam ser comparados.

  15. Population genetic structure of Anopheles arabiensis and Anopheles gambiae in a malaria endemic region of southern Tanzania

    NARCIS (Netherlands)

    K.R. Ng'habi; B.G.J. Knols; Y. Lee; H.M. Ferguson; G.C. Lanzaro

    2011-01-01

    Background: Genetic diversity is a key factor that enables adaptation and persistence of natural populations towards environmental conditions. It is influenced by the interaction of a natural population's dynamics and the environment it inhabits. Anopheles gambiae s.s. and Anopheles arabiensis are t

  16. Food of larval Anopheles culicifacies and Anopheles varuna in a stream habitat in Sri Lanka

    DEFF Research Database (Denmark)

    Piyaratne, M K; Amerasinghe, P H; Amerasinghe, F P;

    2005-01-01

    No previous studies have been conducted on the natural food of larval Anopheles culicifacies s.l. (the major malaria vector) and An. varuna (a secondary vector) in Sri Lanka. The present study analyzed the contents of guts dissected from larvae collected from pools in a natural stream-cum-irrigat...

  17. New selenoproteins identified in silico from the genome of Anopheles gambiae

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Selenoprotein is biosynthesized by the incorporation of selenocysteine into proteins,where the TGA codon in the open reading frame does not act as a stop signal but is translated into selenocysteine.The dual functions of TGA result in mis-annotation or lack of selenoproteins in the sequenced genomes of many species.Available computational tools fail to correctly predict selenoproteins.Thus,we devel-oped a new method to identify selenoproteins from the genome of Anopheles gambiae computationally.Based on released genomic information,several programs were edited with PERL language to identify selenocysteine insertion sequence(SECIS)element,the coding potential of TGA codons,and cys-teine-containing homologs of selenoprotein genes.Our results showed that 11365 genes were termi-nated with TGA codons,918 of which contained SECIS elements.Similarity search revealed that 58 genes contained Sec/Cys pairs and similar flanking regions around in-frame TGA codons.Finally,7 genes were found to fully meet requirements for selenoproteins,although they have not been anno-tated as selenoproteins in NCBI databases.Deduced from their basic properties,the newly found se-lenoproteins in the genome of Anopheles gambiae are possibly related to in vivo oxidation tolerance and protein regulation in order to interfere with anopheles’ vectorial capacity of Plasmodium.This study may also provide theoretical bases for the prevention of malaria from anopheles transmission.

  18. Robust and regulatory expression of defensin A gene driven by vitellogenin promoter in transgenic Anopheles stephensi

    Institute of Scientific and Technical Information of China (English)

    CHEN XiaoGuang; ZHANG YaJing; ZHENG XueLi; WANG ChunMei

    2007-01-01

    The use of genetically modified mosquitoes to reduce or replace field populations is a new strategy to control mosquito-borne diseases. The precondition of the implementation of this strategy is the ability to manipulate the genome of mosquitoes and to induce specific expression of the effector molecules driven by a suitable promoter. The objective of this study is to evaluate the expression of defensin A gene of Anopheles sinensis under the control of a vitellogenin promoter in transgenic Anopheles stephensi. The regulatory region of Anopheles gambiae vitellogenin was cloned and subcloned into transfer vector pSLFa consisting of an expression cassette with defensin A coding sequence. Then, the expression cassette was transferred into transformation vector pBac[3xP3-DsRedafm] using Asc I digestion. The recombinant plasmid DNA of pBac[3xP3DsRed-AgVgT2-DefA] and helper plasmid DNA of phsp-pBac were micro-injected into embryos of An. stephensi. The positive transgenic mosquitoes were screened by observing specific red fluorescence in the eyes of G1 larvae. Southern blot analysis showed that a single-copy transgene integrated into the genome of An. stephensi. RT-PCR analysis showed that the defensin A gene expressed specifically in fat bodies of female mosquitoes after a blood meal. Interestingly, the mRNA of defensin A is more stable compared with that of the endogenous vitellogenin gene. After multiple blood meals, the expression of defensin A appeared as a reducible and non-cycling type, a crucial feature for its anti-pathogen effect. From data above, we concluded that the regulatory function of the Vg promoter and the expression of defensin A gene were relatively conserved in different species of anopheles mosquitoes. These molecules could be used as candidates in the development of genetically modified mosquitoes.

  19. Neuropeptides and Peptide Hormones in Anopheles gambiae

    Science.gov (United States)

    Riehle, Michael A.; Garczynski, Stephen F.; Crim, Joe W.; Hill, Catherine A.; Brown, Mark R.

    2002-10-01

    The African malaria mosquito, Anopheles gambiae, is specialized for rapid completion of development and reproduction. A vertebrate blood meal is required for egg production, and multiple feedings subsequently allow transmission of malaria parasites, Plasmodium spp. Regulatory peptides from 35 genes annotated from the A. gambiae genome likely coordinate these and other physiological processes. Plasmodium parasites may affect actions of newly identified insulin-like peptides, which coordinate growth and reproduction of its vector, A. gambiae, as in Drosophila melanogaster, Caenorhabditis elegans, and mammals. This genomic information provides a basis to expand understanding of hematophagy and pathogen transmission in this mosquito.

  20. Karakteristik Habitat Larva Anopheles spp. di Desa Sungai Nyamuk, Daerah Endemik Malaria di Kabupaten Nunukan, Kalimantan Utara

    Directory of Open Access Journals (Sweden)

    Sugiarto Sugiarto

    2016-07-01

    Full Text Available A research about Habitat Characteristics of Anopheles spp. larvae was done in Sungai Nyamuk Village, Nunukan District, North Kalimantan Province from August 2010 to January 2012. This research aims to analyse the characteristics of breeding places of Anopheles spp. The larvae taken from various types of habitat with detention and maintained until it was developed into mosquitoes, then later identified. The results showed that there are four types of potential breeding places of Anopheles spp. ie lagoon, ditches, fish ponds and marshes. Anopheles types that are found consist of five species, namely An. vagus, An. subpictus, An. sundaicus, An. indefinitus dan An. peditaeniatus. Types of potential breeding places are dominated by the unused fish pond, with the substrate in the form of mud and water is not flowing, located around settlements surrounded by grasses, shrubs and trees. Breeding places contains of aquatic plants such as grasses and moss. Predators are found in the form of a dragonfly nymph, crustaceans, tadpoles and small fish. Early malaria vector control at the level of the larvae is a critical point of the success of malaria elimination programs in endemic areas.

  1. Effect of Bacillus sphaericus Neide on Anopheles (Diptera: Culicidae and associated insect fauna in fish ponds in the Amazon

    Directory of Open Access Journals (Sweden)

    Francisco Augusto da Silva Ferreira

    2015-09-01

    Full Text Available ABSTRACTWe analyzed the effects of Bacillus sphaericus on Anopheles larvae and on the associated insect fauna in fish farming ponds. Five breeding sites in the peri-urban area of the city of Manaus, AM, Brazil, were studied. Seven samples were collected from each breeding site and B. sphaericus was applied and reapplied after 15 days. The samples were made at 24 h before application, 24 h post-application and 5 and 15 days post-application. We determined abundance, larval reduction and larval density for Anopheles, and abundance, richness, Shannon diversity index and classified according to the functional trophic groups for associated insect fauna. A total of 904 Anopheles larvae were collected and distributed into five species. Density data and larval reduction demonstrated the rapid effect of the biolarvicide 24 h after application. A total of 4874 associated aquatic insects belonging to six orders and 23 families were collected. Regression analysis of diversity and richness indicated that the application of the biolarvicide had no influence on these indices and thus no effect on the associated insect fauna for a period of 30 days. B. sphaericus was found to be highly effective against the larvae of Anopheles, eliminating the larvae in the first days after application, with no effect on the associated insect fauna present in the fish ponds analyzed.

  2. Remotely-sensed land use patterns and the presence of Anopheles larvae (Diptera: Culicidae) in Sukabumi, West Java, Indonesia.

    Science.gov (United States)

    Stoops, Craig A; Gionar, Yoyo R; Shinta; Sismadi, Priyanto; Rachmat, Agus; Elyazar, Iqbal F; Sukowati, Supratman

    2008-06-01

    Land use patterns and the occurrence of Anopheles species larvae were studied in Sukabumi District, West Java, Indonesia, from October 2004 to September 2005. Two land use maps derived using remote sensing were used. One map derived from Quickbird satellite images of 150 km2 of the Simpenan and Ciemas subdistricts (106 degrees 27' 53"-106 degrees 38' 38" E and 6 degrees 59' 59"-7 degrees 8' 46" S) in Sukabumi and one using ASTER images covering 4,000 km2 of Sukabumi District from 106 degrees 22' 15"-107 degrees 4' 1" E and 6 degrees 42' 50" - 7 degrees 26' 13" S. There was a total of 11 Anopheles spp. collected from 209 sampling locations in the area covered by the Quickbird image and a total of 15 Anopheles spp. collected from 1,600 sampling locations in the area covered by the ASTER map. For the area covered by the land use maps, ten species were found to have statistically positive relationships between land use class and species presence: Anopheles aconitus, An. annularis, An. barbirostris. An. flavirostris, An. insulaeflorum, An. kochi, An. maculatus, An. subpictus, An. sundaicus, and An. vagus. Quickbird and ASTER satellite images both produced land maps that were adequate for predicting species presence in an area. The land use classes associated with malaria vector breeding were rice paddy (An. aconitus, An. subpictus), plantation located near or adjacent to human settlements (An. maculatus), bush/shrub (An. aconitus, An. maculatus, An. sundaicus), bare land, and water body land use on the coast located < or = 250 m of the beach (An. sundaicus). Understanding the associations of habitat and species in one area, predictions of species presence or absence can be made prior to a ground survey allowing for accurate vector survey and control planning.

  3. Resistance Mechanisms of Anopheles stephensi (Diptera: Culicidae to Temephos

    Directory of Open Access Journals (Sweden)

    Aboozar Soltani

    2015-10-01

    Full Text Available Background: Anopheles stephensi is a sub-tropical species and has been considered as one of the most important vector of human malaria throughout the Middle East and South Asian region including the malarious areas of southern Iran. Current reports confirmed An. stephensi resistance to temephos in Oman and India. However, there is no comprehensive research on mechanisms of temephos resistance in An. stephensi in the literature. This study was designed in order to clarify the enzymatic and molecular mechanisms of temephos resistance in this species.Methods: Profile activities of α- and ß-esterases, mixed function oxidase (MFO, glutathione-S-transferase (GST, insensitive acetylcholinesterase, and para-nitrophenyl acetate (PNPA-esterase enzymes were tested for An. stephensi strain with resistance ratio of 15.82 to temephos in comparison with susceptible strain.Results: Results showed that the mean activity of α-EST, GST and AChE enzymes were classified as altered indicating metabolic mechanisms have considerable role in resistance of An. stephensi to temephos. Molecular study using PCR-RFLP method to trace the G119S mutation in ACE-1 gene showed lack of the mutation responsible for organophosphate insecticide resistance in the temephos-selected strain of An. stephensi.Conclusion: This study showed that the altered enzymes but not targets site insensitivity of ACE-1 are responsible for temephos resistance in An. stephensi in south of Iran.

  4. A new mtDNA COI gene lineage closely related to Anopheles janconnae of the Albitarsis complex in the Caribbean region of Colombia

    Directory of Open Access Journals (Sweden)

    Lina A Gutiérrez

    2010-12-01

    Full Text Available An understanding of the taxonomic status and vector distribution of anophelines is crucial in controlling malaria. Previous phylogenetic analyses have supported the description of six species of the Neotropical malaria vector Anopheles (Nyssorhynchus albitarsis s.l. (Diptera: Culicidae: An. albitarsis, Anopheles deaneorum, Anopheles marajoara, Anopheles oryzalimnetes, Anopheles janconnae and An. albitarsis F. To evaluate the taxonomic status of An. albitarsis s.l. mosquitoes collected in various localities in the Colombian Caribbean region, specimens were analyzed using the complete mitochondrial DNA cytochrome oxidase I (COI gene, the ribosomal DNA (rDNA internal transcribed spacer 2 (ITS2 region and partial nuclear DNA white gene sequences. Phylogenetic analyses of the COI gene sequences detected a new lineage closely related to An. janconnae in the Caribbean region of Colombia and determined its position relative to the other members of the complex. However, the ITS2 and white gene sequences lacked sufficient resolution to support a new lineage closely related to An. janconnae or the An. janconnae clade. The possible involvement of this new lineage in malaria transmission in Colombia remains unknown, but its phylogenetic closeness to An. janconnae, which has been implicated in local malaria transmission in Brazil, is intriguing.

  5. Mosquitocidal activity of Polygala arvensis Willd against Aedes aegypti (Linn., Anopheles stephensi (Liston. and Culex quinquefasciatus (Say. (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    M. Deepa

    2014-12-01

    Full Text Available To determine the larvicidal, ovicidal and repellent activities of benzene and methanol extract of Polygala arvensis against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus Twenty five 3rd instar larvae of selected mosquitoes species were exposed to various concentrations (60-300 ppm and were assayed in the laboratory by using the protocol of WHO 2005; the 24 h LC50 values of the P. Arvensis leaf extract was determined following Probit analysis. The ovicidal activity was determined against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus exposed to variousconcentrations were tested under laboratory conditions and the hatch rates were assessed 120hrs post treatment. The repellent efficacy was determined against selected mosquitoes at three concentrations viz., 1.0, 2.0 and 3.0 mg/cm2 under the laboratory conditions. The LC50 and LC90 values of benzene and methanol extract of P. arvensis against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus larvae in 24 h were 75.32, 88.26, 82.46, 58.21, 46.37, 42.68 and 260.48, 275.26, 251.39, 208.45, 189.82 and 130.44 ppm, respectively. It has been noticed that the higher concentrations of P. arvensis extractspossesses strong ovicidal activity at 200 ppm concentration against Ae. aegypti, An. stephensi and C. quinquefasciatus, no egg hatchability was recorded. In the same way, methanol extracts showed maximum ovicidal activity followed by benzene extract against selected vector mosquitoes. In repellent activity, among two extracts tested P. arvensis methanol extract had strong repellent action against selected mosquitoes as it provided 100% protection against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus for 280min. From the results it can be concluded the P. arvensis extract was an excellent potential for controlling Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus mosquitoes.

  6. Diversity and transmission competence in lymphatic filariasis vectors in West Africa, and the implications for accelerated elimination of Anopheles-transmitted filariasis

    Directory of Open Access Journals (Sweden)

    de Souza Dziedzom K

    2012-11-01

    Full Text Available Abstract Lymphatic Filariasis (LF is targeted for elimination by the Global Programme for the Elimination of Lymphatic Filariasis (GPELF. The strategy adopted is based on the density dependent phenomenon of Facilitation, which hypothesizes that in an area where the vector species transmitting Wuchereria bancrofti are Anopheles mosquitoes, it is feasible to eliminate LF using Mass Drug Administration (MDA because of the inability of Anopheles species to transmit low-density microfilaraemia. Even though earlier studies have shown Anopheles species can exhibit the process of Facilitation in West Africa, observations point towards the process of Limitation in certain areas, in which case vector control is recommended. Studies on Anopheles species in West Africa have also shown genetic differentiation, cryptic taxa and speciation, insecticide resistance and the existence of molecular and chromosomal forms, all of which could influence the vectorial capacity of the mosquitoes and ultimately the elimination goal. This paper outlines the uniqueness of LF vectors in West Africa and the challenges it poses to the 2020 elimination goal, based on the current MDA strategies.

  7. Synergism between ammonia, lactic acid and carboxylic acids as kairomones in the host-seeking behaviour of the malaria mosquito Anopheles gambiae sensu stricto (Diptera: Culicidae)

    NARCIS (Netherlands)

    Smallegange, R.C.; Qiu, Y.T.; Loon, van J.J.A.; Takken, W.

    2005-01-01

    Host odours play a major role in the orientation and host location of blood-feeding mosquitoes. Anopheles gambiae Giles sensu stricto, which is the most important malaria vector in Africa, is a highly anthropophilic mosquito species, and the host-seeking behaviour of the females of this mosquito is

  8. Mosquito Larvicidal Potential of Gossypium hirsutum (Bt cotton) Leaves Extracts against Aedes aegypti and Anopheles stephensi larvae.

    OpenAIRE

    Patil, Chandrashekhar D; Hemant P Borase; Salunkhe, Rahul B; Rahul K Suryawanshi; Narkhade, Chandrakant P; Salunke, Bipinchandra K.; Satish V Patil

    2014-01-01

    Background: We aimed to extract the ingredients from leaves of Gossypium hirsutum (Bt cotton) using different solvents and evaluate for potential use to control different larval stages of mosquito species, Aedes aegypti and Anopheles stephensi. Methods: Qualitative and quantitative estimation of ingredients from Go. hirsutum (Bt) plant extract was carried out and their inhibitory action against mosquito larvae was determined using mosquito larvicidal assay. Results: LC50 values of water, etha...

  9. Scanning electron microscopic (Sem studies on fourth instar larva and pupa of Anopheles (Cellia stephensi Liston (Anophelinae: Culicidae

    Directory of Open Access Journals (Sweden)

    Jagbir Singh Kirti

    2014-12-01

    Full Text Available Anopheles (Cellia stephensi Liston is a major vector species of malaria in Indian subcontinent. Taxonomists have worked on its various morphological aspects and immature stages to explore additional and new taxonomic attributes. Scanning electron microscopic (SEM studies have been conducted on the fourth instar larva and pupa of An. stephensi to find additional taxonomic features for the first time from Punjab state.

  10. A Physical Map for an Asian Malaria Mosquito, Anopheles stephensi

    OpenAIRE

    Maria V Sharakhova; Xia, Ai; Tu, Zhijian; Shouche, Yogesh S.; Unger, Maria F; Sharakhov, Igor V

    2010-01-01

    Physical mapping is a useful approach for studying genome organization and evolution as well as for genome sequence assembly. The availability of polytene chromosomes in malaria mosquitoes provides a unique opportunity to develop high-resolution physical maps. We report a 0.6-Mb-resolution physical map consisting of 422 DNA markers hybridized to 379 chromosomal sites of the Anopheles stephensi polytene chromosomes. This makes An. stephensi second only to Anopheles gambiae in density of a phys...

  11. Chemical composition and insecticidal activity of plant essential oils from Benin against Anopheles gambiae (Giles)

    Science.gov (United States)

    2013-01-01

    Background Insecticide resistance in sub-Saharan Africa and especially in Benin is a major public health issue hindering the control of the malaria vectors. Each Anopheles species has developed a resistance to one or several classes of the insecticides currently in use in the field. Therefore, it is urgent to find alternative compounds to conquer the vector. In this study, the efficacies of essential oils of nine plant species, which are traditionally used to avoid mosquito bites in Benin, were investigated. Methods Essential oils of nine plant species were extracted by hydrodistillation, and their chemical compositions were identified by GC-MS. These oils were tested on susceptible “kisumu” and resistant “ladji-Cotonou” strains of Anopheles gambiae, following WHO test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Results Different chemical compositions were obtained from the essential oils of the plant species. The major constituents identified were as follows: neral and geranial for Cymbopogon citratus, Z-carveol, E-p-mentha-1(7),8-dien-2-ol and E-p-mentha-2,8-dienol for Cymbopogon giganteus, piperitone for Cymbopogon schoenanthus, citronellal and citronellol for Eucalyptus citriodora, p-cymene, caryophyllene oxide and spathulenol for Eucalyptus tereticornis, 3-tetradecanone for Cochlospermum tinctorium and Cochlospermum planchonii, methyl salicylate for Securidaca longepedunculata and ascaridole for Chenopodium ambrosioides. The diagnostic dose was 0.77% for C. citratus, 2.80% for E. tereticornis, 3.37% for E. citriodora, 4.26% for C. ambrosioides, 5.48% for C. schoenanthus and 7.36% for C. giganteus. The highest diagnostic doses were obtained with S. longepedunculata (9.84%), C. tinctorium (11.56%) and C. planchonii (15.22%), compared to permethrin 0.75%. A. gambiae cotonou, which is resistant to pyrethroids, showed significant tolerance to essential oils from C. tinctorium and S. longepedunculata as expected but was

  12. Short report : Development of a molecular assay to detect predation on Anopheles gambiae complex larval stages

    OpenAIRE

    Schielke, E.; Costantini, Carlo; Carchini, G.; Sagnon, N.; J. Powell; Caccone, A

    2007-01-01

    We developed a molecular assay to detect predation on Anopheles gambiae sensu lato (s.l.) mosquitoes. This intergenic spacer ribosomal DNA polymerase chain reaction assay and restriction enzyme analysis uses An. gambiae-specific primers to detect mosquito DNA in the DNA extracts from whole invertebrate predators, which enables identification of species (An. gambiae s.s. versus An. arabiensis) and molecular forms (M versus S in An. gambiae s.s.). We show that An. gambiae s.l. DNA can be detect...

  13. The polymorphism and the geographical distribution of the knockdown resistance (kdr of Anopheles sinensis in the Republic of Korea

    Directory of Open Access Journals (Sweden)

    Kang Seunghyun

    2012-05-01

    Full Text Available Abstract Background In the Republic of Korea (ROK, six sibling species of the Anopheles sinensis complex are considered the vector species of malaria, but data on their susceptibilities to malaria and vector capacities have been controversial. The intensive use of insecticides has contributed to the rapid development and spread of insecticide resistance in the An. sinensis complex. Knockdown resistance (kdr to pyrethroids and DDT in the An. sinensis complex is associated with a mutation in codon 1014 of the voltage-gated sodium channel (VGSC gene. Because the degree of insecticide resistance varies among mosquito species and populations, the detection of kdr mutations among the six sibling species of the An. sinensis complex is a prerequisite for establishing effective long-term vector control strategies in the ROK Methods In order to investigate species-specific kdr mutations, An. sinensis complex specimens have been collected from 22 sites in the ROK. Because of the difficulties with species identifications that are based only on morphological characteristics, molecular identification methods have been conducted on every specimen. Part of the IIS6 domain of the VGSC was polymerase chain reaction-amplified and directly sequenced. Results The molecular analyses revealed that mutations existed at codon 1014 only in An. sinensis sensu stricto and no mutations were found in the other five Anopheles species. In An. sinensis s.s., one wild type (TTG L1014 and three mutant types (TTT L1014F, TTC L1014F, and TGT L1014C of kdr alleles were detected. The TTC L1014F mutation was observed for the first time in this species. Conclusions The fact that the highly polymorphic kdr gene is only observed in An. sinensis s.s., out of the six Anopheles species and their geographical distribution suggest the need for future studies of insecticide resistance monitoring and investigations of species-specific resistance mechanisms in order to build successful malaria

  14. The role of hemocytes in Anopheles gambiae antiplasmodial immunity.

    Science.gov (United States)

    Ramirez, Jose Luis; Garver, Lindsey S; Brayner, Fábio André; Alves, Luiz Carlos; Rodrigues, Janneth; Molina-Cruz, Alvaro; Barillas-Mury, Carolina

    2014-01-01

    Hemocytes synthesize key components of the mosquito complement-like system, but their role in the activation of antiplasmodial responses has not been established. The effect of activating Toll signaling in hemocytes on Plasmodium survival was investigated by transferring hemocytes or cell-free hemolymph from donor mosquitoes in which the suppressor cactus was silenced. These transfers greatly enhanced antiplasmodial immunity, indicating that hemocytes are active players in the activation of the complement-like system, through an effector/effectors regulated by the Toll pathway. A comparative analysis of hemocyte populations between susceptible G3 and the refractory L3-5 Anopheles gambiae mosquito strains did not reveal significant differences under basal conditions or in response to Plasmodium berghei infection. The response of susceptible mosquitoes to different Plasmodium species revealed similar kinetics following infection with P. berghei,P. yoelii or P. falciparum, but the strength of the priming response was stronger in less compatible mosquito-parasite pairs. The Toll, Imd,STAT or JNK signaling cascades were not essential for the production of the hemocyte differentiation factor (HDF) in response to P. berghei infection, but disruption of Toll, STAT or JNK abolished hemocyte differentiation in response to HDF. We conclude that hemocytes are key mediators of A. gambiae antiplasmodial responses. PMID:23886925

  15. Innate immunity against malaria parasites in Anopheles gambiae

    Institute of Scientific and Technical Information of China (English)

    Yang Chenand; Zhi-Hui Weng; Liangbiao Zheng

    2008-01-01

    Malaria continues to exert a huge toll in the world today, causing approximately 400 million cases and killing between 1-2 million people annually. Most of the malaria burden is borne by countries in Africa. For this reason, the major vector for malaria in this continent, Anopheles gambiae, is under intense study. With the completion of the draft sequence of this important vector, efforts are underway to develop novel control strategies.One promising area is to harness the power of the innate immunity of this mosquito species to block the transmission of the malaria parasites. Recent studies have demonstrated that Toll and Imd signaling pathways and other immunity-related genes (encoding proteins possibly function in recognition or as effector molecules) play significant roles in two different arms of innate immunity: level of infection intensity and melanization of Plasmodium oocysts.The challenges in the future are to understand how the functions of these different genes are coordinated in defense against malaria parasites, and if different arms of innate immunity are cross-regulated or coordinated.

  16. Population genetics of Plasmodium resistance genes in Anopheles gambiae: no evidence for strong selection.

    Science.gov (United States)

    Obbard, D J; Linton, Y-M; Jiggins, F M; Yan, G; Little, T J

    2007-08-01

    Anopheles mosquitoes are the primary vectors for malaria in Africa, transmitting the disease to more than 100 million people annually. Recent functional studies have revealed mosquito genes that are crucial for Plasmodium development, but there is presently little understanding of which genes mediate vector competence in the wild, or evolve in response to parasite-mediated selection. Here, we use population genetic approaches to study the strength and mode of natural selection on a suite of mosquito immune system genes, CTL4, CTLMA2, LRIM1, and APL2 (LRRD7), which have been shown to affect Plasmodium development in functional studies. We sampled these genes from two African populations of An. gambiae s.s., along with several closely related species, and conclude that there is no evidence for either strong directional or balancing selection on these genes. We highlight a number of challenges that need to be met in order to apply population genetic tests for selection in Anopheles mosquitoes; in particular the dearth of suitable outgroup species and the potential difficulties that arise when working within a closely-related species complex. PMID:17688548

  17. Genetic and phenotypic variation of the malaria vector Anopheles atroparvus in southern Europe

    Directory of Open Access Journals (Sweden)

    Romi Roberto

    2011-01-01

    Full Text Available Abstract Background There is a growing concern that global climate change will affect the potential for pathogen transmission by insect species that are vectors of human diseases. One of these species is the former European malaria vector, Anopheles atroparvus. Levels of population differentiation of An. atroparvus from southern Europe were characterized as a first attempt to elucidate patterns of population structure of this former malaria vector. Results are discussed in light of a hypothetical situation of re-establishment of malaria transmission. Methods Genetic and phenotypic variation was analysed in nine mosquito samples collected from five European countries, using eight microsatellite loci and geometric morphometrics on 21 wing landmarks. Results Levels of genetic diversity were comparable to those reported for tropical malaria vectors. Low levels of genetic (0.004 FST An. atroparvus populations spanning over 3,000 km distance. Genetic differentiation (0.202 FST An. atroparvus and Anopheles maculipennis s.s. Differentiation between sibling species was not so evident at the phenotype level. Conclusions Levels of population differentiation within An. atroparvus were low and not correlated with geographic distance or with putative physical barriers to gene flow (Alps and Pyrenées. While these results may suggest considerable levels of gene flow, other explanations such as the effect of historical population perturbations can also be hypothesized.

  18. Effects of Anti-Mosquito Salivary Glands and Deglycosylated Midgut Antibodies of Anopheles stephensi on Fecundity and Longevity

    Directory of Open Access Journals (Sweden)

    H Mohammadzadeh Hajipirloo

    2005-09-01

    Full Text Available With the aim of controlling malaria by reducing vector population, the effects of antibodies produced against salivary glands and deglycosylated midgut antigens of Anopheles stephensi mosquitoes on fecundity and longevity of the same species were tested. Three deglycosylated preparations of midgut and two preparations of salivary glands were produced, conjugated with aluminum hydroxide gel, and subcutaneously injected to shoulders of TO (Turner Out-bred mice. After 4 immunizations and assurance of enough antibody production against utilized antigenic suspensions, effects of blood feeding on immunized and control mice were assayed. Insoluble preparation of midgut showed the strongest effect with 23.5% reduction in egg laying, and increasing death rate of vectors in third day after feeding. No significant reduction in fecundity or survivorship was seen with other preparations. Anopheles midgut insoluble antigens are potential candidates for designing vaccines against malaria vectors and further investigations need to be done to find effective antigens and the best way of their use.

  19. Bionomics of the malaria vector Anopheles farauti in Temotu Province, Solomon Islands: issues for malaria elimination

    Directory of Open Access Journals (Sweden)

    Mackenzie Donna O

    2011-05-01

    Full Text Available Abstract Background In the Solomon Islands, the Malaria Eradication Programmes of the 1970s virtually eliminated the malaria vectors: Anopheles punctulatus and Anopheles koliensis, both late night biting, endophagic species. However, the vector, Anopheles farauti, changed its behaviour to bite early in the evening outdoors. Thus, An. farauti mosquitoes were able to avoid insecticide exposure and still maintain transmission. Thirty years on and the Solomon Islands are planning for intensified malaria control and localized elimination; but little is currently known about the behaviour of the vectors and how they will respond to intensified control. Methods In the elimination area, Temotu Province, standard entomological collection methods were conducted in typical coastal villages to determine the vector, its ecology, biting density, behaviour, longevity, and vector efficacy. These vector surveys were conducted pre-intervention and post-intervention following indoor residual spraying and distribution of long-lasting insecticidal nets. Results Anopheles farauti was the only anopheline in Temotu Province. In 2008 (pre-intervention, this species occurred in moderate to high densities (19.5-78.5 bites/person/night and expressed a tendency to bite outdoors, early in the night (peak biting time 6-8 pm. Surveys post intervention showed that there was little, if any, reduction in biting densities and no reduction in the longevity of the vector population. After adjusting for human behaviour, indoor biting was reduced from 57% pre-intervention to 40% post-intervention. Conclusion In an effort to learn from historical mistakes and develop successful elimination programmes, there is a need for implementing complimentary vector control tools that can target exophagic and early biting vectors. Intensified indoor residual spraying and long-lasting insecticide net use has further promoted the early, outdoor feeding behaviour of An. farauti in the Solomon Islands

  20. Systematics and Population Level Analysis of Anopheles darlingi

    Directory of Open Access Journals (Sweden)

    Conn JE

    1998-01-01

    Full Text Available A new phylogenetic analysis of the Nyssorhynchus subgenus (Danoff-Burg and Conn, unpub. data using six data sets {morphological (all life stages; scanning electron micrographs of eggs; nuclear ITS2 sequences; mitochondrial COII, ND2 and ND6 sequences} revealed different topologies when each data set was analyzed separately but no heterogeneity between the data sets using the arn test. Consequently, the most accurate estimate of the phylogeny was obtained when all the data were combined. This new phylogeny supports a monophyletic Nyssorhynchus subgenus but both previously recognized sections in the subgenus (Albimanus and Argyritarsis were demonstrated to be paraphyletic relative to each other and four of the seven clades included species previously placed in both sections. One of these clades includes both Anopheles darlingi and An. albimanus, suggesting that the ability to vector malaria effectively may have originated once in this subgenus. Both a conserved (315 bp and a variable (425 bp region of the mitochondrial COI gene from 15 populations of An. darlingi from Belize, Bolivia, Brazil, French Guiana, Peru and Venezuela were used to examine the evolutionary history of this species and to test several analytical assumptions. Results demonstrated (1 parsimony analysis is equally informative compared to distance analysis using NJ; (2 clades or clusters are more strongly supported when these two regions are combined compared to either region separately; (3 evidence (in the form of remnants of older haplotype lineages for two colonization events; and (4 significant genetic divergence within the population from Peixoto de Azevedo (State of Mato Grosso, Brazil. The oldest lineage includes populations from Peixoto, Boa Vista (State of Roraima and Dourado (State of São Paulo.

  1. Peculiar liquid-feeding and pathogen transmission behavior of Aedes togoi and comparison with Anopheles sinensis

    Science.gov (United States)

    Lee, Sang Joon; Kang, Dooho; Lee, Seung Chul; Ha, Young-Ran

    2016-02-01

    Female mosquitoes transmit various diseases as vectors during liquid-feeding. Identifying the determinants of vector efficiency is a major scientific challenge in establishing strategies against these diseases. Infection rate and transmission efficiency are interconnected with the mosquito-induced liquid-feeding flow as main indexes of vector efficiency. However, the relationship between liquid-feeding characteristics and pathogen remains poorly understood. The liquid-feeding behavior of Aedes togoi and Anopheles sinensis was comparatively investigated in conjunction with vector efficiency via micro-particle image velocimetry. The flow rates and ratio of the ejection volume of Aedes togoi were markedly higher than those of Anophels sinensis. These differences would influence pathogen re-ingestion. Wall shear stresses of these mosquito species were also clearly discriminatory affecting the infective rates of vector-borne diseases. The variations in volume of two pump chambers and diameter of proboscis of these mosquito species were compared to determine the differences in the liquid-feeding process. Liquid-feeding characteristics influence vector efficiency; hence, this study can elucidate the vector efficiency of mosquitoes and the vector-pathogen interactions and contribute to the development of strategies against vector-borne diseases.

  2. Ecology of Anopheles dthali Patton in Bandar Abbas District, Hormozgan Province, Southern Iran

    Directory of Open Access Journals (Sweden)

    H Vatandoost

    2007-05-01

    Full Text Available Ecology of Anopheles dthali was studied in Bandar Abbas County, where there is indigenous malaria. Anopheles dthali plays as a secondary malaria vector in the region. It is active throughout the year in mountainous area with two peaks of activity, whereas in coastal area it has one peak. There is no report of hibernation or aestivation for this species in the re¬gion. Precipitin tests on specimens from different parts showed that 15.6-20.8% were positive for human blood. This species usually rests outdoors. It has different larval habitats. Insecticides susceptibility tests on adult females exhibited susceptibil¬ity to all insecticides recommended by WHO. LT50 for the currently used insecticide, lambda-cyhalothrin, is measured less than one minute. The irritability tests to pyrethroid insecticides, showed that permethrin and lambda-cyhalothrin had more irritancy compared to deltamethrin and cyfluthrin. Larval bioassay using malathion, chlorpyrifos, temephos and fenithrothion did not show any sing of resistance to these larvicides at the diagnostic dose. It is recommended that all the decision makers should consider the results of our study for any vector control measures in the region.

  3. Ecology of Anopheles dthali Patton in Bandar Abbas District, Hormozgan Province, Southern Iran

    Directory of Open Access Journals (Sweden)

    H Vatandoost

    2007-06-01

    Full Text Available Ecology of Anopheles dthali was studied in Bandar Abbas County, where there is indigenous malaria. Anopheles dthali plays as a secondary malaria vector in the region. It is active throughout the year in mountainous area with two peaks of activity, whereas in coastal area it has one peak. There is no report of hibernation or aestivation for this species in the re¬gion. Precipitin tests on specimens from different parts showed that 15.6-20.8% were positive for human blood. This species usually rests outdoors. It has different larval habitats. Insecticides susceptibility tests on adult females exhibited susceptibil¬ity to all insecticides recommended by WHO. LT50 for the currently used insecticide, lambda-cyhalothrin, is measured less than one minute. The irritability tests to pyrethroid insecticides, showed that permethrin and lambda-cyhalothrin had more irritancy compared to deltamethrin and cyfluthrin. Larval bioassay using malathion, chlorpyrifos, temephos and fenithrothion did not show any sing of resistance to these larvicides at the diagnostic dose. It is recommended that all the decision makers should consider the results of our study for any vector control measures in the region.

  4. Entomological indices of Anopheles gambiae sensu lato at a rural community in south-west Nigeria

    Directory of Open Access Journals (Sweden)

    M.A.E. Noutcha

    2009-02-01

    Full Text Available Background & objectives: Investigations were conducted to obtain key entomological indices of Anopheles gambiae s.l. at Igbo-Ora, a rural community in south-west Nigeria. Methods: Mosquitoes were caught daily for a week from rooms where tenants had slept the previous night in each of the four months June, July (2001, and August, September (2002. Anopheles gambiae s.l. sibling species were PCR-identified, the blood meal origin was determined by direct ELISA, and the circumsporozoite antigen by sandwich ELISA. Mean weekly rates were calculated. Results: The mean human biting rates were 0.90 and 1.6 in 2001 and 2002 respectively. The mean weekly anthropophilic rates for An. gambiae s.l. were 82 and 86% in 2001 and 2002 respectively; they were high in An. gambiae s.s., An. arabiensis and non-identified species in the complex. The mean weekly circumsporozoite rates were 6.70% in 2001 and 6.30% in 2002. The mean weekly entomological inoculation rates (EIR were 4.95 and 5.05 in 2001 and 2002 respectively; the seasonal (6-month rates were high: 128.7 in 2001 and 131.3 in 2002, compared to data from other rural communities on the continent. Interpretation & conclusion: The implications of these findings on the role of An. gambiae s.l. in the holoendemicity of malaria at Igbo-Ora are discussed.

  5. The genetics of inviability and male sterility in hybrids between Anopheles gambiae and An. arabiensis.

    Science.gov (United States)

    Slotman, M; Della Torre, A; Powell, J R

    2004-05-01

    Male hybrids between Anopheles gambiae and An. arabiensis suffer from hybrid sterility, and inviability effects are sometimes present as well. We examined the genetic basis of these reproductive barriers between the two species, using 21 microsatellite markers. Generally, recessive inviability effects were found on the X chromosome of gambiae that are incompatible with at least one factor on each arabiensis autosome. Inviability is complete when the gambiae and arabiensis inviability factors are hemi- or homozygous. Using a QTL mapping approach, regions that contribute to male hybrid sterility were also identified. The X chromosome has a disproportionately large effect on male hybrid sterility. Additionally, several moderate-to-large autosomal QTL were found in both species. The effect of these autosomal QTL is contingent upon the presence of an X chromosome from the other species. Substantial regions of the autosomes do not contribute markedly to male hybrid sterility. Finally, no evidence for epistatic interactions between conspecific sterility loci was found.

  6. Ecotope-Based Entomological Surveillance and Molecular Xenomonitoring of Multidrug Resistant Malaria Parasites in Anopheles Vectors

    Directory of Open Access Journals (Sweden)

    Prapa Sorosjinda-Nunthawarasilp

    2014-01-01

    Full Text Available The emergence and spread of multidrug resistant (MDR malaria caused by Plasmodium falciparum or Plasmodium vivax have become increasingly important in the Greater Mekong Subregion (GMS. MDR malaria is the heritable and hypermutable property of human malarial parasite populations that can decrease in vitro and in vivo susceptibility to proven antimalarial drugs as they exhibit dose-dependent drug resistance and delayed parasite clearance time in treated patients. MDR malaria risk situations reflect consequences of the national policy and strategy as this influences the ongoing national-level or subnational-level implementation of malaria control strategies in endemic GMS countries. Based on our experience along with current literature review, the design of ecotope-based entomological surveillance (EES and molecular xenomonitoring of MDR falciparum and vivax malaria parasites in Anopheles vectors is proposed to monitor infection pockets in transmission control areas of forest and forest fringe-related malaria, so as to bridge malaria landscape ecology (ecotope and ecotone and epidemiology. Malaria ecotope and ecotone are confined to a malaria transmission area geographically associated with the infestation of Anopheles vectors and particular environments to which human activities are related. This enables the EES to encompass mosquito collection and identification, salivary gland DNA extraction, Plasmodium- and species-specific identification, molecular marker-based PCR detection methods for putative drug resistance genes, and data management. The EES establishes strong evidence of Anopheles vectors carrying MDR P. vivax in infection pockets epidemiologically linked with other data obtained during which a course of follow-up treatment of the notified P. vivax patients receiving the first-line treatment was conducted. For regional and global perspectives, the EES would augment the epidemiological surveillance and monitoring of MDR falciparum and

  7. The genetics of green thorax, a new larval colour mutant, non-linked with ruby-eye locus in the malaria mosquito, Anopheles stephensi Liston

    OpenAIRE

    Sanil, D.; N. J. Shetty

    2009-01-01

    Background & objectives: Anopheles stephensi, an important vector of malaria continues to be distributed widely in the Indian subcontinent. The natural vigour of the species combined with its new tolerance, indeed resistance to insecticides has made it obligatory that we look for control methods involving genetic manipulation. Hence, there is an immediate need for greater understanding of the genetics of this vector species. One of the requirements for such genetic studies is the establishmen...

  8. Human exposure to anopheline mosquitoes occurs primarily indoors, even for users of insecticide-treated nets in Luangwa Valley, South-east Zambia

    Directory of Open Access Journals (Sweden)

    Seyoum Aklilu

    2012-05-01

    Full Text Available Abstract Background Current front line malaria vector control methods such as indoor residual spraying (IRS and long-lasting insecticidal nets (LLINs, rely upon the preference of many primary vectors to feed and/or rest inside human habitations where they can be targeted with domestically-applied insecticidal products. We studied the human biting behaviour of the malaria vector Anopheles funestus Giles and the potential malaria vector Anopheles quadriannulatus Theobald in Luangwa valley, south-east Zambia. Methods Mosquitoes were collected by human landing catch in blocks of houses with either combined use of deltamethrin-based IRS and LLINs or LLINs alone. Human behaviour data were collected to estimate how much exposure to mosquito bites indoors and outdoors occurred at various times of the night for LLIN users and non-users. Results Anopheles funestus and An. quadriannulatus did not show preference to bite either indoors or outdoors: the proportions [95% confidence interval] caught indoors were 0.586 [0.303, 0.821] and 0.624 [0.324, 0.852], respectively. However, the overwhelming majority of both species were caught at times when most people are indoors. The proportion of mosquitoes caught at a time when most people are indoors were 0.981 [0.881, 0.997] and 0.897 [0.731, 0.965], respectively, so the proportion of human exposure to both species occuring indoors was high for individuals lacking LLINs (An. funestus: 0.983 and An. quadriannulatus: 0.970, respectively. While LLIN users were better protected, more than half of their exposure was nevertheless estimated to occur indoors (An. funestus: 0.570 and An. quadriannulatus: 0.584. Conclusions The proportion of human exposure to both An. funestus and An. quadriannulatus occuring indoors was high in the area and hence both species might be responsive to further peri-domestic measures if these mosquitoes are susceptible to insecticidal products.

  9. Metabolic pathways in Anopheles stephensi mitochondria.

    Science.gov (United States)

    Giulivi, Cecilia; Ross-Inta, Catherine; Horton, Ashley A; Luckhart, Shirley

    2008-10-15

    No studies have been performed on the mitochondria of malaria vector mosquitoes. This information would be valuable in understanding mosquito aging and detoxification of insecticides, two parameters that have a significant impact on malaria parasite transmission in endemic regions. In the present study, we report the analyses of respiration and oxidative phosphorylation in mitochondria of cultured cells [ASE (Anopheles stephensi Mos. 43) cell line] from A. stephensi, a major vector of malaria in India, South-East Asia and parts of the Middle East. ASE cell mitochondria share many features in common with mammalian muscle mitochondria, despite the fact that these cells are of larval origin. However, two major differences with mammalian mitochondria were apparent. One, the glycerol-phosphate shuttle plays as major a role in NADH oxidation in ASE cell mitochondria as it does in insect muscle mitochondria. In contrast, mammalian white muscle mitochondria depend primarily on lactate dehydrogenase, whereas red muscle mitochondria depend on the malate-oxaloacetate shuttle. Two, ASE mitochondria were able to oxidize proline at a rate comparable with that of alpha-glycerophosphate. However, the proline pathway appeared to differ from the currently accepted pathway, in that oxoglutarate could be catabolized completely by the tricarboxylic acid cycle or via transamination, depending on the ATP need.

  10. Pteridine fluorescence for age determination of Anopheles mosquitoes.

    Science.gov (United States)

    Wu, D; Lehane, M J

    1999-02-01

    The age structure of mosquito populations is of great relevance to understanding the dynamics of disease transmission and in monitoring the success of control operations. Unfortunately, the ovarian dissection methods currently available for determining the age of adult mosquitoes are technically difficult, slow and may be of limited value, because the proportion of diagnostic ovarioles in the ovary declines with age. By means of reversed-phase HPLC this study investigated the malaria vectors Anopheles gambiae and An. stephensi to see if changes in fluorescent pteridine pigments, which have been used in other insects to determine the age of field-caught individuals, may be useful for age determination in mosquitoes. Whole body fluorescence was inversely proportional to age (P 91%) up to 30 days postemergence, with the regression values: y = 40580-706x for An. gambiae, and y = 52896-681x for An. stephensi. In both species the main pteridines were 6-biopterin, pterin-6-carboxylic acid and an unidentified fluorescent compound. An. gambiae had only 50-70% as much fluorescence as An. stephensi, and fluorescent compounds were relatively more concentrated in the head than in the thorax (ratios 1:0.8 An. gambiae; 1:0.5 An. stephensi). The results of this laboratory study are encouraging. It seems feasible that this simpler and faster technique of fluorescence quantification could yield results of equivalent accuracy to the interpretation of ovarian dissection. A double-blind field trial comparing the accuracy of this technique to marked, released and recaptured mosquitoes is required to test the usefulness of the pteridine method in the field. PMID:10194749

  11. Distribution of the main malaria vectors in Kenya

    Directory of Open Access Journals (Sweden)

    Hay Simon I

    2010-03-01

    Full Text Available Abstract Background A detailed knowledge of the distribution of the main Anopheles malaria vectors in Kenya should guide national vector control strategies. However, contemporary spatial distributions of the locally dominant Anopheles vectors including Anopheles gambiae, Anopheles arabiensis, Anopheles merus, Anopheles funestus, Anopheles pharoensis and Anopheles nili are lacking. The methods and approaches used to assemble contemporary available data on the present distribution of the dominant malaria vectors in Kenya are presented here. Method Primary empirical data from published and unpublished sources were identified for the period 1990 to 2009. Details recorded for each source included the first author, year of publication, report type, survey location name, month and year of survey, the main Anopheles species reported as present and the sampling and identification methods used. Survey locations were geo-positioned using national digital place name archives and on-line geo-referencing resources. The geo-located species-presence data were displayed and described administratively, using first-level administrative units (province, and biologically, based on the predicted spatial margins of Plasmodium falciparum transmission intensity in Kenya for the year 2009. Each geo-located survey site was assigned an urban or rural classification and attributed an altitude value. Results A total of 498 spatially unique descriptions of Anopheles vector species across Kenya sampled between 1990 and 2009 were identified, 53% were obtained from published sources and further communications with authors. More than half (54% of the sites surveyed were investigated since 2005. A total of 174 sites reported the presence of An. gambiae complex without identification of sibling species. Anopheles arabiensis and An. funestus were the most widely reported at 244 and 265 spatially unique sites respectively with the former showing the most ubiquitous distribution

  12. Spermless males elicit large-scale female responses to mating in the malaria mosquito Anopheles gambiae

    Science.gov (United States)

    Thailayil, Janis; Magnusson, Kalle; Godfray, H. Charles J.; Crisanti, Andrea; Catteruccia, Flaminia

    2011-01-01

    Anopheles gambiae sensu stricto is the major vector of malaria, a disease with devastating consequences for human health. Given the constant spread of the disease, alternative approaches to the use of insecticides are urgently needed to control vector populations. Females of this species undergo large behavioral changes after mating, which include a life-long refractoriness to further insemination and the induction of egg laying in blood-fed individuals. Genetic control strategies aimed at impacting Anopheles fertility through the release of sterile males are being advocated to reduce the size of mosquito field populations. Such strategies depend on the ability of the released sterile males to mate successfully with wild females and to switch off the female receptivity to further copulation. Here we evaluate the role of sperm in regulating female behavioral responses after mating in An. gambiae. We developed spermless males by RNAi silencing of a germ cell differentiation gene. These males mated successfully and preserved standard accessory gland functions. Females mated to spermless males exhibited normal postcopulatory responses, which included laying large numbers of eggs upon blood feeding and becoming refractory to subsequent insemination. Moreover, spermless males induced transcriptional changes in female reproductive genes comparable to those elicited by fertile males. Our data demonstrate that, in contrast to Drosophila, targeting sperm in An. gambiae preserves normal male and female reproductive behavior for the traits and time frame analyzed and validate the use of approaches based on incapacitation or elimination of sperm for genetic control of vector populations to block malaria transmission. PMID:21825136

  13. BEBERAPA ASPEK BIONOMIK ANOPHELES SP DI KABUPATEN SUMBA TENGAH, PROVINSI NUSA TENGGARA TIMUR

    Directory of Open Access Journals (Sweden)

    Ni Wayan Dewi Adyana

    2012-07-01

    Full Text Available Research Some Aspects of Anopheles sp Bionomik in Central Sumba Regency, Province of East Nusa Tenggara. Committed in the territory Maradesa Health Center. Data were collected by catching adult mosquitoes by using bait People inside and outside the home, a collection of breaks in the wall and at home, continued with larval surveys in all potential breeding places.  The results showed that the biting behavior tends eksofagik found on An. kochi, An. aconitus and An.barbirostris with bite density peaks in An. aconitus (0.6 persons/hour with a biting peak at 20:00 to 21:00. Behavior tends eksofilik break in An. kochi, An. aconitus, An. tesselatus, An. barbirostris, An. vagus, An.flavirostris, An. maculatus and An. indefinitus with the highest density in An.aconitus (0.9 persons/hour at 1:00 a.m. to 2:00 a.m. Anopheles larvae breeding places found in the small hole in the ground, creek, wetland, non-permanent irrigation, water reservoirs in the vegetable garden, ditches, puddles, swamps, springs, with species that are found as An.kochi, An.aconitus, An. tesselatus, An. barbirostris, An. vagus, An. flavirostris, An. maculatus, An. indefinitus and An. annullaris

  14. FAUNA ANOPHELES DI DAERAH PANTAI BEKAS HUTAN MANGROVE KECAMATAN PADANG CERMIN KABUPATEN LAMPUNG SELATAN

    Directory of Open Access Journals (Sweden)

    N. Sushanti Idris-Idram

    2012-09-01

    Full Text Available Intensive mosquito collections were carried out in two villages in subdistrict of Padangcermin during 1992-1993. The method of mosquito collections consisted of night landing on man indoor and outdoor, night resting indoor and outdoor around cattle shelters, light trap in cattle shelters, daytime resting indoor and outdoor, as well as larvae collections to identify anophelines breeding sites. Sixteen anophelines i.e. Anopheles sundaicus, An. subpictus, An. vagus, An. indefinitus, An. nigerrimus, An. peditaeniatus, An. kochi, An. barbirostris, An. bambumbrosus, An. annularis, An. separatus, An. tesselatus, An. aconitus, An. umbrosus, An. leucosphyrus and An. letifer were collected. Among these mosquitos, An. sundaicus was found predominant, followed by An. vagus and An. subpictus. Other species were collected in small numbers. The behavior of Anopheles sundaicus, An. subpictus and An. vagus were exophagic and endophilic. The larvae of An. sundaicus was found only in brackish standing water such as abandoned shrimp ponds, An. subpictus in brackish standing water as well as fresh standing water, while An. vagus was found only in fresh standing water. Breeding sites of An. sundaicus was characterized by pond with floating algae while An. subpictus and An. vagus were not depending on vegetation.

  15. “Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes”

    Science.gov (United States)

    Neafsey, Daniel E.; Waterhouse, Robert M.; Abai, Mohammad R.; Aganezov, Sergey S.; Alekseyev, Max A.; Allen, James E.; Amon, James; Arcà, Bruno; Arensburger, Peter; Artemov, Gleb; Assour, Lauren A.; Basseri, Hamidreza; Berlin, Aaron; Birren, Bruce W.; Blandin, Stephanie A.; Brockman, Andrew I.; Burkot, Thomas R.; Burt, Austin; Chan, Clara S.; Chauve, Cedric; Chiu, Joanna C.; Christensen, Mikkel; Costantini, Carlo; Davidson, Victoria L.M.; Deligianni, Elena; Dottorini, Tania; Dritsou, Vicky; Gabriel, Stacey B.; Guelbeogo, Wamdaogo M.; Hall, Andrew B.; Han, Mira V.; Hlaing, Thaung; Hughes, Daniel S.T.; Jenkins, Adam M.; Jiang, Xiaofang; Jungreis, Irwin; Kakani, Evdoxia G.; Kamali, Maryam; Kemppainen, Petri; Kennedy, Ryan C.; Kirmitzoglou, Ioannis K.; Koekemoer, Lizette L.; Laban, Njoroge; Langridge, Nicholas; Lawniczak, Mara K.N.; Lirakis, Manolis; Lobo, Neil F.; Lowy, Ernesto; MacCallum, Robert M.; Mao, Chunhong; Maslen, Gareth; Mbogo, Charles; McCarthy, Jenny; Michel, Kristin; Mitchell, Sara N.; Moore, Wendy; Murphy, Katherine A.; Naumenko, Anastasia N.; Nolan, Tony; Novoa, Eva M.; O'Loughlin, Samantha; Oringanje, Chioma; Oshaghi, Mohammad A.; Pakpour, Nazzy; Papathanos, Philippos A.; Peery, Ashley N.; Povelones, Michael; Prakash, Anil; Price, David P.; Rajaraman, Ashok; Reimer, Lisa J.; Rinker, David C.; Rokas, Antonis; Russell, Tanya L.; Sagnon, N'Fale; Sharakhova, Maria V.; Shea, Terrance; Simão, Felipe A.; Simard, Frederic; Slotman, Michel A.; Somboon, Pradya; Stegniy, Vladimir; Struchiner, Claudio J.; Thomas, Gregg W.C.; Tojo, Marta; Topalis, Pantelis; Tubio, José M.C.; Unger, Maria F.; Vontas, John; Walton, Catherine; Wilding, Craig S.; Willis, Judith H.; Wu, Yi-Chieh; Yan, Guiyun; Zdobnov, Evgeny M.; Zhou, Xiaofan; Catteruccia, Flaminia; Christophides, George K.; Collins, Frank H.; Cornman, Robert S.; Crisanti, Andrea; Donnelly, Martin J.; Emrich, Scott J.; Fontaine, Michael C.; Gelbart, William; Hahn, Matthew W.; Hansen, Immo A.; Howell, Paul I.; Kafatos, Fotis C.; Kellis, Manolis; Lawson, Daniel; Louis, Christos; Luckhart, Shirley; Muskavitch, Marc A.T.; Ribeiro, José M.; Riehle, Michael A.; Sharakhov, Igor V.; Tu, Zhijian; Zwiebel, Laurence J.; Besansky, Nora J.

    2015-01-01

    Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover, but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts. PMID:25554792

  16. RESISTANCE OF ANOPHELES STEPHENSI LISTON TO MALATHION IN THE PROVICE OF FARS, SOUTHERN IRAN

    Directory of Open Access Journals (Sweden)

    N.Eshghy

    1985-08-01

    Full Text Available Anopheles Stephensi is an important malaria vector in southern Iran. This species developed resistance to DDT in 1975 and subsequently to dieldrin in 1960. Since 1968 this species has been under pressure of malathin house sprayin. 50% w.d.p. , 2g/m2, 1-2 rounds per year. Susceptibility tests carried out with malathion impregnated papers during 1979 showed that An.stephensi has acquired resistant to malathion too. With regard to the 0.1% propoxur, a study was carried out to obtain base-line data in the localities under routine observations and also the discriminating dosage that could kill 100% of An.stephensi. The objective of the present paper is to summarize and discuss briefly the field investigations concerning insecticide resistance in An.stephensi.

  17. PROPOXUR SELECTION OF THE ADULTS OF ANOPHELES STEPHENSI FROM MINAB, SOUTH OF IRAN

    Directory of Open Access Journals (Sweden)

    H. Edalat

    1997-10-01

    Full Text Available Anopheles stephensi is the main malaria vector in south of Iran. It has been known to be resistant to DDT, malathion and dieldrin. After appearance of resistance the area was treated with propoxur, at the rate of 2 g/m2 twice a year for 14 successive years. This species is still susceptible to propoxur. In order to forecast the possibility of development of propoxur resistance in An.stephensi, the females of this species were put under the pressure of propoxur for 14 generations in 1988. Fourteen generations of propoxur selection on the adult females of An.stephensi resulted in an increase in LT60 from 8.5 min to 24.30 minutes, i.e. 2.86 fold increase in tolerance.

  18. Temperature influence on embryonic development of Anopheles albitarsis and Anopheles aquasalis

    Directory of Open Access Journals (Sweden)

    Sabrina Cardozo Gonçalvez de Carvalho

    2002-12-01

    Full Text Available Temperature influence on the embryonic development of Anopheles aquasalis and An. albitarsis was investigated. At 26ºC, 75% and 60% of respectively An. aquasalis and An. albitarsis eggs hatched, with one peak of eclosion, between the 2nd and 3rd day after oviposition. At 20 ± 2ºC, around 66-70% of An. aquasalis eggs hatched, with one eclosion peak, on the 5th day. On the other hand, An. albitarsis eclosion at 21 ± 2ºC decreased to 10-22%, with two eclosion peaks, on the 4th-5th day and on the 9th-12th day. These data indicate a stronger temperature influence over An.albitarsis than over An. aquasalis embryos.

  19. Description of the egg of Anopheles (Anopheles intermedius (Peryassu, 1908 (Diptera: Culicidae by scanning electron microscopy

    Directory of Open Access Journals (Sweden)

    Oswaldo Paulo Forattini

    1997-01-01

    Full Text Available The egg of Anopheles (Anopheles intermedius (Peryassu, 1908 is described and illustrated with scanning electron micrographs. Literature data on An. (Ano. maculipes (Theobald, 1903 is providedOs ovos de An. intermedius foram descritos e ilustrados por Costa Lima (1929. Este autor, baseando-se nos desenhos de Peryassu (1908 para An. maculipes, chamou atenção para o fato do ovo desta espécie ser semelhante ao de An. maculipes. Posteriormente, Causey e col. (1944, estudando os ovos de An. intermedius e An. maculipes ao estereomicroscópio, diferenciou-os por caracteres da franja. Em An. intermedius a franja é oblíqua ao eixo longitudinal do ovo, mas perpendicular em An. maculipes. Causey e col. (1944 ilustraram as variações morfológicas que encontraram na franja do ovo de An. intermedius. Os autores observaram que a franja apresentava-se descotínua em alguns espécimens de An. intermedius, tornando-se em pequenos círculos nessa região. Embora semelhante ao de An. maculipes, os ovos de An. intermedius podem ser facilmente reconhecidos por características da franja, flutuadores e tubérculos lobados, como pode ser observado na descrição. Contudo, será necessário estudar a morfologia dos ovos de outras espécies do subgênero para que se possa estabelecer as diferenças e fazer comparações precisas entre as espécies

  20. Ecology of Anopheles spp. in Central Lombok Regency

    Directory of Open Access Journals (Sweden)

    Majematang Mading

    2014-06-01

    Full Text Available Malaria remains a public health problem in West Nusa Tenggara Province. Central Lombok District is one of the areas with high case of malaria. Annual Malaria Incidence (AMI was increased from 5.9 ‰ in 2006, 6.7‰ up to 8.1‰ in 2008. The objective of the study is to describe the ecological condition of Anopheles spp. through observation, measurement of environmental variables, larvae and adult collection. This research was an observational research with cross-sectional study. The population of this study is all mosquitos and breeding habitats of Anopheles spp. that exist in the research location. Ecological observations carried out on anopheles breeding habitats including acidity, salinity, shaded places and aquatic biota. Air temperature and humidity measured at the adult mosquitoes trapping sites. The result showed that pH values of water is around 9.00, salinity in the breeding habitats around 14 ppm, and water biota (i.e. moss, grass, shrimps, fishes, tadpoles and crabs surrounded by bushes with larvae density 0,1-28,8 each dipping. The air measurement at the time was between 23°-27° Celsius and 65%-84% humidity. This research concludes that ecology and environmental conditions were supporting the development of larvae and adult mosquito of Anopheles spp.

  1. Cannibalism and predation among larvae of the Anopheles gambiae complex

    NARCIS (Netherlands)

    Koenraadt, C.J.M.; Takken, W.

    2003-01-01

    Among the aquatic developmental stages of the Anopheles gambiae complex (Diptera: Culicidae), both inter- and intra-specific interactions influence the resulting densities of adult mosquito populations. For three members of the complex, An. arabiensis Patton, An. quadriannulatus (Theobald) and An. g

  2. Urban agriculture and Anopheles habitats in Dar es Salaam, Tanzania.

    Science.gov (United States)

    Dongus, Stefan; Nyika, Dickson; Kannady, Khadija; Mtasiwa, Deo; Mshinda, Hassan; Gosoniu, Laura; Drescher, Axel W; Fillinger, Ulrike; Tanner, Marcel; Killeen, Gerry F; Castro, Marcia C

    2009-05-01

    A cross-sectional survey of agricultural areas, combined with routinely monitored mosquito larval information, was conducted in urban Dar es Salaam, Tanzania, to investigate how agricultural and geographical features may influence the presence of Anopheles larvae. Data were integrated into a geographical information systems framework, and predictors of the presence of Anopheles larvae in farming areas were assessed using multivariate logistic regression with independent random effects. It was found that more than 5% of the study area (total size 16.8 km2) was used for farming in backyard gardens and larger open spaces. The proportion of habitats containing Anopheles larvae was 1.7 times higher in agricultural areas compared to other areas (95% confidence interval = 1.56-1.92). Significant geographic predictors of the presence of Anopheles larvae in gardens included location in lowland areas, proximity to river, and relatively impermeable soils. Agriculture-related predictors comprised specific seedbed types, mid-sized gardens, irrigation by wells, as well as cultivation of sugar cane or leafy vegetables. Negative predictors included small garden size, irrigation by tap water, rainfed production and cultivation of leguminous crops or fruit trees. Although there was an increased chance of finding Anopheles larvae in agricultural sites, it was found that breeding sites originated by urban agriculture account for less than a fifth of all breeding sites of malaria vectors in Dar es Salaam. It is suggested that strategies comprising an integrated malaria control effort in malaria-endemic African cities include participatory involvement of farmers by planting shade trees near larval habitats.

  3. Urban agriculture and Anopheles habitats in Dar es Salaam, Tanzania

    Directory of Open Access Journals (Sweden)

    Stefan Dongus

    2009-05-01

    Full Text Available A cross-sectional survey of agricultural areas, combined with routinely monitored mosquito larval information, was conducted in urban Dar es Salaam, Tanzania, to investigate how agricultural and geographical features may influence the presence of Anopheles larvae. Data were integrated into a geographical information systems framework, and predictors of the presence of Anopheles larvae in farming areas were assessed using multivariate logistic regression with independent random effects. It was found that more than 5% of the study area (total size 16.8 km2 was used for farming in backyard gardens and larger open spaces. The proportion of habitats containing Anopheles larvae was 1.7 times higher in agricultural areas compared to other areas (95% confidence interval = 1.56-1.92. Significant geographic predictors of the presence of Anopheles larvae in gardens included location in lowland areas, proximity to river, and relatively impermeable soils. Agriculture-related predictors comprised specific seedbed types, mid-sized gardens, irrigation by wells, as well as cultivation of sugar cane or leafy vegetables. Negative predictors included small garden size, irrigation by tap water, rainfed production and cultivation of leguminous crops or fruit trees. Although there was an increased chance of finding Anopheles larvae in agricultural sites, it was found that breeding sites originated by urban agriculture account for less than a fifth of all breeding sites of malaria vectors in Dar es Salaam. It is suggested that strategies comprising an integrated malaria control effort in malaria-endemic African cities include participatory involvement of farmers by planting shade trees near larval habitats.

  4. Anopheles culicifacies breeding in brackish waters in Sri Lanka and implications for malaria control

    Directory of Open Access Journals (Sweden)

    Surendran Sinnathamby N

    2010-04-01

    Full Text Available Abstract Background Anopheles culicifacies is the major vector of both falciparum and vivax malaria in Sri Lanka, while Anopheles subpictus and certain other species function as secondary vectors. In Sri Lanka, An. culicifacies is present as a species complex consisting of species B and E, while An. subpictus exists as a complex of species A-D. The freshwater breeding habit of An. culicifacies is well established. In order to further characterize the breeding sites of the major malaria vectors in Sri Lanka, a limited larval survey was carried out at a site in the Eastern province that was affected by the 2004 Asian tsunami. Methods Anopheline larvae were collected fortnightly for six months from a brackish water body near Batticaloa town using dippers. Collected larvae were reared in the laboratory and the emerged adults were identified using standard keys. Sibling species status was established based on Y-chromosome morphology for An. culicifacies larvae and morphometric characteristics for An. subpictus larvae and adults. Salinity, dissolved oxygen and pH were determined at the larval collection site. Results During a six month study covering dry and wet seasons, a total of 935 anopheline larvae were collected from this site that had salinity levels up to 4 parts per thousand at different times. Among the emerged adult mosquitoes, 661 were identified as An. culicifacies s.l. and 58 as An. subpictus s.l. Metaphase karyotyping of male larvae showed the presence of species E of the Culicifacies complex, and adult morphometric analysis the presence of species B of the Subpictus complex. Both species were able to breed in water with salinity levels up to 4 ppt. Conclusions The study demonstrates the ability of An. culicifacies species E, the major vector of falciparum and vivax malaria in Sri Lanka, to oviposit and breed in brackish water. The sibling species B in the An. subpictus complex, a well-known salt water breeder and a secondary malaria

  5. BIONOMICS AND ECOLOGY OF ANOPHELES LITORALIS ON BONGAO ISLAND, TAWI-TAWI PROVINCE, PHILIPPINES: IMPLICATIONS FOR VECTOR CONTROL.

    Science.gov (United States)

    Salazar, Ferdinand V; Torno, Majhalia M; Galang, Cristina; Baquilod, Mario; Bangs, Michael J

    2015-05-01

    Entomological surveys were conducted to identify Anopheles malaria vector species, their feeding and resting behaviors, and characterization of larval habitats on Bongao Island, Tawi-tawi Province, in July and November, 2007. Survey parameters included all-evening human-landing collections (HLC), evening buffalo-baited trap (BBT) collections, daytime indoor and outdoor adult resting collections, adult female age-grading, identification of natural Plasmodium infections in mosquitoes, larval habitat identification and physical/biological characterization, and adult insecticide susceptibility assays. Both surveys revealed the predominant and putative malaria vector species on Bongao Island is Anopheles litoralis. Anophelesflavirostris was collected on only one occasion. The HLC during the July survey produced approximately 4 mosquitoes/human/night (mhn). The November survey yielded 1.27 mhn due, in part, to inclement weather conditions during time of sampling. Anopheles litoralis host seeking behavior occurred throughout the evening (06:00 PM - 06:00 AM) with peak biting between 10:00 PM and 04:00 AM. This species exhibited stronger zoophilic behavior based on comparison of HLC and BBT data. HLC showed a slightly greater exophagic (outdoor) behavior (1.4:1 ratio). During the July collection, an older adult population was present (75% parous) compared to the lower numbers of An. litoralis dissected in November (25% parous). Albeit a small sample size (n=19), 10.5% of An. litoralis dissected contained midgut oocysts of Plasmodium. Daytime adult resting harborages included biotic and abiotic sites in and around partially shaded, brackish water habitats where immature stages were common. Anopheles litoralis was found susceptible to pirimiphos-methyl and four different synthetic pyrethroids. This survey provides further epidemiological evidence of the importance of An. litoralis in malaria transmission on Bongao Island, and presumably throughout much of the Sulu

  6. Malaria vectors in the Brazilian Amazon: Anopheles of the subgenus Nyssorhynchus Anopheles do subgênero Nyssorhynchus, vetores da malária na Amazônia brasileira

    Directory of Open Access Journals (Sweden)

    Wanderli Pedro TADEI

    2000-04-01

    Full Text Available Various species of Anopheles (Nyssorhynchus were studied in the Amazon with the objective of determining their importance as malaria vectors. Of the 33 known Anopheles species occurring in the Amazon, only 9 were found to be infected with Plasmodium. The different species of this subgenus varied both in diversity and density in the collection areas. The populations showed a tendency towards lower density and diversity in virgin forest than in areas modified by human intervention. The principal vector, An. darlingi, is anthropophilic with a continuous activity cycle lasting the entire night but peaking at sunset and sunrise. These species (Nyssorhynchus are peridomiciliary, entering houses to feed on blood and immediately leaving to settle on nearby vegetation. Anopheles nuneztovari proved to be zoophilic, crepuscular and peridomiciliary. These habits may change depending on a series of external factors, especially those related to human activity. There is a possibility that sibling species exist in the study area and they are being studied with reference to An. darlingi, An. albitarsis and An. nuneztovari. The present results do not suggest the existence of subpopulations of An. darlingi in the Brazilian Amazon.Várias espécies de Anopheles (Nyssorhynchus foram estudadas na Amazônia a fim de se determinar sua importância na transmissão da malária. Das 33 espécies de Anopheles de ocorrência conhecida na Amazônia, apenas 8 foram encontradas infectadas por Plasmodium. O principal vetor, An. darlingi, é antropofílico com um ciclo contínuo de atividade que dura a noite inteira mas que tem picos ao anoitecer e ao amanhecer. As diferentes espécies desse subgênero variaram tanto em diversidade como em densidade nas áreas de coleta. A população de anofelinos apresentou tendências de menor densidade e diversidade em florestas virgens do que em áreas que sofreram intervenção humana. Essas espécies (Nyssorhynchus são peridomiciliares

  7. An allele-specific polymerase chain reaction assay for the differentiation of members of the Anopheles culicifacies complex

    Indian Academy of Sciences (India)

    O P Singh; Geeta Goswami; N Nanda; K Raghavendra; D Chandra; S K Subbarao

    2004-09-01

    Anopheles culicifacies, the principal vector of malaria in India, is a complex of five cryptic species which are morphologically indistinguishable at any stage of life. In view of the practical difficulties associated with classical cytotaxonomic method for the identification of members of the complex, an allele-specific polymerase chain reaction (ASPCR) assay targeted to the D3 domain of 28S ribosomal DNA was developed. The assay discriminates An. culicifacies species A and D from species B, C and E. The assay was validated using chromosomally-identified specimens of An. culicifacies from different geographical regions of India representing different sympatric associations. The assay correctly differentiates species A and D from species B, C and E. The possible use of this diagnostic assay in disease vector control programmes is discussed.

  8. Morphology of the larvae, male genitalia and DNA sequences of Anopheles (Kerteszia pholidotus (Diptera: Culicidae from Colombia

    Directory of Open Access Journals (Sweden)

    Jesús Eduardo Escovar

    2014-07-01

    Full Text Available Since 1984, Anopheles (Kerteszia lepidotus has been considered a mosquito species that is involved in the transmission of malaria in Colombia, after having been incriminated as such with epidemiological evidence from a malaria outbreak in Cunday-Villarrica, Tolima. Subsequent morphological analyses of females captured in the same place and at the time of the outbreak showed that the species responsible for the transmission was not An. lepidotus, but rather Anopheles pholidotus. However, the associated morphological stages and DNA sequences of An. pholidotus from the foci of Cunday-Villarrica had not been analysed. Using samples that were caught recently from the outbreak region, the purpose of this study was to provide updated and additional information by analysing the morphology of female mosquitoes, the genitalia of male mosquitoes and fourth instar larvae of An. pholidotus, which was confirmed with DNA sequences of cytochrome oxidase I and rDNA internal transcribed spacer. A total of 1,596 adult females were collected in addition to 37 larval collections in bromeliads. Furthermore, 141 adult females, which were captured from the same area in the years 1981-1982, were analysed morphologically. Ninety-five DNA sequences were analysed for this study. Morphological and molecular analyses showed that the species present in this region corresponds to An. pholidotus. Given the absence of An. lepidotus, even in recent years, we consider that the species of mosquitoes that was previously incriminated as the malaria vector during the outbreak was indeed An. pholidotus, thus ending the controversy.

  9. Effect of discriminative plant-sugar feeding on the survival and fecundity of Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Jackson Robert R

    2007-08-01

    Full Text Available Abstract Background A previous study showed for Anopheles gambiae s.s. a gradation of feeding preference on common plant species growing in a malaria holoendemic area in western Kenya. The present follow-up study determines whether there is a relationship between the mosquito's preferences and its survival and fecundity. Methods Groups of mosquitoes were separately given ad libitum opportunity to feed on five of the more preferred plant species (Hamelia patens, Parthenium hysterophorus, Ricinus communis, Senna didymobotrya, and Tecoma stans and one of the less preferred species (Lantana camara. The mosquitoes were monitored daily for survival. Sugar solution (glucose 6% and water were used as controls. In addition, the fecundity of mosquitoes on each plant after (i only one blood meal (number of eggs oviposited, and (ii after three consecutive blood meals (proportion of females ovipositing, number of eggs oviposited and hatchability of eggs, was determined. The composition and concentration of sugar in the fed-on parts of each plant species were determined using gas chromatography. Using SAS statistical package, tests for significant difference of the fitness values between mosquitoes exposed to different plant species were conducted. Results and Conclusion Anopheles gambiae that had fed on four of the five more preferred plant species (T. stans, S. didymobotrya, R. communis and H. patens, but not P. hysterophorus lived longer and laid more eggs after one blood meal, when compared with An. gambiae that had fed on the least preferred plant species L. camara. When given three consecutive blood-meals, the percentage of females that oviposited, but not the number of eggs laid, was significantly higher for mosquitoes that had previously fed on the four more preferred plant species. Total sugar concentration in the preferred plant parts was significantly correlated with survival and with the proportion of females that laid eggs. This effect was

  10. Geometric morphometric analysis of Colombian Anopheles albimanus (Diptera: Culicidae) reveals significant effect of environmental factors on wing traits and presence of a metapopulation

    OpenAIRE

    Giovan F Gómez; Márquez, Edna J.; Gutiérrez, Lina A.; Conn, Jan E.; Correa, Margarita M.

    2014-01-01

    Anopheles albimanus is a major malaria mosquito vector in Colombia. In the present study, wing variability (size and shape) in An. albimanus populations from Colombian Maracaibo and Chocó bio-geographical eco-regions and the relationship of these phenotypic traits with environmental factors were evaluated. Microsatellite and morphometric data facilitated a comparison of the genetic and phenetic structure of this species. Wing size was influenced by elevation and relative humidity, whereas win...

  11. Field study site selection, species abundance and monthly distribution of anopheline mosquitoes in the northern Kruger National Park, South Africa

    Science.gov (United States)

    2014-01-01

    Background Knowledge of the ecology and behaviour of a target species is a prerequisite for the successful development of any vector control strategy. Before the implementation of any strategy it is essential to have comprehensive information on the bionomics of species in the targeted area. The aims of this study were to conduct regular entomological surveillance and to determine the relative abundance of anopheline species in the northern Kruger National Park. In addition to this, the impact of weather conditions on an Anopheles arabiensis population were evaluated and a range of mosquito collection methods were assessed. Methods A survey of Anopheles species was made between July 2010 and December 2012. Mosquitoes were collected from five sites in the northern Kruger National Park, using carbon dioxide-baited traps, human landing and larval collections. Specimens were identified morphologically and polymerase chain reaction assays were subsequently used where appropriate. Results A total of 3,311 specimens belonging to nine different taxa was collected. Species collected were: Anopheles arabiensis (n = 1,352), Anopheles quadriannulatus (n = 870), Anopheles coustani (n = 395), Anopheles merus (n = 349), Anopheles pretoriensis (n = 35), Anopheles maculipalpis (n = 28), Anopheles rivulorum (n = 19), Anopheles squamosus (n = 3) and Anopheles rufipes (n = 2). Members of the Anopheles gambiae species complex were the most abundant and widely distributed, occurring across all collection sites. The highest number of mosquitoes was collected using CO2 baited net traps (58.2%) followed by human landing catches (24.8%). Larval collections (17%) provided an additional method to increase sample size. Mosquito sampling productivity was influenced by prevailing weather conditions and overall population densities fluctuated with seasons. Conclusion Several anopheline species occur in the northern Kruger National Park and their densities

  12. Some strains of Plasmodium falciparum, a human malaria parasite, evade the complement-like system of Anopheles gambiae mosquitoes

    OpenAIRE

    Molina-Cruz, Alvaro; DeJong, Randall J.; Ortega, Corrie; Haile, Ashley; Abban, Ekua; Rodrigues, Janneth; Jaramillo-Gutierrez, Giovanna; Barillas-Mury, Carolina

    2012-01-01

    Plasmodium falciparum lines differ in their ability to infect mosquitoes. The Anopheles gambiae L3-5 refractory (R) line melanizes most Plasmodium species, including the Brazilian P. falciparum 7G8 line, but it is highly susceptible to some African P. falciparum strains such as 3D7, NF54, and GB4. We investigated whether these lines differ in their ability to evade the mosquito immune system. Silencing key components of the mosquito complement-like system [thioester-containing protein 1 (TEP1...

  13. Changes in vector species composition and current vector biology and behaviour will favour malaria elimination in Santa Isabel Province, Solomon Islands

    Directory of Open Access Journals (Sweden)

    Beebe Nigel W

    2011-09-01

    Full Text Available Abstract Background In 2009, Santa Isabel Province in the Solomon Islands embarked on a malaria elimination programme. However, very little is known in the Province about the anopheline fauna, which species are vectors, their bionomics and how they may respond to intensified intervention measures. The purpose of this study was to provide baseline data on the malaria vectors and to ascertain the possibility of successfully eliminating malaria using the existing conventional vector control measures, such as indoor residual spraying (IRS and long-lasting insecticidal nets (LLIN. Methods Entomological surveys were undertaken during October 2009. To determine species composition and distribution larval surveys were conducted across on the whole island. For malaria transmission studies, adult anophelines were sampled using human landing catches from two villages - one coastal and one inland. Results Five Anopheles species were found on Santa Isabel: Anopheles farauti, Anopheles hinesorum, Anopheles lungae, Anopheles solomonis, and Anopheles nataliae. Anopheles hinesorum was the most widespread species. Anopheles farauti was abundant, but found only on the coast. Anopheles punctulatus and Anopheles koliensis were not found. Anopheles farauti was the only species found biting in the coastal village, it was incriminated as a vector in this study; it fed early in the night but equally so indoors and outdoors, and had a low survival rate. Anopheles solomonis was the main species biting humans in the inland village, it was extremely exophagic, with low survival rates, and readily fed on pigs. Conclusion The disappearance of the two major vectors, An. punctulatus and An. koliensis, from Santa Isabel and the predominance of An. hinesorum, a non-vector species may facilitate malaria elimination measures. Anopheles farauti was identified as the main coastal vector with An. solomonis as a possible inland vector. The behaviour of An. solomonis is novel as it has

  14. Anopheles barbirostris Confirmation as Malaria Vector in Waikabubak through the Detection of Circumsporozoit Protein

    Directory of Open Access Journals (Sweden)

    Yuneu Yuliasih

    2012-06-01

    Full Text Available Anopheline species confirmed as malaria vector if the salivary gland contained sporozoites. One of the method to confirmed it was through an Enzyme-Linked Immunosorbent Assay (ELISA. The aim of this study was to investigate the presence of circum sporozoite protein (CSP in the mosquito of Anopheles barbirostris with ELISA method. The study was conducted in malaria endemic area named Modu Waimaringu Village, Waikabubak District, Sumba Barat Regency in March 2011. The study design was cross-sectional study, mosquito for the ELISA test were collected only from animal bait. ELISA method examination used on An. barbirostris body parts (i.e. the head-thorax where sporozoites of P. falciparum or P. Vivax possibly be found. The results showed that 40 samples of An. barbirostris mosquitoes which acquired from the mosquite bait in Modu Waimaringu Village was negative (100%. It means that there was no CSP found and An. barbirostris was not a malaria vector in the area

  15. Avoidance Behavior to Essential Oils by Anopheles minimus, a Malaria Vector in Thailand.

    Science.gov (United States)

    Nararak, Jirod; Sathantriphop, Sunaiyana; Chauhan, Kamal; Tantakom, Siripun; Eiden, Amanda L; Chareonviriyaphap, Theeraphap

    2016-03-01

    Essential oils extracted from 4 different plant species--citronella (Cymbopogon nardus), hairy basil (Ocimum americanum), sweet basil (Ocimum basilicum), and vetiver (Vetiveria zizanioides)-were investigated for their irritant and repellent activities against Anopheles minimus, using an excito-repellency test system. Pure essential oils were used in absolute ethanol at the concentrations of 0.5%, 1%, 2.5%, and 5% (v/v) compared with deet. At the lowest concentration of 0.5%, hairy basil displayed the best irritant and repellent effects against An. minimus. Citronella and vetiver at 1-5% showed strong irritant effects with>80% escape, while repellent effects of both oils were observed at 1% and 2.5% citronella (73-89% escape) and at 5% vetiver (83.9% escape). Sweet basil had only moderate irritant action at 5% concentration (69.6% escape) and slightly repellent on test mosquitoes (mosquito repellent products for protection against An. minimus. PMID:27105214

  16. COMPARATIVE TOXICITIES OF FOUR WHO-RECOMMENDED LARVICIDES AGAINST LAB STRAIN OF ANOPHELES STEPHENSI IN IRAN

    Directory of Open Access Journals (Sweden)

    H. Vatandoost

    1999-08-01

    Full Text Available Investigation on the current response of An.stephensi larvae to four WHO recommended larvicides, i.e. Malathion, temephos, chlorpyrifos and fenitrothion, were carried out in the laboratory in 1999. Diagnostic concentrations of pesticides only yielded 100% mortality with malathion. In contrast, levels of susceptibility to temphos, chlorpyrifos (0.025 mg/l and temephos (0.625 mg/l killed 72%, 90% and 87% of the population of An. Stephensi, respectively. At the LC50 level the efficacies of chlorpyrifos and fenitrothion was higher than malathion and temephos. Relative toxicity of chlorpyrifos and fenitrothion was 6 and 24 times more than temephos and Malathion. The findings of this study suggest that the diagnostic dose of organophosphate larvicides depends on time, location, strain and genetically background of resistance to insecticides; hence they can be attributed to all species of anopheles.

  17. Systematic studies on Anopheles galvaoi Causey, Deane & Deane from the subgenus Nysssorhynchus blanchard (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Maria Anice Mureb Sallum

    2002-12-01

    Full Text Available Anopheles galvaoi, a member of the subgenus Nyssorhynchus, is redescribed based on morphological characters of the adults male and female, fourth-instar larva and pupa. Female, male genitalia, larval and pupal stages are illustrated. Data about medical importance, bionomics, and distribution are given based on literature records. Adult female of An. galvaoi can be easily misidentified as An. benarrochi Gabaldón and An. aquasalis Curry. A few characters are indicated for identifying female and immatures of An. galvaoi. Phylogenetic relationships among An. galvaoi and six other species of the Oswaldoi Subgroup are estimated using COII mtDNA and ITS2 rDNA gene sequences. Lectotype of An. galvaoi, an adult female from Rio Branco, State of Acre, is invalidated.

  18. The impact of insecticides management linked with resistance expression in Anopheles spp. populations.

    Science.gov (United States)

    Silva, Guilherme Liberato da; Pereira, Thiago Nunes; Ferla, Noeli Juarez; Silva, Onilda Santos da

    2016-06-01

    The resistance of some species of Anopheles to chemical insecticides is spreading quickly throughout the world and has hindered the actions of prevention and control of malaria. The main mechanism responsible for resistance in these insects appears to be the target site known as knock-down resistance (kdr), which causes mutations in the sodium channel. Even so, many countries have made significant progress in the prevention of malaria, focusing largely on vector control through long-lasting insecticide nets (LLINs), indoor residual spraying and (IRS) of insecticides. The objective of this review is to contribute with information on the more applied insecticides for the control of the main vectors of malaria, its effects, and the different mechanisms of resistance. Currently it is necessary to look for others alternatives, e.g. biological control and products derived from plants and fungi, by using other organisms as a possible regulator of the populations of malaria vectors in critical outbreaks. PMID:27383351

  19. Development of a molecular assay to detect predation on Anopheles gambiae complex larval stages.

    Science.gov (United States)

    Schielke, Erika; Costantini, Carlo; Carchini, Gianmaria; Sagnon, N'falé; Powell, Jeffrey; Caccone, Adalgisa

    2007-09-01

    We developed a molecular assay to detect predation on Anopheles gambiae sensu lato (s.l.) mosquitoes. This intergenic spacer ribosomal DNA polymerase chain reaction assay and restriction enzyme analysis uses An. gambiae-specific primers to detect mosquito DNA in the DNA extracts from whole invertebrate predators, which enables identification of species (An. gambiae s.s. versus An. arabiensis) and molecular forms (M versus S in An. gambiae s.s.). We show that An. gambiae s.l. DNA can be detected after ingestion by members of the families Lestidae (order Odonata) after four hours, Libellulidae (order Odonata) after six hours, and Notonectidae (order Hemiptera) after 24 hours. This method is an improvement over previously published methods because of ease of execution and increased time of detection after ingestion. PMID:17827361

  20. [Historical review of the distribution of Anopheles (Nyssorhynchus) darlingi (Diptera: Culicidae) in the Peruvian Amazon].

    Science.gov (United States)

    Fernández, Roberto; Vera, Hubert; Calderón, Guillermo

    2014-04-01

    Anopheles (Nyssorhynchus) darlingi has been reported since 1931 in border areas of the department of Loreto, mainly along the borders with Brazil and Colombia. In 1994, during an outbreak of malaria, An. darlingi was found in neighboring towns to Iquitos. At present, its distribution has expanded considerably in Loreto. This paper reviews literature available for all possible information on the distribution of mosquitoes, particularly anopheline in the Amazon region of the country, with special emphasis on An darlingi. Entomological collections were also conducted in the departments of Madre de Dios and Ucayali in order to know and verify the distribution of An. darlingi. At present, the distribution of the species is confined to localities in southeastern Peru with Bolivia border towns, in a town near the Abujao River in the department of Ucayali, and widely in the northeastern region of the Amazon basin of Loreto in Peru. PMID:25123872

  1. Relationship of Remote Sensing Normalized Differential Vegetation Index to Anopheles Density and Malaria Incidence Rate

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To study the relationship of remote sensing normalized differential vegetation index (NDVI) to Anopheles density and malaria incidence rate. Methods Data of monthly average climate, environment, Anopheles density and malaria incidence rate, and remote sensing NDVI were collected from 27 townships of 10 counties in southeastern Yunnan Province from 1984 to 1993. The relationship of remote sensing ecological proxy index, NDVI, to Anopheles density and malaria incidence rate was studied by principal component analysis, factor analysis and grey correlation analysis. Results The correlation matrix showed that NDVI highly correlated with Anopheles density in 4 townships of Mengla, Jinghong, and Yuanjiang counties, but in other 23 townships the relationship was not clear. Principal component and factor analyses showed that remote sensing NDVI was the representative index of the first principal component and the first common factor of Anopheles density evaluation. Grey correlation analysis showed that in rainy season NDVI had a high grey correlation with Anopheles density and malaria incidence rate. The grey correlation analysis showed that in rainy season the grey degree of NDVI correlated with Anopheles. Minimus density was 0.730, and 0.713 with Anopheles sinensis density, and 0.800 with malarial incidence rate. Conclusion Remote sensing NDVI can serve as a sensitive evaluation index of Anopheles density and malaria incidence rate.

  2. Evolutionary dynamics of the Ty3/gypsy LTR retrotransposons in the genome of Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Jose Manuel C Tubio

    Full Text Available Ty3/gypsy elements represent one of the most abundant and diverse LTR-retrotransposon (LTRr groups in the Anopheles gambiae genome, but their evolutionary dynamics have not been explored in detail. Here, we conduct an in silico analysis of the distribution and abundance of the full complement of 1045 copies in the updated AgamP3 assembly. Chromosomal distribution of Ty3/gypsy elements is inversely related to arm length, with densities being greatest on the X, and greater on the short versus long arms of both autosomes. Taking into account the different heterochromatic and euchromatic compartments of the genome, our data suggest that the relative abundance of Ty3/gypsy LTRrs along each chromosome arm is determined mainly by the different proportions of heterochromatin, particularly pericentric heterochromatin, relative to total arm length. Additionally, the breakpoint regions of chromosomal inversion 2La appears to be a haven for LTRrs. These elements are underrepresented more than 7-fold in euchromatin, where 33% of the Ty3/gypsy copies are associated with genes. The euchromatin on chromosome 3R shows a faster turnover rate of Ty3/gypsy elements, characterized by a deficit of proviral sequences and the lowest average sequence divergence of any autosomal region analyzed in this study. This probably reflects a principal role of purifying selection against insertion for the preservation of longer conserved syntenyc blocks with adaptive importance located in 3R. Although some Ty3/gypsy LTRrs show evidence of recent activity, an important fraction are inactive remnants of relatively ancient insertions apparently subject to genetic drift. Consistent with these computational predictions, an analysis of the occupancy rate of putatively older insertions in natural populations suggested that the degenerate copies have been fixed across the species range in this mosquito, and also are shared with the sibling species Anopheles arabiensis.

  3. [Malaria mosquitoes (Diptera, Culicidae, Anopheles) of North Tajikistan, their ecology, and role in the transmission of malaria pathogens].

    Science.gov (United States)

    Kadamov, D S; Zvantseva, A B; Karimov, S S; Gordeev, M I; Goriacheva, I I; Ezhov, M N; Tadzhiboev, A

    2012-01-01

    Five species of malaria mosquitoes: An. artemievi, An. claviger, An. hyrcanus, An. superpictus, and An. pulcherrimus were found in North Tajikistan in 2006 - 2007. Species affiliation was identified according to the morphological signs of their larvae and imagoes, and by using the polymerase chain reaction-restriction fragment length polymorphism analysis. There was a larger number of An. hyrcanus (34%), An. artemievi (29%), and An. pulcherrimus (24%) and a smaller number of An. superpictus (11%); and An. claviger was few (2%). The hatching sites of the above species and the preferred types of their day refuges were found. The intensity of attack of different Anopheles species on humans and animals was studied. Among the North Tajikistan malaria mosquitoes, An. pulcherrimus and An. superpictus are of the greatest epidemiological importance as vehicles for transmission of malaria pathogens. An. artemievi and An. hyrcanus are minor vehicles. At present, An. claviger is of no epidemiological significance in transmitting malaria in North Tajikistan.

  4. Larval habitat associations with human land uses, roads, rivers and land cover for Anopheles albimanus, An. pseudopunctipennis and An. punctimacula (Diptera: Culicidae in coastal and highland Ecuador

    Directory of Open Access Journals (Sweden)

    Lauren Lynn Pinault

    2012-03-01

    Full Text Available Larval habitat for three highland Anopheles species: Anopheles albimanus Wiedemann, Anopheles pseudopunctipennis Theobald, and Anopheles punctimacula Dyar & Knab was related to human land uses, rivers, roads, and remotely sensed land cover classifications in the western Ecuadorian Andes. Of the five commonly-observed human land uses, cattle pasture (n=30 provided potentially suitable habitat for An. punctimacula and An. albimanus in less than 14% of sites, and was related in a Principal Components Analysis (PCA to the presence of macrophyte vegetation, greater surface area, clarity and algae cover. Empty lots (n=30 were related in the PCA to incident sunlight and provided potential habitat for An. pseudopunctipennis and An. albimanus in less than 14% of sites. The other land uses surveyed (banana, sugarcane and mixed tree plantations; n=28, 21, 25, respectively provided very little standing water that could potentially be used for larval habitat. River edges and eddies (n=41 were associated with greater clarity, depth, temperature and algae cover, which provide potentially suitable habitat for An. albimanus in 58% of sites and An. pseudopunctipennis in 29% of sites. Road-associated water bodies (n=38 provided potential habitat for An. punctimacula in 44% of sites and An. albimanus in 26% of sites surveyed. Species collection localities were compared to land cover classifications using Geographic Information Systems software. All three mosquito species were associated more often with the category "closed/open broadleaved evergreen and/or semi-deciduous forests" than expected (P ≤ 0.01 in all cases, given such a habitat's abundance. This study provides evidence that specific human land uses create habitat for potential malaria vectors in highland regions of the Andes.

  5. The emergence of insecticide resistance in central Mozambique and potential threat to the successful indoor residual spraying malaria control programme

    Directory of Open Access Journals (Sweden)

    Wilding Craig S

    2011-05-01

    Full Text Available Abstract Background Malaria vector control by indoor residual spraying was reinitiated in 2006 with DDT in Zambézia province, Mozambique. In 2007, these efforts were strengthened by the President's Malaria Initiative. This manuscript reports on the monitoring and evaluation of this programme as carried out by the Malaria Decision Support Project. Methods Mosquitoes were captured daily through a series of 114 window exit traps located at 19 sentinel sites, identified to species and analysed for sporozoites. Anopheles mosquitoes were collected resting indoors and tested for insecticide resistance following the standard WHO protocol. Annual cross sectional household parasite surveys were carried out to monitor the impact of the control programme on prevalence of Plasmodium falciparum in children aged 1 to 15 years. Results A total of 3,769 and 2,853 Anopheles gambiae s.l. and Anopheles funestus, respectively, were captured from window exit traps throughout the period. In 2010 resistance to the pyrethroids lambda-cyhalothrin and permethrin and the carbamate, bendiocarb was detected in An. funestus. In 2006, the sporozoite rate in An. gambiae s.s. was 4% and this reduced to 1% over 4 rounds of spraying. The sporozoite rate for An. funestus was also reduced from 2% to 0 by 2008. Of the 437 Anopheles arabiensis identified, none were infectious. Overall prevalence of P. falciparum in the sentinel sites fell from 60% to 32% between October 2006 and October 2008. Conclusion Both An. gambiae s.s. and An. funestus were controlled effectively with the DDT-based IRS programme in Zambézia, reducing disease transmission and burden. However, the discovery of pyrethroid resistance in the province and Mozambique's policy change away from DDT to pyrethroids for IRS threatens the gains made here.

  6. Seasonal changes of microfilarial infection and infectivity rates in mosquito populations within Makurdi, Benue State, Nigeria

    Directory of Open Access Journals (Sweden)

    Manyi, M. M

    2014-12-01

    Full Text Available Studies on the infection and infectivity rates of Wuchereria bancrofti in mosquito populations in Makurdi, Nigeria were carried out over a 12 month period in four localities. Adult female mosquitoes (4,320 were morphologically identified and dissected following standard keys and procedures. 1,040 (24.1% were Anopheles gambiae s.l.; 641 (14.8% were Anopheles funestus Giles and 2,418 (56.0% were Culex quinquefasciatus Say while 221 (5.1% were tagged ‘unidentified’ Anopheles species. The overall microfilarial infection and infectivity rates were 10.1% and 4.8% respectively. The microfilarial infection and infectivity rates differed significantly (ANOVA; χ2 test p<0.05across vector species, study months and the localities surveyed. The findings indicate that Makurdi is endemic for lymphatic filariasis, and that Anopheles gambiae s.l. and Anopheles funestus were potential vectors of lymphatic filariasis in Makurdi while Culex quinquefasciatus was the major vector. This work may provide an entomological baseline data required for evaluation and implementation of vector control interventions in the study area.

  7. Mating competitiveness of sterile male Anopheles coluzzii in large cages

    OpenAIRE

    Maïga, H.; Damiens, D.; Niang, A.; Sawadogo, SP; Fatherhaman, O.; Lees, RS; Roux, O.; Dabiré, RK; Ouédraogo, GA; Tripet, F; Diabaté, A.; Gilles, JR

    2014-01-01

    Background: Understanding the factors that account for male mating competitiveness is critical to the development of the sterile insect technique (SIT). Here, the effects of partial sterilization with 90 Gy of radiation on sexual competitiveness of Anopheles coluzzii allowed to mate in different ratios of sterile to untreated males have been assessed. Moreover, competitiveness was compared between males allowed one versus two days of contact with females. Methods: Sterile and untreated males ...

  8. Anopheles larval abundance and diversity in three rice agro-village complexes Mwea irrigation scheme, central Kenya

    Directory of Open Access Journals (Sweden)

    Mwangangi Joseph M

    2010-08-01

    Full Text Available Abstract Background The diversity and abundance of Anopheles larvae has significant influence on the resulting adult mosquito population and hence the dynamics of malaria transmission. Studies were conducted to examine larval habitat dynamics and ecological factors affecting survivorship of aquatic stages of malaria vectors in three agro-ecological settings in Mwea, Kenya. Methods Three villages were selected based on rice husbandry and water management practices. Aquatic habitats in the 3 villages representing planned rice cultivation (Mbui Njeru, unplanned rice cultivation (Kiamachiri and non-irrigated (Murinduko agro-ecosystems were sampled every 2 weeks to generate stage-specific estimates of mosquito larval densities, relative abundance and diversity. Records of distance to the nearest homestead, vegetation coverage, surface debris, turbidity, habitat stability, habitat type, rice growth stage, number of rice tillers and percent Azolla cover were taken for each habitat. Results Captures of early, late instars and pupae accounted for 78.2%, 10.9% and 10.8% of the total Anopheles immatures sampled (n = 29,252, respectively. There were significant differences in larval abundance between 3 agro-ecosystems. The village with 'planned' rice cultivation had relatively lower Anopheles larval densities compared to the villages where 'unplanned' or non-irrigated. Similarly, species composition and richness was higher in the two villages with either 'unplanned' or limited rice cultivation, an indication of the importance of land use patterns on diversity of larval habitat types. Rice fields and associated canals were the most productive habitat types while water pools and puddles were important for short periods during the rainy season. Multiple logistic regression analysis showed that presence of other invertebrates, percentage Azolla cover, distance to nearest homestead, depth and water turbidity were the best predictors for Anopheles mosquito larval

  9. Isoenzymatic analysis of four Anopheles (Kerteszia) bellator Dyar & Knab (Diptera: Culicidae) populations.

    Science.gov (United States)

    de Carvalho-Pinto, Carlos José; Lourenço-de-Oliveira, Ricardo

    2003-12-01

    Anopheles bellator is a small silvatic bromelia-breeding mosquito and is a primary human malaria vector species in Southern Brazil. The bromelia-breeding habitat of the species should accompany the Atlantic forest coastal distribution, where bromeliads are abundant. Nonetheless, records on An. bellator collections show a gap in the species geographical distribution. An. bellator has been recorded in Southern Brazil and in the Brazilian states of Bahia and Paraíba. It appears again in the island of Trinidad, in Trinidad and Tobago. The aim of this work was to measure gene flow between different populations of An. bellator collected in the northern and southern extremes of the geographic distribution of this species. Mosquitoes were captured in forest borders in Santa Catarina, São Paulo, and Bahia states in Brazil and in the island of Trinidad in Republic of Trinidad and Tobago. Genetic distances varied between 0.076 and 0.680, based on enzymatic profiles from 11 distinct isoenzymes. Results indicate the existence of low-level gene flow between Brazilian populations of An. bellator, and a gene flow was even lower between the Brazilian and the Trinidad populations. This finding lead us to hypothesize that An. bellator did not spread along the coast, but reached northeastern areas through inland routes.

  10. Isoenzymatic analysis of four Anopheles (Kerteszia bellator Dyar & Knab (Diptera: Culicidae populations

    Directory of Open Access Journals (Sweden)

    Carvalho-Pinto Carlos José de

    2003-01-01

    Full Text Available Anopheles bellator is a small silvatic bromelia-breeding mosquito and is a primary human malaria vector species in Southern Brazil. The bromelia-breeding habitat of the species should accompany the Atlantic forest coastal distribution, where bromeliads are abundant. Nonetheless, records on An. bellator collections show a gap in the species geographical distribution. An. bellator has been recorded in Southern Brazil and in the Brazilian states of Bahia and Paraíba. It appers again in the island of Trinidad, in Trinidad and Tobago. The aim of this work was to measure gene flow between different populations of An. bellator collected in the northern and southern extremes of the geographic distribution of this species. Mosquitoes were captured in forest borders in Santa Catarina, São Paulo, and Bahia states in Brazil and in the island of Trinidad in Republic of Trinidad and Tobago. Genetic distances varied between 0.076 and 0.680, based on enzymatic profiles from 11 distinct isoenzymes. Results indicate the existence of low-level gene flow between Brazilian populations of An. bellator, and a gene flow was even lower between the Brazilian and the Trinidad populations. This finding lead us to hypothesize that An. bellator did not spread along the coast, but reached northeastern areas through inland routes.

  11. Low linkage disequilibrium in wild Anopheles gambiae s.l. populations

    Directory of Open Access Journals (Sweden)

    Harris Caroline

    2010-09-01

    Full Text Available Abstract Background In the malaria vector Anopheles gambiae, understanding diversity in natural populations and genetic components of important phenotypes such as resistance to malaria infection is crucial for developing new malaria transmission blocking strategies. The design and interpretation of many studies here depends critically on Linkage disequilibrium (LD. For example in association studies, LD determines the density of Single Nucleotide Polymorphisms (SNPs to be genotyped to represent the majority of the genomic information. Here, we aim to determine LD in wild An. gambiae s.l. populations in 4 genes potentially involved in mosquito immune responses against pathogens (Gambicin, NOS, REL2 and FBN9 using previously published and newly generated sequences. Results The level of LD between SNP pairs in cloned sequences of each gene was determined for 7 species (or incipient species of the An. gambiae complex. In all tested genes and species, LD between SNPs was low: even at short distances (2 2 ranged from 0.073 to 0.766. In most genes and species LD decayed very rapidly with increasing inter-marker distance. Conclusions These results are of great interest for the development of large scale polymorphism studies, as LD generally falls below any useful limit. It indicates that very fine scale SNP detection will be required to give an overall view of genome-wide polymorphism. Perhaps a more feasible approach to genome wide association studies is to use targeted approaches using candidate gene selection to detect association to phenotypes of interest.

  12. Knockdown resistance in Anopheles vagus, An. sinensis, An. paraliae and An. peditaeniatus populations of the Mekong region

    Directory of Open Access Journals (Sweden)

    Keokenchanh Kalouna

    2010-07-01

    Full Text Available Abstract Background In the Mekong region (Vietnam, Cambodia and Laos, a large investigation was conducted to assess the susceptibility of Anopheles species against DDT and pyrethroids. In this study, the resistance status of the potential malaria vectors An. vagus, An. sinensis, An. paraliae and An. peditaeniatus was assessed. Methods Bioassays were performed on field collected unfed female mosquitoes using the standard WHO susceptibility tests. In addition, the DIIS6 region of the para-type sodium channel gene was amplified and sequenced and four allele-specific PCR assays were developed to assess the kdr frequencies. Results In Southern Vietnam all species were DDT and pyrethroid resistant, which might suggest the presence of a kdr resistance mechanism. Sequence-analysis of the DIIS6 region of the para-type sodium channel gene revealed the presence of a L1014S kdr mutation in An. vagus, An. sinensis and An. paraliae. In An. peditaeniatus, a low frequency L1014S kdr mutation was found in combination with a high frequency L1014F kdr mutation. For pyrethroids and DDT, no genotypic differentiation was found between survivors and non-survivors for any of these species. In the two widespread species, An. vagus and An. sinensis, kdr was found only in southern Vietnam and in Cambodia near the Vietnamese border. Conclusions Different levels of resistance were measured in Laos, Cambodia and Vietnam. The kdr mutation in different Anopheles species seems to occur in the same geographical area. These species breed in open agricultural lands where malaria endemicity is low or absent and vector control programs less intensive. It is therefore likely that the selection pressure occurred on the larval stages by insecticides used for agricultural purposes.

  13. KOMPETENSI VEKTORIAL Anopheles maculatus, Theobald di KECAMATAN KOKAP, KABUPATEN KULONPROGO

    Directory of Open Access Journals (Sweden)

    Umi Widyastuti

    2013-07-01

    dada-kepala nyamuk An. maculatus dari Gunungrego dan Tegiri. Proporsi An. maculatus yang mengisap darah manusia (Human Blood Index / HBI adalah 40,00% di Tegiri dan 33,33% di Gunungrego. Angka paritas dan kepadatan An. maculatus lebih tinggi ditemukan di Tegiri daripada di Gunungrego. Kata Kunci: malaria, ELISA sporozoit, analisis pakan darah. Abstract Malaria is still a health problem in Kulonprogo Regency, particularly in the Kokap Subdistrict. In the last two years indicate that in 2009, 1 out of 5 villages in Kokap Subdistrict were considered as malarious areas with Low Case Incidence (LCI. In the year of 2010, it increased to 3 villages. The increase of malaria cases in Kokap Subdistrict was related to the presence of  Anopheline mosquitoes which serve as potential vector. Several species such as Anopheles maculatus, An. aconitus, and An. balabacensis are suspected as potential malaria vectors in this area.  The objective of this study was to determine the vectorial competence of An. maculatus consisting of:  the An. maculatus mosquitoes susceptibility to Plasmodia,  its anthropophilic characteristics, the parity rate, and the mosquito density. The susceptibility of mosquito to Plasmodia was measured by detection of sporozoite protein antigen (Circum Sporozoite Protein/ CSP of P. falciparum or P. vivax on the head-thorax of all parous mosquitoes. The anthropophilic characteristics were measured by detection of human blood on the abdomen of blood fed and half gravid mosquitoes. Both of these were done by Enzyme Linked Immunosorbant Assay (ELISA technique. The study was conducted from  May until October 2011 in two villages i.e: Tegiri and Gunungrego, Kokap Subdistrict. The Anopheline mosquitoes were collected using the landing and resting mosquito collection technique both indoors and outdoors, at night (18.00-06.00 as well as in the morning (06.00-08.00 according to the WHO guideline. The density of An. maculatus was calculated and its parity was determined

  14. The role of cow urine in the oviposition site preference of culicine and Anopheles mosquitoes

    Directory of Open Access Journals (Sweden)

    Kweka Eliningaya J

    2011-09-01

    Full Text Available Abstract Background Chemical and behavioural ecology of mosquitoes plays an important role in the development of chemical cue based vector control. To date, studies available have focused on evaluating mosquito attractants and repellents of synthetic and human origins. This study, however, was aimed at seasonal evaluation of the efficiency of cow urine in producing oviposition cues to Anopheles gambiae s.l. and Culex quinquefasciatus in both laboratory and field conditions. Methods Oviposition response evaluation in laboratory conditions was carried out in mosquito rearing cages. The oviposition substrates were located in parallel or in diagonal positions inside the cage. Urine evaluation against gravid females of An. arabiensis and Cx. quinquefasciatus was carried out at Day 1, Day 3 and Day 7. Five millilitres (mls of cow urine was added to oviposition substrate while de-chlorinated water was used as a control. In field experiments, 500 mls of cow urine was added in artificial habitats with 2500 mls of de-chlorinated water and 2 kgs of soil. The experiment was monitored for thirty consecutive days, eggs were collected daily from the habitats at 7.00 hrs. Data analysis was performed using parametric and non-parametric tests for treatments and controls while attraction of the oviposition substrate in each species was presented using Oviposition Activity Index (OAI. Results The OAI was positive with ageing of cattle urine in culicine species in both laboratory and field experiments. The OAI for anopheline species was positive with fresh urine. The OAI during the rainy season was positive for all species tested while in the dry season the OAI for culicine spp and Anopheles gambiae s.l., changed with time from positive to negative values. Based on linear model analysis, seasons and treatments had a significant effect on the number of eggs laid in habitats, even though the number of days had no effect. Conclusion Oviposition substrates treated with

  15. Some ecological attributes of malarial vector Anopheles superpictus Grassi in endemic foci in southeastern Iran

    Institute of Scientific and Technical Information of China (English)

    Jalil Nejati; Hasan Vatandoost; Mohammad Ali Oshghi; Masud Salehi; Ehssan Mozafari; Seyed Hasan Moosa-Kazemi

    2013-01-01

    Objective:To determine the bionomics and susceptibility status of the malarial vector Anopheles superpictus (An. superpictus) to different insecticides in the Sistan-Baluchestan province which has the highest malarial prevalence in Iran. Methods:Different sampling methods, in addition to scoring abdominal conditions, were used to define the seasonal activity and endo/exophilic behavior of this species. In addition, the standard WHO susceptibility tests were applied on adult field strains. Results: Most adult mosquitoes were collected from outdoor shelters. The peak of seasonal activity of An. superpictus occurred at the end of autumn. Most larvae were collected from natural and permanent breeding places with full sunlight and no vegetation. Blood feeding activities occurred around midnight. Compared with the abdominal conditions of adult mosquitoes collected indoors, the abdominal conditions of adult mosquitoes collected outdoors were gravid and semigravid. This species was suspected to be resistant to DDT, but was susceptible to other insecticides. Conclusions:An. superpictus was present in almost all outdoor shelters, and the ratios of gravid, semigravid/unfed, and freshly fed confirmed that this species had a higher tendency to rest outdoors than indoors. This behavior can protect An. superpictus from indoor residual spraying in this malarious area. To the best of our knowledge, this is the first report on the susceptibility status of An. superpictus in Southeastern Iran. We do not suggest the use of DDT for indoor residual spraying in southeast Iran.

  16. Genome-Wide Divergence in the West-African Malaria Vector Anopheles melas

    Directory of Open Access Journals (Sweden)

    Kevin C. Deitz

    2016-09-01

    Full Text Available Anopheles melas is a member of the recently diverged An. gambiae species complex, a model for speciation studies, and is a locally important malaria vector along the West-African coast where it breeds in brackish water. A recent population genetic study of An. melas revealed species-level genetic differentiation between three population clusters. An. melas West extends from The Gambia to the village of Tiko, Cameroon. The other mainland cluster, An. melas South, extends from the southern Cameroonian village of Ipono to Angola. Bioko Island, Equatorial Guinea An. melas populations are genetically isolated from mainland populations. To examine how genetic differentiation between these An. melas forms is distributed across their genomes, we conducted a genome-wide analysis of genetic differentiation and selection using whole genome sequencing data of pooled individuals (Pool-seq from a representative population of each cluster. The An. melas forms exhibit high levels of genetic differentiation throughout their genomes, including the presence of numerous fixed differences between clusters. Although the level of divergence between the clusters is on a par with that of other species within the An. gambiae complex, patterns of genome-wide divergence and diversity do not provide evidence for the presence of pre- and/or postmating isolating mechanisms in the form of speciation islands. These results are consistent with an allopatric divergence process with little or no introgression.

  17. High malaria transmission in a forested malaria focus in French Guiana: How can exophagic Anopheles darlingi thwart vector control and prevention measures?

    Science.gov (United States)

    Vezenegho, Samuel B; Adde, Antoine; de Santi, Vincent Pommier; Issaly, Jean; Carinci, Romuald; Gaborit, Pascal; Dusfour, Isabelle; Girod, Romain; Briolant, Sébastien

    2016-01-01

    In French Guiana, malaria vector control and prevention relies on indoor residual spraying and distribution of long lasting insecticidal nets. These measures are based on solid epidemiological evidence but reveal a poor understanding of the vector. The current study investigated the behaviour of both vectors and humans in relation to the ongoing prevention strategies. In 2012 and 2013, Anopheles mosquitoes were sampled outdoors at different seasons and in various time slots. The collected mosquitoes were identified and screened for Plasmodium infection. Data on human behaviour and malaria episodes were obtained from an interview. A total of 3,135 Anopheles mosquitoes were collected, of which Anopheles darlingi was the predominant species (96.2%). For the December 2012-February 2013 period, the Plasmodium vivax infection rate for An. darlingi was 7.8%, and the entomological inoculation rate was 35.7 infective bites per person per three-month span. In spite of high bednet usage (95.7%) in 2012 and 2013, 52.2% and 37.0% of the participants, respectively, had at least one malaria episode. An. darlingi displayed heterogeneous biting behaviour that peaked between 20:30 and 22:30; however, 27.6% of the inhabitants were not yet protected by bednets by 21:30. The use of additional individual and collective protective measures is required to limit exposure to infective mosquito bites and reduce vector densities. PMID:27653361

  18. High malaria transmission in a forested malaria focus in French Guiana: How can exophagic Anopheles darlingi thwart vector control and prevention measures?

    Science.gov (United States)

    Vezenegho, Samuel B; Adde, Antoine; Pommier de Santi, Vincent; Issaly, Jean; Carinci, Romuald; Gaborit, Pascal; Dusfour, Isabelle; Girod, Romain; Briolant, Sébastien

    2016-09-01

    In French Guiana, malaria vector control and prevention relies on indoor residual spraying and distribution of long lasting insecticidal nets. These measures are based on solid epidemiological evidence but reveal a poor understanding of the vector. The current study investigated the behaviour of both vectors and humans in relation to the ongoing prevention strategies. In 2012 and 2013, Anopheles mosquitoes were sampled outdoors at different seasons and in various time slots. The collected mosquitoes were identified and screened for Plasmodium infection. Data on human behaviour and malaria episodes were obtained from an interview. A total of 3,135 Anopheles mosquitoes were collected, of which Anopheles darlingi was the predominant species (96.2%). For the December 2012-February 2013 period, the Plasmodium vivax infection rate for An. darlingi was 7.8%, and the entomological inoculation rate was 35.7 infective bites per person per three-month span. In spite of high bednet usage (95.7%) in 2012 and 2013, 52.2% and 37.0% of the participants, respectively, had at least one malaria episode. An. darlingi displayed heterogeneous biting behaviour that peaked between 20:30 and 22:30; however, 27.6% of the inhabitants were not yet protected by bednets by 21:30. The use of additional individual and collective protective measures is required to limit exposure to infective mosquito bites and reduce vector densities.

  19. INKRIMINASI VEKTOR MALARIA DAN IDENTIFIKASI PAKAN DARAH PADA NYAMUK AnopHELEs SPP DI KECAMATAN BOROBUDUR, KABUPATEN MAGELANG

    Directory of Open Access Journals (Sweden)

    Umi Widyastuti

    2013-12-01

    abdomennya, dipencet di atas kertas Whatman dan digunakan  untuk  ELISA  pakan  darah.  Hasil  penelitian  menunjukkan  bahwa An.  aconitus  rentan  terhadap P. falciparum dengan angka sporozoit sebesar 0,07 % di Giripurno dan sporozoit P. vivax tidak ditemukan, sedangkan di Giritengah, An. balabacensis rentan terhadap P. falciparum dengan angka sporozoit 4,17 % dan sporozoit P. vivax tidak ditemukan. Proporsi An. aconitus menghisap darah manusia (HBI sebesar 10,34 % di Giripurno dan 5,97 % di Giritengah. An balabacensis dan An. barbirostris menunjukkan HBI sebesar 37,50 % dan 5,88% di Giritengah. Angka paritas dan kepadatan An. aconitus di Giripurno relatif lebih tinggi dibanding di Giritengah, sebaliknya An. balabacensis lebih tinggi di Giritengah dibanding di Giripurno.Kata kunci: malaria, Elisa sporozoit, Elisa pakan darah.AbstractMalaria is still a health problem in Magelang Regency, especially in the Borobudur Subdistrict. The Annual Parasite Incidence (API in the last two years were 0.19 in 2004 and increased 0.34 in 2005, were considered as malarious areas with Low Case Incidence (LCI. The increase of malaria cases in Borobudur Subdistrict is related to the presence of Anopheline mosquitoes which serve as potential vector. The vectorial competence of Anopheline mosquitoes in Borobudur Subdistrict has not been reported yet. Several species such as Anopheles aconitus, An. maculatus, An. barbirostris and An. balabacensis are suspected as potential malaria vectors in this area. The objective of this study was to determine the Anophelene mosquitoes susceptibility to Plasmodia and its anthropophilic characteristic. The susceptibility of mosquito to Plasmodia was measured by detection of sporozoite protein antigen (Circum Sporozoite Protein/ CSP of P. falciparum or P. vivax on the head-thorax of all parous mosquitoes. The anthropophilic characteristic was measured by detection of human blood on the abdomen of blood fed and half gravid mosquitoes. Both of these

  20. Effect of Novaluron (Rimon 10 EC) on the mosquitoes Anopheles albimanus, Anopheles pseudopunctipennis, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Chiapas, Mexico.

    Science.gov (United States)

    Arredondo-Jiménez, J I; Valdez-Delgado, K M

    2006-12-01

    Dengue fever is a serious problem in Mexico and vector control has not been effective enough at preventing outbreaks. Malaria is largely under control, but it is important that new control measures continue to be developed. Novaluron, a novel host-specific insect growth regulator and chitin synthesis inhibitor, has proved to be effective against agricultural pests, but its efficacy against larval mosquito vectors under field conditions remains unknown. In accordance with the World Health Organization Pesticide Evaluation Scheme, phase I, II and III studies were conducted to evaluate the efficacy and residual effect of Novaluron (Rimon 10 EC, Makhteshim, Beer-Sheva, Israel) on the malaria vectors Anopheles albimanus Wiedemann (Diptera: Culicidae) and Anopheles pseudopunctipennis Theobald, the dengue vectors Aedes aegypti (L) and Aedes albopictus Skuse and the nuisance mosquito Culex quinquefasciatus Say. Laboratory susceptibility tests yielded diagnostic concentrations for all five target species. Field trials to identify the optimum field dosage of Novaluron against Anopheles mosquitoes were carried out under semi-natural conditions in artificial plots and in vessels with wild mosquitoes. Efficacy was measured by monitoring mortality of larvae and pupae and the percentage of inhibition of emergence from floating cages. Dosages of Novaluron for field tests were based on pupal LC(99) (lethal concentration 99%) of An. pseudopunctipennis (0.166 mg/L) in plots and average pupal LC(99) of Ae. aegypti and Ae. albopictus (0.55 mg/L). At all dosages tested, Novaluron significantly reduced larval populations of An. albimanus, Culex coronator Dyar & Knab, Ae. albopictus and Cx. quinquefasciatus by approximately 90%, inhibited adult emergence of An. albimanus and An. pseudopunctipennis by approximately 97% for almost 4 months in experimental plots, and inhibited adult emergence of Ae. aegypti and Ae. albopictus by approximately 97% for up to 14 weeks. Recommended dosages of

  1. Immunity-related genes and gene families in Anopheles gambiae.

    Science.gov (United States)

    Christophides, George K; Zdobnov, Evgeny; Barillas-Mury, Carolina; Birney, Ewan; Blandin, Stephanie; Blass, Claudia; Brey, Paul T; Collins, Frank H; Danielli, Alberto; Dimopoulos, George; Hetru, Charles; Hoa, Ngo T; Hoffmann, Jules A; Kanzok, Stefan M; Letunic, Ivica; Levashina, Elena A; Loukeris, Thanasis G; Lycett, Gareth; Meister, Stephan; Michel, Kristin; Moita, Luis F; Müller, Hans-Michael; Osta, Mike A; Paskewitz, Susan M; Reichhart, Jean-Marc; Rzhetsky, Andrey; Troxler, Laurent; Vernick, Kenneth D; Vlachou, Dina; Volz, Jennifer; von Mering, Christian; Xu, Jiannong; Zheng, Liangbiao; Bork, Peer; Kafatos, Fotis C

    2002-10-01

    We have identified 242 Anopheles gambiae genes from 18 gene families implicated in innate immunity and have detected marked diversification relative to Drosophila melanogaster. Immune-related gene families involved in recognition, signal modulation, and effector systems show a marked deficit of orthologs and excessive gene expansions, possibly reflecting selection pressures from different pathogens encountered in these insects' very different life-styles. In contrast, the multifunctional Toll signal transduction pathway is substantially conserved, presumably because of counterselection for developmental stability. Representative expression profiles confirm that sequence diversification is accompanied by specific responses to different immune challenges. Alternative RNA splicing may also contribute to expansion of the immune repertoire. PMID:12364793

  2. CLIP proteases and Plasmodium melanization in Anopheles gambiae.

    Science.gov (United States)

    Barillas-Mury, Carolina

    2007-07-01

    Melanization is a potent immune response mediated by phenoloxidase (PO). Multiple Clip-domain serine proteases (CLIP) regulate PO activation as part of a complex cascade of proteases that are cleaved sequentially. The role of several CLIP as key activators or suppressors of the melanization responses of Anopheles gambiae to Plasmodium berghei (murine malaria) has been established recently using a genome-wide reverse genetics approach. Important differences in regulation of PO activation between An. gambiae strains were also identified. This review summarizes these findings and discusses our current understanding of the An. gambiae melanization responses to Plasmodium. PMID:17512801

  3. Salivary Gland Proteome during Adult Development and after Blood Feeding of Female Anopheles dissidens Mosquitoes (Diptera: Culicidae)

    Science.gov (United States)

    Phattanawiboon, Benjarat; Jariyapan, Narissara; Mano, Chonlada; Roytrakul, Sittiruk; Paemanee, Atchara; Sor-Suwan, Sriwatapron; Sriwichai, Patchara; Saeung, Atiporn; Bates, Paul A.

    2016-01-01

    Understanding changes in mosquito salivary proteins during the time that sporozoite maturation occurs and after blood feeding may give information regarding the roles of salivary proteins during the malarial transmission. Anopheles dissidens (formerly Anopheles barbirostris species A1) is a potential vector of Plasmodium vivax in Thailand. In this study, analyses of the proteomic profiles of female An. dissidens salivary glands during adult development and after blood feeding were carried out using two-dimensional gel electrophoresis coupled with nano-liquid chromatography-mass spectrometry. Results showed at least 17 major salivary gland proteins present from day one to day 21 post emergence at 8 different time points sampled. Although there was variation observed, the patterns of protein expression could be placed into one of four groups. Fifteen protein spots showed significant depletion after blood feeding with the percentages of the amount of depletion ranging from 8.5% to 68.11%. The overall results identified various proteins, including a putative mucin-like protein, an anti-platelet protein, a long form D7 salivary protein, a putative gVAG protein precursor, a D7-related 3.2 protein, gSG7 salivary proteins, and a gSG6 protein. These results allow better understanding of the changes of the salivary proteins during the adult mosquito development. They also provide candidate proteins to investigate any possible link or not between sporozoite maturation, or survival of skin stage sporozoites, and salivary proteins. PMID:27669021

  4. Genotyping of chloroquine resistant Plasmodium falciparum in wild caught Anopheles minimus mosquitoes in a malaria endemic area of Assam, India.

    Science.gov (United States)

    Sarma, D K; Mohapatra, P K; Bhattacharyya, D R; Mahanta, J; Prakash, A

    2014-09-01

    We validated the feasibility of using Plasmodium falciparum, the human malaria parasite, DNA present in wild caught vector mosquitoes for the characterization of chloroquine resistance status. House frequenting mosquitoes belonging to Anopheles minimus complex were collected from human dwellings in a malaria endemic area of Assam, Northeast India and DNA was extracted from the head-thorax region of individual mosquitoes. Anopheles minimus complex mosquitoes were identified to species level and screened for the presence of Plasmodium sp. using molecular tools. Nested PCR-RFLP method was used for genotyping of P. falciparum based on K76T mutation in the chloroquine resistance transporter (pfcrt) gene. Three of the 27 wild caught An. minimus mosquitoes were harbouring P. falciparum sporozoites (positivity 11.1%) and all 3 were had 76T mutation in the pfcrt gene, indicating chloroquine resistance. The approach of characterizing antimalarial resistance of malaria parasite in vector mosquitoes can potentially be used as a surveillance tool for monitoring transmission of antimalarial drug resistant parasite strains in the community.

  5. Efficacy of herbal essential oils as insecticide against Aedes aegypti (Linn.), Culex quinquefasciatus (Say) and Anopheles dirus (Peyton and Harrison).

    Science.gov (United States)

    Phasomkusolsil, Siriporn; Soonwera, Mayura

    2011-09-01

    The essential oils of Cananga odorata (ylang ylang), Citrus sinensis (orange), Cymbopogon citratus (lemongrass), Cymbopogon nardus (citronella grass), Eucalyptus citriodora (eucalyptus), Ocimum basilicum (sweet basil) and Syzygium aromaticum (clove), were tested for their insecticide activity against Aedes aegypti, Culex quinquefasciatus and Anopheles dirus using the WHO standard susceptibility test. These were applied in soybean oil at dose of 1%, 5% and 10% (w/v). C. citratus had the KT, values against the three mosquito species tested but the knockdown rates (at 10, 30 and 60 minutes) were lower than some essential oils. C. citratus oil had high insecticidal activity against Ae. aegypti, Cx. quinquefasciatus and An. dirus, with LC50 values of < 0.1, 2.22 and < 0.1%, respectively. Ten percent C. citratus gave the highest mortality rates (100%) 24 hours after application. This study demonstrates the potential for the essential oil of C. citratus to be used as an insecticide against 3 species of mosquitoes. PMID:22299433

  6. Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus.

    Science.gov (United States)

    Prajapati, Veena; Tripathi, A K; Aggarwal, K K; Khanuja, S P S

    2005-11-01

    Essential oils extracted from 10 medicinal plants were evaluated for larvicidal, adulticidal, ovicidal, oviposition-deterrent and repellent activities towards three mosquito species; Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. The essential oils of Juniperus macropoda and Pimpinella anisum were highly effective as both larvicidal and ovicidal. The essential oil of P. anisum showed toxicity against 4th instar larvae of A. stephensi and A. aegypti with equivalent LD95 values of 115.7 microg/ml, whereas it was 149.7 microg/ml against C. quinquefasciatus larvae. Essential oils of Zingiber officinale and Rosmarinus officinalis were found to be ovicidal and repellent, respectively towards the three mosquito species. The essential oil of Cinnamomum zeylanicum resulted into highest repellent (RD95) values of 49.6, 53.9 and 44.2 mg/mat against A. stephensi, A. aegypti and C. quinquefasciatus, respectively apart from oviposition-deterrent potential. PMID:16051081

  7. Cuticular hydrocarbon discrimination/variation among strains of the mosquito, Anopheles (Cellia) stephensi Liston.

    Science.gov (United States)

    Anyanwu, G I; Davies, D H; Molyneux, D H; Phillips, A; Milligan, P J

    1993-06-01

    Cuticular lipids were removed from adult female Anopheles stephensi Liston and the hydrocarbons present were separated and quantified by gas chromatography. Comparison was made between the hydrocarbons of four An. stephensi strains: Russ, sensitive to DDT and malathion and originally isolated in the former U.S.S.R.; Beech, a DDT-resistant Indian strain with high sensitivity to Plasmodium species; St Mal, a strain from Pakistan shown to be resistant to malathion; and Iraq, a DDT-susceptible strain from Iraq. Discriminant analysis indicated that the four groups were distinct and that, on average, 78% of the population could be separated on the basis of the quantities of some of the cuticular hydrocarbons. The profiles of Beech and Russ or Russ and St Mal could be separated in 98% of the cases. There was reduced segregation between the profiles of St. Mal and Iraq, suggesting greater similarity in the hydrocarbons of these two strains. The usefulness of cuticular hydrocarbon in determining species relationships is discussed. PMID:8257238

  8. Bioinformatics-Based Identification of Chemosensory Proteins in African Malaria Mosquito, Anopheles gambiae

    Institute of Scientific and Technical Information of China (English)

    Zhengxi Li; Zuorui Shen; Jingjiang Zhou; Lin Field

    2003-01-01

    Chemosensory proteins (CSPs) are identifiable by four spatially conserved Cysteine residues in their primary structure or by two disulfide bridges in their tertiary structure according to the previously identified olfactory specific-D related proteins. A genomics- and bioinformatics-based approach is taken in the present study to identify the putative CSPs in the malaria-carrying mosquito, Anopheles gambiae. The results show that five out of the nine annotated candidates are the most possible Anopheles CSPs of A. gambiae. This study lays the foundation for further functional identification of Anopheles CSPs, though all of these candidates need additional experimental verification.

  9. A proteomic investigation of soluble olfactory proteins in Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Guido Mastrobuoni

    Full Text Available Odorant-binding proteins (OBPs and chemosensory proteins (CSPs are small soluble polypeptides that bind semiochemicals in the lymph of insect chemosensilla. In the genome of Anopheles gambiae, 66 genes encode OBPs and 8 encode CSPs. Here we monitored their expression through classical proteomics (2D gel-MS analysis and a shotgun approach. The latter method proved much more sensitive and therefore more suitable for tiny biological samples as mosquitoes antennae and eggs. Females express a larger number and higher quantities of OBPs in their antennae than males (24 vs 19. OBP9 is the most abundant in the antennae of both sexes, as well as in larvae, pupae and eggs. Of the 8 CSPs, 4 were detected in antennae, while SAP3 was the only one expressed in larvae. Our proteomic results are in fairly good agreement with data of RNA expression reported in the literature, except for OBP4 and OBP5, that we could not identify in our analysis, nor could we detect in Western Blot experiments. The relatively limited number of soluble olfactory proteins expressed at relatively high levels in mosquitoes makes further studies on the coding of chemical messages at the OBP level more accessible, providing for few specific targets. Identification of such proteins in Anopheles gambiae might facilitate future studies on host finding behavior in this important disease vector.

  10. Insecticide resistance in Anopheles gambiae from south-western Chad, Central Africa

    Directory of Open Access Journals (Sweden)

    Etang Josiane

    2008-09-01

    Full Text Available Abstract Background Indoor residual spraying and insecticide-treated nets (ITN are essential components of malaria vector control in Africa. Pyrethroids are the only recommended compounds for nets treatment because they are fast-acting insecticides with low mammalian toxicity. However, there is growing concern that pyrethroid resistance may threaten the sustainability of ITN scaling-up programmes. Here, insecticide susceptibility was investigated in Anopheles gambiae sensu lato from an area of large scale ITN distribution programme in south-western Chad. Methods Susceptibility to 4% DDT, 0.05% deltamethrin, 0.75% permethrin, 0.1% bendiocarb and 5% malathion was assessed using the WHO standard procedures for adult mosquitoes. Tests were carried out with two to four days-old, non-engorged female mosquitoes. The An. gambiae Kisumu strain was used as a reference. Knockdown effect was recorded every 5 min and mortality scored 24 h after exposure. Mosquitoes were identified to species and molecular form by PCR-RFLP and genotypes at the kdr locus were determined in surviving specimens by Hot Oligonucleotide Ligation Assay (HOLA. Results During this survey, full susceptibility to malathion was recorded in all samples. Reduced susceptibility to bendiocarb (mortality rate of 96.1% was found in one sample out of nine assayed. Increased tolerance to pyrethroids was detected in most samples (8/9 with mortality rates ranging from 70.2 to 96.6% for deltamethrin and from 26.7 to 96.3% for permethrin. Pyrethroid tolerance was not associated with a significant increase of knock-down times. Anopheles arabiensis was the predominant species of the An. gambiae complex in the study area, representing 75 to 100% of the samples. Screening for kdr mutations detected the L1014F mutation in 88.6% (N = 35 of surviving An. gambiae sensu stricto S form mosquitoes. All surviving An. arabiensis (N = 49 and M form An. gambiae s.s. (N = 1 carried the susceptible allele

  11. Islands and stepping-stones: comparative population structure of Anopheles gambiae sensu stricto and Anopheles arabiensis in Tanzania and implications for the spread of insecticide resistance.

    Directory of Open Access Journals (Sweden)

    Deodatus Maliti

    Full Text Available Population genetic structures of the two major malaria vectors Anopheles gambiae s.s. and An. arabiensis, differ markedly across Sub-Saharan Africa, which could reflect differences in historical demographies or in contemporary gene flow. Elucidation of the degree and cause of population structure is important for predicting the spread of genetic traits such as insecticide resistance genes or artificially engineered genes. Here the population genetics of An. gambiae s.s. and An. arabiensis in the central, eastern and island regions of Tanzania were compared. Microsatellite markers were screened in 33 collections of female An. gambiae s.l., originating from 22 geographical locations, four of which were sampled in two or three years between 2008 and 2010. An. gambiae were sampled from six sites, An. arabiensis from 14 sites, and both species from two sites, with an additional colonised insectary sample of each species. Frequencies of the knock-down resistance (kdr alleles 1014S and 1014F were also determined. An. gambiae exhibited relatively high genetic differentiation (average pairwise FST = 0.131, significant even between nearby samples, but without clear geographical patterning. In contrast, An. arabiensis exhibited limited differentiation (average FST = 0.015, but strong isolation-by-distance (Mantel test r = 0.46, p = 0.0008. Most time-series samples of An. arabiensis were homogeneous, suggesting general temporal stability of the genetic structure. An. gambiae populations from Dar es Salaam and Bagamoyo were found to have high frequencies of kdr 1014S (around 70%, with almost 50% homozygote but was at much lower frequency on Unguja Island, with no. An. gambiae population genetic differentiation was consistent with an island model of genetic structuring with highly restricted gene flow, contrary to An. arabiensis which was consistent with a stepping-stone model of extensive, but geographically-restricted gene flow.

  12. Laser induced mortality of Anopheles stephensi mosquitoes

    Science.gov (United States)

    Keller, Matthew D.; Leahy, David J.; Norton, Bryan J.; Johanson, Threeric; Mullen, Emma R.; Marvit, Maclen; Makagon, Arty

    2016-02-01

    Small, flying insects continue to pose great risks to both human health and agricultural production throughout the world, so there remains a compelling need to develop new vector and pest control approaches. Here, we examined the use of short (mosquitoes, which were chosen as a representative species. The mortality of mosquitoes exposed to laser pulses of various wavelength, power, pulse duration, and spot size combinations was assessed 24 hours after exposure. For otherwise comparable conditions, green and far-infrared wavelengths were found to be more effective than near- and mid-infrared wavelengths. Pulses with larger laser spot sizes required lower lethal energy densities, or fluence, but more pulse energy than for smaller spot sizes with greater fluence. Pulse duration had to be reduced by several orders of magnitude to significantly lower the lethal pulse energy or fluence required. These results identified the most promising candidates for the lethal laser component in a system being designed to identify, track, and shoot down flying insects in the wild.

  13. Annotation and analysis of a large cuticular protein family with the R&R Consensus in Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    He Ningjia

    2008-01-01

    Full Text Available Abstract Background The most abundant family of insect cuticular proteins, the CPR family, is recognized by the R&R Consensus, a domain of about 64 amino acids that binds to chitin and is present throughout arthropods. Several species have now been shown to have more than 100 CPR genes, inviting speculation as to the functional importance of this large number and diversity. Results We have identified 156 genes in Anopheles gambiae that code for putative cuticular proteins in this CPR family, over 1% of the total number of predicted genes in this species. Annotation was verified using several criteria including identification of TATA boxes, INRs, and DPEs plus support from proteomic and gene expression analyses. Two previously recognized CPR classes, RR-1 and RR-2, form separate, well-supported clades with the exception of a small set of genes with long branches whose relationships are poorly resolved. Several of these outliers have clear orthologs in other species. Although both clades are under purifying selection, the RR-1 variant of the R&R Consensus is evolving at twice the rate of the RR-2 variant and is structurally more labile. In contrast, the regions flanking the R&R Consensus have diversified in amino-acid composition to a much greater extent in RR-2 genes compared with RR-1 genes. Many genes are found in compact tandem arrays that may include similar or dissimilar genes but always include just one of the two classes. Tandem arrays of RR-2 genes frequently contain subsets of genes coding for highly similar proteins (sequence clusters. Properties of the proteins indicated that each cluster may serve a distinct function in the cuticle. Conclusion The complete annotation of this large gene family provides insight on the mechanisms of gene family evolution and clues about the need for so many CPR genes. These data also should assist annotation of other Anopheles genes.

  14. Incrimination of Anopheles (Nyssorhynchus rangeli and An. (Nys. oswaldoi as natural vectors of Plasmodium vivax in Southern Colombia

    Directory of Open Access Journals (Sweden)

    Martha L Quiñones

    2006-09-01

    Full Text Available Malaria transmission in the Southern Colombian state of Putumayo continues despite the absence of traditional vector species, except for the presence of Anopheles darlingi near the southeastern border with the state of Amazonas. In order to facilitate malaria vector incrimination in Putumayo, 2445 morphologically identified Anopheles females were tested for natural infection of Plasmodium vivax by ELISA. Specimens tested included An. apicimacula (n = 2, An. benarrochi B (n = 1617, An. darlingi (n = 29, An. mattogrossensis (n = 7, An. neomaculipalpus (n = 7, An. oswaldoi (n = 362, An. peryassui (n = 1, An. punctimacula (n = 1, An. rangeli (n = 413, and An. triannulatus (n = 6. Despite being overwhelmingly the most anthropophilic species in the region and comprising 66.1% of the mosquitoes tested, An. benarrochi B was not shown to be a vector. Thirty-five An. rangeli and one An. oswaldoi were naturally infected with P. vivax VK210. Sequence data were generated for the nuclear second internal transcriber space region of 31 of these 36 vivax positive mosquitoes (86.1% to confirm their morphological identification. An. oswaldoi is known to be a species complex in Latin America, but its internal taxonomy remains unresolved. Herein we show that the An. oswaldoi found in the state of Putumayo is genetically similar to specimens from the state of Amapá in Brazil and from the Ocama region in the state of Amazonas in Venezuela, and that this form harbors natural infections of P. vivax. That An. rangeli and this member of the An. oswaldoi complex are incriminated as malaria vectors in Putumayo, is a novel finding of significance for malaria control in Southern Colombia, and possibly in other areas of Latin America.

  15. Evidence of natural Wolbachia infections in field populations of Anopheles gambiae

    Science.gov (United States)

    Baldini, Francesco; Segata, Nicola; Pompon, Julien; Marcenac, Perrine; Robert Shaw, W.; Dabiré, Roch K.; Diabaté, Abdoulaye; Levashina, Elena A.; Catteruccia, Flaminia

    2014-01-01

    Wolbachia are maternally transmitted intracellular bacteria that invade insect populations by manipulating their reproduction and immunity and thus limiting the spread of numerous human pathogens. Experimental Wolbachia infections can reduce Plasmodium numbers in Anopheles mosquitoes in the laboratory, however, natural Wolbachia infections in field anophelines have never been reported. Here we show evidence of Wolbachia infections in Anopheles gambiae in Burkina Faso, West Africa. Sequencing of the 16S rRNA gene identified Wolbachia sequences in both female and male germlines across two seasons, and determined that these sequences are vertically transmitted from mother to offspring. Whole-genome sequencing of positive samples suggests that the genetic material identified in An. gambiae belongs to a novel Wolbachia strain, related to but distinct from strains infecting other arthropods. The evidence of Wolbachia infections in natural Anopheles populations promotes further investigations on the possible use of natural Wolbachia–Anopheles associations to limit malaria transmission. PMID:24905191

  16. ANOSPEX: a stochastic, spatially explicit model for studying Anopheles metapopulation dynamics.

    Directory of Open Access Journals (Sweden)

    Olugbenga O Oluwagbemi

    Full Text Available Anopheles mosquitoes transmit malaria, a major public health problem among many African countries. One of the most effective methods to control malaria is by controlling the Anopheles mosquito vectors that transmit the parasites. Mathematical models have both predictive and explorative utility to investigate the pros and cons of different malaria control strategies. We have developed a C++ based, stochastic spatially explicit model (ANOSPEX; Ano pheles Spatially-Explicit to simulate Anopheles metapopulation dynamics. The model is biologically rich, parameterized by field data, and driven by field-collected weather data from Macha, Zambia. To preliminarily validate ANOSPEX, simulation results were compared to field mosquito collection data from Macha; simulated and observed dynamics were similar. The ANOSPEX model will be useful in a predictive and exploratory manner to develop, evaluate and implement traditional and novel strategies to control malaria, and for understanding the environmental forces driving Anopheles population dynamics.

  17. Mating competitiveness of sterile genetic sexing strain males (GAMA) under laboratory and semi-field conditions: Steps towards the use of the Sterile Insect Technique to control the major malaria vector Anopheles arabiensis in South Africa

    OpenAIRE

    Munhenga, Givemore; Brooke, Basil D; Gilles, Jeremie R. L.; Slabbert, Kobus; Kemp, Alan,; Dandalo, Leonard C.; Wood, Oliver R.; Lobb, Leanne N.; Govender, Danny; Renke, Marius; Koekemoer, Lizette L

    2016-01-01

    Background Anopheles arabiensis Patton is primarily responsible for malaria transmission in South Africa after successful suppression of other major vector species using indoor spraying of residual insecticides. Control of An. arabiensis using current insecticide based approaches is proving difficult owing to the development of insecticide resistance, and variable feeding and resting behaviours. The use of the sterile insect technique as an area-wide integrated pest management system to suppl...

  18. Chemical Composition and Repellent Activity of Achillea vermiculata and Satureja hortensis against Anopheles stephensi

    OpenAIRE

    Masoumeh Pirmohammadi; Mansoureh Shayeghi; Hassan Vatandoost; Mohammad Reza Abaei; Ali Mohammadi; Akbar Bagheri; Mehdi Khoobdel; Hasan Bakhshi; Maryam Pirmohammadi; Maryam Tavassoli

    2016-01-01

    Background: One of the best ways to control the malaria disease and to be protected human against Anopheles mos­quito biting is the use of repellents. Throughout repellents, herbal ones may be an appropriate and safe source for protection.Methods: Chemical constituents of Achillea vermiculata and Satoreja hortensis were determined by using gas chromatography-mass spectrometry. Efficacy and the protection time of these plants were assessed on Anopheles stephensi under the laboratory condition....

  19. Comparative evaluation of systemic drugs for their effects against Anopheles gambiae

    OpenAIRE

    Butters, Matthew P.; Kobylinski, Kevin C.; Deus, Kelsey M.; da Silva, Ines Marques; GRAY, MEG; sylla, massamba; Foy, Brian D.

    2011-01-01

    Laboratory and field studies have shown that ivermectin, a drug that targets invertebrate ligand-gated ion channels (LGICs), is potently active against Anopheles spp. mosquitoes at concentrations present in human blood after standard drug administrations; thus ivermectin holds promise as a mass human-administered endectocide that could help suppress malaria parasite transmission. We evaluated other systemic LGIC-targeting drugs for their activities against the African malaria vector Anopheles...

  20. The Genetic Basis of Host Preference and Resting Behavior in the Major African Malaria Vector, Anopheles arabiensis

    Science.gov (United States)

    Main, Bradley J; Lee, Yoosook; Ferguson, Heather M.; Kreppel, Katharina S.; Kihonda, Anicet; Govella, Nicodem J.; Collier, Travis C.; Cornel, Anthony J.; Eskin, Eleazar; Kang, Eun Yong; Nieman, Catelyn C.; Weakley, Allison M.; Lanzaro, Gregory C.

    2016-01-01

    Malaria transmission is dependent on the propensity of Anopheles mosquitoes to bite humans (anthropophily) instead of other dead end hosts. Recent increases in the usage of Long Lasting Insecticide Treated Nets (LLINs) in Africa have been associated with reductions in highly anthropophilic and endophilic vectors such as Anopheles gambiae s.s., leaving species with a broader host range, such as Anopheles arabiensis, as the most prominent remaining source of transmission in many settings. An. arabiensis appears to be more of a generalist in terms of its host choice and resting behavior, which may be due to phenotypic plasticity and/or segregating allelic variation. To investigate the genetic basis of host choice and resting behavior in An. arabiensis we sequenced the genomes of 23 human-fed and 25 cattle-fed mosquitoes collected both in-doors and out-doors in the Kilombero Valley, Tanzania. We identified a total of 4,820,851 SNPs, which were used to conduct the first genome-wide estimates of “SNP heritability” for host choice and resting behavior in this species. A genetic component was detected for host choice (human vs cow fed; permuted P = 0.002), but there was no evidence of a genetic component for resting behavior (indoors versus outside; permuted P = 0.465). A principal component analysis (PCA) segregated individuals based on genomic variation into three groups which were characterized by differences at the 2Rb and/or 3Ra paracentromeric chromosome inversions. There was a non-random distribution of cattle-fed mosquitoes between the PCA clusters, suggesting that alleles linked to the 2Rb and/or 3Ra inversions may influence host choice. Using a novel inversion genotyping assay, we detected a significant enrichment of the standard arrangement (non-inverted) of 3Ra among cattle-fed mosquitoes (N = 129) versus all non-cattle-fed individuals (N = 234; χ2, p = 0.007). Thus, tracking the frequency of the 3Ra in An. arabiensis populations may be of use to infer

  1. Larvicidal activity of Morinda citrifolia L. (Noni) (Family: Rubiaceae) leaf extract against Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti.

    Science.gov (United States)

    Kovendan, Kalimuthu; Murugan, Kadarkarai; Shanthakumar, Shanmugam Perumal; Vincent, Savariar; Hwang, Jiang-Shiou

    2012-10-01

    Morinda citrifolia leaf extract was tested for larvicidal activity against three medically important mosquito vectors such as malarial vector Anopheles stephensi, dengue vector Aedes aegypti, and filarial vector Culex quinquefasciatus. The plant material was shade dried at room temperature and powdered coarsely. From the leaf, 1-kg powder was macerated with 3.0 L of hexane, chloroform, acetone, methanol, and water sequentially for a period of 72 h each and filtered. The yield of extracts was hexane (13.56 g), chloroform (15.21 g), acetone (12.85 g), methanol (14.76 g), and water (12.92 g), respectively. The extracts were concentrated at reduced temperature on a rotary vacuum evaporator and stored at a temperature of 4°C. The M. citrifolia leaf extract at 200, 300, 400, 500, and 600 ppm caused a significant mortality of three mosquito species. Hexane, chloroform, acetone, and water caused moderate considerable mortality; however, the highest larval mortality was methanolic extract, observed in three mosquito vectors. The larval mortality was observed after 24-h exposure. No mortality was observed in the control. The third larvae of Anopheles stephensi had values of LC(50) = 345.10, 324.26, 299.97, 261.96, and 284.59 ppm and LC(90) = 653.00, 626.58, 571.89, 505.06, and 549.51 ppm, respectively. The Aedes aegypti had values of LC(50) = 361.75, 343.22, 315.40, 277.92, and 306.98 ppm and LC(90) = 687.39, 659.02, 611.35, 568.18, and 613.25 ppm, respectively. The Culex quinquefasciatus had values of LC(50) = 382.96, 369.85, 344.34, 330.42, and 324.64 ppm and LC(90) = 726.18, 706.57, 669.28, 619.63, and 644.47 ppm, respectively. The results of the leaf extract of M. citrifolia are promising as good larvicidal activity against the mosquito vector Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. This is a new eco-friendly approach for the control of vector control programs. Therefore, this study provides first report on the larvicidal activities against three

  2. Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Spitzen Jeroen

    2010-10-01

    Full Text Available Abstract Background Carbon dioxide (CO2 plays an important role in the host-seeking process of opportunistic, zoophilic and anthropophilic mosquito species and is, therefore, commonly added to mosquito sampling tools. The African malaria vector Anopheles gambiae sensu stricto is attracted to human volatiles augmented by CO2. This study investigated whether CO2, usually supplied from gas cylinders acquired from commercial industry, could be replaced by CO2 derived from fermenting yeast (yeast-produced CO2. Methods Trapping experiments were conducted in the laboratory, semi-field and field, with An. gambiae s.s. as the target species. MM-X traps were baited with volatiles produced by mixtures of yeast, sugar and water, prepared in 1.5, 5 or 25 L bottles. Catches were compared with traps baited with industrial CO2. The additional effect of human odours was also examined. In the laboratory and semi-field facility dual-choice experiments were conducted. The effect of traps baited with yeast-produced CO2 on the number of mosquitoes entering an African house was studied in the MalariaSphere. Carbon dioxide baited traps, placed outside human dwellings, were also tested in an African village setting. The laboratory and semi-field data were analysed by a χ2-test, the field data by GLM. In addition, CO2 concentrations produced by yeast-sugar solutions were measured over time. Results Traps baited with yeast-produced CO2 caught significantly more mosquitoes than unbaited traps (up to 34 h post mixing the ingredients and also significantly more than traps baited with industrial CO2, both in the laboratory and semi-field. Adding yeast-produced CO2 to traps baited with human odour significantly increased trap catches. In the MalariaSphere, outdoor traps baited with yeast-produced or industrial CO2 + human odour reduced house entry of mosquitoes with a human host sleeping under a bed net indoors. Anopheles gambiae s.s. was not caught during the field trials

  3. SUSCEPTIBILITY TESTS OF ANOPHELES STEPHENSI WITH SOME CHLORINE, PHOSPHORUS, CARBAMATE AND PYRETILROID INSECTICICDES IN SOUTH OF IRAN

    Directory of Open Access Journals (Sweden)

    M.Iranpour

    1993-12-01

    Full Text Available Susceptibility tests were carried out on Anopheles stephensi with D.D.T(4%, dieldrin (4%, malathion(5%, propoxus (0.1%, primphos-methyl (O.lmg/cm2, lambda-cyhalothrin (0.1%, permethrin (0.25% and deltamethrin (0.025% during 1990-94 in Minab county, soutern Iran, using W.H.O standard method. Results showed that An. stephensi was susceptible to malathion, propoxur, primphos - methyl, lambda- cyhalothrin permethrin and deltamethrin, also LT5O was 5,19.5, less than 1.less than 1,3 and less than 1 minute, respectively. Results indicated that An.stephensi was still resistant to D.D.T and dieldrin but susceptibility level has increased. Mortality rate was 36.1 and 80.6 when the species was exposed to D.D.T and dieldrin impregnated papers for 60 minutes, respectively.

  4. [Malaria, anopheles, the anti-malaria campaign in French Guyana: between dogmatism and judgment].

    Science.gov (United States)

    Raccurt, C P

    1997-01-01

    The recrudescence of malaria in French Guiana involves both border regions. One notes the predominance of Plasmodium falciparum along the Maroni River on the Surinam frontier and the transmission of both Plasmodium falciparum and Plasmodium vivax in amerindian settlements along the Oyapock River on the Brazilian frontier. The main mosquito vector is the endoexophile species, Anopheles darlingi. The role of man-biting forest anophelines in malaria transmission is still unclear. At the present time, malaria control is based on curative treatment of the confirmed cases (approximately 4,000 cases a year by active and passive screening). Vector control is supported by annual houses insecticides spraying and, to a lesser degree, use of insecticide-impregnated bednets. The main limiting factors for successful control have been difficulty in implementing a strategy adapted to the cultures of the amerindian and bushnegro populations living on either side of the river-frontiers and in organizing effective cross-border cooperation. The alleged role of immigration in transmission dynamics has been more speculative than real. However the growth of the population and the increase of human activities inside rain forest areas have favorized Anopheles darlingi breeding by uncontrolled deforestation. This situation need to be monitored closely. Information campaigns to improve public awareness could be useful. Following measures could improve control in sparsely populated, remote areas: to promote an integrated preventive program for a real community-wide distribution of primary health care; to discontinue insecticides spraying in houses which is poorly accepted by the bushnegro population and unsuitable to the amerindian dwellings; to support the use of personal protection; to initiate an effective anopheline larvae control; to determine the impact of the transmission during day-time activities especially among very small settlements far from the main villages where members of the

  5. Multiple insecticide resistance mechanisms in Anopheles gambiae s.l. populations from Cameroon, Central Africa

    Directory of Open Access Journals (Sweden)

    Nwane Philippe

    2013-02-01

    Full Text Available Abstract Background Increasing incidence of DDT and pyrethroid resistance in Anopheles mosquitoes is seen as a limiting factor for malaria vector control. The current study aimed at an in-depth characterization of An. gambiae s.l. resistance to insecticides in Cameroon, in order to guide malaria vector control interventions. Methods Anopheles gambiae s.l. mosquitoes were collected as larvae and pupae from six localities spread throughout the four main biogeographical domains of Cameroon and reared to adults in insectaries. Standard WHO insecticide susceptibility tests were carried out with 4% DDT, 0.75% permethrin and 0.05% deltamethrin. Mortality rates and knockdown times (kdt50 and kdt95 were determined and the effect of pre-exposure to the synergists DEF, DEM and PBO was assessed. Tested mosquitoes were identified to species and molecular forms (M or S using PCR-RFLP. The hot ligation method was used to depict kdr mutations and biochemical assays were conducted to assess detoxifying enzyme activities. Results The An. arabiensis population from Pitoa was fully susceptible to DDT and permethrin (mortality rates > 98% and showed reduced susceptibility to deltamethrin. Resistance to DDT was widespread in An. gambiae s.s. populations and heterogeneous levels of susceptibility to permethrin and deltamethrin were observed. In many cases, prior exposure to synergists partially restored insecticide knockdown effect and increased mortality rates, suggesting a role of detoxifying enzymes in increasing mosquito survival upon challenge by pyrethroids and, to a lower extent DDT. The distribution of kdr alleles suggested a major role of kdr-based resistance in the S form of An. gambiae. In biochemical tests, all but one mosquito population overexpressed P450 activity, whereas baseline GST activity was low and similar in all field mosquito populations and in the control. Conclusion In Cameroon, multiple resistance mechanisms segregate in the S form of An

  6. Three years of insecticide resistance monitoring in Anopheles gambiae in Burkina Faso: resistance on the rise?

    Directory of Open Access Journals (Sweden)

    Badolo Athanase

    2012-07-01

    Full Text Available Abstract Background and methods A longitudinal Anopheles gambiae s.l. insecticide-resistance monitoring programme was established in four sentinel sites in Burkina Faso. For three years, between 2008 and 2010, WHO diagnostic dose assays were used to measure the prevalence of resistance to all the major classes of insecticides at the beginning and end of the malaria transmission season. Species identification and genotyping for target site mutations was also performed and the sporozoite rate in adults determined. Results At the onset of the study, resistance to DDT and pyrethroids was already prevalent in An. gambiae s.l. from the south-west of the country but mosquitoes from the two sites in central Burkina Faso were largely susceptible. Within three years, DDT and permethrin resistance was established in all four sites. Carbamate and organophosphate resistance remains relatively rare and largely confined to the south-western areas although a small number of bendiocarb survivors were found in all sites by the final round of monitoring. The ace-1R target site resistance allele was present in all localities and its frequency exceeded 20% in 2010 in two of the sites. The frequency of the 1014F kdr mutation increased throughout the three years and by 2010, the frequency of 1014F in all sites combined was 0.02 in Anopheles arabiensis, 0.56 in An. gambiae M form and 0.96 in An. gambiae S form. This frequency did not differ significantly between the sites. The 1014S kdr allele was only found in An. arabiensis but its frequency increased significantly throughout the study (P = 0.0003 and in 2010 the 1014S allele frequency was 0.08 in An. arabiensis. Maximum sporozoite rates (12% were observed in Soumousso in 2009 and the difference between sites is significant for each year. Conclusion Pyrethroid and DDT resistance is now established in An. gambiae s.l. throughout Burkina Faso. Results from diagnostic dose assays are highly variable within and

  7. DNA barcoding reveals both known and novel taxa in the Albitarsis Group (Anopheles: Nyssorhynchus of Neotropical malaria vectors

    Directory of Open Access Journals (Sweden)

    Ruiz-Lopez Freddy

    2012-02-01

    Full Text Available Abstract Background Mosquitoes belonging to the Albitarsis Group (Anopheles: Nyssorhynchus are of importance as malaria vectors across the Neotropics. The Group currently comprises six known species, and recent studies have indicated further hidden biodiversity within the Group. DNA barcoding has been proposed as a highly useful tool for species recognition, although its discriminatory utility has not been verified in closely related taxa across a wide geographic distribution. Methods DNA barcodes (658 bp of the mtDNA Cytochrome c Oxidase - COI were generated for 565 An. albitarsis s.l. collected in Argentina, Brazil, Colombia, Paraguay, Trinidad and Venezuela over the past twenty years, including specimens from type series and type localities. Here we test the utility of currently advocated barcoding methodologies, including the Kimura-two-parameter distance model (K2P and Neighbor-joining analysis (NJ, for determining species delineation within mosquitoes of the Neotropical Albitarsis Group of malaria vectors (Anopheles: Nyssorhynchus, and compare results with Bayesian analysis. Results Species delineation through barcoding analysis and Bayesian phylogenetic analysis, fully concur. Analysis of 565 sequences (302 unique haplotypes resolved nine NJ tree clusters, with less than 2% intra-node variation. Mean intra-specific variation (K2P was 0.009 (range 0.002 - 0.014, whereas mean inter-specific divergence were several-fold higher at 0.041 (0.020 - 0.056, supporting the reported "barcoding gap". These results show full support for separate species status of the six known species in the Albitarsis Group (An. albitarsis s.s., An. albitarsis F, An. deaneorum, An. janconnae, An. marajoara and An. oryzalimnetes, and also support species level status for two previously detected lineages - An. albitarsis G &An. albitarsis I (designated herein. In addition, we highlight the presence of a unique mitochondrial lineage close to An. deaneorum and An

  8. The spatial distribution of Anopheles gambiae sensu stricto and An. arabiensis (Diptera: Culicidae in Mali

    Directory of Open Access Journals (Sweden)

    N. Sogoba

    2007-05-01

    Full Text Available Variations in the biology and ecology and the high level of genetic polymorphism of malaria vectors in Africa highlight the value of mapping their spatial distribution to enhance successful implementation of integrated vector management. The objective of this study was to collate data on the relative frequencies of Anopheles gambiae s.s. and An. arabiensis mosquitoes in Mali, to assess their association with climate and environmental covariates, and to produce maps of their spatial distribution. Bayesian geostatistical logistic regression models were fitted to identify environmental determinants of the relative frequencies of An. gambiae s.s. and An. arabiensis species and to produce smooth maps of their geographical distribution. The frequency of An. arabiensis was positively associated with the normalized difference vegetation index, the soil water storage index, the maximum temperature and the distance to water bodies. It was negatively associated with the minimum temperature and rainfall. The predicted map suggests that, in West Africa, An. arabiensis is concentrated in the drier savannah areas, while An. gambiae s.s. prefers the southern savannah and land along the rivers, particularly the inner delta of Niger. Because the insecticide knockdown resistance (kdr gene is reported only in An. gambiae s.s. in Mali, the maps provide valuable information for vector control. They may also be useful for planning future implementation of malaria control by genetically manipulated mosquitoes.

  9. Screening of selected ethnomedicinal plants from South Africa for larvicidal activity against the mosquito Anopheles arabiensis

    Directory of Open Access Journals (Sweden)

    Maharaj Rajendra

    2012-09-01

    Full Text Available Abstract Background This study was initiated to establish whether any South African ethnomedicinal plants (indigenous or exotic, that have been reported to be used traditionally to repel or kill mosquitoes, exhibit effective mosquito larvicidal properties. Methods Extracts of a selection of plant taxa sourced in South Africa were tested for larvicidal properties in an applicable assay. Thirty 3rd instar Anopheles arabiensis larvae were exposed to various extract types (dichloromethane, dichloromethane/methanol (1:1, methanol and purified water of each species investigated. Mortality was evaluated relative to the positive control Temephos (Mostop; Agrivo, an effective emulsifiable concentrate larvicide. Results Preliminary screening of crude extracts revealed substantial variation in toxicity with 24 of the 381 samples displaying 100% larval mortality within the seven day exposure period. Four of the high activity plants were selected and subjected to bioassay guided fractionation. The results of the testing of the fractions generated identified one fraction of the plant, Toddalia asiatica as being very potent against the An. arabiensis larvae. Conclusion The present study has successfully identified a plant with superior larvicidal activity at both the crude and semi pure fractions generated through bio-assay guided fractionation. These results have initiated further research into isolating the active compound and developing a malaria vector control tool.

  10. The population genomics of trans-specific inversion polymorphisms in Anopheles gambiae.

    Science.gov (United States)

    White, Bradley J; Cheng, Changde; Sangaré, Djibril; Lobo, Neil F; Collins, Frank H; Besansky, Nora J

    2009-09-01

    In the malaria mosquito Anopheles gambiae polymorphic chromosomal inversions may play an important role in adaptation to environmental variation. Recently, we used microarray-based divergence mapping combined with targeted resequencing to map nucleotide differentiation between alternative arrangements of the 2La inversion. Here, we applied the same technique to four different polymorphic inversions on the 2R chromosome of An. gambiae. Surprisingly, divergence was much lower between alternative arrangements for all 2R inversions when compared to the 2La inversion. For one of the rearrangements, 2Ru, we successfully mapped a very small region (approximately 100 kb) of elevated divergence. For the other three rearrangements, we did not identify any regions of significantly high divergence, despite ample independent evidence from natural populations of geographic clines and seasonal cycling, and stable heterotic polymorphisms in laboratory populations. If these inversions are the targets of selection as hypothesized, we suggest that divergence between rearrangements may have escaped detection due to retained ancestral polymorphism in the case of the youngest 2R rearrangements and to extensive gene flux in the older 2R inversion systems that segregate in both An. gambiae and its sibling species An. arabiensis. PMID:19581444

  11. Sexual transfer of the steroid hormone 20E induces the postmating switch in Anopheles gambiae

    Science.gov (United States)

    Gabrieli, Paolo; Kakani, Evdoxia G.; Mitchell, Sara N.; Mameli, Enzo; Want, Elizabeth J.; Mariezcurrena Anton, Ainhoa; Serrao, Aurelio; Baldini, Francesco; Catteruccia, Flaminia

    2014-01-01

    Female insects generally mate multiple times during their lives. A notable exception is the female malaria mosquito Anopheles gambiae, which after sex loses her susceptibility to further copulation. Sex in this species also renders females competent to lay eggs developed after blood feeding. Despite intense research efforts, the identity of the molecular triggers that cause the postmating switch in females, inducing a permanent refractoriness to further mating and triggering egg-laying, remains elusive. Here we show that the male-transferred steroid hormone 20-hydroxyecdysone (20E) is a key regulator of monandry and oviposition in An. gambiae. When sexual transfer of 20E is impaired by partial inactivation of the hormone and inhibition of its biosynthesis in males, oviposition and refractoriness to further mating in the female are strongly reduced. Conversely, mimicking sexual delivery by injecting 20E into virgin females switches them to an artificial mated status, triggering egg-laying and reducing susceptibility to copulation. Sexual transfer of 20E appears to incapacitate females physically from receiving seminal fluids by a second male. Comparative analysis of microarray data from females after mating and after 20E treatment indicates that 20E-regulated molecular pathways likely are implicated in the postmating switch, including cytoskeleton and musculature-associated genes that may render the atrium impenetrable to additional mates. By revealing signals and pathways shaping key processes in the An. gambiae reproductive biology, our data offer new opportunities for the control of natural populations of malaria vectors. PMID:25368171

  12. Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster.

    Science.gov (United States)

    Zdobnov, Evgeny M; von Mering, Christian; Letunic, Ivica; Torrents, David; Suyama, Mikita; Copley, Richard R; Christophides, George K; Thomasova, Dana; Holt, Robert A; Subramanian, G Mani; Mueller, Hans-Michael; Dimopoulos, George; Law, John H; Wells, Michael A; Birney, Ewan; Charlab, Rosane; Halpern, Aaron L; Kokoza, Elena; Kraft, Cheryl L; Lai, Zhongwu; Lewis, Suzanna; Louis, Christos; Barillas-Mury, Carolina; Nusskern, Deborah; Rubin, Gerald M; Salzberg, Steven L; Sutton, Granger G; Topalis, Pantelis; Wides, Ron; Wincker, Patrick; Yandell, Mark; Collins, Frank H; Ribeiro, Jose; Gelbart, William M; Kafatos, Fotis C; Bork, Peer

    2002-10-01

    Comparison of the genomes and proteomes of the two diptera Anopheles gambiae and Drosophila melanogaster, which diverged about 250 million years ago, reveals considerable similarities. However, numerous differences are also observed; some of these must reflect the selection and subsequent adaptation associated with different ecologies and life strategies. Almost half of the genes in both genomes are interpreted as orthologs and show an average sequence identity of about 56%, which is slightly lower than that observed between the orthologs of the pufferfish and human (diverged about 450 million years ago). This indicates that these two insects diverged considerably faster than vertebrates. Aligned sequences reveal that orthologous genes have retained only half of their intron/exon structure, indicating that intron gains or losses have occurred at a rate of about one per gene per 125 million years. Chromosomal arms exhibit significant remnants of homology between the two species, although only 34% of the genes colocalize in small "microsyntenic" clusters, and major interarm transfers as well as intra-arm shuffling of gene order are detected. PMID:12364792

  13. Molecular characterization, biological forms and sporozoite rate of Anopheles stephensi in southern Iran

    Institute of Scientific and Technical Information of China (English)

    Ali Reza Chavshin; Mohammad Ali Oshaghi; Hasan Vatandoost; Ahmad Ali Hanafi-Bojd; Ahmad Raeisi; Fatemeh Nikpoor

    2014-01-01

    Objective: To identify the biological forms, sporozoite rate and molecular characterization of the Anopheles stephensi (An. stephensi) in Hormozgan and Sistan-Baluchistan provinces, the most important malarious areas in Iran. Methods: Wild live An. stephensi samples were collected from different malarious areas in southern Iran. The biological forms were identified based on number of egg-ridges. Molecular characterization of biological forms was verified by analysis of the mitochondrial cytochrome oxidase subunit I and II (mtDNA-COI/COII). The Plasmodium infection was examined in the wild female specimens by species-specific nested–PCR method. Results: Results showed that all three biological forms including mysorensis, intermediate and type are present in the study areas. Molecular investigations revealed no genetic variation between mtDNA COI/COII sequences of the biological forms and no Plasmodium parasites was detected in the collected mosquito samples. Conclusions:Presence of three biological forms with identical sequences showed that the known biological forms belong to a single taxon and the various vectorial capacities reported for these forms are more likely corresponded to other epidemiological factors than to the morphotype of the populations. Lack of malaria parasite infection in An. stephensi, the most important vector of malaria, may be partly due to the success and achievement of ongoing active malaria control program in the region.

  14. Insights into the epigenomic landscape of the human malaria vector Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Elena eGómez-Díaz

    2014-08-01

    Full Text Available The epigenome of the human malaria vector Anopheles gambiae was characterized in midgut cells by mapping the distribution and levels of two post-translational histone modifications, H3K27ac and H3K27me3. These histone profiles were then correlated with levels of gene expression obtained by RNA-seq. Analysis of the transcriptome of A. gambiae midguts and salivary glands led to the discovery of 13,898 new transcripts not present in the most recent genome assembly. A subset of these transcripts is differentially expressed between midgut and salivary glands. The enrichment profiles of H3K27ac and H3K27me3 are mutually exclusive and associate with high and low levels of transcription, respectively. This distribution agrees with previous findings in Drosophila showing association of these two histone modifications with either active or inactive transcriptional states, including Polycomb-associated domains in silenced genes. This study provides a mosquito epigenomics platform for future comparative studies in other mosquito species, opening future investigations into the role of epigenetic processes in vector-borne systems of medical and economic importance.

  15. GNBP domain of Anopheles darlingi: are polymorphic inversions and gene variation related to adaptive evolution?

    Science.gov (United States)

    Bridi, L C; Rafael, M S

    2016-02-01

    Anopheles darlingi is the main malaria vector in humans in South America. In the Amazon basin, it lives along the banks of rivers and lakes, which responds to the annual hydrological cycle (dry season and rainy season). In these breeding sites, the larvae of this mosquito feed on decomposing organic and microorganisms, which can be pathogenic and trigger the activation of innate immune system pathways, such as proteins Gram-negative binding protein (GNBP). Such environmental changes affect the occurrence of polymorphic inversions especially at the heterozygote frequency, which confer adaptative advantage compared to homozygous inversions. We mapped the GNBP probe to the An. darlingi 2Rd inversion by fluorescent in situ hybridization (FISH), which was a good indicator of the GNBP immune response related to the chromosomal polymorphic inversions and adaptative evolution. To better understand the evolutionary relations and time of divergence of the GNBP of An. darlingi, we compared it with nine other mosquito GNBPs. The results of the phylogenetic analysis of the GNBP sequence between the species of mosquitoes demonstrated three clades. Clade I and II included the GNBPB5 sequence, and clade III the sequence of GNBPB1. Most of these sequences of GNBP analyzed were homologous with that of subfamily B, including that of An. gambiae (87 %), therefore suggesting that GNBP of An. darling belongs to subfamily B. This work helps us understand the role of inversion polymorphism in evolution of An. darlingi.

  16. Inhibition of Anopheles gambiae odorant receptor function by mosquito repellents.

    Science.gov (United States)

    Tsitoura, Panagiota; Koussis, Konstantinos; Iatrou, Kostas

    2015-03-20

    The identification of molecular targets of insect repellents has been a challenging task, with their effects on odorant receptors (ORs) remaining a debatable issue. Here, we describe a study on the effects of selected mosquito repellents, including the widely used repellent N,N-diethyl-meta-toluamide (DEET), on the function of specific ORs of the African malaria vector Anopheles gambiae. This study, which has been based on quantitative measurements of a Ca(2+)-activated photoprotein biosensor of recombinant OR function in an insect cell-based expression platform and a sequential compound addition protocol, revealed that heteromeric OR (ORx/Orco) function was susceptible to strong inhibition by all tested mosquito repellents except DEET. Moreover, our results demonstrated that the observed inhibition was due to efficient blocking of Orco (olfactory receptor coreceptor) function. This mechanism of repellent action, which is reported for the first time, is distinct from the mode of action of other characterized insect repellents including DEET. PMID:25657000

  17. Organization of olfactory centres in the malaria mosquito Anopheles gambiae

    Science.gov (United States)

    Riabinina, Olena; Task, Darya; Marr, Elizabeth; Lin, Chun-Chieh; Alford, Robert; O'Brochta, David A.; Potter, Christopher J.

    2016-01-01

    Mosquitoes are vectors for multiple infectious human diseases and use a variety of sensory cues (olfactory, temperature, humidity and visual) to locate a human host. A comprehensive understanding of the circuitry underlying sensory signalling in the mosquito brain is lacking. Here we used the Q-system of binary gene expression to develop transgenic lines of Anopheles gambiae in which olfactory receptor neurons expressing the odorant receptor co-receptor (Orco) gene are labelled with GFP. These neurons project from the antennae and maxillary palps to the antennal lobe (AL) and from the labella on the proboscis to the suboesophageal zone (SEZ), suggesting integration of olfactory and gustatory signals occurs in this brain region. We present detailed anatomical maps of olfactory innervations in the AL and the SEZ, identifying glomeruli that may respond to human body odours or carbon dioxide. Our results pave the way for anatomical and functional neurogenetic studies of sensory processing in mosquitoes. PMID:27694947

  18. Diversitas Genetik Anopheles balabacensis, Baisas di Berbagai Daerah Indonesia Berdasarkan Sekuen Gen ITS 2 DNA Ribosom

    Directory of Open Access Journals (Sweden)

    Widiarti Widiarti

    2016-05-01

    Full Text Available AbstractMalaria control is remain a challenge although various attempts have been conducted. One of the issues in controlling the vectors is the presence of species complex. The species complex is an example of genetic diversity. Anopheles balabacensis, Baisas reported as complex species in various countries, but has not been widely reported in Indonesia. In order to enhance malaria control, it is important to understand the vectors and its bioecology. The aim of the study were a. to identify An. balabacensis, Baisas suspected as species complex based on ribosomal DNA the second internal transcribed spacer (ITS2 gene sequences, b. to understand the genetic diversity of An. balabacensis, Baisas collected from endemic and non endemic regions distincted by geographical distance, c. to understand the genetic relationships (taxonomi distance among An. balabacensis, Baisas from difference regions in Indonesia through reconstructing the phylogenetic trees. The results showed that An. balabacensis, Baisas in Indonesia is identified as sympatric and allopatrik complex species. There were differences which was far enough in the genetic relationships among An. balabacensis populations collected from Pusuk Lestari in the area of Meninting Health Center, West Lombok, NTB. This differences were identified as sympatric complex. In addition, base on the relationship among An. leucosphyrus group, An balabacensis, Baisas collected from Berjoko Nunukan Regency showed that the species quite far compare to An. balabacensis, Baisas originally from Central Java and Lombok NTB.Keywords : An. balabacensis, genetic variation, the second Internal Transcribed Spacer (ITS2.AbstrakPenanggulangan malaria masih banyak menemui kendala walaupun berbagai upaya telah dilakukan. Salah satu kendala yang menyulitkan dalam pengendalian vektor adalah adanya spesies kompleks pada populasi nyamuk vektor. Spesies kompleks merupakan contoh diversitas genetik. Anopheles balabacensis

  19. An Evolution-Based Screen for Genetic Differentiation between Anopheles Sister Taxa Enriches for Detection of Functional Immune Factors.

    Directory of Open Access Journals (Sweden)

    Christian Mitri

    2015-12-01

    Full Text Available Nucleotide variation patterns across species are shaped by the processes of natural selection, including exposure to environmental pathogens. We examined patterns of genetic variation in two sister species, Anopheles gambiae and Anopheles coluzzii, both efficient natural vectors of human malaria in West Africa. We used the differentiation signature displayed by a known coordinate selective sweep of immune genes APL1 and TEP1 in A. coluzzii to design a population genetic screen trained on the sweep, classified a panel of 26 potential immune genes for concordance with the signature, and functionally tested their immune phenotypes. The screen results were strongly predictive for genes with protective immune phenotypes: genes meeting the screen criteria were significantly more likely to display a functional phenotype against malaria infection than genes not meeting the criteria (p = 0.0005. Thus, an evolution-based screen can efficiently prioritize candidate genes for labor-intensive downstream functional testing, and safely allow the elimination of genes not meeting the screen criteria. The suite of immune genes with characteristics similar to the APL1-TEP1 selective sweep appears to be more widespread in the A. coluzzii genome than previously recognized. The immune gene differentiation may be a consequence of adaptation of A. coluzzii to new pathogens encountered in its niche expansion during the separation from A. gambiae, although the role, if any of natural selection by Plasmodium is unknown. Application of the screen allowed identification of new functional immune factors, and assignment of new functions to known factors. We describe biochemical binding interactions between immune proteins that underlie functional activity for malaria infection, which highlights the interplay between pathogen specificity and the structure of immune complexes. We also find that most malaria-protective immune factors display phenotypes for either human or rodent

  20. An Evolution-Based Screen for Genetic Differentiation between Anopheles Sister Taxa Enriches for Detection of Functional Immune Factors.

    Science.gov (United States)

    Mitri, Christian; Bischoff, Emmanuel; Takashima, Eizo; Williams, Marni; Eiglmeier, Karin; Pain, Adrien; Guelbeogo, Wamdaogo M; Gneme, Awa; Brito-Fravallo, Emma; Holm, Inge; Lavazec, Catherine; Sagnon, N'Fale; Baxter, Richard H; Riehle, Michelle M; Vernick, Kenneth D

    2015-12-01

    Nucleotide variation patterns across species are shaped by the processes of natural selection, including exposure to environmental pathogens. We examined patterns of genetic variation in two sister species, Anopheles gambiae and Anopheles coluzzii, both efficient natural vectors of human malaria in West Africa. We used the differentiation signature displayed by a known coordinate selective sweep of immune genes APL1 and TEP1 in A. coluzzii to design a population genetic screen trained on the sweep, classified a panel of 26 potential immune genes for concordance with the signature, and functionally tested their immune phenotypes. The screen results were strongly predictive for genes with protective immune phenotypes: genes meeting the screen criteria were significantly more likely to display a functional phenotype against malaria infection than genes not meeting the criteria (p = 0.0005). Thus, an evolution-based screen can efficiently prioritize candidate genes for labor-intensive downstream functional testing, and safely allow the elimination of genes not meeting the screen criteria. The suite of immune genes with characteristics similar to the APL1-TEP1 selective sweep appears to be more widespread in the A. coluzzii genome than previously recognized. The immune gene differentiation may be a consequence of adaptation of A. coluzzii to new pathogens encountered in its niche expansion during the separation from A. gambiae, although the role, if any of natural selection by Plasmodium is unknown. Application of the screen allowed identification of new functional immune factors, and assignment of new functions to known factors. We describe biochemical binding interactions between immune proteins that underlie functional activity for malaria infection, which highlights the interplay between pathogen specificity and the structure of immune complexes. We also find that most malaria-protective immune factors display phenotypes for either human or rodent malaria, with

  1. Regular production of infective sporozoites of Plasmodium falciparum and P. vivax in laboratory-bred Anopheles albimanus.

    Science.gov (United States)

    Hurtado, S; Salas, M L; Romero, J F; Zapata, J C; Ortiz, H; Arevalo-Herrera, M; Herrera, S

    1997-01-01

    One of the major constraints for studies on the sporogonic cycle of the parasites causing human malaria, and on the protective efficacy of pre-erythrocytic vaccines, is the scarcity of laboratory-reared Anopheles mosquitoes as a source of infective sporozoites. The aim of the present study was to reproduce the life-cycles of Plasmodium falciparum and P. vivax in the laboratory and so develop the ability to produce infective sporozoites of these two species regularly under laboratory conditions. Colonized Anopheles albimanus, of Buenaventura and Tecojate strains, were infected by feeding either on Plasmodium-infected blood, from human patients or experimentally inoculated Aotus monkeys, or on gametocytes of the P. falciparum NF-54 isolate grown in vitro. The monkeys were infected with the blood stages of a Colombian P. vivax isolate and then, after recovery, with the Santa Lucia strain of P. falciparum from El Salvador. Although both of the mosquito strains used were successfully infected with both parasite species, the Buenaventura strain of mosquito was generally more susceptible to infection than the Tecojate strain, and particularly to infection with the parasites from the patients, who lived where this strain of mosquitoes was originally isolated. Monkeys injected intravenously with the P. vivax sporozoites produced in the mosquitoes developed patent sexual and asexual parasitaemias; the gametocytes that developed could then be used to infect mosquitoes, allowing the development of more sporozoites. However, experimental infections failed to establish after the P. falciparum sporozoites were used to inoculate monkeys. The ability to reproduce the complete life cycle of P. vivax in the laboratory, from human to mosquito and then to monkey, should greatly facilitate many studies on vivax malaria and on the efficacy of candidate malaria vaccines. The availability of the sporogonic cycles of P. falciparum from three different sources should also permit a variety of

  2. Molecular evolution of immune genes in the malaria mosquito Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Tovi Lehmann

    Full Text Available BACKGROUND: As pathogens that circumvent the host immune response are favoured by selection, so are host alleles that reduce parasite load. Such evolutionary processes leave their signature on the genes involved. Deciphering modes of selection operating on immune genes might reveal the nature of host-pathogen interactions and factors that govern susceptibility in host populations. Such understanding would have important public health implications. METHODOLOGY/FINDINGS: We analyzed polymorphisms in four mosquito immune genes (SP14D1, GNBP, defensin, and gambicin to decipher selection effects, presumably mediated by pathogens. Using samples of Anopheles arabiensis, An. quadriannulatus and four An. gambiae populations, as well as published sequences from other Culicidae, we contrasted patterns of polymorphisms between different functional units of the same gene within and between populations. Our results revealed selection signatures operating on different time scales. At the most recent time scale, within-population diversity revealed purifying selection. Between populations and between species variation revealed reduced differentiation (GNBP and gambicin at coding vs. noncoding- regions, consistent with balancing selection. McDonald-Kreitman tests between An. quadriannulatus and both sibling species revealed higher fixation rate of synonymous than nonsynonymous substitutions (GNBP in accordance with frequency dependent balancing selection. At the longest time scale (>100 my, PAML analysis using distant Culicid taxa revealed positive selection at one codon in gambicin. Patterns of genetic variation were independent of exposure to human pathogens. SIGNIFICANCE AND CONCLUSIONS: Purifying selection is the most common form of selection operating on immune genes as it was detected on a contemporary time scale on all genes. Selection for "hypervariability" was not detected, but negative balancing selection, detected at a recent evolutionary time scale

  3. Predation efficiency of Anopheles gambiae larvae by aquatic predators in western Kenya highlands

    Directory of Open Access Journals (Sweden)

    Nyindo Mramba

    2011-07-01

    Full Text Available Abstract Background The current status of insecticide resistance in mosquitoes and the effects of insecticides on non-target insect species have raised the need for alternative control methods for malaria vectors. Predation has been suggested as one of the important regulation mechanisms for malaria vectors in long-lasting aquatic habitats, but the predation efficiency of the potential predators is largely unknown in the highlands of western Kenya. In the current study, we examined the predation efficiency of five predators on Anopheles gambiae s.s larvae in 24 hour and semi- field evaluations. Methods Predators were collected from natural habitats and starved for 12 hours prior to starting experiments. Preliminary experiments were conducted to ascertain the larval stage most predated by each predator species. When each larval instar was subjected to predation, third instar larvae were predated at the highest rate. Third instar larvae of An. gambiae were introduced into artificial habitats with and without refugia at various larval densities. The numbers of surviving larvae were counted after 24 hours in 24. In semi-field experiments, the larvae were counted daily until they were all either consumed or had developed to the pupal stage. Polymerase chain reaction was used to confirm the presence of An. gambiae DNA in predator guts. Results Experiments found that habitat type (P P P P An. gambiae DNA was found in at least three out of ten midguts for all predator species. Gambusia affins was the most efficient, being three times more efficient than tadpoles. Conclusion These experiments provide insight into the efficiency of specific natural predators against mosquito larvae. These naturally occurring predators may be useful in biocontrol strategies for aquatic stage An. gambiae mosquitoes. Further investigations should be done in complex natural habitats for these predators.

  4. Change in composition of the Anopheles gambiae complex and its possible implications for the transmission of malaria and lymphatic filariasis in north-eastern Tanzania

    Directory of Open Access Journals (Sweden)

    Derua Yahya A

    2012-06-01

    Full Text Available Abstract Background A dramatic decline in the incidence of malaria due to Plasmodium falciparum infection in coastal East Africa has recently been reported to be paralleled (or even preceded by an equally dramatic decline in malaria vector density, despite absence of organized vector control. As part of investigations into possible causes for the change in vector population density, the present study analysed the Anopheles gambiae s.l. sibling species composition in north-eastern Tanzania. Methods The study was in two parts. The first compared current species complex composition in freshly caught An. gambiae s.l. complex from three villages to the composition reported from previous studies carried out 2–4 decades ago in the same villages. The second took advantage of a sample of archived dried An. gambiae s.l. complex specimens collected regularly from a fourth study village since 2005. Both fresh and archived dried specimens were identified to sibling species of the An. gambiae s.l. complex by PCR. The same specimens were moreover examined for Plasmodium falciparum and Wuchereria bancrofti infection by PCR. Results As in earlier studies, An. gambiae s.s., Anopheles merus and Anopheles arabiensis were identified as sibling species found in the area. However, both study parts indicated a marked change in sibling species composition over time. From being by far the most abundant in the past An. gambiae s.s. was now the most rare, whereas An. arabiensis had changed from being the most rare to the most common. P. falciparum infection was rarely detected in the examined specimens (and only in An. arabiensis whereas W. bancrofti infection was prevalent and detected in all three sibling species. Conclusion The study indicates that a major shift in An. gambiae s.l. sibling species composition has taken place in the study area in recent years. Combined with the earlier reported decline in overall malaria vector density, the study suggests that this

  5. Dynamics of insecticide resistance in malaria vectors in Benin: first evidence of the presence of L1014S kdr mutation in Anopheles gambiae from West Africa

    Directory of Open Access Journals (Sweden)

    Ranson Hilary

    2011-09-01

    Full Text Available Abstract Background Insecticide resistance monitoring is essential to help national programmers to implement more effective and sustainable malaria control strategies in endemic countries. This study reported the spatial and seasonal variations of insecticide resistance in malaria vectors in Benin, West Africa. Methods Anopheles gambiae s.l populations were collected from October 2008 to June 2010 in four sites selected on the basis of different use of insecticides and environment. WHO susceptibility tests were carried out to detect resistance to DDT, fenitrothion, bendiocarb, permethrin and deltamethrin. The synergist piperonyl butoxide was used to assess the role of non-target site mechanisms in pyrethroid resistance. Anopheles gambiae mosquitoes were identified to species and to molecular M and S forms using PCR techniques. Molecular and biochemical assays were carried out to determine kdr and Ace.1R allelic frequencies and activity of the detoxification enzymes. Results Throughout the surveys very high levels of mortality to bendiocarb and fenitrothion were observed in An. gambiae s.l. populations. However, high frequencies of resistance to DDT and pyrethroids were seen in both M and S form of An. gambiae s.s. and Anopheles arabiensis. PBO increased the toxicity of permethrin and restored almost full susceptibility to deltamethrin. Anopheles gambiae s.l. mosquitoes from Cotonou and Malanville showed higher oxidase activity compared to the Kisumu susceptible strain in 2009, whereas the esterase activity was higher in the mosquitoes from Bohicon in both 2008 and 2009. A high frequency of 1014F kdr allele was initially showed in An. gambiae from Cotonou and Tori-Bossito whereas it increased in mosquitoes from Bohicon and Malanville during the second year. For the first time the L1014S kdr mutation was found in An. arabiensis in Benin. The ace.1R mutation was almost absent in An. gambiae s.l. Conclusion Pyrethroid and DDT resistance is

  6. Morphological and molecular characteristics of malaria vector anopheles superpictus populations in Iran

    Directory of Open Access Journals (Sweden)

    Shemshad K.

    2007-10-01

    Full Text Available Background: Anopheles superpictus is one of the main malaria vectors in Iran. The mosquitoes of this species are found throughout the Iranian plateau up to 2000 meters above sea level in the Alborz Mountains, south of the Zagros Mountains, and in the plains near the Caspian Sea and Persian Gulf. It has been reported that different geographical populations of An. superpictus play different roles in malaria transmission. Based on the presence or absence of a black spot/band on the apical segment of the female maxillary palpi, two morphological forms have been reported in this species. This work has been conducted to study other morphological features as well as the genetic structure of these two forms of An. superpictus in Iran. Methods: The different morphological characteristics of 35 different populations were observed and recorded. An 887 bp portion of the mitochondrial DNA (mtDNA cytochrome oxidase subunit I (COI was amplified and assayed by restriction fragment length polymorphism (RFLP using 18 enzymes and PCR-direct sequencing techniques.Results: Among the morphological characteristics studied, there are significant differences between the two forms with regard to the length of the palp light band (p<0.01, wing length (p<0.5, and the distance from the branching point of the II/IV veins to the tip of the wing (p<0.05. Results also revealed that these two forms are sympatric in most localities of Iran. RFLP analysis and sequences of about 710 bp of the gene showed that there was great variation between and/or within the populations, but these variations were not associated with the morphological forms.Conclusion: This is the first comprehensive study on the morphological and molecular characteristics of An. superpictus in the literature. To determine the role of these morphological forms or genetic haplotypes in malaria transmission, further molecular, cytological, morphological, and epidemiological studies are necessary.

  7. Molecular population genetics of the NADPH cytochrome P450 reductase (CPR) gene in Anopheles minimus.

    Science.gov (United States)

    Srivastava, Hemlata; Huong, Ngo Thi; Arunyawat, Uraiwan; Das, Aparup

    2014-08-01

    Development of insecticide resistance (IR) in mosquito vectors is a primary huddle to malaria control program. Since IR has genetic basis, and genes constantly evolve with response to environment for adaptation to organisms, it is important to know evolutionary pattern of genes conferring IR in malaria vectors. The mosquito Anopheles minimus is a major malaria vector of the Southeast (SE) Asia and India and is susceptible to all insecticides, and thus of interest to know if natural selection has shaped variations in the gene conferring IR. If not, the DNA fragment of such a gene could be used to infer population structure and demography of this species of malaria vector. We have therefore sequenced a ~569 bp DNA segment of the NADPH cytochrome P450 reductase (CPR) gene (widely known to confer IR) in 123 individuals of An. minimus collected in 10 different locations (eight Indian, one Thai and one Vietnamese). Two Indian population samples were completely mono-morphic in the CPR gene. In general, low genetic diversity was found with no evidence of natural selection in this gene. The data were therefore analyzed to infer population structure and demography of this species. The 10 populations could be genetically differentiated into four different groups; the samples from Thailand and Vietnam contained high nucleotide diversity. All the 10 populations conform to demographic equilibrium model with signature of past population expansion in four populations. The results in general indicate that the An. minimus mosquitoes sampled in the two SE Asian localities contain several genetic characteristics of being parts of the ancestral population.

  8. Some strains of Plasmodium falciparum, a human malaria parasite, evade the complement-like system of Anopheles gambiae mosquitoes.

    Science.gov (United States)

    Molina-Cruz, Alvaro; DeJong, Randall J; Ortega, Corrie; Haile, Ashley; Abban, Ekua; Rodrigues, Janneth; Jaramillo-Gutierrez, Giovanna; Barillas-Mury, Carolina

    2012-07-10

    Plasmodium falciparum lines differ in their ability to infect mosquitoes. The Anopheles gambiae L3-5 refractory (R) line melanizes most Plasmodium species, including the Brazilian P. falciparum 7G8 line, but it is highly susceptible to some African P. falciparum strains such as 3D7, NF54, and GB4. We investigated whether these lines differ in their ability to evade the mosquito immune system. Silencing key components of the mosquito complement-like system [thioester-containing protein 1 (TEP1), leucine-rich repeat protein 1, and Anopheles Plasmodium-responsive leucine-rich repeat protein 1] prevented melanization of 7G8 parasites, reverting the refractory phenotype. In contrast, it had no effect on the intensity of infection with NF54, suggesting that this line is able to evade TEP1-mediated lysis. When R females were coinfected with a line that is melanized (7G8) and a line that survives (3D7), the coinfection resulted in mixed infections with both live and encapsulated parasites on individual midguts. This finding shows that survival of individual parasites is parasite-specific and not systemic in nature, because parasites can evade TEP1-mediated lysis even when other parasites are melanized in the same midgut. When females from an extensive genetic cross between R and susceptible A. gambiae (G3) mosquitoes were infected with P. berghei, encapsulation was strongly correlated with the TEP1-R1 allele. However, P. falciparum 7G8 parasites were no longer encapsulated by females from this cross, indicating that the TEP1-R1 allele is not sufficient to melanize this line. Evasion of the A. gambiae immune system by P. falciparum may be the result of parasite adaptation to sympatric mosquito vectors and may be an important factor driving malaria transmission. PMID:22623529

  9. DETECTION OF PUTATIVE ANTIMALARIAL-RESISTANT PLASMODIUM VIVAX IN ANOPHELES VECTORS AT THAILAND-CAMBODIA AND THAILAND-MYANMAR BORDERS.

    Science.gov (United States)

    Rattaprasert, Pongruj; Chaksangchaichot, Panee; Wihokhoen, Benchawan; Suparach, Nutjaree; Sorosjinda-Nunthawarasilp, Prapa

    2016-03-01

    Monitoring of multidrug-resistant (MDR)falciparum and vivax malaria has recently been included in the Global Plan for Artemisinin Resistance Containment (GPARC) of the Greater Mekong Sub-region, particularly at the Thailand-Cambodia and Thailand-Myanmar borders. In parallel to GPARC, monitoring MDR malaria parasites in anopheline vectors is an ideal augment to entomological surveillance. Employing Plasmodium- and species-specific nested PCR techniques, only P. vivax was detected in 3/109 salivary gland DNA extracts of anopheline vectors collected during a rainy season between 24-26 August 2009 and 22-24 September 2009 and a dry season between 29-31 December 2009 and 16-18 January 2010. Indoor and out- door resting mosquitoes were collected in Thong Pha Phum District, Kanchanaburi Province (border of Thailand-Myanmar) and Bo Rai District, Trat Province (border of Thailand-Cambodia): one sample from Anopheles dirus at the Thailand-Cambodia border and two samples from An. aconitus from Thailand-Myanmar border isolate. Nucleotide sequencing of dihydrofolate reductase gene revealed the presence in all three samples of four mutations known to cause high resistance to antifolate pyrimethamine, but no mutations were found in multidrug resistance transporter 1 gene that are associated with (falciparum) resistance to quinoline antimalarials. Such findings indicate the potential usefulness of this approach in monitoring the prevalence of drug-resistant malaria parasites in geographically regions prone to the development of drug resistance and where screening of human population at risk poses logistical and ethical problems. Keywords: Anopheles spp, Plasmodium vivax, antimalarial resistance, Greater Mekong Sub-region, nested PCR, vector surveillance PMID:27244954

  10. A comprehensive gene expression atlas of sex- and tissue-specificity in the malaria vector, Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Crisanti Andrea

    2011-06-01

    Full Text Available Abstract Background The mosquito, Anopheles gambiae, is the primary vector of human malaria, a disease responsible for millions of deaths each year. To improve strategies for controlling transmission of the causative parasite, Plasmodium falciparum, we require a thorough understanding of the developmental mechanisms, physiological processes and evolutionary pressures affecting life-history traits in the mosquito. Identifying genes expressed in particular tissues or involved in specific biological processes is an essential part of this process. Results In this study, we present transcription profiles for ~82% of annotated Anopheles genes in dissected adult male and female tissues. The sensitivity afforded by examining dissected tissues found gene activity in an additional 20% of the genome that is undetected when using whole-animal samples. The somatic and reproductive tissues we examined each displayed patterns of sexually dimorphic and tissue-specific expression. By comparing expression profiles with Drosophila melanogaster we also assessed which genes are well conserved within the Diptera versus those that are more recently evolved. Conclusions Our expression atlas and associated publicly available database, the MozAtlas (http://www.tissue-atlas.org, provides information on the relative strength and specificity of gene expression in several somatic and reproductive tissues, isolated from a single strain grown under uniform conditions. The data will serve as a reference for other mosquito researchers by providing a simple method for identifying where genes are expressed in the adult, however, in addition our resource will also provide insights into the evolutionary diversity associated with gene expression levels among species.

  11. The resting sites and blood-meal sources of Anopheles minimus in Taiwan

    Directory of Open Access Journals (Sweden)

    Chen Yung-Chen

    2008-06-01

    Full Text Available Abstract Background The WHO declared Taiwan free from malaria in 1965, but in 2003 the reporting of two introduced cases in a rural area suggested a possible local transmission of this disease. Therefore, understanding the resting sites and the blood sources of Anopheles minimus is crucial in order to provide information for implementing vector control strategies. Methods During a two-year survey, mosquitoes were collected in houses and their surrounding areas and at the bank of larval habitats by backpack aspirators in 17 villages in rural areas of southern and eastern Taiwan for 1 hr. On the same day, blacklight traps were hung downward overnight. Blood-fed mosquito samples were analysed by PCR. Results Of the 195 total households surveyed by backpack aspirators, no Anopheles adults were collected inside the houses, while a single Anopheles minimus and a single Anopheles maculatus were collected outside of the houses. On the same day, 23 An. minimus, two An. maculatus, two Anopheles ludlowae, two Anopheles sinensis, and one Anopheles tessellatus were collected along the bank of larval habitats. In blacklight traps hung outside of the houses in the villages, 69 An. minimus, 62 An. ludlowae, 31 An. sinensis, and 19 An. maculatus were collected. In larval habitats, 98 An. ludlowae, 64 An. minimus, 49 An. sinensis, and 14 An. maculatus were collected. Of a total of 10 blood-fed samples, An. minimus fed on four animals including bovine (60%, dogs (20%, pig (10%, and non-chicken avian (10%. Conclusion Anopheles minimus, an opportunist feeder in Taiwan, was not collected inside the houses, but was found outside of the houses in villages and surrounding larval habitats. Therefore, an outdoor transmission of malaria is likely to occur and, thus, the bed nets, which are favoured for controlling the late biting of An. minimus, should be a very efficient and effective method for those local residents who sleep outdoors. Additionally, space spray of

  12. The nicotinic acetylcholine receptor gene family of the malaria mosquito, Anopheles gambiae.

    Science.gov (United States)

    Jones, Andrew K; Grauso, Marta; Sattelle, David B

    2005-02-01

    Nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission in the insect nervous system and are targets of widely selling insecticides. We have identified the nAChR gene family from the genome of the malaria mosquito vector, Anopheles gambiae, to be the second complete insect nAChR gene family described following that of Drosophila melanogaster. Like Drosophila, Anopheles possesses 10 nAChR subunits with orthologous relationships evident between the two insects. Interestingly, the Anopheles orthologues of Dbeta2 and Dbeta3 possess the vicinal cysteines that define alpha subunits. As with Dalpha4 and Dalpha6, the Anopheles orthologues are alternatively spliced at equivalent exons. Reverse transcription-polymerase chain reaction analysis shows that RNA A-to-I editing sites conserved between Dalpha6 of Drosophila and alpha7-2 of the tobacco budworm, Heliothis virescens, are not shared with the equivalent nAChR subunit of Anopheles. Indeed, RNA-editing sites identified in functionally significant regions of Dbeta1, Dalpha5, and Dalpha6 are not conserved in the mosquito orthologues, indicating considerable divergence of RNA molecules targeted for editing within the insect order Diptera. These findings shed further light on the diversity of nAChR subunits and may present a useful basis for the development of improved malaria control agents by enhancing our understanding of a validated mosquito insecticide target.

  13. Identification of one capa and two pyrokinin receptors from the malaria mosquito Anopheles gambiae

    DEFF Research Database (Denmark)

    Olsen, Stine S; Cazzamali, Giuseppe; Williamson, Michael;

    2007-01-01

    We cloned the cDNA of three evolutionarily related G protein-coupled receptors from the malaria mosquito Anopheles gambiae and functionally expressed them in Chinese hamster ovary cells. One receptor, Ang-Capa-R, was only activated by the two Anopheles capa neuropeptides Ang-capa-1 (GPTVGLFAFPRVa......We cloned the cDNA of three evolutionarily related G protein-coupled receptors from the malaria mosquito Anopheles gambiae and functionally expressed them in Chinese hamster ovary cells. One receptor, Ang-Capa-R, was only activated by the two Anopheles capa neuropeptides Ang-capa-1...... (GPTVGLFAFPRVamide) and Ang-capa-2 (pQGLVPFPRVamide) with EC(50) values of 8.6x10(-9)M and 3.3x10(-9)M, respectively, but not by any other known mosquito neuropeptide. The second receptor, Ang-PK-1-R, was selectively activated by the Anopheles pyrokinin-1 peptides Ang-PK-1-1 (AGGTGANSAMWFGPRLamide) and Ang-PK-1......-2 (AAAMWFGPRLamide) with EC(50) values of 3.3x10(-8)M and 2.5x10(-8)M, respectively, but not by mosquito capa or pyrokinin-2 peptides. For the third receptor, Ang-PK-2-R, the most potent ligands were the pyrokinin-2 peptides Ang-PK-2-1 (DSVGENHQRPPFAPRLamide) and Ang-PK-2-2 (NLPFSPRLamide) with EC(50) values of 5.2x...

  14. Anopheles gambiae Purine Nucleoside Phosphorylase: Catalysis, Structure, and Inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Taylor,E.; Rinaldo-Matthis, A.; Li, L.; Ghanem, M.; Hazleton, K.; Cassera, M.; Almo, S.; Schramm, V.

    2007-01-01

    The purine salvage pathway of Anopheles gambiae, a mosquito that transmits malaria, has been identified in genome searches on the basis of sequence homology with characterized enzymes. Purine nucleoside phosphorylase (PNP) is a target for the development of therapeutic agents in humans and purine auxotrophs, including malarial parasites. The PNP from Anopheles gambiae (AgPNP) was expressed in Escherichia coli and compared to the PNPs from Homo sapiens (HsPNP) and Plasmodium falciparum (PfPNP). AgPNP has kcat values of 54 and 41 s-1 for 2'-deoxyinosine and inosine, its preferred substrates, and 1.0 s-1 for guanosine. However, the chemical step is fast for AgPNP at 226 s-1 for guanosine in pre-steady-state studies. 5'-Deaza-1'-aza-2'-deoxy-1'-(9-methylene)-Immucillin-H (DADMe-ImmH) is a transition-state mimic for a 2'-deoxyinosine ribocation with a fully dissociated N-ribosidic bond and is a slow-onset, tight-binding inhibitor with a dissociation constant of 3.5 pM. This is the tightest-binding inhibitor known for any PNP, with a remarkable Km/Ki* of 5.4 x 107, and is consistent with enzymatic transition state predictions of enhanced transition-state analogue binding in enzymes with enhanced catalytic efficiency. Deoxyguanosine is a weaker substrate than deoxyinosine, and DADMe-Immucillin-G is less tightly bound than DADMe-ImmH, with a dissociation constant of 23 pM for AgPNP as compared to 7 pM for HsPNP. The crystal structure of AgPNP was determined in complex with DADMe-ImmH and phosphate to a resolution of 2.2 Angstroms to reveal the differences in substrate and inhibitor specificity. The distance from the N1' cation to the phosphate O4 anion is shorter in the AgPNP{center_dot}DADMe-ImmH{center_dot}PO4 complex than in HsPNP{center_dot}DADMe-ImmH{center_dot}SO4, offering one explanation for the stronger inhibitory effect of DADMe-ImmH for AgPNP.

  15. Inactivation of Anopheles gambiae Glutathione Transferase ε2 by Epiphyllocoumarin

    Directory of Open Access Journals (Sweden)

    Patience Marimo

    2016-01-01

    Full Text Available Glutathione transferases (GSTs are part of a major family of detoxifying enzymes that can catalyze the reductive dehydrochlorination of dichlorodiphenyltrichloroethane (DDT. The delta and epsilon classes of insect GSTs have been implicated in conferring resistance to this insecticide. In this study, the inactivation of Anopheles gambiae GSTε2 by epiphyllocoumarin (Tral 1 was investigated. Recombinant AgGSTε2 was expressed in Escherichia coli cells containing a pET3a-AGSTε2 plasmid and purified by affinity chromatography. Tral 1 was shown to inactivate GSTε2 both in a time-dependent manner and in a concentration-dependent manner. The half-life of GSTε2 in the presence of 25 μM ethacrynic acid (ETA was 22 minutes and with Tral 1 was 30 minutes, indicating that Tral 1 was not as efficient as ETA as an inactivator. The inactivation parameters kinact and KI were found to be 0.020 ± 0.001 min−1 and 7.5 ± 2.1 μM, respectively, after 90 minutes of incubation. Inactivation of GSTε2 by Tral 1 implies that Tral 1 covalently binds to this enzyme in vitro and would be expected to exhibit time-dependent effects on the enzyme in vivo. Tral 1, therefore, would produce irreversible effects when used together with dichlorodiphenyltrichloroethane (DDT in malaria control programmes where resistance is mediated by GSTs.

  16. TEMPAT PERKEMBANGBIAKAN ANOPHELES ACONITUS DI KABUPATEN JEPARA, JAWA TENGAH

    Directory of Open Access Journals (Sweden)

    Mardiana Mardiana

    2012-10-01

    Full Text Available Kabupaten Jepara adalah salah satu kabupaten endemis malaria di Jawa Tengah. Kasus malaria di Kabupaten Jepara terjadi akibat interaksi antara nyamuk/vektor, parasit, lingkungan dan manusia yang mengalami perubahan dari waktu ke waktu. Penelitian tempat perkembangbiakan vektor malaria Anopheles aconitus dilakukan di Desa Buaran, Kecamatan Mayong, Kabupaten Jepara, Jawa Tengah pada tahun 2000. Tujuan penelitian mengetahui pengaruh perubahan lingkungan alami dan perubahan buatan oleh manusia terhadap tempat perkembangbiakan An. aconitus. Metode penelitian dengan cara pengumpulan larva dan pupa yang dilakukan pada pagi hari dengan menggunakan cidukan di tempat-tempat genangan air yang diduga sebagai tempat perkembangbiakan An. aconitus Dari hasil pengambilan jentik di sawah, saluran irigasi, sungai dan lubang/kobakan bekas  galian pasir yang digenangi air, ternyata yang banyak ditemukan adalah jentik An. aconitus dari 6 spesies jentik nyamuk yang teridentifikasi. Habitat utama An. aconitus di Kabupaten Jepara adalah persawahan. Perubahan habitat terjadi dengan adanya perubahan lingkungan dan musim, dimana pada musim kemarau sebagian sawah menjadi kering, sehingga mempengaruhi peril'aku nyamuk  untuk mencari habitat yang baru seperti  sungai  dan  saluran irigasi. Selain perubahan musim juga adanya lubang/kobakan yang digenangan air bekas galian pasir di sepanjang tepi sungai, sebagai akibat perbuatan dari penduduk setempat, sehingga menjadi habitat baru dari nyamuk terutama An.aconitus. Kata Kunci : Tempat Perkembangbiakan, An. aconitus, Malaria,

  17. Observaciones sobre Phlebotomus y Anopheles en el Callejon de Huaylas

    Directory of Open Access Journals (Sweden)

    Arístides Herrer

    1943-03-01

    Full Text Available Se han llevado a cabo observaciones entomológicas en relación con la verruga y el paludismo en la zona del Callejón de Huaylas comprendida desde la ciudad de Yuramarca a la de Huarás, prestando especial atención a la región del Cañón del Pato. Se indica, como resultados de tales observaciones, la presencia de las titiras: Phlebotomus verrucarum, P. peruensis, P. noguchii y una especia nueva, señalando detenidamente las localidades donde se las han encontrado. El P. verrucarum, principal trasmisor de la verruga, se halla a lo largo de toda la zona estudiada, siendo su número bastante reducido en la ciudad de Huarás. Desde Yuramarca hasta cerca de la ciudad de Carás se ha encontrado únicamente el Anopheles pseudopunctipennis, tanto larvas como adultos. Sus criaderos se encuentran principalmente en las márgenes del río Santa, en las de algunos afluentes de éste y en numerosos, manantiales.

  18. Transcriptome analysis of Anopheles stephensi embryo using expressed sequence tags

    Indian Academy of Sciences (India)

    Kaustubh Gokhale; Deepak P Patil; Dhiraj P Dhotre; Rajnikant Dixit; Murlidhar J Mendki; Milind S Patole; Yogesh S Shouche

    2013-06-01

    Germ band retraction (GBR) stage is one of the important stages during insect development. It is associated with an extensive epithelial morphogenesis and may also be pivotal in generation of morphological diversity in insects. Despite its importance, only a handful of studies report the transcriptome repertoire of this stage in insects. Here, we report generation, annotation and analysis of ESTs from the embryonic stage (16–22 h post fertilization) of laboratory-reared Anopheles stephensi mosquitoes. A total of 1002 contigs were obtained upon clustering of 1140 high-quality ESTs, which demonstrates an astonishingly low transcript redundancy (12.1%). Putative functions were assigned only to 213 contigs (21%), comprising mainly of transcripts encoding protein synthesis machinery. Approximately 78% of the transcripts remain uncharacterized, illustrating a lack of sequence information about the genes expressed in the embryonic stages of mosquitoes. This study highlights several novel transcripts, which apart from insect development, may significantly contribute to the essential biological complexity underlying insect viability in adverse environments. Nonetheless, the generated sequence information from this work provides a comprehensive resource for genome annotation, microarray development, phylogenetic analysis and other molecular biology applications in entomology.

  19. Determinants of Anopheles seasonal distribution patterns across a forest to periurban gradient near Iquitos, Peru.

    Science.gov (United States)

    Reinbold-Wasson, Drew D; Sardelis, Michael R; Jones, James W; Watts, Douglas M; Fernandez, Roberto; Carbajal, Faustino; Pecor, James E; Calampa, Carlos; Klein, Terry A; Turell, Michael J

    2012-03-01

    As part of a field ecology study of arbovirus and malaria activity in the Amazon Basin, Loreto Department, Peru, we collected mosquitoes landing on humans at a forest site and inside and outside of residences and military barracks at periurban, rural, and village sites. We collected 11 Anopheles spp. from these four sites. An. darlingi, the principal malaria vector in the region, accounted for 98.7% of all Anopheles spp. collected at Puerto Almendra. Peaks in landing activity occurred during the December and April collection periods. However, the percent of sporozoite-positive Anopheles spp. was highest 1-2 months later, when landing activity decreased to approximately 10% of the peak activity periods. At all sites, peak landing activity occurred about 2 hours after sunset. These data provide a better understanding of the taxonomy, population density, and seasonal and habitat distribution of potential malaria vectors within the Amazon Basin region.

  20. The effects of plant essential oils on escape response and mortality rate of Aedes aegypti and Anopheles minimus.

    Science.gov (United States)

    Sathantriphop, Sunaiyana; Achee, Nicole L; Sanguanpong, Unchalee; Chareonviriyaphap, Theeraphap

    2015-12-01

    The High Throughput Screening System (HITSS) has been applied in insecticide behavioral response studies with various mosquito species. In general, chemical or natural compounds can produce a range of insect responses: contact irritancy, spatial repellency, knock-down, and toxicity. This study characterized these actions in essential oils derived from citronella, hairy basil, catnip, and vetiver in comparison to DEET and picaridin against Aedes aegypti and Anopheles minimus mosquito populations. Results indicated the two mosquito species exhibited significantly different (P0.05) against Ae. aegypti. Spatial repellency responses were elicited in both mosquito species when exposed to all compounds, but the strength of the repellent response was dependent on compound and concentration. Data show that higher test concentrations had greatest toxic effects on both mosquito populations, but vetiver had no toxic effect on Ae. aegypti and picaridin did not elicit toxicity in either Ae. aegypti or An. minimus at any test concentration. Ultimately, this study demonstrates the ability of the HITSS assay to guide selection of effective plant essential oils for repelling, irritating, and killing mosquitoes. PMID:26611967

  1. The effects of plant essential oils on escape response and mortality rate of Aedes aegypti and Anopheles minimus.

    Science.gov (United States)

    Sathantriphop, Sunaiyana; Achee, Nicole L; Sanguanpong, Unchalee; Chareonviriyaphap, Theeraphap

    2015-12-01

    The High Throughput Screening System (HITSS) has been applied in insecticide behavioral response studies with various mosquito species. In general, chemical or natural compounds can produce a range of insect responses: contact irritancy, spatial repellency, knock-down, and toxicity. This study characterized these actions in essential oils derived from citronella, hairy basil, catnip, and vetiver in comparison to DEET and picaridin against Aedes aegypti and Anopheles minimus mosquito populations. Results indicated the two mosquito species exhibited significantly different (P0.05) against Ae. aegypti. Spatial repellency responses were elicited in both mosquito species when exposed to all compounds, but the strength of the repellent response was dependent on compound and concentration. Data show that higher test concentrations had greatest toxic effects on both mosquito populations, but vetiver had no toxic effect on Ae. aegypti and picaridin did not elicit toxicity in either Ae. aegypti or An. minimus at any test concentration. Ultimately, this study demonstrates the ability of the HITSS assay to guide selection of effective plant essential oils for repelling, irritating, and killing mosquitoes.

  2. FAUNA DAN TEMPAT PERKEMBANGBIAKAN POTENSIAL NYAMUK Anopheles spp DI KECAMATAN MAYONG, KABUPATEN JEPARA, JAWA TENGAH

    Directory of Open Access Journals (Sweden)

    Mardiana Mardiana

    2012-10-01

    Full Text Available Malaria masih merupakan masalah kesehatan masyarakat di beberapa daerah pedesaan di Jawa Tengah. Usaha pemberantasan malaria telah dilakukan oleh program baik secara kimiawi maupun hayati, guna memutuskan rantai penularan. Penelitian fauna dan tempat perindukan potensial nyamuk Anopheles telah dilakukan di Desa Buaran, Kecamatan Mayong I, Kabupaten Jepara, Jawa Tengah. Penangkapan nyamuk dengan umpan orang dilakukan di dalam dan di luar rumah pada malam hari dari pukul 18.00-24.00 yang masing-masing dilakukan oleh dua orang kolektor. Penangkapan nyamuk yang istirahat di dalam dan luar rumah (vegetasi pada pagi hari dilakukan pukul 06.00-08.00, yang dilakukan satu bulan 4 kali penangkapan selama 6 bulan. Pengambilan larva dan pupa dilakukan dari pukul 06.00-08.00 pagi di tempat genangan air dan sawah serta tempat yang potensial diduga sebagai perindukan Anopheles. Hasil penangkapan selama 6 bulan, diperoleh 1248 ekor nyamuk Anopheles yang terdiri dari 6 spesies yaitu: An. aconitus 442 ekor (35,42%, An. annularis 69 ekor (5,53% , An. barbirostris 30 ekor (2,4%, An. maculatus 2 ekor (0,16%, An. tesselatus 5 ekor (0,40% dan An. vagus 700 ekor (56,09%. Populasi aconitus ditemukan dari penangkapan di luar rumah, pada bulan Juli (56,40%, Agustus (42,80% dan Oktober (39,50% sedangkan pada bulan Mei (52,9%, Juni (44% dan September (50,40% dari penangkapan di kandang sapi. Pengambilan larva dan pupa Anopheles dilakukan di tempat habitat seperti sawah yang pada bulan Aguslus terbanyak ditemukan sebesar 85 (1.70, di sungai ditemukan hanya 4 (0.08 serta di genangan air bekas telapak kaki/kobokan ditemukan sebesar 6 (0.12. Ternyata tempat perindukan yang potensial larva Anopheles pada musim kemarau, ditemukan pada sungai yang ditanami kangkung oleh masyarakat selempat. Kata kunci: Fauna, tempat perindukan, Anopheles, vector

  3. Molecular identification of a myosuppressin receptor from the malaria mosquito Anopheles gambiae

    DEFF Research Database (Denmark)

    Schöller, Susanne; Belmont, Martin; Cazzamali, Giuseppe;

    2005-01-01

    The insect myosuppressins (X1DVX2HX3FLRFamide) are neuropeptides that generally block insect muscle activities. We have used the genomic sequence information from the malaria mosquito Anopheles gambiae Genome Project to clone a G protein-coupled receptor that was closely related to the two...... previously cloned and characterized myosuppressin receptors from Drosophila [Proc. Natl. Acad. Sci. USA 100 (2003) 9808]. The mosquito receptor cDNA was expressed in Chinese hamster ovary cells and was found to be activated by low concentrations of Anopheles myosuppressin (TDVDHVFLRFamide; EC50, 1.6 x 10...... identification of a mosquito neuropeptide receptor....

  4. Pyrethroid susceptibility and behavioral avoidance in Anopheles epiroticus, a malaria vector in Thailand.

    Science.gov (United States)

    Ritthison, Wanapa; Titgratog, Rungarun; Tainchum, Krajana; Bangs, Michael J; Manguin, Sylvie; Chareonviriyaphap, Theeraphap

    2014-06-01

    The physiological susceptibility to insecticides and the behavioral responses of four wild-caught populations of female Anopheles epiroticus to synthetic pyrethroids (deltamethrin, permethrin, and alpha-cypermethrin) were assessed. Test populations were collected from different localities along the eastern coast, Trat (TR), Songkhla (SK), and Surat Thani (ST) and one population from the western coast, Phang Nga (PN). Results showed that all four populations of An. epiroticus were susceptible to all three synthetic pyrethroids tested. Behavioral responses to test compounds were characterized for all four populations using an excito-repellency test system. TR displayed the strongest contact excitation ('irritancy') escape response (76.8% exposed to deltamethrin, 74.1% permethrin, and 78.4% alpha-cypermethrin), followed by the PN population (24.4% deltamethrin, 35% permethrin, and 34.4% for alpha-cypermethrin) by rapidly escaping test chambers after direct contact with surfaces treated with each active ingredient compared with match-paired untreated controls. Moderate non-contact repellency responses to all three compounds were observed in the TR population but were comparatively weaker than paired contact tests. Few mosquitoes from the SK and ST populations escaped from test chambers, regardless of insecticide tested or type of trial. We conclude that contact excitation was a major behavioral response in two populations of An. epiroticus, whereas two other populations showed virtually no escape response following exposure to the three pyrethroids. The explanation for these large unexpected differences in avoidance responses between pyrethroid-susceptible populations of the same species is unclear and warrants further investigation.

  5. Evaluation of herbal essential oil as repellents against Aedes aegypti (L.) and Anopheles dirus Peyton & Harrion

    Institute of Scientific and Technical Information of China (English)

    Duangkamon Sritabutra; Mayura Soonwera; Sirirat Waltanachanobon; Supaporn Poungjai

    2011-01-01

    Objective: To investigate the repellent activity of herbal essential oils from garlic (Allium sativum), clove (Syzygium aromaticum), lemon grass (Cybopogon citratus), citronella grass (Cymbopogon nardus), peppermint (Mentha piperita), eucalyptus (Eucalyptus globulus), orange (Citrus sinensis) and sweet basil (Ocimum basilicum) and their combinations against Aedes aegypti (Ae. aegypti) (L.) and Anopheles dirus (An. dirus) Peyton & Harrion under laboratory conditions.Methods:In laboratory condition, 0.1 mL of each essential oil was applied to 3-10 cm of exposed area on a volunteer’s forearm. The test was carried out every 30 min until fewer than two mosquitoes bit or land during the 3 min study period and then the repellency test was stopped.Results:Essential oil from lemon grass exhibited protection against biting from two mosquito species, for Ae. aegypti [(98.66±11.56) min protection time and 0.97% biting rate] and for An. dirus [(98.00±15.28) min protection time and 0.80% biting rate]. The combinations from eucalyptus oil and sweet basil oil were effective as repellents and feeding deterrents against Ae. aegypti [(98.87±10.28) min protection time and 0.90% biting rate] and An. dirus [(210±10.70) min protection time and 0.93% biting rate]. All herbal repellents exhibited the period of protection time against Ae. aegypti which was lower than 120 min. Conlussions: It can be concluded that oils of lemon grass and combination from eucalyptus-sweet basil are the most effective in repellent activity.

  6. Larvicidal activity of medicinal plant extracts against Anopheles subpictus & Culex tritaeniorhynchus

    Science.gov (United States)

    Kamaraj, C.; Bagavan, A.; Elango, G.; Zahir, A. Abduz; Rajakumar, G.; Marimuthu, S.; Santhoshkumar, T.; Rahuman, A. Abdul

    2011-01-01

    Background & objectives: Mosquitoes transmit serious human diseases, causing millions of deaths every year and the development of resistance to chemical insecticides resulting in rebounding vectorial capacity. Plants may be alternative sources of mosquito control agents. The present study assessed the role of larvicidal activities of hexane, chloroform, ethyl acetate, acetone, and methanol dried leaf and bark extracts of Annona squamosa L., Chrysanthemum indicum L., and Tridax procumbens L. against the fourth instar larvae of malaria vector, Anopheles subpictus Grassi and Japanese encephalitis vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae). Methods: Larvicidal activities of three medicinal plant extracts were studied in the range of 4.69 to 1000 mg/l in the laboratory bioassays against early 4th instar larvae of An. subpictus and Cx. tritaeniorhynchus. The mortality data were subjected to probit analysis to determine the lethal concentrations (LC50 and LC90) to kill 50 and 90 per cent of the treated larvae of the respective species. Results: All plant extracts showed moderate effects after 24 h of exposure; however, the highest toxic effect of bark methanol extract of A. squamosa, leaf ethyl acetate extract of C. indicum and leaf acetone extract of T. procumbens against the larvae of An. subpictus (LC50 = 93.80, 39.98 and 51.57 mg/l) and bark methanol extract of A. squamosa, leaf methanol extract of C. indicum and leaf ethyl acetate extract of T. procumbens against the larvae of Cx. tritaeniorhynchus (LC50 =104.94, 42.29 and 69.16 mg/l) respectively. Interpretation & Conclusions: Our data suggest that the bark ethyl acetate and methanol extract of A. squamosa, leaf ethyl acetate and methanol extract of C. indicum, acetone and ethyl acetate extract of T. procumbens have the potential to be used as an ecofriendly approach for the control of the An. subpictus, and Cx. tritaeniorhynchus. PMID:21808141

  7. Multicopper oxidase-3 is a laccase associated with the peritrophic matrix of Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Minglin Lang

    Full Text Available The multicopper oxidase (MCO family of enzymes includes laccases, which oxidize a broad range of substrates including polyphenols and phenylendiamines; ferroxidases, which oxidize ferrous iron; and several other oxidases with specific substrates such as ascorbate, bilirubin or copper. The genome of Anopheles gambiae, a species of mosquito, encodes five putative multicopper oxidases. Of these five, only AgMCO2 has known enzymatic and physiological functions: it is a highly conserved laccase that functions in cuticle pigmentation and tanning by oxidizing dopamine and dopamine derivatives. AgMCO3 is a mosquito-specific gene that is expressed predominantly in adult midguts and Malpighian tubules. To determine its enzymatic function, we purified recombinant AgMCO3 and analyzed its activity. AgMCO3 oxidized hydroquinone (a p-diphenol, the five o-diphenols tested, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid (ABTS, and p-phenylenediamine, but not ferrous iron. The catalytic efficiencies of AgMCO3 were similar to those of cuticular laccases (MCO2 orthologs, except that AgMCO3 oxidized all of the phenolic substrates with similar efficiencies whereas the MCO2 isoforms were less efficient at oxidizing catechol or dopa. These results demonstrate that AgMCO3 can be classified as a laccase and suggest that AgMCO3 has a somewhat broader substrate specificity than MCO2 orthologs. In addition, we observed AgMCO3 immunoreactivity in the peritrophic matrix, which functions as a selective barrier between the blood meal and midgut epithelial cells, protecting the midgut from mechanical damage, pathogens, and toxic molecules. We propose that AgMCO3 may oxidize toxic molecules in the blood meal leading to detoxification or to cross-linking of the molecules to the peritrophic matrix, thus targeting them for excretion.

  8. Transcription regulation of sex-biased genes during ontogeny in the malaria vector Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Kalle Magnusson

    Full Text Available In Anopheles gambiae, sex-regulated genes are responsible for controlling gender dimorphism and are therefore crucial in determining the ability of female mosquitoes to transmit human malaria. The identification and functional characterization of these genes will shed light on the sexual development and maturation of mosquitoes and provide useful targets for genetic control measures aimed at reducing mosquito fertility and/or distorting the sex ratio.We conducted a genome wide transcriptional analysis of sex-regulated genes from early developmental stages through adulthood combined with functional screening of novel gonadal genes. Our results demonstrate that the male-biased genes undergo a major transcription turnover starting from larval stages to adulthood. The male biased genes at the adult stage include a significant high number of unique sequences compared to the rest of the genome. This is in contrast to female-biased genes that are much more conserved and are mainly activated during late developmental stages.The high frequency of unique sequences would indicate that male-biased genes evolve more rapidly than the rest of the genome. This finding is particularly intriguing because A. gambiae is a strictly female monogamous species suggesting that driving forces in addition to sperm competition must account for the rapid evolution of male-biased genes. We have also identified and functionally characterized a number of previously unknown A. gambiae testis- and ovary-specific genes. Two of these genes, zero population growth and a suppressor of defective silencing 3 domain of the histone deacetylase co-repressor complex, were shown to play a key role in gonad development.

  9. Biochemical characterization of chitin synthase activity and inhibition in the African malaria mosquito, Anopheles gambiae

    Institute of Scientific and Technical Information of China (English)

    Xin Zhang; Kun Yan Zhu

    2013-01-01

    Chitin synthase (CHS) is an important enzyme catalyzing the formation of chitin polymers in all chitin containing organisms and a potential target site for insect pest control.However,our understanding of biochemical properties of insect CHSs has been very limited.We here report enzymatic and inhibitory properties of CHS prepared from the African malaria mosquito,Anopheles gambiae.Our study,which represents the first time to use a nonradioactive method to assay CHS activity in an insect species,determined the optimal conditions for measuring the enzyme activity,including pH,temperature,and concentrations of the substrate uridine diphosphate N-acetyl-D-glucosamine (UDPGlcNAc) and Mg++.The optimal pH was about 6.5-7.0,and the highest activity was detected at temperatures between 37℃ and 44℃.Dithithreitol is required to prevent melanization of the enzyme extract.CHS activity was enhanced at low concentration of GlcNAc,but inhibited at high concentrations.Proteolytic activation of the activity is significant both in the 500×g supernatant and the 40 000×g pellet.Our study revealed only slight in vitro inhibition ofA.gambiae CHS activity by diflubenzuron and nikkomycin Z at the highest concentration (2.5μmol/L) examined.There was no in vitro inhibition by polyoxin D at any concentration examined.Furthermore,we did not observe any in vivo inhibition of CHS activity by any of these chemicals at any concentration examined.Our results suggest that the inhibition of chitin synthesis by these chemicals is not due to direct inhibition of CHS in A.gambiae.

  10. Molecular evolution of a gene cluster of serine proteases expressed in the Anopheles gambiae female reproductive tract

    Directory of Open Access Journals (Sweden)

    Tramontano Anna

    2011-03-01

    Full Text Available Abstract Background Genes involved in post-mating processes of multiple mating organisms are known to evolve rapidly due to coevolution driven by sexual conflict among male-female interacting proteins. In the malaria mosquito Anopheles gambiae - a monandrous species in which sexual conflict is expected to be absent or minimal - recent data strongly suggest that proteolytic enzymes specifically expressed in the female lower reproductive tissues are involved in the processing of male products transferred to females during mating. In order to better understand the role of selective forces underlying the evolution of proteins involved in post-mating responses, we analysed a cluster of genes encoding for three serine proteases that are down-regulated after mating, two of which specifically expressed in the atrium and one in the spermatheca of A. gambiae females. Results The analysis of polymorphisms and divergence of these female-expressed proteases in closely related species of the A. gambiae complex revealed a high level of replacement polymorphisms consistent with relaxed evolutionary constraints of duplicated genes, allowing to rapidly fix novel replacements to perform new or more specific functions. Adaptive evolution was detected in several codons of the 3 genes and hints of episodic selection were also found. In addition, the structural modelling of these proteases highlighted some important differences in their substrate specificity, and provided evidence that a number of sites evolving under selective pressures lie relatively close to the catalytic triad and/or on the edge of the specificity pocket, known to be involved in substrate recognition or binding. The observed patterns suggest that these proteases may interact with factors transferred by males during mating (e.g. substrates, inhibitors or pathogens and that they may have differently evolved in independent A. gambiae lineages. Conclusions Our results - also examined in light of

  11. Mosquito species geographical distribution in Iraq 2009

    Directory of Open Access Journals (Sweden)

    Haidar A. Hantosh, Hameeda M. Hassan, Bushra Ahma & Ali Al-fatlawy

    2012-03-01

    Full Text Available Background & objectives: Mosquitoes transmit diseases to >700 million people annually. Malaria kills threemillion persons every year, including one child every 30 sec. Worldwide there are >3000 mosquito species.In Iraq, 37 species have been identified in different surveys over several decades. We conducted an entomologicalsurvey to determine the mosquito species and their distribution in Iraq in 2009.Methods: Between January 20 and December 31, 2009, mosquitoes in houses in 12 Iraqi provinces werecollected and speciated. Five to 10 villages were selected randomly in each province and in each village 10houses were selected randomly to collect mosquitoes and the density of mosquitoes per room was calculated.Kits for entomological investigation were used and the collected mosquitoes were sent to the vector bornedisease section laboratory for classification using the Naval Medical Research Unit 3 standard classificationkey.Results: A total of 29,156 mosquitoes were collected, representing two genera: Anopheles (n=13,268, or 46%of the total collected and Culex (n=15,888, or 54% of the total collected. Four Anopheles (An. pulcherrimus,An. stephensi, An. superpictus, and An. sacharovi and one Culex (Cx. pipiens species were identified. Anophelespulcherrimus was found in 11 provinces, An. stephensi in 7, An. superpictus in 2 and An. sacharovi in oneprovince, while Cx. pipiens was found in all the 12 provinces. Two peaks of mosquito density were found: thefirst from April–June and the other from September–October.Interpretation & conclusion: There are clear differences in Anopheles mosquito species geographical distributionand density among Iraqi provinces, while Cx. pipiens mosquitoes are distributed all over Iraq. All mosquitogenera show clear seasonal density variation. The study highlights that the manual mosquito classification isnot enough to identify all the species of mosquitoes in Iraq

  12. Predicted distribution of major malaria vectors belonging to the Anopheles dirus complex in Asia: ecological niche and environmental influences.

    Directory of Open Access Journals (Sweden)

    Valerie Obsomer

    Full Text Available Methods derived from ecological niche modeling allow to define species distribution based on presence-only data. This is particularly useful to develop models from literature records such as available for the Anopheles dirus complex, a major group of malaria mosquito vectors in Asia. This research defines an innovative modeling design based on presence-only model and hierarchical framework to define the distribution of the complex and attempt to delineate sibling species distribution and environmental preferences. At coarse resolution, the potential distribution was defined using slow changing abiotic factors such as topography and climate representative for the timescale covered by literature records of the species. The distribution area was then refined in a second step using a mask of current suitable land cover. Distribution area and ecological niche were compared between species and environmental factors tested for relevance. Alternatively, extreme values at occurrence points were used to delimit environmental envelopes. The spatial distribution for the complex was broadly consistent with its known distribution and influencing factors included temperature and rainfall. If maps developed from environmental envelopes gave similar results to modeling when the number of sites was high, the results were less similar for species with low number of recorded presences. Using presence-only models and hierarchical framework this study not only predicts the distribution of a major malaria vector, but also improved ecological modeling analysis design and proposed final products better adapted to malaria control decision makers. The resulting maps can help prioritizing areas which need further investigation and help simulate distribution under changing conditions such as climate change or reforestation. The hierarchical framework results in two products one abiotic based model describes the potential maximal distribution and remains valid for decades

  13. A High-Affinity Adenosine Kinase from Anopheles Gambiae

    Energy Technology Data Exchange (ETDEWEB)

    M Cassera; M Ho; E Merino; E Burgos; A Rinaldo-Matthis; S Almo; V Schramm

    2011-12-31

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K{sub m} = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap{sub 4}A (2.0 {angstrom} resolution) reveals interactions for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg{sup 2+} ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer {alpha}/{beta}/{alpha} sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.

  14. Unexpected high losses of Anopheles gambiae larvae due to rainfall.

    Directory of Open Access Journals (Sweden)

    Krijn P Paaijmans

    Full Text Available BACKGROUND: Immature stages of the malaria mosquito Anopheles gambiae experience high mortality, but its cause is poorly understood. Here we study the impact of rainfall, one of the abiotic factors to which the immatures are frequently exposed, on their mortality. METHODOLOGY/PRINCIPAL FINDINGS: We show that rainfall significantly affected larval mosquitoes by flushing them out of their aquatic habitat and killing them. Outdoor experiments under natural conditions in Kenya revealed that the additional nightly loss of larvae caused by rainfall was on average 17.5% for the youngest (L1 larvae and 4.8% for the oldest (L4 larvae; an additional 10.5% (increase from 0.9 to 11.4% of the L1 larvae and 3.3% (from 0.1 to 3.4% of the L4 larvae were flushed away and larval mortality increased by 6.9% (from 4.6 to 11.5% and 1.5% (from 4.1 to 5.6% for L1 and L4 larvae, respectively, compared to nights without rain. On rainy nights, 1.3% and 0.7% of L1 and L4 larvae, respectively, were lost due to ejection from the breeding site. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that immature populations of malaria mosquitoes suffer high losses during rainfall events. As these populations are likely to experience several rain showers during their lifespan, rainfall will have a profound effect on the productivity of mosquito breeding sites and, as a result, on the transmission of malaria. These findings are discussed in the light of malaria risk and changing rainfall patterns in response to climate change.

  15. Chloroquine mediated modulation of Anopheles gambiae gene expression.

    Directory of Open Access Journals (Sweden)

    Patrícia Abrantes

    Full Text Available BACKGROUND: Plasmodium development in the mosquito is crucial for malaria transmission and depends on the parasite's interaction with a variety of cell types and specific mosquito factors that have both positive and negative effects on infection. Whereas the defensive response of the mosquito contributes to a decrease in parasite numbers during these stages, some components of the blood meal are known to favor infection, potentiating the risk of increased transmission. The presence of the antimalarial drug chloroquine in the mosquito's blood meal has been associated with an increase in Plasmodium infectivity for the mosquito, which is possibly caused by chloroquine interfering with the capacity of the mosquito to defend against the infection. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we report a detailed survey of the Anopheles gambiae genes that are differentially regulated by the presence of chloroquine in the blood meal, using an A. gambiae cDNA microarray. The effect of chloroquine on transcript abundance was evaluated separately for non-infected and Plasmodium berghei-infected mosquitoes. Chloroquine was found to affect the abundance of transcripts that encode proteins involved in a variety of processes, including immunity, apoptosis, cytoskeleton and the response to oxidative stress. This pattern of differential gene expression may explain the weakened mosquito defense response which accounts for the increased infectivity observed in chloroquine-treated mosquitoes. CONCLUSIONS/SIGNIFICANCE: The results of the present study suggest that chloroquine can interfere with several putative mosquito mechanisms of defense against Plasmodium at the level of gene expression and highlight the need for a better understanding of the impacts of antimalarial agents on parasite transmission.

  16. Islands and Stepping-Stones: Comparative Population Structure of Anopheles gambiae sensu stricto and Anopheles arabiensis in Tanzania and Implications for the Spread of Insecticide Resistance.

    OpenAIRE

    Deodatus Maliti; Hilary Ranson; Stephen Magesa; William Kisinza; Juma Mcha; Khamis Haji; Gerald Killeen; David Weetman

    2014-01-01

    Population genetic structures of the two major malaria vectors Anopheles gambiae s.s. and An. arabiensis, differ markedly across Sub-Saharan Africa, which could reflect differences in historical demographies or in contemporary gene flow. Elucidation of the degree and cause of population structure is important for predicting the spread of genetic traits such as insecticide resistance genes or artificially engineered genes. Here the population genetics of An. gambiae s.s. and An. arabiensis in ...

  17. Ovicidal and repellent activities of botanical extracts against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera:Culicidae)

    Institute of Scientific and Technical Information of China (English)

    Govindarajan M; Mathivanan T; Elumalai K; Krishnappa K; Anandan A

    2011-01-01

    Objective: To determine the ovicidal and repellent activities of methanol leaf extract ofErvatamia coronaria (E. coronaria) and Caesalpinia pulcherrima (C. pulcherrima) against Culex quinquefasciatus (Cx. quinquefasciatus), Aedes aegypti (Ae. aegypti) and Anopheles stephensi (An. stephensi). Methods: The ovicidal activity was determined against three mosquito species at various concentrations ranging from 50-450 ppm under the laboratory conditions. The hatch rates were assessed 48 h after treatment. The repellent efficacy was determined against three mosquito species at three concentrations viz., 1.0, 2.5 and 5.0 mg/cm2 under the laboratory conditions.Results:The crude extract of E. coronaria exerted zero hatchability (100% mortality) at 250, 200 and 150 ppm for Cx. quinquefasciatus, Ae. aegypti and An. stephensi, respectively. The crude extract of C. pulcherrima exerted zero hatchability (100% mortality) at 375, 300 and 225 ppm for Cx. quinquefasciatus, Ae. aegypti and An. Stephensi, respectively. The methanol extract of E. coronaria found to be more repellenct than C. pulcherrima extract. A higher concentration of 5.0 mg/cm2 provided 100% protection up to 150, 180 and 210 min against Cx. quinquefasciatus, Ae.aegypti and An. stephensi, respectively. The results clearly showed that repellent activity was dose dependent. Conclusions: From the results it can be concluded the crude extracts of E. coronaria and C. pulcherrima are an excellent potential for controlling Cx. quinquefasciatus, Ae. aegypti and An. stephensi mosquitoes.

  18. Radiation-induced sterility for pupal and adult stages of the malaria moquito Anopheles arabiensis

    OpenAIRE

    Helinski, M.E.H.; Parker, A.G.; Knols, B.G.J.

    2006-01-01

    Background - In the context of the Sterile Insect Technique (SIT), radiation-induced sterility in the malaria mosquito Anopheles arabiensis Patton (Diptera: Culicidae) was studied. Male mosquitoes were exposed to gamma rays in the pupal or adult stage and dose-sterility curves were determined. Methods - Pupae were irradiated shortly before emergence (at 22-26 hrs of age), and adults

  19. Larvicidal effects of a neem (Azadirachta indica) oil formulation on the malaria vector Anopheles gambiae

    NARCIS (Netherlands)

    Okumu, F.O.; Knols, B.G.J.; Fillinger, U.

    2007-01-01

    Background - Larviciding is a key strategy used in many vector control programmes around the world. Costs could be reduced if larvicides could be manufactured locally. The potential of natural products as larvicides against the main African malaria vector, Anopheles gambiae s.s was evaluated. Method

  20. Improvement of a synthetic lure for Anopheles gambiae using compounds produced by human skin microbiota

    NARCIS (Netherlands)

    Verhulst, N.O.; Mbadi, P.A.; Bukovinszkine-Kiss, G.; Mukabana, W.R.; Loon, van J.J.A.; Takken, W.; Smallegange, R.C.

    2011-01-01

    Background - Anopheles gambiae sensu stricto is considered to be highly anthropophilic and volatiles of human origin provide essential cues during its host-seeking behaviour. A synthetic blend of three human-derived volatiles, ammonia, lactic acid and tetradecanoic acid, attracts A. gambiae. In addi

  1. Control of pyrethroid-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes with chlorfenapyr in Benin

    NARCIS (Netherlands)

    N'Guessan, R.; Boko, P.; Odjo, A.; Knols, B.G.J.; Akogbeto, M.; Rowland, M.

    2009-01-01

    Objective To compare the efficacy of chlorfenapyr applied on mosquito nets and as an indoor residual spray against populations of Anopheles gambiae and Culex quinquefasciatus in an area of Benin that shows problematic levels of pyrethroid resistance. Method Eight-week trial conducted in experimental

  2. Inhibition of host-seeking response and olfactory responsiveness in Anopheles gambiae following blood feeding

    NARCIS (Netherlands)

    Takken, W.; Loon, van J.J.A.; Adam, W.

    2001-01-01

    The effect of a single blood meal on the host-seeking response of Anopheles gambiae was investigated in the laboratory using a behavioural bioassay, whereas possible changes at the chemosensory level were monitored using electroantennogram recording (EAG). To avoid the possible confounding effect of

  3. Tyrosine Hydroxylase is crucial for maintaining pupal tanning and immunity in Anopheles sinensis.

    Science.gov (United States)

    Qiao, Liang; Du, Minghui; Liang, Xin; Hao, Youjin; He, Xiu; Si, Fengling; Mei, Ting; Chen, Bin

    2016-01-01

    Tyrosine hydroxylase (TH), the initial enzyme in the melanin pathway, catalyzes tyrosine conversion into Dopa. Although expression and regulation of TH have been shown to affect cuticle pigmentation in insects, no direct functional studies to date have focused on the specific physiological processes involving the enzyme during mosquito development. In the current study, silencing of AsTH during the time period of continuous high expression in Anopheles sinensis pupae led to significant impairment of cuticle tanning and thickness, imposing a severe obstacle to eclosion in adults. Meanwhile, deficiency of melanin in interference individuals led to suppression of melanization, compared to control individuals. Consequently, the ability to defend exogenous microorganisms declined sharply. Accompanying down-regulation of the basal expression of five antimicrobial peptide genes resulted in further significant weakening of immunity. TH homologs as well as the composition of upstream transcription factor binding sites at the pupal stage are highly conserved in the Anopheles genus, implying that the TH-mediated functions are crucial in Anopheles. The collective evidence strongly suggests that TH is essential for Anopheles pupae tanning and immunity and provides a reference for further studies to validate the utility of the key genes involved in the melanization pathway in controlling mosquito development. PMID:27416870

  4. Role of Anopheles (Kerteszia bellator as malaria vector in Southeastern Brazil (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Oswaldo Paulo Forattini

    1999-11-01

    Full Text Available New research concerning Anopheles bellator in the southeast of the State of São Paulo, Brazil, are reported. Adult females of this mosquito showed remarkable endophily and endophagy which was even greater than An. cruzii. The epidemiological role of this anopheline as a malaria vector is discussed.

  5. Behavioural response of the malaria vector Anopheles gambiae to host plant volatiles and synthetic blends

    Science.gov (United States)

    Sugar feeding is critical for survival of malaria vectors and, although discriminative plant feeding previously has been shown to occur in Anopheles gambiae s.s., little is known about the cues mediating attraction to these plants. In this study, we investigated the role of olfaction in An. gambiae ...

  6. Effect of larval crowding on mating competitiveness of Anopheles gambiae mosquitoes

    NARCIS (Netherlands)

    Ng'habi, K.R.; John, B.; Nkwengulila, G.; Knols, B.G.J.; Killeen, G.F.; Ferguson, H.M.

    2005-01-01

    Background: The success of sterile or transgenic Anopheles for malaria control depends on their mating competitiveness within wild populations. Current evidence suggests that transgenic mosquitoes have reduced fitness. One means of compensating for this fitness deficit would be to identify environme

  7. Using a near-infrared spectrometer to estimate the age of anopheles mosquitoes exposed to pyrethroids.

    Directory of Open Access Journals (Sweden)

    Maggy T Sikulu

    Full Text Available We report on the accuracy of using near-infrared spectroscopy (NIRS to predict the age of Anopheles mosquitoes reared from wild larvae and a mixed age-wild adult population collected from pit traps after exposure to pyrethroids. The mosquitoes reared from wild larvae were estimated as <7 or ≥7 d old with an overall accuracy of 79%. The age categories of Anopheles mosquitoes that were not exposed to the insecticide papers were predicted with 78% accuracy whereas the age categories of resistant, susceptible and mosquitoes exposed to control papers were predicted with 82%, 78% and 79% accuracy, respectively. The ages of 85% of the wild-collected mixed-age Anopheles were predicted by NIRS as ≤8 d for both susceptible and resistant groups. The age structure of wild-collected mosquitoes was not significantly different for the pyrethroid-susceptible and pyrethroid-resistant mosquitoes (P = 0.210. Based on these findings, NIRS chronological age estimation technique for Anopheles mosquitoes may be independent of insecticide exposure and the environmental conditions to which the mosquitoes are exposed.

  8. Sharing of antigens between Plasmodium falciparum and Anopheles albimanus Antígenos compartidos entre Plasmodium falciparum y Anopheles albimanus

    Directory of Open Access Journals (Sweden)

    Albina Wide

    2006-12-01

    Full Text Available The presence of common antigens between Plasmodium falciparum and Anopheles albimanus was demonstrated. Different groups of rabbits were immunized with: crude extract from female An. albimanus (EAaF, red blood cells infected with Plasmodium falciparum (EPfs, and the SPf66 synthetic malaria vaccine. The rabbit's polyclonal antibodies were evaluated by ELISA, Multiple Antigen Blot Assay (MABA, and immunoblotting. All extracts were immunogenic in rabbits according to these three techniques, when they were evaluated against the homologous antigens. Ten molecules were identified in female mosquitoes and also in P. falciparum antigens by the autologous sera. The electrophoretic pattern by SDS-PAGE was different for the three antigens evaluated. Cross-reactions between An. albimanus and P. falciparum were found by ELISA, MABA, and immunoblotting. Anti-P. falciparum and anti-SPf66 antibodies recognized ten and five components in the EAaF crude extract, respectively. Likewise, immune sera against female An. albimanus identified four molecules in the P. falciparum extract antigen. As far as we know, this is the first work that demonstrates shared antigens between anophelines and malaria parasites. This finding could be useful for diagnosis, vaccines, and the study of physiology of the immune response to malaria.Epítopes de antígenos compartidos entre Plasmodium falciparum y Anopheles albimanus fueron identificados. Diferentes grupos de conejos fueron inmunizados con: extracto crudo de mosquito hembra de An. albimanus (EAaH, glóbulos rojos infectados con P. falciparum (EPfs y la vacuna antimalárica sintética SPf66. Los anticuerpos policlonales producidos en conejos fueron evaluados por ELISA, inmunoensayo simultáneo de múltiples antígenos (MABA e Immunoblotting. Todos los extractos resultaron inmunogénicos cuando se evaluaron por ELISA, MABA e Immunoblotting. Diez moléculas fueron identificadas en los mosquitos hembras y diez en los antígenos de

  9. Genetic sexing strains for four species of insects

    International Nuclear Information System (INIS)

    Genetic sexing strains were assembled by using classical genetic and cytogenetic techniques for four medically important species of insects. Male linked reciprocal translocations were used to impose pseudolinkage of sex and selectable genes (shown in parentheses) for Anopheles albimanus (propoxur resistance), Anopheles quadrimaculatus sp. A (malathion resistance), Stomoxys calcitrans (dieldrin resistance; malathion resistance, and black pupa), and Musca domestica (black pupa). These strains would be of great value in implementation of the sterile insect technique for control of these species because the females can either be killed in the egg stage (in the case of insecticide resistance as the selectable gene) or they can be separated from the males and thus excluded from releases. (author). 13 refs

  10. Ecological niche partitioning between Anopheles gambiae molecular forms in Cameroon: the ecological side of speciation

    Directory of Open Access Journals (Sweden)

    Fotsing Jean-Marie

    2009-05-01

    Full Text Available Abstract Background Speciation among members of the Anopheles gambiae complex is thought to be promoted by disruptive selection and ecological divergence acting on sets of adaptation genes protected from recombination by polymorphic paracentric chromosomal inversions. However, shared chromosomal polymorphisms between the M and S molecular forms of An. gambiae and insufficient information about their relationship with ecological divergence challenge this view. We used Geographic Information Systems, Ecological Niche Factor Analysis, and Bayesian multilocus genetic clustering to explore the nature and extent of ecological and chromosomal differentiation of M and S across all the biogeographic domains of Cameroon in Central Africa, in order to understand the role of chromosomal arrangements in ecological specialisation within and among molecular forms. Results Species distribution modelling with presence-only data revealed differences in the ecological niche of both molecular forms and the sibling species, An. arabiensis. The fundamental environmental envelope of the two molecular forms, however, overlapped to a large extent in the rainforest, where they occurred in sympatry. The S form had the greatest niche breadth of all three taxa, whereas An. arabiensis and the M form had the smallest niche overlap. Correspondence analysis of M and S karyotypes confirmed that molecular forms shared similar combinations of chromosomal inversion arrangements in response to the eco-climatic gradient defining the main biogeographic domains occurring across Cameroon. Savanna karyotypes of M and S, however, segregated along the smaller-scale environmental gradient defined by the second ordination axis. Population structure analysis identified three chromosomal clusters, each containing a mixture of M and S specimens. In both M and S, alternative karyotypes were segregating in contrasted environments, in agreement with a strong ecological adaptive value of

  11. Comparative analyses reveal discrepancies among results of commonly used methods for Anopheles gambiaemolecular form identification

    Directory of Open Access Journals (Sweden)

    Pinto João

    2011-08-01

    Full Text Available Abstract Background Anopheles gambiae M and S molecular forms, the major malaria vectors in the Afro-tropical region, are ongoing a process of ecological diversification and adaptive lineage splitting, which is affecting malaria transmission and vector control strategies in West Africa. These two incipient species are defined on the basis of single nucleotide differences in the IGS and ITS regions of multicopy rDNA located on the X-chromosome. A number of PCR and PCR-RFLP approaches based on form-specific SNPs in the IGS region are used for M and S identification. Moreover, a PCR-method to detect the M-specific insertion of a short interspersed transposable element (SINE200 has recently been introduced as an alternative identification approach. However, a large-scale comparative analysis of four widely used PCR or PCR-RFLP genotyping methods for M and S identification was never carried out to evaluate whether they could be used interchangeably, as commonly assumed. Results The genotyping of more than 400 A. gambiae specimens from nine African countries, and the sequencing of the IGS-amplicon of 115 of them, highlighted discrepancies among results obtained by the different approaches due to different kinds of biases, which may result in an overestimation of MS putative hybrids, as follows: i incorrect match of M and S specific primers used in the allele specific-PCR approach; ii presence of polymorphisms in the recognition sequence of restriction enzymes used in the PCR-RFLP approaches; iii incomplete cleavage during the restriction reactions; iv presence of different copy numbers of M and S-specific IGS-arrays in single individuals in areas of secondary contact between the two forms. Conclusions The results reveal that the PCR and PCR-RFLP approaches most commonly utilized to identify A. gambiae M and S forms are not fully interchangeable as usually assumed, and highlight limits of the actual definition of the two molecular forms, which might

  12. Pathogenicity Tests on Nine Mosquito Species and Several Non-target Organisms with Strelkovimermis spiculatus (Nemata Mermithidae)

    OpenAIRE

    BECNEL, JAMES J.; Johnson, Margaret A

    1998-01-01

    Nine species of mosquitoes and several species of non-target aquatic organisms were tested for susceptibility to the mernaithid nematode, Strelkovimermis spiculatus. All species of Anopheles, Aedes, Culex, and Toxorhynchites exposed to S. spiculatus were susceptible. Of the nine mosquito species tested, C. pipiens quinquefasciatus had the greatest tolerance to initial invasion and the highest percent infection of those that survived. High levels of infection were also achieved with Aedes taen...

  13. Prevalence of anopheles (Diptera: Culicidae) during sunset in areas of the Itaipu Hydroelectric Power Plant in Guaira County, State of Parana, Brazil; Prevalencia de anofelinos (Diptera: Culicidae) no crepusculo vespertino em areas da Usina Hidreletrica de Itaipu, no Municipio de Guaira, Estado do Parana, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Anthony Erico; Mello, Rubens Pinto de; Lopes, Catarina Macedo; Alencar, Jeronimo; Gentile, Carla [Fundacao Inst. Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ (Brazil). Dept. de Entomologia. Lab. de Diptera

    1997-11-01

    Systematic collections of anophelines were conducted from November 1995 to August 1995 from 18:00 to 20:00 hr using Shannon traps and human-bait along the lake margin which forms the Itaipu Hydroelectric Reservoir, State of Parana, Brazil. Species prevalence was studied at 15 min intervals. Anopheles albitarsis sensu latu and An. galvaoi, were the most frequently collected mosquitoes. All Anopheles species populations peaked between 18:45 and 19:30 hr. The observations illustrate the existence of haematophagic activity cycle during the early evening hours: exogenous stimulus (the beginning of sunset) Shannon trap (light attraction) human bait (haematophagy) rest and digestion exogenous stimulus Shannon trap or surrounding vegetation. The greater abundance of An. albitarsis collected in human-bait and Shannon trap suggests it may be a potential malaria vector in the region. (author) 20 refs.

  14. West African Anopheles gambiae mosquitoes harbor a taxonomically diverse virome including new insect-specific flaviviruses, mononegaviruses, and totiviruses.

    Science.gov (United States)

    Fauver, Joseph R; Grubaugh, Nathan D; Krajacich, Benjamin J; Weger-Lucarelli, James; Lakin, Steven M; Fakoli, Lawrence S; Bolay, Fatorma K; Diclaro, Joseph W; Dabiré, Kounbobr Roch; Foy, Brian D; Brackney, Doug E; Ebel, Gregory D; Stenglein, Mark D

    2016-11-01

    Anopheles gambiae are a major vector of malaria in sub-Saharan Africa. Viruses that naturally infect these mosquitoes may impact their physiology and ability to transmit pathogens. We therefore used metagenomics sequencing to search for viruses in adult Anopheles mosquitoes collected from Liberia, Senegal, and Burkina Faso. We identified a number of virus and virus-like sequences from mosquito midgut contents, including 14 coding-complete genome segments and 26 partial sequences. The coding-complete sequences define new viruses in the order Mononegavirales, and the families Flaviviridae, and Totiviridae. The identification of a flavivirus infecting Anopheles mosquitoes broadens our understanding of the evolution and host range of this virus family. This study increases our understanding of virus diversity in general, begins to define the virome of a medically important vector in its natural setting, and lays groundwork for future studies examining the potential impact of these viruses on anopheles biology and disease transmission. PMID:27639161

  15. Mitochondrial Reactive Oxygen Species Modulate Mosquito Susceptibility to Plasmodium Infection

    OpenAIRE

    Gonçalves, Renata L. S.; Oliveira, Jose Henrique M.; Oliveira, Giselle A.; Andersen, John F.; Oliveira, Marcus F.; Pedro L Oliveira; Barillas-Mury, Carolina

    2012-01-01

    Background Mitochondria perform multiple roles in cell biology, acting as the site of aerobic energy-transducing pathways and as an important source of reactive oxygen species (ROS) that modulate redox metabolism. Methodology/Principal Findings We demonstrate that a novel member of the mitochondrial transporter protein family, Anopheles gambiae mitochondrial carrier 1 (AgMC1), is required to maintain mitochondrial membrane potential in mosquito midgut cells and modulates epithelial responses ...

  16. Evaluation préliminaire de l'activité larvicide des extraits aqueux des feuilles du ricin (Ricinus communis L.) et du bois de thuya (Tetraclinis articulata (Vahl) Mast.) sur les larves de quatre moustiques culicidés : Culex pipiens (Linné), Aedes caspius (Pallas), Culiseta longiareolata (Aitken) et Anopheles maculipennis (Meigen)

    OpenAIRE

    Mahari S.; Mellouki F.; Oufara S.; Aouinty B.

    2006-01-01

    Preliminary evaluation of larvicidal activity of aqueous extracts from leaves of Ricinus communis L. and from wood of Tetraclinis articulata (Vahl) Mast. on the larvae of four mosquito species: Culex pipiens (Linné), Aedes caspius (Pallas), Culiseta longiareolata (Aitken) and Anopheles maculipennis (Meigen). Aqueous extracts of Ricinus communis leaves and Tetraclinis articulata wood showed strong toxic activity against larvae of several mosquitoes. In this study, insecticide effects of these ...

  17. Potential Test of Papaya Leaf and Seed Extract (Carica Papaya) as Larvicides against Anopheles Mosquito Larvae Mortality. SP IN Jayapura, Papua Indonesia

    OpenAIRE

    Arsunan

    2015-01-01

    Anopheles mosquitoes, sp is the main vector of malaria disease that is widespread in many parts of the world including in Papua Province. There are four speciesof Anopheles mosquitoes, sp, in Papua namely: An.farauti, An.koliensis, An. subpictus, and An.punctulatus. Larviciding synthetic cause resistance. This study aims to analyze the potential of papaya leaf and seeds extracts (Carica papaya) as larvicides against the mosquitoes Anopheles sp. The experiment was conducted at the Laboratory o...

  18. "Repellent Effect of Extracts and Essential Oils of Citrus limon (Rutaceae and Melissa officinalis (Labiatae Against Main Malaria Vector, Anopheles stephensi (Diptera: Culicidae"

    Directory of Open Access Journals (Sweden)

    "MA Oshaghi

    2003-10-01

    Full Text Available Repellet effect of extracts and essential oils of Citrus limon (L. Burm.F., (lemon and Melissa officinalis, (balm were evaluated against Anopheles stephensi in laboratory on animal and human and compared with synthetic repellent, N,Ndiethyl- 3-methylbenzamide (Deet as a standard. Results of statistical analysis revealed significant differences between oils and extracts (P< 0.05 against the tested species, thus oils were more effective than extracts. There was no significant difference between Deet and lemon oil, whereas the difference between lemon and melissa oils was significant. Relative efficacy of lemon oil to Deet was 0.88 whereas it was 0.71 for melissa oil. The results were found marginally superior in repellency for animals than human. Due to advantages of botanic compounds to synthetic compounds we recommend lemon essential oil as an effective alternative to Deet with potential as a means of personal protection against mosquito vectors of disease.

  19. Distribution of knock-down resistance mutations in Anopheles gambiae molecular forms in west and west-central Africa

    Directory of Open Access Journals (Sweden)

    Caccone Adalgisa

    2008-04-01

    Full Text Available Abstract Background Knock-down resistance (kdr to DDT and pyrethroids in the major Afrotropical vector species, Anopheles gambiae sensu stricto, is associated with two alternative point mutations at amino acid position 1014 of the voltage-gated sodium channel gene, resulting in either a leucine-phenylalanine (L1014F, or a leucine-serine (L1014S substitution. In An. gambiae S-form populations, the former mutation appears to be widespread in west Africa and has been recently reported from Uganda, while the latter, originally recorded in Kenya, has been recently found in Gabon, Cameroon and Equatorial Guinea. In M-form populations surveyed to date, only the L1014F mutation has been found, although less widespread and at lower frequencies than in sympatric S-form populations. Methods Anopheles gambiae M- and S-form specimens from 19 sites from 11 west and west-central African countries were identified to molecular form and genotyped at the kdr locus either by Hot Oligonucleotide Ligation Assay (HOLA or allele-specific PCR (AS-PCR. Results The kdr genotype was determined for about 1,000 An. gambiae specimens. The L1014F allele was found at frequencies ranging from 6% to 100% in all S-form samples (N = 628, with the exception of two samples from Angola, where it was absent, and coexisted with the L1014S allele in samples from Cameroon, Gabon and north-western Angola. The L1014F allele was present in M-form samples (N = 354 from Benin, Nigeria, and Cameroon, where both M- and S-forms were sympatric. Conclusion The results represent the most comprehensive effort to analyse the overall distribution of the L1014F and L1014S mutations in An. gambiae molecular forms, and will serve as baseline data for resistance monitoring. The overall picture shows that the emergence and spread of kdr alleles in An. gambiae is a dynamic process and that there is marked intra- and inter-form heterogeneity in resistance allele frequencies. Further studies are needed to

  20. A simplified high-throughput method for pyrethroid knock-down resistance (kdr detection in Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Walker Edward D

    2005-03-01

    Full Text Available Abstract Background A single base pair mutation in the sodium channel confers knock-down resistance to pyrethroids in many insect species. Its occurrence in Anopheles mosquitoes may have important implications for malaria vector control especially considering the current trend for large scale pyrethroid-treated bednet programmes. Screening Anopheles gambiae populations for the kdr mutation has become one of the mainstays of programmes that monitor the development of insecticide resistance. The screening is commonly performed using a multiplex Polymerase Chain Reaction (PCR which, since it is reliant on a single nucleotide polymorphism, can be unreliable. Here we present a reliable and potentially high throughput method for screening An. gambiae for the kdr mutation. Methods A Hot Ligation Oligonucleotide Assay (HOLA was developed to detect both the East and West African kdr alleles in the homozygous and heterozygous states, and was optimized for use in low-tech developing world laboratories. Results from the HOLA were compared to results from the multiplex PCR for field and laboratory mosquito specimens to provide verification of the robustness and sensitivity of the technique. Results and Discussion The HOLA assay, developed for detection of the kdr mutation, gives a bright blue colouration for a positive result whilst negative reactions remain colourless. The results are apparent within a few minutes of adding the final substrate and can be scored by eye. Heterozygotes are scored when a sample gives a positive reaction to the susceptible probe and the kdr probe. The technique uses only basic laboratory equipment and skills and can be carried out by anyone familiar with the Enzyme-linked immunosorbent assay (ELISA technique. A comparison to the multiplex PCR method showed that the HOLA assay was more reliable, and scoring of the plates was less ambiguous. Conclusion The method is capable of detecting both the East and West African kdr alleles

  1. Malaria in Kakuma refugee camp, Turkana, Kenya: facilitation of Anopheles arabiensis vector populations by installed water distribution and catchment systems

    Directory of Open Access Journals (Sweden)

    Cetron Martin S

    2011-06-01

    Full Text Available Abstract Background Malaria is a major health concern for displaced persons occupying refugee camps in sub-Saharan Africa, yet there is little information on the incidence of infection and nature of transmission in these settings. Kakuma Refugee Camp, located in a dry area of north-western Kenya, has hosted ca. 60,000 to 90,000 refugees since 1992, primarily from Sudan and Somalia. The purpose of this study was to investigate malaria prevalence and attack rate and sources of Anopheles vectors in Kakuma refugee camp, in 2005-2006, after a malaria epidemic was observed by staff at camp clinics. Methods Malaria prevalence and attack rate was estimated from cases of fever presenting to camp clinics and the hospital in August 2005, using rapid diagnostic tests and microscopy of blood smears. Larval habitats of vectors were sampled and mapped. Houses were sampled for adult vectors using the pyrethrum knockdown spray method, and mapped. Vectors were identified to species level and their infection with Plasmodium falciparum determined. Results Prevalence of febrile illness with P. falciparum was highest among the 5 to 17 year olds (62.4% while malaria attack rate was highest among the two to 4 year olds (5.2/1,000/day. Infected individuals were spatially concentrated in three of the 11 residential zones of the camp. The indoor densities of Anopheles arabiensis, the sole malaria vector, were similar during the wet and dry seasons, but were distributed in an aggregated fashion and predominantly in the same zones where malaria attack rates were high. Larval habitats and larval populations were also concentrated in these zones. Larval habitats were man-made pits of water associated with tap-stands installed as the water delivery system to residents with year round availability in the camp. Three percent of A. arabiensis adult females were infected with P. falciparum sporozoites in the rainy season. Conclusions Malaria in Kakuma refugee camp was due mainly

  2. In vitro larvicidal potential against Anopheles stephensi and antioxidative enzyme activities of Ginkgo biloba, Stevia rebaudiana and Parthenium hysterophorous

    Institute of Scientific and Technical Information of China (English)

    Nisar Ahmad; Hina Fazal; Bilal H Abbasi; Mazhar Iqbal

    2011-01-01

    Objective: To investigate in vitro larvicidal and antioxidant enzymes potential of the medicinal plants Ginkgo biloba (G. biloba), Stevia rebaudiana (S. rebaudiana) and Parthenium hysterophorous (P. hysterophorous) against Anopheles stephensi (An. stephensi) 4th instars larvae. Methods:For evaluation of larvicidal potential, the ethanolic, methanolic and dichloromethane leaves extracts of three different plants were used in dose-dependent experiments in two media, while the antioxidant enzymes activities were investigated using four different methods viz., superoxide dismutase, peroxidase, ascorbate and catalase. Results:An. stephensi has developed resistance to various synthetic insecticides, making its control increasingly difficult. The comparative performance of ethanolic extracts (65%-90%) was found better than the methanolic extract (70%-87%) and dichloromethane extract (60%-70%). Among the three plants extracts tested in two media, S. rebaudiana exhibited higher larvicidal activity with LC50 (24 h) in methanolic extract than P. hysterophorous and G. biloba. G. biloba and P. hysterophorous exhibited the strongest antioxidative enzymes activity and S. rebaudiana were less active and no significant difference was observed. Conclusions:These three plants exhibit larvicidal potential and can be further used for vector control alternative to synthetic insecticide due to eco-friendly and diseases control, furthermore these plant species have potent antioxidative enzyme activities, therefore, making them strong natural candidate particularly for diseases which are caused due to free radicals.

  3. Mosquito adulticidal and repellent activities of botanical extracts against malarial vector,Anopheles stephensi Liston (Diptera:Culicidae)

    Institute of Scientific and Technical Information of China (English)

    Marimuthu Govindarajan; Rajamohan Sivakumar

    2011-01-01

    Objective:To determine the adulticidal and repellent activities of different solvent leaf extracts ofEclipta alba (E. alba) andAndrographis paniculata (A. paniculata)against malarial vector, Anopheles stephensi (An. stephensi).Methods:Adulticidal efficacy of the crude leaf extracts ofE. alba andA. paniculata with five different solvents like benzene, hexane, ethyl acetate, methanol and chloroform was tested against the five to six day old adult female mosquitoes of An. stephensi. The adult mortality was observed after24 h under the laboratory conditions. The repellent efficacy was determined againstAn. stephensimosquito species at three concentrations viz.,1.0, 2.5 and 5.0 mg/cm2 under laboratory conditions.Results: Among the tested solvents the maximum efficacy was observed in the methanol extract. TheLC50 andLC90 values ofE. alba andA. paniculata against adults ofAn. stephensiwere150.36, 130.19 ppm and285.22, 244.16ppm, respectively. No mortality was observed in controls. Thechi-square values were significant at P<0.05 level. Methanol extract of E. alba andA. paniculata was produce maximum repellency againstAn. stephensi.Conclusions:From the results it can be concluded the crude extract ofE. alba andA. paniculatawas an excellent potential for controllingAn. stephensimosquitoes.

  4. Repellent, irritant and toxic effects of 20 plant extracts on adults of the malaria vector Anopheles gambiae mosquito.

    Directory of Open Access Journals (Sweden)

    Emilie Deletre

    Full Text Available Pyrethroid insecticides induce an excito-repellent effect that reduces contact between humans and mosquitoes. Insecticide use is expected to lower the risk of pathogen transmission, particularly when impregnated on long-lasting treated bednets. When applied at low doses, pyrethroids have a toxic effect, however the development of pyrethroid resistance in several mosquito species may jeopardize these beneficial effects. The need to find additional compounds, either to kill disease-carrying mosquitoes or to prevent mosquito contact with humans, therefore arises. In laboratory conditions, the effects (i.e., repellent, irritant and toxic of 20 plant extracts, mainly essential oils, were assessed on adults of Anopheles gambiae, a primary vector of malaria. Their effects were compared to those of DEET and permethrin, used as positive controls. Most plant extracts had irritant, repellent and/or toxic effects on An. gambiae adults. The most promising extracts, i.e. those combining the three types of effects, were from Cymbopogon winterianus, Cinnamomum zeylanicum and Thymus vulgaris. The irritant, repellent and toxic effects occurred apparently independently of each other, and the behavioural response of adult An. gambiae was significantly influenced by the concentration of the plant extracts. Mechanisms underlying repellency might, therefore, differ from those underlying irritancy and toxicity. The utility of the efficient plant extracts for vector control as an alternative to pyrethroids may thus be envisaged.

  5. Mosquito larvicidal and biting deterrency activity of bud of Polianthes tuberosa plants extract against Anopheles stephensi and Culex quinquefasciatus.

    Science.gov (United States)

    Anjali, Rawani; Atanu, Banerjee; Goutam, Chandra

    2012-06-01

    Mosquito control by phytochemicals is an alternative method to synthetic insecticides, as it is biodegradable and non resistant to vector mosquito. Polianthes tuberosa is a perennial plant distributed in many parts of India. The present study was undertaken to scientifically evaluate the larvicide and biting deterrency activity of bud of Polianthes tuberosa against Culex quinquefasciatus and Anopheles stephensi. Crude and solvent extract [ethyl acetate, chloroform: methanol (1:1, v/v), acetone] of fresh, mature, bud of P. tuberosa was tested against (ex. quinquefasciatus and An. stephensi. The repellent activity tested by chloroform: methanol (1:1, v/v) solvent extract against both mosquito species. The appropriate lethal concentrations at 24h for chloroform: methanol (1:1, v/v) extract was also studied on non target organisms such as Toxorhynchites larvae, Diplonychus annulatum and Chironomus circumdatus. In a 72 hour bioassay experiment, 0.5% crude extract showed the highest mortality and chloroform: methanol (1:1, v/v) solvent extract showed the highest mortality, the maximum (p larvicide agent. There is no changes in the activity non-target organism so, it is safe to use.

  6. Computational approach for identification of Anopheles gambiae miRNA involved in modulation of host immune response.

    Science.gov (United States)

    Thirugnanasambantham, Krishnaraj; Hairul-Islam, Villianur Ibrahim; Saravanan, Subramanian; Subasri, Subramaniyan; Subastri, Ariraman

    2013-05-01

    MicroRNAs (miRNAs) are small, noncoding RNAs that play key roles in regulating gene expression in animals, plants, and viruses, which involves in biological processes including development, cancer, immunity, and host-microorganism interactions. In this present study, we have used the computational approach to identify potent miRNAs involved in Anopheles gambiae immune response. Analysis of 217,261 A. gambiae ESTs and further study of RNA folding revealed six new miRNAs. The minimum free energy of the predicted miRNAs ranged from -27.2 to -62.63 kcal/mol with an average of -49.38 kcal/mol. While its A + U % ranges from 50 to 65 % with an average value of 57.37 %. Phylogenetic analysis of the predicted miRNAs revealed that aga-miR-277 was evolutionary highly conserved with more similarity with other mosquito species. Observing further the target identification of the predicted miRNA, it was noticed that the aga-miR-2304 and aga-miR-2390 are involved in modulation of immune response by targeting the gene encoding suppressin and protein prophenoloxidase. Further detailed studies of these miRNAs will help in revealing its function in modulation of A. gambiae immune response with respect to its parasite.

  7. STATUS OF INSECTICIDE RESISTANCE IN ANOPHELES CULICIFACIES (DIPTERA: CULICIDAE IN GHASREGHAND DISTRICT, SISTAN AND BALUCHISTAN PROVINCE, IRAN, (1997

    Directory of Open Access Journals (Sweden)

    H. Vatandoost

    1999-08-01

    Full Text Available Anopheles culicifacies s.l. plays an important role In transmission of malaria in Sistan and Baluchistan province, southeastern Iran. Adult susceptibility test on fieltt-collccled mosquitoes was conducted in Ohasreghand district. WHO diagnostic test procedures revealed that adult females were resistant to 0.4% dieUirin (mortality 64.5 ± 3.13, tolerant to 0.1% propoxur (mortality 88.5 ± 2.24 and susceptible to 4% DDT (mortality 98.75 ± 0.8. 5% malathion (mortality 100%, 0.1% bendiocarb (mortality 98.86 ± 0.7, 0.25% pcrmcthrin (mortality 98.4 ± 0.1, ami 0.1% lamhdacyhalothrin (mortality 100%. Malathion and lamhdacyhalothrin had the highest efficacy against this species when they were exposed at the diagnostic dose for 1 hour followed by a 24 hour recovery period. DieUirin, DDT a nil malathion had been used for malaria control as an indoor residual spraying. Tlic implication of these findings in the control programme is discussed.

  8. Comparison of the Insecticidal Characteristics of Commercially Available Plant Essential Oils Against Aedes aegypti and Anopheles gambiae (Diptera: Culicidae).

    Science.gov (United States)

    Norris, Edmund J; Gross, Aaron D; Dunphy, Brendan M; Bessette, Steven; Bartholomay, Lyric; Coats, Joel R

    2015-09-01

    Aedes aegypti and Anopheles gambiae are two mosquito species that represent significant threats to global public health as vectors of Dengue virus and malaria parasites, respectively. Although mosquito populations have been effectively controlled through the use of synthetic insecticides, the emergence of widespread insecticide-resistance in wild mosquito populations is a strong motivation to explore new insecticidal chemistries. For these studies, Ae. aegypti and An. gambiae were treated with commercially available plant essential oils via topical application. The relative toxicity of each essential oil was determined, as measured by the 24-h LD(50) and percentage knockdown at 1 h, as compared with a variety of synthetic pyrethroids. For Ae. aegypti, the most toxic essential oil (patchouli oil) was ∼1,700-times less toxic than the least toxic synthetic pyrethroid, bifenthrin. For An. gambiae, the most toxic essential oil (patchouli oil) was ∼685-times less toxic than the least toxic synthetic pyrethroid. A wide variety of toxicities were observed among the essential oils screened. Also, plant essential oils were analyzed via gas chromatography/mass spectrometry (GC/MS) to identify the major components in each of the samples screened in this study. While the toxicities of these plant essential oils were demonstrated to be lower than those of the synthetic pyrethroids tested, the large amount of GC/MS data and bioactivity data for each essential oil presented in this study will serve as a valuable resource for future studies exploring the insecticidal quality of plant essential oils.

  9. First record of the Asian malaria vector Anopheles stephensi and its possible role in the resurgence of malaria in Djibouti, Horn of Africa.

    Science.gov (United States)

    Faulde, Michael K; Rueda, Leopoldo M; Khaireh, Bouh A

    2014-11-01

    Anopheles stephensi is an important vector of urban malaria in India and the Persian Gulf area. Its previously known geographical range includes southern Asia and the Arab Peninsula. For the first time, we report A. stephensi from the African continent, based on collections made in Djibouti, on the Horn of Africa, where this species' occurrence was linked to an unusual urban outbreak of Plasmodium falciparum malaria, with 1228 cases reported from February to May 2013, and a second, more severe epidemic that emerged in November 2013 and resulted in 2017 reported malaria cases between January and February 2014. Anopheles stephensi was initially identified using morphological identification keys, followed by sequencing of the Barcode cytochrome c-oxidase I (COI) gene and the rDNA second internal transcribed spacer (ITS2). Positive tests for P. falciparum circumsporozoite antigen in two of six female A. stephensi trapped in homes of malaria patients in March 2013 are evidence that autochthonous urban malaria transmission by A. stephensi has occurred. Concurrent with the second malaria outbreak, P. falciparum-positive A. stephensi females were detected in Djibouti City starting in November 2013. In sub-Saharan Africa, newly present A. stephensi may pose a significant future health threat because of this species' high susceptibility to P. falciparum infection and its tolerance of urban habitats. This may lead to increased malaria outbreaks in African cities. Rapid interruption of the urban malaria transmission cycle, based on integrated vector surveillance and control programs aimed at the complete eradication of A. stephensi from the African continent, is strongly recommended. PMID:25004439

  10. Green synthesis of silver nanoparticles using Murraya koenigii leaf extract against Anopheles stephensi and Aedes aegypti.

    Science.gov (United States)

    Suganya, Ayyappan; Murugan, Kadarkarai; Kovendan, Kalimuthu; Mahesh Kumar, Palanisamy; Hwang, Jiang-Shiou

    2013-04-01

    Mosquitoes transmit serious human diseases, causing millions of deaths every year. The use of synthetic insecticides to control vector mosquitoes has caused physiological resistance and adverse environmental effects in addition to high operational cost. Insecticides of synthesized natural products for vector control have been a priority in this area. In the present study, the activity of silver nanoparticles (AgNPs) synthesized using Murraya koenigii plant leaf extract against first to fourth instars larvae and pupae of Anopheles stephensi and Aedes aegypti was determined. Range of concentrations of synthesized AgNPs (5, 10, 20, 30, and 40 ppm) and ethanol leaf extract (50, 200, 350, 500, and 650 ppm) were tested against the larvae of A. stephensi and A. aegypti. The synthesized AgNPs from M. koenigii leaf were highly toxic than crude leaf ethanol extract in both mosquito species. The results were recorded from UV-Vis spectrum, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy analysis. Larvae were exposed to varying concentrations of aqueous extract of synthesized AgNPs for 24 h. The maximum mortality was observed in synthesized AgNPs, and ethanol leaf extract of M. koenigii against A. stephensi had LC50 values of 10.82, 14.67, 19.13, 24.35, and 32.09 ppm and 279.33, 334.61, 406.95, 536.11, and 700.16 ppm and LC90 values of 32.38, 42.52, 53.65, 63.51, and 75.26 ppm and 737.37, 843.84, 907.67, 1,187.62, and 1,421.13 ppm. A. aegypti had LC50 values of 13.34, 17.19, 22.03, 27.57, and 34.84 ppm and 314.29, 374.95, 461.01, 606.50, and 774.01 ppm and LC90 values of 36.98, 47.67, 55.95, 67.36, and 77.72 ppm and 777.32, 891.16, 1,021.90, 1,273.06, and 1,509.18 ppm, respectively. These results suggest that the use of M. koenigii synthesized silver nanoparticles can be a rapid, environmentally safer biopesticide which can form a novel approach to develop effective biocides for controlling the target

  11. Lineage divergence detected in the malaria vector Anopheles marajoara (Diptera: Culicidae in Amazonian Brazil

    Directory of Open Access Journals (Sweden)

    Povoa Marinete M

    2010-10-01

    Full Text Available Abstract Background Cryptic species complexes are common among anophelines. Previous phylogenetic analysis based on the complete mtDNA COI gene sequences detected paraphyly in the Neotropical malaria vector Anopheles marajoara. The "Folmer region" detects a single taxon using a 3% divergence threshold. Methods To test the paraphyletic hypothesis and examine the utility of the Folmer region, genealogical trees based on a concatenated (white + 3' COI sequences dataset and pairwise differentiation of COI fragments were examined. The population structure and demographic history were based on partial COI sequences for 294 individuals from 14 localities in Amazonian Brazil. 109 individuals from 12 localities were sequenced for the nDNA white gene, and 57 individuals from 11 localities were sequenced for the ribosomal DNA (rDNA internal transcribed spacer 2 (ITS2. Results Distinct A. marajoara lineages were detected by combined genealogical analysis and were also supported among COI haplotypes using a median joining network and AMOVA, with time since divergence during the Pleistocene (COI sequences at the 3' end were more variable, demonstrating significant pairwise differentiation (3.82% compared to the more moderate 2.92% detected by the Folmer region. Lineage 1 was present in all localities, whereas lineage 2 was restricted mainly to the west. Mismatch distributions for both lineages were bimodal, likely due to multiple colonization events and spatial expansion (~798 - 81,045 ya. There appears to be gene flow within, not between lineages, and a partial barrier was detected near Rio Jari in Amapá state, separating western and eastern populations. In contrast, both nDNA data sets (white gene sequences with or without the retention of the 4th intron, and ITS2 sequences and length detected a single A. marajoara lineage. Conclusions Strong support for combined data with significant differentiation detected in the COI and absent in the nDNA suggest that

  12. Identification and expression profiling of putative odorant-binding proteins in the malaria mosquitoes, Anopheles gambiae and A.arabiensis

    Institute of Scientific and Technical Information of China (English)

    LI Zhengxi; Jing-Jiang ZHOU; SHEN Zuorui; Lin FIELD

    2004-01-01

    Olfaction plays a major role in host-seeking behaviour of mosquitoes. An informatics-based genome-wide analysis of odorant-binding protein (OBP) homologues is undertaken,and 32 putative OBP genes in total in the whole genome sequences of Anopheles gambiae are identified. Tissue-specific expression patterns of all A. gambiae OBP candidates are determined by semi-quantitative Reverse Transcription (RT)-PCR using mosquito actin gene as internal expression control standard. The results showed that 20 OBP candidates had strong expression in mosquito olfactory tissues (female antennae), which indicate that OBPs may play an important role in regulating mosquito olfactory behaviours. Species-specific expression patterns of all putative anopheline OBPs are also studied in two of the most important malaria vectors in A. gambiae complex, i.e.A. gambiae and A. arabiensis, which found 12 of the putative OBP genes examined displayed species-differential expression patterns. The cumulative relative expression intensity of the OBPs in A. arabiensis antennae was higher than that in A. gambiae (the ratio is 1441.45:1314.12), which might be due to their different host preference behaviour. While A.gambiae is a highly anthropophilic mosquito, A. arabiensis is more opportunistic (varying from anthropophilic to zoophilic). So the latter should need more OBPs to support its host selection preference. Identification of mosquito OBPs and verification of their tissue- and species-specific expression patterns represent the first step towards further molecular analysis of mosquito olfactory mechanism, such as recombinant expression and ligand identification.

  13. Integrated genetic map of Anopheles gambiae: use of RAPD polymorphisms for genetic, cytogenetic and STS landmarks.

    Science.gov (United States)

    Dimopoulos, G; Zheng, L; Kumar, V; della Torre, A; Kafatos, F C; Louis, C

    1996-06-01

    Randomly amplified polymorphic DNA (RAPD) markers have been integrated in the genetic and cytogenetic maps of the malaria vector mosquito, Anopheles gambiae. Fifteen of these markers were mapped by recombination, relative to microsatellite markers that had been mapped previously. Thirty-four gel-purified RAPD bands were cloned and sequenced, generating sequence tagged sites (STSs) that can be used as entry points to the A. gambiae genome. Thirty one of these STSs were localized on nurse cell polytene chromosomes through their unique hybridization signal in in situ hybridization experiments. Five STSs map close to the breakpoints of polymorphic inversions, which are notable features of the Anopheles genome. The usefulness and limitations of this integrated mosquito map are discussed. PMID:8725241

  14. Participation of irradiated Anopheles arabiensis males in swarms following field release in Sudan

    OpenAIRE

    Ageep, Tellal B; Damiens, David; Alsharif, Bashir; Ahmed, Ayman; Salih, Elwaleed HO; Ahmed, Fayez TA; Diabaté, Abdoulaye; Lees, Rosemary S.; Gilles, Jeremie RL; El Sayed, Badria B

    2014-01-01

    Background The success of the sterile insect technique (SIT) depends the release of large numbers of sterile males, which are able to compete for mates with the wild male population within the target area. Unfortunately, the processes of colonisation, mass production and irradiation may reduce the competitiveness of sterile males through genetic selection, loss of natural traits and somatic damage. In this context, the capacity of released sterile Anopheles arabiensis males to survive, disper...

  15. Larvicidal Effects of a Neem (Azadirachta indica) Oil Formulation on the Malaria Vector Anopheles Gambiae.

    OpenAIRE

    Knols Bart GJ; Okumu Fredros O; Fillinger Ulrike

    2007-01-01

    Abstract Background Larviciding is a key strategy used in many vector control programmes around the world. Costs could be reduced if larvicides could be manufactured locally. The potential of natural products as larvicides against the main African malaria vector, Anopheles gambiae s.s was evaluated. Methods To assess the larvicidal efficacy of a neem (Azadirachta indica) oil formulation (azadirachtin content of 0.03% w/v) on An. gambiae s.s., larvae were exposed as third and fourth instars to...

  16. Anopheles gambiae mosquito isolated neurons : a new biological model for optimizing insecticide/repellent efficacy

    OpenAIRE

    Lavialle-Defaix, C.; Apaire-Marchais, V; Legros, C.; Pennetier, Cédric; Mohamed, A; P. Licznar; Corbel, Vincent; Lapied, B

    2011-01-01

    To understand better the mode of action of insecticides and repellents used in vector-borne diseases control, we developed a new biological model based on mosquito neurons isolated from adults Anopheles gambiae heads. This cellular model is well adapted to multidisciplinary approaches: electrophysiology, pharmacology, molecular biology and biochemical assays. Using RT-PCR, we demonstrated that isolated neurons express the nicotinic acetylcholine receptor subunit alpha 1 (Ag alpha 1 nAchR), tw...

  17. Mosquito repellent potential of Pithecellobium dulce leaf and seed against malaria vector Anopheles stephensi (Diptera: Culicidae)

    OpenAIRE

    Mohan Rajeswary; Marimuthu Govindarajan

    2016-01-01

    Objective: To determine the repellent properties of hexane, benzene, ethyl acetate, chloroform and methanol extract of Pithecellobium dulce (P. dulce) leaf and seed against Anopheles stephensi (An. stephensi). Methods: Repellent activity assay was carried out in a net cage (45 cm × 30 cm × 25 cm) containing 100 blood starved female mosquitoes of An. stephensi. This assay was carried out in the laboratory conditions according to the WHO 2009 protocol. Plant crude extracts of P. ...

  18. Extensive circadian and light regulation of the transcriptome in the malaria mosquito Anopheles gambiae

    OpenAIRE

    Rund, Samuel SC; James E. Gentile; Duffield, Giles E.

    2013-01-01

    Background Mosquitoes exhibit 24 hr rhythms in flight activity, feeding, reproduction and development. To better understand the molecular basis for these rhythms in the nocturnal malaria vector Anopheles gambiae, we have utilized microarray analysis on time-of-day specific collections of mosquitoes over 48 hr to explore the coregulation of gene expression rhythms by the circadian clock and light, and compare these with the 24 hr rhythmic gene expression in the diurnal Aedes aegypti dengue vec...

  19. Ecological Genomics of Anopheles gambiae Along a Latitudinal Cline: A Population-Resequencing Approach

    OpenAIRE

    Cheng, Changde; White, Bradley J.; Kamdem, Colince; Mockaitis, Keithanne; Costantini, Carlo; Matthew W Hahn; Besansky, Nora J

    2012-01-01

    The association between fitness-related phenotypic traits and an environmental gradient offers one of the best opportunities to study the interplay between natural selection and migration. In cases in which specific genetic variants also show such clinal patterns, it may be possible to uncover the mutations responsible for local adaptation. The malaria vector, Anopheles gambiae, is associated with a latitudinal cline in aridity in Cameroon; a large inversion on chromosome 2L of this mosquito ...

  20. Development of sporogonic cycle of Plasmodium vivax in experimentally infected Anopheles albimanus mosquitoes

    OpenAIRE

    Martha L. Salas; Romero, Jackeline F.; Yesid Solarte; Victor Olano; Myriam A. Herrera; Sócrates Herrera

    1994-01-01

    The sporogonic cycle of Plasmodium vivax was established and maintained under laboratory conditions in two different strains of Anopheles albimanus mosquitoes using as a parasite source blood from human patients or from Aotus monkeys infected with the VCC-2 P.vivax colombian isolate. Both the Tecojate strain isolate from Guatemala and the Cartagena strain from the colombian Pacific coast were susceptible to infections with P.vivax. A higher percentage of Cartagena mosquitoes was infected per ...

  1. Insecticide susceptibility status of Aedes aegypti and Anopheles stephensi larvae against temephos in Delhi, India

    OpenAIRE

    Singh, R. K.; P.K.Mittal; Gaurav Kumar; Dhiman, R.C.

    2014-01-01

    Temephos is used as a larvicide in urban areas in India to control the population of mosquito vectors viz. Anopheles stephensi and Aedes aegypti. The susceptibility status of Ae. aegypti and An. stephensi to temophos in various zones of Municipal Corporation of Delhi was evaluated using the WHO method for determining larval susceptibility test kit. Results revealed that the larval mortality of Ae. aegypti collected from different localities ranged between 64.88% to 98.22%. The highest mortali...

  2. The Population Genomics of Trans-Specific Inversion Polymorphisms in Anopheles gambiae

    OpenAIRE

    White, Bradley J.; Cheng, Changde; Sangaré, Djibril; Lobo, Neil F.; Collins, Frank H.; Besansky, Nora J

    2009-01-01

    In the malaria mosquito Anopheles gambiae polymorphic chromosomal inversions may play an important role in adaptation to environmental variation. Recently, we used microarray-based divergence mapping combined with targeted resequencing to map nucleotide differentiation between alternative arrangements of the 2La inversion. Here, we applied the same technique to four different polymorphic inversions on the 2R chromosome of An. gambiae. Surprisingly, divergence was much lower between alternativ...

  3. Biochemical Characterization of Anopheles gambiae SRPN6, a Malaria Parasite Invasion Marker in Mosquitoes

    OpenAIRE

    Chunju An; Yasuaki Hiromasa; Xin Zhang; Scott Lovell; Michal Zolkiewski; John M Tomich; Kristin Michel

    2012-01-01

    Serine proteinase inhibitors of the serpin family are well known as negative regulators of hemostasis, thrombolysis and innate immune responses. Additionally, non-inhibitory serpins serve functions as chaperones, hormone transporters, or anti-angiogenic factors. In the African malaria mosquito, Anopheles gambiae s.s., at least three serpins (SRPNs) are implicated in the innate immune response against malaria parasites. Based on reverse genetic and cell biological analyses, AgSRPN6 limits para...

  4. The JNK Pathway Is a Key Mediator of Anopheles gambiae Antiplasmodial Immunity

    OpenAIRE

    Garver, Lindsey S.; de Almeida Oliveira, Giselle; Barillas-Mury, Carolina

    2013-01-01

    The innate immune system of Anopheles gambiae mosquitoes limits Plasmodium infection through multiple molecular mechanisms. For example, midgut invasion by the parasite triggers an epithelial nitration response that promotes activation of the complement-like system. We found that suppression of the JNK pathway, by silencing either Hep, JNK, Jun or Fos expression, greatly enhanced Plasmodium infection; while overactivating this cascade, by silencing the suppressor Puckered, had the opposite ef...

  5. A mosquito lipoxin/lipocalin complex mediates innate immune priming in Anopheles gambiae

    OpenAIRE

    Ramirez, Jose Luis; de Almeida Oliveira, Giselle; Calvo, Eric; Dalli, Jesmond; Colas, Romain A.; Serhan, Charles N.; Ribeiro, Jose M.; Barillas-Mury, Carolina

    2015-01-01

    Exposure of Anopheles gambiae mosquitoes to Plasmodium infection enhances the ability of their immune system to respond to subsequent infections. However, the molecular mechanism that allows the insect innate immune system to ‘remember' a previous encounter with a pathogen has not been established. Challenged mosquitoes constitutively release a soluble haemocyte differentiation factor into their haemolymph that, when transferred into Naive mosquitoes, also induces priming. Here we show that t...

  6. A Peroxidase/Dual Oxidase System Modulates Midgut Epithelial Immunity in Anopheles gambiae

    OpenAIRE

    Kumar, Sanjeev; Molina-Cruz, Alvaro; Gupta, Lalita; Rodrigues, Janneth; Barillas-Mury, Carolina

    2010-01-01

    Extracellular matrices in diverse biological systems are crosslinked by dityrosine covalent bonds catalyzed by the peroxidase/oxidase system. We show that the Immunomodulatory Peroxidase (IMPer), an enzyme secreted by the mosquito Anopheles gambiae midgut, and dual oxidase (Duox) form a dityrosine network that decreases gut permeability to immune elicitors and protects the microbiota by preventing activation of epithelial immunity. It also provides a suitable environment for malaria parasites...

  7. The STAT pathway mediates late phase immunity against Plasmodium in the mosquito Anopheles gambiae

    OpenAIRE

    Gupta, Lalita; Molina-Cruz, Alvaro; Kumar, Sanjeev; Rodrigues, Janneth; Dixit, Rajnikant; Zamora, Rodolfo E.; Barillas-Mury, Carolina

    2009-01-01

    The STAT family of transcription factors activate expression of immune system genes in vertebrates. The ancestral STAT gene (AgSTAT-A) appears to have duplicated in the mosquito Anopheles gambiae, giving rise to a second intronless STAT gene (AgSTAT-B), which we show regulates AgSTAT-A expression in adult females. AgSTAT-A participates in the transcriptional activation of nitric oxide synthase (NOS) in response to bacterial and plasmodial infection. Activation of this pathway, however, is not...

  8. Genome expression analysis of Anopheles gambiae: Responses to injury, bacterial challenge, and malaria infection

    OpenAIRE

    Dimopoulos, George; Christophides, George K.; Meister, Stephan; SCHULTZ, JÖRG; White, Kevin P.; Barillas-Mury, Carolina; Kafatos, Fotis C.

    2002-01-01

    The complex gene expression responses of Anopheles gambiae to microbial and malaria challenges, injury, and oxidative stress (in the mosquito and/or a cultured cell line) were surveyed by using cDNA microarrays constructed from an EST-clone collection. The expression profiles were broadly subdivided into induced and down-regulated gene clusters. Gram+ and Gram− bacteria and microbial elicitors up-regulated a diverse set of genes, many belonging to the immunity class, and the response to malar...

  9. Imidacloprid and Thiamethoxam Induced Mutations in Internal Transcribed Spacer 2 (ITS2) of Anopheles stephensi

    OpenAIRE

    Bhinder, Preety; Chaudhry, Asha; Barna, Bhupinder; Kaur, Satvinderjeet

    2012-01-01

    The present article deals with the polymerase chain reaction (PCR)-based genotoxicity evaluation of neonicotinoid pesticides, imidacloprid and thiamethoxam, by using the genome of a mosquito Anopheles stephensi taken as an experimental model. After treatment of the second instar larvae with LC20 of the pesticides for 24 h, the induced nucleotide sequence variations in the internal transcribed spacer 2 (ITS2) of freshly hatched unfed control and treated individuals was studied from the sequenc...

  10. Energy-state dependent responses of Anopheles gambiae to an unobtainable host

    OpenAIRE

    Zappia, Simon Pierre William

    2011-01-01

    Understanding how blood-seeking behavior changes with different energy levels in the malaria mosquito Anopheles gambiae (Diptera: Culicidae), when confronted with an unobtainable blood-host, is of interest for vector control strategies. I used a straight-tube olfactometer to mimic a domicile containing (i) a simulated blood-host (human foot smell) protected by either a plain bednet or a DEET impregnated net and (ii) a sugar source (honey scent) some distance away. I manipulated the mosquito’s...

  11. The role of cow urine in the oviposition site preference of culicine and Anopheles mosquitoes

    OpenAIRE

    Kweka Eliningaya J; Owino Eunice A; Mwang'onde Beda J; Mahande Aneth M; Nyindo Mramba; Mosha Franklin

    2011-01-01

    Abstract Background Chemical and behavioural ecology of mosquitoes plays an important role in the development of chemical cue based vector control. To date, studies available have focused on evaluating mosquito attractants and repellents of synthetic and human origins. This study, however, was aimed at seasonal evaluation of the efficiency of cow urine in producing oviposition cues to Anopheles gambiae s.l. and Culex quinquefasciatus in both laboratory and field conditions. Methods Ovipositio...

  12. Mosquito repellent action of Blumea lacera (Asteraceae) against Anopheles stephensi and Culex quinquefasciatus.

    OpenAIRE

    Singh, S.P.; MITTAL, P.K.

    2014-01-01

    Petroleum ether extract of Blumea lacera was screened under laboratory conditions for repellent activity against mosquito vector Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae). The repellent activity of Blumea lacera extract was tested against mosquitoes in comparison with the DEET, which was used as a positive control. Results obtained from the laboratory experiment showed that the extract was effective against mosquito vectors even at a low dose. A direct rel...

  13. Cloning and molecular characterization of two invertebrate-type lysozymes from Anopheles gambiae

    OpenAIRE

    Paskewitz, S M; Li, B.; Kajla, M. K.

    2008-01-01

    We sequenced and characterized two novel invertebrate-type lysozymes from the mosquito Anopheles gambiae. Alignment and phylogenetic analysis of these and a number of related insect proteins identified through bioinformatics strategies showed a high degree of conservation of this protein family throughout the Class Insecta. Expression profiles were examined for the two mosquito genes through semiquantitative and real-time PCR analysis. Lys i-1 transcripts were found in adult females in the fa...

  14. Insecticide resistance in Anopheles gambiae: data from the first year of a multi-country study highlight the extent of the problem

    Directory of Open Access Journals (Sweden)

    Sagnon N'Falé

    2009-12-01

    Full Text Available Abstract Background Insecticide resistance in malaria vectors is a growing concern in many countries which requires immediate attention because of the limited chemical arsenal available for vector control. The current extent and distribution of this resistance in many parts of the continent is unknown and yet such information is essential for the planning of effective malaria control interventions. Methods In 2008, a network was established, with financial support from WHO/TDR, to investigate the extent of insecticide resistance in malaria vectors in five African countries. Here, the results of bioassays on Anopheles gambiae sensu lato from two rounds of monitoring from 12 sentinel sites in three of the partner countries are reported. Results Resistance is very heterogeneous even over relatively small distances. Furthermore, in some sites, large differences in mortality rates were observed during the course of the malaria transmission season. Using WHO diagnostic doses, all populations from Burkina Faso and Chad and two of the four populations from Sudan were classified as resistant to permethrin and/or deltamethrin. Very high frequencies of DDT resistance were found in urban areas in Burkina Faso and Sudan and in a cotton-growing district in Chad. In areas where both An. gambiae s.s. and Anopheles arabiensis were present, resistance was found in both species, although generally at a higher frequency in An gambiae s.s. Anopheles gambiae s.l. remains largely susceptible to the organophosphate fenitrothion and the carbamate bendiocarb in the majority of the sentinel sites with the exception of two sites in Burkina Faso. In the cotton-growing region of Soumousso in Burkina Faso, the vector population is resistant to all four classes of insecticide available for malaria control. Conclusions Possible factors influencing the frequency of resistant individuals observed in the sentinel sites are discussed. The results of this study highlight the

  15. Larvicidal and pupicidal activity of spinosad against the malarial vector Anopheles stephensi

    Institute of Scientific and Technical Information of China (English)

    Kolanthasamy Prabhu; Kadarkarai Murugan; Arjunan Nareshkumar; Subramanian Bragadeeswaran

    2011-01-01

    Objective:To investigate the larvicidal and pupicidal activity of spinosad againstAnopheles stephensi Listen.Methods: Spinosad from the actinomycete,Saccharopolyspora spinosa was tested againstAnopheles stephensi at different concentrations (0.01, 0.02, 0.04, 0.06 and0.08ppm.), and against first to fourth instar larvae and pupae.Results: The larval mortality ranged from36.1±1.7 in (0.01 ppm) to 79.3±1.8 (0.08 ppm) the first instar larva. The LC50andLC90values of first, second, third and fourth instar larva were0.001, 0.031, 0.034, 0.036and0.0113, 0.102, 0.111, 0.113, respectively. The pupal mortality ranged from33.0±2.0 (0.01 ppm) to 80.0±0.9 (0.08 ppm). The LC50 andLC90values were0.028 and 0.1020, respectively. The reduction percentage ofAnopheles larvae was82.7%, 91.4% and96.0% after 24, 48, 72 hours, respectively, while more than80% reduction was observed after3 weeks.Conclusions:In the present study spinosad effectively caused mortality of mosquito larvae in both the laboratory and field trial. It is predicted that spinosad is likely to be an effective larvicide for treatment of mosquito breeding sites.

  16. Thermal behaviour of Anopheles stephensi in response to infection with malaria and fungal entomopathogens

    Directory of Open Access Journals (Sweden)

    Read Andrew F

    2009-04-01

    Full Text Available Abstract Background Temperature is a critical determinant of the development of malaria parasites in mosquitoes, and hence the geographic distribution of malaria risk, but little is known about the thermal preferences of Anopheles. A number of other insects modify their thermal behaviour in response to infection. These alterations can be beneficial for the insect or for the infectious agent. Given current interest in developing fungal biopesticides for control of mosquitoes, Anopheles stephensi were examined to test whether mosquitoes showed thermally-mediated behaviour in response to infection with fungal entomopathogens and the rodent malaria, Plasmodium yoelii. Methods Over two experiments, groups of An. stephensi were infected with one of three entomopathogenic fungi, and/or P. yoelii. Infected and uninfected mosquitoes were released on to a thermal gradient (14 – 38°C for "snapshot" assessments of thermal preference during the first five days post-infection. Mosquito survival was monitored for eight days and, where appropriate, oocyst prevalence and intensity was assessed. Results and conclusion Both infected and uninfected An. stephensi showed a non-random distribution on the gradient, indicating some capacity to behaviourally thermoregulate. However, chosen resting temperatures were not altered by any of the infections. There is thus no evidence that thermally-mediated behaviours play a role in determining malaria prevalence or that they will influence the performance of fungal biopesticides against adult Anopheles.

  17. Evaluation préliminaire de l'activité larvicide des extraits aqueux des feuilles du ricin (Ricinus communis L. et du bois de thuya (Tetraclinis articulata (Vahl Mast. sur les larves de quatre moustiques culicidés : Culex pipiens (Linné, Aedes caspius (Pallas, Culiseta longiareolata (Aitken et Anopheles maculipennis (Meigen

    Directory of Open Access Journals (Sweden)

    Mahari S.

    2006-01-01

    Full Text Available Preliminary evaluation of larvicidal activity of aqueous extracts from leaves of Ricinus communis L. and from wood of Tetraclinis articulata (Vahl Mast. on the larvae of four mosquito species: Culex pipiens (Linné, Aedes caspius (Pallas, Culiseta longiareolata (Aitken and Anopheles maculipennis (Meigen. Aqueous extracts of Ricinus communis leaves and Tetraclinis articulata wood showed strong toxic activity against larvae of several mosquitoes. In this study, insecticide effects of these plant extracts have been investigated on 2nd and 4th instars larvae of Culicidae insects, Culex pipiens (Linné, Aedes caspius (Pallas, Culiseta longiareolata (Aitken and Anopheles maculipennis (Meigen. After 24 hours of exposition, bioassays revealed low lethal concentrations LC50. To control mosquitoes, these plant extracts might be used as natural biocides.

  18. An updated checklist of mosquito species (Diptera: Culicidae) from Madagascar.

    Science.gov (United States)

    Tantely, Michaël Luciano; Le Goff, Gilbert; Boyer, Sébastien; Fontenille, Didier

    2016-01-01

    An updated checklist of 235 mosquito species from Madagascar is presented. The number of species has increased considerably compared to previous checklists, particularly the last published in 2003 (178 species). This annotated checklist provides concise information on endemism, taxonomic position, developmental stages, larval habitats, distribution, behavior, and vector-borne diseases potentially transmitted. The 235 species belong to 14 genera: Aedeomyia (3 species), Aedes (35 species), Anopheles (26 species), Coquillettidia (3 species), Culex (at least 50 species), Eretmapodites (4 species), Ficalbia (2 species), Hodgesia (at least one species), Lutzia (one species), Mansonia (2 species), Mimomyia (22 species), Orthopodomyia (8 species), Toxorhynchites (6 species), and Uranotaenia (73 species). Due to non-deciphered species complexes, several species remain undescribed. The main remarkable characteristic of Malagasy mosquito fauna is the high biodiversity with 138 endemic species (59%). Presence and abundance of species, and their association, in a given location could be a bio-indicator of environmental particularities such as urban, rural, forested, deforested, and mountainous habitats. Finally, taking into account that Malagasy culicidian fauna includes 64 species (27%) with a known medical or veterinary interest in the world, knowledge of their biology and host preference summarized in this paper improves understanding of their involvement in pathogen transmission in Madagascar.

  19. An updated checklist of mosquito species (Diptera: Culicidae from Madagascar

    Directory of Open Access Journals (Sweden)

    Tantely Michaël Luciano

    2016-01-01

    Full Text Available An updated checklist of 235 mosquito species from Madagascar is presented. The number of species has increased considerably compared to previous checklists, particularly the last published in 2003 (178 species. This annotated checklist provides concise information on endemism, taxonomic position, developmental stages, larval habitats, distribution, behavior, and vector-borne diseases potentially transmitted. The 235 species belong to 14 genera: Aedeomyia (3 species, Aedes (35 species, Anopheles (26 species, Coquillettidia (3 species, Culex (at least 50 species, Eretmapodites (4 species, Ficalbia (2 species, Hodgesia (at least one species, Lutzia (one species, Mansonia (2 species, Mimomyia (22 species, Orthopodomyia (8 species, Toxorhynchites (6 species, and Uranotaenia (73 species. Due to non-deciphered species complexes, several species remain undescribed. The main remarkable characteristic of Malagasy mosquito fauna is the high biodiversity with 138 endemic species (59%. Presence and abundance of species, and their association, in a given location could be a bio-indicator of environmental particularities such as urban, rural, forested, deforested, and mountainous habitats. Finally, taking into account that Malagasy culicidian fauna includes 64 species (27% with a known medical or veterinary interest in the world, knowledge of their biology and host preference summarized in this paper improves understanding of their involvement in pathogen transmission in Madagascar.

  20. Mosquito larvicidal activity of some common spices and vegetable waste onCulex quinquefasciatus andAnopheles stephensi

    Institute of Scientific and Technical Information of China (English)

    Someshwar Singha; Goutam Chandra

    2011-01-01

    Objective:To investigate the larvicidal activities of crude and chloroform: methanol (1:1 v/v) extracts of some common spices (Cuminum cyminum, Allium sativum, Zingiber offinale, Curcuma longa) and vegetable waste (Solanum tuberosum germinated tuber) againstAnopheles stephensiandCulex quinquefasciatus mosquito larvae.Methods:Larval mortality of above mosquito species were observed after 24, 48 and72 h of exposure to five concentrations of aqueous extract (0.1%, 0.2%, 0.3%, 0.4% and0.5%) and four concentrations (25, 50, 75 ppm) of chloroform: methanol (1:1 v/v) extract. The lethal concentration of individual spices or vegetable waste was determined by log-probit analysis (at95%confidence level) and effect of crude and chloroform: methanol (1:1 v/v) extracts were recorded on non target organisms.Results:Relative mortality rate of both larval mosquito species were recorded in the following sequences:Cuminum cyminum>Allium sativum>Zingiber offinale, Curcuma longa > Solanum tuberosum germinated tuber for crude extract, and efficacy of chloroform: methanol (1:1 v/v) extract were as follows:Curcuma longa > Zingiber offinale > Solanum tuberosum germinated tuber >Cuminum cyminum>Allium sativum.Conclusions: Crude and chloroform: methanol (1:1 v/v) extract of Cuminum cyminum, Allium sativum, Zingiber offinale, Curcuma longa andSolanum tuberosum germinated tuber can be recommended effectively in mosquito control programmes at very low concentrations. No mortality and other abnormalities were noticed on non target organisms and further studies are needed to investigate the chemical structure of active principal which are responsible for larvicidal activity.

  1. Electroantennogram, flight orientation and oviposition responses of Anopheles stephensi and Aedes aegypti to a fatty acid ester-propyl octadecanoate.

    Science.gov (United States)

    Seenivasagan, Thangaraj; Sharma, Kavita R; Prakash, Shri

    2012-10-01

    Studies were carried out to evaluate the role of a C(21)-fatty acid ester; propyl octadecanoate (PO) for olfaction-mediated behavioral responses of urban malaria vector, Anopheles stephensi and dengue vector, Aedes aegypti mosquitoes using electroantennogram (EAG), flight orientation and oviposition experiments. Dose dependent electrophysiological responses were recorded for PO from the antenna of both mosquito species in which 10(-5) g elicited significant EAG response. An. stephensi exhibited 2.4, 4.2 and 5.5 fold increased EAG response compared to control, while Ae. aegypti showed 1.9, 4.6 and 5.8 fold EAG responses respectively at 10(-7) g, 10(-6) g and 10(-5) g doses. In the Y-tube olfactometer, 77-80% gravid females of An. stephensi, and 64-77% of Ae. aegypti were caught in the chambers releasing 10(-6) g and 10(-5) g plume of PO. The synthetic fatty acid ester loaded onto an effervescent tablet at 0.1 mg/L, 1 mg/L and 10 mg/L elicited increased ovipositional responses from gravid mosquitoes compared to control. The oviposition activity indices (OAI) of An. stephensi females were +0.40, +0.51 and +0.58, whereas the OAI for Ae. aegypti females were +0.05, +0.36 and +0.57 respectively in 0.1, 1, 10 mg/L of PO; indicated concentration dependent increased egg deposition. Similarly, in the residual activity studies, oviposition substrates treated with PO on effervescent tablet at 1mg/L and 10mg/L received significantly increased egg deposition by gravid females of both mosquito species for up to 1 week compared to control substrates. PO can potentially be used in ovitraps to monitor An. stephensi and Ae. aegypti populations in the vector surveillance programs.

  2. Comparative genomic analysis of chitinase and chitinase-like genes in the African malaria mosquito (Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Jianzhen Zhang

    Full Text Available Chitinase is an important enzyme responsible for chitin metabolism in a wide range of organisms including bacteria, yeasts and other fungi, nematodes and arthropods. However, current knowledge on chitinolytic enzymes, especially their structures, functions and regulation is very limited. In this study we have identified 20 chitinase and chitinase-like genes in the African malaria mosquito, Anopheles gambiae, through genome-wide searching and transcript profiling. We assigned these genes into eight different chitinase groupings (groups I-VIII. Domain analysis of their predicted proteins showed that all contained at least one catalytic domain. However, only seven (AgCht4, AgCht5-1, AgCht6, AgCht7, AgCht8, AgCht10 and AgCht23 displayed one or more chitin-binding domains. Analyses of stage- and tissue-specific gene expression revealed that most of these genes were expressed in larval stages. However, AgCht8 was mainly expressed in the pupal and adult stages. AgCht2 and AgCht12 were specifically expressed in the foregut, whereas AgCht13 was only expressed in the midgut. The high diversity and complexity of An. gambiae chitinase and chitinase-like genes suggest their diverse functions during different developmental stages and in different tissues of the insect. A comparative genomic analysis of these genes along with those present in Drosophila melanogaster, Tribolium castaneum and several other insect species led to a uniform classification and nomenclature of these genes. Our investigation also provided important information for conducting future studies on the functions of chitinase and chitinase-like genes in this important malaria vector and other species of arthropods.

  3. Ovicidal and repellent activities of botanical extracts against Culex quinquefasciatus,Aedes aegypti and Anopheles stephensi(Diptera:Culicidae)

    Institute of Scientific and Technical Information of China (English)

    Govindarajan; M; Mathivanan; T; Elumalai; K; Krishnappa; K; Anandan; A

    2011-01-01

    Objective:To determine the ovicidal and repellent activities of methanol leaf extract of Ervatamia coronaria(E.coronaria) and Caeslpinia pulckerrima(C.pulcherrima) against Culex quinquefasciatus(Cx.quinquefasciatus),Aedes aegypti(Ae.aegypti) and Anopheles stephensi(An. stephensi).Methods:The ovicidal activity was determined against three mosquito species at various concentrations ranging from 50-450 ppm under the laboratory conditions.The hatch rates were assessed 48 h after treatment.The repellent efficacy was determined against three mosquito species at three concentrations viz.,1.0,2.5 and 5.0 mg/cm under the laboratory conditions. Results:The crude extract of E.coronaria exerted zero hatchability(100%mortality) at 250.200 and 150 ppm for Cx.quinqitefasciatus,Ae.aegypti and An.stephensi,respectively.The crude extract of C.pulchenima exerted zero hatchability(100%mortality) at 375.300 and 225 ppm for Cx.quinquefasciatus,Ae.aegypti and An.Stephensi,respectively.The methanol extract of E. coronaria found to be more repellenct than C.pukherrima extract.A higher concentration of 5.0 mg/cm~2 provided 100%protection up to 150.180 and 210 min against Cx.quinquefasciatus,Ae. aegypti and An.stephensi,respectively.The results clearly showed that repellent activity was dose dependent.Conclusions:From the results it can be concluded the crude extracts of E.coronaria and C.pukherrima are an excellent potential for controlling Cx.quinquefasciatus,Ae.aegypti and An.stephensi mosquitoes.

  4. Comparative mosquito repellency of essential oils against Aedes aegypti (Linn.), Anopheles dirus (Peyton and Harrison) and Culex quinquefasciatus (Say)

    Institute of Scientific and Technical Information of China (English)

    Siriporn Phasomkusolsil; Mayura Soonwera

    2011-01-01

    Objective: To assess the repellency to female Aedes aegypti (Ae. aegypti), Anopheles dirus (An. dirus) and Culex quinquefasciatus (Cx. quinquefasciatus) of seven essential oils using two treatment methods. Methods: Topical applications of three dose concentrations (0.02, 0.10 and 0.21 mg/cm2) were made on the forearms of volunteers. Dose-response study and protection time study were employed in the experiment. Results: In the dose-response test, Cymbopogon citratus (C. citratus), Cymbopogon nardus (C. nardus), Syzygium aromaticum (S. aromaticum) and Ocimum basilicum (O. basilicum) exhibited a high repellency against Ae. aegypti with ED50 at < 0.045 mg/cm2, whereas C. citratus, C. nardus and S. aromaticum showed repellency against An. dirus with ED50 at <0.068 mg/cm2. Furthermore, the essential oils of C. citratus, C. nardus, S. aromaticum, O.basilicum and Cananga odorata gave strong effective dose (ED 50) values at <0.003 mg/cm2 when tested against Cx. quinquefasciatus. For testing by arm in cage method, at 0.21 mg/cm2, protection time of C. citratus gave the longest lasting period against three mosquito species, 72 min for Ae. aegypti, 132 min for An. dirus and 84 min for Cx. quinquefasciatus. In addition, the two essential oils exhibited moderate repellency against Ae. aegypti, An. dirus and Cx. quinquefasciatus, at 60, 90 and 78 min with C. nardus, and 54, 96 and 72 min with S. aromaticum, respectively. Conclusions: The percentage repellency increased when the concentration of essential oils increased. In contrast, biting rates decreased when the concentration of essential oils increased.C. citratus exhibited high efficiency for the protection time and the percentage of biting deterrent against all of 3 mosquito species.

  5. The Cry4B toxin of Bacillus thuringiensis subsp. israelensis kills Permethrin-resistant Anopheles gambiae, the principal vector of malaria.

    Science.gov (United States)

    Ibrahim, Mohamed A; Griko, Natalya B; Bulla, Lee A

    2013-04-01

    Resurgence of malaria has been attributed, in part, to the development of resistance by Anopheles gambiae, a principal vector of the disease, to various insecticidal compounds such as Permethrin. Permethrin, a neurotoxicant, is widely used to impregnate mosquito nets. An alternative strategy to control mosquitoes is the use of Bacillus thuringiensis subsp. israelensis (Bti) because there is no observable resistance in the field to the bacterium. Bti kills mosquitoes by targeting cadherin molecules residing in the midgut epithelium of larvae of the insect. Cry proteins (Cry4A, Cry4B, Cry10A and Cry11A) produced by the bacterium during the sporulation phase of its life cycle bind to the cadherin molecules, which serve as receptors for the proteins. These Cry proteins have variable specificity to a variety of mosquitoes, including Culex and Aedes as well as Anopheles. Importantly, selective mosquitocidal action is occasioned by binding of the respective Cry toxins to cadherins distinctive to individual mosquito species. Differential fractionation of the four Cry proteins from a novel Bti isolate (M1) and cloning and expression of their genes in Escherichia coli revealed that Cry4B is the only Cry protein that exerts insecticidal action against An. gambiae. Indeed, it does so against a Permethrin-resistant strain of the mosquito. The other three Cry proteins are ineffective. Multiple sequence alignments of the four Cry proteins revealed a divergent sequence motif in the Cry4B toxin, which most likely determines binding of the toxin to its cognate receptor, BT-R3, in An. gambiae and to its specific toxicity. A model showing Cry4B toxin binding to BT-R3 is presented. PMID:23760000

  6. Is there an efficient trap or collection method for sampling Anopheles darlingi and other malaria vectors that can describe the essential parameters affecting transmission dynamics as effectively as human landing catches? - A Review

    Directory of Open Access Journals (Sweden)

    José Bento Pereira Lima

    2014-08-01

    Full Text Available Distribution, abundance, feeding behaviour, host preference, parity status and human-biting and infection rates are among the medical entomological parameters evaluated when determining the vector capacity of mosquito species. To evaluate these parameters, mosquitoes must be collected using an appropriate method. Malaria is primarily transmitted by anthropophilic and synanthropic anophelines. Thus, collection methods must result in the identification of the anthropophilic species and efficiently evaluate the parameters involved in malaria transmission dynamics. Consequently, human landing catches would be the most appropriate method if not for their inherent risk. The choice of alternative anopheline collection methods, such as traps, must consider their effectiveness in reproducing the efficiency of human attraction. Collection methods lure mosquitoes by using a mixture of olfactory, visual and thermal cues. Here, we reviewed, classified and compared the efficiency of anopheline collection methods, with an emphasis on Neotropical anthropophilic species, especially Anopheles darlingi, in distinct malaria epidemiological conditions in Brazil.

  7. Pyrethroid resistance in Anopheles gambiae leads to increased susceptibility to the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana

    Directory of Open Access Journals (Sweden)

    Knols Bart GJ

    2010-06-01

    Full Text Available Abstract Background Entomopathogenic fungi are being investigated as a new mosquito control tool because insecticide resistance is preventing successful mosquito control in many countries, and new methods are required that can target insecticide-resistant malaria vectors. Although laboratory studies have previously examined the effects of entomopathogenic fungi against adult mosquitoes, most application methods used cannot be readily deployed in the field. Because the fungi are biological organisms it is important to test potential field application methods that will not adversely affect them. The two objectives of this study were to investigate any differences in fungal susceptibility between an insecticide-resistant and insecticide-susceptible strain of Anopheles gambiae sensu stricto, and to test a potential field application method with respect to the viability and virulence of two fungal species Methods Pieces of white polyester netting were dipped in Metarhizium anisopliae ICIPE-30 or Beauveria bassiana IMI391510 mineral oil suspensions. These were kept at 27 ± 1°C, 80 ± 10% RH and the viability of the fungal conidia was recorded at different time points. Tube bioassays were used to infect insecticide-resistant (VKPER and insecticide-susceptible (SKK strains of An. gambiae s.s., and survival analysis was used to determine effects of mosquito strain, fungus species or time since fungal treatment of the net. Results The resistant VKPER strain was significantly more susceptible to fungal infection than the insecticide-susceptible SKK strain. Furthermore, B. bassiana was significantly more virulent than M. anisopliae for both mosquito strains, although this may be linked to the different viabilities of these fungal species. The viability of both fungal species decreased significantly one day after application onto polyester netting when compared to the viability of conidia remaining in suspension. Conclusions The insecticide

  8. Vector capacity of Anopheles sinensis in malaria outbreak areas of central China

    Directory of Open Access Journals (Sweden)

    Pan Jia-Yun

    2012-07-01

    Full Text Available Abstract Background Both falciparum and vivax malaria were historically prevalent in China with high incidence. With the control efforts, the annual incidence in the whole country has reduced to 0.0001% except in some areas in the southern borders after 2000. Despite this, the re-emergence or outbreak of malaria was unavoidable in central China during 2005–2007. In order to understand the role of the vector in the transmission of malaria during the outbreak period, the vector capacity of An. sinensis in Huanghuai valley of central China was investigated. Findings The study was undertaken in two sites, namely Huaiyuan county of Anhui province and Yongcheng county of Henan province. In each county, malaria cases were recorded for recent years, and transmission risk factors for each study village including anti-mosquito facilities and total number of livestock were recorded by visiting each household in the study sites. The specimens of mosquitoes were collected in two villages, and population density and species in each study site were recorded after the identification of different species, and the blood-fed mosquitoes were tested by ring precipitation test. Finally, various indicators were calculated to estimate vector capacity or dynamics, including mosquito biting rate (MBR, human blood index (HBI, and the parous rates (M. Finally, the vector capacity, as an important indicator of malaria transmission to predict the potential recurrence of malaria, was estimated and compared in each study site. About 93.0% of 80 households in Huaiyuan and 89.3% of 192 households in Yongcheng had anti-mosquito facilities. No cattle or pigs were found, only less than 10 sheep were found in each study village. A total of 94 and 107 Anopheles spp. mosquitos were captured in two study sites, respectively, and all of An. sinensis were morphologically identified. It was found that mosquito blood-feeding peak was between 9:00 pm and 12:00 pm. Man biting rate of

  9. Vectors and malaria transmission in deforested, rural communities in north-central Vietnam

    Directory of Open Access Journals (Sweden)

    Do Manh Cuong

    2010-09-01

    Full Text Available Abstract Background Malaria is still prevalent in rural communities of central Vietnam even though, due to deforestation, the primary vector Anopheles dirus is uncommon. In these situations little is known about the secondary vectors which are responsible for maintaining transmission. Basic information on the identification of the species in these rural communities is required so that transmission parameters, such as ecology, behaviour and vectorial status can be assigned to the appropriate species. Methods In two rural villages - Khe Ngang and Hang Chuon - in Truong Xuan Commune, Quang Binh Province, north central Vietnam, a series of longitudinal entomological surveys were conducted during the wet and dry seasons from 2003 - 2007. In these surveys anopheline mosquitoes were collected in human landing catches, paired human and animal bait collections, and from larval surveys. Specimens belonging to species complexes were identified by PCR and sequence analysis, incrimination of vectors was by detection of circumsporozoite protein using an enzyme-linked immunosorbent assay. Results Over 80% of the anopheline fauna was made up of Anopheles sinensis, Anopheles aconitus, Anopheles harrisoni, Anopheles maculatus, Anopheles sawadwongporni, and Anopheles philippinensis. PCR and sequence analysis resolved identification issues in the Funestus Group, Maculatus Group, Hyrcanus Group and Dirus Complex. Most species were zoophilic and while all species could be collected biting humans significantly higher densities were attracted to cattle and buffalo. Anopheles dirus was the most anthropophilic species but was uncommon making up only 1.24% of all anophelines collected. Anopheles sinensis, An. aconitus, An. harrisoni, An. maculatus, An. sawadwongporni, Anopheles peditaeniatus and An. philippinensis were all found positive for circumsporozoite protein. Heterogeneity in oviposition site preference between species enabled vector densities to be high in both

  10. Malaria vector control by indoor residual insecticide spraying on the tropical island of Bioko, Equatorial Guinea

    Directory of Open Access Journals (Sweden)

    Kuklinski Jaime

    2007-05-01

    Full Text Available Abstract Background A comprehensive malaria control intervention was initiated in February 2004 on Bioko Island, Equatorial Guinea. This manuscript reports on the continuous entomological monitoring of the indoor residual spray (IRS programme during the first two years of its implementation. Methods Mosquitoes were captured daily using window traps at 16 sentinel sites and analysed for species identification, sporozoite rates and knockdown resistance (kdr using polymerase chain reaction (PCR to assess the efficacy of the vector control initiative from December 2003 to December 2005. Results A total of 2,807 and 10,293 Anopheles funestus and Anopheles gambiae s.l. respectively were captured throughout the study period. Both M and S molecular forms of An. gambiae s.s. and Anopheles melas were identified. Prior to the first round of IRS, sporozoite rates were 6.0, 8.3 and 4.0 for An. gambiae s.s., An. melas and An. funestus respectively showing An. melas to be an important vector in areas in which it occurred. After the third spray round, no infective mosquitoes were identified. After the first spray round using a pyrethroid spray the number of An. gambiae s.s. were not reduced due to the presence of the kdr gene but An funestus and An. melas populations declined from 23.5 to 3.1 and 5.3 to 0.8 per trap per 100 nights respectively. After the introduction of a carbamate insecticide in the second round, An. gambiae s.s. reduced from 25.5 to 1.9 per trap per 100 nights and An. funestus and An. melas remained at very low levels. Kdr was found only in the M-form of An. gambiae s.s. with the highest frequency at Punta Europa (85%. Conclusion All three vectors that were responsible for malaria transmission before the start of the intervention were successfully controlled once an effective insecticide was used. Continuous entomological surveillance including resistance monitoring is of critical importance in any IRS based malaria vector control programme

  11. Review of Temephos Discriminating Concentration for Monitoring the Susceptibility of Anopheles labranchiae (Falleroni, 1926), Malaria Vector in Morocco

    OpenAIRE

    Chandre, F; Ameur, B; Herrak, T.; E. Adlaoui; Elkohli, M.; Faraj, C.

    2010-01-01

    In Morocco, the resistance monitoring of Anopheles labranchiae larvae to temephos is done using discriminating concentration of 0.125 mg, which is half of the WHO recommended dose for Anopheles. However, this dosage seemed to be too high to allow an early detection of the resistance and its revision was found necessary. The present study was carried out during May-June 2008 and 2009 in nine provinces from the north-west of the country. The aim was to determine the lethal concentrations LC100 ...

  12. Crystal and Solution Studies of the “Plus-C” Odorant-binding Protein 48 from Anopheles gambiae

    Science.gov (United States)

    Tsitsanou, Katerina E.; Drakou, Christina E.; Thireou, Trias; Vitlin Gruber, Anna; Kythreoti, Georgia; Azem, Abdussalam; Fessas, Dimitrios; Eliopoulos, Elias; Iatrou, Kostas; Zographos, Spyros E.

    2013-01-01

    Much physiological and behavioral evidence has been provided suggesting that insect odorant-binding proteins (OBPs) are indispensable for odorant recognition and thus are appealing targets for structure-based discovery and design of novel host-seeking disruptors. Despite the fact that more than 60 putative OBP-encoding genes have been identified in the malaria vector Anopheles gambiae, the crystal structures of only six of them are known. It is therefore clear that OBP structure determination constitutes the bottleneck for structure-based approaches to mosquito repellent/attractant discovery. Here, we describe the three-dimensional structure of an A. gambiae “Plus-C” group OBP (AgamOBP48), which exhibits the second highest expression levels in female antennae. This structure represents the first example of a three-dimensional domain-swapped dimer in dipteran species. A combined binding site is formed at the dimer interface by equal contribution of each monomer. Structural comparisons with the monomeric AgamOBP47 revealed that the major structural difference between the two Plus-C proteins localizes in their N- and C-terminal regions, and their concerted conformational change may account for monomer-swapped dimer conversion and furthermore the formation of novel binding pockets. Using a combination of gel filtration chromatography, differential scanning calorimetry, and analytical ultracentrifugation, we demonstrate the AgamOBP48 dimerization in solution. Eventually, molecular modeling calculations were used to predict the binding mode of the most potent synthetic ligand of AgamOBP48 known so far, discovered by ligand- and structure-based virtual screening. The structure-aided identification of multiple OBP binders represents a powerful tool to be employed in the effort to control transmission of the vector-borne diseases. PMID:24097978

  13. Evaluation of Endod (Phytolacca dodecandra: Phytolaccaceae) as a Larvicide Against Anopheles arabiensis, the Principal Vector of Malaria in Ethiopia.

    Science.gov (United States)

    Getachew, Dejene; Balkew, Meshesha; Gebre-Michael, Teshome

    2016-06-01

    Malaria control methods rely mostly on adult mosquito control using insecticide-treated nets and indoor residual spraying with insecticides. Plants such as endod (Phytolacca dodecandra) can potentially be used for the control of mosquito larvae as a supplement to adult control methods. Following the discovery of endod, a molluscicide plant, more than 5 decades ago in Ethiopia, subsequent studies have shown that its potency can further be increased by simple procedures such as aging endod berry powder in water. This study was conducted to evaluate the killing effect of fresh and aged endod solution against 4th-stage larvae of Anopheles arabiensis. Laboratory-reared An. arabiensis larvae exposed to different concentrations of endod preparation using distilled or spring water had 50% lethal concentration (LC50)  =  49.6 ppm and 90% lethal concentration (LC90)  =  234 ppm for fresh and LC50  =  36.4 ppm and LC90  =  115.7 ppm for the aged endod solution in distilled water against the laboratory population. Against field-collected larvae of the same species, aged preparations in habitat water resulted in higher LC50 (472.7 ppm) and LC90 (691 ppm) values, with only a slight improvement over fresh preparations in habitat water (LC50  =  456.2 ppm; LC90  =  896.1 ppm). In general, although aged preparations of endod required lower concentrations than fresh to kill at least 90% of the larvae, these concentrations were much higher (12-70×) than that required for schistosome-transmitting snails. PMID:27280350

  14. Present habitat suitability for Anopheles atroparvus (Diptera, Culicidae and its coincidence with former malaria areas in mainland Portugal

    Directory of Open Access Journals (Sweden)

    César Capinha

    2009-05-01

    Full Text Available Malaria was a major health problem in the first half of the 20th Century in mainland Portugal. Nowadays, although the disease is no longer endemic, there is still the risk of future endemic infections due to the continuous occurrence of imported cases and the possibility of transmission in the country by Anopheles atroparvus Van Thiel, 1927. Since vector abundance constitute one of the foremost factors in malaria transmission, we have created several habitat suitability models to describe this vector species’ current distribution. Three different correlative models; namely (i a multilayer perceptron artificial neural network (MLP-ANN; (ii binary logistic regression (BLR; and (iii Mahalanobis distance were used to combine the species records with a set of five environmental predictors. Kappa coefficient values from k-fold cross-validation records showed that binary logistic regression produced the best predictions, while the other two models also produced acceptable results. Therefore, in order to reduce uncertainty, the three suitability models were combined. The resulting model identified high suitability for An. atroparvus in the majority of the country with exception of the northern and central coastal areas. Malaria distribution during the last endemic period in the country was also compared with the combined suitability model, and a high degree of spatial agreement was obtained (kappa = 0.62. It was concluded that habitat suitability for malaria vectors can constitute valuable information on the assessment of several spatial attributes of the disease. In addition, the results suggest that the spatial distribution of An. atroparvus in the country remains very similar to the one known about seven decades ago.

  15. Evaluation of some aromatic plant extracts for mosquito larvicidal potential against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi.

    Science.gov (United States)

    Jayaraman, M; Senthilkumar, A; Venkatesalu, V

    2015-04-01

    In the present investigation, larvicidal potential of hexane, choloroform, ethyl acetate, acetone, and methanol extracts of seven aromatic plants, viz., Blumea mollis, Chloroxylon swietenia, Clausena anisata, Feronia limnonia, Lantana camera, Plectranthus amboinicus, and Tagetes erecta were screened against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi. The larval mortality was observed after 12 and 24 h of exposure period. The results revealed that all the extracts showed varied levels of larvicidal activity against the mosquito species tested. However, the ethyl acetate extract of Chloroxylon swietenia showed the remarkable larvicidal activity against C. quinquefasciatus, Ae. aegypti, and An. stephensi. After 12 h of exposure period, the larvicidal activity was LC50 = 194.22 and LC90 = 458.83 ppm (C. quinquefasciatus), LC50 = 173.04 and LC90 = 442.73 ppm (Ae. aegypti), and LC50 = 167.28 and LC90 = 433.07 ppm (An. stephensi), and the larvicidal activity after 24-h exposure period was LC50 = 94.12 and LC90 = 249.83 ppm (C. quinquefasciatus), LC50 = 80.58 and LC90 = 200.96 ppm (Ae. aegypti), and LC50 = 76.24 and LC90 = 194.51 ppm (An. stephensi). The larvicidal potential of other plant extracts were in order of ethyl acetate extract of Clausena anisata > methanol extract of P. amboinicus > acetone extract of F. limonia > methanol extract of T. erecta > methanol extract of B. mollis > and methanol extract of L. camera. The results of the present study offer a possible way for further investigations to find out the active molecule responsible for the activity. PMID:25630696

  16. PCR detection of malaria parasites in desiccated Anopheles mosquitoes is uninhibited by storage time and temperature

    Directory of Open Access Journals (Sweden)

    Rider Mark A

    2012-06-01

    Full Text Available Abstract Background Reliable methods to preserve mosquito vectors for malaria studies are necessary for detecting Plasmodium parasites. In field settings, however, maintaining a cold chain of storage from the time of collection until laboratory processing, or accessing other reliable means of sample preservation is often logistically impractical or cost prohibitive. As the Plasmodium infection rate of Anopheles mosquitoes is a central component of the entomological inoculation rate and other indicators of transmission intensity, storage conditions that affect pathogen detection may bias malaria surveillance indicators. This study investigated the effect of storage time and temperature on the ability to detect Plasmodium parasites in desiccated Anopheles mosquitoes by real-time polymerase chain reaction (PCR. Methods Laboratory-infected Anopheles stephensi mosquitoes were chloroform-killed and stored over desiccant for 0, 1, 3, and 6 months while being held at four different temperatures: 28, 37, -20 and -80°C. The detection of Plasmodium DNA was evaluated by real-time PCR amplification of a 111 base pair region of block 4 of the merozoite surface protein. Results Varying the storage time and temperature of desiccated mosquitoes did not impact the sensitivity of parasite detection. A two-way factorial analysis of variance suggested that storage time and temperature were not associated with a loss in the ability to detect parasites. Storage of samples at 28°C resulted in a significant increase in the ability to detect parasite DNA, though no other positive associations were observed between the experimental storage treatments and PCR amplification. Conclusions Cold chain maintenance of desiccated mosquito samples is not necessary for real-time PCR detection of parasite DNA. Though field-collected mosquitoes may be subjected to variable conditions prior to molecular processing, the storage of samples over an inexpensive and logistically

  17. Water quality and immatures of the M and S forms of Anopheles gambiae s.s. and An. arabiensis in a Malian village

    Directory of Open Access Journals (Sweden)

    Touré Yeya T

    2006-04-01

    Full Text Available Abstract Introduction The associations between the immatures of Anopheles gambiae s.s. (Diptera: Culicidae, its M and S forms, and Anopheles arabiensis among and within larval breeding habitats in Banambani, Mali were investigated under varying conditions of water quality and rainfall. The intent was to elucidate on niche partitioning of these taxa. Methods Immatures of An. arabiensis, An. gambiae s.s., and its M and S forms were sampled every alternate day for a month in mid-rainy season from three sampling sites in each of the larval breeding habitats (rock pools, swamp, and puddles. Water quality was characterized by alkalinity, conductivity, dissolved oxygen (D.O., nitrate, orthophosphate, pH, temperature, total dissolved solids (TDS, and turbidity. A type 3 analysis of the GENMOD model was used to examine the associations between the proportional frequencies of young (first and second instar larvae and old (third and fourth instar larvae and pupae or total immatures of species or forms among sampling sites within and among larval breeding habitats during a category of rainfall as influenced by water quality. Results Of the 4,174 immatures sampled, 1,300 were molecularly identified to species and forms. Significant association between the proportional frequencies of young larvae of An. arabiensis, An. gambiae s.s., its M and S forms was found among sampling sites within habitats but not among larval breeding habitats. The proportional frequencies of young larvae of M and S forms varied daily perhaps due to recruitment, mortality, and dispersal within habitats. Conductivity and TDS had significant effects when the proportional frequencies of young larvae of M and S forms among sampling sites within habitats were significantly associated. Alkalinity, D.O., orthophosphate, pH, nitrate, temperature and turbidity had no effects on niche partitioning of species and forms among sampling sites within habitats. Rainfall did not affect the frequencies

  18. Larvicidal activity of extracts from three Plumbago spp against Anopheles gambiae

    OpenAIRE

    Barasa M Maniafu; Lwande Wilber; Ndiege, Isaiah O.; Cornelius C Wanjala; Teresa Ayuko Akenga

    2009-01-01

    Three Plumbago spp have been tested for mosquito larvicidal activity. The crude extracts exhibiting the highest larvicidal activity against Anopheles gambiae were hexane (LC50 = 6.4 μg/mL) and chloroform (LC50 = 6.7 μg/mL) extracts from Plumbago zeylanica Linn, chloroform (LC50 = 6.7 ug/mL) extract from Plumbago stenophylla Bull and ethyl acetate (LC50 = 4.1 μg/mL) extract from Plumbago dawei Rolfe. These LC50 values were within 95% confidence limits. 5-hydroxy-2-methyl-1,4-nap...

  19. Effect of ivermectin on the larvae of Anopheles gambiae and Culex quinquefasciatus

    DEFF Research Database (Denmark)

    Derua, Yahya A.; Malongo, Bernard B.; Simonsen, Paul E.

    2016-01-01

    Background: Ivermectin is used extensively globally for treatment of helminthic and ectoparasitic infections in animals and humans. The effect of excreted ivermectin on non-target organisms in aquatic and terrestrial environments has been increasingly reported. Due to its low water solubility...... and adsorption to sediments, the ivermectin exposure-risk to aquatic organisms dwelling in different strata of water bodies varies. This study assessed the survival of larvae of Anopheles gambiae Giles and Culex quinquefasciatus Say, when exposed to low concentrations of ivermectin under laboratory conditions...

  20. Insecticidal activity of the essential oil of Thymus transcaspicus against Anopheles stephensi

    Institute of Scientific and Technical Information of China (English)

    Leila Dargahi; Kamal Razavi-Azarkhiavi; Mohammad Ramezani; Mohammad Reza Abaee; Javad Behravan

    2014-01-01

    Objective:To investigate the insecticidal activity of the essential oil of Thymus transcaspicus (T. transcaspicus) against Anopheles stephensi (An. stephensi). Methods:An. stephensi were exposed to 31, 63, 125 and 250 µg/L of essential oil of T. transcaspicus for 24 h. Results:The most toxicity was observed at 250 µg/L of essential oil with the LC50 values of 134.1 µg/L after 24 h. Conclusions:The essential oil of T. transcaspicus exhibited strong insecticidal activity against An. stephensi which can be attributed to its constituent especially carvacrol and thymol phenols.

  1. A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae.

    Science.gov (United States)

    Kumar, Sanjeev; Molina-Cruz, Alvaro; Gupta, Lalita; Rodrigues, Janneth; Barillas-Mury, Carolina

    2010-03-26

    Extracellular matrices in diverse biological systems are cross-linked by dityrosine covalent bonds catalyzed by the peroxidase/oxidase system. We show that a peroxidase, secreted by the Anopheles gambiae midgut, and dual oxidase form a dityrosine network that decreases gut permeability to immune elicitors. This network protects the microbiota by preventing activation of epithelial immunity. It also provides a suitable environment for malaria parasites to develop within the midgut lumen without inducing nitric oxide synthase expression. Disruption of this barrier results in strong and effective pathogen-specific immune responses. PMID:20223948

  2. Immune factor Gambif1, a new rel family member from the human malaria vector, Anopheles gambiae.

    OpenAIRE

    Barillas-Mury, C; Charlesworth, A.; Gross, I; Richman, A; Hoffmann, J A; Kafatos, F C

    1996-01-01

    A novel rel family member, Gambif1 (gambiae immune factor 1), has been cloned from the human malaria vector, Anopheles gambiae, and shown to be most similar to Drosophila Dorsal and Dif. Gambif1 protein is translocated to the nucleus in fat body cells in response to bacterial challenge, although the mRNA is present at low levels at all developmental stages and is not induced by infection. DNA binding activity to the kappaB-like sites in the A.gambiae Defensin and the Drosophila Diptericin and...

  3. The JAK-STAT Pathway Controls Plasmodium vivax Load in Early Stages of Anopheles aquasalis Infection

    OpenAIRE

    Bahia, Ana C; Marina S Kubota; Antonio J Tempone; Helena R. C. Araújo; Bruno A M Guedes; Orfanó, Alessandra S.; Wanderli P Tadei; Ríos-Velásquez, Claudia M.; Han, Yeon S.; SECUNDINO Nágila F.C.; Barillas-Mury, Carolina; Pimenta, Paulo F. P.; Traub-Csekö, Yara M.

    2011-01-01

    Malaria affects 300 million people worldwide every year and 450,000 in Brazil. In coastal areas of Brazil, the main malaria vector is Anopheles aquasalis, and Plasmodium vivax is responsible for the majority of malaria cases in the Americas. Insects possess a powerful immune system to combat infections. Three pathways control the insect immune response: Toll, IMD, and JAK-STAT. Here we analyze the immune role of the A. aquasalis JAK-STAT pathway after P. vivax infection. Three genes, the tran...

  4. The JAK-STAT pathway controls Plasmodium vivax load in early stages of Anopheles aquasalis infection.

    OpenAIRE

    Bahia, Ana C; Marina S Kubota; Antonio J Tempone; Helena R. C. Araújo; Bruno A M Guedes; Orfanó, Alessandra S.; Wanderli P Tadei; Ríos-Velásquez, Claudia M.; Han, Yeon S.; SECUNDINO Nágila F.C.; Carolina Barillas-Mury; Pimenta, Paulo F. P.; Traub-Csekö, Yara M.

    2011-01-01

    Malaria affects 300 million people worldwide every year and 450,000 in Brazil. In coastal areas of Brazil, the main malaria vector is Anopheles aquasalis, and Plasmodium vivax is responsible for the majority of malaria cases in the Americas. Insects possess a powerful immune system to combat infections. Three pathways control the insect immune response: Toll, IMD, and JAK-STAT. Here we analyze the immune role of the A. aquasalis JAK-STAT pathway after P. vivax infection. Three genes, the tran...

  5. A Peroxidase/Dual Oxidase System Modulates Midgut Epithelial Immunity in Anopheles gambiae

    Science.gov (United States)

    Kumar, Sanjeev; Molina-Cruz, Alvaro; Gupta, Lalita; Rodrigues, Janneth; Barillas-Mury, Carolina

    2012-01-01

    Extracellular matrices in diverse biological systems are crosslinked by dityrosine covalent bonds catalyzed by the peroxidase/oxidase system. We show that the Immunomodulatory Peroxidase (IMPer), an enzyme secreted by the mosquito Anopheles gambiae midgut, and dual oxidase (Duox) form a dityrosine network that decreases gut permeability to immune elicitors and protects the microbiota by preventing activation of epithelial immunity. It also provides a suitable environment for malaria parasites to develop within the midgut lumen without inducing nitric oxide synthase expression. Disruption of this barrier results in strong and effective pathogen-specific immune responses. PMID:20223948

  6. Gene expression patterns associated with blood-feeding in the malaria mosquito Anopheles gambiae

    OpenAIRE

    Hogan James R; Lobo Neil F; Harker Brent W; Hillenmeyer Maureen E; Kern Marcia K; Hong Young S; Dana Ali N; Romans Patricia; Collins Frank H

    2005-01-01

    Abstract Background Blood feeding, or hematophagy, is a behavior exhibited by female mosquitoes required both for reproduction and for transmission of pathogens. We determined the expression patterns of 3,068 ESTs, representing ~2,000 unique gene transcripts using cDNA microarrays in adult female Anopheles gambiae at selected times during the first two days following blood ingestion, at 5 and 30 min during a 40 minute blood meal and at 0, 1, 3, 5, 12, 16, 24 and 48 hours after completion of t...

  7. Efficacy of leaves extract of Calotropis procera Ait. (Asclepiadaceae) in controlling Anopheles arabiensis and Culex quinquefasciatus mosquitoes.

    Science.gov (United States)

    Elimam, Abdalla M; Elmalik, Khitma H; Ali, Faysal S

    2009-10-01

    The present study aimed to investigate, the larvicidal, adult emergence inhibition and oviposition deterrent activity of aqueous leaves extract of Calotropis procera against Anopheles arabiensis and Culex quinquefasciatus as natural mosquito larvicide. The larvicidal activity was monitored against 2nd, 3rd and 4th instar larvae of each mosquito species 24 h post-treatment. Adult emergence inhibition activity was tested by exposing 3rd instar larvae of each mosquito species to different concentrations of extracts (200, 400, 600, 800 and 1000 ppm for An. arabiensis and 100, 200, 300, 400, 500 and 600 ppm for Cx. quinquefasciatus). Probit analysis was used to analyze data from bioassay experiments. The oviposition deterrent activity was tested by using three different concentrations of extracts (1000, 500 and 200 for An. arabiensis, and 1000, 500 and 100 for Cx. quinquefasciatus) that caused high, moderate and low larval mortality in the larvicidal experiment against 3rd instar larvae. It was found that, LC50-LC90 values calculated were 273.53-783.43, 366.44-1018.59 and 454.99-1224.62 ppm for 2nd, 3rd and 4th larval instars, respectively, of An. arabiensis and 187.93-433.51, 218.27-538.27 and 264.85-769.13 ppm for 2nd, 3rd and 4th larval instars, respectively, of Cx. quinquefasciatus. Fifty percent of adult emergence inhibition (EI50) was shown at 277.90 and 183.65 ppm for An. arabiensis and Cx. quinquefasciatus, respectively. The pupal stage was not affected till a concentration of 5000 ppm. The extract showed oviposition deterrence and effective repellence against both mosquito species at different concentrations, with the observation on that maximal eggs were laid in low concentration of extract. These results suggest that the leaves extract of C. procera possess remarkable larvicidal, adult emergence inhibitor, repellent and oviposition deterrent effect against both An. arabiensis and Cx. quinquefasciatus, and might be used as natural biocides for mosquito

  8. Toxicity of pirimiphos methyl (Actellic 25EC) on Anopheles gambiae s.s., Culex quinquefasciatus (Diptera: Culicidae), and potential biocontrol agent, Poecilia reticulata (Pisces: Poeciliidae).

    Science.gov (United States)

    Anogwih, Joy A

    2014-08-01

    The toxicity of an emulsifiable formulation of pirimiphos methyl (Actellic 25EC) on Anopheles gambiae s.s. Giles, Culex quinquefasciatus Say (Diptera: Culicidae), and predator fish Poecilia reticulata Peters (Pisces: Poeciliidae) was investigated. Acute toxicity tests were carried out to determine the effect of the larvicide on mosquito larvae and fish species. To investigate the nontarget effects on P. reticulata, fish of similar size (3.5 +/- 0.2 cm) were randomly selected and exposed for 28 d, under static renewal bioassay, to sublethal concentrations of the larvicide capable of killing 30 and 70% of Cx. quinquefasciatus. The 24 h LC50 value of pirimiphos methyl on the test organisms ranged between 20.44 and 697.30 microg liter(-1). The ultrastructural changes observed in the intestinal cells of P. reticulata were characterized by degenerating cell membranes with gradual loss of gray area in pycnotic nucleus at lower concentration. Marked damage was found at higher concentration including distinct loss of gray areas in cytosol, absence of cristae, numerous ruptures, and several dead cells. Pirimiphos methyl was toxic to a predatory fish species, and for its relevance in vector control and crop protection, warrants cumulative assessment to establish its comprehensive ecological risk, and the dosage required for field larviciding.

  9. Additional selection for insecticide resistance in urban malaria vectors: DDT resistance in Anopheles arabiensis from Bobo-Dioulasso, Burkina Faso.

    Directory of Open Access Journals (Sweden)

    Christopher M Jones

    Full Text Available In the city of Bobo-Dioulasso in Burkina Faso, Anopheles arabiensis has superseded Anopheles gambiae s.s. as the major malaria vector and the larvae are found in highly polluted habitats normally considered unsuitable for Anopheles mosquitoes. Here we show that An. gambiae s.l. adults emerging from a highly polluted site in the city centre (Dioulassoba have a high prevalence of DDT resistance (percentage mortality after exposure to diagnostic dose=65.8% in the dry season and 70.4% in the rainy season, respectively. An investigation into the mechanisms responsible found an unexpectedly high frequency of the 1014S kdr mutation (allele frequency=0.4, which is found at very low frequencies in An. arabiensis in the surrounding rural areas, and an increase in transcript levels of several detoxification genes, notably from the glutathione transferase and cytochrome P450 gene families. A number of ABC transporter genes were also expressed at elevated levels in the DDT resistant An. arabiensis. Unplanned urbanisation provides numerous breeding grounds for mosquitoes. The finding that Anopheles mosquitoes adapted to these urban breeding sites have a high prevalence of insecticide resistance has important implications for our understanding of the selective forces responsible for the rapid spread of insecticide resistant populations of malaria vectors in Africa.

  10. Electrophysiological responses of gustatory receptor neurons on the labella of the common malaria mosquito Anopheles quadrimaculatus Say (Diptera: Culicidae)

    Science.gov (United States)

    We recorded electrical responses from sensory cells associated with gustatory sensilla on the labella of female Anopheles quadrimaculatus to salt, sucrose, quinine (a feeding deterrent) and the insect repellent, N,N-diethyl-3-methylbenzamide (DEET). A salt-sensitive cell responded to increasing con...

  11. First report of Metarhizium anisopliae IP 46 pathogenicity in adult Anopheles gambiae s.s. and An. arabiensis (Diptera; Culicidae)

    NARCIS (Netherlands)

    Mnyone, L.L.; Russell, T.L.; Lyimo, I.N.; Lwetoijera, D.W.; Kirby, M.J.; Luz, C.

    2009-01-01

    The entomopathogenic fungus Metarhizium anisopliae isolate IP 46, originating from a soil sample collected in 2001 in the Cerrado of Central Brazil, was tested for its ability to reduce the survival of adult male and female Anopheles gambiae s.s. and An. arabiensis mosquitoes. A 6-h exposure to the

  12. Differential attractiveness of humans to the African malaria vector Anopheles gambiae Giles - Effects of host characteristics and parasite infection

    NARCIS (Netherlands)

    Mukabana, W.R.

    2002-01-01

    The results of a series of studies designed to understand the principal factors that determine the differential attractiveness of humans to the malaria vector Anopheles gambiae are described in this thesis. Specific

  13. Toxicity of six plant extracts and two pyridine alkaloids from Ricinus communis against the malaria vector Anopheles gambiae

    Science.gov (United States)

    The African malaria vector, Anopheles gambiae s.s., is known to feed selectively on certain plants for sugar sources. However, the adaptive significance of this behavior especially on how the extracts of such plants impact on the fitness of this vector has not been explored. This study determined th...

  14. Extent of digestion affects the success of amplifying human DNA from blood meals of Anopheles gambiae (Diptera: Culicidae)

    NARCIS (Netherlands)

    Mukabana, W.R.; Takken, W.; Seda, P.; Killeen, G.F.; Hawley, W.A.; Knols, B.G.J.

    2002-01-01

    The success of distinguishing blood meal sources of Anopheles gambiae Giles through deoxyribonucleic acid (DNA) profiling was investigated by polymerase chain reaction (PCR) amplification at the TC-11 and VWA human short tandem repeats (STR) loci. Blood meal size and locus had no significant effect

  15. Malaria in Suriname: a new era : impact of modified intervention strategies on Anopheles darlingi populations and malaria incidence

    NARCIS (Netherlands)

    Hiwat-van Laar, H.

    2011-01-01

    Malaria is an infectious disease caused by Plasmodiumblood parasites which live inside the human host and are spread by Anopheles mosquitoes.Every year an estimated 225 million new cases and near 800.000 malaria deaths are reported. Control of the disease is a formidable task involving all three liv

  16. Indirect evidence that agricultural pesticides select for insecticide resistance in the malaria vector Anopheles gambiae.

    Science.gov (United States)

    Luc, Djogbénou S; Benoit, Assogba; Laurette, Djossou; Michel, Makoutode

    2016-06-01

    We investigated the possible relationship between the agricultural use of insecticides and the emergence of insecticide resistance. Bioassays were conducted using simulated mosquito larval habitats and well known Anopheles gambiae strains. Soil samples were collected from vegetable production areas in Benin, including one site with insecticide use, one site where insecticides had not been used for two months, and a third where insecticides had not been used. Pupation and emergence rates were very low in pyrethroid-susceptible strains when exposed to soil that had been recently exposed to insecticides. Pupation and emergence rates in strains with the kdr mutation alone or both the kdr and Ace-1 mutations were much higher. Overall, strains with the kdr mutation survived at higher rates compared to that without kdr mutation. Although this study is observational, we provide indirect evidence indicating that soils from agricultural areas contain insecticide residues that can play a role in the emergence of insecticide resistance in Anopheles. This aspect should be taken into account to better utilize the insecticide in the context of integrated pest management programs.

  17. Phytochemistry and larvicidal activity of Eucalyptus camaldulensisagainst malaria vector,Anopheles stephensi

    Institute of Scientific and Technical Information of China (English)

    Sedaghat Mohamad Medhi; SaneiAli Reza; Khnavi Mahnaz; Abai Mohammad Reza; Hadjiakhoondi Abbas; MohtaramiFatemeh; VatandoostHassan

    2010-01-01

    Objective:To determine phytochemistry and larvicidal activity ofEucalyptus camaldulensis againstAnopheles stephensi.Methods:The chemical compositions of the leaf essential oils were analyzed using gas chromatography/mass spectrometry (GC/MS). The larvicidal activity of essential oils and extract of leaf were tested against 4th instar larvae of laboratory-rearedAnopheles stephensi.Results:GC/MS analyses identified the presence of28 compounds corresponding to 99.60%of the total oil. The main constituents in the leaf essential oil were1,8-cineole(69.46%), γ-Terpinene(15.10%), α-Pinene(5.47%)and Globulol(2%). The leaf extract and volatile oil exerted significant larvicidal activity withLC50 values of89.85 and397.75ppm, respectively. Clear dose-response relationships were established with the highest dose of320 ppm essential oil extract resulted almost100% mortality in the population.Conclusions:The larvicidal properties suggest that the essential oil of plant is a potential source of valuable larvicidal compounds against malaria vector and can be used as an alternative to synthetic insecticides.

  18. Unassisted isolated-pair mating of Anopheles gambiae (Diptera: Culicidae) mosquitoes.

    Science.gov (United States)

    Benedict, Mark Q; Rafferty, Cristina S

    2002-11-01

    Female Anopheles mosquitoes usually mate only once, but mating is seldom seen in small containers containing only one female and male. Therefore, matings are often performed among many adults in large cages or by forced copulation. Isolated-pair mating of Anopheles gambiae G3 strain-derived mosquitoes without forced copulation in small vials is described. We observed that the experimental variables eye color and male number were significant factors in the mating frequency. Females mated more frequently when three males were present over only one male. White-eyed females were more likely to be mated than wild-eyed females, but wild males mated more frequently than did white-eyed males. Experiments were also conducted to determine when mating was occurring by using wild-eye-color mosquitoes in isolated pairs. Almost no matings were observed before day 6 rather than the frequencies typically observed after 1-2 d in standard large-cage matings among large numbers of adults.

  19. "Comparison of Midgut Hemagglutination Activity in Three Different Geographical Populations of Anopheles stephensi"

    Directory of Open Access Journals (Sweden)

    HR Basseri

    2004-08-01

    Full Text Available Lectins that agglutinate red blood cells (RBCs were demonstrated in Anopheles stephensi mosquito midgut extracts using human (four groups: A, B, AB and O, RH+ rat, sheep and rabbit blood cells. Only rabbit RBCs showed agglutination reaction against the midgut extracts. Significant differences in hemagglutinin titers and carbohydrate specifity were detected between male and female mosquitoes as well as among three different geographical populations of Anopheles stephensi from south of Iran. Overall agglutinin levels were increased following a blood meal. The highest hemagglintination titers were due to Kazerun population. All hemagglutination assays were versus rabbit RBCS. A significant difference was detected among the number of egg-float ridges. Iranshahr population was different from Bandar-abbas and Kazerun population in egg-float ridges number. Bandr-abbas population was in the intermediate category. Iranshahr population fell between mysoransis and intermediate group and Kazerun population was between intermediate and type form. This study presents the first report on the occurrence of heterogeneous anti Rabbit RBC agglutinins in the midget extracts of the different geographical populations of An.stephensi with the sugar – binding specificities. The sugar- inhibition pattern was different between & within geographical population of An.stephensi.

  20. The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission.

    Directory of Open Access Journals (Sweden)

    Lindsay M Beck-Johnson

    Full Text Available The parasites that cause malaria depend on Anopheles mosquitoes for transmission; because of this, mosquito population dynamics are a key determinant of malaria risk. Development and survival rates of both the Anopheles mosquitoes and the Plasmodium parasites that cause malaria depend on temperature, making this a potential driver of mosquito population dynamics and malaria transmission. We developed a temperature-dependent, stage-structured delayed differential equation model to better understand how climate determines risk. Including the full mosquito life cycle in the model reveals that the mosquito population abundance is more sensitive to temperature than previously thought because it is strongly influenced by the dynamics of the juvenile mosquito stages whose vital rates are also temperature-dependent. Additionally, the model predicts a peak in abundance of mosquitoes old enough to vector malaria at more accurate temperatures than previous models. Our results point to the importance of incorporating detailed vector biology into models for predicting the risk for vector borne diseases.

  1. Identification of four evolutionarily related G protein-coupled receptors from the malaria mosquito Anopheles gambiae

    DEFF Research Database (Denmark)

    Belmont, Martin; Cazzamali, Giuseppe; Williamson, Michael;

    2006-01-01

    The mosquito Anopheles gambiae is an important vector for malaria, which is one of the most serious human parasitic diseases in the world, causing up to 2.7 million deaths yearly. To contribute to our understanding of A. gambiae and to the transmission of malaria, we have now cloned four evolutio......The mosquito Anopheles gambiae is an important vector for malaria, which is one of the most serious human parasitic diseases in the world, causing up to 2.7 million deaths yearly. To contribute to our understanding of A. gambiae and to the transmission of malaria, we have now cloned four...... evolutionarily related G protein-coupled receptors (GPCRs) from this mosquito and expressed them in Chinese hamster ovary cells. After screening of a library of thirty-three insect or other invertebrate neuropeptides and eight biogenic amines, we could identify (de-orphanize) three of these GPCRs as...... relationship to the A. gambiae and other insect AKH receptors suggested that it is a receptor for an AKH-like peptide. This is the first published report on evolutionarily related AKH, corazonin, and CCAP receptors in mosquitoes....

  2. A natural Anopheles-associated Penicillium chrysogenum enhances mosquito susceptibility to Plasmodium infection

    Science.gov (United States)

    Angleró-Rodríguez, Yesseinia I.; Blumberg, Benjamin J.; Dong, Yuemei; Sandiford, Simone L.; Pike, Andrew; Clayton, April M.; Dimopoulos, George

    2016-01-01

    Whereas studies have extensively examined the ability of bacteria to influence Plasmodium infection in the mosquito, the tripartite interactions between non-entomopathogenic fungi, mosquitoes, and Plasmodium parasites remain largely uncharacterized. Here we report the isolation of a common mosquito-associated ascomycete fungus, Penicillium chrysogenum, from the midgut of field-caught Anopheles mosquitoes. Although the presence of Pe. chrysogenum in the Anopheles gambiae midgut does not affect mosquito survival, it renders the mosquito significantly more susceptible to Plasmodium infection through a secreted heat-stable factor. We further provide evidence that the mechanism of the fungus-mediated modulation of mosquito susceptibility to Plasmodium involves an upregulation of the insect’s ornithine decarboxylase gene, which sequesters arginine for polyamine biosynthesis. Arginine plays an important role in the mosquito’s anti-Plasmodium defense as a substrate of nitric oxide production, and its availability therefore has a direct impact on the mosquito’s susceptibility to the parasite. While this type of immunomodulatory mechanism has already been demonstrated in other host-pathogen interaction systems, this is the first report of a mosquito-associated fungus that can suppress the mosquito’s innate immune system in a way that would favor Plasmodium infection and possibly malaria transmission. PMID:27678168

  3. Comparative evaluation of systemic drugs for their effects against Anopheles gambiae.

    Science.gov (United States)

    Butters, Matthew P; Kobylinski, Kevin C; Deus, Kelsey M; da Silva, Ines Marques; Gray, Meg; Sylla, Massamba; Foy, Brian D

    2012-01-01

    Laboratory and field studies have shown that ivermectin, a drug that targets invertebrate ligand-gated ion channels (LGICs), is potently active against Anopheles spp. mosquitoes at concentrations present in human blood after standard drug administrations; thus ivermectin holds promise as a mass human-administered endectocide that could help suppress malaria parasite transmission. We evaluated other systemic LGIC-targeting drugs for their activities against the African malaria vector Anopheles gambiae using in vitro blood feeding assays. Eprinomectin, selamectin, moxidectin, and N-tert-butyl nodulisporamide were evaluated as potentially systemic drugs having similar modes of action to ivermectin; all primarily are agonists of invertebrate glutamate-gated chloride ion channels. Additionally, nitenpyram and spinosad were evaluated as systemic drugs that primarily work as agonists of nicotinic acetylcholine receptor channels. Only eprinomectin killed An. gambiae at concentrations that were comparable to ivermectin. At sub-lethal doses, nitenpyram and moxidectin marginally affected mosquito re-blood feeding ability. The macrocyclic lactones, particularly eprinomectin, caused significantly increased knockdown and significantly inhibited recovery in blood fed females. These data are a first step in evaluating drugs that might be eventually combined with, or substituted for ivermectin for future malaria parasite transmission control. PMID:22019935

  4. Habitat suitability and ecological niche profile of major malaria vectors in Cameroon

    Directory of Open Access Journals (Sweden)

    Agbor Jean-Pierre

    2009-12-01

    Full Text Available Abstract Background Suitability of environmental conditions determines a species distribution in space and time. Understanding and modelling the ecological niche of mosquito disease vectors can, therefore, be a powerful predictor of the risk of exposure to the pathogens they transmit. In Africa, five anophelines are responsible for over 95% of total malaria transmission. However, detailed knowledge of the geographic distribution and ecological requirements of these species is to date still inadequate. Methods Indoor-resting mosquitoes were sampled from 386 villages covering the full range of ecological settings available in Cameroon, Central Africa. Using a predictive species distribution modeling approach based only on presence records, habitat suitability maps were constructed for the five major malaria vectors Anopheles gambiae, Anopheles funestus, Anopheles arabiensis, Anopheles nili and Anopheles moucheti. The influence of 17 climatic, topographic, and land use variables on mosquito geographic distribution was assessed by multivariate regression and ordination techniques. Results Twenty-four anopheline species were collected, of which 17 are known to transmit malaria in Africa. Ecological Niche Factor Analysis, Habitat Suitability modeling and Canonical Correspondence Analysis revealed marked differences among the five major malaria vector species, both in terms of ecological requirements and niche breadth. Eco-geographical variables (EGVs related to human activity had the highest impact on habitat suitability for the five major malaria vectors, with areas of low population density being of marginal or unsuitable habitat quality. Sunlight exposure, rainfall, evapo-transpiration, relative humidity, and wind speed were among the most discriminative EGVs separating "forest" from "savanna" species. Conclusions The distribution of major malaria vectors in Cameroon is strongly affected by the impact of humans on the environment, with variables

  5. A Study of the Essential Oils of Four Sudanese Accessions of Basil (Ocimum basilicum L. Against Anopheles Mosquito Larvae

    Directory of Open Access Journals (Sweden)

    Azhari H. Nour

    2009-01-01

    Full Text Available Problem statement: Certain basil essential oils were claimed to have a larvicidal activity towards mosquito's larvae. To test this claim the essential oils of four accessions of basil grown in Sudan were selected and tested for Anopheles larvae. Malaria is the major health problem in the Sudan and the whole country is now considered endemic, with varying degrees, about 35,000 deaths every year due to malaria. Anopheles mosquito is the major vector of malaria disease in Sudan. Search for larvicidal active compound(s is one of several attempts to fine effective and affordable ways to control this mosquito. To determine the toxic effects of basil essential oils extracted by steam distillation against Anopheles larvae. Approach: For the larvicidal bioassay, three concentrations (100, 300, 500 ppm of essential oil solutions of four basil accessions were prepared; 1 mL of ethanol was used to solubilize the oil in water (999 mL. In each concentration of oil solution were inserted 20 larvae (third instars. A set of controls using 0.1% ethanol and untreated sets of larvae in (tap water, were also run for comparison. Data were evaluated through regression analysis, from the regression line; the LC50 values were read. The active ingredients were separated and/ or identified by TLC, IR and GC-MS. Results: Larvicidal activity of the essential oils is varied, lasted for about 9 h and thereafter decreased, LC50 values ranging from 190-300 ppm. Linalool, geraniol and eugenol are active components of basil essential oil against Anopheles larvae. Two accessions were caused 100% mortality at a concentration range 300-500 ppm for 3 h. Conclusion: These results indicated that basil essential oils have larvicidal activity towards Anopheles larvae. Therefore, could be affordable way to control this mosquito.

  6. Detection of the East and West African kdr mutation in Anopheles gambiae and Anopheles arabiensis from Uganda using a new assay based on FRET/Melt Curve analysis

    Directory of Open Access Journals (Sweden)

    Backeljau Thierry

    2006-02-01

    Full Text Available Abstract Background Appropriate monitoring of vector resistance to insecticides is an integral component of planning and evaluation of insecticide use in malaria control programmes. The malaria vectors Anopheles gambiae s.s. and Anopheles arabiensis have developed resistance to pyrethroid insecticides as a result of a mechanism conferring reduced nervous system sensitivity, better known as knockdown resistance (kdr. In An. gambiae s.s. and An. arabiensis, two different substitutions in the para-type sodium channel, a L1014F substitution common in West Africa and a L1014S replacement found in Kenya, are linked with kdr. Two different allele-specific polymerase chain reactions (AS-PCR are needed to detect these known kdr mutations. However, these AS-PCR assays rely on a single nucleotide polymorphism mismatch, which can result in unreliable results. Methods Here, a new assay for the detection of knockdown resistance in An. gambiae s.s. and An. arabiensis based on Fluorescence Resonance Energy Transfer/Melt Curve analysis (FRET/MCA is presented and compared with the existing assays. Results The new FRET/MCA method has the important advantage of detecting both kdr alleles in one assay. Moreover, results show that the FRET/MCA is more reliable and more sensitive than the existing AS-PCR assays and is able to detect new genotypes. By using this technique, the presence of the East African kdr mutation (L1014S is shown for the first time in An. arabiensis specimens from Uganda. In addition, a new kdr genotype is reported in An. gambiae s.s. from Uganda, where four An. gambiae s.s. mosquitoes possess both, the West (L1014F and East (L1014S African kdr allele, simultaneously. Conclusion The presence of both kdr mutations in the same geographical region shows the necessity of a reliable assay that enables to detect both mutations in one single assay. Hence, this new assay based on FRET/MCA will improve the screening of the kdr frequencies in An. gambiae s

  7. Development of a Gravid Trap for Collecting Live Malaria Vectors Anopheles gambiae s.l.

    Science.gov (United States)

    Dugassa, Sisay; Lindh, Jenny M.; Oyieke, Florence; Mukabana, Wolfgang R.; Lindsay, Steven W.; Fillinger, Ulrike

    2013-01-01

    Background Effective malaria vector control targeting indoor host-seeking mosquitoes has resulted in fewer vectors entering houses in many areas of sub-Saharan Africa, with the proportion of vectors outdoors becoming more important in the transmission of this disease. This study aimed to develop a gravid trap for the outdoor collection of the malaria vector Anopheles gambiae s.l. based on evaluation and modification of commercially available gravid traps. Methods Experiments were implemented in an 80 m2 semi-field system where 200 gravid Anopheles gambiae s.s. were released nightly. The efficacy of the Box, CDC and Frommer updraft gravid traps was compared. The Box gravid trap was tested to determine if the presence of the trap over water and the trap’s sound affected catch size. Mosquitoes approaching the treatment were evaluated using electrocuting nets or detergents added to the water in the trap. Based on the results, a new gravid trap (OviART trap) that provided an open, unobstructed oviposition site was developed and evaluated. Results Box and CDC gravid traps collected similar numbers (relative rate (RR) 0.8, 95% confidence interval (CI) 0.6–1.2; p = 0.284), whereas the Frommer trap caught 70% fewer mosquitoes (RR 0.3, 95% CI 0.2–0.5; p < 0.001). The number of mosquitoes approaching the Box trap was significantly reduced when the trap was positioned over a water-filled basin compared to an open pond (RR 0.7 95% CI 0.6–0.7; p < 0.001). This effect was not due to the sound of the trap. Catch size increased by 60% (RR 1.6, 1.2–2.2; p = 0.001) with the new OviART trap. Conclusion Gravid An. Gambiae s.s. females were visually deterred by the presence of the trapping device directly over the oviposition medium. Based on these investigations, an effective gravid trap was developed that provides open landing space for egg-laying Anopheles. PMID:23861952

  8. Development of a gravid trap for collecting live malaria vectors Anopheles gambiae s.l.

    Directory of Open Access Journals (Sweden)

    Sisay Dugassa

    Full Text Available BACKGROUND: Effective malaria vector control targeting indoor host-seeking mosquitoes has resulted in fewer vectors entering houses in many areas of sub-Saharan Africa, with the proportion of vectors outdoors becoming more important in the transmission of this disease. This study aimed to develop a gravid trap for the outdoor collection of the malaria vector Anopheles gambiae s.l. based on evaluation and modification of commercially available gravid traps. METHODS: Experiments were implemented in an 80 m(2 semi-field system where 200 gravid Anopheles gambiae s.s. were released nightly. The efficacy of the Box, CDC and Frommer updraft gravid traps was compared. The Box gravid trap was tested to determine if the presence of the trap over water and the trap's sound affected catch size. Mosquitoes approaching the treatment were evaluated using electrocuting nets or detergents added to the water in the trap. Based on the results, a new gravid trap (OviART trap that provided an open, unobstructed oviposition site was developed and evaluated. RESULTS: Box and CDC gravid traps collected similar numbers (relative rate (RR 0.8, 95% confidence interval (CI 0.6-1.2; p = 0.284, whereas the Frommer trap caught 70% fewer mosquitoes (RR 0.3, 95% CI 0.2-0.5; p < 0.001. The number of mosquitoes approaching the Box trap was significantly reduced when the trap was positioned over a water-filled basin compared to an open pond (RR 0.7 95% CI 0.6-0.7; p < 0.001. This effect was not due to the sound of the trap. Catch size increased by 60% (RR 1.6, 1.2-2.2; p = 0.001 with the new OviART trap. CONCLUSION: Gravid An. Gambiae s.s. females were visually deterred by the presence of the trapping device directly over the oviposition medium. Based on these investigations, an effective gravid trap was developed that provides open landing space for egg-laying Anopheles.

  9. Using Stable Isotopes of Carbon and Nitrogen to Mark Wild Populations of Anopheles and Aedes Mosquitoes in South-Eastern Tanzania

    Science.gov (United States)

    Opiyo, Mercy A.; Hamer, Gabriel L.; Lwetoijera, Dickson W.; Auckland, Lisa D.; Majambere, Silas; Okumu, Fredros O.

    2016-01-01

    isotopic ratios between mosquito species. Conclusion Enrichment of semi-natural mosquito larval habitats with stable isotopes of nitrogen and carbon resulted in effective marking of Anopheles and Aedes mosquitoes colonizing these habitats. This approach can significantly enhance studies on mosquito eco-physiology, dispersal, pathogen transmission and responses to control measures. PMID:27392083

  10. Abiotic and biotic factors associated with the presence of Anopheles arabiensis immatures and their abundance in naturally occurring and man-made aquatic habitats

    Directory of Open Access Journals (Sweden)

    Gouagna Louis

    2012-07-01

    Full Text Available Abstract Background Anopheles arabiensis (Diptera: Culicidae is a potential malaria vector commonly present at low altitudes in remote areas in Reunion Island. Little attention has been paid to the environmental conditions driving larval development and abundance patterns in potential habitats. Two field surveys were designed to determine whether factors that discriminate between aquatic habitats with and without An. arabiensis larvae also drive larval abundance, comparatively in man-made and naturally occurring habitats. Methods In an initial preliminary survey, a representative sample of aquatic habitats that would be amenable to an intensive long-term study were selected and divided into positive and negative sites based on the presence or absence of Anopheles arabiensis larvae. Subsequently, a second survey was prompted to gain a better understanding of biotic and abiotic drivers of larval abundance, comparatively in man-made and naturally occurring habitats in the two studied locations. In both surveys, weekly sampling was performed to record mosquito species composition and larval density within individual habitats, as well as in situ biological characteristics and physico-chemical properties. Results Whilst virtually any stagnant water body could be a potential breeding ground for An. arabiensis, habitats occupied by their immatures had different structural and biological characteristics when compared to those where larvae were absent. Larval occurrence seemed to be influenced by flow velocity, macrofauna diversity and predation pressure. Interestingly, the relative abundance of larvae in man-made habitats (average: 0.55 larvae per dip, 95%CI [0.3–0.7] was significantly lower than that recorded in naturally occurring ones (0.74, 95%CI [0.5–0.8]. Such differences may be accounted for in part by varying pressures that could be linked to a specific habitat. Conclusions If the larval ecology of An. arabiensis is in general very complex

  11. Evaluation of larvicidal activity of the methanolic extracts of Piper alatabaccum branches and P. tuberculatum leaves and compounds isolated against Anopheles darlingi

    Directory of Open Access Journals (Sweden)

    Frances T. T. Trindade

    2012-10-01

    Full Text Available Piper is a notable genus among Piperaceae due to their secondary metabolites such as lignans, amides, esters and long chain fatty acids used as anti-herbivore defenses with comparable effects of pyrethroids, that holds a promise in insect control, including malaria vectors such as Anopheles darlingi, the main vector in the North of Brazil. Methanolic extracts of Piper tuberculatum Jacq., Piperaceae, and P. alatabaccum Trel. & Yunck., Piperaceae, and some isolated compounds, i.e, 3,4,5-trimetoxy-dihydrocinamic acid, dihydropiplartine; piplartine, piplartine-dihydropiplartine and 5,5',7-trimetoxy-3',4'-metilenodioxiflavone were tested as larvicides against A. darlingi. The Lethal Concentrations (LC50 and LC90 of methanolic extracts were 194 and 333 ppm for P. tuberculatum and 235 and 401 ppm for P. alatabacum, respectively. Isolated compounds had lower LC values, e.g. the LC50 and LC90 of the piplartine-dihidropiplartine isolated from both plant species was 40 and 79 ppm, respectively.

  12. Comparison of the efficacy of long-lasting insecticidal nets PermaNet® 2.0 and Olyset® against Anopheles albimanus under laboratory conditions

    Directory of Open Access Journals (Sweden)

    Gloria I Jaramillo

    2011-08-01

    Full Text Available Insecticide-treated nets provide a reduction in human-vector contact through physical barrier, mortality and/or repellent effects that protect both users and non-users, thereby protecting the wider community from vector-borne diseases like malaria. Long-lasting insecticide-treated nets (LLINs are the best alternative. This study evaluated the bioefficacy of LLINs PermaNet® 2.0 and Olyset® under laboratory conditions with Anopheles albimanus. The laboratory strain was evaluated for insecticide susceptibility with selected insecticides used for malarial control. Regeneration time and wash resistance were evaluated with the standard bioassay cone technique following WHO guidelines. Heat assistance was used for Olyset® nets; the nets were exposed to four different temperatures to speed the regeneration process. The regeneration study of PermaNet® 2.0 showed that efficacy was fully recovered by 24 h after one and three washes and wash resistance persisted for 15 washes. Regeneration of Olyset® nets was not observed for nets washed three times, even with the different temperature exposures for up to seven days. Thus, for Olyset® the wash resistance evaluation could not proceed. Differences in response between the two LLINs may be associated with differences in manufacturing procedures and species response to the evaluated LLINs. PermaNet® 2.0 showed higher and continuous efficacy against An. albimanus.

  13. Deep sequencing revealed molecular signature of horizontal gene transfer of plant like transcripts in the mosquito Anopheles culicifacies: an evolutionary puzzle [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Punita Sharma

    2015-12-01

    Full Text Available In prokaryotes, horizontal gene transfer (HGT has been regarded as an important evolutionary drive to acquire and retain beneficial genes for their survival in diverse ecologies. However, in eukaryotes, the functional role of HGTs remains questionable, although current genomic tools are providing increased evidence of acquisition of novel traits within non-mating metazoan species. Here, we provide another transcriptomic evidence for the acquisition of massive plant genes in the mosquito, Anopheles culicifacies. Our multiple experimental validations including genomic PCR, RT-PCR, real-time PCR, immuno-blotting and immuno-florescence microscopy, confirmed that plant like transcripts (PLTs are of mosquito origin and may encode functional proteins. A comprehensive molecular analysis of the PLTs and ongoing metagenomic analysis of salivary microbiome provide initial clues that mosquitoes may have survival benefits through the acquisition of nuclear as well as chloroplast encoded plant genes. Our findings of PLTs further support the similar questionable observation of HGTs in other higher organisms, which is still a controversial and debatable issue in the community of evolutionists. We believe future understanding of the underlying mechanism of the feeding associated molecular responses may shed new insights in the functional role of PLTs in the mosquito.

  14. THE BITING ACTIVITY OF ANOPHELES DTHALI IN A RURAL AREA OF MAMASANI UNDER IMPACT OF ORGANO-PHOSPHOROUS SPRAYING, SOUTHERN IRAN

    Directory of Open Access Journals (Sweden)

    N Eshghy

    1983-08-01

    Full Text Available Anopheles dthali Patton which is one of the 7 malaria vectors in Iran was not taken in to consideration until November 1965 when definite sporozaites were found for the first time in its salivary glands in Bandar Abbas, south of Iran. Afterwards, efforts have been made to get complete ecological and epidemiological information on this species. The areas of study were two districts of Mamasani, an agricultural area, located 200 km north of the Persian Gulf. The objective of the present paper is to summarize and discuss briefly the field investigations concerning the nocturnal biting cycle and behavior of An. dthali as well as the comparative attractiveness of man and cattle to these vectors under the impact of the organophosphouous insecticides. On the basis of the data collected, it was found that most of the bites take place between 21.00-24.00 hr. Biting pattern under local condition indicated that the number of bites per cow was much greater than the number of bites per man.

  15. Mosquitocidal activity of indigenenous plants of Western Ghats, Achras sapota Linn. (Sapotaceae) and Cassia auriculata L. (Fabaceae) against a common malarial vector, Anopheles stephensi Liston (Culicidae:Diptera)

    Institute of Scientific and Technical Information of China (English)

    Kaliyamoorthy Krishnappa; Kuppusamy Elumalai

    2014-01-01

    Objective: To evaluate the mosquito larvicidal, ovicidal, pupicidal and repellent activities of hexane, diethyl ether, dichloromethane, acetone and methanol extracts of Indian medicinal plants, Achras sapota (A. sapota) and Cassia auriculata (C. auriculata) at different concentrations against Anopheles stephensi (An. stephensi), a malarial vector. Methods: Twenty five early third instar larvae of An. stephensi were exposed to various concentrations (30-210 mg/L) of plants extracts and were assayed in the laboratory by using the protocol of WHO 2005;then after 24 h LC50 values of the A. sapota and C. auriculata leaf extract was determined by probit analysis. The ovicidal activity was tested with the extracts ranging from 50-350 mg/L. The pupicidal activity was recorded after 24 h of exposure to the extract. The repellent efficacy was determined against mosquito species at two different concentrations 1.5 and 3.0 mg/cm2 under laboratory conditions. Results:Among the five different extracts tested against the An. stephensi, methanol extract of A. sapota proved to be an more effective solvent extract in almost all the parameters studied than C. auriculata. Conclusions:It is inferred that the leaf extract of A. sapota and C. auriculata could be used in vector control programme.

  16. Observation of granulations in the basal body of ovarioles and follicular dilatations for the determination of physiological age ofAnopheles gambiaes.s.

    Institute of Scientific and Technical Information of China (English)

    Rodrigue Anagonou; Virgile Gnanguenon; Fiacre Agossa; Bruno Akinro; Armand Akpo; Martial Gbegbo; Albert Salako; Martin Akogbto

    2015-01-01

    Objective:To explore ovariole basal body granulations and follicular dilatations for determining physiological age inAnopheles gambiaes.s.(An. gambiaes.s.). Methods: Mosquitoes were collected by using window trap catch and identified morphologically. For the first lot ofmosquitoes, they were dissected, and ovary was left in distilled water for reading ovarian tracheoles and the second was cut and transferred to another blade in a physiological liquid for verification of ovariole basal body granulations. The same approach was followed with the second lot of mosquitoes where follicular dilatations were found after classic dilaceration of ovaries were transferred into physiological liquid. The other body parts of mosquitoes were used to identify the species of theAn. gambiaes.s. complex by PCR. Results:Among the 123An. gambiae s.s. of the first lot, the method of Detinova determined the age of 89 mosquitoes versus 114 for the observation of granulations (P > 0.05). Among the 112An. gambiae s.s. of the second lot, the method of Detinova determined the age of 84 mosquitoes versus 93 for the observation of follicular dilatations (P > 0.05). Unlike the method of Detinova, observation of follicular dilatations and basal body granulations of ovarioles were possible beyond the stage II Christophers. Conclusions: Overall, the observation of follicular dilatations and ovariole basal body granulations are reliable for the determination of the physiological age inAn. gambiaes.s. Furthermore, these two methods can be used beyond the stage II.

  17. Metagenomics, paratransgenesis and the Anopheles microbiome: a portrait of the geographical distribution of the anopheline microbiota based on a meta-analysis of reported taxa.

    Science.gov (United States)

    Villegas, Luis Martínez; Pimenta, Paulo Filemon Paolucci

    2014-08-01

    Anophelines harbour a diverse microbial consortium that may represent an extended gene pool for the host. The proposed effects of the insect microbiota span physiological, metabolic and immune processes. Here we synthesise how current metagenomic tools combined with classical culture-dependent techniques provide new insights in the elucidation of the role of the Anopheles-associated microbiota. Many proposed malaria control strategies have been based upon the immunomodulating effects that the bacterial components of the microbiota appear to exert and their ability to express anti-Plasmodium peptides. The number of identified bacterial taxa has increased in the current "omics" era and the available data are mostly scattered or in "tables" that are difficult to exploit. Published microbiota reports for multiple anopheline species were compiled in an Excel® spreadsheet. We then filtered the microbiota data using a continent-oriented criterion and generated a visual correlation showing the exclusive and shared bacterial genera among four continents. The data suggested the existence of a core group of bacteria associated in a stable manner with their anopheline hosts. However, the lack of data from Neotropical vectors may reduce the possibility of defining the core microbiota and understanding the mosquito-bacteria interactive consortium.

  18. Metagenomics, paratransgenesis and the Anopheles microbiome: a portrait of the geographical distribution of the anopheline microbiota based on a meta-analysis of reported taxa

    Directory of Open Access Journals (Sweden)

    Luis Martínez Villegas

    2014-08-01

    Full Text Available Anophelines harbour a diverse microbial consortium that may represent an extended gene pool for the host. The proposed effects of the insect microbiota span physiological, metabolic and immune processes. Here we synthesise how current metagenomic tools combined with classical culture-dependent techniques provide new insights in the elucidation of the role of the Anopheles-associated microbiota. Many proposed malaria control strategies have been based upon the immunomodulating effects that the bacterial components of the microbiota appear to exert and their ability to express anti-Plasmodium peptides. The number of identified bacterial taxa has increased in the current “omics” era and the available data are mostly scattered or in “tables” that are difficult to exploit. Published microbiota reports for multiple anopheline species were compiled in an Excel® spreadsheet. We then filtered the microbiota data using a continent-oriented criterion and generated a visual correlation showing the exclusive and shared bacterial genera among four continents. The data suggested the existence of a core group of bacteria associated in a stable manner with their anopheline hosts. However, the lack of data from Neotropical vectors may reduce the possibility of defining the core microbiota and understanding the mosquito-bacteria interactive consortium.

  19. Spinosad and neem seed kernel extract as bio-controlling agents for malarial vector,Anopheles stephensi and non-biting midge,Chironomus circumdatus

    Institute of Scientific and Technical Information of China (English)

    Kumar AN; Murugan K; Madhiyazhagan P; Prabhu K

    2011-01-01

    Objective:Midge egg masses are reported to support non-pathogenic strains of the cholera pathogen,Vibrio cholera (V. cholera). Mosquito born diseases have been reported to cause millions of death worldwide. The present research reveals the toxicity effect of spinosad and neem seed kernel extract (NSKE)against different larval stages ofAnopheles stephensi (An. stephensi) andChironomus circumdatus (Ch. circumdatus).Methods: The neem seeds were collected from Marudamalai hills, Bharathiar University, Coimbatore, India. Neem seed kernels were powdered, extracted and diluted for different concentrations (2 ppm to10 ppm). Spinosad was purchased from Kalpatharu pesticide Limited, Coimbatore, Tamil Nadu, India and thoroughly mixed with distilled water to prepare various concentrations (0.01 to0.08 ppm) and used for bioassay.Results: The results depict that spinosad is more toxic in lower concentrations when compared toNSKE and mosquitoes are more susceptible than chironomids. Lethal concentrations were evaluated using the observed mortality. The lowest LC50 value obtained from spinosad againstAn. stephensi and Ch. circumdatus were0.002 05 ppm and0.008 91 ppm. This study investigated on effect of Spinosad andNSKE on the biology of mosquito. The immature stages of both species were susceptible to Spinosad andNSKE. Spinosad andNSKE in individual as well as combined treatment provided additional days in development for mosquitoes.Conclusions:The results conclude that Spinosad andNSKE are potential larvicides against An. stephensi andCh. circumdatus.

  20. Anopheles culicifacies breeding in Sri Lanka and options for control through water management

    DEFF Research Database (Denmark)

    Konradsen, F; Matsuno, Y; Amerasinghe, F P;

    1998-01-01

    This paper assesses the options for control of malaria vectors through different water management practices in a natural stream in Sri Lanka. The association between water level in the stream and breeding of the immature stages of the primary vector Anopheles culicifacies was investigated and the...... a high degree of support from the local community is essential and consultation between government departments needed....... that by regulating the water level above 20 cm in the stream throughout the dry season the breeding of A. culicifacies could be significantly reduced. The intervention would have only limited impact on the water lost for agriculture and the management input would be minimal. However, for the intervention to work...

  1. Larvicidal activity of extracts from three Plumbago spp against Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Barasa M Maniafu

    2009-09-01

    Full Text Available Three Plumbago spp have been tested for mosquito larvicidal activity. The crude extracts exhibiting the highest larvicidal activity against Anopheles gambiae were hexane (LC50 = 6.4 μg/mL and chloroform (LC50 = 6.7 μg/mL extracts from Plumbago zeylanica Linn, chloroform (LC50 = 6.7 ug/mL extract from Plumbago stenophylla Bull and ethyl acetate (LC50 = 4.1 μg/mL extract from Plumbago dawei Rolfe. These LC50 values were within 95% confidence limits. 5-hydroxy-2-methyl-1,4-naphthoquinone (plumbagin 1 (LC50 = 1.9 μg/mL and β-sitosterol 2 were characterised from ethyl acetate extract of root bark of P. dawei, a native medicinal plant growing in Kenya, based on spectral analysis and comparisons with data in literature.

  2. Random amplified polymorphic DNA analysis of Anopheles nuneztovari (Diptera: Culicidae from Western and Northeastern Colombia

    Directory of Open Access Journals (Sweden)

    Carmen Elisa Posso

    2003-06-01

    Full Text Available Random amplified polymorphic DNA (RAPD markers were used to analyze 119 DNA samples of three Colombian Anopheles nuneztovari populations to study genetic variation and structure. Genetic diversity, estimated from heterozygosity, averaged 0.34. Genetic flow was greater between the two populations located in Western Colombia (F ST: 0.035; Nm: 6.8 but lower between these two and the northeastern population (F ST: 0.08; Nm: 2.8. According to molecular variance analysis, the genetic distance between populations was significant (phiST 0.1131, P < 0.001. The variation among individuals within populations (phiST 0.8869, P < 0.001was also significant, suggesting a greater degree of population subdivision, not considered in this study. Both the parameters evaluated and the genetic flow suggest that Colombian An. nuneztovari populations are co-specific.

  3. Mosquito repellent action of Blumea lacera (Asteraceae against Anopheles stephensi and Culex quinquefasciatus.

    Directory of Open Access Journals (Sweden)

    S.P. Singh

    2014-03-01

    Full Text Available Petroleum ether extract of Blumea lacera was screened under laboratory conditions for repellent activity against mosquito vector Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae. The repellent activity of Blumea lacera extract was tested against mosquitoes in comparison with the DEET, which was used as a positive control. Results obtained from the laboratory experiment showed that the extract was effective against mosquito vectors even at a low dose. A direct relationship was observed with concentrations of Blumea lacera extract and the repellent activity. Percent repellency obtained at 6% concentration of theextract against An. stephensi and Cx. quinquefasciatus were 97and 98% at 0 hour and 78.8 and 76.2% after 6 hrs. DEET-2% however showed 100% repellency against An. stephensi and against Cx. quinquefasciatus up to 4 hours and 1 hour, respectively. These results show that Blumea lacera extract has the potential as an effective mosquito repellent.

  4. [The mosquitocidal efficacy of microcapsules of alpha-cypermethrin against Anopheles sinensis].

    Science.gov (United States)

    Pan, K Y; Ye, B H; Zhi, C L

    1994-01-01

    The efficacy of spraying of alpha-cypermethrin microcapsule for the control of Anopheles sinensis was investigated when alpha-cypermethrin microcapsule was sprayed at 0.5 g/m2, the KT50 was 7.9 min and a 100% of 24 hours' mortality of An. sinensis, the efficacy being similar to that of the emulsion. 180 days after spray, the KT50 was 28.2 min, the 24 hours' mortality was 85.7%, the residual efficacy was 3 times over that of the emulsion. In the mimic field experiment, similar results were obtained. In the field trial, the residual efficacy of the alpha-cypermethrin microcapsule was 5.9 times that of the emulsion. Alpha-cypermethrin microcapsules is recommended as a good formulation of mosquitocide for mosquito control, considering its mosquitocidal efficacy and residual efficacy.

  5. Larvicidal activity of oak Quercus infectoria Oliv. (Fagaceae) gall extracts against Anopheles stephensi Liston.

    Science.gov (United States)

    Aivazi, Ali-Ashraf; Vijayan, V A

    2009-06-01

    There is a growing interest in the use of botanical insecticides to reduce the use of synthetic pesticides in order to avoid environmental side effects. Anopheles stephensi is the primary vector of urban malaria, an endemic disease in India. So, an effort to assay An. stephensi larvae with gall extracts of Quercus infectoria was made under laboratory conditions at Mysore. Ethyl-acetate extract was found to be the most effective of all the five extracts tested for larvicidal activity against the fourth instar larvae, with LC(50) of 116.92 ppm followed by gallotannin, n-butanol, acetone, and methanol with LC(50) values of 124.62, 174.76, 299.26, and 364.61 ppm, respectively. The efficacy in killing mosquito larvae may make this plant promising for the development of new botanical larvicide. PMID:19148681

  6. Larvicidal activity of oak Quercus infectoria Oliv. (Fagaceae) gall extracts against Anopheles stephensi Liston.

    Science.gov (United States)

    Aivazi, Ali-Ashraf; Vijayan, V A

    2009-06-01

    There is a growing interest in the use of botanical insecticides to reduce the use of synthetic pesticides in order to avoid environmental side effects. Anopheles stephensi is the primary vector of urban malaria, an endemic disease in India. So, an effort to assay An. stephensi larvae with gall extracts of Quercus infectoria was made under laboratory conditions at Mysore. Ethyl-acetate extract was found to be the most effective of all the five extracts tested for larvicidal activity against the fourth instar larvae, with LC(50) of 116.92 ppm followed by gallotannin, n-butanol, acetone, and methanol with LC(50) values of 124.62, 174.76, 299.26, and 364.61 ppm, respectively. The efficacy in killing mosquito larvae may make this plant promising for the development of new botanical larvicide.

  7. Development of sporogonic cycle of Plasmodium vivax in experimentally infected Anopheles albimanus mosquitoes

    Directory of Open Access Journals (Sweden)

    Martha L. Salas

    1994-01-01

    Full Text Available The sporogonic cycle of Plasmodium vivax was established and maintained under laboratory conditions in two different strains of Anopheles albimanus mosquitoes using as a parasite source blood from human patients or from Aotus monkeys infected with the VCC-2 P.vivax colombian isolate. Both the Tecojate strain isolate from Guatemala and the Cartagena strain from the colombian Pacific coast were susceptible to infections with P.vivax. A higher percentage of Cartagena mosquitoes was infected per trial, however the Tecojate strain developed higher sporozoite loads. Intravenous inoculation of Aotus monkeys with sporozoites obtained from both anopheline strains resulted in successful blood infections. Animals infected with sporozoites from the Tecojate strain presented a patent period of 21-32 days whereas parasitemia appeared between days 19-53 in monkeys infected with sporozites from Cartagena strain.

  8. Development of sporogonic cycle of Plasmodium vivax in experimentally infected Anopheles albimanus mosquitoes.

    Science.gov (United States)

    Salas, M L; Romero, J F; Solarte, Y; Olano, V; Herrera, M A; Herrera, S

    1994-01-01

    The sporogonic cycle of Plasmodium vivax was established and maintained under laboratory conditions in two different strains of Anopheles albimanus mosquitoes using as a parasite source blood from human patients or from Aotus monkeys infected with the VCC-2 P.vivax colombian isolate. Both the Tecojate strain isolate from Guatemala and the Cartagena strain from the colombian Pacific coast were susceptible to infections with P.vivax. A higher percentage of Cartagena mosquitoes was infected per trial, however the Tecojate strain developed higher sporozoite loads. Intravenous inoculation of Aotus monkeys with sporozoites obtained from both anopheline strains resulted in successful blood infections. Animals infected with sporozoites from the Tecojate strain presented a patent period of 21-32 days whereas parasitemia appeared between days 19-53 in monkeys infected with sporozites from Cartagena strain. PMID:7565121

  9. Anopheles gambiae eicosanoids modulate Plasmodium berghei survival from oocyst to salivary gland invasion

    Directory of Open Access Journals (Sweden)

    Susana Ramos

    2014-08-01

    Full Text Available Eicosanoids affect the immunity of several pathogen/insect models, but their role on the Anopheles gambiae response to Plasmodium is still unknown. Plasmodium berghei-infected mosquitoes were injected with an eicosanoid biosynthesis inhibitor, indomethacin (IN, or a substrate, arachidonic acid (AA, at day 7 or day 12 post-infection (p.i.. Salivary gland invasion was evaluated by sporozoite counts at day 21 p.i. IN promoted infection upon sporozoite release from oocysts, but inhibited infection when sporozoites were still maturing within the oocysts, as observed by a reduction in the number of sporozoites reaching the salivary glands. AA treatment had the opposite effect. We show for the first time that An. gambiae can modulate parasite survival through eicosanoids by exerting an antagonistic or agonistic effect on the parasite, depending on its stage of development.

  10. Wolbachia infections in natural Anopheles populations affect egg laying and negatively correlate with Plasmodium development

    Science.gov (United States)

    Shaw, W. Robert; Marcenac, Perrine; Childs, Lauren M.; Buckee, Caroline O.; Baldini, Francesco; Sawadogo, Simon P.; Dabiré, Roch K.; Diabaté, Abdoulaye; Catteruccia, Flaminia

    2016-01-01

    The maternally inherited alpha-proteobacterium Wolbachia has been proposed as a tool to block transmission of devastating mosquito-borne infectious diseases like dengue and malaria. Here we study the reproductive manipulations induced by a recently identified Wolbachia strain that stably infects natural mosquito populations of a major malaria vector, Anopheles coluzzii, in Burkina Faso. We determine that these infections significantly accelerate egg laying but do not induce cytoplasmic incompatibility or sex-ratio distortion, two parasitic reproductive phenotypes that facilitate the spread of other Wolbachia strains within insect hosts. Analysis of 221 blood-fed A. coluzzii females collected from houses shows a negative correlation between the presence of Plasmodium parasites and Wolbachia infection. A mathematical model incorporating these results predicts that infection with these endosymbionts may reduce malaria prevalence in human populations. These data suggest that Wolbachia may be an important player in malaria transmission dynamics in Sub-Saharan Africa. PMID:27243367

  11. PRELIMINARY NOTES ON THE DEVELOPMENT OF DDT RESISTANCE IN ANOPHELES CULICIFACIES

    Directory of Open Access Journals (Sweden)

    A.Zaini

    1973-09-01

    Full Text Available Anopheles culicifacies is the vector of malaria in southeastern part of Iran, India, West Pakistan and Ceylon. In 1959 the LC50 % DDT in the Panchmahal district of Gujarat state (India had increased. DDT resistant population of A. culicifacies has been reported from West Pakistan, Burma and Iran. After application of DDT in 1959, the density of A. culicifacies decreased sharply. The susceptibility test carried out in 1963 showed that the LC50 was 0.5%.After DDT spraying, followed by Dieldrin, for about 10 years the density of A. culicifacies was so negligible that it was not possible to perform susceptibility tests. By April and May of 1973 the density of A.culicifacies in Saidabad, Khairabad and Hit in Baluchesten province, Southeast of Iran, increased to about 500 per shelter. The susceptibility tests carried out showed that A. culicfacies is resistant to DDT and susceptible to Dieldrin and Malathion.

  12. A mosquito lipoxin/lipocalin complex mediates innate immune priming in Anopheles gambiae.

    Science.gov (United States)

    Ramirez, Jose Luis; de Almeida Oliveira, Giselle; Calvo, Eric; Dalli, Jesmond; Colas, Romain A; Serhan, Charles N; Ribeiro, Jose M; Barillas-Mury, Carolina

    2015-01-01

    Exposure of Anopheles gambiae mosquitoes to Plasmodium infection enhances the ability of their immune system to respond to subsequent infections. However, the molecular mechanism that allows the insect innate immune system to 'remember' a previous encounter with a pathogen has not been established. Challenged mosquitoes constitutively release a soluble haemocyte differentiation factor into their haemolymph that, when transferred into Naive mosquitoes, also induces priming. Here we show that this factor consists of a Lipoxin/Lipocalin complex. We demonstrate that innate immune priming in mosquitoes involves a persistent increase in expression of Evokin (a lipid carrier of the lipocalin family), and in their ability to convert arachidonic acid to lipoxins, predominantly Lipoxin A4. Plasmodium ookinete midgut invasion triggers immune priming by inducing the release of a mosquito lipoxin/lipocalin complex. PMID:26100162

  13. Genome expression analysis of Anopheles gambiae: responses to injury, bacterial challenge, and malaria infection.

    Science.gov (United States)

    Dimopoulos, George; Christophides, George K; Meister, Stephan; Schultz, Jörg; White, Kevin P; Barillas-Mury, Carolina; Kafatos, Fotis C

    2002-06-25

    The complex gene expression responses of Anopheles gambiae to microbial and malaria challenges, injury, and oxidative stress (in the mosquito and/or a cultured cell line) were surveyed by using cDNA microarrays constructed from an EST-clone collection. The expression profiles were broadly subdivided into induced and down-regulated gene clusters. Gram+ and Gram- bacteria and microbial elicitors up-regulated a diverse set of genes, many belonging to the immunity class, and the response to malaria partially overlapped with this response. Oxidative stress activated a distinctive set of genes, mainly implicated in oxidoreductive processes. Injury up- and down-regulated gene clusters also were distinctive, prominently implicating glycolysis-related genes and citric acid cycle/oxidative phosphorylation/redox-mitochondrial functions, respectively. Cross-comparison of in vivo and in vitro responses indicated the existence of tightly coregulated gene groups that may correspond to gene pathways. PMID:12077297

  14. Energy metabolism affects susceptibility of Anopheles gambiae mosquitoes to Plasmodium infection.

    Science.gov (United States)

    Oliveira, Jose Henrique M; Gonçalves, Renata L S; Oliveira, Giselle A; Oliveira, Pedro L; Oliveira, Marcus F; Barillas-Mury, Carolina

    2011-06-01

    Previous studies showed that Anopheles gambiae L3-5 females, which are refractory (R) to Plasmodium infection, express higher levels of genes involved in redox-metabolism and mitochondrial respiration than susceptible (S) G3 females. Our studies revealed that R females have reduced longevity, faster utilization of lipid reserves, impaired mitochondrial state-3 respiration, increased rate of mitochondrial electron leak and higher expression levels of several glycolytic enzyme genes. Furthermore, when state-3 respiration was reduced in S females by silencing expression of the adenine nucleotide translocator (ANT), hydrogen peroxide generation was higher and the mRNA levels of lactate dehydrogenase increased in the midgut, while the prevalence and intensity of Plasmodium berghei infection were significantly reduced. We conclude that there are broad metabolic differences between R and S An. gambiae mosquitoes that influence their susceptibility to Plasmodium infection. PMID:21320598

  15. A mosquito lipoxin/lipocalin complex mediates innate immune priming in Anopheles gambiae

    Science.gov (United States)

    Ramirez, Jose Luis; de Almeida Oliveira, Giselle; Calvo, Eric; Dalli, Jesmond; Colas, Romain A.; Serhan, Charles N.; Ribeiro, Jose M.; Barillas-Mury, Carolina

    2015-01-01

    Exposure of Anopheles gambiae mosquitoes to Plasmodium infection enhances the ability of their immune system to respond to subsequent infections. However, the molecular mechanism that allows the insect innate immune system to ‘remember' a previous encounter with a pathogen has not been established. Challenged mosquitoes constitutively release a soluble haemocyte differentiation factor into their haemolymph that, when transferred into Naive mosquitoes, also induces priming. Here we show that this factor consists of a Lipoxin/Lipocalin complex. We demonstrate that innate immune priming in mosquitoes involves a persistent increase in expression of Evokin (a lipid carrier of the lipocalin family), and in their ability to convert arachidonic acid to lipoxins, predominantly Lipoxin A4. Plasmodium ookinete midgut invasion triggers immune priming by inducing the release of a mosquito lipoxin/lipocalin complex. PMID:26100162

  16. Susceptibility of Anopheles maculipennis to different classes of insecticides in West Azarbaijan Province, Northwestern Iran

    Institute of Scientific and Technical Information of China (English)

    Ali; Reza; Chavshin; Farrokh; Dabiri; Hassan; Vatandoost; Mulood; Mohammadi; Bavani

    2015-01-01

    Objective: To determine the susceptibility status of Anopheles maculipennis(An. maculipennis) against the major insecticides used in the health sectors in West Azarbaijan Province, Northwestern Iran.Methods: Unfed 3-5 days old adult females of An. maculipennis were collected across the West Azarbaijan Province and were subjected to evaluation of their susceptibility following World Health Organization recommended protocol against six insecticides(permethrin, deltamethrin, propoxur, bendiocarb, malathion and dieldrin) belonging to four different classes. Results: In this study, 916 specimens of An. maculipennis were examined against the insecticides which indicated that An. maculipennis was tolerant to permethrin, deltamethrin and dielderin, but displayed resistance against propoxur, bendiocarb and malathion. Conclusions: The pattern of resistance in An. maculipennis could be attributed to the agricultural landscapes, agricultural pesticides used and the exposure of the mosquitoes to insecticides. Logical cooperation is needed between the agriculture and health sectors to ensure the judicious use of pesticides in each sector and the management of probable resistance.

  17. Genetic Study of Propoxur Resistance—A Carbamate Insecticide in the Malaria Mosquito, Anopheles stephensi Liston

    Directory of Open Access Journals (Sweden)

    D. Sanil

    2010-01-01

    Full Text Available Anopheles stephensi Liston (Diptera: Culicidae is the urban vector of malaria in the Indian subcontinent and several countries of the Middle East. The genetics of propoxur resistance (pr in An. stephensi larvae was studied to determine its mode of inheritance. A diagnostic dose of 0.01 mg/L as recommended by WHO was used to establish homozygous resistant and susceptible strains. Reciprocal crosses between the resistant and susceptible strains showed an F1 generation of incomplete dominance. The progenies of backcrosses to susceptible parents were in 1 : 1 ratio of the same phenotypes as the parents and hybrids involved. The dosage mortality (d-m lines were constructed for each one of the crosses, and the degree of dominance was calculated. It is concluded that propoxur resistance in An. stephensi larvae is due to monofactorial inheritance with incomplete dominance and is autosomal in nature.

  18. Molecular typing of bacteria of the genus Asaia in malaria vector Anopheles arabiensis Patton, 1905

    Directory of Open Access Journals (Sweden)

    S. Epis

    2012-08-01

    Full Text Available The acetic acid bacterium Asaia spp. was successfully detected in Anopheles arabiensis Patton, 1905, one of the major vector of human malaria in Sub-Saharan Africa. A collection of 45 Asaia isolates in cellfree media was established from 20 individuals collected from the field in Burkina Faso. 16S rRNA universal polymerase chain reaction (PCR and specific qPCR, for the detection of Asaia spp. were performed in order to reveal the presence of different bacterial taxa associated with this insect. The isolates were typed by internal transcribed spacer-PCR, BOX-PCR, and randomly amplified polymorphic DNA-PCR, proved the presence of different Asaia in A. arabiensis.

  19. [Cytogenetic Analysis of the Species Composition and Inversion Structure of Populations of Malarial Mosquitoes in the Astrakhan Region].

    Science.gov (United States)

    Perevozkin, V P; Bondarchuk, S S; Minich, A S

    2015-08-01

    A cytogenetic analysis of Anopheles mosquitoes in the Astrakhan region was carried out. Three species of Anopheles were identified. An. messeae lives everywhere and prevails in all of the areas of research, An. hyrcanus is found in the southwest of the region, and An. maculipennis in the northern part of the region. The populations of An. messeae show a high level of inversion polymorphism for the sex chromosome and the third autosome. A clear clinal trend of an increase in chromosomal rearrangements XL1, 3R1, and 3L1 and a decrease in the frequency of evolutionary source alternatives was revealed in laraval hemipopulations of the species from south to north. PMID:26601492

  20. Kdr-based insecticide resistance in Anopheles gambiae s.s populations in

    Directory of Open Access Journals (Sweden)

    Nwane Philippe

    2011-10-01

    Full Text Available Abstract Background The spread of insecticide resistance in the malaria mosquito, Anopheles gambiae is a serious threat for current vector control strategies which rely on the use of insecticides. Two mutations at position 1014 of the S6 transmembrane segment of domain II in the voltage gated sodium channel, known as kdr (knockdown resistance mutations leading to a change of a Leucine to a Phenylalanine (L1014F or to a Serine (L1014S confer resistance to DDT and pyrethroid insecticides in the insect. This paper presents the current distribution of the kdr alleles in wild Anopheles gambiae populations in Cameroon. Results A total of 1,405 anopheline mosquitoes were collected from 21 localities throughout Cameroon and identified as An. gambiae (N = 1,248; 88.8%, An. arabiensis (N = 120; 8.5% and An. melas (N = 37; 2.6%. Both kdr alleles 1014F and 1014S were identified in the M and S molecular forms of An. gambiae s.s. The frequency of the 1014F allele ranged from 1.7 to 18% in the M-form, and from 2 to 90% in the S-form. The 1014S allele ranged from 3-15% in the S-form and in the M-form its value was below 3%. Some specimens were found to carry both resistant kdr alleles. Conclusion This study provides an updated distribution map of the kdr alleles in wild An. gambiae populations in Cameroon. The co-occurrence of both alleles in malaria mosquito vectors in diverse ecological zones of the country may be critical for the planning and implementation of malaria vector control interventions based on IRS and ITNs, as currently ongoing in Cameroon.

  1. Spatial and sex-specific dissection of the Anopheles gambiae midgut transcriptome

    Directory of Open Access Journals (Sweden)

    Mahairaki Vassiliki

    2007-01-01

    Full Text Available Abstract Background The midgut of hematophagous insects, such as disease transmitting mosquitoes, carries out a variety of essential functions that mostly relate to blood feeding. The midgut of the female malaria vector mosquito Anopheles gambiae is a major site of interactions between the parasite and the vector. Distinct compartments and cell types of the midgut tissue carry out specific functions and vector borne pathogens interact and infect different parts of the midgut. Results A microarray based global gene expression approach was used to compare transcript abundance in the four major female midgut compartments (cardia, anterior, anterior part of posterior and posterior part of posterior midgut and between the male and female Anopheles gambiae midgut. Major differences between the female and male midgut gene expression relate to digestive processes and immunity. Each compartment has a distinct gene function profile with the posterior midgut expressing digestive enzyme genes and the cardia and anterior midgut expressing high levels of antimicrobial peptide and other immune gene transcripts. Interestingly, the cardia expressed several known anti-Plasmodium factors. A parallel peptidomic analysis of the cardia identified known mosquito antimicrobial peptides as well as several putative short secreted peptides that are likely to represent novel antimicrobial factors. Conclusion The A. gambiae sex specific midgut and female midgut compartment specific transcriptomes correlates with their known functions. The significantly greater functional diversity of the female midgut relate to hematophagy that is associated with digestion and nutrition uptake as well as exposes it to a variety of pathogens, and promotes growth of its endogenous microbial flora. The strikingly high proportion of immunity related factors in the cardia tissue most likely serves the function to increase sterility of ingested sugar and blood. A detailed characterization of the

  2. Bendiocarb, a potential alternative against pyrethroid resistant Anopheles gambiae in Benin, West Africa

    Directory of Open Access Journals (Sweden)

    Irish Seth

    2010-07-01

    Full Text Available Abstract Background Anopheles gambiae, the main malaria vector in Benin has developed high level of resistance to pyrethroid insecticides, which is a serious concern to the future use of long-lasting insecticidal nets (LLIN and indoor residual spraying (IRS. In this context, one of the pathways available for malaria vector control would be to investigate alternative classes of insecticides with different mode of action than that of pyrethroids. The goal of this study was to evaluate under field conditions the efficacy of a carbamate (bendiocarb and an organophosphate (fenitrothion against pyrethroid-resistant An. gambiae s.s. Methods Wild populations and females from laboratory colonies of five days old An. gambiae were bio-assayed during this study. Two pyrethroids (deltamethrin and alphacypermethrin, an organophosphate (fenitrothion, a carbamate (bendiocarb and a mixture of an organophosphate (chlorpyriphos + a pyrethroid deltamethrin were compared in experimental huts as IRS treatments. Insecticides were applied in the huts using a hand-operated compression sprayer. The deterrency, exophily, blood feeding rate and mortality induced by these insecticides against An. gambiae were compared to the untreated control huts. Results Deltamethrin, alphacypermethrin and bendiocarb treatment significantly reduced mosquito entry into the huts (p An. gambiae (in the first month and 77.8% (in the fourth month. Bendiocarb and the mixture chlorpyriphos/deltamethrin mortality rates ranged from 97.9 to 100% the first month and 77.7-88% the third month respectively. Conclusion After four months, fenitrothion, bendiocarb and the mixture chlorpyriphos/deltamethrin performed effectively against pyrethroid-resistant Anopheles. These results showed that bendiocarb could be recommended as an effective insecticide for use in IRS operations in Benin, particularly as the mixture chlorpyriphos/deltamethrin does not have WHOPES authorization and complaints were mentioned

  3. Status of insecticide susceptibility in Anopheles arabiensis from Mwea rice irrigation scheme, Central Kenya

    Directory of Open Access Journals (Sweden)

    Vulule John M

    2006-06-01

    Full Text Available Abstract Background Control of the Anopheline mosquito vectors of malaria by use of insecticides has been shown to impact on both morbidity and mortality due to this disease. Evidence of insecticide resistance in different settings necessitates surveillance studies to allow prompt detection of resistance should it arise and thus enable its management. Possible resistance by Anopheles arabiensis mosquitoes from Mwea rice irrigation scheme in Central Kenya to insecticides in the four classes of insecticides approved by WHO for indoor residual spraying was investigated. Methods Susceptibility to DDT (an organochlorine, fenitrothion (an organophosphate, bendiocarb (a carbamate, lambdacyhalothrin and permethrin (both pyrethroids was tested using standard WHO diagnostic bioassay kits. Bioassays were performed on non-blood fed mosquitoes one- to three-day old. Knockdown was recorded every 10 min and mortality 24 h post-exposure was noted. Results Mortality 24 h post-exposure was 100% for all insecticides except for lambdacyhalothrin, which averaged 99.46%. Knockdown rates at 10 min intervals were not significantly different between the Mwea population and the susceptible KISUMU strain of Anopheles gambiae sensu stricto control. The KDT50 and KDT95 values for the Mwea population were either lower than those for the control or higher by factors of no more than 2 for most comparisons and compared well with those of An. gambiae sensu lato categorized as susceptible in other studies. Conclusion These results suggest that the Mwea population of An. arabiensis is susceptible to all the insecticides tested. This implies that vector control measures employing any of these insecticides would not be hampered by resistance.

  4. Biochemical basis of permethrin resistance in Anopheles arabiensis from Lower Moshi, north-eastern Tanzania

    Directory of Open Access Journals (Sweden)

    Oxborough Richard M

    2010-07-01

    Full Text Available Abstract Background Development of resistance to different classes of insecticides is a potential threat to malaria control. With the increasing coverage of long-lasting insecticide-treated nets in Tanzania, the continued monitoring of resistance in vector populations is crucial. It may facilitate the development of novel strategies to prevent or minimize the spread of resistance. In this study, metabolic-based mechanisms conferring permethrin (pyrethroid resistance were investigated in Anopheles arabiensis of Lower Moshi, Kilimanjaro region of north-eastern Tanzania. Methods WHO susceptibility test kits were used to detect resistance to permethrin in An. arabiensis. The levels and mechanisms of permethrin resistance were determined using CDC bottle bioassays and microplate (biochemical assays. In bottle bioassays, piperonyl butoxide (PBO and s,s,s-tributyl phosphorotrithioate (DEF were used as synergists to inhibit mixed function oxidases and non-specific esterases respectively. Biochemical assays were carried out in individual mosquitoes to detect any increase in the activity of enzymes typically involved in insecticide metabolism (mixed function oxidases, α- and β-esterases. Results Anopheles arabiensis from the study area was found to be partially resistant to permethrin, giving only 87% mortality in WHO test kits. Resistance ratios at KT50 and KT95 were 4.0 and 4.3 respectively. The permethrin resistance was partially synergized by DEF and by PBO when these were mixed with permethrin in bottle bioassays and was fully synergized when DEF and PBO were used together. The levels of oxidase and β-esterase activity were significantly higher in An. arabiensis from Lower Moshi than in the laboratory susceptible strain. There was no difference in α-esterase activity between the two strains. Conclusion Elevated levels of mixed function oxidases and β-esterases play a role in detoxification of permethrin in the resistant An. arabiensis population

  5. Polymorphisms in Anopheles gambiae immune genes associated with natural resistance to Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Caroline Harris

    Full Text Available Many genes involved in the immune response of Anopheles gambiae, the main malaria vector in Africa, have been identified, but whether naturally occurring polymorphisms in these genes underlie variation in resistance to the human malaria parasite, Plasmodium falciparum, is currently unknown. Here we carried out a candidate gene association study to identify single nucleotide polymorphisms (SNPs associated with natural resistance to P. falciparum. A. gambiae M form mosquitoes from Cameroon were experimentally challenged with three local wild P. falciparum isolates. Statistical associations were assessed between 157 SNPs selected from a set of 67 A. gambiae immune-related genes and the level of infection. Isolate-specific associations were accounted for by including the effect of the isolate in the analysis. Five SNPs were significantly associated to the infection phenotype, located within or upstream of AgMDL1, CEC1, Sp PPO activate, Sp SNAKElike, and TOLL6. Low overall and local linkage disequilibrium indicated high specificity in the loci found. Association between infection phenotype and two SNPs was isolate-specific, providing the first evidence of vector genotype by parasite isolate interactions at the molecular level. Four SNPs were associated to either oocyst presence or load, indicating that the genetic basis of infection prevalence and intensity may differ. The validity of the approach was verified by confirming the functional role of Sp SNAKElike in gene silencing assays. These results strongly support the role of genetic variation within or near these five A. gambiae immune genes, in concert with other genes, in natural resistance to P. falciparum. They emphasize the need to distinguish between infection prevalence and intensity and to account for the genetic specificity of vector-parasite interactions in dissecting the genetic basis of Anopheles resistance to human malaria.

  6. Inducible peroxidases mediate nitration of anopheles midgut cells undergoing apoptosis in response to Plasmodium invasion.

    Science.gov (United States)

    Kumar, Sanjeev; Gupta, Lalita; Han, Yeon Soo; Barillas-Mury, Carolina

    2004-12-17

    Plasmodium berghei invasion of Anopheles stephensi midgut cells causes severe damage, induces expression of nitric-oxide synthase, and leads to apoptosis. The present study indicates that invasion results in tyrosine nitration, catalyzed as a two-step reaction in which nitric-oxide synthase induction is followed by increased peroxidase activity. Ookinete invasion induced localized expression of peroxidase enzymes, which catalyzed protein nitration in vitro in the presence of nitrite and H(2)O(2). Histochemical stainings revealed that when a parasite migrates laterally and invades more than one cell, the pattern of induced peroxidase activity is similar to that observed for tyrosine nitration. In Anopheles gambiae, ookinete invasion elicited similar responses; it induced expression of 5 of the 16 peroxidase genes predicted by the genome sequence and decreased mRNA levels of one of them. One of these inducible peroxidases has a C-terminal oxidase domain homologous to the catalytic moiety of phagocyte NADPH oxidase and could provide high local levels of superoxide anion (O(2)), that when dismutated would generate the local increase in H(2)O(2) required for nitration. Chemically induced apoptosis of midgut cells also activated expression of four ookinete-induced peroxidase genes, suggesting their involvement in general apoptotic responses. The two-step nitration reaction provides a mechanism to precisely localize and circumscribe the toxic products generated by defense reactions involving nitration. The present study furthers our understanding of the biochemistry of midgut defense reactions to parasite invasion and how these may influence the efficiency of malaria transmission by anopheline mosquitoes. PMID:15456781

  7. Genome-wide transcriptional analysis of genes associated with acute desiccation stress in Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Mei-Hui Wang

    Full Text Available Malaria transmission in sub-Saharan Africa varies seasonally in intensity. Outbreaks of malaria occur after the beginning of the rainy season, whereas, during the dry season, reports of the disease are less frequent. Anopheles gambiae mosquitoes, the main malaria vector, are observed all year long but their densities are low during the dry season that generally lasts several months. Aestivation, seasonal migration, and local adaptation have been suggested as mechanisms that enable mosquito populations to persist through the dry season. Studies of chromosomal inversions have shown that inversions 2La, 2Rb, 2Rc, 2Rd, and 2Ru are associated with various physiological changes that confer aridity resistance. However, little is known about how phenotypic plasticity responds to seasonally dry conditions. This study examined the effects of desiccation stress on transcriptional regulation in An. gambiae. We exposed female An. gambiae G3 mosquitoes to acute desiccation and conducted a genome-wide analysis of their transcriptomes using the Affymetrix Plasmodium/Anopheles Genome Array. The transcription of 248 genes (1.7% of all transcripts was significantly affected in all experimental conditions, including 96 with increased expression and 152 with decreased expression. In general, the data indicate a reduction in the metabolic rate of mosquitoes exposed to desiccation. Transcripts accumulated at higher levels during desiccation are associated with oxygen radical detoxification, DNA repair and stress responses. The proportion of transcripts within 2La and 2Rs (2Rb, 2Rc, 2Rd, and 2Ru (67/248, or 27% is similar to the percentage of transcripts located within these inversions (31%. These data may be useful in efforts to elucidate the role of chromosomal inversions in aridity tolerance. The scope of application of the anopheline genome demonstrates that examining transcriptional activity in relation to genotypic adaptations greatly expands the number of

  8. Anopheles midgut epithelium evades human complement activity by capturing factor H from the blood meal.

    Directory of Open Access Journals (Sweden)

    Ayman Khattab

    2015-02-01

    Full Text Available Hematophagous vectors strictly require ingesting blood from their hosts to complete their life cycles. Exposure of the alimentary canal of these vectors to the host immune effectors necessitates efficient counteractive measures by hematophagous vectors. The Anopheles mosquito transmitting the malaria parasite is an example of hematophagous vectors that within seconds can ingest human blood double its weight. The innate immune defense mechanisms, like the complement system, in the human blood should thereby immediately react against foreign cells in the mosquito midgut. A prerequisite for complement activation is that the target cells lack complement regulators on their surfaces. In this work, we analyzed whether human complement is active in the mosquito midgut, and how the mosquito midgut cells protect themselves against complement attack. We found that complement remained active for a considerable time and was able to kill microbes within the mosquito midgut. However, the Anopheles mosquito midgut cells were not injured. These cells were found to protect themselves by capturing factor H, the main soluble inhibitor of the alternative complement pathway. Factor H inhibited complement on the midgut cells by promoting inactivation of C3b to iC3b and preventing the activity of the alternative pathway amplification C3 convertase enzyme. An interference of the FH regulatory activity by monoclonal antibodies, carried to the midgut via blood, resulted in increased mosquito mortality and reduced fecundity. By using a ligand blotting assay, a putative mosquito midgut FH receptor could be detected. Thereby, we have identified a novel mechanism whereby mosquitoes can tolerate human blood.

  9. Functional characterization of the NF-κB transcription factor gene REL2 from Anopheles gambiae

    Institute of Scientific and Technical Information of China (English)

    NGO T. HOA; LIANGBIAO ZHENG

    2007-01-01

    The REL2 gene plays an important role in innate immunity against both Gram (+) and Gram (-) bacteria and malaria parasites in Anopheles gambiae, the main vector of malaria in Africa. Through alternative splicing, REL2 produces two protein products, REL2F (with a Rel-homology domain as well as an inhibitory ankyrin repeat region) and REL2S (without the ankyrin repeats). In the immune-competent cell line Sua1B from An. Gambiae, REL2 has been shown to be a key regulator for cecropin A (or CEC1). The high level expression of CEC1 in Sua1B was postulated to be the result of constitutive activation of REL2F. Here we showed that REL2F is indeed processed, albeit at a low level, in the Sua1B cell line. The primary cleavage requires residue 678 (an aspartic acid). Proteolytic cleavage of REL2F can be enhanced by challenge with bacteria Escherichia coli and Bacillus subtilis, but not with fungus Beauveria bassiana. The inducible cleavage can be substantially reduced by RNA interference against PGRP-LC and CASPL1. Over-expression of REL2S or a constitutively active form of REL2F (REL2F380C or REL2F678) in An. Gambiae cell line can further increase expression of CEC1 and other antimicrobial peptide genes. Over-expression of these constitutive active proteins in an immune na?ve cell line, MSQ43, from Anopheles stephensi, results in even more dramatic increased expression of antimicrobial peptides.

  10. Microsatellite data suggest significant population structure and differentiation within the malaria vector Anopheles darlingi in Central and South America

    Directory of Open Access Journals (Sweden)

    Achee Nicole L

    2008-03-01

    Full Text Available Abstract Background Anopheles darlingi is the most important malaria vector in the Neotropics. An understanding of A. darlingi's population structure and contemporary gene flow patterns is necessary if vector populations are to be successfully controlled. We assessed population genetic structure and levels of differentiation based on 1,376 samples from 31 localities throughout the Peruvian and Brazilian Amazon and Central America using 5–8 microsatellite loci. Results We found high levels of polymorphism for all of the Amazonian populations (mean RS = 7.62, mean HO = 0.742, and low levels for the Belize and Guatemalan populations (mean RS = 4.3, mean HO = 0.457. The Bayesian clustering analysis revealed five population clusters: northeastern Amazonian Brazil, southeastern and central Amazonian Brazil, western and central Amazonian Brazil, Peruvian Amazon, and the Central American populations. Within Central America there was low non-significant differentiation, except for between the populations separated by the Maya Mountains. Within Amazonia there was a moderate level of significant differentiation attributed to isolation by distance. Within Peru there was no significant population structure and low differentiation, and some evidence of a population expansion. The pairwise estimates of genetic differentiation between Central America and Amazonian populations were all very high and highly significant (FST = 0.1859 – 0.3901, P DA and FST distance-based trees illustrated the main division to be between Central America and Amazonia. Conclusion We detected a large amount of population structure in Amazonia, with three population clusters within Brazil and one including the Peru populations. The considerable differences in Ne among the populations may have contributed to the observed genetic differentiation. All of the data suggest that the primary division within A. darlingi corresponds to two white gene genotypes between Amazonia (genotype 1

  11. Allomonal effect of breath contributes to differential attractiveness of humans to the African malaria vector Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Takken Willem

    2004-01-01

    Full Text Available Abstract Background Removal of exhaled air from total body emanations or artificially standardising carbon dioxide (CO2 outputs has previously been shown to eliminate differential attractiveness of humans to certain blackfly (Simuliidae and mosquito (Culicidae species. Whether or not breath contributes to between-person differences in relative attractiveness to the highly anthropophilic malaria vector Anopheles gambiae sensu stricto remains unknown and was the focus of the present study. Methods The contribution to and possible interaction of breath (BR and body odours (BO in the attraction of An. gambiae s.s. to humans was investigated by conducting dual choice tests using a recently developed olfactometer. Either one or two human subjects were used as bait. The single person experiments compared the attractiveness of a person's BR versus that person's BO or a control (empty tent with no odour. His BO and total emanations (TE = BR+BO were also compared with a control. The two-person experiments compared the relative attractiveness of their TE, BO or BR, and the TE of each person against the BO of the other. Results Experiments with one human subject (P1 as bait found that his BO and TE collected more mosquitoes than the control (P = 0.005 and P 1 attracted more mosquitoes than that of another person designated P8 (P 8 attracted more mosquitoes than the BR of P1 (P = 0.001. The attractiveness of the BO of P1 versus the BO of P8 did not differ (P = 0.346. The BO from either individual was consistently more attractive than the TE from the other (P Conclusions We demonstrated for the first time that human breath, although known to contain semiochemicals that elicit behavioural and/or electrophysiological responses (CO2, ammonia, fatty acids in An. gambiae also contains one or more constituents with allomonal (~repellent properties, which inhibit attraction and may serve as an important contributor to between-person differences in the relative

  12. Mosquito Larvicidal Potential of Gossypium hirsutum (Bt cotton Leaves Extracts against Aedes aegypti and Anopheles stephensi larvae.

    Directory of Open Access Journals (Sweden)

    Chandrashekhar D Patil

    2014-06-01

    Full Text Available We aimed to extract the ingredients from leaves of Gossypium hirsutum (Bt cotton using different solvents and evaluate for potential use to control different larval stages of mosquito species, Aedes aegypti and Anopheles stephensi.Qualitative and quantitative estimation of ingredients from Go. hirsutum (Bt plant extract was carried out and their inhibitory action against mosquito larvae was determined using mosquito larvicidal assay.LC50 values of water, ethanol, ethyl acetate and hexane extracts for Ae. aegypti were 211.73±21.49, 241.64±19.92, 358.07±32.43, 401.03±36.19 and 232.56±26.00, 298.54±21.78, 366.50±30.59, 387.19±31.82 for 4(th instar of An. stephensi, respectively. The water extract displayed lowest LC50 value followed by ethanol, ethyl acetate and hexane. Owing to the comparatively better activity of water extract, its efficacy was further evaluated for mosquito larvicidal activity, which exhibited LC50 values of 133.95±12.79, 167.65±11.34 against 2(nd and 3(rd instars of Ae. aegypti and 145.48±11.76, 188.10±12.92 against 2(nd and 3(rd instars of An. stephensi, respectively. Crude protein from the water extract was precipitated using acetone and tested against 2(nd, 3(rd and 4(th instars of Ae. aegypti and An. stephensi. It revealed further decrease in LC50 values as 105.72±25.84, 138.23±23.18, 126.19±25.65, 134.04±04 and 137.88±17.59, 154.25±16.98 for 2(nd, 3(rd and 4(th instars of Ae. aegypti and An. stephensi, respectively.Leaves extracts of Go. hirsutum (Bt is potential mosquito larvicide and can be used as a potent alternative to chemical insecticides in integrated pest management.

  13. Dynamics of knockdown pyrethroid insecticide resistance alleles in a field population of Anopheles gambiae s.s. in southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    T.S. Awolola, A.O. Oduola, I.O. Oyewole, J.B. Obansa, C.N. Amajoh

    2007-09-01

    Full Text Available Background & objectives: Pyrethroid insecticide resistance in the malaria vector Anopheles gambiaeGiles is mainly associated with reduced target site sensitivity arising from a single point mutation inthe sodium channel gene, often referred to as knockdown resistance (kdr. This resistance mechanismis widespread in West Africa and was reported for the first time in Nigeria in 2002. Here we presentchanges in the susceptibility/resistance status of the molecular ‘M’ and ‘S’ forms of An. gambiae andthe frequency of the kdr alleles from 2002–05.Methods: Adult anophelines were sampled quarterly inside human dwellings from January 2002 toDecember 2005 and adults reared from wild larvae were identified using morphological keys. Samplesbelonging to the An. gambiae complex were subjected to PCR assays for species identification anddetection of molecular ‘M’ and ‘S’ forms. Insecticide susceptibility tests were carried out usingstandard WHO procedures and test kits only on 2–3 days old adult An. gambiae s.s. reared fromlarval collections. The kdr genotypes were determined in both live and dead specimens of An. gambiaes.s. using alleles-specific polymerase chain reaction diagnostic tests.Results: The overall collection showed that the molecular ‘S’ form was predominant (>60% but theproportions of both forms in the mosquito populations from 2002–05 were not statistically different.Both forms also occurred throughout the period without apparent relationship to wet or dry season.Insecticide susceptibility tests did not show any significant increase in the resistance status recordedfor either Permethrin or DDT from 2002–05, rather, an improvement in the susceptibility status ofthe mosquitoes to these insecticides was observed from 2004–05 relative to the tests performed in2002–03.Conclusion: The proportion of the molecular ‘M’ and ‘S’ form of An. gambiae and the kdr frequencieshave not increased significantly from 2002

  14. Influence of Land-use on the Fitness of Anopheles gambiae, the Principal Vector of Malaria in Nigeria

    Directory of Open Access Journals (Sweden)

    Israel Kayode Olayemi

    2009-02-01

    Full Text Available Background: Urbanization often results in profound environmental alterations that may promote the transmission of malaria. Though, land-use practices in urban areas have been linked with proliferations of suitable larval breeding habitats of malaria vectors, no attempt has been made to systematically investigate the influence of land-use practices on malaria transmission in Nigeria. Objectives: To elucidate the influence of land-use practices on larval development and adult body size of Anopheles gambiae (Diptera: Culicidae mosquitoes in Minna, Nigeria. Materials and Methods: Newly-hatched larvae of An. gmbiae mosquitoes were reared in semi-natural habitats stationed in five different sites, each representing the major land-use types in the area. The larvae were monitored daily for Duration of Immature Development (DID and Immature Survival Rate (ISR; while Wing Length (WL was used as an index of adult body size. Results: DID, ISR and WL varied significantly (P < 0.05 among the land-use categories; with lager numbers of bigger mosquitoes produced at a faster rate in the artificial than natural land-use sites. Water temperature for larval development was best in the Refuse Dump (RD site (mean = 28.11 ± 2.50oC and consequently the shortest DID (mean = 9.70 ± 0.74 days, as well as, the largest mosquitoes (mean WL = 3.10 ± 0.90 mm, were recorded in this land-use category. However, while ISR was highest (mean = 96.30 ± 2.78% in Farm Land (FL, the mosquitoes that emerged from this site were the smallest (mean WL = 1.96 ± 0.51mm. The Natural Vegetation (NV land-use category was the least productive, as the larvae took the longest time (13.29 ± 1.69 days to develop, and survived least (42.94 ± 7.50% in this site. Conclusion: The land-use practices in Minna enhanced the fitness of An. gambiae, and may increase the vectorial capacity of the species for malaria transmission in the area. Targeted larviciding interventions will greatly contribute to

  15. Larvicidal and repellent properties of some essential oils againstCulex tritaeniorhynchus Giles andAnopheles subpictusGrassi (Diptera:Culicidae)

    Institute of Scientific and Technical Information of China (English)

    Marimuthu Govindarajan

    2011-01-01

    Objective:To investigate the larvicidal and repellent properties of essential oils from various parts of four plant speciesCymbopogan citrates, Cinnamomum zeylanicum, Rosmarinus officinalis andZingiber officinale againstCulex tritaeniorhynchus (Cx. tritaeniorhynchus)and Anopheles subpictus (An. subpictus).Methods: Essential oils were obtained by hydro-distillation method. The mosquitoes were reared in the vector control laboratory and twenty five late third instar larvae ofCx. tritaeniorhynchus andAn. subpictus were exposed to based on the wide range and narrow range test, essential oil tested at various concentrations ranging from25 to 250 ppm. The larval mortality was observed after 24 h under the laboratory conditions. The repellent efficacy was determined against two mosquito species at three concentrations viz., 1.0,2.5 and5.0 mg/cm2 under laboratory conditions.Results:Results showed all the four plant essential oil produced significant larval mortality against two mosquito species. However, the highest larvicidal activity was observed in the essential oil fromZingiber officinale againstCx. tritaeniorhynchus andAn. subpictus with theLC50 andLC90 values as98.83, 57.98 ppm and186.55, 104.23 ppm, respectively. All the four essential oil shows significant repellency againstCx. tritaeniorhynchus thanAn. subpictus. Among four essential oil tested the highest repellency was observed inZingiber officinale, a higher concentration of5.0 mg/cm2 provided100% protection up to150 and180 min againstCx. tritaeniorhynchus andAn. subpictus, respectively.Conclusions:In this work, it can be concluded that four essential oils which were distilled fromCymbopogan citrates, Cinnamomum zeylanicum, Rosmarinus officinalis andZingiber officinale showed promising larvicidal and repellent agent againstCx. tritaeniorhynchus andAn. subpictus.

  16. Spatio-temporal variation in malaria transmission intensity in five agro-ecosystems in Mvomero district, Tanzania

    Directory of Open Access Journals (Sweden)

    Leonard E. G. Mboera

    2010-05-01

    Full Text Available In Africa, malaria is predominantly a rural disease where agriculture forms the backbone of the economy. Various agro-ecosystems and crop production systems have an impact on mosquito productivity, and hence malaria transmission intensity. This study was carried out to determine spatial and temporal variations in anopheline mosquito population and malaria transmission intensity in five villages, representing different agro-ecosystems in Mvomero district, Tanzania, so as to provide baseline information for malaria interventions. The agro-ecosystems consisted of irrigated sugarcane, flooding rice irrigation, non-flooding rice irrigation, wet savannah and dry savannah. In each setting, adult mosquitoes were sampled monthly using Centers for Disease Control and Prevention (CDC light traps from August 2004 to July 2005. A total of 35,702 female mosquitoes were collected. Anopheles gambiae sensu lato was the most abundant (58.9% mosquito species. An. funestus accounted for 12.0% of the mosquitoes collected. There was a substantial village to village variation and seasonality in the density of Anopheles mosquito population, with peaks in May towards the end of the warm and rainy season. Significantly larger numbers of anophelines were collected from traditional flooding rice irrigation ecosystem (70.7% than in non-flooding rice irrigation (8.6%, sugarcane (7.0%, wet savannah (7.3% and dry savannah (6.4%. The overall sporozoite rates for An. gambiae and An. funestus were 3.4% and 2.3%, respectively. The combined overall sporozoite rate (An. gambiae+An. funestus was 3.2%. The mean annual entomological inoculation rate (EIR for An. gambiae s.l. was 728 infective bites per person per year and this was significantly higher in traditional flooding rice irrigation (1351 than in other agro-ecosystems. The highest EIRs for An. gambiae s.l. and An. funestus were observed during May 2005 (long rainy season and December 2004 (short rainy season, respectively. The

  17. Use of carbon-13 as a population marker for Anopheles arabiensis in a sterile insect technique (SIT) context

    OpenAIRE

    Knols Bart GJ; Mayr Leo; Hood-Nowotny Rebecca

    2006-01-01

    Abstract Background Monitoring of sterile to wild insect ratios in field populations can be useful to follow the progress in genetic control programmes such as the Sterile Insect Technique (SIT). Of the numerous methods for marking insects most are not suitable for use in mass rearing and mass release. Suitable ones include dye marking, genetic marking and chemical marking. Methods The feasibility of using the stable isotope of carbon, 13C, as a potential chemical marker for Anopheles arabien...

  18. The bionomics of the malaria vector Anopheles farauti in Northern Guadalcanal, Solomon Islands: issues for successful vector control

    OpenAIRE

    Bugoro, Hugo; Hii, Jeffery L; Butafa, Charles; Iro’ofa, Charlie; Apairamo, Allen; Robert D Cooper; Chen, Cheng-Chen; Russell, Tanya L

    2014-01-01

    Background The north coast of Guadalcanal has some of the most intense malaria transmission in the Solomon Islands. And, there is a push for intensified vector control in Guadalcanal, to improve the livelihood of residents and to minimize the number of cases, which are regularly exported to the rest of the country. Therefore, the bionomics of the target vector, Anopheles farauti, was profiled in 2007–08; which was after 20 years of limited surveillance during which time treated bed nets (ITNs...

  19. A major genetic locus controlling natural Plasmodium falciparum infection is shared by East and West African Anopheles gambiae

    OpenAIRE

    Koella Jacob C; Sharakhov Igor; Xia Ai; Lambrechts Louis; Markianos Kyriacos; Riehle Michelle M; Vernick Kenneth D

    2007-01-01

    Abstract Background Genetic linkage mapping identified a region of chromosome 2L in the Anopheles gambiae genome that exerts major control over natural infection by Plasmodium falciparum. This 2L Plasmodium-resistance interval was mapped in mosquitoes from a natural population in Mali, West Africa, and controls the numbers of P. falciparum oocysts that develop on the vector midgut. An important question is whether genetic variation with respect to Plasmodium-resistance exists across Africa, a...

  20. A Possible Mechanism for the Suppression of Plasmodium berghei Development in the Mosquito Anopheles gambiae by the Microsporidian Vavraia culicis

    OpenAIRE

    Bargielowski, Irka; Koella, Jacob C

    2009-01-01

    Background Microsporidian parasites of mosquitoes offer a possible way of controlling malaria, as they impede the development of Plasmodium parasites within the mosquito. The mechanism involved in this interference process is unknown. Methodology We evaluated the possibility that larval infection by a microsporidian primes the immune system of adult mosquitoes in a way that enables a more effective anti-Plasmodium response. To do so, we infected 2-day old larvae of the mosquito Anopheles gamb...

  1. Larvicidal and repellent properties of Adansonia digitata against medically important human malarial vector mosquito Anopheles stephensi (Diptera: Culicidae)

    OpenAIRE

    K. Krishnappa , K. Elumalai , S. Dhanasekaran & J. Gokulakrishnan

    2012-01-01

    Background & objectives: Development of plant-based alternative compounds for mosquito control has gainedimportance now-a-days, in view of increasing resistance in mosquito vectors to existing insecticides. The larvicidaland repellent activities of benzene, chloroform, hexane and methanol leaf extracts of Indian medicinal plant,Adansonia digitata were investigated against malarial vector, Anopheles stephensi.Methods: In all, 25 III instar larvae of An. stephensi were exposed to various concen...

  2. Physiology and development of the M and S molecular forms of Anopheles gambiae in Burkina Faso (West Africa)

    OpenAIRE

    Mouline, Karine; Mamai, W.; Agnew, P.; Tchonfienet, M.; Brengues, Cécile; Dabiré, R.; Robert, Vincent; Simard, Frédéric

    2012-01-01

    In West Africa, M and S molecular forms of Anopheles gambiae sensu stricto (Diptera: Culicidae) Giles, frequently occur together, although with different population bionomics. The S form typically breeds in rain-dependant water collections and is present during the rainy season only whereas the M form can thrive all year long in areas with permanent breeding opportunities. In the present study, we explored physiological and developmental trade-offs at play in laboratory colonies and field pop...

  3. Baseline Susceptibility of Different Geographical Strains of Anopheles stephensi (Diptera: Culicidae) to Temephos in Malarious Areas of Iran

    OpenAIRE

    Aboozar Soltani; Hassan Vatandoost; Mohammad Ali Oshaghi; Ahmad Ali Enayati; Ahmad Raeisi; Mohammad Reza Eshraghian; Mohammad Mehdi Soltan-Dallal; Ahmad Ali Hanafi-Bojd; Mohammad Reza Abai; Fatemeh Rafi

    2013-01-01

    Background: Malaria still remains a public health problem in Iran. There are different vector control interventions such as insecticide spraying. The present study was carried out to determine the susceptibility status of Anopheles stephensi larvae to temephos as a national plan for monitoring and mapping of insecticide resistance Methods: Eight different localities in two main malarious provinces were determined as field collecting sites. Mosquitoes were collected from the field and reared i...

  4. Life-table studies revealed significant effects of deforestation on the development and survivorship of Anopheles minimus larvae

    OpenAIRE

    Wang, Xiaoming; Zhou, Guofa; Zhong, Daibin; Wang, Xiaoling; Ying WANG; Yang, Zhaoqing; Cui, Liwang; Yan, Guiyun

    2016-01-01

    Background Many developing countries are experiencing rapid ecological changes such as deforestation and shifting agricultural practices. These environmental changes may have an important consequence on malaria due to their impact on vector survival and reproduction. Despite intensive deforestation and malaria transmission in the China-Myanmar border area, the impact of deforestation on malaria vectors in the border area is unknown. Methods We conducted life table studies on Anopheles minimus...

  5. An Epithelial Serine Protease, AgESP, Is Required for Plasmodium Invasion in the Mosquito Anopheles gambiae

    OpenAIRE

    Rodrigues, Janneth; Oliveira, Giselle A.; Kotsyfakis, Michalis; Dixit, Rajnikant; Molina-Cruz, Alvaro; Jochim, Ryan; Barillas-Mury, Carolina

    2012-01-01

    Background Plasmodium parasites need to cross the midgut and salivary gland epithelia to complete their life cycle in the mosquito. However, our understanding of the molecular mechanism and the mosquito genes that participate in this process is still very limited. Methodology/Principal Findings We identified an Anopheles gambiae epithelial serine protease (AgESP) that is constitutively expressed in the submicrovillar region of mosquito midgut epithelial cells and in the basal side of the sali...

  6. Molecular interactions between Anopheles stephensi midgut cells and Plasmodium berghei: the time bomb theory of ookinete invasion of mosquitoes

    OpenAIRE

    Han, Yeon Soo; Thompson, Joanne; Kafatos, Fotis C.; Barillas-Mury, Carolina

    2000-01-01

    We present a detailed analysis of the interactions between Anopheles stephensi midgut epithelial cells and Plasmodium berghei ookinetes during invasion of the mosquito by the parasite. In this mosquito, P.berghei ookinetes invade polarized columnar epithelial cells with microvilli, which do not express high levels of vesicular ATPase. The invaded cells are damaged, protrude towards the midgut lumen and suffer other characteristic changes, including induction of nitric oxide synthase (NOS) exp...

  7. Living at the edge: biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae

    OpenAIRE

    Costantini Carlo; Ayala Diego; Guelbeogo Wamdaogo M; Pombi Marco; Some Corentin Y; Bassole Imael HN; Ose Kenji; Fotsing Jean-Marie; Sagnon N'Falé; Fontenille Didier; Besansky Nora J; Simard Frédéric

    2009-01-01

    Abstract Background Ongoing lineage splitting within the African malaria mosquito Anopheles gambiae is compatible with ecological speciation, the evolution of reproductive isolation by divergent natural selection acting on two populations exploiting alternative resources. Divergence between two molecular forms (M and S) identified by fixed differences in rDNA, and characterized by marked, although incomplete, reproductive isolation is occurring in West and Central Africa. To elucidate the rol...

  8. Effect of larval environment on some life history parameters in anopheles gambiae s.s. (diptera:culicidae))

    OpenAIRE

    Jannat, Khandaker Noore

    2010-01-01

    The effects of larval density, nutrition and cannibalism risk on some life history parameters of Anopheles gambiae larvae were evaluated in the laboratory. Adult body size was inversely correlated with larval density whereas larval mortality and mean age at pupation varied across experiments. When density increased, the secondary sex ratio shifted toward female bias. Effects of different types of nutrition on larval life were compared by providing larvae with algae Chaetophora sp., fish food ...

  9. Impact of insecticide-treated nets on wild pyrethroid resistant Anopheles epiroticus population from southern Vietnam tested in experimental huts

    OpenAIRE

    Trung Ho; Speybroeck Niko; Berkvens Dirk; Chinh Vu; Van Bortel Wim; Coosemans Marc

    2009-01-01

    Abstract Background In this study, the efficacy of insecticide-treated nets was evaluated in terms of deterrence, blood-feeding inhibition, induced exophily and mortality on a wild resistant population of Anopheles epiroticus in southern Vietnam, in order to gain insight into the operational consequences of the insecticide resistance observed in this malaria vector in the Mekong delta. Method An experimental station, based on the model of West Africa and adapted to the behaviour of the target...

  10. Larvicidal potential of carvacrol and terpinen-4-ol from the essential oil of Origanum vulgare (Lamiaceae) against Anopheles stephensi, Anopheles subpictus, Culex quinquefasciatus and Culex tritaeniorhynchus (Diptera: Culicidae).

    Science.gov (United States)

    Govindarajan, Marimuthu; Rajeswary, Mohan; Hoti, S L; Benelli, Giovanni

    2016-02-01

    Mosquito-borne diseases represent a deadly threat for millions of people worldwide. However, the use of synthetic insecticides to control Culicidae may lead to resistance, high operational costs and adverse non-target effects. Nowadays, plant-borne mosquitocides may serve as suitable alternative in the fight against mosquito vectors. In this study, the mosquito larvicidal activity of Origanum vulgare (Lamiaceae) leaf essential oil (EO) and its major chemical constituents was evaluated against the malaria vectors Anopheles stephensi and An. subpictus, the filariasis vector Culex quinquefasciatus and the Japanese encephalitis vector Cx. tritaeniorhynchus. The chemical composition of the EO was analyzed by gas chromatography-mass spectroscopy. GC-MS revealed that the essential oil of O. vulgare contained 17 compounds. The major chemical components were carvacrol (38.30%) and terpinen-4-ol (28.70%). EO had a significant toxic effect against early third-stage larvae of An. stephensi, An. subpictus, Cx. quinquefasciatus and Cx. tritaeniorhynchus, with LC50 values of 67.00, 74.14, 80.35 and 84.93 μg/ml. The two major constituents extracted from the O. vulgare EO were tested individually for acute toxicity against larvae of the four mosquito vectors. Carvacrol and terpinen-4-ol appeared to be most effective against An. stephensi (LC50=21.15 and 43.27 μg/ml, respectively) followed by An. subpictus (LC50=24.06 and 47.73 μg/ml), Cx. quinquefasciatus (LC50=26.08 and 52.19 μg/ml) and Cx. tritaeniorhynchus (LC50=27.95 and 54.87 μg/ml). Overall, this research adds knowledge to develop newer and safer natural larvicides against malaria, filariasis and Japanese encephalitis mosquito vectors. PMID:26850541

  11. Characterization of the Rel2-regulated transcriptome and proteome of Anopheles stephensi identifies new anti-Plasmodium factors.

    Science.gov (United States)

    Pike, Andrew; Vadlamani, Alekhya; Sandiford, Simone L; Gacita, Anthony; Dimopoulos, George

    2014-09-01

    Mosquitoes possess an innate immune system that is capable of limiting infection by a variety of pathogens,