Anomalous center of mass shift gravitational dipole moment
Jeong, E J
1996-01-01
The anomalous, energy dependent shift of the center of mass of an idealized, perfectly rigid, uniformly rotating hemispherical shell which is caused by the relativistic mass increase effect is investigated in detail. It is shown that a classical object on impact which has the harmonic binding force between the adjacent constituent particles has the similar effect of the energy dependent, anomalous shift of the center of mass. From these observations, the general mode of the linear acceleration is suggested to be caused by the anomalous center of mass shift whether it's due to classical or relativistic origin. The effect of the energy dependent center of mass shift perpendicular to the plane of rotation of a rotating hemisphere appears as the non zero gravitational dipole moment in general relativity. Controlled experiment for the measurement of the gravitational dipole field and its possible links to the cylindrical type line formation of a worm hole in the extreme case are suggested. The jets from the black ...
Anomalous center of mass shift: gravitational dipole moment.
Jeong, Eue Jin
1997-02-01
The anomalous, energy dependent shift of the center of mass of an idealized, perfectly rigid, uniformly rotating hemispherical shell which is caused by the relativistic mass increase effect is investigated in detail. It is shown that a classical object on impact which has the harmonic binding force between the adjacent constituent particles has the similar effect of the energy dependent, anomalous shift of the center of mass. From these observations, the general mode of the linear acceleration is suggested to be caused by the anomalous center of mass shift whether it's due to classical or relativistic origin. The effect of the energy dependent center of mass shift perpendicular to the plane of rotation of a rotating hemisphere appears as the non zero gravitational dipole moment in general relativity. Controlled experiment for the measurement of the gravitational dipole field and its possible links to the cylindrical type line formation of a worm hole in the extreme case are suggested. The jets from the black hole accretion disc and the observed anomalous red shift from far away galaxies are considered to be the consequences of the two different aspects of the dipole gravity.
The spectrum and mass anomalous dimension of SU(2) adjoint QCD with two Dirac flavours
Bergner, Georg; Montvay, Istvan; Münster, Gernot; Piemonte, Stefano
2016-01-01
In this work we present the results of our investigation of SU(2) gauge theory with two Dirac fermions in the adjoint representation, also known as Minimal Walking Technicolour. We have done numerical lattice simulations of this theory at two different values of the gauge coupling and several fermion masses. Our results include the particle spectrum and the mass anomalous dimension. The spectrum contains so far unconsidered states, a fermion-gluon state and flavour singlet mesons. The mass anomalous dimension is determined from the scaling of the masses and the mode number. The remnant dependence of the universal mass ratios and mass anomalous dimension on the gauge coupling indicates the relevance of scaling corrections.
Anomalous mass dimension of multi-flavor QCD
Doff, A
2016-01-01
Models of strongly interacting theories with a large mass anomalous dimension ($\\gamma_m$) provide an interesting possibility for the dynamical origin of the electroweak symmetry breaking. A laboratory for these models is QCD with many flavors, which may present a non-trivial fixed point associated to a conformal region. Studies based on conformal field theories and on Schwinger-Dyson equations have suggested the existence of bounds on the mass anomalous dimension at the fixed points of these models. In this note we discuss $\\gamma_m$ values of multi-flavor QCD exhibiting a non-trivial fixed point and affected by relevant four-fermion interactions.
Mass anomalous dimension of SU(2) with Nf=8 using the spectral density method
Suorsa, Joni M; Rantaharju, Jarno; Rantalaiho, Teemu; Rummukainen, Kari; Tuominen, Kimmo; Weir, David J
2015-01-01
SU(2) with Nf=8 is believed to have an infrared conformal fixed point. We use the spectral density method to evaluate the coupling constant dependence of the mass anomalous dimension for massless HEX smeared, clover improved Wilson fermions with Schr\\"odinger functional boundary conditions.
Anomalous scaling in an age-dependent branching model
Keller-Schmidt, Stephanie; Tugrul, Murat; Eguíluz, Víctor M.; Hernández-García, Emilio; Klemm, Konstantin
2015-01-01
We introduce a one-parametric family of tree growth models, in which branching probabilities decrease with branch age $\\tau$ as $\\tau^{-\\alpha}$. Depending on the exponent $\\alpha$, the scaling of tree depth with tree size $n$ displays a transition between the logarithmic scaling of random trees and an algebraic growth. At the transition ($\\alpha=1$) tree depth grows as $(\\log n)^2$. This anomalous scaling is in good agreement with the trend observed in evolution of biological species, thus p...
Anomalous scaling in an age-dependent branching model
Keller-Schmidt, Stephanie; Tugrul, Murat; Eguiluz, Victor M.; Hernandez-Garcia, Emilio; Klemm, Konstantin
2010-01-01
We introduce a one-parametric family of tree growth models, in which branching probabilities decrease with branch age $\\tau$ as $\\tau^{-\\alpha}$. Depending on the exponent $\\alpha$, the scaling of tree depth with tree size $n$ displays a transition between the logarithmic scaling of random trees and an algebraic growth. At the transition ($\\alpha=1$) tree depth grows as $(\\log n)^2$. This anomalous scaling is in good agreement with the trend observed in evolution of biological species, thus p...
Anomalous scaling in an age-dependent branching model.
Keller-Schmidt, Stephanie; Tuğrul, Murat; Eguíluz, Víctor M; Hernández-García, Emilio; Klemm, Konstantin
2015-02-01
We introduce a one-parametric family of tree growth models, in which branching probabilities decrease with branch age τ as τ(-α). Depending on the exponent α, the scaling of tree depth with tree size n displays a transition between the logarithmic scaling of random trees and an algebraic growth. At the transition (α=1) tree depth grows as (logn)(2). This anomalous scaling is in good agreement with the trend observed in evolution of biological species, thus providing a theoretical support for age-dependent speciation and associating it to the occurrence of a critical point. PMID:25768548
Anomalous scaling in an age-dependent branching model.
Keller-Schmidt, Stephanie; Tuğrul, Murat; Eguíluz, Víctor M; Hernández-García, Emilio; Klemm, Konstantin
2015-02-01
We introduce a one-parametric family of tree growth models, in which branching probabilities decrease with branch age τ as τ(-α). Depending on the exponent α, the scaling of tree depth with tree size n displays a transition between the logarithmic scaling of random trees and an algebraic growth. At the transition (α=1) tree depth grows as (logn)(2). This anomalous scaling is in good agreement with the trend observed in evolution of biological species, thus providing a theoretical support for age-dependent speciation and associating it to the occurrence of a critical point.
Quark mass anomalous dimension from the twisted mass Dirac operator spectrum
Energy Technology Data Exchange (ETDEWEB)
Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics
2013-12-15
We investigate whether it is possible to extract the quark mass anomalous dimension and its scale dependence from the spectrum of the twisted mass Dirac operator in Lattice QCD. The answer to this question appears to be positive, provided that one goes to large enough eigenvalues, sufficiently above the non-perturbative regime. The obtained results are compared to continuum perturbation theory. By analyzing possible sources of systematic effects, we find the domain of applicability of the approach, extending from an energy scale of around 1.5 to 4 GeV. The lower limit is dictated by physics (non-perturbative effects at low energies), while the upper bound is set by the ultraviolet cut-off of present-day lattice simulations. We use gauge field configuration ensembles generated by the European Twisted Mass Collaboration (ETMC) with 2 flavours of dynamical twisted mass quarks, at 4 lattice spacings in the range between around 0.04 and 0.08 fm.
Anomalous scaling in an age-dependent branching model
Keller-Schmidt, Stephanie; Tugrul, Murat; Víctor M Eguíluz; Hernández-García, Emilio; Klemm, Konstantin
2015-01-01
© 2015 American Physical Society. We introduce a one-parametric family of tree growth models, in which branching probabilities decrease with branch age τ as τ-α. Depending on the exponent α, the scaling of tree depth with tree size n displays a transition between the logarithmic scaling of random trees and an algebraic growth. At the transition (α=1) tree depth grows as (logn)2. This anomalous scaling is in good agreement with the trend observed in evolution of biological species, thus provid...
On the anomalous mass defect of strange stars in the Field Correlator Method
Pereira, F. I. M.
2016-09-01
We investigate general aspects of the mass defects of strange stars in the context of the Field Correlator Method, without magnetic field. The main parameters of the model that enter the corresponding nonperturbative equation of state of the quark gluon plasma are the gluon condensate G2 and the large distance static Q Q bar potential V1. We calculate mass defects of stellar configurations in the central density range 11 < log ρc < 18. In general, the mass defects are strongly dependent on the model parameters. For a large range of values of G2 and V1, we obtain anomalous mass defects with magnitudes around 1053 erg, of the same order of the observed energies of gamma-ray bursts and neutrino emissions in SN1987A, and of the theoretically predicted energies of the quark-novae explosions.
Mass anomalous dimension and running of the coupling in SU(2) with six fundamental fermions
DEFF Research Database (Denmark)
Bursa, Francis; Del Debbio, Luigi; Keegan, Liam;
2010-01-01
We simulate SU(2) gauge theory with six massless fundamental Dirac fermions. By using the Schr\\"odinger Functional method we measure the running of the coupling and the fermion mass over a wide range of length scales. We observe very slow running of the coupling and construct an estimator...... for the fermion mass anomalous dimension giving $0.135 \\gamma...
Institute of Scientific and Technical Information of China (English)
Gui-Ping Wu; Guang-Li Huang; Hai-Sheng Ji
2010-01-01
Anomalous resistivity is critical for triggering fast magnetic reconnection in the nearly collisionless coronal plasma.Its nonlinear dependence on bulk drift velocity is usually assumed in MHD simulations.However,the mechanism for the production of anomalous resistivity and its evolution is still an open question.We numerically solved the one dimension Vlasov equation with the typical solar coronal parameters and realistic mass ratios to infer the relationship between anomalous resistivity and bulk drift velocity of electrons in the reconnecting current sheets as well as its nonlinear characteristics.Our principal findings are summarized as follows: 1)the relationship between the anomalous resistivity and bulk drift velocity of electrons relative to ions may be described as ηmax = 0.03724(vd/ve)5.702 Ω m for vd/ve in the range of 1.4-2.0 and ηmax = 0.8746(vd/ve)1.284 Ωm for vd/ve in the range of 2.5-4.5; 2)if drift velocity is just slightly larger than the threshold of ion-acoustic instability,the anomalous resistivity due to the wave-particle interactions is enhanced by about five orders as compared with classic resistivity due to Coulomb collisions.With the increase of drift velocity from 1.4ve to 4.5ve,the anomalous resistivity continues to increase 100 times; 3)in the rise phase of unstable waves,the anomalous resistivity has the same order as the one estimated from quasi-linear theory; after saturation of unstable waves,the anomalous resistivity decreases at least about one order as compared with its peak value; 4)considering that the final velocity of electrons ejected out of the reconnecting current sheet(RCS)decreases with the distance from the neutral point in the neutral plane,the anomalous resistivity decreases with the distance from the neutral point,which is favorable for the Petschek-like reconnection to take place.
Lepton anomalous magnetic moments from twisted mass fermions
Burger, Florian; Jansen, Karl; Petschlies, Marcus
2014-01-01
We present our results for the leading-order hadronic quark-connected contributions to the electron, the muon, and the tau anomalous magnetic moments obtained with four dynamical quarks. Performing the continuum limit and an analysis of systematic effects, full agreement with phenomenological results is found. To estimate the impact of omitting the quark-disconnected contributions to the hadronic vacuum polarisation we investigate them on one of the four-flavour ensembles. Additionally, the light quark contributions on the four-flavour sea are compared to the values obtained for $N_f=2$ physically light quarks. In the latter case different methods to fit the hadronic vacuum polarisation function are tested.
Anomalous Increase of Apparent Mass in a Silo due to Percolation
Institute of Scientific and Technical Information of China (English)
Ram Chand; Abdul Qadir; SHI Qing-Fan; ZHENG Ning; SUN Gang
2011-01-01
The apparent mass at the bottom of a granular pile confined in a vertical tube decreases for denser granular packing. We report that the denser granular packing comprising two different diameters of granules augments the apparent mass instead. This anomalous behavior occurs when small granules are stacked on the large ones. In the case of anomalous increase, a percolation effect is found and correlated with the augment of apparent mass at the bottom of the granular column. Finally, the results are qualitatively explained by using the Janssen model.%@@ The apparent mass at the bottom of a granular pile confined in a vertical tube decreases for denser granular packing.We report that the denser granular packing comprising two different diameters of granules augments the apparent mass instead.This anomalous behavior occurs when small granules are stacked on the large ones.In the case of anomalous increase,a percolation effect is found and correlated with the augment of apparent mass at the bottom of the granular column.Finally,the results are qualitatively explained by using the Janssen model.
Neutrino masses, anomalous U(1) gauge symmetry and doublet-triplet splitting
International Nuclear Information System (INIS)
We propose an attractive scenario of grand unified theories in which doublet-triplet splitting is naturally realized in SO(10) unification using the Dimopoulos-Wilczek mechanism. The anomalous U(1)A gauge symmetry plays an essential role in the double-triplet splitting mechanism. It is interesting that the anomalous U(1)A charges determine the unification scale and mass spectrum of additional particles, as well as the order of the Yukawa couplings of quarks and leptons. For the neutrino sector, bi-maximal mixing angles are naturally obtained, and proton decay via dimension 5 operators is suppressed. It is suggestive that the anomalous U(1)A gauge symmetry motivated by superstring theory effectively solves the two biggest problems in grand unified theories, the fermion mass hierarchy problem and doublet-triplet splitting problem. (author)
Dependence of (anomalous) fading of infra-red stimulated luminescence on trap occupancy in feldspars
DEFF Research Database (Denmark)
Morthekai, P.; Jain, Mayank; Gach, Grzegorz;
2013-01-01
Dose dependency of anomalous fading of infra-red stimulated luminescence (IRSL) from feldspars has been investigated using radiations of different ionisation qualities. The rate of fading of the IRSL signal after proton irradiation (9.4–30%/decade) is on an average almost twice compared...... to that after 90Sr/90Y beta particle irradiation (3.5–15%/decade) for all the measured feldspar mineral specimens. Similarly, the fading rates after x-rays of 50 kV and 10 kV fall in between those of beta particle and proton irradiations. Our results suggest that rate of anomalous fading in feldspars depends...... on the number density of the trapped charge carriers. These results support the hypothesis that anomalous fading occurs across randomly distributed donor-acceptor distances as opposed to pairs with a fixed distance....
Mass anomalous dimension of SU(2) with N_{f}=8 using the spectral density method
DEFF Research Database (Denmark)
Suorsa, Joni M.; Leino, Viljami; Rantaharju, Jarno;
2015-01-01
SU(2) with Nf=8 is believed to have an infrared conformal fixed point. We use the spectral density method to evaluate the coupling constant dependence of the mass anomalous dimension for massless HEX smeared, clover improved Wilson fermions with Schr\\"odinger functional boundary conditions....
Frequency dependence of anomalous transport in field theory and holography⋆,⋆⋆
Directory of Open Access Journals (Sweden)
Megías Eugenio
2014-01-01
Full Text Available We study the frequency dependence of anomalous transport coefficients for a relativistic gas of free chiral fermions and for a strongly coupled conformal field theory with holographic dual. We perform the computation by using the Kubo formulae for- malism, and compare with a hydrodynamic calculation of two point functions. Some implications for heavy ion physics are discussed.
Pauli equation with position-dependent mass
International Nuclear Information System (INIS)
The motion of electron with position-dependent mass is studied. The number of zero modes for an electron with position dependent mass in magnetic field is found as well. This result is the generation of Aharonov-Casher theorem obtained for constant mass for the case of position-dependent mass
Anomalous Temperature Dependence of Magnetic Moment in Monodisperse Antiferromagnetic Nanoparticles
Gillaspie, Dane; Gu, B.; Wang, W.; Shen, J.
2005-03-01
1 Condensed Matter Sciences Division, Oak Ridge National Laboratory*, TN 37831 2 Department of Physics and Astronomy, The University of Tennessee, TN 37996 3 Environmental Sciences Division, Oak Ridge National Laboratory*, TN 37831 Recent experiments [1] and theory [2] from AFM nanoparticles showed that they exhibit sizable net magnetization, which increases with increasing temperature. In order to further understand such peculiar temperature dependence, we have measured the magnetic properties of monodisperse hematite (α-Fe2O3) nanoparticles, grown using a microemulsion precipitation technique, which minimizes the impact of the particle moment distribution on the measured properties of the samples. Our measured results indicate that the net magnetization of these nanoparticles, when small, indeed increases linearly with increasing temperature. This is in sharp contrast to the bulk-like behavior of α-Fe2O3, which was observed in particles with size larger than 120 nm. [1] M. Seehra et al, Phys. Rev. B 61, 3513 (2000) [2] S. Mørup, C. Frandsen, Phys. Rev. Lett. 92, 217201 (2004) *Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725
Capilla, J. E.; Sanchez Fuster, I.; Sanchez Barrero, L.
2012-12-01
The limitations of the classical Advection-Dispersion Equation (ADE) approach to model mass transport remain a subject of research. The term anomalous transport is usually applied when the ADE fails to reproduce real field or lab experiments tracer tests data. Some authors address this limitation using high-resolution heterogeneous hydraulic conductivity (K) fields. Besides, the non-Fickian behavior of transport is another issue addressed. However, the effects of the spatial variability of dispersivity, and the influence of the model support scale on this property, have been rarely studied. The lack of experimental knowledge on the dispersivity behavior leads to model this basic parameter as an averaged calibrated parameter highly dependent on the model discretization size. In order to study the local behavior of the dispersivity a porous medium tank was designed and built at the Technical University of Valencia (Spain). This paper presents new results and conclusions obtained from the experiments conducted in this lab prototype. The steady flow through the porous medium tank lab is quasi-2D, and the K field imitates the patterns of spatial variability found in a real and highly heterogeneous formation (MADE2 site). The tracer tests are run using a conservative dye tracer and the tank is monitored by a grid of pressure transducers and taking digital images that are processed to map the evolution of solute concentrations in the tank. The set of exhaustive head and concentration data is used to compute detail local information of the effective dispersivity field at different time steps, and at different support scales. The analysis of results shows that the dispersivity field displays patterns of spatial variability related with the physical nature of the local material and also with the local evolution of concentrations at every grid block. We have found that the anomalous transport behavior observed in the lab tank can be accurately modeled using the classical ADE
The origin of compact galaxies with anomalously high black hole masses.
Barber, C.; Schaye, J.; Bower, R. G.; Crain, R. A.; Schaller, M.; Theuns, T.
2016-01-01
Observations of local galaxies harbouring supermassive black holes (BH) of anomalously high mass, MBH, relative to their stellar mass, M*, appear to be at odds with simple models of the co-evolution between galaxies and their central BHs. We study the origin of such outliers in a Λ cold dark matter context using the EAGLE cosmological, hydrodynamical simulation. We find 15 ‘MBH(M*)-outlier' galaxies, defined as having MBH more than 1.5 dex above the median MBH(M*) relation in the simulation, ...
The origin of compact galaxies with anomalously high black hole masses.
Barber, C; Schaye, J.; Bower, R. G.; Crain, R.A.; Schaller, M.; Theuns, T.
2016-01-01
Observations of local galaxies harbouring supermassive black holes (BHs) of anomalously high mass, M_BH, relative to their stellar mass, M_star, appear to be at odds with simple models of the co-evolution between galaxies and their central BHs. We study the origin of such outliers in a Lambda cold dark matter context using the EAGLE cosmological, hydrodynamical simulation. We find 15 'M_BH(M_star)-outlier' galaxies, defined as having M_BH more than 1.5 dex above the median M_BH(M_star) relati...
Constraint on the QED vertex from the mass anomalous dimension γm = 1
International Nuclear Information System (INIS)
We discuss the structure of the non-perturbative fermion-boson vertex in quenched QED. We show that it is possible to construct a vertex which not only ensures that the fermion propagator is multiplicatively renormalizable, obeys the appropriate Ward-Takahashi identity, reproduces perturbation theory for weak couplings and guarantees that the critical coupling at which the mass is dynamically generated is gauge independent but also makes sure that the value for the anomalous dimension for the mass function is strictly 1, as Holdom and Mahanta have proposed. (author). 8 refs
Anomalous Fano resonance of massive Dirac particle through a time-dependent barrier
Zhang, Cunxi; Liu, Jie; Fu, Libin
2015-06-01
As is well known Fano resonance arises from the interference between a localized state and a continuum state. Using the standard Floquet theory and the scattering matrix method, we study theoretically the massive Dirac particle transmission over a quantum barrier with an oscillating field. It is found that the massive relativistic particles can generate not only normal Fano resonance in the transmission due to the interference between a localized state (bound state) and the continuum state, but also anomalous Fano resonance due to the interference between a delocalized state (extended state) and the continuum state. The dependence of line shapes on driving parameters for these two kinds of Fano resonances is quite different. For normal Fano resonance the asymmetry parameter is approximately proportional to a power law of the amplitude of the oscillating field, while for the anomalous Fano resonance the asymmetry parameters change slightly with different oscillation amplitudes. In practice, the anomalous Fano resonance can be identified by observing asymmetry parameters in experiment.
Higgs mass and muon anomalous magnetic moment in the U(1) extended MSSM
Endo, Motoi; Iwamoto, Sho; Nakayama, Kazunori; Yokozaki, Norimi
2011-01-01
We study phenomenological aspects of the MSSM with extra U(1) gauge symmetry. We find that the lightest Higgs boson mass can be increased up to 125GeV without introducing a large SUSY scale or large A-terms, in the frameworks of the CMSSM and gauge mediated SUSY breaking (GMSB) models. This scenario can simultaneously explain the discrepancy of the muon anomalous magnetic moment (muon g-2) at the 1 sigma / 2 sigma level for U(1)-extended CMSSM / GMSB models. In the CMSSM case, the dark matter abundance can also be explained.
Anomalous coupling, top-mass and parton-shower effects in W + W - production
Bellm, J.; Gieseke, S.; Greiner, N.; Heinrich, G.; Plätzer, S.; Reuschle, C.; von Soden-Fraunhofen, J. F.
2016-05-01
We calculate the process ppto {W}+{W}-to {e}+{ν}_e{μ}-{overline{ν}}_{μ } at NLO QCD, including also effective field theory (EFT) operators mediating the ggW + W - interaction, which first occur at dimension eight. We further combine the NLO and EFT matrix elements produced by G oS am with the H erwig7/M atchbox framework, which offers the possibility to study the impact of a parton shower. We assess the effects of the anomalous couplings by comparing them to top-mass effects as well as uncertainties related to variations of the renormalisation, factorisation and hard shower scales.
Energy Technology Data Exchange (ETDEWEB)
Migliori, A.; Maxton, P.M.; Clogston, A.M.; Zirngiebl, E.; Lowe, M.
1988-12-15
We measured the temperature dependence of the intensity of the two lowest Raman modes in single crystals of l-alanine. The sum of the intensities obeys Maxwell-Boltzman statistics accurately from 20 to 340 K but the intensities of the individual lines are anomalous. This behavior is explained by assuming that both lines share the same degrees of freedom but that a mode instability is triggered abruptly at an occupation of seven quanta. This instability, which has an activation energy of 500 K, is observed at temperatures as low as 20 K, possibly indicating the existence of dynamic localization of vibrational energy.
Gao, Xing; Shi, Zhijun; Lau, Andrew; Liu, Changqin; Yang, Guang; Silberschmidt, Vadim V
2016-05-01
This study is focused on anomalous strain-rate-dependent behaviour of bacterial cellulose (BC) hydrogel that can be strain-rate insensitive, hardening, softening, or strain-rate insensitive in various ranges of strain rate. BC hydrogel consists of randomly distributed nanofibres and a large content of free water; thanks to its ideal biocompatibility, it is suitable for biomedical applications. Motivated by its potential applications in complex loading conditions of body environment, its time-dependent behaviour was studied by means of in-aqua uniaxial tension tests at constant temperature of 37 °C at various strain rates ranging from 0.000 1s(-1) to 0.3s(-1). Experimental results reflect anomalous strain-rate-dependent behaviour that was not documented before. Micro-morphological observations allowed identification of deformation mechanisms at low and high strain rates in relation to microstructural changes. Unlike strain-rate softening behaviours in other materials, reorientation of nanofibres and kinematics of free-water flow dominate the softening behaviour of BC hydrogel at high strain rates. PMID:26952406
Institute of Scientific and Technical Information of China (English)
Quanli; Dong; Dawei; Yuan; Shoujun; Wang; Xun; Liu; Yutong; Li; Xiaoxuan; Lin; Huigang; Wei; Jiayong; Zhong; Shaoen; Jiang; Yongkun; Ding; Bobin; Jiang; Kai; Du; Yongjian; Tang; Mingyang; Yu; Xiantu; He; Neng; Hua; Zhanfeng; Qiao; Kuixi; Huang; Ming; Chen; Jianqiang; Zhu; Gang; Zhao; Zhengming; Sheng; Jie; Zhang
2013-01-01
The driving mechanism of solar flares and coronal mass ejections is a topic of ongoing debate, apart from the consensus that magnetic reconnection plays a key role during the impulsive process. While present solar research mostly depends on observations and theoretical models, laboratory experiments based on high-energy density facilities provide the third method for quantitatively comparing astrophysical observations and models with data achieved in experimental settings.In this article, we show laboratory modeling of solar flares and coronal mass ejections by constructing the magnetic reconnection system with two mutually approaching laser-produced plasmas circumfused of self-generated megagauss magnetic fields. Due to the Euler similarity between the laboratory and solar plasma systems, the present experiments demonstrate the morphological reproduction of flares and coronal mass ejections in solar observations in a scaled sense,and confirm the theory and model predictions about the current-sheet-born anomalous plasmoid as the initial stage of coronal mass ejections, and the behavior of moving-away plasmoid stretching the primary reconnected field lines into a secondary current sheet conjoined with two bright ridges identified as solar flares.
Anomalous dependence of population growth on the birth rate in the plant-herbivore system
Energy Technology Data Exchange (ETDEWEB)
Cui, Xue M. [Chungbuk National University, Cheongju (Korea, Republic of); Yanbian University, Yanji (China); Han, Seung K.; Chung, Jean S. [Chungbuk National University, Cheongju (Korea, Republic of)
2010-12-15
We performed a simulation of the two-species plant-herbivore system by using the agent-based NetLogo program and constructed a dynamic model of populations consistent with the simulation results. The dynamic model is a three-dimensional system including the mean energy of the herbivore in addition to two variables denoting the populations of plants and herbivores. A steady-state analysis of the dynamic model shows that the dependence of the herbivore population on the birth and the death rates observed from the agent model is consistent with the prediction of the dynamic model. Especially, the anomalous dependence of the herbivore population on the birth rate, where the population decreases with the birth rate for small death rate, is consistently explained by a phase plane analysis of the dynamic model.
The temperature dependent anomalous Hall effect in La-Ca-Mn-O films
International Nuclear Information System (INIS)
The colossal magnetoresistance of La1-xCaxMnO3 has been reported in many experiments. The authors present their study of the anomalous Hall effect in epitaxial La0.67Ca0.33MnO3 thin films. They have measured the temperature dependence of resistivity, magnetization and AHE coefficients between 300K and 5K for the samples grown on different substrates. From these studies, the relation between the resistivity and AHE coefficient as well as the temperature dependence of AHE coefficient are explored. The results show that the direction of AHE is reversed below approximately 100K. This sign reversal is discussed in term of the change of band structure and the co-existence of hole-like and electron-like conduction
Gopalswamy, Nat; Akiyama, Sachiko; Yashiro, Seiji; Xie, Hong; Makela, Pertti; Michalek, Grzegorz
2014-01-01
The familiar correlation between the speed and angular width of coronal mass ejections (CMEs) is also found in solar cycle 24, but the regression line has a larger slope: for a given CME speed, cycle 24 CMEs are significantly wider than those in cycle 23. The slope change indicates a significant change in the physical state of the heliosphere, due to the weak solar activity. The total pressure in the heliosphere (magnetic + plasma) is reduced by approximately 40%, which leads to the anomalous expansion of CMEs explaining the increased slope. The excess CME expansion contributes to the diminished effectiveness of CMEs in producing magnetic storms during cycle 24, both because the magnetic content of the CMEs is diluted and also because of the weaker ambient fields. The reduced magnetic field in the heliosphere may contribute to the lack of solar energetic particles accelerated to very high energies during this cycle.
Gopalswamy, Nat; Yashiro, Seiji; Xie, Hong; Mäkelä, Pertti; Michalek, Grzegorz
2014-01-01
The familiar correlation between the speed and angular width of coronal mass ejections (CMEs) is also found in solar cycle 24, but the regression line has a larger slope: for a given CME speed, cycle 24 CMEs are significantly wider than those in cycle 23. The slope change indicates a significant change in the physical state of the heliosphere, due to the weak solar activity. The total pressure in the heliosphere (magnetic + plasma) is reduced by ~40%, which leads to the anomalous expansion of CMEs explaining the increased slope. The excess CME expansion contributes to the diminished effectiveness of CMEs in producing magnetic storms during cycle 24, both because the magnetic content of the CMEs is diluted and also because of the weaker ambient fields. The reduced magnetic field in the heliosphere may contribute to the lack of solar energetic particles accelerated to very high energies during this cycle.
International Nuclear Information System (INIS)
The temperature dependence of the magneto-conductance (MC) in organic electron donor-acceptor hybrid and layer heterojunction diodes was studied. The MC value increased with temperature in layer heterojunction and in 10 wt. % hybrid devices. An anomalous decrease of the MC with temperature was observed in 25 wt. %–50 wt. % hybrid devices. Further increasing donor concentration to 75 wt. %, the MC again increased with temperature. The endothermic exciplex-exciton energy transfer and the change in electroplex/exciton ratio caused by change in charge transport with temperature may account for these phenomena. Comparative studies of the temperature evolutions of the IV curves and the electroluminescence and photoluminescence spectra back our hypothesis
Water ingress in Y-type zeolite: anomalous moisture-dependent transport diffusivity.
de Azevedo, Eduardo N; da Silva, D Vitoreti; de Souza, R E; Engelsberg, M
2006-10-01
Nuclear magnetic resonance imaging measurements of liquid water ingress in a large number of nonactivated Y-type (Na) zeolite samples prepared under different conditions are reported on. Using an experimental arrangement that permits the application of Boltzmann's transformation of the 1D (one-dimensional) diffusion equation, the spatiotemporal scaling variables required for a collapse of the measured profiles into universal curves revealed subdiffusive behavior in all cases. It is shown that the one-dimensional fractal time diffusion equation constitutes a powerful tool to analyze the data and provides a connection between the moisture dependence of the effective transport diffusivities and the shapes of the universal curves. Thus, even for anomalous diffusion, the relationship between the universal curves and structural characteristics of the system; such as porosity, tortuosity of the pore space and, in some cases, the interplay between mesopores and nanopores can be addressed. PMID:17155023
Anomalous roughness of turbulent interfaces with system size dependent local roughness exponent
Energy Technology Data Exchange (ETDEWEB)
Balankin, Alexander S. [SEPI, ESIME, Instituto Politecnico Nacional, Mexico D.F. 07738 (Mexico) and Grupo ' Mecanica Fractal' (Mexico) and Instituto Mexicano de Petroleo, Mexico D.F. 07730 (Mexico)]. E-mail: abalankin@ipn.mx; Matamoros, Daniel Morales [Grupo ' Mecanica Fractal' (Mexico); Instituto Mexicano de Petroleo, Mexico D.F. 07730 (Mexico)
2005-05-16
In a system far from equilibrium the system size can play the role of control parameter that governs the spatiotemporal dynamics of the system. Accordingly, the kinetic roughness of interfaces in systems far from equilibrium may depend on the system size. To get an insight into this problem, we performed a detailed study of rough interfaces formed in paper combustion experiments. Using paper sheets of different width {lambda}, we found that the turbulent flame fronts display anomalous multi-scaling characterized by non-universal global roughness exponent {alpha} and by the system size dependent spectrum of local roughness exponents, {zeta}{sub q}({lambda})={zeta}{sub 1}(1)q{sup -{omega}}{lambda}{sup {phi}}<{alpha}, whereas the burning fronts possess conventional multi-affine scaling characterized by the universal spectrum of roughness exponent {zeta}{sub q}=0.93q{sup -0.15}. The structure factor of turbulent flame fronts also exhibits unconventional scaling dependence on {lambda}. These results are expected to apply to a broad range of far from equilibrium systems when the kinetic energy fluctuations exceed a certain critical value.
The origin of compact galaxies with anomalously high black hole masses
Barber, Christopher; Bower, Richard G; Crain, Robert A; Schaller, Matthieu; Theuns, Tom
2016-01-01
Observations of local galaxies harbouring supermassive black holes (BH) of anomalously high mass, M_BH, relative to their stellar mass, M_star, appear to be at odds with simple models of the co-evolution between galaxies and their central BHs. We study the origin of such outliers in a LCDM context using the EAGLE cosmological, hydrodynamical simulation. We find 15 "M_BH(M_star)-outlier" galaxies, defined as having M_BH more than 1.5 dex above the median M_BH(M_star) relation in the simulation, M_{BH,med}. All M_BH(M_star)-outliers are satellite galaxies, typically with M_star ~ 10^10 M_sun and M_BH ~ 10^8 M_sun. They have all become outliers primarily due to tidal stripping of their outer stellar component acting over several Gyr, with a secondary effect of rapid BH growth at high-z causing some to lie approximately 1 dex above the z=0 relation prior to stripping. The same mechanisms also cause the M_BH(M_star)-outlier satellites to be amongst the most compact galaxies in the simulation, making them ideal can...
The four-loop DRED gauge β-function and fermion mass anomalous dimension for general gauge groups
International Nuclear Information System (INIS)
We present four-loop results for the gauge β-function and the fermion mass anomalous dimension for a gauge theory with a general gauge group and a multiplet of fermions transforming according to an arbitrary representation, calculated using the dimensional reduction scheme. In the special case of a supersymmetric theory we confirm previous calculations of both the gauge β-function and the gaugino mass β-function
Shear viscosity of liquid mixtures: Mass dependence
International Nuclear Information System (INIS)
Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model. (author)
Anomalous temperature dependent photoluminescence properties of CdSxSe1-x quantum dots
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
CdSxSe1-x quantum dots were fabricated by a simple spin-coating heat volatilization method on InP wafer.Temperature dependent photoluminescence of CdSxSe1-x quantum dots was carried out in a range of 10-300 K.The integrated photoluminescence intensity revealed an anomalous behavior with increasing temperature in the range of 180-200 K.The band gap energy showed a redshift of 61.34 meV when the temperature increased from 10 to 300 K.The component ratio of S to Se in the CdSxSe1-x quantum dots was valued by both the X-ray diffraction data and photoluminescence peak energy at room temperature according to Vegard Law.Moreover,the parameters of the Varshni relation for CdS0.9Se0.1 materials were also obtained using photoluminescence peak energy as a function of temperature and the best-fit curve:α=(3.5 ± 0.1)10-4 eV/K,and β=210 ± 10 K (close to the Debye temperature θD of the material).
Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe2.
Das, Pranab Kumar; Di Sante, D; Vobornik, I; Fujii, J; Okuda, T; Bruyer, E; Gyenis, A; Feldman, B E; Tao, J; Ciancio, R; Rossi, G; Ali, M N; Picozzi, S; Yadzani, A; Panaccione, G; Cava, R J
2016-01-01
The behaviour of electrons and holes in a crystal lattice is a fundamental quantum phenomenon, accounting for a rich variety of material properties. Boosted by the remarkable electronic and physical properties of two-dimensional materials such as graphene and topological insulators, transition metal dichalcogenides have recently received renewed attention. In this context, the anomalous bulk properties of semimetallic WTe2 have attracted considerable interest. Here we report angle- and spin-resolved photoemission spectroscopy of WTe2 single crystals, through which we disentangle the role of W and Te atoms in the formation of the band structure and identify the interplay of charge, spin and orbital degrees of freedom. Supported by first-principles calculations and high-resolution surface topography, we reveal the existence of a layer-dependent behaviour. The balance of electron and hole states is found only when considering at least three Te-W-Te layers, showing that the behaviour of WTe2 is not strictly two dimensional. PMID:26924386
Energy Technology Data Exchange (ETDEWEB)
Kim, Sang-Il; Seo, Min-Su; Park, Seung-Young, E-mail: parksy@kbsi.re.kr [Division of Materials Science, Korea Basic Science Institute, Daejeon 305-806 (Korea, Republic of); Kim, Dong-Jun; Park, Byong-Guk [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)
2015-05-07
The dependence of the measured DC voltage on the non-magnetic material (NM) in NM/CoFeB and CoFeB/NM bilayers is studied under ferromagnetic resonance conditions in a TE{sub 011} resonant cavity. The directional change of the inverse spin Hall effect (ISHE) voltage V{sub ISHE} for the stacking order of the bilayer can separate the pure V{sub ISHE} and the anomalous Hall effect (AHE) voltage V{sub AHE} utilizing the method of addition and subtraction. The Ta and Ti NMs show a broad deviation of the spin Hall angle θ{sub ISH}, which originates from the AHE in accordance with the high resistivity of NMs. However, the Pt and Pd NMs show that the kinds of NMs with low resistivity are consistent with the previously reported θ{sub ISH} values. Therefore, the characteristics that NM should simultaneously satisfy to obtain a reasonable V{sub ISHE} value in bilayer systems are large θ{sub ISH} and low resistivity.
Anomalous length dependence of the conductance of graphene nanoribbons with zigzag edges
Bilić, Ante
2013-01-01
Charge transport through two sets of symmetric graphene nanoribbons with zigzag shaped edges in a two-terminal device has been investigated, using density functional theory combined with the non-equilibrium Green\\'s function method. The conductance has been explored as a function of nanoribbon length, bias voltage, and the strength of terminal coupling. The set of narrower nanoribbons, in the form of thiolated linear acenes, shows an anomalous length dependence of the conductance, which at first exhibits a drop and a minimum, followed by an evident rise. The length trend is shown to arise because of a gradual transformation in the transport mechanism, which changes from being governed by a continuum of out-of-plane π type and in-plane state channels to being fully controlled by a single, increasingly more resonant, occupied π state channel. For the set of nanoribbons with a wider profile, a steady increase is observed across the whole length range, owing to the absence of the former transport mechanism. The predicted trends are confirmed by the inclusion of self-interaction correction in the calculations. For both sets of nanoribbons the replacement of the strongly coupling thiol groups by weakly bonding phenathroline has been found to cause a strong attenuation with the length and a generally low conductance. © 2013 American Institute of Physics.
Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe2
Das, Pranab Kumar; di Sante, D.; Vobornik, I.; Fujii, J.; Okuda, T.; Bruyer, E.; Gyenis, A.; Feldman, B. E.; Tao, J.; Ciancio, R.; Rossi, G.; Ali, M. N.; Picozzi, S.; Yadzani, A.; Panaccione, G.; Cava, R. J.
2016-02-01
The behaviour of electrons and holes in a crystal lattice is a fundamental quantum phenomenon, accounting for a rich variety of material properties. Boosted by the remarkable electronic and physical properties of two-dimensional materials such as graphene and topological insulators, transition metal dichalcogenides have recently received renewed attention. In this context, the anomalous bulk properties of semimetallic WTe2 have attracted considerable interest. Here we report angle- and spin-resolved photoemission spectroscopy of WTe2 single crystals, through which we disentangle the role of W and Te atoms in the formation of the band structure and identify the interplay of charge, spin and orbital degrees of freedom. Supported by first-principles calculations and high-resolution surface topography, we reveal the existence of a layer-dependent behaviour. The balance of electron and hole states is found only when considering at least three Te-W-Te layers, showing that the behaviour of WTe2 is not strictly two dimensional.
The origin of compact galaxies with anomalously high black hole masses
Barber, Christopher; Schaye, Joop; Bower, Richard G.; Crain, Robert A.; Schaller, Matthieu; Theuns, Tom
2016-07-01
Observations of local galaxies harbouring supermassive black holes (BH) of anomalously high mass, MBH, relative to their stellar mass, M*, appear to be at odds with simple models of the co-evolution between galaxies and their central BHs. We study the origin of such outliers in a Λ cold dark matter context using the EAGLE cosmological, hydrodynamical simulation. We find 15 `MBH(M*)-outlier' galaxies, defined as having MBH more than 1.5 dex above the median MBH(M*) relation in the simulation, MBH, med(M*). All MBH(M*)-outliers are satellite galaxies, typically with M* ˜ 1010 M⊙ and MBH ˜ 108 M⊙. They have all become outliers due to a combination of tidal stripping of their outer stellar component acting over several Gyr and early formation times leading to rapid BH growth at high redshift, with the former mechanism being most important for 67 per cent of these outliers. The same mechanisms also cause the MBH(M*)-outlier satellites to be amongst the most compact galaxies in the simulation, making them ideal candidates for ultracompact dwarf galaxy progenitors. The 10 most extreme central galaxies found at z = 0 (with log10(MBH/MBH, med(M*)) ∈ [1.2, 1.5]) grow rapidly in MBH to lie well above the present-day MBH - M* relation at early times (z ≳ 2), and either continue to evolve parallel to the z = 0 relation or remain unchanged until the present day, making them `relics' of the high-redshift universe. This high-z formation mechanism may help to explain the origin of observed MBH(M*)-outliers with extended dark matter haloes and undisturbed morphologies.
Thickness Dependence of the Quantum Anomalous Hall Effect in Magnetic Topological Insulator Films.
Feng, Xiao; Feng, Yang; Wang, Jing; Ou, Yunbo; Hao, Zhenqi; Liu, Chang; Zhang, Zuocheng; Zhang, Liguo; Lin, Chaojing; Liao, Jian; Li, Yongqing; Wang, Li-Li; Ji, Shuai-Hua; Chen, Xi; Ma, Xucun; Zhang, Shou-Cheng; Wang, Yayu; He, Ke; Xue, Qi-Kun
2016-08-01
The evolution of the quantum anomalous Hall effect with the thickness of Cr-doped (Bi,Sb)2 Te3 magnetic topological insulator films is studied, revealing how the effect is caused by the interplay of the surface states, band-bending, and ferromagnetic exchange energy. Homogeneity in ferromagnetism is found to be the key to high-temperature quantum anomalous Hall material. PMID:27166762
Hakala, J; Gorelov, D; Eronen, T; Jokinen, A; Kankainen, A; Kolhinen, V S; Kortelainen, M; Moore, I D; Penttilä, H; Rinta-Antila, S; Rissanen, J; Saastamoinen, A; Sonnenschein, V; Äystö, J
2012-01-01
Atomic masses of the neutron-rich isotopes $^{121-128}$Cd, $^{129,131}$In, $^{130-135}$Sn, $^{131-136}$Sb, and $^{132-140}$Te have been measured with high precision (10 ppb) using the Penning trap mass spectrometer JYFLTRAP. Among these, the masses of four r-process nuclei $^{135}$Sn, $^{136}$Sb, and $^{139,140}$Te were measured for the first time. The data reveals a strong $N$=82 shell gap at $Z$=50 but indicates the importance of correlations for $Z>50$. An empirical neutron pairing gap expressed as the odd-even staggering of isotopic masses shows a strong quenching across $N$=82 for Sn, with the $Z$-dependence that is unexplainable by the current theoretical models.
Quark mass dependence of H-dibaryon
Yamaguchi, Yasuhiro
2016-01-01
The H-dibaryon is the exotic multiquark state with baryon number 2 and strangeness $-2$. The existence of the deeply bound H-dibaryon is excluded by the observation of the double hypernuclei. However the recent Lattice QCD simulations have found the bound state below the $\\Lambda\\Lambda$ threshold with large quark masses by HALQCD and NPLQCD collaborations. In this talk, the quark mass dependence of the H-dibaryon mass is discussed using the pionless effective field theory (EFT) where a bare H-dibaryon field is coupled with two-baryon states. We determine the parameters in this theory by fitting the recent Lattice QCD results in the SU(3) limit. As a result, we obtain the attractive scattering length at the physical point where the H-dibaryon is unbound.
Charge-dependent correlations from event-by-event anomalous hydrodynamics
Hirono, Yuji; Kharzeev, Dmitri E
2016-01-01
We report on our recent attempt of quantitative modeling of the Chiral Magnetic Effect (CME) in heavy-ion collisions. We perform 3+1 dimensional anomalous hydrodynamic simulations on an event-by-event basis, with constitutive equations that contain the anomaly-induced effects. We also develop a model of the initial condition for the axial charge density that captures the statistical nature of random chirality imbalances created by the color flux tubes. Basing on the event-by-event hydrodynamic simulations for hundreds of thousands of collisions, we calculate the correlation functions that are measured in experiments, and discuss how the anomalous transport affects these observables.
Jiang, Shao-Jian; Zhou, Fei
2015-07-01
The stability of Bose gases near resonance has been a puzzling problem in recent years. In this article, we demonstrate that in addition to generating thermal pressure, thermal atoms enhance the repulsiveness of the scale-dependent interactions between condensed atoms due to a renormalization effect and further stabilize the Bose gases. Consequently, we find that, as a precursor of instability, the compressibility develops an anomalous structure as a function of scattering length and is drastically reduced compared with the mean-field value. Furthermore, the density profile of a Bose gas in a harmonic trap is found to develop a flat top near the center. This is due to the anomalous behavior of compressibility and can be a potential smoking gun for probing such an effect.
Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe2
Das, P. K.; Di Sante, D.; Vobornik, I.; Fujii, J.; Okuda, T; Bruyer, E.; Gyenis, A.; Feldman, B; Tao, J.; Ciancio, R.; Rossi, G.; Ali, M.(National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia); Picozzi, S.; Yazdani, A.; G. Panaccione
2016-01-01
The behaviour of electrons and holes in a crystal lattice is a fundamental quantum phenomenon, accounting for a rich variety of material properties. Boosted by the remarkable electronic and physical properties of two-dimensional materials such as graphene and topological insulators, transition metal dichalcogenides have recently received renewed attention. In this context, the anomalous bulk properties of semimetallic WTe2 have attracted considerable interest. Here we report angle- and spin-r...
Anomalous temperature dependence of the current in a metal-oxide-polymer resistive switching diode
Energy Technology Data Exchange (ETDEWEB)
Gomes, Henrique L; Rocha, Paulo R F; Kiazadeh, Asal [Center of Electronics Optoelectronics and Telecommunications (CEOT) Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); De Leeuw, Dago M [Philips Research Laboratories, Professor Holstlaan 4, 5656 AA Eindhoven (Netherlands); Meskers, Stefan C J, E-mail: hgomes@ualg.pt [Molecular Materials and Nanosystems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)
2011-01-19
Metal-oxide polymer diodes exhibit non-volatile resistive switching. The current-voltage characteristics have been studied as a function of temperature. The low-conductance state follows a thermally activated behaviour. The high-conductance state shows a multistep-like behaviour and below 300 K an enormous positive temperature coefficient. This anomalous behaviour contradicts the widely held view that switching is due to filaments that are formed reversibly by the diffusion of metal atoms. Instead, these findings together with small-signal impedance measurements indicate that creation and annihilation of filaments is controlled by filling of shallow traps localized in the oxide or at the oxide/polymer interface.
O'Brien, T. P.
2015-01-01
in the magnetospheric magnetic field produce drift shell splitting, which causes the radial (drift shell) invariant to sometimes depend on pitch angle. Where drift shell splitting is significant, pitch angle scattering leads to diffusion in all three invariants of the particle's motion, including cross diffusion. We examine the magnitude of drift shell splitting-related anomalous diffusion for outer zone electrons compared to conventional diffusion in the absence of drift shell splitting. We assume that the primary local scattering process is wave-particle interactions with chorus. We find that anomalous radial diffusion can exceed that of conventional drift-resonant radial diffusion for particles with energies near 0.1 MeV at all radial distances outside the plasmasphere during quiet to moderate geomagnetic activity, and it is significant at 0.5 MeV. Cross diffusion involving the radial invariant can exceed the geometric mean of the corresponding pure diffusion coefficients at 0.1 MeV, and that such cross diffusion is significant even at 0.5-1 MeV. At 1 MeV, cross diffusion is often significant. The highest radial distances and magnetic activity levels in our study do not always exhibit as much significant anomalous diffusion as moderate radial distances and activity levels. This can be explained by (a) stronger dependence of conventional diffusion on magnetic activity and radius, and (b) strongest drift shell splitting at moderate magnetic activity. Simulation codes that neglect the possibility for cross terms will likely systematically underperform, especially for 0.1-0.5 MeV electrons, for much of the outer zone for quiet to moderate levels of magnetic activity.
Blum, Thomas; Hayakawa, Masashi; Izubuchi, Taku; Jin, Luchang; Jung, Chulwoo; Lehner, Christoph
2016-01-01
We report a lattice QCD calculation of the hadronic light-by-light contribution to the muon anomalous magnetic moment at physical pion mass. The calculation includes the connected diagrams and the leading, quark-line-disconnected diagrams. We incorporate algorithmic improvements developed in our previous work. The calculation was performed on the $48^3 \\times 96$ ensemble generated with a physical-pion-mass and a 5.5 fm spatial extent by the RBC and UKQCD collaborations using the chiral, domain wall fermion (DWF) formulation. We find $a_\\mu^{\\text{HLbL}} = 5.35 (1.35) \\times 10^{- 10}$, where the error is statistical only. The finite-volume and finite lattice-spacing errors could be quite large and are the subject of on-going research. The omitted disconnected graphs, while expected to give a correction of order 10\\%, also need to be computed.
Institute of Scientific and Technical Information of China (English)
Juan Yang; Yu Liu; Daqi Zhang; Xiao Wang; Ruoming Li; Yan Li
2015-01-01
Owing to the unique conjugated structure, the chemical-reaction selectivity of single-walled carbon nanotubes （SWNTs） has attracted great attention. By utilizing the radial deformation of SWNTs caused by the strong interactions with the quartz lattice, we achieve an anomalous diameter-dependent reaction selectivity of quartz lattice-oriented SWNTs in treatment with iodine vapor; this is distinctly different from the widely reported and well accepted higher reaction activity in small-diameter tubes compared to large-diameter tubes. The radial deformation of SWNTs on quartz substrate is verified by detailed Raman spectroscopy and mappings in both G-band and radial breathing mode. Due to the strong interaction between SWNTs and the quartz lattice, large-diameter tubes present a larger degree of radial deformation and more delocalized partial electrons are distributed at certain sidewall sites with high local curvature. It is thus easier for the carbon--carbon bonds at these high-curvature sites on large-diameter tubes to break down during reaction. This anomalous reaction activity offers a novel approach for selective removal of small-band~aD large-diameter tubes.
Relaxation and anomalous T- and H-dependence of the μ coefficient in (K,Ba)BiO3 superconductors
International Nuclear Information System (INIS)
Ac shielding and classical DC relaxation experiments have been used to study the flux creep phenomena in the cubic (K,Ba)BiO3 superconductor (Tc ∝ 30 K). The relaxation rate is found to be constant (S ∝ 1.5%) at low temperature and magnetic field and increases sharply as the vortex-glass transition line is approached. This behavior can be attributed to an anomalous decrease of the μ exponent (U(J) = U0(J0/J)μ) close to Tg(H). In this regime, the temperature dependence of the apparent critical current J is then directly related to μ(T) as J(T) = J0/[kT/U0.ln(1/ωτ)] μ(T). A similar analysis can be made on the J(B) data recently published by Abulafia et al. (1996) on YBaCuO single crystals. (orig.)
Anomalous temperature dependence of PAL and 2D-ACAR in Ni-rich Ni-Ti alloy
International Nuclear Information System (INIS)
Ni-rich NiTi alloys have been investigated by means of PAL spectroscopy, electrical resistivity measurement, 2D-ACAR and first principle calculation. An anomaly of positron lifetime has been observed for Ni52Ti48 alloy which does not exhibit the martensitic transformation: positron lifetime increases by about 25% with lowering temperature. Almost the same change in positron lifetime is observed on the subsequent heating run with little hysteresis. The 2D-ACAR for the same alloy also depends on temperature anomalously: the peak height of the 2D-ACAR increases by 20% and the anisotropy decreases by 60% with lowering temperature. Experimental results are discussed with the idea of Fermi surface nesting of B2-NiTi which has been evaluated from the 2D-ACAR spectra by LCW theory. (orig.)
On the anomalous mass defect of strange stars in the Field Correlator Method
Pereira, F. I. M.
2016-09-01
We investigate general aspects of the mass defects of strange stars in the context of the Field Correlator Method, without magnetic field. The main parameters of the model that enter the corresponding nonperturbative equation of state of the quark gluon plasma are the gluon condensate G2 and the large distance static Q Q bar potential V1. We calculate mass defects of stellar configurations in the central density range 11 quark-novae explosions.
Biswas, Anirban; Khan, Sarif
2016-01-01
The observation of neutrino masses, mixing and the existence of dark matter are amongst the most important signatures of physics beyond the Standard Model (SM). In this paper, we propose to extend the SM by a local $L_\\mu - L_\\tau$ gauge symmetry, two additional complex scalars and three right-handed neutrinos. The $L_\\mu - L_\\tau$ gauge symmetry is broken spontaneously when one of the scalars acquires a vacuum expectation value. The $L_\\mu - L_\\tau$ gauge symmetry is known to be anomaly free and can explain the beyond SM measurement of the anomalous muon $({\\rm g-2})$ through additional contribution arising from the extra $Z_{\\mu\\tau}$ mediated diagram. Small neutrino masses are explained naturally through the Type-I seesaw mechanism, while the mixing angles are predicted to be in their observed ranges due to the broken $L_\\mu-L_\\tau$ symmetry. The second complex scalar is shown to be stable and becomes the dark matter candidate in our model. We show that while the $Z_{\\mu\\tau}$ portal is ineffective for the...
Burger, Florian; Hotzel, Grit; Jansen, Karl; Petschlies, Marcus; Renner, Dru B
2013-01-01
We present results for the leading order QCD correction to the anomalous magnetic moment of the muon including the first two generations of quarks as dynamical degrees of freedom. Several light quark masses are examined in order to yield a controlled extrapolation to the physical pion mass. We analyse ensembles for three different lattice spacings and several volumes in order to investigate lattice artefacts and finite-size effects, respectively. We also provide preliminary results for this quantity for two flavours of mass-degenerate quarks at the physical value of the pion mass.
Energy Technology Data Exchange (ETDEWEB)
Burger, Florian; Hotzel, Grit [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Feng, Xu [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Petschlies, Marcus [The Cyprus Institute, Nicosia (Cyprus); Renner, Dru B. [Jefferson Lab, Newport News, VA (United States)
2013-12-15
We present results for the leading order QCD correction to the anomalous magnetic moment of the muon including the first two generations of quarks as dynamical degrees of freedom. Several light quark masses are examined in order to yield a controlled extrapolation to the physical pion mass. We analyse ensembles for three different lattice spacings and several volumes in order to investigate lattice artefacts and finite-size effects, respectively. We also provide preliminary results for this quantity for two flavours of mass-degenerate quarks at the physical value of the pion mass.
Energy Technology Data Exchange (ETDEWEB)
Burger, Florian [Humboldt U. Berlin; Feng, Xu [KEK; Hotzel, Grit [Humboldt U. Berlin; Jansen, Karl [DESY; Petschlies, Marcus [The Cyprus Institute; Renner, Dru B. [JLAB
2013-11-01
We present results for the leading order QCD correction to the anomalous magnetic moment of the muon including the first two generations of quarks as dynamical degrees of freedom. Several light quark masses are examined in order to yield a controlled extrapolation to the physical pion mass. We analyse ensembles for three different lattice spacings and several volumes in order to investigate lattice artefacts and finite-size effects, respectively. We also provide preliminary results for this quantity for two flavours of mass-degenerate quarks at the physical value of the pion mass.
Anomalous excitation-power-dependent photoluminescence of InGaAsN/GaAs T-shaped quantum wire
Energy Technology Data Exchange (ETDEWEB)
Klangtakai, Pawinee; Pimanpang, Samuk [Faculty of Science, Department of Physics, Khon Kaen University, 123 Mittraphap Rd., Muang, Khon Kaen, 40002 (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen, 40002 (Thailand); Integrated Nanotechnology Research Center, Khon Kaen University, Khon Kaen, 40002 (Thailand); Sanorpim, Sakuntam [Faculty of Science, Department of Physics, Chulalongkorn University, Phayathai Rd., Patumwan, Bangkok, 10330 (Thailand); Karlsson, Fredrik; Holtz, Per Olof [Department of Physics, Chemistry, and Biology (IFM), Linkoeping University, 58183, Linkoeping (Sweden); Onabe, Kentaro [Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561 (Japan)
2014-08-15
The selected InGaAsN/GaAs T-shaped quantum wire (T-QWR) fabricated by metal organic vapor phase epitaxy has been investigated by microphotoluminescence (μ-PL) and excitation-power-dependent μ-PL. The optical characteristics of one-dimensional structure were taken at low-temperature (4 K) and room temperature (RT) to clarify the intersection of two familiar quantum wells (QWs) in the [001] and [110] directions, named QW1 and QW2, respectively. For the excitation-power-dependent measurement, the intensity of the excitation source was used in the range of 0.001I{sub 0} to I{sub 0}. The result shows that all of emissions related to QW1 and QWR peaks have a nonsymmetric line shape as evidenced by the tailing on the lower-energy side. All peaks shift to higher-energy side (blueshift) with the increase of the excitation power intensity. The blueshift and the low-energy tailing of PL peaks are attributed to the alloying effect. However, the emission peak related to QWR region shows a larger blueshift rate than that of QW1 on increasing of the excitation power intensity. This is an anomalous characteristic for the low-dimensional structure, affected by the large fluctuation state in the QWR region. This fluctuation state is combined of both edges of QWs (QW1 and QW2). (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Arrese-Igor, Silvia; Alegría, Ángel; Moreno Segurado, Ángel J.; Colmenero de León, Juan
2011-01-01
We address the general question of how the molecular weight dependence of chain dynamics in unentangled polymers is modified by blending. By dielectric spectroscopy we measure the normal mode relaxation of polyisoprene in blends with a slower component of poly(ter-butylstyrene). Unentangled polyisoprene in the blend exhibits strong deviations from Rouse scaling, approaching 'entangled-like' behavior at low temperatures in concomitance with the increase of the dynamic asymmetry in the blend. T...
Anomalous temperature-dependent spin-valley polarization in monolayer WS2
Hanbicki, A. T.; Kioseoglou, G.; Currie, M.; Hellberg, C. Stephen; McCreary, K. M.; Friedman, A. L.; Jonker, B. T.
2016-01-01
Single layers of transition metal dichalcogenides (TMDs) are direct gap semiconductors with nondegenerate valley indices. An intriguing possibility for these materials is the use of their valley index as an alternate state variable. Several limitations to such a utility include strong intervalley scattering, as well as multiparticle interactions leading to multiple emission channels. We prepare single-layer WS2 films such that the photoluminescence is from either the neutral or charged exciton (trion). After excitation with circularly polarized light, the neutral exciton emission has zero polarization. However, the trion emission has a large polarization (28%) at room temperature. The trion emission also has a unique, non-monotonic temperature dependence that is a consequence of the multiparticle nature of the trion. This temperature dependence enables us to determine that intervalley scattering, electron-hole radiative recombination, and Auger processes are the dominant mechanisms at work in this system. Because this dependence involves trion systems, one can use gate voltages to modulate the polarization (or intensity) emitted from TMD structures.
Four-loop β function and mass anomalous dimension in dimensional reduction
International Nuclear Information System (INIS)
Within the framework of QCD we compute renormalization constants for the strong coupling and the quark masses to four-loop order. We apply the D-bar R-bar scheme and put special emphasis on the additional couplings which have to be taken into account. This concerns the ε-scalar-quark Yukawa coupling as well as the vertex containing four ε-scalars. For a supersymmetric Yang Mills theory, we find, in contrast to a previous claim, that the evanescent Yukawa coupling equals the strong coupling constant through three loops as required by supersymmetry
Current mass dependence of the quark condensate and the constituent quark mass
Musakhanov, M.
2001-01-01
We discuss the current mass dependence of the basic quantities of the quark models -- constituent quark mass M and quark condensate i. The framework of the consideration is QCD instanton vacuum model.
Glacier mass balance in high-arctic areas with anomalous gravity
Sharov, A.; Rieser, D.; Nikolskiy, D.
2012-04-01
All known glaciological models describing the evolution of Arctic land- and sea-ice masses in changing climate treat the Earth's gravity as horizontally constant, but it isn't. In the High Arctic, the strength of the gravitational field varies considerably across even short distances under the influence of a density gradient, and the magnitude of free air gravity anomalies attains 100 mGal and more. On long-term base, instantaneous deviations of gravity can have a noticeable effect on the regime and mass budget of glaciological objects. At best, the gravity-induced component of ice mass variations can be determined on topographically smooth, open and steady surfaces, like those of arctic planes, regular ice caps and landfast sea ice. The present research is devoted to studying gravity-driven impacts on glacier mass balance in the outer periphery of four Eurasian shelf seas with a very cold, dry climate and rather episodic character of winter precipitation. As main study objects we had chosen a dozen Russia's northernmost insular ice caps, tens to hundreds of square kilometres in extent, situated in a close vicinity of strong gravity anomalies and surrounded with extensive fields of fast and/or drift ice for most of the year. The supposition about gravitational forcing on glacioclimatic settings in the study region is based on the results of quantitative comparison and joint interpretation of existing glacier change maps and available data on the Arctic gravity field and solid precipitation. The overall mapping of medium-term (from decadal to half-centennial) changes in glacier volumes and quantification of mass balance characteristics in the study region was performed by comparing reference elevation models of study glaciers derived from Russian topographic maps 1:200,000 (CI = 20 or 40 m) representing the glacier state as in the 1950s-1980s with modern elevation data obtained from satellite radar interferometry and lidar altimetry. Free-air gravity anomalies were
Impact parameter dependence of isospin effects on the mass dependence of balance energy
Gautam, Sakshi; Sood, Aman D.
2010-01-01
We study the effect of isospin degree of freedom on the balance energy as well as its mass dependence throughout the mass range 48-270 for two sets of isobaric systems with N/Z = 1 and 1.4 using isospin-dependent quantum molecular dynamics (IQMD) model. Our fndings reveal the dominance of Coulomb repulsion in isospin effects on balance energy as well as its mass dependence throughout the range of the colliding geometry.
Dependence of Quark Effective Mass on Gluon Propagators
Institute of Scientific and Technical Information of China (English)
HE Xiao-Rong; ZHOU Li-Juan; MA Wei-Xing
2005-01-01
Based on Dyson-Schwinger Equations (DSEs) in the "rainbow" approximation, the dependence of quark effective mass on gluon propagator is investigated by use of three different phenomenological gluon propagators with two parameters, the strength parameter x and range parameter △. Our theoretical calculations for the quark effective mass Mf(p2), defined by the self-energy functions Af(p2) and Bf(p2) of the DSEs, show that the dynamically running quark effective mass is strongly dependent on gluon propagator. Therefore, because gluon propagator is completely unknown,the quark effective mass cannot be exactly determined theoretically.
Iha, Hisashi; Makino, Hiroki; Suzuki, Hiroshi
2016-05-01
We study four-dimensional conformal field theories with an SU(N) global symmetry by employing the numerical conformal bootstrap. We consider the crossing relation associated with a four-point function of a spin 0 operator φ _i^{bar {k}} which belongs to the adjoint representation of SU(N). For N=12 for example, we found that the theory contains a spin 0 SU(12)-breaking relevant operator when the scaling dimension of φ _i^{bar {k}}, Δ _{φ _i^{bar {k}}}, is smaller than 1.71. Considering the lattice simulation of many-flavor quantum chromodynamics with 12 flavors on the basis of the staggered fermion, the above SU(12)-breaking relevant operator, if it exists, would be induced by the flavor-breaking effect of the staggered fermion and prevent an approach to an infrared fixed point. Actual lattice simulations do not show such signs. Thus, assuming the absence of the above SU(12)-breaking relevant operator, we have an upper bound on the mass anomalous dimension at the fixed point γ _m^*≤ 1.29 from the relation γ _m^*=3-Δ _{φ _i^{bar {k}}}. Our upper bound is not so strong practically but it is strict within the numerical accuracy. We also find a kink-like behavior in the boundary curve for the scaling dimension of another SU(12)-breaking operator.
Iha, Hisashi; Suzuki, Hiroshi
2016-01-01
We study four-dimensional conformal field theories with an $SU(N)$ global symmetry by employing the numerical conformal bootstrap. We consider the crossing relation associated with a four-point function of a spin~$0$ operator~$\\phi_i^{\\Bar{k}}$ which belongs to the adjoint representation of~$SU(N)$. For~$N=12$ for example, we found that the theory contains a spin~$0$ $SU(12)$-breaking relevant operator if the scaling dimension of~$\\phi_i^{\\Bar{k}}$, $\\Delta_{\\phi_i^{\\Bar{k}}}$, is smaller than~$1.63$. Considering the lattice simulation of the many-flavor QCD with $12$~flavors on the basis of the staggered fermion, the above $SU(12)$-breaking relevant operator, if it exists, would be induced by the flavor breaking effect of the staggered fermion and would prevent an approach to an infrared fixed point. Actual lattice simulations do not show such signs. Thus, assuming the absence of the above $SU(12)$-breaking relevant operator, we have an upper bound on the mass anomalous dimension at the fixed point~$\\gamma_m...
Energy Technology Data Exchange (ETDEWEB)
Kimball, Derek F.J.; Lacey, Ian; Valdez, Julian; Swiatlowski, Jerlyn; Rios, Cesar; Peregrina-Ramirez, Rodrigo; Montcrieffe, Caitlin; Kremer, Jackie; Dudley, Jordan; Sanchez, C. [Department of Physics, California State University - East Bay, Hayward, California, 94542-3084 (United States)
2013-07-15
The experimental concept of a search for a long-range coupling between rubidium (Rb) nuclear spins and the mass of the Earth is described. The experiment is based on simultaneous measurement of the spin precession frequencies for overlapping ensembles of {sup 85}Rb and {sup 87}Rb atoms contained within an evacuated, antirelaxation-coated vapor cell. Rubidium atoms are spin-polarized in the presence of an applied magnetic field by synchronous optical pumping with circularly polarized laser light. Spin precession is probed by measuring optical rotation of far-off-resonant, linearly polarized laser light. Simultaneous measurement of {sup 85}Rb and {sup 87}Rb spin precession frequencies enables suppression of magnetic-field-related systematic effects. The nuclear structure of the Rb isotopes makes the experiment particularly sensitive to anomalous spin-dependent interactions of the proton. Experimental sensitivity and a variety of systematic effects are discussed, and initial data are presented. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Anand, Mohit; Sinha, Anil K
2012-12-01
Kinetic studies and product profiling was done to understand the anomalous cracking of jathropha oil triglycerides in the presence of sulfided Co-Mo/Al(2)O(3) catalyst. At temperatures between 320 and 340 °C, only deoxygenation and oligomerization reactions took place whereas at temperatures above 340 °C, internal conversions between the products and direct conversion to lighter and middle distillates were favored High pressures (80 bar) and H(2)/feed ratios (>1500) were necessary to minimize oligomerization of the products and to increase the lifespan of the catalyst. Lumped kinetic models were validated with experimental results. Activation energies for the formation of lighter (83 kJ/mol) and middle fractions (126 kJ/mol) were higher than those for the heavy (47 kJ/mol) and deoxygenated (47 kJ/mol) products. Jatropha oil triglycerides hydroconversion pathways were dependent on temperature and the triglycerides could be hydrocracked to lower range hydrocarbons (C5-C14) by increasing the reaction temperatures. PMID:23073102
Computation of quark mass anomalous dimension at $O(1/N_{f}^{2})$ in quantum chromodynamics
Ciuchini, M; Gracey, J A; Manashov, A N
2000-01-01
We present the formalism to calculate d-dimensional critical exponents in QCD in the large N_f expansion where N_f is the number of quark flavours. It relies in part on demonstrating that at the d-dimensional fixed point of QCD the critical theory is equivalent to a non-abelian version of the Thirring model. We describe the techniques used to compute critical two and three loop Feynman diagrams and as an application determine the quark wave function, eta, and mass renormalization critical exponents at O(1/N_f^2) in d-dimensions. Their values when expressed in relation to four dimensional perturbation theory are in exact agreement with the known four loop MSbar results. Moreover, new coefficients in these renormalization group functions are determined to six loops and O(1/N_f^2). The computation of the exponents in the Schwinger Dyson approach is also provided and an expression for eta in arbitrary covariant gauge is given.
Institute of Scientific and Technical Information of China (English)
YANG Xin-Rong; XU Bo; WANG Hai-Fei; ZHAO Guo-Qing; SHI Shu-Hui; SHEN Xiao-Zhi; LI Jun-Feng; WANG Zhan-Guo
2011-01-01
Self-assembled InAs quantum wires (QWRs) are fabricated on an InP substrate by solid-source molecular beam epitaxy (SSMBE). Photoluminescence (PL) spectra are investigated in these nanostructures as a function of temperature. An anomalous enhancement of PL intensity and a temperature insensitive PL emission are observed from lnAs nanostructures grown on InP substrates using lnAIGaAs as the matrix layer and the origin of this phenomenon is discussed. We attribute the anomalous temperature dependence of photoluminescence to the formation of Al-rich and In-rich region in the InAlGaAs buffer layer and the cap layer.%@@ Self-assembled InAs quantum wires (QWRs) are fabricated on an InP substrate by solid-source molecular beam epitaxy (SSMBE).Photoluminescence (PL) spectra are investigated in these nanostructures as a function of temperature.An anomalous enhancement of PL intensity and a temperature insensitive PL emission are observed from InAs nanostructures grown on InP substrates using InAlGaAs as the matrix layer and the origin of this phenomenon is discussed.We attribute the anomalous temperature dependence of photoluminescence to the formation of Al-rich and In-rich region in the InAlGaAs buffer layer and the cap layer.
Mass-dependent Lorentz Violation and Neutrino Velocity
Li, Miao
2011-01-01
Motivated by a recent and several earlier measurement results of the neutrino velocity, we attempt to resolve the apparent discrepancies between them from the viewpoint of mass-energy relation in special relativity. It is argued that a complicated tachyonic neutrino model or a mass-dependent Lorentz violation theory can do this job.
Nucleon effective mass and the A dependence of structure functions
Energy Technology Data Exchange (ETDEWEB)
Garcia Canal, C.A.; Santangelo, E.M.; Vucetich, H.
1984-10-08
The nucleon effective mass was successfully used, as the only free parameter, to adjust the ratio R(A) of structure functions measured in a nucleus of mass number A and in the deuteron, for each A value in the SLAC set of experimental data. The resulting A dependence of the effective mass, being linear in A/sup -1/3/, is consistent with the behavior expected from nuclear structure considerations. The extrapolated value of the effective mass for nuclear matter agrees with previous estimations.
Quark mass dependence of two-flavor QCD
Creutz, Michael
2011-01-01
I explore the rich phase diagram of two-flavor QCD as a function of the quark masses. The theory involves three parameters, including one that is CP violating. As the masses vary, regions of both first- and second-order transitions are expected. For nondegenerate quarks, nonperturbative effects cease to be universal, leaving individual quark mass ratios with a renormalization scheme dependence. This raises complications in matching lattice results with perturbative schemes and demonstrates the tautology of attacking the strong CP problem via a vanishing up-quark mass.
Quark mass dependence of two-flavor QCD
Creutz, Michael
2010-01-01
I explore the rich phase diagram of two-flavor QCD as a function of the quark masses. The theory involves three parameters, including one that is CP violating. As the masses vary, regions of both first and second order transitions are expected. For non-degenerate quarks, non-perturbative effects cease to be universal, leaving individual quark mass ratios with a renormalization scheme dependence. This raises complications in matching lattice results with perturbative schemes and demonstrates the tautology of attacking the strong CP problem via a vanishing up quark mass.
Energy Technology Data Exchange (ETDEWEB)
Yang, Y. J.; Bao, J.; Gao, C., E-mail: zlluo@ustc.edu.cn, E-mail: cgao@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026 (China); CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Yang, M. M.; Luo, Z. L., E-mail: zlluo@ustc.edu.cn, E-mail: cgao@ustc.edu.cn; Hu, C. S.; Chen, X. C.; Pan, G. Q. [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026 (China); Huang, H. L. [CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, S.; Wang, J. W.; Li, P. S.; Liu, Y.; Zhao, Y. G. [Department of Physics and State Key Laboratory of New Ceramics, Fine Processing, Tsinghua University, Beijing 100084 (China); Jiang, T.; Liu, Y. K.; Li, X. G. [Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science, Technology of China, Hefei, Anhui 230026 (China)
2014-05-07
A series of Zn{sub x}Fe{sub 3−x}O{sub 4} (ZFO, x = 0.4) thin films were epitaxially deposited on single-crystal (001)-SrTiO{sub 3} (STO) substrates by radio frequency magnetron sputtering. The anomalous thickness-dependent strain states of ZFO films were found, i.e., a tensile in-plane strain exists in the thinner ZFO film and which monotonously turns into compressive in the thicker films. Considering the lattice constant of bulk ZFO is bigger than that of STO, this strain state cannot be explained in the conventional framework of lattice-mismatch-induced strain in the hetero-epitaxial system. This unusual phenomenon is proposed to be closely related to the Volmer-Weber film growth mode in the thinner films and incorporation of the interstitial atoms into the island's boundaries during subsequent epitaxial growth of the thicker films. The ZFO/STO epitaxial film is found in the nature of magnetic semiconductor by transport measurements. The in-plane magnetization of the ZFO/STO films is found to increase as the in-plane compressive strain develops, which is further proved in the (001)-ZFO/PMN-PT film where the film strain state can be in situ controlled with applied electric field. This compressive-strain-enhanced magnetization can be attributed to the strain-mediated electric-field-induced in-plane magnetic anisotropy field enhancement. The above results indicate that strain engineering on magnetic oxide semiconductor ZFO films is promising for novel oxide-electronic devices.
Yang, Y. J.; Yang, M. M.; Luo, Z. L.; Hu, C. S.; Bao, J.; Huang, H. L.; Zhang, S.; Wang, J. W.; Li, P. S.; Liu, Y.; Zhao, Y. G.; Chen, X. C.; Pan, G. Q.; Jiang, T.; Liu, Y. K.; Li, X. G.; Gao, C.
2014-05-01
A series of ZnxFe3-xO4 (ZFO, x = 0.4) thin films were epitaxially deposited on single-crystal (001)-SrTiO3 (STO) substrates by radio frequency magnetron sputtering. The anomalous thickness-dependent strain states of ZFO films were found, i.e., a tensile in-plane strain exists in the thinner ZFO film and which monotonously turns into compressive in the thicker films. Considering the lattice constant of bulk ZFO is bigger than that of STO, this strain state cannot be explained in the conventional framework of lattice-mismatch-induced strain in the hetero-epitaxial system. This unusual phenomenon is proposed to be closely related to the Volmer-Weber film growth mode in the thinner films and incorporation of the interstitial atoms into the island's boundaries during subsequent epitaxial growth of the thicker films. The ZFO/STO epitaxial film is found in the nature of magnetic semiconductor by transport measurements. The in-plane magnetization of the ZFO/STO films is found to increase as the in-plane compressive strain develops, which is further proved in the (001)-ZFO/PMN-PT film where the film strain state can be in situ controlled with applied electric field. This compressive-strain-enhanced magnetization can be attributed to the strain-mediated electric-field-induced in-plane magnetic anisotropy field enhancement. The above results indicate that strain engineering on magnetic oxide semiconductor ZFO films is promising for novel oxide-electronic devices.
The clustering of SDSS galaxy groups: mass and color dependence
Wang, Yu; Mo, H J; Bosch, Frank C van den; Weinmann, Simone W; Chu, Yaoquan
2007-01-01
We use a sample of galaxy groups selected from the SDSS DR 4 with an adaptive halo-based group finder to probe how the clustering strength of groups depends on their masses and colors. In particular, we determine the relative biases of groups of different masses, as well as that of groups with the same mass but with different colors. In agreement with previous studies, we find that more massive groups are more strongly clustered, and the inferred mass dependence of the halo bias is in good agreement with predictions for the $\\Lambda$CDM cosmology. Regarding the color dependence, we find that groups with red centrals are more strongly clustered than groups of the same mass but with blue centrals. Similar results are obtained when the color of a group is defined to be the total color of its member galaxies. The color dependence is more prominent in less massive groups and becomes insignificant in groups with masses $\\gta 10^{14}\\msunh$. We construct a mock galaxy redshift survey constructed from the large Mille...
Isotopic mass-dependence of noble gas diffusion coefficients inwater
Energy Technology Data Exchange (ETDEWEB)
Bourg, I.C.; Sposito, G.
2007-06-25
Noble gas isotopes are used extensively as tracers inhydrologic and paleoclimatic studies. These applications requireknowledge of the isotopic mass (m) dependence of noble gas diffusioncoefficients in water (D), which has not been measured but is estimatedusing experimental D-values for the major isotopes along with an untestedrelationship from kinetic theory, D prop m-0.5. We applied moleculardynamics methods to determine the mass dependence of D for four noblegases at 298 K, finding that D prop m-beta with beta<0.2, whichrefutes the kinetic theory model underlying all currentapplications.
Pion-mass dependence of three-nucleon observables
Hammer, H. -W.; D. R. Phillips; Platter, L.
2007-01-01
We use an effective field theory (EFT) which contains only short-range interactions to study the dependence of a variety of three-nucleon observables on the pion mass. The pion-mass dependence of input quantities in our ``pionless'' EFT is obtained from a recent chiral EFT calculation. To the order we work at, these quantities are the 1S0 scattering length and effective range, the deuteron binding energy, the 3S1 effective range, and the binding energy of one three-nucleon bound state. The ch...
Haham, N.; Konczykowski, M.; Kuiper, B.; Koster, G.; Klein, L.
2013-01-01
We measure the anomalous Hall effect (AHE) in several patterns of the itinerant ferromagnet SrRuO 3 before and after the patterns are irradiated with electrons. The irradiation increases the resistivity of the patterns due to the introduction of point defects and we find that the AHE coefficient R
On the quark-mass dependence of the baryon ground-state masses
Semke, A
2011-01-01
We perform a chiral extrapolation of the baryon octet and decuplet masses in a relativistic formulation of chiral perturbation theory. A partial summation is assumed as implied by the use of physical baryon and meson masses in the one-loop diagrams. Upon a chiral expansion our results are consistent with strict chiral perturbation theory at the next-to-next-to-next-to-leading order. All counter terms are correlated by a large-$N_c$ operator analysis. Our results are confronted with recent results of unquenched three flavor lattice simulations. We adjust the parameter set to the pion-mass dependence of the nucleon and omega masses as computed by the BMW group and predict the pion-mass dependence of the remaining baryon octet and decuplet states. The current lattice simulations can be described accurately and smoothly up to pion masses of about 600 MeV. In particular we recover the recent results of HSC without any further adjustments.
Analysis of the mass formula dependence of spallation product distribution
International Nuclear Information System (INIS)
A new version of a spallation reaction simulation code NUCLEUS has been developed by incorporating the newly revised Uno and Yamada's mass formula. The mass formula dependence of the spallation product distribution has been investigated by comparing the new results with those calculated by the original version which uses the combination of the Cameron's mass formula and the mass table compiled by Wapstra et al. Detailed differences between these two mass formulas are shown in the comparisons of mass excess values. The distributions of spallation products of a uranium target nucleus bombarded by high energy (0.38 - 2.9 GeV) protons have been calculated with the new and original versions of NUCLEUS. The calculated results show that there is no significant discrepancy in the non-fission component of cumulative product yields such as the mass distribution and the number of emitted neutrons but in the fission component Uno and Yamada's mass formula reproduces the measured data obtained from thin foil experiments significantly better, especially in the neutron excess side, than the Cameron's one. (author)
The dependence of convective core overshooting on stellar mass
Claret, Antonio
2016-01-01
Convective core overshooting extends the main-sequence lifetime of a star. Evolutionary tracks computed with overshooting are quite different from those that use the classical Schwarzschild criterion, which leads to rather different predictions for the stellar properties. Attempts over the last two decades to calibrate the degree of overshooting with stellar mass using detached double-lined eclipsing binaries have been largely inconclusive, mainly due to a lack of suitable observational data. Here we revisit the question of a possible mass dependence of overshooting with a more complete sample of binaries, and examine any additional relation there might be with evolutionary state or metal abundance Z. We use a carefully selected sample of 33 double-lined eclipsing binaries strategically positioned in the H-R diagram, with accurate absolute dimensions and component masses ranging from 1.2 to 4.4 solar masses. We compare their measured properties with stellar evolution calculations to infer semi-empirical value...
Inclination Dependence of Estimated Galaxy Masses and Star Formation Rates
Hernandez, Betsy; Maller, Ariyeh; McKernan, Barry; Ford, Saavik
2016-01-01
We examine the inclination dependence of inferred star formation rates and galaxy mass estimates in the Sloan Digital Sky Survey by combining the disk/bulge de-convolved catalog of Simard et al 2011 with stellar mass estimates catalog of Mendel et al 2014 and star formation rates measured from spectra by Brinchmann et al 2004. We know that optical star formation indicators are reddened by dust, but calculated star formation rates and stellar mass estimates should account for this. However, we find that face-on galaxies have a higher calculated average star formation rates than edge-on galaxies. We also find edge-on galaxies have ,on average, slightly smaller but similar estimated masses to face-on galaxies, suggesting that there are issues with the applied dust corrections for both models.
Anomalous Magnetohydrodynamics
Giovannini, Massimo
2013-01-01
Anomalous symmetries induce currents which can be parallel rather than orthogonal to the hypermagnetic field. Building on the analogy with charged liquids at high magnetic Reynolds numbers, the persistence of anomalous currents is scrutinized for parametrically large conductivities when the plasma approximation is accurate. Different examples in globally neutral systems suggest that the magnetic configurations minimizing the energy density with the constraint that the helicity be conserved co...
A Stellar-mass-dependent Drop in Planet Occurrence Rates
Mulders, Gijs D.; Pascucci, Ilaria; Apai, Dániel
2015-01-01
The Kepler spacecraft has discovered a large number of planets with up to one-year periods and down to terrestrial sizes. While the majority of the target stars are main-sequence dwarfs of spectral type F, G, and K, Kepler covers stars with effective temperatures as low as 2500 K, which corresponds to M stars. These cooler stars allow characterization of small planets near the habitable zone, yet it is not clear if this population is representative of that around FGK stars. In this paper, we calculate the occurrence of planets around stars of different spectral types as a function of planet radius and distance from the star and show that they are significantly different from each other. We further identify two trends. First, the occurrence of Earth- to Neptune-sized planets (1-4 R ⊕) is successively higher toward later spectral types at all orbital periods probed by Kepler; planets around M stars occur twice as frequently as around G stars, and thrice as frequently as around F stars. Second, a drop in planet occurrence is evident at all spectral types inward of a ~10 day orbital period, with a plateau further out. By assigning to each spectral type a median stellar mass, we show that the distance from the star where this drop occurs is stellar mass dependent, and scales with semi-major axis as the cube root of stellar mass. By comparing different mechanisms of planet formation, trapping, and destruction, we find that this scaling best matches the location of the pre-main-sequence co-rotation radius, indicating efficient trapping of migrating planets or planetary building blocks close to the star. These results demonstrate the stellar-mass dependence of the planet population, both in terms of occurrence rate and of orbital distribution. The prominent stellar-mass dependence of the inner boundary of the planet population shows that the formation or migration of planets is sensitive to the stellar parameters.
A STELLAR-MASS-DEPENDENT DROP IN PLANET OCCURRENCE RATES
International Nuclear Information System (INIS)
The Kepler spacecraft has discovered a large number of planets with up to one-year periods and down to terrestrial sizes. While the majority of the target stars are main-sequence dwarfs of spectral type F, G, and K, Kepler covers stars with effective temperatures as low as 2500 K, which corresponds to M stars. These cooler stars allow characterization of small planets near the habitable zone, yet it is not clear if this population is representative of that around FGK stars. In this paper, we calculate the occurrence of planets around stars of different spectral types as a function of planet radius and distance from the star and show that they are significantly different from each other. We further identify two trends. First, the occurrence of Earth- to Neptune-sized planets (1-4 R ⊕) is successively higher toward later spectral types at all orbital periods probed by Kepler; planets around M stars occur twice as frequently as around G stars, and thrice as frequently as around F stars. Second, a drop in planet occurrence is evident at all spectral types inward of a ∼10 day orbital period, with a plateau further out. By assigning to each spectral type a median stellar mass, we show that the distance from the star where this drop occurs is stellar mass dependent, and scales with semi-major axis as the cube root of stellar mass. By comparing different mechanisms of planet formation, trapping, and destruction, we find that this scaling best matches the location of the pre-main-sequence co-rotation radius, indicating efficient trapping of migrating planets or planetary building blocks close to the star. These results demonstrate the stellar-mass dependence of the planet population, both in terms of occurrence rate and of orbital distribution. The prominent stellar-mass dependence of the inner boundary of the planet population shows that the formation or migration of planets is sensitive to the stellar parameters
A STELLAR-MASS-DEPENDENT DROP IN PLANET OCCURRENCE RATES
Energy Technology Data Exchange (ETDEWEB)
Mulders, Gijs D.; Pascucci, Ilaria [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Apai, Dániel [Department of Astronomy, The University of Arizona, Tucson, AZ 85721, USA. (United States)
2015-01-10
The Kepler spacecraft has discovered a large number of planets with up to one-year periods and down to terrestrial sizes. While the majority of the target stars are main-sequence dwarfs of spectral type F, G, and K, Kepler covers stars with effective temperatures as low as 2500 K, which corresponds to M stars. These cooler stars allow characterization of small planets near the habitable zone, yet it is not clear if this population is representative of that around FGK stars. In this paper, we calculate the occurrence of planets around stars of different spectral types as a function of planet radius and distance from the star and show that they are significantly different from each other. We further identify two trends. First, the occurrence of Earth- to Neptune-sized planets (1-4 R {sub ⊕}) is successively higher toward later spectral types at all orbital periods probed by Kepler; planets around M stars occur twice as frequently as around G stars, and thrice as frequently as around F stars. Second, a drop in planet occurrence is evident at all spectral types inward of a ∼10 day orbital period, with a plateau further out. By assigning to each spectral type a median stellar mass, we show that the distance from the star where this drop occurs is stellar mass dependent, and scales with semi-major axis as the cube root of stellar mass. By comparing different mechanisms of planet formation, trapping, and destruction, we find that this scaling best matches the location of the pre-main-sequence co-rotation radius, indicating efficient trapping of migrating planets or planetary building blocks close to the star. These results demonstrate the stellar-mass dependence of the planet population, both in terms of occurrence rate and of orbital distribution. The prominent stellar-mass dependence of the inner boundary of the planet population shows that the formation or migration of planets is sensitive to the stellar parameters.
Anomalous bootstrap current due to drift waves
International Nuclear Information System (INIS)
An anomalous parallel current driven by radial flux in tokamak is discussed. Drift waves, which cause an anomalous cross field diffusion, can generate a parallel current in a sheared magnetic field, if the fluctuation level has radial dependence. (author)
Mass-dependence of self-diffusion coefficients in disparate-mass binary fluid mixtures
I. Binas; I.Mryglod
2009-01-01
Self-diffusion coefficients of a binary fluid mixture with components differing only in their particle masses are studied, in particular the case when mass ratio μ of light and heavy particles tends to zero. These coefficients were calculated within the memory function formalism, using the systematic subsequence of approximations for the relaxation times of velocity autocorrelation function. We obtained a general relation for the self-diffusion coefficients which show polynomial dependence on...
Kuentz, M
2003-01-01
A two-dimensional lattice gas automaton (LGA) is used for simulating concentration-dependent diffusion in a microscopically random heterogeneous structure. The heterogeneous medium is initialized at a low density rho sub 0 and then submitted to a steep concentration gradient by continuous injection of particles at a concentration rho sub 1 >rho sub 0 from a one-dimensional source to model spreading of a density front. Whereas the nonlinear diffusion equation generally used to describe concentration-dependent diffusion processes predicts a scaling law of the type phi = xt sup - sup 1 sup / sup 2 in one dimension, the spreading process is shown to deviate from the expected t sup 1 sup / sup 2 scaling. The time exponent is found to be larger than 1/2, i.e. diffusion of the density front is enhanced with respect to standard Fickian diffusion. It is also established that the anomalous time exponent decreases as time elapses: anomalous spreading is thus not a timescaling process. We demonstrate that occurrence of a...
Galaxy metallicities depend primarily on stellar mass and molecular gas mass
Bothwell, M S; Cicone, C; Peng, Y; Wagg, J
2016-01-01
In this work we present an analysis of the behaviour of galaxies in a four-dimensional parameter space defined by stellar mass, metallicity, star formation rate, and molecular gas mass. We analyse a combined sample of 227 galaxies, which draws from a number of surveys across the redshift range 0 90% of the sample at z~0), and covers > 3 decades in stellar mass.Using Principle Component Analysis, we demonstrate that galaxies in our sample lie on a 2-dimensional plane within this 4D parameter space, indicative of galaxies that exist in an equilibrium between gas inflow and outflow. Furthermore, we find that the metallicity of galaxies depends only on stellar mass and molecular gas mass. In other words, gas-phase metallicity has a negligible dependence on star formation rate, once the correlated effect of molecular gas content is accounted for. The well-known `fundamental metallicity relation', which describes a close and tight relationship between metallicity and SFR (at fixed stellar mass) is therefore entire...
Quark mass dependence of the X(3872) binding energy
Energy Technology Data Exchange (ETDEWEB)
Baru, V., E-mail: vadimb@tp2.rub.de [Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Institute for Theoretical and Experimental Physics, B. Cheremushkinskaya 25, 117218 Moscow (Russian Federation); Epelbaum, E. [Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Filin, A.A. [Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Institute for Theoretical and Experimental Physics, B. Cheremushkinskaya 25, 117218 Moscow (Russian Federation); Hanhart, C. [Forschungszentrum Jülich, Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, D-52425 Jülich (Germany); Meißner, U.-G. [Forschungszentrum Jülich, Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, D-52425 Jülich (Germany); Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); Nefediev, A.V. [Institute for Theoretical and Experimental Physics, B. Cheremushkinskaya 25, 117218 Moscow (Russian Federation); National Research Nuclear University MEPhI, 115409, Moscow (Russian Federation); Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Moscow Region (Russian Federation)
2013-10-07
We explore the quark-mass dependence of the pole position of the X(3872) state within the molecular picture. The calculations are performed within the framework of a nonrelativistic Faddeev-type three-body equation for the DD{sup ¯}π system in the J{sup PC}=1{sup ++} channel. The πD interaction is parametrised via a D{sup ⁎} pole, and a three-body force is included to render the equations well defined. Its strength is adjusted such that the X(3872) appears as a DD{sup ¯⁎} bound state 0.5 MeV below the neutral threshold. We find that the trajectory of the X(3872) depends strongly on the assumed quark-mass dependence of the short-range interactions which can be determined in future lattice QCD calculations. At the same time we are able to provide nontrivial information on the chiral extrapolation in the X channel.
Energy Technology Data Exchange (ETDEWEB)
Looney, B.B. [E.I. du Pont de Nemours and Co., Aiken, SC (United States). Savannah River Lab.; Scott, M.T. [Clemson Univ., SC (United States)
1988-12-31
Recent field and laboratory data have confirmed that apparent dispersivity is a function of the flow distance of the measurement. This scale effect is not consistent with classical advection dispersion modeling often used to describe the transport of solutes in saturated porous media. Many investigators attribute this anomalous behavior to the fact that the spreading of solute is actually the result of the heterogeneity of subsurface materials and the wide distribution of flow paths and velocities available in such systems. An analysis using straightforward analytical equations confirms this hypothesis. An analytical equation based on a flow variance approach matches available field data when a variance description of approximately 0.4 is employed. Also, current field data provide a basis for statistical selection of the variance parameter based on the level of concern related to the resulting calculated concentration. While the advection dispersion approach often yielded reasonable predictions, continued development of statistical and stochastic techniques will provide more defendable and mechanistically descriptive models.
Lapas, Luciano C.; Ferreira, Rogelma M. S.; Rubí, J. Miguel; Oliveira, Fernando A.
2015-03-01
We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.
International Nuclear Information System (INIS)
We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton’s law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics
Energy Technology Data Exchange (ETDEWEB)
Lapas, Luciano C., E-mail: luciano.lapas@unila.edu.br [Universidade Federal da Integração Latino-Americana, Caixa Postal 2067, 85867-970 Foz do Iguaçu, Paraná (Brazil); Ferreira, Rogelma M. S., E-mail: rogelma.maria@gmail.com [Centro de Ciências Exatas e Tecnológicas, Universidade Federal do Recôncavo da Bahia, 44380-000 Cruz das Almas, Bahia (Brazil); Rubí, J. Miguel, E-mail: mrubi@ub.edu [Departament de Física Fonamental, Facultat de Física, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona (Spain); Oliveira, Fernando A., E-mail: fernando.oliveira@pq.cnpq.br [Instituto de Física and Centro Internacional de Física da Matéria Condensada, Universidade de Brasília, Caixa Postal 04513, 70919-970 Brasília, Distrito Federal (Brazil)
2015-03-14
We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton’s law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.
Fractal model of anomalous diffusion.
Gmachowski, Lech
2015-12-01
An equation of motion is derived from fractal analysis of the Brownian particle trajectory in which the asymptotic fractal dimension of the trajectory has a required value. The formula makes it possible to calculate the time dependence of the mean square displacement for both short and long periods when the molecule diffuses anomalously. The anomalous diffusion which occurs after long periods is characterized by two variables, the transport coefficient and the anomalous diffusion exponent. An explicit formula is derived for the transport coefficient, which is related to the diffusion constant, as dependent on the Brownian step time, and the anomalous diffusion exponent. The model makes it possible to deduce anomalous diffusion properties from experimental data obtained even for short time periods and to estimate the transport coefficient in systems for which the diffusion behavior has been investigated. The results were confirmed for both sub and super-diffusion.
Gunawardhana, M L P; Sharp, R G; Brough, S; Taylor, E; Bland-Hawthorn, J; Maraston, C; Tuffs, R J; Popescu, C C; Wijesinghe, D; Jones, D H; Croom, S; Sadler, E; Wilkins, S; Driver, S P; Liske, J; Norberg, P; Baldry, I K; Bamford, S P; Loveday, J; Peacock, J A; Robotham, A S G; Zucker, D B; Parker, Q A; Conselice, C J; Cameron, E; Frenk, C S; Hill, D T; Kelvin, L S; Kuijken, K; Madore, B F; Nichol, B; Parkinson, H R; Pimbblet, K A; Prescott, M; Sutherland, W J; Thomas, D; van Kampen, E
2011-01-01
The stellar initial mass function (IMF) describes the distribution in stellar masses produced from a burst of star formation. For more than fifty years, the implicit assumption underpinning most areas of research involving the IMF has been that it is universal, regardless of time and environment. We measure the high-mass IMF slope for a sample of low-to-moderate redshift galaxies from the Galaxy And Mass Assembly survey. The large range in luminosities and galaxy masses of the sample permits the exploration of underlying IMF dependencies. A strong IMF-star formation rate dependency is discovered, which shows that highly star forming galaxies form proportionally more massive stars (they have IMFs with flatter power-law slopes) than galaxies with low star formation rates. This has a significant impact on a wide variety of galaxy evolution studies, all of which rely on assumptions about the slope of the IMF. Our result is supported by, and provides an explanation for, the results of numerous recent explorations ...
RESOLVE and ECO: The Halo Mass-dependent Shape of Galaxy Stellar and Baryonic Mass Functions
Eckert, Kathleen D.; Kannappan, Sheila J.; Stark, David V.; Moffett, Amanda J.; Berlind, Andreas A.; Norris, Mark A.
2016-06-01
In this work, we present galaxy stellar and baryonic (stars plus cold gas) mass functions (SMF and BMF) and their halo mass dependence for two volume-limited data sets. The first, RESOLVE-B, coincides with the Stripe 82 footprint and is extremely complete down to baryonic mass M bary ∼ 109.1 M ⊙, probing the gas-rich dwarf regime below M bary ∼ 1010 M ⊙. The second, ECO, covers a ∼40× larger volume (containing RESOLVE-A) and is complete to M bary ∼ 109.4 M ⊙. To construct the SMF and BMF we implement a new “cross-bin sampling” technique with Monte Carlo sampling from the full likelihood distributions of stellar or baryonic mass. Our SMFs exhibit the “plateau” feature starting below M star ∼ 1010 M ⊙ that has been described in prior work. However, the BMF fills in this feature and rises as a straight power law below ∼1010 M ⊙, as gas-dominated galaxies become the majority of the population. Nonetheless, the low-mass slope of the BMF is not as steep as that of the theoretical dark matter halo MF. Moreover, we assign group halo masses by abundance matching, finding that the SMF and BMF, separated into four physically motivated halo mass regimes, reveal complex structure underlying the simple shape of the overall MFs. In particular, the satellite MFs are depressed below the central galaxy MF “humps” in groups with mass <1013.5 M ⊙ yet rise steeply in clusters. Our results suggest that satellite destruction and stripping are active from the point of nascent group formation. We show that the key role of groups in shaping MFs enables reconstruction of a given survey’s SMF or BMF based on its group halo mass distribution.
Yang, Yongzhang; Li, Zhengxin; Ping, Jinsong
2012-08-01
The relation between the gravity changes and the plumb line variations on ground, in case of the presentation of an anomalous mass underground is stud ied theoretically, formulas are figured out, including the one which describes the relation between the gravity change and the plumb line variation in a more simple way. In a simulation the actual precision of the obtained result is estimated, while the gr avity data of the West Yunnan gravity network, China is also used for the same purpose at the same time. Additionally, by taking use data of this network (32 batches during 1985 - 1998), we analyzed the obtained results of plumb line variation determined at certain sites, and found the similar phenomena which have been reported previously for the Northern China area.
Mass-dependence of self-diffusion coefficients in disparate-mass binary fluid mixtures
Directory of Open Access Journals (Sweden)
I. Binas
2009-01-01
Full Text Available Self-diffusion coefficients of a binary fluid mixture with components differing only in their particle masses are studied, in particular the case when mass ratio μ of light and heavy particles tends to zero. These coefficients were calculated within the memory function formalism, using the systematic subsequence of approximations for the relaxation times of velocity autocorrelation function. We obtained a general relation for the self-diffusion coefficients which show polynomial dependence on the mass ratio μ. The obtained expression has a correct Brownian limit. We developed the hierarchy of approximations for the self-diffusion coefficients that tends to an exact result from above and below when the order of approximations increases.
RESOLVE and ECO: The Halo Mass-Dependent Shape of Galaxy Stellar and Baryonic Mass Functions
Eckert, Kathleen D; Stark, David V; Moffett, Amanda J; Berlind, Andreas A; Norris, Mark A
2016-01-01
In this work, we present galaxy stellar and baryonic (stars plus cold gas) mass functions (SMF and BMF) and their halo mass dependence for two volume-limited data sets. The first, RESOLVE-B, coincides with the Stripe 82 footprint and is extremely complete down to baryonic mass Mbary ~ 10^9.1 Msun, probing the gas-rich dwarf regime below Mbary ~ 10^10 Msun. The second, ECO, covers a ~40 times larger volume (containing RESOLVE-A) and is complete to Mbary ~ 10^9.4 Msun. To construct the SMF and BMF we implement a new "cross-bin sampling" technique with Monte Carlo sampling from the full likelihood distributions of stellar or baryonic mass. Our SMFs exhibit the "plateau" feature starting below Mstar ~ 10^10 Msun that has been described in prior work. However, the BMF fills in this feature and rises as a straight power law below ~10^10 Msun, as gas-dominated galaxies become the majority of the population. Nonetheless, the low-mass slope of the BMF is not as steep as that of the theoretical dark matter halo MF. Mor...
Data dependent systems methodology for lumped mass modeling of structures
Pandit, Sudhakar M.
1988-01-01
Limitations of the frequency domain methods in analyzing structura1 vibrations has created an awareness of the comparative merits of the time domain methods. Although time domain methods would be ideal for modeling large precisions space systems, the popular methods based on fitting theoretical response to actual data by least squares are too sensitive to noise and require too much data to be suitable for orbiting space crafts. This paper briefly reviews the theory and illustrative applications of a time domain methodology called Data Dependent Systems (DDS) that eliminates these limitations. Simulation results are presented to demonstrate a better than 4-place accuracy in the identifications of all system parameters, both modal (frequencies, damping ratios, and mode shapes) and physical (mass, stiffness, and damping matrices).
Gabor, M. S.; Petrisor, T.; Pop, O.; Colis, S.; Tiusan, C.
2015-10-01
We report a detailed study of the temperature dependence of the magnetic anisotropy in Ta/Co2FeAl/MgO structures by means of Anomalous Hall Effect measurements. The volume magnetic anisotropy, although negligible at room temperature, shows a non-negligible value at low temperatures and favors an in-plane easy magnetization axis. The surface magnetic anisotropy, which promotes the perpendicular magnetic easy axis, shows an increase from 0.76 ± 0.05 erg /cm2 at 300 K, up to 1.08 ± 0.04 erg /cm2 at 5 K, attributed to the evolution of the Co2FeAl layer saturation magnetization with temperature.
How Lyman Alpha Emission Depends On Galaxy Stellar Mass
Oyarzún, Grecco A; González, Valentino; Mateo, Mario; Bailey, John I; Finkelstein, Steven L; Lira, Paulina; Crane, Jeffrey D; Olszewski, Edward W
2016-01-01
In this work, we show how the stellar mass (M) of galaxies affects the 3
Position-dependent mass quantum Hamiltonians: general approach and duality
Rego-Monteiro, M. A.; Rodrigues, Ligia M. C. S.; Curado, E. M. F.
2016-03-01
We analyze a general family of position-dependent mass (PDM) quantum Hamiltonians which are not self-adjoint and include, as particular cases, some Hamiltonians obtained in phenomenological approaches to condensed matter physics. We build a general family of self-adjoint Hamiltonians which are quantum mechanically equivalent to the non-self-adjoint proposed ones. Inspired by the probability density of the problem, we construct an ansatz for the solutions of the family of self-adjoint Hamiltonians. We use this ansatz to map the solutions of the time independent Schrödinger equations generated by the non-self-adjoint Hamiltonians into the Hilbert space of the solutions of the respective dual self-adjoint Hamiltonians. This mapping depends on both the PDM and on a function of position satisfying a condition that assures the existence of a consistent continuity equation. We identify the non-self-adjoint Hamiltonians here studied with a very general family of Hamiltonians proposed in a seminal article of Harrison (1961 Phys. Rev. 123 85) to describe varying band structures in different types of metals. Therefore, we have self-adjoint Hamiltonians that correspond to the non-self-adjoint ones found in Harrison’s article.
Lapas, Luciano C.; Ferreira, Rogelma M. S.; Oliveira, Fernando A.; Rubí, J. Miguel
2014-01-01
We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergo a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature ma...
Microbial mass-dependent fractionation of chromium isotopes
Sikora, E.R.; Johnson, T.M.; Bullen, T.D.
2008-01-01
Mass-dependent fractionation of Cr isotopes occurs during dissimilatory Cr(VI) reduction by Shewanella oneidensis strain MR-1. Cells suspended in a simple buffer solution, with various concentrations of lactate or formate added as electron donor, reduced 5 or 10 ??M Cr(VI) to Cr(III) over days to weeks. In all nine batch experiments, 53Cr/52Cr ratios of the unreacted Cr(VI) increased as reduction proceeded. In eight experiments covering a range of added donor concentrations up to 100 ??M, isotopic fractionation factors were nearly invariant, ranging from 1.0040 to 1.0045, with a mean value somewhat larger than that previously reported for abiotic Cr(VI) reduction (1.0034). One experiment containing much greater donor concentration (10 mM lactate) reduced Cr(VI) much faster and exhibited a lesser fractionation factor (1.0018). These results indicate that 53Cr/52Cr measurements should be effective as indicators of Cr(VI) reduction, either bacterial or abiotic. However, variability in the fractionation factor is poorly constrained and should be studied for a variety of microbial and abiotic reduction pathways. ?? 2008 Elsevier Ltd.
A stellar-mass-dependent drop in planet occurrence rates
Mulders, Gijs D; Apai, Daniel
2014-01-01
The Kepler Space Telescope has discovered a large number of planets up to one year periods and down to terrestrial sizes. The cool star subsample allows characterization of small planets near the habitable zone, yet it is not clear if this population is representative of that around sun-like stars. In this paper, we show that occurrence rates of planets around M, K, G, and F stars observed with Kepler are significantly different from each other. We identify two trends with stellar mass: First, the occurrence of Earth to Neptune-sized planets (1 to 4 Earth radii) is successively higher towards cooler stars at all orbital periods probed by Kepler, confirming the result of Howard et al. (2012) and extending it down to Earth-sized planets; Second, a drop in occurrence rates towards the star is evident for all spectral types inwards of a ~10 day orbital period, with a plateau further out. The distance from the star where this drop occurs depends on spectral type, and scales with semi-major axis as the cube root of...
Position-dependent mass, finite-gap systems, and supersymmetry
Bravo, Rafael
2016-01-01
The ordering problem in quantum systems with position-dependent mass (PDM) is treated by inclusion of the classically fictitious similarity transformation into the kinetic term. This provides a generation of supersymmetry with the first order supercharges from the kinetic term alone, while inclusion of the potential term allows to generate also nonlinear supersymmetry with higher order supercharges. A broad class of finite-gap systems with PDM is obtained by different reduction procedures, and general results on supersymmetry generation are applied to them. We show that elliptic finite-gap systems of Lame and Darboux-Treibich-Verdier types can be obtained by reduction to Seiffert's spherical spiral and Bernoulli lemniscate in the presence of Calogero-like or harmonic oscillator potentials, or by angular momentum reduction of a free motion on some AdS_2-related surfaces in the presence of Aharonov-Bohm flux. The limiting cases include the Higgs and Mathews-Lakshmanan oscillator models as well as a reflectionle...
Position-dependent mass, finite-gap systems, and supersymmetry
Bravo, Rafael; Plyushchay, Mikhail S.
2016-05-01
The ordering problem in quantum systems with position-dependent mass (PDM) is treated by inclusion of the classically fictitious similarity transformation into the kinetic term. This provides a generation of supersymmetry with the first-order supercharges from the kinetic term alone, while inclusion of the potential term allows us also to generate nonlinear supersymmetry with higher-order supercharges. A broad class of finite-gap systems with PDM is obtained by different reduction procedures, and general results on supersymmetry generation are applied to them. We show that elliptic finite-gap systems of Lamé and Darboux-Treibich-Verdier types can be obtained by reduction to Seiffert's spherical spiral and Bernoulli lemniscate in the presence of Calogero-like or harmonic oscillator potentials, or by angular momentum reduction of a free motion on some AdS2 -related surfaces in the presence of Aharonov-Bohm flux. The limiting cases include the Higgs and Mathews-Lakshmanan oscillator models as well as a reflectionless model with PDM exploited recently in the discussion of cosmological inflationary scenarios.
International Nuclear Information System (INIS)
We use recent experimental measurements of tau branching fractions to determine the weak charged current magnetic and electric dipole moments of the tau and the Michel parameter η with unprecedented precision. These results are then used to constrain the tau compositeness scale and the allowed parameter space for Higgs doublet models. We also present new constraints on the mass of the tau neutrino and its mixing with a fourth generation neutrino
Galaxy Mergers and Dark Matter Halo Mergers in LCDM: Mass, Redshift, and Mass-Ratio Dependence
Energy Technology Data Exchange (ETDEWEB)
Stewart, Kyle R.; Bullock, James S.; Barton, Elizabeth J.; /UC, Irvine; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC
2009-08-03
We employ a high-resolution LCDM N-body simulation to present merger rate predictions for dark matter halos and investigate how common merger-related observables for galaxies - such as close pair counts, starburst counts, and the morphologically disturbed fraction - likely scale with luminosity, stellar mass, merger mass ratio, and redshift from z = 0 to z = 4. We provide a simple 'universal' fitting formula that describes our derived merger rates for dark matter halos a function of dark halo mass, merger mass ratio, and redshift, and go on to predict galaxy merger rates using number density-matching to associate halos with galaxies. For example, we find that the instantaneous merger rate of m/M > 0.3 mass ratio events into typical L {approx}> fL{sub *} galaxies follows the simple relation dN/dt {approx_equal} 0.03(1+f)Gyr{sup -1} (1+z){sup 2.1}. Despite the rapid increase in merger rate with redshift, only a small fraction of > 0.4L{sub *} high-redshift galaxies ({approx} 3% at z = 2) should have experienced a major merger (m/M > 0.3) in the very recent past (t < 100 Myr). This suggests that short-lived, merger-induced bursts of star formation should not contribute significantly to the global star formation rate at early times, in agreement with observational indications. In contrast, a fairly high fraction ({approx} 20%) of those z = 2 galaxies should have experienced a morphologically transformative merger within a virial dynamical time. We compare our results to observational merger rate estimates from both morphological indicators and pair-fraction based determinations between z = 0-2 and show that they are consistent with our predictions. However, we emphasize that great care must be made in these comparisons because the predicted observables depend very sensitively on galaxy luminosity, redshift, overall mass ratio, and uncertain relaxation timescales for merger remnants. We show that the majority of bright galaxies at z = 3 should have undergone a
Anomalous dimensions of higher spin currents in large N CFTs
Hikida, Yasuaki
2016-01-01
We examine anomalous dimensions of higher spin currents in the critical O(N) scalar model and the Gross-Neveu model in arbitrary d dimensions. These two models are proposed to be dual to the type A and type B Vasiliev theories, respectively. We reproduce the known results on the anomalous dimensions to the leading order in 1/N by using conformal perturbation theory. This work can be regarded as an extension of previous work on the critical O(N) scalars in 3 dimensions, where it was shown that the bulk computation for the masses of higher spin fields on AdS_4 can be mapped to the boundary one in conformal perturbation theory. The anomalous dimensions of the both theories agree with each other up to an overall factor depending only on d, and the coincidence is explained for d=3 by making use of N=2 supersymmetry.
Biswas, Anirban; Choubey, Sandhya; Khan, Sarif
2016-01-01
The observation of neutrino masses, mixing and the existence of dark matter are amongst the most important signatures of physics beyond the Standard Model (SM). In this paper, we propose to extend the SM by a local $L_\\mu - L_\\tau$ gauge symmetry, two additional complex scalars and three right-handed neutrinos. The $L_\\mu - L_\\tau$ gauge symmetry is broken spontaneously when one of the scalars acquires a vacuum expectation value. The $L_\\mu - L_\\tau$ gauge symmetry is known to be anomaly free...
Location Dependence of Mass Sensitivity for Acoustic Wave Devices
Directory of Open Access Journals (Sweden)
Kewei Zhang
2015-09-01
Full Text Available It is introduced that the mass sensitivity (Sm of an acoustic wave (AW device with a concentrated mass can be simply determined using its mode shape function: the Sm is proportional to the square of its mode shape. By using the Sm of an AW device with a uniform mass, which is known for almost all AW devices, the Sm of an AW device with a concentrated mass at different locations can be determined. The method is confirmed by numerical simulation for one type of AW device and the results from two other types of AW devices.
Jia, Lian-Bao
2016-01-01
The WIMPs are considered one of the most favorable dark matter (DM) candidates, but as the upper bound on the interaction between DM and standard model (SM) particles obtained by the upgraded facilities for direct detection of DM gets lower and lower. Researchers turn their attention to search for less massive DM candidates, i.e. light dark matter of MeV scale. The recently measured anomalous transition in $^8$Be suggests that there exists a vectorial boson which may mediate the interaction between DM and SM particles. Based on this scenario, we combine the relevant cosmological data to constrain the mass range of DM, and have found that there exists a model parameter space where the requirements are satisfied, a range of $10.4 \\lesssim m_{\\phi} \\lesssim 16.7 $ MeV for scalar DM, and $13.6 \\lesssim m_{V} \\lesssim 16.7$ MeV for vectorial DM is demanded. Then a possibility of directly detecting such light DM particles at the earth detector via the DM-electron scattering is briefly studied in this framework.
Dependence of X-ray Burst Models on Nuclear Masses
Schatz, H
2016-01-01
X-ray burst model predictions of light curves and final composition of the nuclear ashes are affected by uncertain nuclear physics. Nuclear masses play an important role. Significant progress has been made in measuring the masses of very neutron deficient rare isotopes along the path of the rapid proton capture process (rp-process) in X-ray bursts. This paper identifies the remaining nuclear mass uncertainties in X-ray burst models using a one zone model that takes into account the changes in temperature and density evolution caused by changes in the nuclear physics. Two types of bursts are investigated - a typical mixed H/He burst with a limited rp-process and an extreme mixed H/He burst with an extended rp-process. Only three remaining nuclear mass uncertainties affect the light curve predictions of a typical H/He burst, and only three additional masses affect the composition strongly. A larger number of mass uncertainties remains to be addressed for the extreme H/He burst. Mass uncertainties of better than...
The Dependence of Galaxy Type on Host Halo Mass
Weinmann, S M; Yang, X; Mo, H J; Weinmann, Simone M.; Bosch, Frank C. van den; Yang, Xiaohu
2006-01-01
We examine the relation between galaxy properties and environment in the SDSS DR2, quantifying environment in terms of the mass of the host halo, which is obtained with a new iterative group finder. We find that galaxy type fractions scale strongly and smoothly with halo mass, but, at fixed mass, not with luminosity. We compare these findings with the semi-analytical galaxy formation model of Croton et al. (2006). The discrepancies we find can be explained with an oversimplified implementation of strangulation, the neglect of tidal stripping, and shortcomings in the treatments of dust extinction and/or AGN feedback.
The Mass Dependence of Dwarf Satellite Galaxy Quenching
Slater, Colin T.; Bell, Eric F.
2014-09-01
We combine observations of the Local Group with data from the NASA-Sloan Atlas to show the variation in the quenched fraction of satellite galaxies from low-mass dwarf spheroidals and dwarf irregulars to more massive dwarfs similar to the Magellanic Clouds. While almost all of the low-mass (M sstarf 5 Gyr ago. We also characterize how the susceptibility of dwarfs to ram pressure must vary as a function of mass if it is to account for the change in quenched fractions. Though neither model predicts the quenching effectiveness a priori, this modeling illustrates the physical requirements that the observed quenched fractions place on possible quenching mechanisms.
Role of isospin degree of freedom on the mass dependence of balance energy
Gautam, Sakshi; Sood, Aman D.
2010-01-01
The effect of isospin degree of freedom on balance energy and its mass dependence has been studied for the mass range between 50 and 350. Our results shows the dominance of Coulomb potential in isospin effects.
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
The mass dependence of critical parameters for the liquid-gas phase transition andmultiplicity of intermediate mass fragment in the heavyion reaction is qualitatively explored under the frameworkof lattice gas model. Some results are compared with experimental data.
The mass dependence of dwarf satellite galaxy quenching
Energy Technology Data Exchange (ETDEWEB)
Slater, Colin T.; Bell, Eric F., E-mail: ctslater@umich.edu, E-mail: ericbell@umich.edu [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States)
2014-09-10
We combine observations of the Local Group with data from the NASA-Sloan Atlas to show the variation in the quenched fraction of satellite galaxies from low-mass dwarf spheroidals and dwarf irregulars to more massive dwarfs similar to the Magellanic Clouds. While almost all of the low-mass (M {sub *} ≲ 10{sup 7} M {sub ☉}) dwarfs are quenched, at higher masses the quenched fraction decreases to approximately 40%-50%. This change in the quenched fraction is large and suggests a sudden change in the effectiveness of quenching that correlates with satellite mass. We combine this observation with models of satellite infall and ram pressure stripping to show that the low-mass satellites must quench within 1-2 Gyr of pericenter passage to maintain a high quenched fraction, but that many more massive dwarfs must continue to form stars today even though they likely fell into their host >5 Gyr ago. We also characterize how the susceptibility of dwarfs to ram pressure must vary as a function of mass if it is to account for the change in quenched fractions. Though neither model predicts the quenching effectiveness a priori, this modeling illustrates the physical requirements that the observed quenched fractions place on possible quenching mechanisms.
The Mass Dependence of Dwarf Satellite Galaxy Quenching
Slater, Colin T
2014-01-01
We combine observations of the Local Group with data from the NASA-Sloan Atlas to show the variation in the quenched fraction of satellite galaxies from low mass dwarf spheroidals and dwarf irregulars to more massive dwarfs similar to the Magellanic clouds. While almost all of the low mass ($M_\\star \\lesssim 10^7$ $M_\\odot$) dwarfs are quenched, at higher masses the quenched fraction decreases to approximately 40-50%. This change in the quenched fraction is large, and suggests a sudden change in the effectiveness of quenching that correlates with satellite mass. We combine this observation with models of satellite infall and ram pressure stripping to show that the low mass satellites must quench within 1-2 Gyr of pericenter passage to maintain a high quenched fraction, but that many more massive dwarfs must continue to form stars today even though they likely fell in to their host >5 Gyr ago. We also characterize how the susceptibility of dwarfs to ram pressure must vary as a function of mass if it is to acco...
Aaboud, Morad; Abbott, Brad; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Aben, Rosemarie; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adachi, Shunsuke; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alshehri, Azzah Aziz; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethani, Agni; Bethke, Siegfried; Bevan, Adrian John; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Billoud, Thomas Remy Victor; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bisanz, Tobias; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blue, Andrew; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas Peter; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelijn, Remco; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chatterjee, Avishek; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocca, Claudia; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cormier, Kyle James Read; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cueto, Ana; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Czirr, Hendrik; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Merlin; Davison, Peter; Dawe, Edmund; Dawson, Ian; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Díez Cornell, Sergio; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; do Vale, Maria Aline Barros; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dolejsi, Jiri; Dolezal, Zdenek; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudder, Andreas Christian; Duffield, Emily Marie; Duflot, Laurent; Dührssen, Michael; Dumancic, Mirta; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edwards, Nicholas Charles; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Ezzi, Mohammed; Fabbri, Federica; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farina, Edoardo Maria; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Rob Roy MacGregor; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Louis Guillaume; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gasnikova, Ksenia; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisen, Marc; Geisler, Manuel Patrice; Gellerstedt, Karl; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Gui, Bin; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Ruchi; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Hageböck, Stephan; Hagihara, Mutsuto; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hartmann, Nikolai Marcel; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayakawa, Daiki; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Herde, Hannah; Herget, Verena; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Holmes, Tova Ray; Homann, Michael; Honda, Takuya; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hoya, Joaquin; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Qipeng; Hu, Shuyang; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Huo, Peng; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuriy; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Paul; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanneau, Fabien; Jeanty, Laura; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Jivan, Harshna; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kaji, Toshiaki; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kanjir, Luka; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentoro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Kharlamova, Tatyana; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kilby, Callum; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koehler, Nicolas Maximilian; Koffas, Thomas; Koffeman, Els; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Koulouris, Aimilianos; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kravchenko, Anton; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lanfermann, Marie Christine; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Benoit; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Dave; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Changqiao; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Hongbin; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina Maria; Loch, Peter; Loebinger, Fred; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; López, Jorge Andrés; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Malone, Claire; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Luciano; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti-Garcia, Salvador; Martin, Brian; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Maznas, Ioannis; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McDonald, Emily; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Melo, Matej; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Minegishi, Yuji; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Mlynarikova, Michaela; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Stefanie; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Muškinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nguyen Manh, Tuan; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'grady, Fionnbarr; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganini, Michela; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Perez Codina, Estel; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puddu, Daniele; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Ratti, Maria Giulia; Rauch, Daniel; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Ravinovich, Ilia; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reed, Robert; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reiss, Andreas; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodina, Yulia; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Roloff, Jennifer; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosien, Nils-Arne; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sandhoff, Marisa; Sandoval, Carlos; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sato, Koji; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Savic, Natascha; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Leigh; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schott, Matthias; Schouwenberg, Jeroen; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schulte, Alexandra; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shirabe, Shohei; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shope, David Richard; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sivoklokov, Serguei; Sjölin, Jörgen; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smiesko, Juraj; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Ian Michael; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Hong Ye; Sood, Alexander; Sopczak, Andre; Sopko, Vit; Sorin, Veronica; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Masahiro; Tanaka, Reisaburo; Tanaka, Shuji; Tanioka, Ryo; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Tornambe, Peter; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tu, Yanjun; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turgeman, Daniel; Turra, Ruggero; Tuts, Michael; Tyndel, Mike; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usui, Junya; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vasquez, Gerardo; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veeraraghavan, Venkatesh; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Wenxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Weber, Stephen; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Michael David; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wolf, Tim Michael Heinz; Wolter, Marcin Wladyslaw; Wolters, Helmut; Worm, Steven D; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Matt; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zwalinski, Lukasz
2016-01-01
A search is presented for anomalous quartic gauge boson couplings in vector-boson scattering. The data for the analysis correspond to $20.2$ fb$^{-1}$ of $\\sqrt{s}=8$ TeV $pp$ collisions, and were collected in 2012 by the ATLAS experiment at the Large Hadron Collider. The search looks for the production of $WW$ or $WZ$ boson pairs accompanied by a high-mass dijet system, with one $W$ decaying leptonically, and a $W$ or $Z$ decaying hadronically. The hadronically decaying $W/Z$ is reconstructed as either two small-radius jets or one large-radius jet using jet substructure techniques. Constraints on the anomalous quartic gauge boson coupling parameters $\\alpha_4$ and $\\alpha_5$ are set by fitting the transverse mass of the diboson system, and the resulting 95 % confidence intervals are $-0.024<\\alpha_4<0.030$ and $-0.028<\\alpha_5<0.033$.
Nonlocal Anomalous Hall Effect
Zhang, Steven S.-L.; Vignale, Giovanni
2016-04-01
The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect—the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt /YIG structures.
Nonlocal Anomalous Hall Effect.
Zhang, Steven S-L; Vignale, Giovanni
2016-04-01
The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect-the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt/YIG structures.
Flow-dependent mass transfer may trigger endothelial signaling cascades.
Vandrangi, Prashanthi; Sosa, Martha; Shyy, John Y-J; Rodgers, Victor G J
2012-01-01
It is well known that fluid mechanical forces directly impact endothelial signaling pathways. But while this general observation is clear, less apparent are the underlying mechanisms that initiate these critical signaling processes. This is because fluid mechanical forces can offer a direct mechanical input to possible mechanotransducers as well as alter critical mass transport characteristics (i.e., concentration gradients) of a host of chemical stimuli present in the blood stream. However, it has recently been accepted that mechanotransduction (direct mechanical force input), and not mass transfer, is the fundamental mechanism for many hemodynamic force-modulated endothelial signaling pathways and their downstream gene products. This conclusion has been largely based, indirectly, on accepted criteria that correlate signaling behavior and shear rate and shear stress, relative to changes in viscosity. However, in this work, we investigate the negative control for these criteria. Here we computationally and experimentally subject mass-transfer limited systems, independent of mechanotransduction, to the purported criteria. The results showed that the negative control (mass-transfer limited system) produced the same trends that have been used to identify mechanotransduction-dominant systems. Thus, the widely used viscosity-related shear stress and shear rate criteria are insufficient in determining mechanotransduction-dominant systems. Thus, research should continue to consider the importance of mass transfer in triggering signaling cascades.
Impact parameter dependence of collective flow and its disappearance for different mass asymmetries
Goyal, Supriya
2011-01-01
We study the role of impact parameter on the collective flow and its disappearance for different mass asymmetric reactions. The mass asymmetry is varied from 0 to 0.7 keeping the total mass of the system fixed. Our results clearly indicate a significant role of impact parameter on the collective flow and its disappearance for the mass asymmetric reactions. The impact parameter dependence is also found to vary with mass asymmetry of the reaction.
Analytical approximation to the dynamics of a binary stars system with time depending mass variation
López, Gustavo V
2016-01-01
We study the classical dynamics of a binary stars when there is an interchange of mass between them. Assuming that one of the star is more massive than the other, the dynamics of the lighter one is analyzed as a function of its time depending mass variation. Within our approximations and models for mass transference, we obtain a general result which establishes that if the lightest star looses mass, its period increases. If the lightest star win mass, its period decreases.
Mass- and isospin-dependence of short-range correlated pairs
Mosel, U
2016-01-01
The target-mass number dependence of nucleon-nucleon pairs with short-range correlations is explored in a physically transparent geometrical model. The observed $A$-dependence of 2-nucleon ejection cross sections in $(e,e')$ reactions is found to reflect the mass-dependence of nuclear density distributions. The dependence of proton-proton vs. proton-neutron pairs is also analyzed in this model. The mass-number dependence relative to $^{12}C$ can be understood using simple combinatorics.
The Uses and Dependency Model of Mass Communication.
Rubin, Alan M.; Windahl, Sven
1986-01-01
Responds to criticism of the uses and gratification model by proposing a modified model integrating the dependency perspective. Suggests that this integrated model broadens the heuristic application of the earlier model. (MS)
On the quark-mass dependence of baryon ground-state masses
Energy Technology Data Exchange (ETDEWEB)
Semke, Alexander
2010-02-17
Baryon masses of the flavour SU(3) octet and decuplet baryons are calculated in the framework of the Chiral Perturbations Theory - the effective field theory of the strong interaction. The chiral extrapolation to the higher meson (quark) masses is carried out. The comparison with the recent results on the baryon masses from lattice calculations are presented. (orig.)
On the quark-mass dependence of baryon ground-state masses
International Nuclear Information System (INIS)
Baryon masses of the flavour SU(3) octet and decuplet baryons are calculated in the framework of the Chiral Perturbations Theory - the effective field theory of the strong interaction. The chiral extrapolation to the higher meson (quark) masses is carried out. The comparison with the recent results on the baryon masses from lattice calculations are presented. (orig.)
Institute of Scientific and Technical Information of China (English)
Axel Schulze-Halberg
2005-01-01
We study space-time transformations of the time-dependent Schr(o)dinger equation (TDSE) with time- and position-dependent (effective) mass. We obtain the most general space-time transformation that maps such a TDSE onto another one of its kind. The transformed potential is given in explicit form.
THE MASS DEPENDENCE BETWEEN PROTOPLANETARY DISKS AND THEIR STELLAR HOSTS
International Nuclear Information System (INIS)
We present a substantial extension of the millimeter (mm) wave continuum photometry catalog for circumstellar dust disks in the Taurus star-forming region, based on a new ''snapshot'' λ = 1.3 mm survey with the Submillimeter Array. Combining these new data with measurements in the literature, we construct a mm-wave luminosity distribution, f(Lmm), for Class II disks that is statistically complete for stellar hosts with spectral types earlier than M8.5 and has a 3σ depth of roughly 3 mJy. The resulting census eliminates a longstanding selection bias against disks with late-type hosts, and thereby demonstrates that there is a strong correlation between Lmm and the host spectral type. By translating the locations of individual stars in the Hertzsprung-Russell diagram into masses and ages, and adopting a simple conversion between Lmm and the disk mass, Md , we confirm that this correlation corresponds to a statistically robust relationship between the masses of dust disks and the stars that host them. A Bayesian regression technique is used to characterize these relationships in the presence of measurement errors, data censoring, and significant intrinsic scatter: the best-fit results indicate a typical 1.3 mm flux density of ∼25 mJy for 1 M☉ hosts and a power-law scaling Lmm∝M*1.5-2.0. We suggest that a reasonable treatment of dust temperature in the conversion from Lmm to Md favors an inherently linear Md ∝M* scaling, with a typical disk-to-star mass ratio of ∼0.2%-0.6%. The measured rms dispersion around this regression curve is ±0.7 dex, suggesting that the combined effects of diverse evolutionary states, dust opacities, and temperatures in these disks imprint a full width at half-maximum range of a factor of ∼40 on the inferred Md (or Lmm) at any given host mass. We argue that this relationship between Md and M* likely represents the origin of the inferred correlation between giant planet frequency and host star mass in the exoplanet population, and
Anomalous Hall effect in polycrystalline Ni films
Guo, Zaibing
2012-02-01
We systematically studied the anomalous Hall effect in a series of polycrystalline Ni films with thickness ranging from 4 to 200 nm. It is found that both the longitudinal and anomalous Hall resistivity increased greatly as film thickness decreased. This enhancement should be related to the surface scattering. In the ultrathin films (46 nm thick), weak localization corrections to anomalous Hall conductivity were studied. The granular model, taking into account the dominated intergranular tunneling, has been employed to explain this phenomenon, which can explain the weak dependence of anomalous Hall resistivity on longitudinal resistivity as well. © 2011 Elsevier Ltd. All rights reserved.
QCD One-Loop Effective Coupling Constant and Quark Mass Given in a Mass-Dependent Renormalization
Institute of Scientific and Technical Information of China (English)
SU Jun-Chen; SHAN Lian-You; CAO Ying-Hui
2001-01-01
The QCD one-loop renormalization is restudied in a mass-dependent subtraction scheme in which the quark mass is not set to vanish and the renormalization point is chosen to be an arbitrary time-like momentum. The correctness of the subtraction is ensured by the Ward identities which are respected in all the processes of subtraction.By considering the mass effect, the effective coupling constant and the effective quark masses derived by solving the renormalization group equations are given in improved expressions which are different from the previous results.PACS numbers: 11.10.Gh, 11.10.Hi, 12.38.-t, 12.38.Bx
Analytic results in the position-dependent mass Schrodinger problem
Cunha, M S
2013-01-01
We investigate the Schrodinger equation for a particle with a nonuniform solitonic mass density. First, we discuss in extent the (nontrivial) $V(x)=0$ case whose solutions are hipergeometric functions in $\\tanh^2 x$. Then, we consider an external hyperbolic-tangent potential. We show that the effective quantum mechanical problem is given by a Heun class equation and find {analytically} an eigenbasis for the space of solutions. We also compute the eigenstates for a potential of the form $V(x)=V_0 \\sinh^2x$
Quark Mass Dependence of Nucleon Magnetic Moment and Charge Radii
Institute of Scientific and Technical Information of China (English)
MA Wei-Xing; ZHOU Li-Juan; GU Yun-Ting; PING Rong-Gang
2005-01-01
Understanding hadron structure within the framework of QCD is an extremely challenging problem. Our purpose here is to explain the model-independent consequences of the approximated chiral symmetry of QCD for two famous results concerning the quark structure of the nucleon. We show that both the apparent success of the constituent quark model in reproducing the ratio of proton to neutron magnetic moments and the apparent success of the Foldy term in reproducing the observed charge radius of the neutron are coincidental. That is, a relatively small change of the current quark mass would spoil both results.
Isospin dependence of nucleon effective masses in neutron-rich matter
Li, Bao-An; Chen, Lie-Wen; Li, Xiao-Hua
2016-01-01
In this talk, we first briefly review the isospin dependence of the total nucleon effective mass $M^{\\ast}_{J}$ inferred from analyzing nucleon-nucleus scattering data within an isospin dependent non-relativistic optical potential model, and the isospin dependence of the nucleon E-mass $M^{\\ast,\\rm{E}}_{J}$ obtained from applying the Migdal-Luttinger theorem to a phenomenological single-nucleon momentum distribution in nuclei constrained by recent electron-nucleus scattering experiments. Combining information about the isospin dependence of both the nucleon total effective mass and E-mass, we then infer the isospin dependence of nucleon k-mass using the well-known relation $M^{\\ast}_{J}=M^{\\ast,\\rm{E}}_{J}\\cdot M^{\\ast,\\rm{k}}_{J}$. Implications of the results on the nucleon mean free path (MFP) in neutron-rich matter are discussed.
Quark mass density- and temperature- dependent model for bulk strange quark matter
al, Yun Zhang et.
2002-01-01
It is shown that the quark mass density-dependent model can not be used to explain the process of the quark deconfinement phase transition because the quark confinement is permanent in this model. A quark mass density- and temperature-dependent model in which the quark confinement is impermanent has been suggested. We argue that the vacuum energy density B is a function of temperature. The dynamical and thermodynamical properties of bulk strange quark matter for quark mass density- and temper...
Binary accretion rates: dependence on temperature and mass-ratio
Young, Matthew D
2015-01-01
We perform a series of 2D smoothed particle hydrodynamics (SPH) simulations of gas accretion onto binaries via a circumbinary disc, for a range of gas temperatures and binary mass ratios ($q$). We show that increasing the gas temperature increases the accretion rate onto the primary for all values of the binary mass ratio: for example, for $q=0.1$ and a fixed binary separation, an increase of normalised sound speed by a factor of $5$ (from our "cold" to "hot" simulations) changes the fraction of the accreted gas that flows on to the primary from $ 10\\%$ to $\\sim40\\%$. We present a simple parametrisation for the average accretion rate of each binary component accurate to within a few percent and argue that this parametrisation (rather than those in the literature based on warmer simulations) is relevant to supermassive black hole accretion and all but the widest stellar binaries. We present trajectories for the growth of $q$ during circumbinary disc accretion and argue that the period distribution of stellar "...
Spatial dependence of 2MASS luminosity and mass functions in the old open cluster NGC 188
Bonatto, C; Santos, J F C
2005-01-01
Luminosity and mass functions in the old open cluster NGC 188 are analysed by means of J and H 2MASS photometry. Within the uncertainties, the observed projected radial density profile of NGC 188 departs from the two-parameter King model in two inner regions, which reflects the non-virialized dynamical state and possibly, some degree of non-sphericity in the spatial shape of this old open cluster. Fits with two and three-parameter King models to the radial distribution of stars resulted in a core radius of 1.3 pc and a tidal radius of 21 pc. The present 2MASS analysis resulted in significant slope variations with distance in the mass function $\\phi(m)\\propto m^{-(1+\\chi)}$, being flat in the central parts ($\\chi=0.6\\pm0.7$) and steep in the cluster outskirts ($\\chi=7.2\\pm0.6$). The overall mass function has a slope $\\chi=1.9\\pm0.7$, slightly steeper than a standard Salpeter mass function. Solar metallicity Padova isochrone fits to the near-infrared colour-magnitude diagram of NGC 188 resulted in an age of $7....
Semiclassical Method to Schr(o)dinger Equation with Position-Dependent Effective Mass
Institute of Scientific and Technical Information of China (English)
CHEN Gang; XUAN Pei-Cai; CHEN Zi-Dong
2006-01-01
In this paper, two novel semiclassical methods including the standard and supersymmetric WKB quantization conditions are suggested to discuss the Schrodinger equation with position-dependent effective mass. From a proper coordinate transformation, the formalism of the Schrodinger equation with position-dependent effective mass is mapped into isospectral one with constant mass and therefore for a given mass distribution and physical potential function the bound state energy spectrum can be determined easily by above method associated with a simple integral formula. It is shown that our method can give the analytical results for some exactly-solvable quantum systems.
Generalized Harmonic Oscillator and the Schr(o)dinger Equation with Position-Dependent Mass
Institute of Scientific and Technical Information of China (English)
JU Guo-Xing; CAI Chang-Ying; REN Zhong-Zhou
2009-01-01
We study the generalized harmonic oscillator that has both the position-dependent mass and the potential depending on the form of mass function in a more general framework. The explicit expressions of the eigenvalue and eigenfunction for such a system are given, they have the same forms as those for the usual harmonic oscillator with constant mass. The coherent state and its properties for the system with PDM are also discussed. We give the corresponding effective potentials for several mass functions, the systems with such potentials are isospectral to the usual harmonic oscillator.
Evolution of low-mass X-ray binaries: dependence on the mass of the compact object
Institute of Scientific and Technical Information of China (English)
Qian Xu; Tao Li; Xiang-Dong Li
2012-01-01
We perform numerical calculations to simulate the evolution of low-mass X-ray binary systems.For the accreting compact object we consider the initial mass of 1.4,10,20,100,200,500 and 1000 M☉,corresponding to neutron stars (NSs),stellarmass black holes (BHs) and intermediate-mass BHs.Mass transfer in these binaries is driven by nuclear evolution of the donors and/or orbital angular momentum loss due to magnetic braking and gravitational wave radiation.For the different systems,we determine their bifurcation periods Pbif that separate the formation of converging systems from the diverging ones,and show that Pbif changes from ～ 1 d to (≥)3 d for a 1 M☉ donor star,with increasing initial accretor mass from 1.4 to 1000 M☉.This means that the dominant mechanism of orbital angular momentum loss changes from magnetic braking to gravitational radiation.As an illustration we compare the evolution of binaries consisting of a secondary star of 1 M☉ at a fixed initial period of 2 d.In the case of the NS or stellar-mass BH accretor,the system evolves to a well-detached He white dwarf-neutron star/black hole pair,but it evolves to an ultracompact binary if the compact object is an intermediate-mass BH.Thus the binary evolution heavily depends upon the mass of the compact object.However,we show that the final orbital period-white dwarf mass relation found for NS low-mass X-ray binaries is fairly insensitive to the initial mass of the accreting star,even if it is an intermediate-mass BH.
Moments of heavy quark correlators with two masses: exact mass dependence to three loops
Grigo, Jonathan; Marquard, Peter; Steinhauser, Matthias
2012-01-01
We compute moments of non-diagonal correlators with two massive quarks. Results are obtained where no restriction on the ratio of the masses is assumed. Both analytical and numerical methods are applied in order to evaluate the two-scale master integrals at three loops. We provide explicit results for the latter which are useful for other calculations. As a by-product we obtain results for the electroweak $\\rho$ parameter up to three loops which can be applied to a fourth generation of quarks with arbitrary masses.
Temperature dependence of meson screening masses; a comparison of effective model with lattice QCD
Ishii, Masahiro; Kashiwa, Kouji; Kouno, Hiroaki; Yahiro, Masanobu
2015-01-01
Temperature dependence of pion and sigma-meson screening masses is evaluated by the Polyakov-loop extended Nambu--Jona-Lasinio model with the entanglement vertex (EPNJL model). We propose a practical way of calculating meson screening masses in the NJL-type effective models. The method based on the Pauli-Villars regularization solves the well-known difficulty that the evaluation of screening masses is not easy in the NJL-type effective models. The method is applied to analyze temperature dependence of pion screening masses calculated with state-of-the-art lattice simulations with success in reproducing the lattice QCD results. We predict the temperature dependence of pole mass by using EPNJL model.
Effect of mass asymmetry on the mass dependence of balance energy
Goyal, Supriya
2011-01-01
We demonstrate the role of the mass asymmetry on the balance energy (Ebal) by studying asymmetric reactions throughout the periodic table and over entire colliding geometry. Our results, which are almost independent of the system size and as well as of the colliding geometries indicate a sizeable effect of the asymmetry of the reaction on the balance energy.
Energy Technology Data Exchange (ETDEWEB)
Tsirliganis, N.C. [Cultural and Educational Technology Institute, Archaeometry Laboratory, Tsimiski 58, 67100 Xanthi (Greece); Polymeris, G.S. [Cultural and Educational Technology Institute, Archaeometry Laboratory, Tsimiski 58, 67100 Xanthi (Greece); Nuclear Physics Laboratory, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kitis, G. [Nuclear Physics Laboratory, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)]. E-mail: gkitis@auth.gr; Pagonis, V. [Physics Department, McDaniel College, Westminster, MD 21158 (United States)
2007-10-15
The anomalous fading (AF) of thermoluminescence (TL) and optically stimulated luminescence (OSL) signals in Durango apatite is attributed to tunnelling effects. Electrons from the TL and OSL traps in this material are transferred, via a tunnelling effect, to the recombination sites. The availability of recombination sites for tunnelled electrons is of major importance for the degree of AF rate observed in this material. It is expected that a variation of the number of the electron recombination sites will be reflected in the experimentally measured AF rate. In the present work an investigation of the recombination sites for the tunnelled electrons is attempted by studying the AF effect using a special technique, in which the anomalously faded TL (OSL) is replaced by an equal amount of TL (OSL) induced by a beta dose.
Scattering states of Dirac particle equation with position dependent mass under the cusp potential
Chabab, M; Hassanabadi, H; Oulne, M; Zare, S
2016-01-01
We solved the one-dimensional position-dependent mass Dirac equation in the presence of the cusp potential and reported the solutions in terms of the Whittaker functions. We have derived the reflection and transmission coefficients by making use of the matching conditions on the wave functions. The effect of position dependent mass on the reflection and transmission coefficients of the system is duly investigated.
Environment-dependent genetic correlations between development time and body mass in a scorpionfly
Engqvist, Leif
2007-01-01
Development time and body mass at maturation are two important fitness traits fundamental for our understanding of life history theory. Generally, fast development is associated with small adult body mass, as it will take longer to grow large. However, the strength of this trade-off may depend on average food availability, as the potential benefit of long development will depend on the rate of food intake. Here, I report results of a food manipulation experiment during larval development of t...
Energy Technology Data Exchange (ETDEWEB)
Beane, S R; Detmold, W; Lin, H W; Luu, T C; Orginos, K; Parreno, A; Savage, M J; Torok, A; Walker-Loud, A
2011-07-01
The volume dependence of the octet baryon masses and relations among them are explored with Lattice QCD. Calculations are performed with nf = 2 + 1 clover fermion discretization in four lattice volumes, with spatial extent L ? 2.0, 2.5, 3.0 and 4.0 fm, with an anisotropic lattice spacing of b_s ? 0.123 fm in the spatial direction, and b_t = b_s/3.5 in the time direction, and at a pion mass of m_\\pi ? 390 MeV. The typical precision of the ground-state baryon mass determination is dependence of the masses, the Gell-Mann Okubo mass-relation, and of other mass combinations. A comparison with the predictions of heavy baryon chiral perturbation theory is performed in both the SU(2)L ? SU(2)R and SU(3)L ? SU(3)R expansions. Predictions of the three-flavor expansion for the hadron masses are found to describe the observed volume dependences reasonably well. Further, the ?N? axial coupling constant is extracted from the volume dependence of the nucleon mass in the two-flavor expansion, with only small modifications in the three-flavor expansion from the inclusion of kaons and eta's. At a given value of m?L, the finite-volume contributions to the nucleon mass are predicted to be significantly smaller at m_\\pi ? 140 MeV than at m_\\pi ? 390 MeV due to a coefficient that scales as ? m_\\pi^3. This is relevant for the design of future ensembles of lattice gauge-field configurations. Finally, the volume dependence of the pion and kaon masses are analyzed with two-flavor and three-flavor chiral perturbation theory.
Indian Academy of Sciences (India)
V K Gupta; Asha Gupta; S Singh; J D Anand
2003-10-01
We report on the study of the mass–radius (–) relation and the radial oscillations of magnetized proto strange stars. For the quark matter we have employed the very recent modiﬁcation, the temperature- and density-dependent quark mass model of the well-known density-dependent quark mass model. We ﬁnd that the effect of magnetic ﬁeld, both on the maximum mass and radial frequencies, is rather small. Also a proto strange star, whether magnetized or otherwise, is more likely to evolve into a strange star rather than transform into a black hole.
Neutrino Masses, Scale-Dependent Growth, and Redshift-Space Distortions
Hernández, Oscar F
2016-01-01
Massive neutrinos leave a unique signature in the large scale clustering of matter. We investigate the wavenumber dependence of the growth factor arising from neutrino masses and use a Fisher analysis to determine the aspects of a galaxy survey needed to measure this scale dependence.
Conformally Flat Metric, Position-Dependent Mass and Cold Dark Matter
Tomilchik, L M; Tomilchik, Lev M.; Kudryashov, Vladimir V.
2004-01-01
The maximal acceleration (MA) problem associated with the position-dependent rest mass concept is considered. New arguments in favor of the mass-dependent maximal acceleration (MDMA) are put forward. The hypothesis that there exists a maximal force with the numerical value equal to the inverse Einstein's gravitation constant is advanced. The Lagrangian and Hamiltonian classical dynamics of a point-like particle with the coordinate-dependent mass is given. The effective Lagrangian for the pure gravitational interaction of a test particle is proposed. Within the scope of this model the typical spiral galaxy rotation is described. It is shown that by this model the peculiar form of the corresponding rotation curve is as a whole reproduced without recourse to the dark matter concept. Also, it is demonstrated that the canonical quantization of this model leads directly to the Dirac oscillator model for a particle with Plank's mass.
Production and Resource Scheduling in Mass Customization with Dependent Setup Consideration
DEFF Research Database (Denmark)
Nielsen, Izabela Ewa; Bocewicz, G.; Do, Ngoc Anh Dung
2014-01-01
contribute to the success of mass customization. This paper addresses the problem of production and resource scheduling for a production system with dependent setup and internal transportation such as AGVs in a mass customization environment. A constraint-programming-based methodology is developed to satisfy......Mass customization has been implemented in services and manufactures to increase the competitiveness of companies. In a manufacturing company, the procedure for production and resource scheduling has to be changed to adapt to mass customization. A good production and resource scheduling will...... the customer demands on-time. An example is presented to illustrate the performance of the proposed methodology....
Does the body mass depend upon its speed. Discussion via exchange of letters
Amusia, Miron Ya
2013-01-01
The presented letters covers an almost year-long discussion of the author and a Very Qualified scientist, VQS, about the dependence of mass upon speed if relativistic corrections are taken into account. VQS believes that since mass is a scalar, it cannot depend upon speed and has to be the same in all inertial coordinate frames. In his view, the very idea of speed dependence of the mass of a particle or a body is incorrect and misleading. As such, the notion of speed dependence of a particle mass has to be eliminated from textbooks on physics and from teaching of this subject. The author claims that this notion has the right to exist, is easily understandable and convenient for most of the students, both non physicists and even physicist. His view is that it is nothing wrong in expressions like particle mass increases with the growth of speed. His view upon the debate is that both approaches are equally correct. His view is that the dilemma depends or not depends is a matter of taste and convenience, not of s...
A new methodology to test galaxy formation models using the dependence of clustering on stellar mass
Campbell, David J R; Mitchell, Peter D; Helly, John C; Gonzalez-Perez, Violeta; Lacey, Cedric G; Lagos, Claudia del P; Simha, Vimal; Farrow, Daniel J
2014-01-01
We present predictions for the two-point correlation function of galaxy clustering as a function of stellar mass, computed using two new versions of the GALFORM semi-analytic galaxy formation model. These models make use of a new high resolution, large volume N-body simulation, set in the WMAP7 cosmology. One model uses a universal stellar initial mass function (IMF), while the other assumes different IMFs for quiescent star formation and bursts. Particular consideration is given to how the assumptions required to estimate the stellar masses of observed galaxies (such as the choice of IMF, stellar population synthesis model and dust extinction) influence the perceived dependence of galaxy clustering on stellar mass. Broad-band spectral energy distribution fitting is carried out to estimate stellar masses for the model galaxies in the same manner as in observational studies. We show clear differences between the clustering signals computed using the true and estimated model stellar masses. As such, we highligh...
Jia, Lian-Bao; Li, Xue-Qian
2016-01-01
The WIMPs are considered one of the most favorable dark matter (DM) candidates, but as the upper bound on the interaction between DM and standard model (SM) particles obtained by the upgraded facilities for direct detection of DM gets lower and lower. Researchers turn their attention to search for less massive DM candidates, i.e. light dark matter of MeV scale. The recently measured anomalous transition in $^8$Be suggests that there exists a vectorial boson which may mediate the interaction b...
Isotopic mass-dependence of metal cation diffusion coefficients in liquid water
Energy Technology Data Exchange (ETDEWEB)
Bourg, I.C.; Richter, F.M.; Christensen, J.N.; Sposito, G.
2009-01-11
Isotope distributions in natural systems can be highly sensitive to the mass (m) dependence of solute diffusion coefficients (D) in liquid water. Isotope geochemistry studies routinely have assumed that this mass dependence either is negligible (as predicted by hydrodynamic theories) or follows a kinetic-theory-like inverse square root relationship (D {proportional_to} m{sup -0.5}). However, our recent experimental results and molecular dynamics (MD) simulations showed that the mass dependence of D is intermediate between hydrodynamic and kinetic theory predictions (D {proportional_to} m{sup -{beta}} with 0 {<=} {beta} < 0.2 for Li{sup +}, Cl{sup -}, Mg{sup 2+}, and the noble gases). In this paper, we present new MD simulations and experimental results for Na{sup +}, K{sup +}, Cs{sup +}, and Ca{sup 2+} that confirm the generality of the inverse power-law relation D {proportional_to} m{sup -{beta}}. Our new findings allow us to develop a general description of the influence of solute valence and radius on the mass dependence of D for monatomic solutes in liquid water. This mass dependence decreases with solute radius and with the magnitude of solute valence. Molecular-scale analysis of our MD simulation results reveals that these trends derive from the exponent {beta} being smallest for those solutes whose motions are most strongly coupled to solvent hydrodynamic modes.
Anomalous extracellular diffusion in rat cerebellum.
Xiao, Fanrong; Hrabe, Jan; Hrabetova, Sabina
2015-05-01
Extracellular space (ECS) is a major channel transporting biologically active molecules and drugs in the brain. Diffusion-mediated transport of these substances is hindered by the ECS structure but the microscopic basis of this hindrance is not fully understood. One hypothesis proposes that the hindrance originates in large part from the presence of dead-space (DS) microdomains that can transiently retain diffusing molecules. Because previous theoretical and modeling work reported an initial period of anomalous diffusion in similar environments, we expected that brain regions densely populated by DS microdomains would exhibit anomalous extracellular diffusion. Specifically, we targeted granular layers (GL) of rat and turtle cerebella that are populated with large and geometrically complex glomeruli. The integrative optical imaging (IOI) method was employed to evaluate diffusion of fluorophore-labeled dextran (MW 3000) in GL, and the IOI data analysis was adapted to quantify the anomalous diffusion exponent dw from the IOI records. Diffusion was significantly anomalous in rat GL, where dw reached 4.8. In the geometrically simpler turtle GL, dw was elevated but not robustly anomalous (dw = 2.6). The experimental work was complemented by numerical Monte Carlo simulations of anomalous ECS diffusion in several three-dimensional tissue models containing glomeruli-like structures. It demonstrated that both the duration of transiently anomalous diffusion and the anomalous exponent depend on the size of model glomeruli and the degree of their wrapping. In conclusion, we have found anomalous extracellular diffusion in the GL of rat cerebellum. This finding lends support to the DS microdomain hypothesis. Transiently anomalous diffusion also has a profound effect on the spatiotemporal distribution of molecules released into the ECS, especially at diffusion distances on the order of a few cell diameters, speeding up short-range diffusion-mediated signals in less permeable
Hsu, Wen-Hsin; Allen, Lori; Hernandez, Jesus; Megeath, S T; Mosby, Gregory; Tobin, John J; Espaillat, Catherine
2012-01-01
We present results from an optical photometric and spectroscopic survey of the young stellar population in L1641, the low-density star-forming region of the Orion A cloud south of the Orion Nebula Cluster (ONC). Our goal is to determine whether L1641 has a large enough low-mass population to make the known lack of high-mass stars a statistically-significant demonstration of environmental dependence of the upper mass stellar initial mass function (IMF). Our spectroscopic sample consists of IR-excess objects selected from the Spitzer/IRAC survey and non-excess objects selected from optical photometry. We have spectral confirmation of 864 members, with another 98 probable members; of the confirmed members, 406 have infrared excesses and 458 do not. Assuming the same ratio of stars with and without IR excesses in the highly-extincted regions, L1641 may contain as many as ~1600 stars down to ~0.1 solar mass, comparable within a factor of two to the the ONC. Compared to the standard models of the IMF, L1641 is defi...
Midya, Bikashkali; Roychoudhury, Rajkumar
2010-01-01
Here we have studied first and second-order intertwining approach to generate isospectral partner potentials of position-dependent (effective) mass Schroedinger equation. The second-order intertwiner is constructed directly by taking it as second order linear differential operator with position depndent coefficients and the system of equations arising from the intertwining relationship is solved for the coefficients by taking an ansatz. A complete scheme for obtaining general solution is obtained which is valid for any arbitrary potential and mass function. The proposed technique allows us to generate isospectral potentials with the following spectral modifications: (i) to add new bound state(s), (ii) to remove bound state(s) and (iii) to leave the spectrum unaffected. To explain our findings with the help of an illustration, we have used point canonical transformation (PCT) to obtain the general solution of the position dependent mass Schrodinger equation corresponding to a potential and mass function. It is...
Energy Technology Data Exchange (ETDEWEB)
Nomura, Masao; Kudo, Takashi; Adachi, Atsuhiko; Aida, Masao; Fujii, Yasuhiko [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, O-okayama Meguroku, Tokyo, 152-8550 (Japan)
2013-11-13
Mass independent fractionation (MIF) has been a very interesting topic in the field of inorganic isotope chemistry, in particular, geo- and cosmo- chemistry. In the present work, we studied the isotope fractionation of Ni(II) and Pb(II) ions in complex formation with chelating reagent EDTA. To obtain clear results on the mass dependence of the isotope fractionation, we have conducted long-distance ion exchange chromatography of Ni(II) and Pb(II), using chelate complex reagent EDTA. The results apparently show that the isotope fractionation in Ni complex formation system is governed by the mass dependent rule. On the other hand the isotope fractionation in the Pb complex system is governed by the mass independent rule or the nuclear volume effect.
Higgs boson pair production in gluon fusion at NLO with full top-quark mass dependence
Borowka, S; Heinrich, G; Jones, S P; Kerner, M; Schlenk, J; Schubert, U; Zirke, T
2016-01-01
We present the calculation of the cross section and invariant mass distribution for Higgs boson pair production in gluon fusion at next-to-leading order (NLO) in QCD. Top-quark masses are fully taken into account throughout the calculation. The virtual two-loop amplitude has been generated using an extension of the program GoSam supplemented with an interface to Reduze for the integral reduction. The occurring integrals have been calculated numerically using the program SecDec. Our results, including the full top-quark mass dependence for the first time, allow us to assess the validity of various approximations proposed in the literature, which we also recalculate. We find substantial deviations between the NLO result and the different approximations, which emphasizes the importance of including the full top-quark mass dependence at NLO.
Study of Proto Strange Stars (PSS) in Temperature and Density Dependent Quark Mass Model
Gupta, V K; Singh, S; Anand, J D; Gupta, Asha
2003-01-01
We report on the study of the mass-radius (M-R) relation and the radial oscillations of proto strange stars. For the quark matter we have employed the well known density dependent quark mass model and its very recent modification, the temperature and density dependent quark mass model. We find that the maximum mass the star can support increases significantly with the temperature of the star in this model which implies that transition to a black hole at the early stage of formation of the star is inhibited. As for the neutrinos, we find, contrary to the expectation that the M-R and oscillation frequencies are almost independent of the neutrino chemical potentials.
Energy Technology Data Exchange (ETDEWEB)
Panahi, H; Bakhshi, Z, E-mail: t-panahi@guilan.ac.ir [Department of Physics, University of Guilan, Rasht 51335-1914 (Iran, Islamic Republic of)
2011-04-29
We study the one-dimensional non-Hermitian imaginary potential with a real energy spectrum in the framework of the position-dependent effective mass Dirac equation. The Dirac equation is mapped into the exactly solvable Schroedinger-like equation endowed with position-dependent effective mass that we present a new procedure to solve it. The point canonical transformation in non-relativistic quantum mechanics is applied as an algebraic method to obtain the mass function and then by using the obtained mass function, the imaginary potential can be obtained. The spinor wavefunctions for some of the obtained electrostatic potentials are given in terms of orthogonal polynomials. We also obtain the relativistic bound state spectrum for each case in terms of the bound state spectrum of the solvable potentials.
International Nuclear Information System (INIS)
We study the one-dimensional non-Hermitian imaginary potential with a real energy spectrum in the framework of the position-dependent effective mass Dirac equation. The Dirac equation is mapped into the exactly solvable Schroedinger-like equation endowed with position-dependent effective mass that we present a new procedure to solve it. The point canonical transformation in non-relativistic quantum mechanics is applied as an algebraic method to obtain the mass function and then by using the obtained mass function, the imaginary potential can be obtained. The spinor wavefunctions for some of the obtained electrostatic potentials are given in terms of orthogonal polynomials. We also obtain the relativistic bound state spectrum for each case in terms of the bound state spectrum of the solvable potentials.
Mass dependence of shear viscosity in a binary fluid mixture: mode-coupling theory.
Ali, Sk Musharaf; Samanta, Alok; Choudhury, Niharendu; Ghosh, Swapan K
2006-11-01
An expression for the shear viscosity of a binary fluid mixture is derived using mode-coupling theory in order to study the mass dependence. The calculated results on shear viscosity for a binary isotopic Lennard-Jones fluid mixture show good agreement with results from molecular dynamics simulation carried out over a wide range of mass ratio at different composition. Also proposed is a new generalized Stokes-Einstein relation connecting the individual diffusivities to shear viscosity. PMID:17279895
A mass-dependent density profile for dark matter haloes including the influence of galaxy formation
Di Cintio, Arianna; Dutton, Aaron A; Macciò, Andrea V; Stinson, Greg S; Knebe, Alexander
2014-01-01
We introduce a mass dependent density profile to describe the distribution of dark matter within galaxies, which takes into account the stellar-to-halo mass dependence of the response of dark matter to baryonic processes. The study is based on the analysis of hydrodynamically simulated galaxies from dwarf to Milky Way mass, drawn from the MaGICC project, which have been shown to match a wide range of disk scaling relationships. We find that the best fit parameters of a generic double power-law density profile vary in a systematic manner that depends on the stellar-to-halo mass ratio of each galaxy. Thus, the quantity Mstar/Mhalo constrains the inner ($\\gamma$) and outer ($\\beta$) slopes of dark matter density, and the sharpness of transition between the slopes($\\alpha$), reducing the number of free parameters of the model to two. Due to the tight relation between stellar mass and halo mass, either of these quantities is sufficient to describe the dark matter halo profile including the effects of baryons. The ...
The environmental dependence of the stellar mass-size relation in STAGES galaxies
Maltby, David T; Gray, Meghan E; Barden, Marco; Haeussler, Boris; Wolf, Christian; Peng, Chien Y; Jahnke, Knud; McIntosh, Daniel H; Boehm, Asmus; van Kampen, Eelco
2009-01-01
We present the stellar mass-size relations for elliptical, lenticular, and spiral galaxies in the field and cluster environments using HST/ACS imaging and data from the Space Telescope A901/2 Galaxy Evolution Survey (STAGES). We use a large sample of ~1200 field and cluster galaxies, and a sub-sample of cluster core galaxies, and quantify the significance of any putative environmental dependence on the stellar mass-size relation. For elliptical, lenticular, and high-mass (log M*/M_sun > 10) spiral galaxies we find no evidence to suggest any such environmental dependence, implying that internal drivers are governing their size evolution. For intermediate/low-mass spirals (log M*/M_sun < 10) we find evidence, significant at the 2-sigma level, for a possible environmental dependence on galaxy sizes: the mean effective radius a_e for lower-mass spirals is ~15-20 per cent larger in the field than in the cluster. This is due to a population of low-mass large-a_e field spirals that are largely absent from the clu...
The orientation dependence of quasar single-epoch black hole mass scaling relationships
Runnoe, Jessie C.; Brotherton, Michael; Shang, Zhaohui; Wills, Beverley; DiPompeo, Michael
2012-01-01
Black hole masses are estimated for radio-loud quasars using several self-consistent scaling relationships based on emission-line widths and continuum luminosities. The emission lines used, H-beta, Mg II, and C IV, have different dependencies on orientation as estimated by radio core dominance. We compare differences in the log of black hole masses estimated from different emission lines and show that they depend on radio core dominance in the sense that core-dominated, jet-on objects have sy...
The Initial-Final Mass Relation and its Dependence with Metallicity
Romero, A. D.; Campos, F.; Kepler, S. O.
2015-06-01
We present a study of the low end of the initial-final mass relation and its dependence on metallicity. We computed a grid of full evolutionary models, from the Main Sequence, trough the Asymptotic Giant Branch phase, to low luminosity stages on the white dwarf cooling curve. We consider metallicity values from Z=0.0001 to Z=0.04 with initial masses between 0.8 and 3M⊙. We found that the spreading in the observations can be explained by means of different metallicities of the environment. We also found a strong dependence of the pre-white dwarf age with metallicity.
Ishii, Masahiro; Yahiro, Masanobu
2016-01-01
We propose a practical effective model by introducing temperature ($T$) dependence to the coupling strengths of four-quark and six-quark Kobayashi-Maskawa-'t Hooft interactions in the 2+1 flavor Polyakov-loop extended Nambu-Jona-Lasinio model. The $T$ dependence is determined from LQCD data on the renormalized chiral condensate around the pseudocritical temperature $T_c^{\\chi}$ of chiral crossover and the screening-mass difference between $\\pi$ and $a_0$ mesons in $T > 1.1T_c^\\chi$ where only the $U(1)_{\\rm A}$-symmetry breaking survives. The model well reproduces LQCD data on screening masses $M_{\\xi}^{\\rm scr}(T)$ for both scalar and pseudoscalar mesons, particularly in $T \\ge T_c^{\\chi}$. Using this effective model, we predict meson pole masses $M_{\\xi}^{\\rm pole}(T)$ for scalar and pseudoscalar mesons. For $\\eta'$ meson, the prediction is consistent with the experimental value at finite $T$ measured in heavy-ion collisions. We point out that the relation $M_{\\xi}^{\\rm scr}(T)-M_{\\xi}^{\\rm pole}(T) \\approx...
Asymptotic Behavior of a Viscous Liquid-Gas Model with Mass-Dependent Viscosity and Vacuum
liu, Qingqing
2011-01-01
In this paper, we consider two classes of free boundary value problems of a viscous two-phase liquid-gas model relevant to the flow in wells and pipelines with mass-dependent viscosity coefficient. The liquid is treated as an incompressible fluid whereas the gas is assumed to be polytropic. We obtain the asymptotic behavior and decay rates of the mass functions $n(x,t)$,\\$m(x,t)$ when the initial masses are assumed to be connected to vacuum both discontinuously and continuously, which improves the corresponding result about Navier-Stokes equations in \\cite{Zhu}.
Asymptotic behavior of a viscous liquid-gas model with mass-dependent viscosity and vacuum
Liu, Qingqing; Zhu, Changjiang
In this paper, we consider two classes of free boundary value problems of a viscous two-phase liquid-gas model relevant to the flow in wells and pipelines with mass-dependent viscosity coefficient. The liquid is treated as an incompressible fluid whereas the gas is assumed to be polytropic. We obtain the asymptotic behavior and decay rates of the mass functions n(x,t), m(x,t) when the initial masses are assumed to be connected to vacuum both discontinuously and continuously, which improves the corresponding result about Navier-Stokes equations in Zhu (2010) [23].
Asymptotic Behavior of a Viscous Liquid-Gas Model with Mass-Dependent Viscosity and Vacuum
Liu, Qingqing; Zhu, Changjiang
2011-01-01
In this paper, we consider two classes of free boundary value problems of a viscous two-phase liquid-gas model relevant to the flow in wells and pipelines with mass-dependent viscosity coefficient. The liquid is treated as an incompressible fluid whereas the gas is assumed to be polytropic. We obtain the asymptotic behavior and decay rates of the mass functions $n(x,t)$,\\$m(x,t)$ when the initial masses are assumed to be connected to vacuum both discontinuously and continuously, which improve...
Group classification of Schrödinger equations with position dependent mass
Nikitin, A. G.; Zasadko, T. M.
2016-09-01
Maximal kinematical invariance groups of the 2d Schrödinger equations with position dependent mass (PDM) and arbitrary potential are classified. It is demonstrated that there exist seven classes of such equations possessing non-equivalent continuous symmetry group. Three of these classes include arbitrary functions while the remaining ones are defined up to arbitrary parameters. In particular, for the case of a constant mass the class missing in the Boyer classification (Boyer 1974 Helv. Phys. Acta. 47 450) is indicated. A constructive test of (non)equivalence of a PDM system to a constant mass system is proposed.
Remarks on the solution of the position-dependent mass Schroedinger equation
Energy Technology Data Exchange (ETDEWEB)
Koc, Ramazan; Sayin, Seda, E-mail: koc@gantep.edu.t, E-mail: ssayin@gantep.edu.t [Faculty of Engineering, Department of Physics, Gaziantep University, 27310 Gaziantep (Turkey)
2010-11-12
An approximate method is proposed to solve the position-dependent mass (PDM) Schroedinger equation. The procedure suggested here leads to the solution of the PDM Schroedinger equation without transforming the potential function to the mass space or vice versa. The method based on the asymptotic Taylor expansion of the function produces an approximate analytical expression for eigenfunction and numerical results for eigenvalues of the PDM Schroedinger equation. The results show that the PDM and constant mass Schroedinger equations are not isospectral. The calculations are carried out with the aid of a computer system of symbolic or numerical calculation by constructing a simple algorithm.
Mass dependence of pion-induced fission cross sections on the level density parameter
Institute of Scientific and Technical Information of China (English)
Zafar Yasin; Warda Iram; M.Ikram Shahzad
2012-01-01
Fission probabilities and fission cross sections strongly depend on the mass number of the target and energy of the projectile.In this research work,a cascade-exciton model (using CEM95 computer code) has been implemented to observe the dependence of pion-induced fission cross sections and fission probabilities on the target mass and ratio of the level density parameter in fission to neutron emission.The analysis has been performed for both the positive and negative pions as the projectile at 80,100 and 150 MeV energies.The computed cross sections satisfactorily reproduced the experimental findings when compared with the available experimental data in the literature.We observed a smooth dependence at 150 MeV,and a sharper dependence at 80 and 100 MeV pion energy,in the fissility region above 29.44.
The ATLAS and CMS Collaborations
2016-01-01
A procedure is presented to combine data from the ATLAS and CMS experiments on $ZZ$ production to obtain constraints on anomalous neutral triple gauge boson couplings. Statistical and systematic uncertainties and their correlations are taken into account. Data from $pp$ collisions at a center-of-mass energy of 7 TeV delivered by the LHC are used. The datasets correspond to integrated luminosities of 4.6 and 5.0 $\\rm{fb^{−1}}$ for ATLAS and CMS, respectively. The combination is performed in the fully leptonic decay channels ZZ → 2l2ν (ATLAS) and ZZ → 4l (ATLAS, CMS). Combined limits on the coupling parameters are −0.010 < f4γ < 0.011, −0.0087 < f4Z < 0.0091, −0.011 < f5γ < 0.010, and −0.0091 < f5Z < 0.0089 at 95% C.L., where all other parameters are fixed to the standard model values. These results represent the first combined limits of the ATLAS and CMS collaborations for anomalous gauge boson couplings.
Meier, Matthias M M; Marty, Bernard
2016-01-01
We have measured the concentration, isotopic composition and thermal release profiles of Mercury (Hg) in a suite of meteorites, including both chondrites and achondrites. We find large variations in Hg concentration between different meteorites (ca. 10 ppb to 14'000 ppb), with the highest concentration orders of magnitude above the expected bulk solar system silicates value. From the presence of several different Hg carrier phases in thermal release profiles (150 to 650 {\\deg}C), we argue that these variations are unlikely to be mainly due to terrestrial contamination. The Hg abundance of meteorites shows no correlation with petrographic type, or mass-dependent fractionation of Hg isotopes. Most carbonaceous chondrites show mass-independent enrichments in the odd-numbered isotopes 199Hg and 201Hg. We show that the enrichments are not nucleosynthetic, as we do not find corresponding nucleosynthetic deficits of 196Hg. Instead, they can partially be explained by Hg evaporation and redeposition during heating of ...
Properties of Quasi-Oscillator in Position-Dependent Mass Formalism
Zare, Soroush
2016-01-01
After introducing Schr\\"odinger equation within position- dependent mass formalism, a quasi-oscillator has been considered. Eigen functions and energy spectra have been obtained analytical. Then thermodynamic properties, information entropy and uncertainty in coordinate and momentum corresponding the considered system have calculated as well as some depicted.
Flatland Position-Dependent-Mass: Polar Coordinates, Separability and Exact Solvability
Directory of Open Access Journals (Sweden)
Omar Mustafa
2010-10-01
Full Text Available The kinetic energy operator with position-dependent-mass in plane polar coordinates is obtained. The separability of the corresponding Schrödinger equation is discussed. A hypothetical toy model is reported and two exactly solvable examples are studied.
Institute of Scientific and Technical Information of China (English)
鞠国兴
2011-01-01
Using the coordinate transformation method, we study the polynomial solutions of the Schr6dinger equation with position-dependent mass （PDM）. The explicit expressions for the potentials, energy eigenvalues, and eigenfunctions of the systems are given. The issues related to normalization of the wavefunetions and Hermiticity of the Hamiltonian are also analyzed.
Environmental dependence of the H I mass function in the ALFALFA 70% catalogue
Jones, Michael G.; Papastergis, Emmanouil; Haynes, Martha P.; Giovanelli, Riccardo
2016-04-01
We search for environmental dependence of the H I mass function in the Arecibo Legacy Fast ALFA survey (ALFALFA) 70 per cent catalogue. The catalogue is split into quartiles of environment density based on the projected neighbour density of neighbours found in both Sloan Digital Sky Survey (SDSS) and 2MASS Redshift Survey (2MRS) volume-limited reference catalogues. We find the Schechter function `knee' mass to be dependent on environment, with the value of log (M*/M⊙) shifting from 9.81 ± 0.02 to 10.00 ± 0.03 between the lowest and highest density quartiles. However, this dependence was only observed when defining environment based on the SDSS reference catalogue, not 2MRS. We interpret these results as meaning that the local environment is the dominant cause of the shift in M*, and that the larger scales that 2MRS probes (compared to SDSS) are almost irrelevant. In addition, we also use a fixed aperture method to probe environment, and find tentative evidence that H I-deficiency depresses the value of M* in the highest density regions. We find no significant dependence of the low-mass slope on environment in any test, using either method. Tensions between these results and those from the literature, are discussed and alternative explanations are explored.
New scenarios for classical and quantum mechanical systems with position dependent mass
Morris, J R
2015-01-01
An inhomogeneous Kaluza-Klein compactification to four dimensions, followed by a conformal transformation, results in a system with position dependent mass (PDM). This origin of a PDM is quite different from the condensed matter one. A substantial generalization of a previously studied nonlinear oscillator with variable mass is obtained, wherein the position dependence of the mass of a nonrelativistic particle is due to a dilatonic coupling function emerging from the extra dimension. Previously obtained solutions for such systems can be extended and reinterpreted as nonrelativistic particles interacting with dilaton fields, which, themselves, can have interesting structures. An application is presented for the nonlinear oscillator, where within the new scenario the particle is coupled to a dilatonic string.
The charmonium dissociation in an "anomalous wind"
Sadofyev, Andrey V
2016-01-01
We study the charmonium dissociation in a strongly coupled chiral plasma in the presence of magnetic field and axial charge imbalance. This type of plasma carries ``anomalous flow" induced by the chiral anomaly and exhibits novel transport phenomena such as chiral magnetic effect. We found that the ``anomalous flow" would modify the charmonium color screening length by using the gauge/gravity correspondence. We derive an analytical expression quantifying the ``anomalous flow" experienced by a charmonium for a large class of chiral plasma with a gravity dual. We elaborate on the similarity and {\\it qualitative} difference between anomalous effects on the charmonium color screening length which are {\\it model-dependent} and those on the heavy quark drag force which are fixed by the second law of thermodynamics. We speculate on the possible charmonium dissociation induced by chiral anomaly in heavy ion collisions.
International Nuclear Information System (INIS)
The mass spectra of vapor-phase n-hexane, cyclohexane, and diethyl ether are measured as a function of temperature by photoionization mass spectrometry. Three fixed wavelengths are used, the Kr I, Ar I, and Ne I resonance lines. The results are interpreted on the basis of a simplified version of the quasi-equilibrium theory. In this model it is assumed that the density of states of a transition state can be described by the density of states of the neutral molecule multiplied by a phase space scaling factor. The phase space scaling factors are fitted for an optimum reconstruction of the photon and temperature-dependent mass spectra. The knowledge obtained about the fragmentation reaction rates of n-hexane is applied to field ionization mass spectra, which results in an estimate of the average energy deposition in the molecular ion of 0.77 ± 0.1 eV
Orbital Evolution of Mass-transferring Eccentric Binary Systems. I. Phase-dependent Evolution
Dosopoulou, Fani; Kalogera, Vicky
2016-07-01
Observations reveal that mass-transferring binary systems may have non-zero orbital eccentricities. The time evolution of the orbital semimajor axis and eccentricity of mass-transferring eccentric binary systems is an important part of binary evolution theory and has been widely studied. However, various different approaches to and assumptions on the subject have made the literature difficult to comprehend and comparisons between different orbital element time evolution equations not easy to make. Consequently, no self-consistent treatment of this phase has ever been included in binary population synthesis codes. In this paper, we present a general formalism to derive the time evolution equations of the binary orbital elements, treating mass loss and mass transfer as perturbations of the general two-body problem. We present the self-consistent form of the perturbing acceleration and phase-dependent time evolution equations for the orbital elements under different mass loss/transfer processes. First, we study the cases of isotropic and anisotropic wind mass loss. Then, we proceed with non-isotropic ejection and accretion in a conservative as well as a non-conservative manner for both point masses and extended bodies. We compare the derived equations with similar work in the literature and explain the existing discrepancies.
Halo Mass Dependence of HI and OVI Absorption: Evidence for Differential Kinematics
Mathes, Nigel L; Kacprzak, Glenn G; Nielsen, Nikole M; Trujillo-Gomez, Sebastian; Charlton, Jane; Muzahid, Sowgat
2014-01-01
We studied a sample of 14 galaxies (0.1 < z < 0.7) using HST/WFPC2 imaging and high-resolution HST/COS or HST/STIS quasar spectroscopy of Lya, Lyb, OVI1031, and OVI1037 absorption. The galaxies, having 10.8 < log(M/M_solar) < 12.2, lie within D = 300 kpc of quasar sightlines, probing out to D/R_vir = 3. When the full range of galaxy virial masses and D/R_vir of the sample are examined, 40% of the HI absorbing clouds can be inferred to be escaping their host halo. The fraction of bound clouds decreases as D/R_vir increases such that the escaping fraction is around 15% for D/R_vir < 1, around 45% for 1 < D/R_vir < 2, and around 90% for 2 < D/R_vir < 3. Adopting the median mass log(M/M_solar) = 11.5 to divide the sample into "higher" and "lower" mass galaxies, we find mass dependency for the hot CGM kinematics. To our survey limits, OVI absorption is found in only 40% of the HI clouds in and around lower mass halos as compared to 85% around higher mass halos. For D/R < 1, lower mass...
Evidence for non-analytic light quark mass dependence in the baryon spectrum
Walker-Loud, Andre
2011-01-01
Using precise lattice QCD computations of the baryon spectrum, we present the first direct evidence for the presence of contributions to the baryon masses which are non-analytic in the light quark masses; contributions which are often denoted "chiral logarithms". We isolate the poor convergence of SU(3) baryon chiral perturbation theory to the flavor-singlet mass combination. The flavor-octet baryon mass splittings, which are corrected by chiral logarithms at next to leading order in SU(3) chiral perturbation theory, yield baryon-pion axial coupling constants D, F, C and H consistent with QCD values; the first evidence of chiral logarithms in the baryon spectrum. The Gell-Mann--Okubo relation, a flavor-27 baryon mass splitting, which is dominated by chiral corrections from light quark masses, provides further evidence for the presence of non-analytic light quark mass dependence in the baryon spectrum; we simultaneously find the GMO relation to be inconsistent with the first few terms in a taylor expansion in ...
Ortenzi, L.; Gretarsson, H.; Kasahara, S.; Matsuda, Y.; Shibauchi, T.; Finkelstein, K. D.; Wu, W.; Julian, S. R.; Kim, Young-June; Mazin, I. I.; Boeri, L.
2015-01-01
We report a combination of Fe K β x-ray emission spectroscopy and density functional reduced Stoner theory calculations to investigate the correlation between structural and magnetic degrees of freedom in CaFe2(As1-xPx) 2 . The puzzling temperature behavior of the local moment found in rare earth-doped CaFe2As2 [H. Gretarsson et al., Phys. Rev. Lett. 110, 047003 (2013)] is also observed in CaFe2(As1-xPx) 2 . We explain this phenomenon based on first-principles calculations with scaled magnetic interaction. One scaling parameter is sufficient to describe quantitatively the magnetic moments in both CaFe2(As1-xPx) 2 (x =0.055 ) and Ca0.78La0.22Fe2As2 at all temperatures. The anomalous growth of the local moments with increasing temperature can be understood from the observed large thermal expansion of the c -axis lattice parameter combined with strong magnetoelastic coupling. These effects originate from the strong tendency to form As-As dimers across the Ca layer in the CaFe2As2 family of materials. Our results emphasize the dual local-itinerant character of magnetism in Fe pnictides.
2002-01-01
The proposal concerns an extension to higher energies of previous experiments which have provided evidence for anomalously short reaction mean free paths among projectile fragments from heavy ion interactions.\\\\ \\\\ It is intended to provide information on the interaction properties of projectile fragments, mainly 3He, P, D, T as well as of scattered 4He nuclei in passive detectors exposed to beams of energies exceeding those available in previous experim factor of about 7. \\\\ \\\\ Interaction mean free paths and event topologies will be measured in a nuclear emulsion stack (LBL) of 7.5~cm~x~5~cm~x~25~cm dimensions. Decay effects will be recorded by comparing the activity of spallation residues in dense and diluted copper target assemblies (Marburg). Target fragmentation will be studied in a stack of silverchloride crystal foils (Frankfurt) of about 7~cm~x~6~cm~x~1~cm dimensions. The \\alpha beam ejected at EJ~62 will be used to provide both exposures at high intensity of 10|1|2 alphas on th and at low intensity ...
Pedretti, D.; Molinari, A.; Fallico, C.; Guzzi, S.
2016-10-01
A series of experimental tracer tests were performed to explore the implications of the change in the pressure status of a heterogeneous bimodal aquifer for scale-dependent dispersion and mass-transfer processes. The sandbox was filled with sands and gravel channels and patches to form an alluvial-like bimodal aquifer. We performed multiple injections of a conservative tracer from 26 different locations of the sandbox and interpreted the resulting depth-integrated breakthrough curves (BTCs) at the central pumping well to obtain a scale-dependent distribution of local and field-integrated apparent longitudinal dispersivity (respectively, αLloc and αLapp). We repeated the experiments under confined (CS) and unconfined (UNS) pressure status, keeping the same heterogeneous configuration. Results showed that αLloc(associated with transport through gravel zones) was poorly influenced by the change in aquifer pressure and the presence of channels. Instead, αLapp(i.e. macrodispersion) strongly increased when changing from CS to UNS. In specific, we found αLapp ≈ 0.03 r for the CS and αLapp ≈ 0.15 r for the UNS (being r the distance from the well). Second-to-fourth-order temporal moments showed strong spatial dependence in the UNS and no spatial dependence in the CS. These results seem consistent with a "vadose-zone-driven" kinetic mass-transfer process occurring in the UNS but not in the CS. The vadose zone enhances vertical flow due to the presence of free surface and large contrasts in hydraulic conductivity triggered by the desaturation of gravel channels nearby the pumping well. The vadose zone enhances vertical mixing between gravel and sands and generates BTC tailing. In the CS vertical mixing is negligible and anomalous transport is not observed.
Bulk viscosity of strange quark matter in density dependent quark mass model
Indian Academy of Sciences (India)
J D Anand; N Chandrika Devi; V K Gupta; S Singh
2000-05-01
We have studied the bulk viscosity of strange quark matter in the density dependent quark mass model (DDQM) and compared results with calculations done earlier in the MIT bag model where , masses were neglected and ﬁrst order interactions were taken into account. We ﬁnd that at low temperatures and high relative perturbations, the bulk viscosity is higher by 2 to 3 orders of magnitude while at low perturbations the enhancement is by 1–2 order of magnitude as compared to earlier results. Also the damping time is 2–3 orders of magnitude lower implying that the star reaches stability much earlier than in MIT bag model calculations.
Anomalous Chiral Superfluidity
Lublinsky, Michael(Physics Department, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel); Zahed, Ismail
2009-01-01
We discuss both the anomalous Cartan currents and the energy-momentum tensor in a left chiral theory with flavour anomalies as an effective theory for flavored chiral phonons in a chiral superfluid with the gauged Wess-Zumino-Witten term. In the mean-field (leading tadpole) approximation the anomalous Cartan currents and the energy momentum tensor take the form of constitutive currents in the chiral superfluid state. The pertinence of higher order corrections and the Adler-Bardeen theorem is ...
Improved angular momentum evolution model for solar-like stars II. Exploring the mass dependence
Gallet, Florian
2015-01-01
We developed angular momentum evolution models for 0.5 and 0.8 $M_{\\odot}$ stars. The parametric models include a new wind braking law based on recent numerical simulations of magnetised stellar winds, specific dynamo and mass-loss rate prescriptions, as well as core/envelope decoupling. We compare model predictions to the distributions of rotational periods measured for low mass stars belonging to star forming regions and young open clusters. Furthermore, we explore the mass dependence of model parameters by comparing these new models to the solar-mass models we developed earlier. Rotational evolution models are computed for slow, median, and fast rotators at each stellar mass. The models reproduce reasonably well the rotational behaviour of low-mass stars between 1~Myr and 8-10~Gyr, including pre-main sequence to zero-age main sequence spin up, prompt zero-age main sequence spin down, and early-main sequence convergence of the surface rotation rates. Fast rotators are found to have systematically shorter di...
Halo mass dependence of H I and O VI absorption: evidence for differential kinematics
Energy Technology Data Exchange (ETDEWEB)
Mathes, Nigel L.; Churchill, Christopher W.; Nielsen, Nikole M.; Trujillo-Gomez, Sebastian [New Mexico State University, Las Cruces, NM 88003 (United States); Kacprzak, Glenn G. [Swinburne University of Technology, Victoria 3122 (Australia); Charlton, Jane; Muzahid, Sowgat [The Pennsylvania State University, University Park, PA 16802 (United States)
2014-09-10
We studied a sample of 14 galaxies (0.1 < z < 0.7) using HST/WFPC2 imaging and high-resolution HST/COS or HST/STIS quasar spectroscopy of Lyα, Lyβ, and O VI λλ1031, 1037 absorption. The galaxies, having 10.8 ≤ log (M {sub h}/M {sub ☉}) ≤ 12.2, lie within D = 300 kpc of quasar sightlines, probing out to D/R {sub vir} = 3. When the full range of M {sub h} and D/R {sub vir} of the sample are examined, ∼40% of the H I absorbing clouds can be inferred to be escaping their host halo. The fraction of bound clouds decreases as D/R {sub vir} increases such that the escaping fraction is ∼15% for D/R {sub vir} < 1, ∼45% for 1 ≤ D/R {sub vir} < 2, and ∼90% for 2 ≤ D/R {sub vir} < 3. Adopting the median mass log M {sub h}/M {sub ☉} = 11.5 to divide the sample into 'higher' and 'lower' mass galaxies, we find a mass dependency for the hot circumgalactic medium kinematics. To our survey limits, O VI absorption is found in only ∼40% of the H I clouds in and around lower mass halos as compared to ∼85% around higher mass halos. For D/R {sub vir} < 1, lower mass halos have an escape fraction of ∼65%, whereas higher mass halos have an escape fraction of ∼5%. For 1 ≤ D/R {sub vir} < 2, the escape fractions are ∼55% and ∼35% for lower mass and higher mass halos, respectively. For 2 ≤ D/R {sub vir} < 3, the escape fraction for lower mass halos is ∼90%. We show that it is highly likely that the absorbing clouds reside within 4R {sub vir} of their host galaxies and that the kinematics are dominated by outflows. Our finding of 'differential kinematics' is consistent with the scenario of 'differential wind recycling' proposed by Oppenheimer et al. We discuss the implications for galaxy evolution, the stellar to halo mass function, and the mass-metallicity relationship of galaxies.
Quark Magnetar in Confined Isospin- and Density-dependent Mass Model
Chu, P. C.; Chen, L. W.; Wang, X.
2015-11-01
Within confined isospin- and density-dependent mass model, we study the equation of state(EOS) for the strange quark matter (SQM) and quark stars (QSs) under density-dependent magneticfields. The EOS of SQM is obtained self-consistently under a strong magnetic field, and thetransverse pressure which is perpendicular to the magnetic field is proved to be larger than thelongitudinal pressure that is parallel to the magnetic field. Our results indicate that the maximummass of quark magnetars can significantly increase (decrease) when the transverse (radial) magneticfield orientation is considered.
Institute of Scientific and Technical Information of China (English)
M.Eshghi; M.Hamzavi; S.M.Ikhdair
2013-01-01
The spatially-dependent mass Dirac equation is solved exactly for attractive scalar and repulsive vector Coulomb potentials,including a tensor interaction under the spin and pseudospin symmetric limits.Closed forms of the energy eigenvalue equation and wave functions are obtained for arbitrary spin-orbit quantum number κ.Some numerical results are also given,and the effect of tensor interaction on the bound states is presented.It is shown that tensor interaction removes the degeneracy between two states in the spin doublets.We also investigate the effects of the spatially-dependent mass on the bound states under spin symmetric limit conditions in the absence of tensor interaction.
Various aspects of the Deformation Dependent Mass model of nuclear structure
Petrellis, D; Minkov, N
2015-01-01
Recently, a variant of the Bohr Hamiltonian was proposed where the mass term is allowed to depend on the beta variable of nuclear deformation. Analytic solutions of this modified Hamiltonian have been obtained using the Davidson and the Kratzer potentials, by employing techniques from supersymmetric quantum mechanics. Apart from the new set of analytic solutions, the newly introduced Deformation-Dependent Mass (DDM) model offered a remedy to the problematic behaviour of the moment of inertia in the Bohr Hamiltonian, where it appears to increase proportionally to the square of beta. In the DDM model the moments of inertia increase at a much lower rate, in agreement with experimental data. The current work presents an application of the DDM-model suitable for the description of nuclei at the point of shape/phase transitions between vibrational and gamma-unstable or prolate deformed nuclei and is based on a method that was successfully applied before in the context of critical point symmetries.
Anomalous Growth of Aging Populations
Grebenkov, Denis S.
2016-04-01
We consider a discrete-time population dynamics with age-dependent structure. At every time step, one of the alive individuals from the population is chosen randomly and removed with probability q_k depending on its age, whereas a new individual of age 1 is born with probability r. The model can also describe a single queue in which the service order is random while the service efficiency depends on a customer's "age" in the queue. We propose a mean field approximation to investigate the long-time asymptotic behavior of the mean population size. The age dependence is shown to lead to anomalous power-law growth of the population at the critical regime. The scaling exponent is determined by the asymptotic behavior of the probabilities q_k at large k. The mean field approximation is validated by Monte Carlo simulations.
Improved Quark Mass Density-Dependent Model with Non-Linear Scalar Interaction
Institute of Scientific and Technical Information of China (English)
WU Chen; QIAN Wei-Liang; SU Ru-Keng
2005-01-01
@@ We present an improved quark mass density-dependent model which includes the quark and non-linear scalar field coupling. The wavefunction of quark is given. The rms charge radius, the magnetic moment, and the ratio between the axial-vector and the vectorβ-decay coupling constants of the nucleon are calculated. We find that the results given the present model are in agreement with experiments.
Classical oscillator with position-dependent mass in a complex domain
Ghosh, Subir; Modak, Sujoy Kumar
2008-01-01
We study complexified Harmonic Oscillator with a position-dependent mass, termed as Complex Exotic Oscillator (CEO). The complexification induces a gauge invariance [19,11]. The role of PT -symmetry is discussed from the perspective of classical trajectories of CEO for real energy. Some trajectories of CEO are similar to those for the particle in a quartic potential in the complex domain [10, 32].
Star cluster life-times: dependence on mass, radius and environment
Gieles, Mark; Baumgardt, Holger
2007-01-01
The dissolution time (t_dis) of clusters in a tidal field does not scale with the ``classical'' expression for the relaxation time. First, the scaling with N, and hence cluster mass, is shallower due to the finite escape time of stars. Secondly, the cluster half-mass radius is of little importance. This is due to a balance between the relative tidal field strength and internal relaxation, which have an opposite effect on t_dis, but of similar magnitude. When external perturbations, such as encounters with giant molecular clouds (GMC) are important, t_dis for an individual cluster depends strongly on radius. The mean dissolution time for a population of clusters, however, scales in the same way with mass as for the tidal field, due to the weak dependence of radius on mass. The environmental parameters that determine t_dis are the tidal field strength and the density of molecular gas. We compare the empirically derived t_dis of clusters in six galaxies to theoretical predictions and argue that encounters with G...
The environmental dependence of the stellar mass fundamental plane of early-type galaxies
Hou, Lei
2016-01-01
Aims. We investigate the environmental dependence of the stellar mass fundamental plane (FP$_*$) using the early-type galaxy sample from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7). Methods. The FP$_*$ is calculated by replacing the luminosity in the fundamental plane (FP) with stellar mass. Based on the SDSS group catalog, we characterize the galaxy environment according to the mass of the host dark matter halo and the position in the halo. In halos with the same mass bin, the color distributions of central and satellite galaxies are different. Therefore, we calculate FP$_*$ coefficients of galaxies in different environments and compare them with those of the FP to study the contribution of the stellar population. Results. We find that coefficient $a$ of the FP$_*$ is systematically larger than that of the FP, but coefficient $b$ of the FP$_*$ is similar to the FP. Moreover, the environmental dependence of the FP$_*$ is similar to that of the FP. For central galaxies, FP$_*$ coefficients are signi...
The Outcome of Supernovae in Massive Binaries; Removed Mass, and its Separation Dependence
Hirai, Ryosuke; Yamada, Shoichi
2014-01-01
The majority of massive stars are formed in binary systems. It is hence reasonable to expect that most core-collapse supernovae (CCSNe) take place in binaries and the existence of a companion star may leave some imprints in observed features. Having this in mind, we have conducted two-dimensional hydrodynamical simulations of the collisions of CCSNe ejecta with the companion star in an almost-equal-mass ($\\sim 10M_\\odot$) binary to find out possible consequences of such events. In particular we pay attention to the amount of mass removed and its dependence on the binary separation. In contrast to the previous surmise, we find that the companion mass is stripped not by momentum transfer but by shock heating. Up to $25\\%$ of the original mass can be removed for the closest separations and the removed mass decreases as $M_{ub} \\propto a^{-4.2}$ with the binary separation $a$. By performing some experimental computations with artificially-modified densities of incident ejecta, we show that if the velocity of ejec...
Anomalous transport effects in magnetically-confined plasma columns
International Nuclear Information System (INIS)
The evolution of density structure in a magnetized plasma column is analyzed accounting for anomalous diffusion due to the lower hybrid drift instability. The plasma column is found to be divided into regions of classical, anomalous, and intermediate diffusivity. The bulk behavior, described in terms of radial confinement time, depends most sensitively upon the particle line density (ion/cm). For broad plasmas (large line density), the transport is characteristic of classical diffusion, and for slender plasmas (small line density) the transport is characteristic of anomalous diffusion. For intermediate line densities, the transport undertakes a rapid transition from classical to anomalous. Correlations between the theoretical results and past experiments are described
Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration.
Stevens, Daniel A; Lee, Yunjong; Kang, Ho Chul; Lee, Byoung Dae; Lee, Yun-Il; Bower, Aaron; Jiang, Haisong; Kang, Sung-Ung; Andrabi, Shaida A; Dawson, Valina L; Shin, Joo-Ho; Dawson, Ted M
2015-09-15
Mutations in parkin lead to early-onset autosomal recessive Parkinson's disease (PD) and inactivation of parkin is thought to contribute to sporadic PD. Adult knockout of parkin in the ventral midbrain of mice leads to an age-dependent loss of dopamine neurons that is dependent on the accumulation of parkin interacting substrate (PARIS), zinc finger protein 746 (ZNF746), and its transcriptional repression of PGC-1α. Here we show that adult knockout of parkin in mouse ventral midbrain leads to decreases in mitochondrial size, number, and protein markers consistent with a defect in mitochondrial biogenesis. This decrease in mitochondrial mass is prevented by short hairpin RNA knockdown of PARIS. PARIS overexpression in mouse ventral midbrain leads to decreases in mitochondrial number and protein markers and PGC-1α-dependent deficits in mitochondrial respiration. Taken together, these results suggest that parkin loss impairs mitochondrial biogenesis, leading to declining function of the mitochondrial pool and cell death. PMID:26324925
Anomalous diffraction in hyperbolic materials
Alberucci, Alessandro; Boardman, Allan D; Assanto, Gaetano
2016-01-01
We demonstrate that light is subject to anomalous (i.e., negative) diffraction when propagating in the presence of hyperbolic dispersion. We show that light propagation in hyperbolic media resembles the dynamics of a quantum particle of negative mass moving in a two-dimensional potential. The negative effective mass implies time reversal if the medium is homogeneous. Such property paves the way to diffraction compensation, spatial analogue of dispersion compensating fibers in the temporal domain. At variance with materials exhibiting standard elliptic dispersion, in inhomogeneous hyperbolic materials light waves are pulled towards regions with a lower refractive index. In the presence of a Kerr-like optical response, bright (dark) solitons are supported by a negative (positive) nonlinearity.
The Optical-UV Emissivity of Quasars: Dependence on Black Hole Mass and Radio Loudness
Shankar, Francesco; Calderone, Giorgio; Knigge, Christian; Matthews, James; Buckland, Rachel; Hryniewicz, Krzysztof; Sivakoff, Gregory; Dai, Xinyu; Richardson, Kayleigh; Riley, Jack; Gray, James; La Franca, Fabio; Altamirano, Diego; Croston, Judith; Gandhi, Poshak; Hönig, Sebastian; McHardy, Ian; Middleton, Matthew
2016-02-01
We analyzed a large sample of radio-loud and radio-quiet quasar spectra at redshift 1.0 ≤ z ≤ 1.2 to compare the inferred underlying quasar continuum slopes (after removal of the host galaxy contribution) with accretion disk models. The latter predict redder (decreasing) α3000 continuum slopes ({L}ν \\propto {ν }α at 3000 Å) with increasing black hole mass, bluer α3000 with increasing luminosity at 3000 Å, and bluer α3000 with increasing spin of the black hole, when all other parameters are held fixed. We find no clear evidence for any of these predictions in the data. In particular, we find the following. (i) α3000 shows no significant dependence on black hole mass or luminosity. Dedicated Monte Carlo tests suggest that the substantial observational uncertainties in the black hole virial masses can effectively erase any intrinsic dependence of α3000 on black hole mass, in line with some previous studies. (ii) The mean slope α3000 of radio-loud sources, thought to be produced by rapidly spinning black holes, is comparable to, or even redder than, that of radio-quiet quasars. Indeed, although quasars appear to become more radio loud with decreasing luminosity, we still do not detect any significant dependence of α3000 on radio loudness. The predicted mean α3000 slopes tend to be bluer than in the data. Disk models with high inclinations and dust extinction tend to produce redder slopes closer to empirical estimates. Our mean α3000 values are close to the ones independently inferred at z < 0.5, suggesting weak evolution with redshift, at least for moderately luminous quasars.
The empirical metallicity dependence of the mass-loss rate of O- and early B-type stars
Mokiem, M.R.; de Koter, A.; Vink, J.S.; Puls, J.; Evans, C.J.; Smartt, S.J.; Crowther, P.A.; Herrero, A.; Langer, N.; Lennon, D.J.; Najarro, F.; Villamariz, M.R.
2007-01-01
Abridged] We present a comprehensive study of the metallicity dependence of the mass-loss rates in stationary stellar winds of hot massive stars. Assuming a power-law dependence of mass loss on metallicity, Mdot \\propto Z^{m}, and adopting a theoretical relation between the terminal velocity and met
Energy Technology Data Exchange (ETDEWEB)
Cobian, Hector [Facultad de Ciencias, Universidad de Colima, Bernal DIaz del Castillo 340, 28045 Colima, Colima (Mexico); Schulze-Halberg, Axel, E-mail: horus.cobian@gmail.com, E-mail: xbataxel@gmail.com, E-mail: axgeschu@iun.edu [Department of Mathematics and Actuarial Science, Indiana University Northwest, 3400 Broadway, Gary, IN 46408 (United States)
2011-07-15
We construct Darboux transformations for time-dependent Schroedinger equations with position-dependent mass in (2 + 1) dimensions. Several examples illustrate our results, which complement and generalize former findings for the constant mass case in two spatial variables (Schulze-Halberg 2010 J. Math. Phys. 51 033521).
Anomalous Wtb coupling and forward-backward asymmetry of top quark production at the Tevatron
Kolodziej, K
2011-01-01
An influence of the anomalous Wtb coupling on forward-backward asymmetry of top quark pair production at the Tevatron is investigated taking into account decays of the top quarks to 6 fermion final states containing one charged lepton. To this end the most general effective Lagrangian of the Wtb interaction containing terms of dimension up to five is implemented into 'carlomat', a general purpose Monte Carlo program, which allows to compute automatically all necessary cross sections in the presence of anomalous vector and tensor form factors. A sample of results which illustrate the influence of the left- and right-handed tensor form factors on the t\\bar t invariant mass dependent forward-backward asymmetry is shown. Although the total integrated asymmetry is consistent with zero, there are quite big fluctuations present in separate bins, in particular for high t\\bar t invariant masses.
Meier, Matthias M. M.; Cloquet, Christophe; Marty, Bernard
2016-06-01
We have measured the concentration, isotopic composition and thermal release profiles of Mercury (Hg) in a suite of meteorites, including both chondrites and achondrites. We find large variations in Hg concentration between different meteorites (ca. 10 ppb to 14,000 ppb), with the highest concentration orders of magnitude above the expected bulk solar system silicates value. From the presence of several different Hg carrier phases in thermal release profiles (150-650 °C), we argue that these variations are unlikely to be mainly due to terrestrial contamination. The Hg abundance of meteorites shows no correlation with petrographic type, or mass-dependent fractionation of Hg isotopes. Most carbonaceous chondrites show mass-independent enrichments in the odd-numbered isotopes 199Hg and 201Hg. We show that the enrichments are not nucleosynthetic, as we do not find corresponding nucleosynthetic deficits of 196Hg. Instead, they can partially be explained by Hg evaporation and redeposition during heating of asteroids from primordial radionuclides and late-stage impact heating. Non-carbonaceous chondrites, most achondrites and the Earth do not show these enrichments in vapor-phase Hg. All meteorites studied here have however isotopically light Hg (δ202Hg = ∼-7 to -1) relative to the Earth's average crustal values, which could suggest that the Earth has lost a significant fraction of its primordial Hg. However, the late accretion of carbonaceous chondritic material on the order of ∼2%, which has been suggested to account for the water, carbon, nitrogen and noble gas inventories of the Earth, can also contribute most or all of the Earth's current Hg budget. In this case, the isotopically heavy Hg of the Earth's crust would have to be the result of isotopic fractionation between surface and deep-Earth reservoirs.
Wang, Zhuhong; Chen, Jiubin; Feng, Xinbin; Hintelmann, Holger; Yuan, Shengliu; Cai, Hongming; Huang, Qiang; Wang, Shuxiao; Wang, Fengyang
2015-11-01
The isotopic composition of mercury (Hg) is increasingly used to constrain the sources and pathways of this metal in the atmosphere. Though China has the highest Hg production, consumption and emission in the world, Hg isotope ratios are rarely reported for Chinese wet deposition. In this study, we examined, for the first time outside North America, both mass-dependent fractionation (MDF, expressed as δ202Hg) and mass-independent fractionation of odd (odd-MIF, Δ199Hg) and even (even-MIF, Δ200Hg) Hg isotopes in 15 precipitation samples collected from September 2012 to August 2013 in Guiyang (SW China). All samples displayed significant negative δ202Hg (-0.44 ∼ -4.27‰), positive Δ199Hg (+0.19 to +1.16‰) and slightly positive Δ200Hg (-0.01‰ to +0.20‰). Potential sources of Hg in precipitation were identified by coupling both MDF and MIF of Hg isotopes with a back-trajectory model. The results showed that local emission from coal-fired power plants and cement plants and western long-range transportation are two main contributing sources, while the contribution of Hg from south wind events would be very limited on an annual basis. The relatively lower Δ200Hg values in Guiyang precipitation may indicate a dilution effect by local sources and/or insignificant even-MIF in the tropopause contribution of this subtropical region. Our study demonstrates the usefulness of isotope fractionation, especially MIF for tracing sources and pathways of Hg in the atmosphere.
Searching for the fourth family quarks through anomalous decays
International Nuclear Information System (INIS)
The flavor democracy hypothesis predicts the existence of the fourth standard model family. Because of the high masses of the fourth family quarks, their anomalous decays could be dominant if certain criteria are met. This will drastically change the search strategy at hadron colliders. We show that the fourth standard model family down quarks with masses up to 400-450 GeV can be observed (or excluded) via anomalous decays by Tevatron.
Quark mass dependence of H-dibaryon in $\\Lambda\\Lambda$ scattering
Yamaguchi, Yasuhiro
2016-01-01
We study the quark mass dependence of the H-dibaryon in the strangeness $S=-2$ baryon-baryon scattering. A low-energy effective field theory is used to describe the coupled-channel scattering, in which the quark mass dependence is incorporated so as to reproduce the lattice QCD data in the SU(3) limit. We point out the existence of the Castillejo-Dalitz-Dyson (CDD) pole in the $\\Lambda\\Lambda$ scattering amplitude below the threshold in the SU(3) limit, which may cause the Ramsauer-Townsend effect near the $N\\Xi$ threshold at the physical point. The H-dibaryon is unbound at the physical point, and a resonance appears just below the $N\\Xi$ threshold. As a consequence of the coupled-channel dynamics, the pole associated with the resonance is not continuously connected to the bound state in the SU(3) limit. Through the extrapolation in quark masses, we show that the unitary limit of the $\\Lambda\\Lambda$ scattering is achieved between the physical point and the SU(3) limit. We discuss the possible realization of ...
An Update on the Non-Mass-Dependent Isotope Fractionation under Thermal Gradient
Sun, Tao; Niles, Paul; Bao, Huiming; Socki, Richard; Liu, Yun
2013-01-01
Mass flow and compositional gradient (elemental and isotope separation) occurs when flu-id(s) or gas(es) in an enclosure is subjected to a thermal gradient, and the phenomenon is named thermal diffusion. Gas phase thermal diffusion has been theoretically and experimentally studied for more than a century, although there has not been a satisfactory theory to date. Nevertheless, for isotopic system, the Chapman-Enskog theory predicts that the mass difference is the only term in the thermal diffusion separation factors that differs one isotope pair to another,with the assumptions that the molecules are spherical and systematic (monoatomic-like structure) and the particle collision is elastic. Our previous report indicates factors may be playing a role because the Non-Mass Dependent (NMD) effect is found for both symmetric and asymmetric, linear and spherical polyatomic molecules over a wide range of temperature (-196C to +237C). The observed NMD phenomenon in the simple thermal-diffusion experiments demands quantitative validation and theoretical explanation. Besides the pressure and temperature dependency illustrated in our previous reports, efforts are made in this study to address issues such as the role of convection or molecular structure and whether it is a transient, non-equilibrium effect only.
González-Garciá, M Concepción
1999-01-01
We review the effects of new effective interactions on Higgs-boson phenomenology. New physics in the electroweak bosonic sector is expected to induce additional interactions between the Higgs doublet field and the electroweak gauge bosons, leading to anomalous Higgs couplings as well as anomalous gauge-boson self-interactions. Using a linearly realized SU(2)/sub L/*U(1)/sub Y/ invariant effective Lagrangian to describe the bosonic sector of the Standard Model, we review the effects of the new effective interactions on the Higgs- boson production rates and decay modes. We summarize the results from searches for the new Higgs signatures induced by the anomalous interactions in order to constrain the scale of new physics, in particular at CERN LEP and Fermilab Tevatron colliders. (43 refs).
Cervantes-Sodi, B; Park, Changbom; Kim, Juhan
2008-01-01
We use a sample of galaxies from the Sloan Digital Sky Survey (SDSS) to search for correlations between the $\\lambda$ spin parameter and the environment and mass of galaxies. In order to calculate the total value of $\\lambda$ for each observed galaxy, we employed a simple model of the dynamical structure of the galaxies which allows a rough estimate of the value of $\\lambda$ using only readily obtainable observables from the luminous galaxies. Use of a large volume limited sample (upwards of 11,000) allows reliable inferences of mean values and dispersions of $\\lambda$ distributions. We find, in agreement with some N-body cosmological simulations, no significant dependence of $\\lambda$ on the environmental density of the galaxies. For the case of mass, our results show a marked correlation with $\\lambda$, in the sense that low mass galaxies present both higher mean values of $\\lambda$ and associated dispersions, than high mass galaxies. This last direct empirical result, at odds with expectations from N-body ...
Orbital evolution of mass-transferring eccentric binary systems. I. Phase-dependent evolution
Dosopoulou, Fani
2016-01-01
Observations reveal that a large amount of close binary systems have a finite eccentricity. The time-evolution of the orbital semi-major axis and eccentricity of mass-transferring eccentric binary systems is an important part of binary evolution theory and has been widely studied. However, various different approaches and assumptions on the subject have made the literature difficult to comprehend and comparisons between different orbital element time-evolution equations not easy to make. Consequently, no self-consistent treatment of this phase has been ever included in binary population synthesis codes. In this paper, we present a general formalism to derive the time-evolution equations of the binary orbital elements, treating mass-loss and mass-transfer as perturbations to the general two-body problem. We present the self-consistent form of the perturbing acceleration and the phase-dependent time-evolution equations for the orbital elements under different mass-loss/transfer processes. First, we study the ca...
The Absence of an Environmental Dependence in the Mass-Metallicity Relation at z=2
Kacprzak, Glenn G; Nanayakkara, Themiya; Kobayashi, Chiaki; Tran, Kim-Vy H; Kewley, Lisa J; Glazebrook, Karl; Spitler, Lee; Taylor, Philip; Cowley, Michael; Labbé, Ivo; Straatman, Caroline; Tomczak, Adam
2015-01-01
We investigate the environmental dependence of the mass-metallicity relation at z=2 with MOSFIRE/Keck as part of the ZFIRE survey. Here, we present the chemical abundance of a Virgo-like progenitor at z=2.095 that has an established red sequence. We identified 43 cluster ($=2.095\\pm0.004$) and 74 field galaxies ($=2.195\\pm0.083$) for which we can measure metallicities. For the first time, we show that there is no discernible difference between the mass-metallicity relation of field and cluster galaxies to within 0.02dex. Both our field and cluster galaxy mass-metallicity relations are consistent with recent field galaxy studies at z~2. We present hydrodynamical simulations for which we derive mass-metallicity relations for field and cluster galaxies. We find at most a 0.1dex offset towards more metal-rich simulated cluster galaxies. Our results from both simulations and observations are suggestive that environmental effects, if present, are small and are secondary to the ongoing inflow and outflow processes t...
The Mass Dependance of Satellite Quenching in Milky Way-like Halos
Phillips, John I; Cooper, Michael C; Boylan-Kolchin, Michael; Bullock, James S; Tollerud, Erik
2014-01-01
Using the Sloan Digital Sky Survey, we examine the quenching of satellite galaxies around isolated Milky Way-like hosts in the local Universe. We find that the efficiency of satellite quenching around isolated galaxies is low and roughly constant over two orders of magnitude in satellite stellar mass ($M_{*}$ = $10^{8.5}-10^{10.5} \\, M_{\\odot}$), with only $\\sim~20\\%$ of systems quenched as a result of environmental processes. While largely independent of satellite stellar mass, satellite quenching does exhibit clear dependence on the properties of the host. We show that satellites of passive hosts are substantially more likely to be quenched than those of star-forming hosts, and we present evidence that more massive halos quench their satellites more efficiently. These results extend trends seen previously in more massive host halos and for higher satellite masses. Taken together, it appears that galaxies with stellar masses larger than about $10^{8}~M_{\\odot}$ are uniformly resistant to environmental quench...
Environmental dependence of the HI mass function in the ALFALFA 70% catalogue
Jones, Michael G; Haynes, Martha P; Giovanelli, Riccardo
2015-01-01
We search for environmental dependence of the HI mass function in the ALFALFA 70% catalogue. The catalogue is split into quartiles of environment density based on the projected neighbour density of neighbours found in both SDSS and 2MRS volume limited reference catalogues. We find the Schechter function 'knee' mass to be dependent on environment, with the value of $\\log ({M_{*}/\\mathrm{M_{\\odot}}})$ shifting from $9.81 \\pm 0.02$ to $10.00 \\pm 0.03$ between the lowest and highest density quartiles. However, this dependence was only observed when defining environment based on the SDSS reference catalogue, not 2MRS. We interpret these results as meaning that the local environment is the dominant cause of the shift in $M_{*}$, and that the larger scales that 2MRS probes (compared to SDSS) are almost irrelevant. In addition, we also use a fixed aperture method to probe environment, and find tentative evidence that HI-deficiency depresses the value of $M_{*}$ in the highest density regions. We find no significant d...
Anomalous chiral superfluidity
Energy Technology Data Exchange (ETDEWEB)
Lublinsky, Michael, E-mail: lublinsky@phys.uconn.ed [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Physics Department, Ben-Gurion University, Beer Sheva 84105 (Israel); Zahed, Ismail [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)
2010-02-08
We discuss both the anomalous Cartan currents and the energy-momentum tensor in a left chiral theory with flavor anomalies as an effective theory for flavored chiral phonons in a chiral superfluid with the gauged Wess-Zumino-Witten term. In the mean-field (leading tadpole) approximation the anomalous Cartan currents and the energy-momentum tensor take the form of constitutive currents in the chiral superfluid state. The pertinence of higher order corrections and the Adler-Bardeen theorem is briefly noted.
Radiation Feedback, Fragmentation, and the Environmental Dependence of the Initial Mass Function
Krumholz, Mark R; Klein, Richard I; McKee, Christopher F
2010-01-01
The fragmentation of star-forming interstellar clouds, and the resulting stellar initial mass function (IMF), is determined largely by the temperature structure of the collapsing gas. Since radiation feedback from embedded stars can modify this as collapse proceeds, feedback plays an important role in determining the IMF. However, the effects and importance of radiative heating are likely to depend strongly on the surface density of the collapsing clouds, which determines both their effectiveness at trapping radiation and the accretion luminosities of the stars forming within them. In this paper we report a suite of adaptive mesh refinement radiation-hydrodynamic simulations using the ORION code in which we isolate the effect of column density on fragmentation by following the collapse of clouds of varying column density while holding the mass, initial density and velocity structure, and initial virial ratio fixed. We find that radiation does not significantly modify the overall star formation rate or efficie...
Inoue, Takashi; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji
2013-09-13
Quark mass dependence of the equation of state (EOS) for nucleonic matter is investigated, on the basis of the Brueckner-Hartree-Fock method with the nucleon-nucleon interaction extracted from lattice QCD simulations. We observe saturation of nuclear matter at the lightest available quark mass corresponding to the pseudoscalar meson mass ≃469 MeV. Mass-radius relation of the neutron stars is also studied with the EOS for neutron-star matter from the same nuclear force in lattice QCD. We observe that the EOS becomes stiffer and thus the maximum mass of neutron star increases as the quark mass decreases toward the physical point.
Quark matter at high density based on an extended confined isospin-density-dependent mass model
Qauli, A. I.; Sulaksono, A.
2016-01-01
We investigate the effect of the inclusion of relativistic Coulomb terms in a confined-isospin-density-dependent-mass (CIDDM) model of strange quark matter (SQM). We found that if we include the Coulomb term in scalar density form, the SQM equation of state (EOS) at high densities is stiffer but if we include the Coulomb term in vector density form it is softer than that of the standard CIDDM model. We also investigate systematically the role of each term of the extended CIDDM model. Compared with what was reported by Chu and Chen [Astrophys. J. 780, 135 (2014)], we found the stiffness of SQM EOS is controlled by the interplay among the oscillator harmonic, isospin asymmetry and Coulomb contributions depending on the parameter's range of these terms. We have found that the absolute stable condition of SQM and the mass of 2 M⊙ pulsars can constrain the parameter of oscillator harmonic κ1≈0.53 in the case the Coulomb term is excluded. If the Coulomb term is included, for the models with their parameters are consistent with SQM absolute stability condition, the 2.0 M⊙ constraint more prefers the maximum mass prediction of the model with the scalar Coulomb term than that of the model with the vector Coulomb term. On the contrary, the high densities EOS predicted by the model with the vector Coulomb is more compatible with the recent perturbative quantum chromodynamics result [1] than that predicted by the model with the scalar Coulomb. Furthermore, we also observed the quark composition in a very high density region depends quite sensitively on the kind of Coulomb term used.
Relativistic particle scattering states with tensor potential and spatially-dependent mass
International Nuclear Information System (INIS)
We investigate the relativistic equation for particles with spin 1/2 in the q-parameter modified Poeschl-Teller potential, including Coulomb-like tensor interaction with spatially-dependent mass for the D-dimension. We present approximate solutions of the Dirac equation with these potentials for any spin-orbit quantum number κ under spin symmetry. The normalized wave functions are expressed in terms of the hyper-geometric series of the scattering states on the k/2π scale. We also give the formula for the phase shifts, and use the Nikiforov-Uvarov method to obtain the energy eigen-values equation. (authors)
Alignments of dark matter halos with large-scale tidal fields: mass and redshift dependence
Chen, Sijie; Mo, H J; Shi, Jingjing
2016-01-01
Large scale tidal field estimated directly from the distribution of dark matter halos is used to investigate how halo shapes and spin vectors are aligned with the cosmic web. The major, intermediate and minor axes of halos are aligned with the corresponding tidal axes, and halo spin axes tend to be parallel with the intermediate axes and perpendicular to the major axes of tidal field. The strengths of these alignments generally increase with halo mass and redshift, but the dependencies are only through the peak height, {\
Lattice spacing dependence of the first order phase transition for dynamical twisted mass fermions
International Nuclear Information System (INIS)
We study the phase structure of lattice QCD when Wilson twisted mass fermions with the Wilson plaquette gauge action are used in a range of β values where a first order phase transition is observed. In particular, we investigate the dependence of the first order phase transition on the value of the lattice spacing. Using only data in one phase and neglecting possible problems arising from the phase transition we are able to perform a first scaling test for physical quantities using this action. (orig.)
Phase Structure in a Quark Mass Density-and-Temperature-Dependent Model
Institute of Scientific and Technical Information of China (English)
WEN Xin-Jian; PENG Guang-Xiong; SHEN Peng-Nian
2007-01-01
The phase diagram of bulk quark matter in equilibrium with a finite hadronic gas is studied. Different from previous investigations, we treat the quark phase with the quark rnass density-and-temperature-dependent model to take the strong quark interaction into account, while the hadron phase is treated by hard core repulsion factor. It is found that the phase diagram in this model is, in several aspects, different from those in the conventional MIT bag model, especially at high temperature. The new phase diagram also has strong effects on the mass-radius relation of compact hybrid stars.
Dibaryon systems in the quark mass density- and temperature-dependent model
Zhang, Yun; Su, Ru-Keng
2003-01-01
Using the quark mass density- and temperature-dependent model, we have studied the properties of the dibaryon systems. The binding energy, radius and mean lifetime of Omega-Omega and Omega-Xi are given. We find the dibaryons Omega-Omega, Omega-Xi are metastable at zero temperature, but the strong decay channel for Omega-Omega opens when temperature arrives at 129.3MeV. It is shown that our results are in good agreement with those given by the chiral S(3) quark model.
Full top quark mass dependence in Higgs boson pair production at NLO
Borowka, S; Heinrich, G; Jones, S P; Kerner, M; Schlenk, J; Zirke, T
2016-01-01
We study the effects of the exact top-quark mass dependent two-loop corrections to Higgs boson pair production by gluon fusion at the LHC and at a 100 TeV hadron collider. We perform a detailed comparison of the full next-to-leading order result to various approximations at the level of differential distributions and also analyse non-standard Higgs self-coupling scenarios. We find that the different next-to-leading order approximations differ from the full result by up to 50 percent in relevant differential distributions. This clearly stresses the importance of the full NLO result.
Position-dependent mass approach and quantization for a torus Lagrangian
Yeşiltaş, Özlem
2016-09-01
We have shown that a Lagrangian for a torus surface can yield second-order nonlinear differential equations using the Euler-Lagrange formulation. It is seen that these second-order nonlinear differential equations can be transformed into the nonlinear quadratic and Mathews-Lakshmanan equations using the position-dependent mass approach developed by Mustafa (J. Phys. A: Math. Theor. 48, 225206 (2015)) for the classical systems. Then, we have applied the quantization procedure to the nonlinear quadratic and Mathews-Lakshmanan equations and found their exact solutions.
Magnetized strange quark matter in a mass-density-dependent model
Hou, Jia-Xun; Peng, Guang-Xiong; Xia, Cheng-Jun; Xu, Jian-Feng
2015-01-01
We investigate the properties of strange quark matter (SQM) in a strong magnetic field with quark confinement by the density dependence of quark masses considering the total baryon number conservation, charge neutrality and chemical equilibrium. It is found that an additional term should appear in the pressure expression to maintain thermodynamic consistency. At fixed density, the energy density of magnetized SQM varies with the magnetic field strength. By increasing the field strength an energy minimum exists located at about 6×1019 Gauss when the density is fixed at two times the normal nuclear saturation density.
Improved quark mass density- dependent model with quark and non-linear scalar field coupling
Su, C; Su, R K; Su, Chen; Qian, Wei Liang; Su, Ru-Keng
2005-01-01
The improved quark mass density- dependent model which includes the coupling between the quarks and a non-linear scalar field is presented. Numerical analysis of solutions of the model is performed over a wide range of parameters. The wave functions of ground state and the lowest one-particle excited states with even and odd parity are given. The root-mean squared radius, the magnetic moment and the ratio between the axial-vector and the vector $\\beta$-decay coupling constants of the nucleon are calculated. We found that the present model is successful to describe the properties of nucleon.
Target mass corrections for spin-dependent structure functions in collinear factorization
Accardi, A
2008-01-01
We derive target mass corrections (TMC) for the spin-dependent nucleon structure function g1 and polarization asymmetry A1 in collinear factorization at leading twist. The TMCs are found to be significant for g1 at large xB, even at relatively high Q^2 values, but largely cancel in A1. A comparison of TMCs obtained from collinear factorization and from the operator product expansion shows that at low Q^2 the corrections drive the proton A1 in opposite directions.
Rañada, Manuel F.
2016-06-01
The superintegrability of two-dimensional Hamiltonians with a position dependent mass (pdm) is studied (the kinetic term contains a factor m that depends of the radial coordinate). First, the properties of Killing vectors are studied and the associated Noether momenta are obtained. Then the existence of several families of superintegrable Hamiltonians is proved and the quadratic integrals of motion are explicitly obtained. These families include, as particular cases, some systems previously obtained making use of different approaches. We also relate the superintegrability of some of these pdm systems with the existence of complex functions endowed with interesting Poisson bracket properties. Finally the relation of these pdm Hamiltonians with the Euclidean Kepler problem and with the Euclidean harmonic oscillator is analyzed.
Institute of Scientific and Technical Information of China (English)
Liu Yu-Min; Yu Zhong-Yuan
2009-01-01
Calculations of electronic structures about the semiconductor quantum dot and the semiconductor quantum ring are presented in this paper. To reduce the calculation costs, for the quantum dot and the quantum ring, their simplified axially symmetric shapes are utilized in our analysis. The energy dependent effective mass is taken into account in solving the Schrodinger equations in the single band effective mass approximation. The calculated results show that the energy dependent effective mass should be considered only for relatively small volume quantum dots or small quantum rings. For large size quantum materials, both the energy dependent effective mass and the parabolic effective mass can give the same results. The energy states and the effective masses of the quantum dot and the quantum ring as a function of geometric parameters are also discussed in detail.
Soft-/rapidity- anomalous dimensions correspondence
Vladimirov, Alexey A
2016-01-01
We establish a correspondence between ultraviolet singularities of soft factors for multi-particle production and rapidity singularities of soft factors for multi-parton scattering. This correspondence is a consequence of a conformal mapping between scattering geometries. The correspondence is valid to all orders of perturbation theory and in this way provides a proof of rapidity renormalization procedure for multi-parton scattering soft factors (including the transverse momentum dependent (TMD) soft factor as a special case). As a by-product we obtain an exact relation between the rapidity anomalous dimension and the well-known soft anomalous dimension. The three-loop rapidity anomalous dimensions for TMD and a general multi-parton scattering are derived.
Anomalous pion decay revisited
Battistel, O A; Nemes, M C; Hiller, B
1999-01-01
An implicit four dimensional regularization is applied to calculate the axial-vector-vector anomalous amplitude. The present technique always complies with results of Dimensional Regularization and can be easily applied to processes involving odd numbers of $\\gamma_5$ matrices. This is illustrated explicitely in the example of this letter.
Anomalous behavior of the pressure dependence of lattice constants in Tl sub 2 Ba sub 2 CuO sub 6+x
Energy Technology Data Exchange (ETDEWEB)
Takahashi, H. (Materials Science Div., Argonne National Lab., IL (United States) Inst. for Solid State Physics, Univ. of Tokyo (Japan)); Jorgensen, J.D.; Hitterman, R.L. (Materials Science Div., Argonne National Lab., IL (United States)); Hunter, B.A.; Pei Shiyou (Science and Tech. Center for Superconductivity, Argonne National Lab., IL (United States)); Izumi, F. (National Inst. for Research in Inorganic Materials, Ibaraki (Japan)); Shimakawa, Y.; Kubo, Y.; Manako, T. (Fundamental Research Labs., NEC Corporation, Ibaraki (Japan))
1992-02-01
The crystal structure of Tl{sub 2}Ba{sub 2}CuO{sub 6+x} has been investigated as a function of pressure and temperature under hydrostatic conditions using neutron powder diffraction. The crystal structure at 0.609 GPa and 60 K depends systematically on the path in pressure-temperature space by which these conditions are achieved. Applying pressure at room temperature and then cooling produces different changes in the structure than cooling first and then applying pressure. Our results support those of Sieburger and Schilling who reported that the Tc at high pressure for this compound depends markedly on whether the sample is pressurized at room temperature or low temperature. We speculate that this unusual behavior may be associated with differences in the mobility of interstitial oxygen defects between room temperature and 60 K and that applying pressure at room temperature changes the state of the sample through such processes as defect ordering, while changing the pressure at low temperature does not. (orig.).
Institute of Scientific and Technical Information of China (English)
JU Guo-Xing; CAI Chang-Ying; XIANG Yang; REN Zhong-Zhou
2007-01-01
Using the coordinate transformation method, we solve the one-dimensional Schr(o)dinger equation with position-dependent mass. The explicit expressions for the potentials, energy eigenvalues, and eigcnfunctions of the systems are given. The eigenfunctions can be expressed in terms of the Jacobi, Hermite, and generalized Laguerre polynomials. All potentials for these solvable systems have an extra term Vm, which is produced from the dependence of mass on the position, compared with those for the systems of constant mass. The properties of Vm for several mass functions are discussed.
Quark Matter at High Density based on Extended Confined-isospin-density-dependent-mass Model
Qauli, A I
2016-01-01
We investigate the effect of the inclusion of relativistic Coulomb terms in a confined-isospin-density-dependent-mass (CIDDM) model of strange quark matter (SQM). We found that if we include Coulomb term in scalar density form, SQM equation of state (EOS) at high densities is stiffer but if we include Coulomb term in vector density form is softer than that of standard CIDDM model. We also investigate systematically the role of each term of the extended CIDDM model. Compared with what was reported in Ref.~\\cite {ref:isospin}, we found the stiffness of SQM EOS is controlled by the interplay among the the oscillator harmonic, isospin asymmetry and Coulomb contributions depending on the parameter's range of these terms. We have found that the absolute stable condition of SQM and the mass of 2 $M_\\odot$ pulsars can constrain the parameter of oscillator harmonic $\\kappa_1$ $\\approx 0.53$ in the case Coulomb term excluded. If the Coulomb term is included, for the models with their parameters are consistent with SQM ...
Beta Function and Anomalous Dimensions
DEFF Research Database (Denmark)
Pica, Claudio; Sannino, Francesco
2011-01-01
We demonstrate that it is possible to determine the coefficients of an all-order beta function linear in the anomalous dimensions using as data the two-loop coefficients together with the first one of the anomalous dimensions which are universal. The beta function allows to determine the anomalous...
Mátyus, Edit; Szidarovszky, Tamás; Császár, Attila G.
2014-10-01
Introducing different rotational and vibrational masses in the nuclear-motion Hamiltonian is a simple phenomenological way to model rovibrational non-adiabaticity. It is shown on the example of the molecular ion H_3^+, for which a global adiabatic potential energy surface accurate to better than 0.1 cm-1 exists [M. Pavanello, L. Adamowicz, A. Alijah, N. F. Zobov, I. I. Mizus, O. L. Polyansky, J. Tennyson, T. Szidarovszky, A. G. Császár, M. Berg et al., Phys. Rev. Lett. 108, 023002 (2012)], that the motion-dependent mass concept yields much more accurate rovibrational energy levels but, unusually, the results are dependent upon the choice of the embedding of the molecule-fixed frame. Correct degeneracies and an improved agreement with experimental data are obtained if an Eckart embedding corresponding to a reference structure of D3h point-group symmetry is employed. The vibrational mass of the proton in H_3^+ is optimized by minimizing the root-mean-square (rms) deviation between the computed and recent high-accuracy experimental transitions. The best vibrational mass obtained is larger than the nuclear mass of the proton by approximately one third of an electron mass, m^(v)_opt,p=m_nuc,p+0.31224 m_e. This optimized vibrational mass, along with a nuclear rotational mass, reduces the rms deviation of the experimental and computed rovibrational transitions by an order of magnitude. Finally, it is shown that an extension of the algorithm allowing the use of motion-dependent masses can deal with coordinate-dependent mass surfaces in the rovibrational Hamiltonian, as well.
Energy Technology Data Exchange (ETDEWEB)
Mátyus, Edit, E-mail: matyus@chem.elte.hu [Institute of Chemistry, Eötvös University, P.O. Box 32, H-1518 Budapest 112 (Hungary); Szidarovszky, Tamás [MTA-ELTE Research Group on Complex Chemical Systems, Pázmány Péter sétány 1/A, H-1117 Budapest (Hungary); Császár, Attila G., E-mail: csaszar@chem.elte.hu [Institute of Chemistry, Eötvös University, P.O. Box 32, H-1518, Budapest 112, Hungary and MTA-ELTE Research Group on Complex Chemical Systems, Pázmány Péter sétány 1/A, H-1117 Budapest (Hungary)
2014-10-21
Introducing different rotational and vibrational masses in the nuclear-motion Hamiltonian is a simple phenomenological way to model rovibrational non-adiabaticity. It is shown on the example of the molecular ion H{sub 3}{sup +}, for which a global adiabatic potential energy surface accurate to better than 0.1 cm{sup −1} exists [M. Pavanello, L. Adamowicz, A. Alijah, N. F. Zobov, I. I. Mizus, O. L. Polyansky, J. Tennyson, T. Szidarovszky, A. G. Császár, M. Berg et al., Phys. Rev. Lett. 108, 023002 (2012)], that the motion-dependent mass concept yields much more accurate rovibrational energy levels but, unusually, the results are dependent upon the choice of the embedding of the molecule-fixed frame. Correct degeneracies and an improved agreement with experimental data are obtained if an Eckart embedding corresponding to a reference structure of D{sub 3h} point-group symmetry is employed. The vibrational mass of the proton in H{sub 3}{sup +} is optimized by minimizing the root-mean-square (rms) deviation between the computed and recent high-accuracy experimental transitions. The best vibrational mass obtained is larger than the nuclear mass of the proton by approximately one third of an electron mass, m{sub opt,p}{sup (v)}=m{sub nuc,p}+0.31224 m{sub e}. This optimized vibrational mass, along with a nuclear rotational mass, reduces the rms deviation of the experimental and computed rovibrational transitions by an order of magnitude. Finally, it is shown that an extension of the algorithm allowing the use of motion-dependent masses can deal with coordinate-dependent mass surfaces in the rovibrational Hamiltonian, as well.
The confines of triple oxygen isotope exponents in elemental and complex mass-dependent processes
Bao, Huiming; Cao, Xiaobin; Hayles, Justin A.
2015-12-01
Small differences in triple isotope relationships, or Δ17O in the case of oxygen, have been increasingly used to study a range of problems including hydrological cycles, stratosphere-troposphere exchange, biogeochemical pathways and fluxes, and the Moon's origin in the geochemical and cosmochemical communities. A Δ17O value depends on the triple isotope exponent θ of involved reaction steps. However, the probabilistic distribution of the intrinsic and apparent θ values has not been examined for elemental processes and for processes that are out of equilibrium or bearing reservoir-transport complexities. A lack of knowledge on the confines of θ may hamper our understanding of the subtle differences among mass-dependent processes and may result in mischaracterization of a set of mass-dependent processes as being in violation of mass-dependent rules. Here we advocate a reductionist approach and explore θ confines starting from kinetic isotope effects (KIEs) within the framework of transition state theory (TST). The advantage of our KIE approach is that any elemental or composite, equilibrium or non-equilibrium process can be reduced to a set of KIEs with corresponding θKIE. We establish that the KIE between a reactant and a transition state (TS) is intrinsic. Given a range of KIEs known for Earth processes involving oxygen, we use a Monte Carlo calculation method and a range of oxygen-bonded molecular masses to obtain a distribution of θKIE values and subsequently that of θeq. Next, complexities are examined by looking into expected effects due to reaction progress, unbalanced fluxes, and reference frame. Finally, compounded reservoir-transport effects are examined using two simple processes - Rayleigh Distillation (RD) and Fractional Distillation (FD). Our results show that the apparent θ values between two species or two states of the same evolving species have much broader confines than the commonly used "canonical" confines of 0.51-0.53, particularly
Tovée, M.J.; Emery, J L; Cohen-Tovée, E M
2000-01-01
A disturbance in the evaluation of personal body mass and shape is a key feature of both anorexia and bulimia nervosa. However, it is uncertain whether overestimation is a causal factor in the development of these eating disorders or is merely a secondary effect of having a low body mass. Moreover, does this overestimation extend to the perception of other people's bodies? Since body mass is an important factor in the perception of physical attractiveness, we wanted to determine whether this ...
The dependence of the AV prior for SN Ia on host mass and disc inclination
Holwerda, B. W.; Keel, W. C.; Kenworthy, M. A.; Mack, K. J.
2015-08-01
Type Ia supernovae (SNe Ia) are used as `standard candles' for cosmological distance scales. To fit their light-curve shape-absolute luminosity relation, one needs to assume an intrinsic colour and a likelihood of host galaxy extinction or a convolution of these, a colour distribution prior. The host galaxy extinction prior is typically assumed to be an exponential drop-off for the current supernova programmes (P(A_V) ∝ e^{-A_V/τ_0}). We explore the validity of this prior using the distribution of extinction values inferred when two galaxies accidentally overlap (an occulting galaxy pair). We correct the supernova luminosity distances from the SDSS-III supernova projects (SDSS-SN) by matching the host galaxies to one of three templates from occulting galaxy pairs based on the host galaxy mass and the AV-bias-prior-scale (τ0) relation from Jha et al. We find that introducing an AV prior that depends on host mass results in lowered luminosity distances for the SDSS-SN on average but it does not reduce the scatter in individual measurements. This points, in our view, to the need for many more occulting galaxy templates to match to SN Ia host galaxies to rule out this possible source of scatter in the SN Ia distance measurements. We match occulting galaxy templates based on both mass and projected radius and we find that one should match by stellar mass first with radius as a secondary consideration. We discuss the caveats of the current approach: the lack of enough radial coverage, the small sample of priors (occulting pairs with HST data), the effect of gravitationally interacting as well as occulting pairs, and whether an exponential distribution is appropriate. Our aim is to convince the reader that a library of occulting galaxy pairs observed with HST will provide sufficient priors to improve (optical) SN Ia measurements to the next required accuracy in cosmology.
Ueda, Hiroshi; Wakabayashi, Shinobu; Kikuchi, Junko; Ida, Yasuo; Kadota, Kazunori; Tozuka, Yuichi
2015-04-01
Eudragit E (EGE) is a basic polymer incorporating tertiary amino and ester groups. The role of the functional groups of EGE in the formation of solid dispersion (SD) with Naproxen (NAP) was investigated. The glass transition temperature (Tg) of EGE decreased with the plasticizing effect of NAP up to 20% weight ratio. Addition of NAP at over 30% induced a rise in Tg, with the maximum value being reached at 60% NAP. Further addition of NAP led to a rapid drop of the Tg. A dramatic difference of physical stability between the SDs including 60 and 70% NAP was confirmed. The SD including 70% NAP rapidly crystallized at 40 °C with 75% relative humidity, while the amorphous state could be maintained over 6 months in the SD with 60% NAP. The infrared and (13)C solid state-NMR spectra of the SDs suggested a formation of ionic interaction between the carboxylic acid of NAP and the amino group of EGE. The SD with 20% NAP raised the (13)C spin-lattice relaxation (T1) of the amino group, but it decreased with over 30% NAP. The change in the (13)C-T1 disappeared with 70% NAP. The (13)C-T1 of the ester group rose depending on the amount of NAP. From these findings, we concluded that the role as hydrogen acceptor shifted from the amine to the ester group with an increase in amount of NAP. Furthermore, the amino group of EGE did not contribute to the interaction at over 70% NAP. These phenomena could be strongly correlated with Tg and stability.
Energy and Mass-Number Dependence of Hadron-Nucleus Total Reaction Cross Sections
Kohama, Akihisa; Iida, Kei; Oyamatsu, Kazuhiro
2016-09-01
We thoroughly investigate how proton-nucleus total reaction cross sections depend on the target mass number A and the proton incident energy. In doing so, we systematically analyze nuclear reaction data that are sensitive to nuclear size, namely, proton-nucleus total reaction cross sections and differential elastic cross sections, using a phenomenological black-sphere approximation of nuclei that we are developing. In this framework, the radius of the black sphere is found to be a useful length scale that simultaneously accounts for the observed proton-nucleus total reaction cross section and first diffraction peak in the proton elastic differential cross section. This framework, which is shown here to be applicable to antiprotons, is expected to be applicable to any kind of projectile that is strongly attenuated in the nucleus. On the basis of a cross-section formula constructed within this framework, we find that a less familiar A1/6 dependence plays a crucial role in describing the energy dependence of proton-nucleus total reaction cross sections.
Tovée, M J; Emery, J L; Cohen-Tovée, E M
2000-10-01
A disturbance in the evaluation of personal body mass and shape is a key feature of both anorexia and bulimia nervosa. However, it is uncertain whether overestimation is a causal factor in the development of these eating disorders or is merely a secondary effect of having a low body mass. Moreover, does this overestimation extend to the perception of other people's bodies? Since body mass is an important factor in the perception of physical attractiveness, we wanted to determine whether this putative overestimation of self body mass extended to include the perceived attractiveness of others. We asked 204 female observers (31 anorexic, 30 bulimic and 143 control) to estimate the body mass and rate the attractiveness of a set of 25 photographic images showing people of varying body mass index (BMI). BMI is a measure of weight scaled for height (kg m(- 2)). The observers also estimated their own BMI. Anorexic and bulimic observers systematically overestimated the body mass of both their own and other people's bodies, relative to controls, and they rated a significantly lower body mass to be optimally attractive. When the degree of overestimation is plotted against the BMI of the observer there is a strong correlation. Taken across all our observers, as the BMI of the observer declines, the overestimation of body mass increases. One possible explanation for this result is that the overestimation is a secondary effect caused by weight loss. Moreover, if the degree of body mass overestimation is taken into account, then there are no significant differences in the perceptions of attractiveness between anorexic and bulimic observers and control observers. Our results suggest a significant perceptual overestimation of BMI that is based on the observer's own BMI and not correlated with cognitive factors, and suggests that this overestimation in eating-disordered patients must be addressed directly in treatment regimes. PMID:11075712
Indian Academy of Sciences (India)
M K Bahar; F Yasuk
2013-02-01
Approximate solutions of the Dirac equation with position-dependent mass are presented for the inversely quadratic Yukawa potential and Coulomb-like tensor interaction by using the asymptotic iteration method. The energy eigenvalues and the corresponding normalized eigenfunctions are obtained in the case of position-dependent mass and arbitrary spin-orbit quantum number k state and approximation on the spin-orbit coupling term.
Anomalous interactions at a linear collider
Indian Academy of Sciences (India)
Sudhansu S Biswal; Debajyoti Choudhury; Rohini M Godbole; Ritesh K Singh
2007-11-01
We examine, in a model independent way, the sensitivity of a linear collider to the couplings of a light Higgs boson to a pair of gauge bosons, including the possibility of CP violation. We construct several observables that probe the various possible anomalous couplings. For an intermediate mass Higgs, a collider operating at a center of mass energy of 500 GeV and with an integrated luminosity of 500 fb-1 is shown to be able to constrain the vertex at the few per cent level, with even higher sensitivity for some of the couplings. However, lack of sufficient number of observables as well as contamination from the vertex limits the precision to which anomalous part of the coupling can be probed.
Glucagon Couples Hepatic Amino Acid Catabolism to mTOR-Dependent Regulation of α-Cell Mass
Mark J. Solloway; Azadeh Madjidi; Chunyan Gu; Jeff Eastham-Anderson; Holly J. Clarke; Noelyn Kljavin; Jose Zavala-Solorio; Lance Kates; Brad Friedman; Matt Brauer; Jianyong Wang; Oliver Fiehn; Ganesh Kolumam; Howard Stern; John B. Lowe
2015-01-01
Understanding the regulation of islet cell mass has important implications for the discovery of regenerative therapies for diabetes. The liver plays a central role in metabolism and the regulation of endocrine cell number, but liver-derived factors that regulate α-cell and β-cell mass remain unidentified. We propose a nutrient-sensing circuit between liver and pancreas in which glucagon-dependent control of hepatic amino acid metabolism regulates α-cell mass. We found that glucagon receptor i...
Anomalous diffusion of epicentres
Sotolongo-Costa, Oscar; Posadas, A; Luzon, F
2007-01-01
The classification of earthquakes in main shocks and aftershocks by a method recently proposed by M. Baiesi and M. Paczuski allows to the generation of a complex network composed of clusters that group the most correlated events. The spatial distribution of epicentres inside these structures corresponding to the catalogue of earthquakes in the eastern region of Cuba shows anomalous anti-diffusive behaviour evidencing the attractive nature of the main shock and the possible description in terms of fractional kinetics.
Dirac Particle for the Position Dependent Mass in the Generalized Asymmetric Woods-Saxon Potential
Directory of Open Access Journals (Sweden)
Soner Alpdoğan
2014-01-01
Full Text Available The one-dimensional Dirac equation with position dependent mass in the generalized asymmetric Woods-Saxon potential is solved in terms of the hypergeometric functions. The transmission and reflection coefficients are obtained by considering the one-dimensional electric current density for the Dirac particle and the equation describing the bound states is found by utilizing the continuity conditions of the obtained wave function. Also, by using the generalized asymmetric Woods-Saxon potential solutions, the scattering states are found out without making calculation for the Woods-Saxon, Hulthen, cusp potentials, and so forth, which are derived from the generalized asymmetric Woods-Saxon potential and the conditions describing transmission resonances and supercriticality are achieved. At the same time, the data obtained in this work are compared with the results achieved in earlier studies and are observed to be consistent.
On Hamiltonians with position-dependent mass from Kaluza-Klein compactifications
Ballesteros, Ángel; Naranjo, Pedro
2016-01-01
In a recent paper [1], an inhomogeneous compactification of the extra dimension of a five dimensional Kaluza-Klein metric has been shown to generate a position-dependent mass in the corresponding four dimensional system. As an application of this dimensional reduction mechanism, a specific static dilatonic scalar field has been connected with a PDM Lagrangian describing a well-known nonlinear PDM oscillator. Here we present two more instances of this construction that lead to two distinguished superintegrable PDM systems: the so-called Darboux III and Taub-NUT Hamiltonians, and the properties of the inhomogeneous extra dimensions connected with them are compared with the ones in the nonlinear oscillator model. It is worth stressing that the Darboux III and Taub-NUT define exactly solvable quantum models, whose spectrum and eigenfuctions are explicitly known. Finally, it is shown that the compactification introduced in [1] can be alternatively interpreted as a mechanism for the dynamical generation of curvatur...
Classical oscillator with position-dependent mass in a complex domain
Ghosh, Subir; Modak, Sujoy Kumar
2009-03-01
We study complexified Harmonic Oscillator with a position-dependent mass, termed as Complex Exotic Oscillator (CEO). The complexification induces a gauge invariance [A.V. Smilga, J. Phys. A 41 (2008) 244026, arXiv:0706.4064; A. Mostafazadeh, J. Math. Phys. 43 (2002) 205; A. Mostafazadeh, J. Math. Phys. 43 (2002) 2814; A. Mostafazadeh, J. Math. Phys. 43 (2002) 3944]. The role of PT-symmetry is discussed from the perspective of classical trajectories of CEO for real energy. Some trajectories of CEO are similar to those for the particle in a quartic potential in the complex domain [C.M. Bender, S. Boettcher, P.N. Meisinger, J. Math. Phys. 40 (1999) 2201; C.M. Bender, D.D. Holm, D. Hook, J. Phys. A 40 (2007) F793, arXiv:0705.3893].
Classical oscillator with position-dependent mass in a complex domain
International Nuclear Information System (INIS)
We study complexified Harmonic Oscillator with a position-dependent mass, termed as Complex Exotic Oscillator (CEO). The complexification induces a gauge invariance [A.V. Smilga, J. Phys. A 41 (2008) 244026, (arXiv:0706.4064); A. Mostafazadeh, J. Math. Phys. 43 (2002) 205; A. Mostafazadeh, J. Math. Phys. 43 (2002) 2814; A. Mostafazadeh, J. Math. Phys. 43 (2002) 3944]. The role of PT-symmetry is discussed from the perspective of classical trajectories of CEO for real energy. Some trajectories of CEO are similar to those for the particle in a quartic potential in the complex domain [C.M. Bender, S. Boettcher, P.N. Meisinger, J. Math. Phys. 40 (1999) 2201; C.M. Bender, D.D. Holm, D. Hook, J. Phys. A 40 (2007) F793, (arXiv:0705.3893)
Relativistic particle scattering states with tensor potential and spatially-dependent mass
Institute of Scientific and Technical Information of China (English)
M.Eshghi; M.R.Abdi
2013-01-01
We investigate the relativistic equation for particles with spin 1/2 in the q-parameter modified P(o)schlTeller potential,including Coulomb-like tensor interaction with spatially-dependent mass for the D-dimension.We present approximate solutions of the Dirac equation with these potentials for any spin-orbit quantum number κ under spin symmetry.The normalized wave functions are expressed in terms of the hyper-geometric series of the scattering states on the k/2π scale.We also give the formula for the phase shifts,and use the Nikiforov-Uvarov method to obtain the energy eigen-values equation.
Institute of Scientific and Technical Information of China (English)
SONG Li-Hua; LIU Na; DUAN Chun-Gui
2013-01-01
Hadron production in lepton-nucleus deep inelastic scattering is studied in a quark energy loss model.The leading-order computations for hadron multiplicity ratios are presented and compared with the selected HERMES pions production data with the quark hadronization occurring outside the nucleus by means of the hadron formation time.It is found that the obtained energy loss per unit length is 0.440±0.013 GeV/fm for an outgoing quark by the global fit.It is confirmed that the atomic mass number dependence of hadron attenuation is theoretically and experimentally in good agreement with the A2/3 power law for quark hadronization occurring outside the nucleus.
Search for Anomalous Couplings in the Higgs Sector at LEP
Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, F; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosemann, C; Rosenbleck, C; Rosier-Lees, S; Roth, S; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, Q; Wang, X L; Wang, Z M; Weber, M; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M
2004-01-01
Anomalous couplings of the Higgs boson are searched for through the processes e^+ e^- -> H gamma, e^+ e^- -> e^+ e^- H and e^+ e^- -> HZ. The mass range 70 GeV ffbar, H -> gamma gamma, H -> Z\\gamma and H -> WW^(*) are considered and no evidence is found for anomalous Higgs production or decay. Limits on the anomalous couplings d, db, Delta(g1z), Delta(kappa_gamma) and xi^2 are derived as well as limits on the H -> gamma gamma and H -> Z gamma decay rates.
The dependence of oxygen and nitrogen abundances on stellar mass from the CALIFA survey
Pérez-Montero, E; Vílchez, J M; Sánchez, S F; Kehrig, C; Husemann, B; Puertas, S Duarte; Iglesias-Pármao, J; Galbany, L; Mollá, M; Walcher, C J; Ascasíbar, Y; Delgado, R M González; Marino, R A; Masegosa, J; Pérez, E; Rosales-Ortega, F F; Sánchez-Blázquez, P; Bland-hawthorn, J; Bomans, D; López-Sánchez, A R; Ziegler, B
2016-01-01
We analysed the optical spectra of HII regions extracted from a sample of 350 galaxies of the CALIFA survey. We calculated total O/H abundances and, for the first time, N/O ratios using the semi-empirical routine HII-CHI-mistry, which, according to P\\'erez-Montero (2014), is consistent with the direct method and reduces the uncertainty in the O/H derivation using [NII] lines owing to the dispersion in the O/H-N/O relation. Then we performed linear fittings to the abundances as a function of the de-projected galactocentric distances. The analysis of the radial distribution both for O/H and N/O in the non-interacting galaxies reveals that both average slopes are negative, but a non-negligible fraction of objects have a flat or even a positive gradient (at least 10\\% for O/H and 4\\% for N/O). The slopes normalised to the effective radius appear to have a slight dependence on the total stellar mass and the morphological type, as late low-mass objects tend to have flatter slopes. No clear relation is found, howeve...
Quesne, C
2008-01-01
On using the known equivalence between the presence of a position-dependent mass (PDM) in the Schr\\"odinger equation and a deformation of the canonical commutation relations, a method based on deformed shape invariance has recently been devised for generating pairs of potential and PDM for which the Schr\\"odinger equation is exactly solvable. This approach has provided the bound-state energy spectrum, as well as the ground-state and the first few excited-state wavefunctions. The general wavefunctions have however remained unknown in explicit form because for their determination one would need the solutions of a rather tricky differential-difference equation. Here we show that solving this equation may be avoided by combining the deformed shape invariance technique with the point canonical transformation method in a novel way. It consists in employing our previous knowledge of the PDM problem energy spectrum to construct a constant-mass Schr\\"odinger equation with similar characteristics and in deducing the PD...
From outside-in to inside-out: galaxy assembly mode depends on stellar mass
Pan, Zhizheng; Lin, Weipeng; Wang, Jing; Fan, Lulu; Kong, Xu
2015-01-01
In this Letter, we investigate how galaxy mass assembly mode depends on stellar mass $M_{\\ast}$, using a large sample of $\\sim$10, 000 low redshift galaxies. Our galaxy sample is selected to have SDSS $R_{90}>5\\arcsec.0$, which allows the measures of both the integrated and the central NUV$-r$ color indices. We find that: in the $M_{\\ast}-($ NUV$-r$) green valley, the $M_{\\ast}10^{10.5}~M_{\\sun}$ galaxies have negative color gradients. When their central $D_{n}4000$ index values exceed 1.6, the $M_{\\ast}10^{10.5}~M_{\\sun}$ galaxies still lie on the UV blue cloud or the green valley region. We conclude that the main galaxy assembly mode is transiting from "the outside-in" mode to "the inside-out" mode at $M_{\\ast} 10^{10.5}~M_{\\sun}$. We argue that the physical origin of this is the compromise between the internal and the external process that driving the star formation quenching in galaxies. These results can be checked with the upcoming large data produced by the on-going IFS survey projects, such as CALIFA,...
The Dependence of Star Formation Rates on Stellar Mass and Environment at z~0.8
Patel, Shannon G; Kelson, Daniel D; Illingworth, Garth D; Franx, Marijn
2009-01-01
We examine the star formation rates (SFRs) of galaxies in a redshift slice encompassing the z=0.834 cluster RX J0152.7-1357. We used a low-dispersion prism in the Inamori Magellan Areal Camera and Spectrograph (IMACS) to identify galaxies with z2x10^{10} M_sun) of 330 galaxies that were imaged by Spitzer MIPS at 24 micron to derive SFRs and study the dependence of specific SFR (SSFR) on stellar mass and environment. We find that the SFR and SSFR show a strong decrease with increasing local density, similar to the relation at z~0. Our result contrasts with other work at z~1 that find the SFR-density trend to reverse for luminosity-limited samples. These other results appear to be driven by star-formation in lower mass systems (M~10^{10} M_sun). Our results imply that the processes that shut down star-formation are present in groups and other dense regions in the field. Our data also suggest that the lower SFRs of galaxies in higher density environments may reflect a change in the ratio of star-forming to non-s...
Full mass dependence in Higgs boson production in association with jets at the LHC and FCC
Greiner, Nicolas; Luisoni, Gionata; Schonherr, Marek; Winter, Jan-Christopher
2016-01-01
The first computation of Higgs production in association with three jets at NLO in QCD has recently been performed using the effective theory, where the top quark is treated as an infinitely heavy particle and integrated out. This approach is restricted to the regions in phase space where the typical scales are not larger than the top quark mass. Here we investigate this statement at a quantitative level by calculating the leading-order contributions to the production of a Standard Model Higgs boson in association with up to three jets taking full top-quark and bottom-quark mass dependence into account. We find that the transverse momentum of the hardest particle or jet plays a key role in the breakdown of the effective theory predictions, and that discrepancies can easily reach an order of magnitude for transverse momenta of about 1 TeV. The impact of bottom-quark loops are found to be visible in the small transverse momentum region, leading to corrections of up to 5 percent. We further study the impact of m...
Identification of POMC exonic variants associated with substance dependence and body mass index.
Directory of Open Access Journals (Sweden)
Fan Wang
Full Text Available BACKGROUND: Risk of substance dependence (SD and obesity has been linked to the function of melanocortin peptides encoded by the proopiomelanocortin gene (POMC. METHODS AND RESULTS: POMC exons were Sanger sequenced in 280 African Americans (AAs and 308 European Americans (EAs. Among them, 311 (167 AAs and 114 EAs were affected with substance (alcohol, cocaine, opioid and/or marijuana dependence and 277 (113 AAs and164 EAs were screened controls. We identified 23 variants, including two common polymorphisms (rs10654394 and rs1042571 and 21 rare variants; 12 of which were novel. We used logistic regression to analyze the association between the two common variants and SD or body mass index (BMI, with sex, age, and ancestry proportion as covariates. The common variant rs1042571 in the 3'UTR was significantly associated with BMI in EAs (Overweight: P(adj = 0.005; Obese: P(adj = 0.018; Overweight+Obese: P(adj = 0.002 but not in AAs. The common variant, rs10654394, was not associated with BMI and neither common variant was associated with SD in either population. To evaluate the association between the rare variants and SD or BMI, we collapsed rare variants and tested their prevalence using Fisher's exact test. In AAs, rare variants were nominally associated with SD overall and with specific SD traits (SD: P(FET,1df = 0.026; alcohol dependence: P(FET,1df = 0.027; cocaine dependence: P(FET,1df = 0.007; marijuana dependence: P(FET,1df = 0.050 (the P-value from cocaine dependence analysis survived Bonferroni correction. There was no such effect in EAs. Although the frequency of the rare variants did not differ significantly between the normal-weight group and the overweight or obese group in either population, certain rare exonic variants occurred only in overweight or obese subjects without SD. CONCLUSION: These findings suggest that POMC exonic variants may influence risk for both SD and elevated BMI, in a population-specific manner. However, common
Light-ion elastic scattering potentials: Energy and projectile-mass dependence
International Nuclear Information System (INIS)
Volume integrals of the real potentials derived from elastic scattering studies of deuterons, tritons, 3He, and α particles have been calculated for data available from the lowest to the highest energy. These volume integrals have been plotted as a function of energy per nucleon for each projectile. By selecting energy regions where there were least ambiguities in the potentials and averaging the volume integrals in 1 MeV bins, the energy dependences were determined. The volume integrals show a logarithmic dependence on the energy per nucleon. The zero crossing of the potentials is at about the same value of ∼650 MeV/nucleon for all projectiles. With increasing projectile mass, the potentials become weaker, possibly due to Pauli blocking effects in the projectile. Neutron-rich projectiles have smaller volume integrals due to the manifestation of the isospin effect. A similar analysis of the imaginary volume integrals shows that they increase from zero at the lowest energies to about 100-150 MeV fm3 around 10 MeV/nucleon and then remain essentially constant
Directory of Open Access Journals (Sweden)
Xin-Fa Deng
2013-01-01
Full Text Available Using four volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 8 (SDSS DR8, we have investigated the environmental dependences of the SFR, SSFR and stellar mass at fixed luminosity. At fixed luminosity, we still observe strong environmental dependences of the SFR, SSFR and stellar mass of galaxies: galaxies in the lowest density regime preferentially have a higher SFR or SSFR and lower stellar mass than galaxies in the densest regime. This result suggests that the limitation or fixation of luminosity does not exert substantial influence on the environmental dependences of the SFR, SSFR and stellar mass of galaxies, which further shows that luminosity is not a fundamental parameter in correlations between galaxy properties and the environment.
The Charge-to-Mass Dependence of SEP Fluences Over Wide Longitudes
Cohen, C. M. S.; Mewaldt, R. A.; Mason, G. M.
2014-05-01
Accurate characterization of the transport of energetic particles throughout the inner heliosphere is important for the planning of space missions and the development and testing of space weather forecasting tools. How particles are distributed in both radius and longitude during a solar energetic particle (SEP) event has been the subject of a number of studies. Initially these studies were performed through statistical analysis of single-spacecraft measurements of many different SEP events. Later multi-spacecraft observations of individual events were examined, most notably using data from Helios and, very recently, MESSENGER. Currently by combining measurements from near-Earth spacecraft and the twin STEREO spacecraft, particle distributions can be examined as a function of longitude separately from radial dependences. Additionally, while previous studies concentrated on protons and electrons, the SEP sensors on STEREO and ACE allow heavy ions to be examined as well. We have analyzed 5 large SEP events in 2011 and 2012 that were clearly observed by both STEREOs and ACE and determined the longitudinal distribution of the event-integrated fluences for H, He, O at 3.6-5 MeV/nuc and for H, He, O, and Fe at 0.32-0.45 MeV/nuc. We find no consistent charge-to-mass dependence in the longitudinal distributions at either energy suggesting rigidity is not a controlling factor in the particle spread in longitude. We find that typically lower energy ions have a wider longitudinal spread than higher energy ions suggesting a velocity dependence. Both of these results are consistent with the possibility that magnetic field line meandering and/or co-rotation is a primary means of longitudinally transporting particles.
Eshghi, Mahdi; Ikhdair, Sameer M
2016-01-01
We solve the Schr\\"odinger equation with a position-dependent mass (PDM) charged particle interacted via the superposition of the Morse and Coulomb potentials and exposed to external magnetic and Aharonov-Bohm (AB) flux fields. The non-relativistic bound state energies together with their wave functions are calculated for two spatially-dependent mass distribution functions. We also study the thermal quantities of such a system. Further, the canonical formalism is used to compute various thermodynamic variables for second choosing mass by using the Gibbs formalism. We give plots for energy as a function of various physical parameters. The behavior of the internal energy, specific heat and entropy as functions of temperature and mass density parameter in the inverse-square mass case for different values of magnetic field are shown.
Singh, N N
2001-01-01
The contribution of scale-dependent vacuum expectation values (VEVs) of Higgs scalars, which gives significant effects in the evolution of fundamental fermion masses in the Minimal Supersymmetric Standard Model (MSSM), is now considered in the derivation of the one-loop analytic expression for the evolution of the left-handed Majorana neutrino masses with energies. The inclusion of such effect of the running VEV increases the stability of the neutrino masses under quantum corrections and leads to a mild decrease of neutrino masses with higher energies.
Fenz, W; Mryglod, I M; Prytula, O; Folk, R
2009-08-01
Correlation functions and transport coefficients of self-diffusion and shear viscosity of a binary Lennard-Jones mixture with components differing only in their particle mass are studied up to high values of the mass ratio mu, including the limiting case mu = infinity, for different mole fractions x. Within a large range of x and mu the product of the diffusion coefficient of the heavy species D(2) and the total shear viscosity of the mixture eta(m) is found to remain constant, obeying a generalized Stokes-Einstein relation. At high liquid density, large mass ratios lead to a pronounced cage effect that is observable in the mean square displacement, the velocity autocorrelation function, and the van Hove correlation function. PMID:19792112
Fenz, W.; Mryglod, I. M.; Prytula, O.; Folk, R.
2009-08-01
Correlation functions and transport coefficients of self-diffusion and shear viscosity of a binary Lennard-Jones mixture with components differing only in their particle mass are studied up to high values of the mass ratio μ , including the limiting case μ=∞ , for different mole fractions x . Within a large range of x and μ the product of the diffusion coefficient of the heavy species D2 and the total shear viscosity of the mixture ηm is found to remain constant, obeying a generalized Stokes-Einstein relation. At high liquid density, large mass ratios lead to a pronounced cage effect that is observable in the mean square displacement, the velocity autocorrelation function, and the van Hove correlation function.
W.Fenz; Mryglod, I. M.; Prytula, O.; Folk, R.
2009-01-01
Correlation functions and transport coefficients of self-diffusion and shear viscosity of a binary Lennard-Jones mixture with components differing only in their particle mass are studied up to high values of the mass ratio $\\mu$, including the limiting case $\\mu=\\infty$, for different mole fractions $x$. Within a large range of $x$ and $\\mu$ the product of the diffusion coefficient of the heavy species $D_{2}$ and the total shear viscosity of the mixture $\\eta_{m}$ is found to remain constant...
Ablikim, M.; Achasov, M. N.; Ahmed, S.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Ferroli, R. Baldini; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; Mori, F. De; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fedorov, O.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, Y. P.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Y.; Huang, Z. L.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. B.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Y. Y.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J.G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales, C. Morales; Muchnoi, N. Yu; Muramatsu, H.; Musiol, P.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shi, M.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, S. G.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling
2016-01-01
Using $1.09\\times10^{9}$ $J/\\psi$ events collected by the BESIII experiment in 2012, we study the $J/\\psi\\rightarrow\\gamma\\eta^{\\prime}\\pi^{+}\\pi^{-}$ process and observe a significant abrupt change in the slope of the $\\eta^{\\prime}\\pi^{+}\\pi^{-}$ invariant mass distribution at the proton-antiproto
Ablikim, M; Ahmed, S; Ai, X C; Albayrak, O; Albrecht, M; Ambrose, D J; Amoroso, A; An, F F; An, Q; Bai, J Z; Ferroli, R Baldini; Ban, Y; Bennett, D W; Bennett, J V; Berger, N; Bertani, M; Bettoni, D; Bian, J M; Bianchi, F; Boger, E; Boyko, I; Briere, R A; Cai, H; Cai, X; Cakir, O; Calcaterra, A; Cao, G F; Cetin, S A; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, H Y; Chen, J C; Chen, M L; Chen, S; Chen, S J; Chen, X; Chen, X R; Chen, Y B; Cheng, H P; Chu, X K; Cibinetto, G; Dai, H L; Dai, J P; Dbeyssi, A; Dedovich, D; Deng, Z Y; Denig, A; Denysenko, I; Destefanis, M; De Mori, F; Ding, Y; Dong, C; Dong, J; Dong, L Y; Dong, M Y; Dou, Z L; Du, S X; Duan, P F; Fan, J Z; Fang, J; Fang, S S; Fang, X; Fang, Y; Farinelli, R; Fava, L; Fedorov, O; Feldbauer, F; Felici, G; Feng, C Q; Fioravanti, E; Fritsch, M; Fu, C D; Gao, Q; Gao, X L; Gao, X Y; Gao, Y; Gao, Z; Garzia, I; Goetzen, K; Gong, L; Gong, W X; Gradl, W; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, R P; Guo, Y; Guo, Y P; Haddadi, Z; Hafner, A; Han, S; Hao, X Q; Harris, F A; He, K L; Heinsius, F H; Held, T; Heng, Y K; Holtmann, T; Hou, Z L; Hu, C; Hu, H M; Hu, J F; Hu, T; Hu, Y; Huang, G S; Huang, Y P; Huang, J S; Huang, X T; Huang, X Z; Huang, Y; Huang, Z L; Hussain, T; Ji, Q; Ji, Q P; Ji, X B; Ji, X L; Jiang, L W; Jiang, X S; Jiang, X Y; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Johansson, T; Julin, A; Kalantar-Nayestanaki, N; Kang, X L; Kang, X S; Kavatsyuk, M; Ke, B C; Kiese, P; Kliemt, R; Kloss, B; Kolcu, O B; Kopf, B; Kornicer, M; Kupsc, A; Kühn, W; Lange, J S; Lara, M; Larin, P; Leithoff, H; Leng, C; Li, C; Li, Cheng; Li, D M; Li, F; Li, F Y; Li, G; Li, H B; Li, H J; Li, J C; Li, Jin; Li, K; Li, K; Li, Lei; Li, P R; Li, Q Y; Li, T; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Li, Y B; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Lin, D X; Liu, B; Liu, B J; Liu, C X; Liu, D; Liu, F H; Liu, Fang; Liu, Feng; Liu, H B; Liu, H H; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Liu, J Y; Liu, K; Liu, K Y; Liu, L D; Liu, P L; Liu, Q; Liu, S B; Liu, X; Liu, Y B; Liu, Y Y; Liu, Z A; Liu, Zhiqing; Loehner, H; Lou, X C; Lu, H J; Lu, J G; Lu, Y; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lyu, X R; Ma, F C; Ma, H L; Ma, L L; Ma, M M; Ma, Q M; Ma, T; Ma, X N; Ma, X Y; Ma, Y M; Maas, F E; Maggiora, M; Malik, Q A; Mao, Y J; Mao, Z P; Marcello, S; Messchendorp, J G; Mezzadri, G; Min, J; Mitchell, R E; Mo, X H; Mo, Y J; Morales, C Morales; Muchnoi, N Yu; Muramatsu, H; Musiol, P; Nefedov, Y; Nerling, F; Nikolaev, I B; Ning, Z; Nisar, S; Niu, S L; Niu, X Y; Olsen, S L; Ouyang, Q; Pacetti, S; Pan, Y; Patteri, P; Pelizaeus, M; Peng, H P; Peters, K; Pettersson, J; Ping, J L; Ping, R G; Poling, R; Prasad, V; Qi, H R; Qi, M; Qian, S; Qiao, C F; Qin, L Q; Qin, N; Qin, X S; Qin, Z H; Qiu, J F; Rashid, K H; Redmer, C F; Ripka, M; Rong, G; Rosner, Ch; Ruan, X D; Sarantsev, A; Savrié, M; Schnier, C; Schoenning, K; Schumann, S; Shan, W; Shao, M; Shen, C P; Shen, P X; Shen, X Y; Sheng, H Y; Shi, M; Song, W M; Song, X Y; Sosio, S; Spataro, S; Sun, G X; Sun, J F; Sun, S S; Sun, X H; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Tapan, I; Thorndike, E H; Tiemens, M; Uman, I; Varner, G S; Wang, B; Wang, B L; Wang, D; Wang, D Y; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, S G; Wang, W; Wang, W P; Wang, X F; Wang, Y; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z H; Wang, Z Y; Wang, Z Y; Weber, T; Wei, D H; Wei, J B; Weidenkaff, P; Wen, S P; Wiedner, U; Wolke, M; Wu, L H; Wu, L J; Wu, Z; Xia, L; Xia, L G; Xia, Y; Xiao, D; Xiao, H; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, J J; Xu, L; Xu, Q J; Xu, Q N; Xu, X P; Yan, L; Yan, W B; Yan, W C; Yan, Y H; Yang, H J; Yang, H X; Yang, L; Yang, Y X; Ye, M; Ye, M H; Yin, J H; Yu, B X; Yu, C X; Yu, J S; Yuan, C Z; Yuan, W L; Yuan, Y; Yuncu, A; Zafar, A A; Zallo, A; Zeng, Y; Zeng, Z; Zhang, B X; Zhang, B Y; Zhang, C; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J; Zhang, J J; Zhang, J L; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, K; Zhang, L; Zhang, S Q; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Y N; Zhang, Y T; Zhang, Yu; Zhang, Z H; Zhang, Z P; Zhang, Z Y; Zhao, G; Zhao, J W; Zhao, J Y; Zhao, J Z; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, Q W; Zhao, S J; Zhao, T C; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, W J; Zheng, Y H; Zhong, B; Zhou, L; Zhou, X; Zhou, X K; Zhou, X R; Zhou, X Y; Zhu, K; Zhu, K J; Zhu, S; Zhu, S H; Zhu, X L; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, J; Zotti, L; Zou, B S; Zou, J H
2016-01-01
Using $1.09\\times10^{9}$ $J/\\psi$ events collected by the BESIII experiment in 2012, we study the $J/\\psi\\rightarrow\\gamma\\eta^{\\prime}\\pi^{+}\\pi^{-}$ process and observe a significant abrupt change in the slope of the $\\eta^{\\prime}\\pi^{+}\\pi^{-}$ invariant mass distribution at the proton-antiproton ($p\\bar{p}$) mass threshold. We use two models to characterize the $\\eta^{\\prime}\\pi^{+}\\pi^{-}$ line shape around $1.85~\\text{GeV}/c^{2}$: one which explicitly incorporates the opening of a decay threshold in the mass spectrum (Flatt\\'{e} formula), and another which is the coherent sum of two resonant amplitudes. Both fits show almost equally good agreement with data, and suggest the existence of either a broad state around $1.85~\\text{GeV}/c^{2}$ with strong couplings to $p\\bar{p}$ final states or a narrow state just below the $p\\bar{p}$ mass threshold. Although we cannot distinguish between the fits, either one supports the existence of a $p\\bar{p}$ molecule-like state or bound state with greater than $7\\sigma...
Sun, Bao-Xi; Lu, Xiao-Fu; Shen, Peng-Nian; Zhao, En-Guang
2002-01-01
The Debye screening masses of the $\\sigma$, $\\omega$ and neutral $\\rho$ mesons and the photon are calculated in the relativistic mean-field approximation. As the density of the nucleon increases, all the screening masses of mesons increase. It shows a different result with Brown-Rho scaling, which implies a reduction in the mass of all the mesons in the nuclear matter except the pion. Replacing the masses of the mesons with their corresponding screening masses in Walecka-1 model, five saturat...
International Nuclear Information System (INIS)
We consider one-dimensional stationary position-dependent effective mass quantum model and derive a generalized Korteweg-de Vries (KdV) equation in (1+1) dimension through Lax pair formulation, one being the effective mass Schrödinger operator and the other being the time-evolution of wave functions. We obtain an infinite number of conserved quantities for the generated nonlinear equation and explicitly show that the new generalized KdV equation is an integrable system. Inverse scattering transform method is applied to obtain general solution of the nonlinear equation, and then N-soliton solution is derived for reflectionless potentials. Finally, a special choice has been made for the variable mass function to get mass-deformed soliton solution. The influence of position and time-dependence of mass and also of the different representations of kinetic energy operator on the nature of such solitons is investigated in detail. The remarkable features of such solitons are demonstrated in several interesting figures and are contrasted with the conventional KdV-soliton associated with constant-mass quantum model
Kritee, K.; Barkay, Tamar; Blum, Joel D.
2009-03-01
Controlling bioaccumulation of toxic monomethylmercury (MMHg) in aquatic food chains requires differentiation between biotic and abiotic pathways that lead to its production and degradation. Recent mercury (Hg) stable isotope measurements of natural samples suggest that Hg isotope ratios can be a powerful proxy for tracing dominant Hg transforming pathways in aquatic ecosystems. Specifically, it has been shown that photo-degradation of MMHg causes both mass dependent (MDF) and mass independent fractionation (MIF) of Hg isotopes. Because the extent of MDF and MIF observed in natural samples (e.g., fish, soil and sediments) can potentially be used to determine the relative importance of pathways leading to MMHg accumulation, it is important to determine the potential role of microbial pathways in contributing to the fractionation, especially MIF, observed in these samples. This study reports the extent of fractionation of Hg stable isotopes during degradation of MMHg to volatile elemental Hg and methane via the microbial Hg resistance ( mer) pathway in Escherichia coli carrying a mercury resistance ( mer) genetic system on a multi-copy plasmid. During experimental microbial degradation of MMHg, MMHg remaining in reactors became progressively heavier (increasing δ202Hg) with time and underwent mass dependent Rayleigh fractionation with a fractionation factor α202/198 = 1.0004 ± 0.0002 (2SD). However, MIF was not observed in any of the microbial MMHg degradation experiments indicating that the isotopic signature left by mer mediated MMHg degradation is significantly different from fractionation observed during DOC mediated photo-degradation of MMHg. Additionally, a clear suppression of Hg isotope fractionation, both during reduction of Hg(II) and degradation of MMHg, was observed when the cell densities increased, possibly due to a reduction in substrate bioavailability. We propose a multi-step framework for understanding the extent of fractionation seen in our MMHg
Directory of Open Access Journals (Sweden)
B. Gantt
2011-08-01
Full Text Available For oceans to be a significant source of primary organic aerosol (POA, sea spray aerosol (SSA must be highly enriched with organics relative to the bulk seawater. We propose that organic enrichment at the air-sea interface, chemical composition of seawater, and the aerosol size are three main parameters controlling the organic mass fraction of sea spray aerosol (OM_{SSA}. To test this hypothesis, we developed a new marine POA emission function based on a conceptual relationship between the organic enrichment at the air-sea interface and surface wind speed. The resulting parameterization is explored using aerosol chemical composition and surface wind speed from Atlantic and Pacific coastal stations, and satellite-derived ocean concentrations of chlorophyll-a, dissolved organic carbon, and particulate organic carbon. Of all the parameters examined, a multi-variable logistic regression revealed that the combination of 10 m wind speed and surface chlorophyll-a concentration ([Chl-a] are the most consistent predictors of OM_{SSA}. This relationship, combined with the published aerosol size dependence of OM_{SSA}, resulted in a new parameterization for the organic mass fraction of SSA. Global emissions of marine POA are investigated here by applying this newly-developed relationship to existing sea spray emission functions, satellite-derived [Chl-a], and modeled 10 m winds. Analysis of model simulations shows that global annual submicron marine organic emission associated with sea spray is estimated to be from 2.8 to 5.6 Tg C yr^{−1}. This study provides additional evidence that marine primary organic aerosols are a globally significant source of organics in the atmosphere.
The quantum anomalous Hall effect
LIU, CHAO-XING; Zhang, Shou-Cheng; Qi, Xiao-Liang
2015-01-01
The quantum anomalous Hall effect is defined as a quantized Hall effect realized in a system without external magnetic field. Quantum anomalous Hall effect is a novel manifestation of topological structure in many-electron systems, and may have potential applications in future electronic devices. In recent years, quantum anomalous Hall effect has been proposed theoretically and realized experimentally. In this review article, we provide a systematic overview of the theoretical and experimenta...
Anomalous radiative transitions
Ishikawa, Kenzo; Tobita, Yutaka
2014-01-01
Anomalous transitions involving photons derived by many-body interaction of the form, $\\partial_{\\mu} G^{\\mu}$, in the standard model are studied. This does not affect the equation of motion in the bulk, but makes wave functions modified, and causes the unusual transition characterized by the time-independent probability. In the transition probability at a time-interval T expressed generally in the form $P=T \\Gamma_0 +P^{(d)}$, now with $\\Gamma_0=0, P^{(d)} \
Anomalous Cepheid period-luminosity relationships
International Nuclear Information System (INIS)
The P-L relationship for anomalous Cepheids (ACs) splits into two well-defined lines in the log P - M(B) plane. One line corresponds to pulsation in the fundamental mode, and the other corresponds to the first-overtone. If these P-L relationships are universal, then they can be used to estimate distances to nearby dwarf galaxies. Knowledge of pulsation modes of the ACs in Draco suggests a mass range of 1.04 to 1.7 solar mass
Jimmy,; Saintonge, Amélie; Accurso, Gioacchino; Brough, Sarah; Oliva-Altamirano, Paola
2015-01-01
Using a sample of dwarf galaxies observed using the VIMOS IFU on the VLT, we investigate the mass-metallicity relation (MZR) as a function of star formation rate (FMR$_{\\text{SFR}}$) as well as HI-gas mass (FMR$_{\\text{HI}}$). We combine our IFU data with a subsample of galaxies from the ALFALFA HI survey crossmatched to the Sloan Digital Sky Survey to study the FMR$_{\\text{SFR}}$ and FMR$_{\\text{HI}}$ across the stellar mass range 10$^{6.6}$ to 10$^{8.8}$ M$_\\odot$, with metallicities as low as 12+log(O/H) = 7.67. We find the 1$\\sigma$ mean scatter in the MZR to be 0.05 dex. The 1$\\sigma$ mean scatter in the FMR$_{\\text{SFR}}$ (0.02 dex) is significantly lower than that of the MZR. The FMR$_{\\text{SFR}}$ is not consistent between the IFU observed galaxies and the ALFALFA/SDSS galaxies for SFRs lower than 10$^{-2.4}$ M$_\\odot$ yr$^{-1}$, however this could be the result of limitations of our measurements in that regime. The lowest mean scatter (0.01 dex) is found in the FMR$_{\\text{HI}}$. We also find that th...
Alignments of Dark Matter Halos with Large-scale Tidal Fields: Mass and Redshift Dependence
Chen, Sijie; Wang, Huiyuan; Mo, H. J.; Shi, Jingjing
2016-07-01
Large-scale tidal fields estimated directly from the distribution of dark matter halos are used to investigate how halo shapes and spin vectors are aligned with the cosmic web. The major, intermediate, and minor axes of halos are aligned with the corresponding tidal axes, and halo spin axes tend to be parallel with the intermediate axes and perpendicular to the major axes of the tidal field. The strengths of these alignments generally increase with halo mass and redshift, but the dependence is only on the peak height, ν \\equiv {δ }{{c}}/σ ({M}{{h}},z). The scaling relations of the alignment strengths with the value of ν indicate that the alignment strengths remain roughly constant when the structures within which the halos reside are still in a quasi-linear regime, but decreases as nonlinear evolution becomes more important. We also calculate the alignments in projection so that our results can be compared directly with observations. Finally, we investigate the alignments of tidal tensors on large scales, and use the results to understand alignments of halo pairs separated at various distances. Our results suggest that the coherent structure of the tidal field is the underlying reason for the alignments of halos and galaxies seen in numerical simulations and in observations.
Concentration Dependent Speciation and Mass Transport Properties of Switchable Polarity Solvents
Energy Technology Data Exchange (ETDEWEB)
Aaron D. Wilson; Christopher J. Orme
2014-12-01
Tertiary amine switchable polarity solvents (SPS) consisting of predominantly water, tertiary amine, and tertiary ammonium and bicarbonate ions were produced at various concentrations for three different amines: N,N-dimethylcyclohexylamine, N,N-dimethyloctylamine, and 1 cyclohexylpiperidine. For all concentrations, physical properties were measured including viscosity, molecular diffusion coefficients, freezing point depression, and density. Based on these measurements a variation on the Mark Houwink equation was developed to predict the viscosity of any tertiary amine SPS as a function of concentration using the amine’s molecular mass. The observed physical properties allowed the identification of solution state speciation of non-osmotic SPS, where the amine to carbonic acid ratio is significantly greater than one. These results indicate that at most concentrations the stoichiometric excess amine is involved in solvating a proton with two amines. The physical properties of osmotic SPS have consistent concentration dependence behavior over a wide range of concentrations; this consistence suggests osmotic pressures based on low concentrations freezing point studies can be reliably extrapolated to higher concentrations.
Fickian dispersion is anomalous
Cushman, John H.; O'Malley, Dan
2015-12-01
The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.
Borowka, S; Greiner, N; Heinrich, G; Jones, S P; Kerner, M; Schlenk, J; Schubert, U; Zirke, T
2016-07-01
We present the calculation of the cross section and invariant mass distribution for Higgs boson pair production in gluon fusion at next-to-leading order (NLO) in QCD. Top-quark masses are fully taken into account throughout the calculation. The virtual two-loop amplitude has been generated using an extension of the program GoSam supplemented with an interface to Reduze for the integral reduction. The occurring integrals have been calculated numerically using the program SecDec. Our results, including the full top-quark mass dependence for the first time, allow us to assess the validity of various approximations proposed in the literature, which we also recalculate. We find substantial deviations between the NLO result and the different approximations, which emphasizes the importance of including the full top-quark mass dependence at NLO.
Borowka, S; Greiner, N; Heinrich, G; Jones, S P; Kerner, M; Schlenk, J; Schubert, U; Zirke, T
2016-07-01
We present the calculation of the cross section and invariant mass distribution for Higgs boson pair production in gluon fusion at next-to-leading order (NLO) in QCD. Top-quark masses are fully taken into account throughout the calculation. The virtual two-loop amplitude has been generated using an extension of the program GoSam supplemented with an interface to Reduze for the integral reduction. The occurring integrals have been calculated numerically using the program SecDec. Our results, including the full top-quark mass dependence for the first time, allow us to assess the validity of various approximations proposed in the literature, which we also recalculate. We find substantial deviations between the NLO result and the different approximations, which emphasizes the importance of including the full top-quark mass dependence at NLO. PMID:27419563
Borowka, S.; Greiner, N.; Heinrich, G.; Jones, S. P.; Kerner, M.; Schlenk, J.; Schubert, U.; Zirke, T.
2016-07-01
We present the calculation of the cross section and invariant mass distribution for Higgs boson pair production in gluon fusion at next-to-leading order (NLO) in QCD. Top-quark masses are fully taken into account throughout the calculation. The virtual two-loop amplitude has been generated using an extension of the program GoSam supplemented with an interface to Reduze for the integral reduction. The occurring integrals have been calculated numerically using the program SecDec. Our results, including the full top-quark mass dependence for the first time, allow us to assess the validity of various approximations proposed in the literature, which we also recalculate. We find substantial deviations between the NLO result and the different approximations, which emphasizes the importance of including the full top-quark mass dependence at NLO.
Energy Technology Data Exchange (ETDEWEB)
Rastegarzadeh, G.; Rafezi, L.
2014-11-01
In the present work, the energy and mass dependence of the steepness of the lateral distribution function of electrons and muons (η) are investigated. Based on a CORSIKA simulation, different characteristics of η for proton, helium, oxygen, and iron primaries in the energy range 10{sup 14}–10{sup 17} eV are presented. It is found that η is a mass sensitive parameter, and its potential as a mass discrimination parameter between light and heavy primaries is studied. Moreover, the altitude dependence of η for KASCADE and Auger experiments (110 and 1400 m) is discussed. It is shown that the Auger experiment is potentially more effective for applying this parameter as a mass discriminator between light and heavy cosmic ray components, especially at high energies.
Klok, E.J.; Oerlemans, J.
2004-01-01
This paper presents a study of the climate sensitivity of the mass balance of Morteratschgletscher in Switzerland, estimated from a two-dimensional mass balance model. Since the albedo scheme chosen is often the largest error source in mass balance models, we investigated the impact of using differe
Jimmy; Tran, Kim-Vy; Saintonge, Amélie; Accurso, Gioacchino; Brough, Sarah; Oliva-Altamirano, Paola
2015-10-01
Using a sample of dwarf galaxies observed using the VIMOS IFU on the Very Large Telescope, we investigate the mass–metallicity relation (MZR) as a function of star formation rate (FMRSFR) as well as HI-gas mass (FMRHI). We combine our IFU data with a subsample of galaxies from the ALFALFA HI survey crossmatched to the Sloan Digital Sky Survey (SDSS) to study the FMRSFR and FMRHI across the stellar mass range 106.6–108.8 M⊙, with metallicities as low as 12 + log(O/H) = 7.67. We find the 1σ mean scatter in the MZR to be 0.05 dex. The 1σ mean scatter in the FMRSFR (0.02 dex) is significantly lower than that of the MZR. The FMRSFR is not consistent between the IFU observed galaxies and the ALFALFA/SDSS galaxies for SFRs lower than 10‑2.4 M⊙ yr‑1, however, this could be the result of limitations of our measurements in that regime. The lowest mean scatter (0.01 dex) is found in the FMRHI. We also find that the FMRHI is consistent between the IFU observed dwarf galaxies and the ALFALFA/SDSS crossmatched sample. We introduce the fundamental metallicity luminosity counterpart to the FMR, again characterized in terms of SFR (FMLSFR) and HI-gas mass (FMLHI). We find that the FMLHI relation is consistent between the IFU observed dwarf galaxy sample and the larger ALFALFA/SDSS sample. However, the 1σ scatter for the FMLHI relation is not improved over the FMRHI scenario. This leads us to conclude that the FMRHI is the best candidate for a physically motivated fundamental metallicity relation. Based on VLT service mode observations (Programs 081.B-0649 and 083.B-0662) gathered at the European Southern Observatory, Chile.
Energy Technology Data Exchange (ETDEWEB)
Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Lab. of Physics; Akopov, N. [Yerevan Physics Institute (Armenia); Akopov, Z. [DESY, Hamburg (DE)] (and others)
2009-11-15
The nuclear-mass dependence of azimuthal cross section asymmetries with respect to charge and longitudinal polarization of the lepton beam is studied for hard exclusive electroproduction of real photons. The observed beam-charge and beam-helicity asymmetries are attributed to the interference between the Bethe-Heitler and deeply virtual Compton scattering processes. For various nuclei, the asymmetries are extracted for both coherent and incoherent-enriched regions, which involve different (combinations of) generalized parton distributions. For both regions, the asymmetries are compared to those for a free proton, and no nuclear-mass dependence is found. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Singh, N.N. [Dept. of Physics and Astronomy, Univ. of Southampton (United Kingdom)
2001-02-01
The contribution of scale-dependent vacuum expectation values (VEVs) of Higgs scalars, which gives significant effects in the evolution of the fundamental fermion masses in the minimal supersymmetric standard model (MSSM), is now considered in the derivation of the analytic one-loop expression for the evolution of the left-handed Majorana neutrino masses with energies. The inclusion of such an effect of the running VEV increases the stability of the neutrino masses under quantum corrections even for the low values of tan {beta}{>=}1.42 at the scale {mu}=10{sup 12} GeV, and leads to a mild decrease of the neutrino masses with higher energies. Such a trend is common with that of other fundamental fermion masses. (orig.)
International Nuclear Information System (INIS)
The contribution of scale-dependent vacuum expectation values (VEVs) of Higgs scalars, which gives significant effects in the evolution of the fundamental fermion masses in the minimal supersymmetric standard model (MSSM), is now considered in the derivation of the analytic one-loop expression for the evolution of the left-handed Majorana neutrino masses with energies. The inclusion of such an effect of the running VEV increases the stability of the neutrino masses under quantum corrections even for the low values of tan β≥1.42 at the scale μ=1012 GeV, and leads to a mild decrease of the neutrino masses with higher energies. Such a trend is common with that of other fundamental fermion masses. (orig.)
Anomalous dimension, chiral phase transition and inverse magnetic catalysis in soft-wall AdS/QCD
Fang, Zhen
2016-07-01
A modified soft-wall AdS/QCD model with a z-dependent bulk scalar mass is proposed. We argue for the necessity of a modified bulk scalar mass from the quark mass anomalous dimension and carefully constrain the form of bulk mass by the corresponding UV and IR asymptotics. After fixing the form of bulk scalar mass, we calculate the mass spectra of (axial-)vector and pseudoscalar mesons, which have a good agreement with the experimental data. The behavior of chiral phase transition is also investigated, and the results are consistent with the standard scenario and lattice simulations. Finally, the issue of chiral magnetic effects is addressed. We find that the inverse magnetic catalysis emerges naturally from the modified soft-wall model, which is consistent with the recent lattice simulations.
Marchesini, Danilo; Schreiber, Natascha M Forster; Franx, Marijn; Labbe', Ivo; Wuyts, Stijn
2008-01-01
[Abridged] We present the evolution of the stellar mass function (SMF) of galaxies from z=4.0 to z=1.3 measured from a sample constructed from the deep NIR MUSYC, the FIRES, and the GOODS-CDFS surveys, all having very high-quality optical to mid-infrared data. This sample, unique for its combination of depth and surveyed area, allowed us to 1) minimize the uncertainty due to cosmic variance and empirically quantify its contribution to the total error budget; 2) probe the high-mass end with unprecedented good statistics; 3) empirically derive the redshift-dependent completeness limits in stellar mass; 4) probe the low-mass end of the SMF down to ~0.05 times the characteristic stellar mass. We provide, for the first time, a comprehensive analysis of random and systematic uncertainties affecting the derived SMFs. We find that the mass density evolves by a factor of ~17 since z=4.0, and a factor of ~4 since z=1.3. The evolution appears to be mostly driven by a change in the normalization Phi* but we also find evi...
Energy Technology Data Exchange (ETDEWEB)
Jimmy; Tran, Kim-Vy [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Saintonge, Amélie; Accurso, Gioacchino [Department of Physics and Astronomy, University College London, Gower Place, London WC1E 6BT (United Kingdom); Brough, Sarah; Oliva-Altamirano, Paola [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia)
2015-10-20
Using a sample of dwarf galaxies observed using the VIMOS IFU on the Very Large Telescope, we investigate the mass–metallicity relation (MZR) as a function of star formation rate (FMR{sub SFR}) as well as HI-gas mass (FMR{sub HI}). We combine our IFU data with a subsample of galaxies from the ALFALFA HI survey crossmatched to the Sloan Digital Sky Survey (SDSS) to study the FMR{sub SFR} and FMR{sub HI} across the stellar mass range 10{sup 6.6}–10{sup 8.8} M{sub ⊙}, with metallicities as low as 12 + log(O/H) = 7.67. We find the 1σ mean scatter in the MZR to be 0.05 dex. The 1σ mean scatter in the FMR{sub SFR} (0.02 dex) is significantly lower than that of the MZR. The FMR{sub SFR} is not consistent between the IFU observed galaxies and the ALFALFA/SDSS galaxies for SFRs lower than 10{sup −2.4} M{sub ⊙} yr{sup −1}, however, this could be the result of limitations of our measurements in that regime. The lowest mean scatter (0.01 dex) is found in the FMR{sub HI}. We also find that the FMR{sub HI} is consistent between the IFU observed dwarf galaxies and the ALFALFA/SDSS crossmatched sample. We introduce the fundamental metallicity luminosity counterpart to the FMR, again characterized in terms of SFR (FML{sub SFR}) and HI-gas mass (FML{sub HI}). We find that the FML{sub HI} relation is consistent between the IFU observed dwarf galaxy sample and the larger ALFALFA/SDSS sample. However, the 1σ scatter for the FML{sub HI} relation is not improved over the FMR{sub HI} scenario. This leads us to conclude that the FMR{sub HI} is the best candidate for a physically motivated fundamental metallicity relation.
On the non-evolution of the dependence of black hole masses on bolometric luminosities for QSOs
Institute of Scientific and Technical Information of China (English)
Martín López-Corredoira; Carlos M. Gutiérrez
2012-01-01
There are extremely luminous quasi stellar objects (QSOs) at high redshift which are absent at low redshift.The lower luminosities at low redshifts can be understood as the external manifestation of either a lower Eddington ratio or a lower mass.To distinguish between both effects,we determine the possible dependence of masses and Eddington ratios of QSOs with a fixed luminosity as a function of redshifts; this avoids the Malmquist bias or any other selection effect.For the masses and Eddington ratios derived for a sample of QSOs in the Sloan Digital Sky Survey,we model their evolution by a double linear fit separating the dependence on redshifts and luminosities.The validity of the fits and possible systematic effects were tested by the use of different estimators of masses or bolometric luminosities,and possible intergalactic extinction effects.The results do not show any significant evolution of black hole masses or Eddington ratios for equal luminosity QSOs.The black hole mass only depends on the bolometric luminosity without significant dependence on the redshift as (MBH/109M☉)≈ 3.4 (Lbol/(1047ergs-1)0.65on average for z ≤ 5.This must not be confused with the possible evolution in the formation of black holes in QSOs.The variations of the environment might influence the formation of the black holes but not their subsequent accretion.It also leaves a question to be solved:Why are there not QSOs with very high mass at low redshift? A brief discussion of the possible reasons for this is tentatively pointed out.
Mass dependence of the activation enthalpy and entropy of unentangled linear alkane chains.
Jeong, Cheol; Douglas, Jack F
2015-10-14
The mass scaling of the self-diffusion coefficient D of polymers in the liquid state, D ∼ M(β), is one of the most basic characteristics of these complex fluids. Although traditional theories such as the Rouse and reptation models of unentangled and entangled polymer melts, respectively, predict that β is constant, this exponent for alkanes has been estimated experimentally to vary from -1.8 to -2.7 upon cooling. Significantly, β changes with temperature T under conditions where the chains are not entangled and at temperatures far above the glass transition temperature Tg where dynamic heterogeneity does not complicate the description of the liquid dynamics. Based on atomistic molecular dynamics simulations on unentangled linear alkanes in the melt, we find that the variation of β with T can be directly attributed to the dependence of the enthalpy ΔHa and entropy ΔSa of activation on the number of alkane backbone carbon atoms, n. In addition, we find a sharp change in the melt dynamics near a "critical" chain length, n ≈ 17. A close examination of this phenomenon indicates that a "buckling transition" from rod-like to coiled chain configurations occurs at this characteristic chain length and distinct entropy-enthalpy compensation relations, ΔSa ∝ ΔHa, hold on either side of this polymer conformational transition. We conclude that the activation free energy parameters exert a significant influence on the dynamics of polymer melts that is not anticipated by either the Rouse and reptation models. In addition to changes of ΔHa and ΔSa with M, we expect changes in these free energy parameters to be crucial for understanding the dynamics of polymer blends, nanocomposites, and confined polymers because of changes of the fluid free energy by interfacial interactions and geometrical confinement.
Mass dependence of the activation enthalpy and entropy of unentangled linear alkane chains
Energy Technology Data Exchange (ETDEWEB)
Jeong, Cheol; Douglas, Jack F. [Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)
2015-10-14
The mass scaling of the self-diffusion coefficient D of polymers in the liquid state, D ∼ M{sup β}, is one of the most basic characteristics of these complex fluids. Although traditional theories such as the Rouse and reptation models of unentangled and entangled polymer melts, respectively, predict that β is constant, this exponent for alkanes has been estimated experimentally to vary from −1.8 to −2.7 upon cooling. Significantly, β changes with temperature T under conditions where the chains are not entangled and at temperatures far above the glass transition temperature T{sub g} where dynamic heterogeneity does not complicate the description of the liquid dynamics. Based on atomistic molecular dynamics simulations on unentangled linear alkanes in the melt, we find that the variation of β with T can be directly attributed to the dependence of the enthalpy ΔH{sub a} and entropy ΔS{sub a} of activation on the number of alkane backbone carbon atoms, n. In addition, we find a sharp change in the melt dynamics near a “critical” chain length, n ≈ 17. A close examination of this phenomenon indicates that a “buckling transition” from rod-like to coiled chain configurations occurs at this characteristic chain length and distinct entropy-enthalpy compensation relations, ΔS{sub a} ∝ ΔH{sub a}, hold on either side of this polymer conformational transition. We conclude that the activation free energy parameters exert a significant influence on the dynamics of polymer melts that is not anticipated by either the Rouse and reptation models. In addition to changes of ΔH{sub a} and ΔS{sub a} with M, we expect changes in these free energy parameters to be crucial for understanding the dynamics of polymer blends, nanocomposites, and confined polymers because of changes of the fluid free energy by interfacial interactions and geometrical confinement.
Spectrum of anomalous magnetohydrodynamics
Giovannini, Massimo
2016-05-01
The equations of anomalous magnetohydrodynamics describe an Abelian plasma where conduction and chiral currents are simultaneously present and constrained by the second law of thermodynamics. At high frequencies the magnetic currents play the leading role, and the spectrum is dominated by two-fluid effects. The system behaves instead as a single fluid in the low-frequency regime where the vortical currents induce potentially large hypermagnetic fields. After deriving the physical solutions of the generalized Appleton-Hartree equation, the corresponding dispersion relations are scrutinized and compared with the results valid for cold plasmas. Hypermagnetic knots and fluid vortices can be concurrently present at very low frequencies and suggest a qualitatively different dynamics of the hydromagnetic nonlinearities.
Ferragut, Erik M.; Laska, Jason A.; Bridges, Robert A.
2016-06-07
A system is described for receiving a stream of events and scoring the events based on anomalousness and maliciousness (or other classification). The system can include a plurality of anomaly detectors that together implement an algorithm to identify low-probability events and detect atypical traffic patterns. The anomaly detector provides for comparability of disparate sources of data (e.g., network flow data and firewall logs.) Additionally, the anomaly detector allows for regulatability, meaning that the algorithm can be user configurable to adjust a number of false alerts. The anomaly detector can be used for a variety of probability density functions, including normal Gaussian distributions, irregular distributions, as well as functions associated with continuous or discrete variables.
Shtukenberg, Alexander; Kahr, Bart
2007-01-01
Optical anomalies in crystals are puzzles that collectively constituted the greatest unsolved problems in crystallography in the 19th Century. The most common anomaly is a discrepancy between a crystal’s symmetry as determined by its shape or by X-ray analysis, and that determined by monitoring the polarization state of traversing light. These discrepancies were perceived as a great impediment to the development of the sciences of crystals on the basis of Curie’s Symmetry Principle, the grand organizing idea in the physical sciences to emerge in the latter half of the 19th Century. Optically Anomalous Crystals begins with an historical introduction covering the contributions of Brewster, Biot, Mallard, Brauns, Tamman, and many other distinguished crystallographers. From this follows a tutorial in crystal optics. Further chapters discuss the two main mechanisms of optical dissymmetry: 1. the piezo-optic effect, and 2. the kinetic ordering of atoms. The text then tackles complex, inhomogeneous crystals, and...
Pflamm-Altenburg, Jan; Kroupa, Pavel
2013-01-01
It is widely accepted that the distribution function of the masses of young star clusters is universal and can be purely interpreted as a probability density distribution function with a constant upper mass limit. As a result of this picture the masses of the most-massive objects are exclusively determined by the size of the sample. Here we show, with very high confidence, that the masses of the most-massive young star clusters in M33 decrease with increasing galactocentric radius in contradiction to the expectations from a model of a randomly sampled constant cluster mass function with a constant upper mass limit. Pure stochastic star formation is thereby ruled out. We use this example to elucidate how naive analysis of data can lead to unphysical conclusions.
Compact Remnant Mass Function: Dependence on the Explosion Mechanism and Metallicity
Fryer, C L; Wiktorowicz, G; Dominik, M; Kalogera, V; Holz, D
2011-01-01
The mass distribution of neutron stars and stellar-mass black holes provides vital clues into the nature of stellar core collapse and the physical engine responsible for supernova explosions. Using recent advances in our understanding of supernova engines, we derive mass distributions of stellar compact remnants. We provide analytical prescriptions for compact object masses for major population synthesis codes. In an accompanying paper, Belczynski et al., we demonstrate that these qualitatively new results for compact objects can explain the observed gap in the remnant mass distribution between ~2-5 solar masses and that they place strong constraints on the nature of the supernova engine. Here, we show that advanced gravitational radiation detectors (like LIGO/VIRGO or the Einstein Telescope) will be able to further test the supernova explosion engine models once double black hole inspirals are detected.
Behera, Harihar
2004-01-01
The effect of general relativistic prediction of the dependence of mass on gravitational potential on the dynamics of a planet moving around the sun is shown to have a negative contribution of 14.326 arcsec/century towards the overall non-Newtonian perihelion advance of Mercury.
Indian Academy of Sciences (India)
Ş Şentürk; F Demiray; O Özsoy
2007-09-01
Energy resolution of the time-of-ﬂight mass spectrometer was considered. The estimations indicate that the time-lag energy focusing method provides better resolution for the parallel case while the turnaround time is more convenient for the perpendicular position. Hence the applicability of the methods used for the energy resolution depends on beam source arrangement.
Institute of Scientific and Technical Information of China (English)
CAI Chang-Ying; REN Zhong-Zhou; JU Guo-Xing
2005-01-01
For an exponentially position-dependent mass, we obtain the exact solutions of the three-dimensional Schrodinger equation by using coordinate transformation method for the reference problems with Coulomb potential,Kratzer potential, and spherically square potential well of infinite depth, respectively. The explicit expressions for the energy eigenvalues and the corresponding eigenfunctions of the three systems are presented.
Energy Technology Data Exchange (ETDEWEB)
Vubangsi, M.; Tchoffo, M.; Fai, L. C. [Mesoscopic and Multilayer Structures Laboratory, Physics Department, University of Dschang, P.O. Box 417 Dschang (Cameroon); Pisma’k, Yu. M. [Department of Theoretical Physics, Saint Petersburg State University, Saint Petersburg (Russian Federation)
2015-12-15
The problem of a particle with position and time-dependent effective mass in a one-dimensional infinite square well is treated by means of a quantum canonical formalism. The dynamics of a launched wave packet of the system reveals a peculiar revival pattern that is discussed. .
Anomalous magnetoresistance on the topological surface
International Nuclear Information System (INIS)
We report theoretical study of charge transport in two-dimensional ferromag-net/ferromagnet junction on a topological insulator. The conductance across the interface shows anomalous dependence on the directions of the magnetizations of the two ferromagnets. This stems from the way how the wavefunctions connect between both sides. It is found that the conductance depends strongly on the in-plane direction of the magnetization. Moreover, in stark contrast to the conventional magnetoresistance effect, the conductance at the parallel configuration can be much smaller than that at the antiparallel configuration.
A set of sum rules for anomalous gauge boson couplings
Papavassiliou, J; Papavassiliou, Joannis; Philippides, Kostas
1999-01-01
The dependence of the differential cross-section for on-shell W-pair production on the anomalous trilinear gauge couplings invariant under C and P is examined. It is shown that the contributions of the anomalous magnetic moments of the W boson due to the photon and the Z can be individually projected out by means of two appropriately constructed polynomials. The remaining four anomalous couplings are shown to satisfy a set of model-independent sum rules. Specific models which predict special relations among the anomalous couplings are then studied; in particular, the composite model of Brodsky and Hiller, and the linear and non-linear effective Lagrangian approaches. The relations predicted by these models, when combined with the aforementioned sum rules, give rise to definite predictions, particular to each model. These predictions can be used, at least in principle, in order to exclude or constrain such models.
Indian Academy of Sciences (India)
Karan Singh Vinayak; Suneel Kumar
2014-03-01
Within the framework of isospin-dependent quantum molecular dynamics (IQMD) model, we demonstrate the evolution of intermediate mass fragments in heavy-ion collisions. In this paper, we study the time evolution, impact parameter, and excitation energy dependence of IMF production for the different forms of density-dependent symmetry energy. The IMF production and charge distribution show a minor but considerable sensitivity towards various forms of densitydependent symmetry energy. The Coulomb interactions affect the IMF production significantly at peripheral collisions. The IMF production increases with the stiffness of symmetry energy.
Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Atkinson, Markus; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bittner, Bernhard
2012-01-01
An inclusive search for anomalous production of two prompt, isolated leptons with the same electric charge is presented. The search is performed in a data sample corresponding to 4.7 fb-1 of integrated luminosity collected in 2011 at $\\sqrt{s}$ = 7 TeV with the ATLAS detector at the LHC. Pairs of leptons (ee, emu, and mumu) with large transverse momentum are selected, and the dilepton invariant mass distribution is examined for any deviation from the Standard Model expectation. No excess is found, and upper limits on the production cross section of like-sign lepton pairs from physics processes beyond the Standard Model are placed as a function of the dilepton invariant mass within a fiducial region close to the experimental selection criteria. The 95% confidence level upper limits on the cross section of anomalous ee, emu, or mumu production range between 1.7 fb and 64 fb depending on the dilepton mass and flavour combination.
Institute of Scientific and Technical Information of China (English)
JU Guo-Xing; XIANG Yang; REN Zhong-Zhou
2006-01-01
The properties of the s-wave for a quasi-free particle with position-dependent mass (PDM) have been discussed in details. Differed from the system with constant mass in which the localization of the s-wave for the free quantum particle around the origin only occurs in two dimensions, the quasi-free particle with PDM can experience attractive forces in D dimensions except D=1 when its mass function satisfies some conditions. The effective mass of a particle varying with its position can induce effective interaction, which may be attractive in some cases. The analytical expressions of the eigenfunctions and the corresponding probability densities for the s-waves of the two- and three-dimensional systems with a special PDM are given, and the existences of localization around the origin for these systems are shown.
Zandivarez, Ariel
2010-01-01
We perform an analysis of the luminosities of galaxies in groups in the SDSS DR7. We analyse the luminosity function (LF) as a function of group mass for different photometric bands, galaxy populations, galaxy positions within the groups, and the group surrounding large scale density. We find that M* brightens and alpha becomes steeper as a function of mass in all SDSS photometric bands, in agreement with previous results. From the analysis of different galaxy populations, we observe that different methods to split galaxy populations, based on the concentration index or the colour-magnitude diagram, produce quite different behaviours in the luminosity trends, mainly for alpha. These discrepancies and the trends with mass mentioned above are explained when analysing the LF of galaxies classified simultaneously according to their concentrations and colours. We find that only the red spheroids have a LF that strongly depends on group mass. Late type galaxies, whether blue or red, have luminosity functions that d...
International Nuclear Information System (INIS)
We show a textbook potential for single-field inflation, namely the Coleman–Weinberg model can induce double inflation and formation of primordial black holes (PBHs), because fluctuations that leave the horizon near the end of first inflation are anomalously enhanced at the onset of second inflation when the time-dependent mode turns into a growing mode rather than a decaying mode. The mass of PBHs produced in this mechanism with an appreciable density are distributed at certain intervals depending on the model parameters. We also calculate the effects of non-Gaussian statistics due to higher-order interactions on the abundance of PBHs, which turns out to be small
On the photon anomalous magnetic moment
Villalba, S; Villalba, Selym; Rojas, Hugo Perez
2006-01-01
It is shown that due to radiative corrections a photon having a non vanishing component of its momentum perpendicular to it, bears a non-zero magnetic moment. All modes of propagation of the polarization operator in one loop approximation are discussed and in this field regime the dispersion equation and the corresponding magnetic moment are derived. Near the first thresholds of cyclotron resonance the photon magnetic moment has a peak larger than the electron anomalous magnetic moment. Related to this magnetic moment, the arising of some sort of photon "dynamical mass" and a gyromagnetic ratio are discussed. These latter results might be interesting in an astrophysical context.
Anomalous Single Production of the Fourth Generation Quarks at Future $ep$ and $\\gamma p$ Colliders
Çiftçi, A Kenan
2009-01-01
Possible anomalous single productions of the fourth standard model generation up and down type quarks at LHC based ep and γp colliders are studied. Some decay channels are considered. Signatures for signals an d corre- sponding standard model backgrounds are discussed. Discovery limi ts for quark mass and achievable values of anomalous coupling strength are determined
Dependence of the muon pseudorapidity on the cosmic ray mass composition around the knee
Rastegarzadeh, Gohar; Nemati, Mohammad
2015-11-01
In order to identify the mass composition of cosmic rays (CRs), we have investigated the mean muon pseudorapidity () values of muonic component in extensive air showers (EASs). For this purpose we have simulated EASs by CORSIKA 7.4 code for Hydrogen, Oxygen and Iron nucleus. The energy range was selected between 1014 eV and 1016 eV with zenith angle from 0°-18°. We have compared our calculations with KASCADE muon tracking detector (MTD) measurements to obtain results on the primary mass relationship with mean muon pseudorapidity values of EASs muonic component. It is shown that after the knee energies, experimental data tend to the heavy primaries and mass composition becomes heavier. Finally, linear equations between the mass of primary and mean η values for different energies are obtained.
Fumagalli, Mattia; Franx, Marijn; Brammer, Gabriel; van Dokkum, Pieter; da Cunha, Elisabete; Kriek, Mariska; Lundgren, Britt; Momcheva, Ivelina; Rix, Hans-Walter; Schmidt, Kasper B; Skelton, Rosalind E; Whitaker, Katherine E; Labbe, Ivo; Nelson, Erica
2012-01-01
We investigate the evolution of the Halpha equivalent width, EW(Halpha), with redshift and its dependence on stellar mass, taking advantage of the first data from the 3D-HST survey, a large spectroscopic Treasury program with the Hubble Space Telescope WFC3. Combining our Halpha measurements of 854 galaxies at 0.8
Orbital evolution of mass-transferring eccentric binary systems. I. Phase-dependent evolution
Dosopoulou, Fani; Kalogera, Vicky
2016-01-01
Observations reveal that mass-transferring binary systems may have non-zero orbital eccentricities. The time-evolution of the orbital semi-major axis and eccentricity of mass-transferring eccentric binary systems is an important part of binary evolution theory and has been widely studied. However, various different approaches and assumptions on the subject have made the literature difficult to comprehend and comparisons between different orbital element time-evolution equations not easy to ma...
THE DEPENDENCE OF PRESTELLAR CORE MASS DISTRIBUTIONS ON THE STRUCTURE OF THE PARENTAL CLOUD
Energy Technology Data Exchange (ETDEWEB)
Parravano, Antonio [Centro De Fisica Fundamental, Universidad de Los Andes, Merida (Venezuela, Bolivarian Republic of); Sanchez, Nestor [S. D. Astronomia y Geodesia, Fac. CC. Matematicas, Universidad Complutense de Madrid (Spain); Alfaro, Emilio J. [Instituto de Astrofisica de Andalucia (CSIC), Granada (Spain)
2012-08-01
The mass distribution of prestellar cores is obtained for clouds with arbitrary internal mass distributions using a selection criterion based on the thermal and turbulent Jeans mass and applied hierarchically from small to large scales. We have checked this methodology by comparing our results for a log-normal density probability distribution function with the theoretical core mass function (CMF) derived by Hennebelle and Chabrier, namely a power law at large scales and a log-normal cutoff at low scales, but our method can be applied to any mass distributions representing a star-forming cloud. This methodology enables us to connect the parental cloud structure with the mass distribution of the cores and their spatial distribution, providing an efficient tool for investigating the physical properties of the molecular clouds that give rise to the prestellar core distributions observed. Simulated fractional Brownian motion (fBm) clouds with the Hurst exponent close to the value H = 1/3 give the best agreement with the theoretical CMF derived by Hennebelle and Chabrier and Chabrier's system initial mass function. Likewise, the spatial distribution of the cores derived from our methodology shows a surface density of companions compatible with those observed in Trapezium and Ophiucus star-forming regions. This method also allows us to analyze the properties of the mass distribution of cores for different realizations. We found that the variations in the number of cores formed in different realizations of fBm clouds (with the same Hurst exponent) are much larger than the expected root N statistical fluctuations, increasing with H.
The Mass Dependence of Star Formation Histories in Barred Spiral Galaxies
Carles, Christian; Ellison, Sara L; Kawata, Daisuke
2016-01-01
We performed a series of 29 gasdynamical simulations of disc galaxies, barred and unbarred, with various stellar masses, to study the impact of the bar on star formation history. Unbarred galaxies evolve very smoothly, with a star formation rate (SFR) that varies by at most a factor of three over a period of 2 Gyr. The evolution of barred galaxies is much more irregular, especially at high stellar masses. In these galaxies, the bar drives a substantial amount of gas toward the centre, resulting in a high SFR, and producing a starburst in the most massive galaxies. Most of the gas is converted into stars, and gas exhaustion leads to a rapid drop of star formation after the starburst. In massive barred galaxies (stellar mass M* > 2x10^10 Msun) the large amount of gas funnelled toward the centre is completely consumed by the starburst, while in lower-mass barred galaxies it is only partially consumed. Gas concentration is thus higher in lower-mass barred galaxies than it is in higher-mass ones. Even though unbar...
Anomalous radiative transitions
International Nuclear Information System (INIS)
Anomalous transitions involving photons derived by many-body interaction of the form ∂μGμ in the standard model are studied for the first time. This does not affect the equation of motion in the bulk, but modifies the wavefunctions, and causes an unusual transition characterized by a time-independent probability. In the transition probability at a time interval T expressed generally in the form P=TΓ0+P(d), now with P(d)≠0. The diffractive term P(d) has its origin in the overlap of waves of the initial and final states, and reveals the characteristics of waves. In particular, the processes of the neutrino–photon interaction ordinarily forbidden by the Landau–Yang theorem (Γ0=0) manifest themselves through the boundary interaction. The new term leads physical processes over a wide energy range to have finite probabilities. New methods of detecting neutrinos using lasers are proposed, based on this diffractive term; these would enhance the detectability of neutrinos by many orders of magnitude
Anomalous carrier dynamics in bilayer graphene in presence of mechanical strain: A theoretical study
Enamullah
2016-05-01
One of the optical response of charge carriers in bilayer graphene, anomalous Rabi oscillation is investigated theoretically in presence of mechanical strain. Rabi oscillation in extreme non-resonance regime is known as anomalous Rabi oscillation, has been predicted theoretically in single layer graphene by new technique known as asymptotic rotating wave approximation. In this article, we have shown a strong dependence of anomalous Rabi oscillations of charge carriers on the mechanical strain near the vanishing point of conduction and valance band.
Glucagon Couples Hepatic Amino Acid Catabolism to mTOR-Dependent Regulation of α-Cell Mass.
Solloway, Mark J; Madjidi, Azadeh; Gu, Chunyan; Eastham-Anderson, Jeff; Clarke, Holly J; Kljavin, Noelyn; Zavala-Solorio, Jose; Kates, Lance; Friedman, Brad; Brauer, Matt; Wang, Jianyong; Fiehn, Oliver; Kolumam, Ganesh; Stern, Howard; Lowe, John B; Peterson, Andrew S; Allan, Bernard B
2015-07-21
Understanding the regulation of islet cell mass has important implications for the discovery of regenerative therapies for diabetes. The liver plays a central role in metabolism and the regulation of endocrine cell number, but liver-derived factors that regulate α-cell and β-cell mass remain unidentified. We propose a nutrient-sensing circuit between liver and pancreas in which glucagon-dependent control of hepatic amino acid metabolism regulates α-cell mass. We found that glucagon receptor inhibition reduced hepatic amino acid catabolism, increased serum amino acids, and induced α-cell proliferation in an mTOR-dependent manner. In addition, mTOR inhibition blocked amino-acid-dependent α-cell replication ex vivo and enabled conversion of α-cells into β-like cells in vivo. Serum amino acids and α-cell proliferation were increased in neonatal mice but fell throughout postnatal development in a glucagon-dependent manner. These data reveal that amino acids act as sensors of glucagon signaling and can function as growth factors that increase α-cell proliferation. PMID:26166562
Glucagon Couples Hepatic Amino Acid Catabolism to mTOR-Dependent Regulation of α-Cell Mass
Directory of Open Access Journals (Sweden)
Mark J. Solloway
2015-07-01
Full Text Available Understanding the regulation of islet cell mass has important implications for the discovery of regenerative therapies for diabetes. The liver plays a central role in metabolism and the regulation of endocrine cell number, but liver-derived factors that regulate α-cell and β-cell mass remain unidentified. We propose a nutrient-sensing circuit between liver and pancreas in which glucagon-dependent control of hepatic amino acid metabolism regulates α-cell mass. We found that glucagon receptor inhibition reduced hepatic amino acid catabolism, increased serum amino acids, and induced α-cell proliferation in an mTOR-dependent manner. In addition, mTOR inhibition blocked amino-acid-dependent α-cell replication ex vivo and enabled conversion of α-cells into β-like cells in vivo. Serum amino acids and α-cell proliferation were increased in neonatal mice but fell throughout postnatal development in a glucagon-dependent manner. These data reveal that amino acids act as sensors of glucagon signaling and can function as growth factors that increase α-cell proliferation.
Energy Technology Data Exchange (ETDEWEB)
Engelhardt, Michael; Musch, Bernhard; Bhattacharya, Tanmoy; Gupta, Rajan; Hagler, Phillip; Negele, John; Pochinsky, Andrew; Shafer, Andreas; Syritsyn, Sergey; Yoon, Boram
2014-12-01
Lattice QCD calculations of transverse momentum-dependent parton distributions (TMDs) in a nucleon are performed based on a definition of TMDs via hadronic matrix elements of quark bilocal operators containing staple-shaped gauge connections. A parametrization of the matrix elements in terms of invariant amplitudes serves to cast them in the Lorentz frame preferred for the lattice calculation. Using a RBC/UKQCD domain wall fermion ensemble corresponding to a pion mass of 297MeV, on a lattice with spacing 0.084fm, selected TMD observables are accessed and compared to previous explorations at heavier pion masses on coarser lattices.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Dependence of yields of OH (hydroxyl) radicals on the mass and specific energy of heavy ions and elapsed time after irradiation was investigated, to understand chemical reactions of aqueous solutions. The yields of irradiation products of phenol, super-linearly increased with the incident energy of He, C, and Ne ions ranging from 2 to 18 MeV/u. The yields of the OH radicals were estimated by analyzing the yields of the irradiation products of phenol.The yields of the OH radicals increased with the specific energy for each ion, but decreased both with the mass of each ion at the same specific energy and elapsed time after irradiation.
The Dependence of Prestellar Core Mass Distributions on the Structure of the Parental Cloud
Parravano, Antonio; Alfaro, Emilio J
2012-01-01
The mass distribution of prestellar cores is obtained for clouds with arbitrary internal mass distributions using a selection criterion based on the thermal and turbulent Jeans mass and applied hierarchically from small to large scales. We have checked this methodology comparing our results for a lognormal density PDF with the theoretical CMF derived by Hennebelle and Chabrier, namely a power-law at large scales and a log-normal cutoff at low scales, but our method can be applied to any mass distributions representing a star-forming cloud. This methodology enables us to connect the parental cloud structure with the mass distribution of the cores and their spatial distribution, providing an efficient tool for investigating the physical properties of the molecular clouds that give rise to the prestellar core distributions observed. Simulated fBm clouds with the Hurst exponent close to the value H=1/3 give the best agreement with the theoretical CMF derived by Hennebelle and Chabrier and Chabrier's system IMF. L...
Indian Academy of Sciences (India)
Swapnil S Jawkar; Sudhanshu S Jha
2005-01-01
Using the general formulation for obtaining chemical potential of an ideal Fermi gas of particles at temperature , with particle rest mass $m_{0}$ and average density $\\langle N \\rangle/V$ , the dependence of the mean square number fluctuation $\\langle N^{2} \\rangle/V$ on the particle mass $m_{0}$ has been calculated explicitly. The numerical calculations are exact in all cases whether rest mass energy $m_{0}c^{2}$ is very large (non-relativistic case), very small (ultrarelativistic case) or of the same order as the thermal energy $k_{B}T$ . Application of our results to the detection of the universal very low energy cosmic neutrino background (CNB), from any of the three species of neutrinos, shows that it is possible to estimate the neutrino mass of these species if from approximate experimental measurements of their momentum distribution one can extract, someday, not only the density $\\langle N_{} \\rangle/V$ but also the mean square fluctuation $\\langle N_{}^{2} \\rangle/V$. If at the present epoch, the universe is expanding much faster than thermalization rate for CNB, it is shown that our analysis leads to a scaled neutrino mass $m_{}$ instead of the actual mass $m_{0}.
Tortora, C; Napolitano, N R; Antonuccio-Delogu, V; Meza, A; Sommer-Larsen, J; Capaccioli, M
2010-01-01
The age and metallicity gradients for a sample of group and cluster galaxies from N-body+hydrodynamical simulation are analyzed in terms of galaxy stellar mass. Dwarf galaxies show null age gradient with a tail of high and positive values for systems in groups and cluster outskirts. Massive systems have generally zero age gradients which turn to positive for the most massive ones. Metallicity gradients are distributed around zero in dwarf galaxies and become more negative with mass; massive galaxies have steeper negative metallicity gradients, but the trend flatten with mass. In particular, fossil groups are characterized by a tighter distribution of both age and metallicity gradients. We find a good agreement with both local observations and independent simulations. The results are also discussed in terms of the central age and metallicity, as well as the total colour, specific star formation and velocity dispersion.
Orientation of x-lines in asymmetric magnetic reconnection - mass ratio dependency
Liu, Yi-Hsin; Kuznetsova, Masha
2015-01-01
Using fully kinetic simulations, we study the x-line orientation of magnetic reconnection in an asymmetric configuration. A spatially localized perturbation is employed to induce a single x-line, that has sufficient freedom to choose its orientation in three-dimensional systems. The effect of ion to electron mass ratio is investigated, and the x-line appears to bisect the magnetic shear angle across the current sheet in the large mass ratio limit. The orientation can generally be deduced by scanning through corresponding 2D simulations to find the reconnection plane that maximizes the peak reconnection electric field. The deviation from the bisection angle in the lower mass ratio limit can be explained by the physics of tearing instability.
The Nc dependencies of baryon masses: Analysis with Lattice QCD and Effective Theory
Energy Technology Data Exchange (ETDEWEB)
Calle Cordon, Alvaro C. [JLAB; DeGrand, Thomas A. [University of Colorado; Goity, Jose L. [JLAB
2014-07-01
Baryon masses at varying values of Nc and light quark masses are studied with Lattice QCD and the results are analyzed in a low energy effective theory based on a combined framework of the 1/Nc and Heavy Baryon Chiral Perturbation Theory expansions. Lattice QCD results for Nc=3, 5 and 7 obtained in quenched calculations, as well as results for unquenched calculations for Nc=3, are used for the analysis. The results are consistent with a previous analysis of Nc=3 LQCD results, and in addition permit the determination of sub-leading in 1/Nc effects in the spin-flavor singlet component of the baryon masses as well as in the hyperfine splittings.
Dependence of hadronic properties on quark masses and constraints on their cosmological variation
Flambaum, V. V.; Shuryak, E. V.
2003-04-01
We follow our previous paper on the possible cosmological variation of the weak scale (quark masses) and the strong scale, inspired by data on the cosmological variation of the electromagnetic fine structure constant from distant quasar absorption spectra. In this work we identify the strange quark mass ms as the most important quantity, and the sigma meson mass as the ingredient of the nuclear forces most sensitive to it. As a result, we claim significantly stronger limits on the ratio of weak/strong scale (W=ms/ΛQCD) variation following from our previous discussion on primordial big-bang nucleosynthesis (|δW/W|Oklo natural nuclear reactor [|δW/W|<1.2×10-10; there is also a nonzero solution δW/W=(-0.56±0.05)×10-9].
Dependence of hadronic properties on Quark Masses and Constraints on their Cosmological Variation
Flambaum, V V
2003-01-01
We follow our previous paper on possible cosmological variation of weak scale (quark masses) and strong scale, inspired by data on cosmological variation of the electromagnetic fine structure constant from distant quasar (QSO) absorption spectra. In this work we identify the {\\em strange quark mass} $m_s$ as the most important quantity, and the {\\em sigma meson mass} as the ingredient of the nuclear forces most sensitive to it. As a result, we claim significantly stronger limits on ratio of weak/strong scale ($W=m_s/\\Lambda_{QCD}$) variation following from our previous discussion of primordial Big-Bang Nucleosynthesis ($|\\delta W/W|<0.006$) and Oklo natural nuclear reactor ($|\\delta W/W|<1.2 \\cdot 10^{-10}$; there is also a non-zero solution $\\delta W/W=(-0.56 \\pm 0.05) \\cdot 10^{-9}$) .
The mass dependence of star formation histories in barred spiral galaxies
Carles, Christian; Martel, Hugo; Ellison, Sara L.; Kawata, Daisuke
2016-11-01
We performed a series of 29 gas dynamical simulations of disc galaxies, barred and unbarred, with various stellar masses, to study the impact of the bar on star formation history. Unbarred galaxies evolve very smoothly, with a star formation rate (SFR) that varies by at most a factor of 3 over a period of 2 Gyr. The evolution of barred galaxies is much more irregular, especially at high stellar masses. In these galaxies, the bar drives a substantial amount of gas towards the centre, resulting in a high SFR, and producing a starburst in the most massive galaxies. Most of the gas is converted into stars, and gas exhaustion leads to a rapid drop of star formation after the starburst. In massive barred galaxies (stellar mass M_{ast }>2{×} 10^{10} {M_{⊙}}) the large amount of gas funnelled towards the centre is completely consumed by the starburst, while in lower mass barred galaxies it is only partially consumed. Gas concentration is thus higher in lower mass barred galaxies than it is in higher mass ones. Even though unbarred galaxies funnelled less gas towards their centre, the lower SFR allows this gas to accumulate. At late times, the star formation efficiency is higher in barred galaxies than unbarred ones, enabling these galaxies to maintain a higher SFR with a smaller gas supply. Several properties, such as the global SFR, central SFR, or central gas concentration, vary monotonically with time for unbarred galaxies, but not for barred galaxies. Therefore one must be careful when comparing barred and unbarred galaxies that share one observational property, since these galaxies might be at very different stages of their respective evolution.
Habitable Zones Around Main-Sequence Stars: Dependence on Planetary Mass
Kopparapu, Ravi Kumar; Ramirez, Ramses M.; SchottelKotte, James; Kasting, James F.; Domagal-Goldman, Shawn; Eymet, Vincent
2014-01-01
The ongoing discoveries of extrasolar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K - 7200 K, for planetary masses between 0.1 ME and 5 ME. Assuming H2O (inner HZ) and CO2 (outer HZ) dominated atmospheres, and scaling the background N2 atmospheric pressure with the radius of the planet, our results indicate that lar...
Directory of Open Access Journals (Sweden)
E. Kang
2011-02-01
Full Text Available The oxidation of secondary organic aerosol (SOA is studied with mass spectra analysis of SOA formed in a Potential Aerosol Mass (PAM chamber, a small flow-through photo-oxidation chamber with extremely high OH and ozone levels. The OH exposure from a few minutes in the PAM chamber is similar to that from days to weeks in the atmosphere. The mass spectra were measured with a Quadrupole Aerosol Mass Spectrometer (Q-AMS for SOA formed from oxidation of α-pinene, m-xylene, p-xylene, and a mixture of the three. The organic mass fractions of m/z 44 (CO_{2}^{+} and m/z 43 (mainly C_{2}H_{3}O^{+}, named f_{44} and f_{43} respectively, are used as indicators of the degree of organic aerosol (OA oxidation that occurs as the OA mass concentration or the OH exposure are varied. The degree of oxidation is sensitive to both. For a fixed OH exposure, the degree of oxidation initially decreases rapidly and then more slowly as the OA mass concentration increases. For fixed initial precursor VOC amounts, the degree of oxidation increases linearly with OH exposure, with f_{44} increasing and f_{43} decreasing. In this study, the degree of SOA oxidation spans much of the range observed in the atmosphere. These results, while sensitive to the determination of f_{44} and f_{43}, provide evidence that some characteristics of atmospheric OA oxidation can be generated in a PAM chamber. For all measurements in this study, the sum of f_{44} and f_{43} is 0.25 ± 0.03, so that the slope of a linear regression is approximately −1 on an f_{44} vs. f_{43} plot. This constancy of the sum suggests that these ions are complete proxies for organic mass in the OA studied.
Quarks with unit charge: a search for anomalous hydrogen.
Muller, R A; Alvarez, L W; Holley, W R; Stephenson, E J
1977-04-29
Quarks of charge +1 and other anomalous hydrogen have been sought by using the 88-inch cyclotron at Berkeley as a high-energy mass spectrometer, with natural hydrogen and deuterium as the sources of ions. No quarks were observed, and limits were placed on their ratio to protons on the earth that vary from < 2 x 10(-19)for high masses (3 to 8.2 atomic mass units) to 10(-13) for the lowest masses (< (1/3) atomic mass unit).
Effective power-law dependence of Lyapunov exponents on the central mass in galaxies
Delis, N; Kalapotharakos, C
2015-01-01
Using both numerical and analytical approaches, we demonstrate the existence of an effective power-law relation $L\\propto m^p$ between the mean Lyapunov exponent $L$ of stellar orbits chaotically scattered by a supermassive black hole in the center of a galaxy and the mass parameter $m$, i.e. ratio of the mass of the black hole over the mass of the galaxy. The exponent $p$ is found numerically to obtain values in the range $p \\approx 0.3$--$0.5$. We propose a theoretical interpretation of these exponents, based on estimates of local `stretching numbers', i.e. local Lyapunov exponents at successive transits of the orbits through the black hole's sphere of influence. We thus predict $p=2/3-q$ with $q\\approx 0.1$--$0.2$. Our basic model refers to elliptical galaxy models with a central core. However, we find numerically that an effective power law scaling of $L$ with $m$ holds also in models with central cusp, beyond a mass scale up to which chaos is dominated by the influence of the cusp itself. We finally show...
Sensitivity of $\\beta$-decay rates to the radial dependence of the nucleon effective mass
Severyukhin, A P; Borzov, I N; Van Giai, Nguyen
2015-01-01
We analyze the sensitivity of $\\beta$-decay rates in 78 Ni and 100,132 Sn to a correction term in Skyrme energy-density functionals (EDF) which modifies the radial shape of the nucleon effective mass. This correction is added on top of several Skyrme parametrizations which are selected from their effective mass properties and predictions about the stability properties of 132 Sn. The impact of the correction on high-energy collective modes is shown to be moderate. From the comparison of the effects induced by the surface-peaked effective mass in the three doubly magic nuclei, it is found that 132 Sn is largely impacted by the correction, while 78 Ni and 100 Sn are only moderately affected. We conclude that $\\beta$-decay rates in these nuclei can be used as a test of different parts of the nuclear EDF: 78 Ni and 100 Sn are mostly sensitive to the particle-hole interaction through the B(GT) values, while 132 Sn is sensitive to the radial shape of the effective mass. Possible improvements of these different parts...
Isokangas, E.; Rozanski, K.; Rossi, P. M.; Ronkanen, A.-K.; Kløve, B.
2015-03-01
A stable isotope study of 67 kettle lakes and ponds situated on an esker aquifer (90 km2) in northern Finland was carried out to determine the role and extent of groundwater inflow in groundwater-dependent lakes. Distinct seasonal fluctuations in the δ18O and δ2H values of lakes are the result of seasonal ice cover prohibiting evaporation during the winter. An iterative isotope mass balance approach was used to calculate the inflow-to-evaporation ratios (ITOT/E) of all 67 lakes during the summer of 2013 when the isotopic compositions of the lakes were approaching a steady-state. The balance calculations were carried out independently for 2H and 18O data. Since evaporation rates were derived independently of any mass balance considerations, it was possible to determine the total inflow (ITOT) and mean turnover time (MTT) of the lakes. Furthermore, the groundwater seepage rates to all studied lakes were calculated. A quantitative measure was introduced for the dependence of a lake on groundwater (G index) that is defined as the percentage contribution of groundwater inflow to the total inflow of water to the given lake. The G index values of the lakes studied ranged from ca. 39 to 98%, revealing generally large groundwater dependency among the studied lakes. This study shows the effectiveness of applying an isotope mass balance approach to quantify the groundwater reliance of lakes situated in a relatively small area with similar climatic conditions.
Graefener, G
2008-01-01
The mass loss from Wolf-Rayet (WR) stars is of fundamental importance for the final fate of massive stars and their chemical yields. Its Z-dependence is discussed in relation to the formation of long-duration Gamma Ray Bursts (GRBs) and the yields from early stellar generations. However, the mechanism of formation of WR-type stellar winds is still under debate. We present the first fully self-consistent atmosphere/wind models for late-type WN stars. We investigate the mechanisms leading to their strong mass loss, and examine the dependence on stellar parameters, in particular on the metallicity Z. We identify WNL stars as very massive stars close to the Eddington limit, potentially still in the phase of central H-burning. Due to their high L/M ratios, these stars develop optically thick, radiatively driven winds. These winds show qualitatively different properties than the thin winds of OB stars. The resultant mass loss depends strongly on Z, but also on the Eddington factor, and the stellar temperature. We c...
Anomalous single top quark production at the LHC
Energy Technology Data Exchange (ETDEWEB)
Mohammadi Najafabadi, M [School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of); Pooya, G, E-mail: mojtaba@ipm.i [Physics Department, Sharif University of Technology (SUT), PO Box 11365-9161, Tehran (Iran, Islamic Republic of)
2010-09-15
The anomalous top quark interactions with gluon (tug, tcg) allow the production of single top quarks at the Large Hadron Collider (LHC). Using the angular distribution of the charged lepton from the W boson in the top decay, we show that with the data of 10 fb{sup -1} of integrated luminosity and in the collisions with the center of mass energy of 14 TeV, the anomalous up and charm quarks coupling parameters {kappa}{sub u,c}/{Lambda} can be measured down to 0.005 and 0.007 TeV{sup -1}, respectively.
Anomalous single top quark production at the LHC
Najafabadi, M. Mohammadi; Pooya, G.
2010-09-01
The anomalous top quark interactions with gluon (tug, tcg) allow the production of single top quarks at the Large Hadron Collider (LHC). Using the angular distribution of the charged lepton from the W boson in the top decay, we show that with the data of 10 fb-1 of integrated luminosity and in the collisions with the center of mass energy of 14 TeV, the anomalous up and charm quarks coupling parameters κu, c/Λ can be measured down to 0.005 and 0.007 TeV-1, respectively.
Centre of mass decoherence due to time dilation: paradoxical frame-dependence
Diósi, Lajos
2015-01-01
The recently proposed centre of mass decoherence of composite objects due to gravitational time-dilation [Pikovski et al., Nat.Phys. 15. June (2015); arXive:1311.1095] is confronted with the principle of equivalence between gravity and observer's acceleration. In the laboratory frame, a positional superposition $\\vert x_1\\rangle+\\vert x_2\\rangle$ can quickly decohere whereas in the free-falling frame, as I argue, the superposition can survive for almost arbitrary long times. The paradoxical result is explained by the so far unappreciated feature of the proposed model: the centre of mass canonical subsystem is ambiguous, it is different in the laboratory and the free-falling frames, respectively.
Effective Power-Law Dependence of Lyapunov Exponents on the Central Mass in Galaxies
Delis, N.; Efthymiopoulos, C.; Kalapotharakos, C.
2015-01-01
Using both numerical and analytical approaches, we demonstrate the existence of an effective power-law relation L alpha m(sup p) between themean Lyapunov exponent L of stellar orbits chaotically scattered by a supermassive black hole (BH) in the centre of a galaxy and the mass parameter m, i.e. ratio of the mass of the BH over the mass of the galaxy. The exponent p is found numerically to obtain values in the range p approximately equals 0.3-0.5. We propose a theoretical interpretation of these exponents, based on estimates of local 'stretching numbers', i.e. local Lyapunov exponents at successive transits of the orbits through the BH's sphere of influence. We thus predict p = 2/3 - q with q approximately equaling 0.1-0.2. Our basic model refers to elliptical galaxy models with a central core. However, we find numerically that an effective power-law scaling of L with m holds also in models with central cusp, beyond a mass scale up to which chaos is dominated by the influence of the cusp itself. We finally show numerically that an analogous law exists also in disc galaxies with rotating bars. In the latter case, chaotic scattering by the BH affects mainly populations of thick tube-like orbits surrounding some low-order branches of the x(sub 1) family of periodic orbits, as well as its bifurcations at low-order resonances, mainly the inner Lindblad resonance and the 4/1 resonance. Implications of the correlations between L and m to determining the rate of secular evolution of galaxies are discussed.
ALLOWED QUANTITY OF EXPLOSIVE CHARGE DEPENDING ON RELATIVE SEISMIC SENSITIVITY OF ROCK MASS
Josip Mesec
2005-01-01
During the last decade and more, seismic observations during blasting were carried out, particularly when blasting, near sensitive, i.e. endangered structures have been executed. Permitted oscillation speeds of ground and rock mass particles for certain structures are not standardized by Croatian regulations; therefore, international standards DIN, USBM, etc., are used in practice. This paper analyses research conducted during testing, special, shallow or massive blasting in sediment rock...
Habitable Zones Around Main-Sequence Stars: Dependence on Planetary Mass
Kopparapu, Ravi kumar; SchottelKotte, James; Kasting, James F; Domagal-Goldman, Shawn; Eymet, Vincent
2014-01-01
The ongoing discoveries of extrasolar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K - 7200 K, for planetary masses between 0.1 ME and 5 ME. Assuming H2O (inner HZ) and CO2 (outer HZ) dominated atmospheres, and scaling the background N2 atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (~10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H2O column depth. For larger planets, the H2O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing longwave radiation. Hence the inner edge moves inward (...
Directory of Open Access Journals (Sweden)
Engel A
2011-06-01
Full Text Available Alice Engel1,2, Jana Helfrich1, Nina Manderscheid1, Petra B Musholt3, Thomas Forst3, Andreas Pfützner3, Norbert Dahmen1,21Department of Psychiatry, University of Mainz, Germany; 2Fachklinik Katzenelnbogen, Katzenelnbogen, Germany; 3IKFE, Institute for Clinical Research and Development, Mainz, GermanyBackground: Narcolepsy is a severe sleep-wake cycle disorder resulting in most cases from a lack of orexin, the energy balance-regulating hormone. Narcoleptic patients have been reported to suffer from an excess morbidity of Type 2 diabetes, even after correction for their often elevated body mass index.Methods: To explore whether narcolepsy is specifically associated with a propensity to develop insulin resistance, we measured fasting glucose, insulin, and intact proinsulin levels in 43 narcoleptic patients and 47 controls matched for body mass index and age. The proinsulin-to-insulin ratio was calculated. Insulin resistance was determined using the homeostatic model assessment method.Results: Narcoleptic patients did not show elevated insulin resistance parameters.Conclusion: In contrast with earlier reports, we found no evidence that narcolepsy specifically elevates the risk of insulin resistance (and consequently of type 2 diabetes independently of body mass index.Keywords: fasting glucose, insulin, intact proinsulin, narcolepsy, obesity
Constraints on anomalous spin-spin interactions from spin-exchange collisions
Kimball, D F Jackson; Budker, D
2010-01-01
Measured and calculated cross sections for spin-exchange between alkali atoms and noble gases (specifically sodium and helium) are used to constrain anomalous spin-dependent forces between nuclei at the atomic scale ($\\sim 10^{-8}~{\\rm cm}$). Combined with existing stringent limits on anomalous short-range, spin-dependent couplings of the proton, the dimensionless coupling constant for a heretofore undiscovered axial vector interaction of the neutron arising from exchange of a boson of mass $\\lesssim 100~{\\rm eV}$ is constrained to be $g_A^n/\\sqrt{4 \\pi \\hbar c} < 2 \\times 10^{-3}$. Constraints are established for a velocity- and spin-dependent interaction $\\propto \\prn{\\mathbf{I} \\cdot \\mathbf{v}} \\prn{\\mathbf{K} \\cdot \\mathbf{v}}$, where $\\mathbf{I}$ and $\\mathbf{K}$ are the nuclear spins of He and Na, respectively, and $\\mathbf{v}$ is the relative velocity of the atoms. Constraints on torsion gravity are also considered.
Anomalous position of the gallbladder
Energy Technology Data Exchange (ETDEWEB)
Han, Tae II; Lim, Joo Won; Ko, Young Tae; Lee, Dong Ho; Yoon, Yup [Kyung Hee University Hospital, Seoul (Korea, Republic of)
1994-12-15
To determine the significance of anomalous position of the gallbladder. Sixteen patients with anomalous position of the gallbladder were evaluated for analysis. The diagnosis was confirmed by ultrasonography(15 patients) and oral cholecystography(1 patient). Among those, six patients underwent CT scan and a patient had 99mTc-DISIDA scan. The images were analysed with respect to the location of the GB and configuration and associated abnormality of the liver and hepatobiliary systems. Medical records of each patient were also reviewed. Among 16 patients having an anomalous position of the gallbladder, nine had retrodisplaced gallbladder, four had left-sided gallbladder, two had supra hepatic gallbladder, and one had floating gallbladder. Except for one patient, fifteen had abnormality in the liver such as focal atrophic or hypoplastic change and liver cirrhosis. Intrahepatic stones were demonstrated in 6 patients. Our results showed that anomalous position of the gallbladder was commonly associated with atrophy or hypoplasia of the liver rather than congenital in origin. The possibility of an anomalous location of gallbladder should be kept in mind when GB is not in its normal location.
Liu, Beibei; Zhang, Xiaojia; Lin, Douglas N. C.
2016-06-01
Radial velocity and transit surveys have found that the fraction of FGKM stars with close-in super-Earth(s) (η ⊕) is around 30%–50%, independent of the stellar mass M * and metallicity Z *. In contrast, the fraction of solar-type stars harboring one or more gas giants (η J) with masses M p > 100 M ⊕ is nearly 10%–15%, and it appears to increase with both M * and Z *. Regardless of the properties of their host stars, the total mass of some multiple super-Earths systems exceeds the core mass of Jupiter and Saturn. We suggest that both super-Earths and supercritical cores of gas giants were assembled from a population of embryos that underwent convergent type I migration from their birthplaces to a transition location between viscously heated and irradiation-heated disk regions. We attribute the cause for the η ⊕–η J dichotomy to conditions required for embryos to merge and to acquire supercritical core mass ({M}{{c}}˜ 10 {M}\\oplus ) for the onset of efficient gaseous envelope accretion. We translate this condition into a critical disk accretion rate, and our analysis and simulation results show that it weakly depends on M * and decreases with metallicity of disk gas Z d. We find that embryos are more likely to merge into supercritical cores around relatively massive and metal-rich stars. This dependence accounts for the observed η J–M *. We also consider the {Z}{{d}}{--}{Z}* dispersed relationship and reproduce the observed η J–Z * correlation.
Imaging of beta-Cell Mass and Insulitis in Insulin-Dependent (Type 1) Diabetes Mellitus
Di Gialleonardo, Valentina; de Vries, Erik F. J.; Di Girolamo, Marco; Quintero, Ana M.; Dierckx, Rudi A. J. O.; Signore, Alberto
2012-01-01
Insulin-dependent (type 1) diabetes mellitus is a metabolic disease with a complex multifactorial etiology and a poorly understood pathogenesis. Genetic and environmental factors cause an autoimmune reaction against pancreatic beta-cells, called insulitis, confirmed in pancreatic samples obtained at
Systematic dependence of asymmetric parameter in light and medium mass region
International Nuclear Information System (INIS)
The study of collective nuclear structure with N, Z, NB and NpNn provide a detailed information of nuclear interactions involved. Several studies have been carried out to study the collectivity, deformation and systematic dependence of other nuclear properties on NpNn. In this paper, we study the role of valence nucleons and holes on the nuclear structure, through NpNn
Habitable Zones Around Main-Sequence Stars: Dependence on Planetary Mass
Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kotte, James Schottel; Kasting, James F.; Domagal-Goldman, Shawn; Eymet, Vincent
2014-01-01
The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1M and 5M. Assuming H2O-(inner HZ) and CO2-(outer HZ) dominated atmospheres, and scaling the background N2 atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (approx.10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H2O column depth. For larger planets, the H2O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing long-wave radiation. Hence the inner edge moves inward (approx.7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.
HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: DEPENDENCE ON PLANETARY MASS
Energy Technology Data Exchange (ETDEWEB)
Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kasting, James F. [Department of Geosciences, Penn State University, 443 Deike Building, University Park, PA 16802 (United States); SchottelKotte, James [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Domagal-Goldman, Shawn [NASA Astrobiology Institute' s Virtual Planetary Laboratory, P.O. Box 351580, Seattle, WA 98195 (United States); Eymet, Vincent, E-mail: ruk15@psu.edu [Laboratoire d' Astrophysique de Bordeaux, Universite de Bordeaux 1, UMR 5804, F-33270 Floirac (France)
2014-06-01
The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1 M {sub ⊕} and 5 M {sub ⊕}. Assuming H{sub 2}O-(inner HZ) and CO{sub 2}-(outer HZ) dominated atmospheres, and scaling the background N{sub 2} atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (∼10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H{sub 2}O column depth. For larger planets, the H{sub 2}O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing longwave radiation. Hence the inner edge moves inward (∼7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.
A Search for the Fourth SM Family Quarks through Anomalous Decays
Sahin, M; Turkoz, S
2010-01-01
Existence of the fourth family follows from the basics of the Standard Model. Because of the high masses of the fourth family quarks, their anomalous decays could be dominant. This will drastically change the search strategy at hadron colliders. We show that the fourth SM family down quarks with masses up to 400-450 GeV can be observed (or excluded) via anomalous decays by Tevatron before the LHC.
Galaxy Zoo: the dependence of the star formation-stellar mass relation on spiral disk morphology
Willett, Kyle W; Simmons, Brooke D; Masters, Karen L; Skibba, Ramin A; Kaviraj, Sugata; Melvin, Thomas; Wong, O Ivy; Nichol, Robert C; Cheung, Edmond; Lintott, Chris J; Fortson, Lucy
2015-01-01
We measure the stellar mass-star formation rate relation in star-forming disk galaxies at z1. Of the galaxies lying significantly above the M-SFR relation in the local Universe, more than 50% are mergers. We interpret this as evidence that the spiral arms, which are imperfect reflections of the galaxy's current gravitational potential, are either fully independent of the various quenching mechanisms or are completely overwhelmed by the combination of outflows and feedback. The arrangement of the star formation can be changed, but the system as a whole regulates itself even in the presence of strong dynamical forcing.
Maleknia, Simin D; Vail, Teresa M; Cody, Robert B; Sparkman, David O; Bell, Tina L; Adams, Mark A
2009-08-01
A method is described for the rapid identification of biogenic, volatile organic compounds (VOCs) emitted by plants, including the analysis of the temperature dependence of those emissions. Direct analysis in real time (DART) enabled ionization of VOCs from stem and leaf of several eucalyptus species including E. cinerea, E. citriodora, E. nicholii and E. sideroxylon. Plant tissues were placed directly in the gap between the DART ionization source skimmer and the capillary inlet of the time-of-flight (TOF) mass spectrometer. Temperature-dependent emission of VOCs was achieved by adjusting the temperature of the helium gas into the DART ionization source at 50, 100, 200 and 300 degrees C, which enabled direct evaporation of compounds, up to the onset of pyrolysis of plant fibres (i.e. cellulose and lignin). Accurate mass measurements facilitated by TOF mass spectrometry provided elemental compositions for the VOCs. A wide range of compounds was detected from simple organic compounds (i.e. methanol and acetone) to a series of monoterpenes (i.e. pinene, camphene, cymene, eucalyptol) common to many plant species, as well as several less abundant sesquiterpenes and flavonoids (i.e. naringenin, spathulenol, eucalyptin) with antioxidant and antimicrobial properties. The leaf and stem tissues for all four eucalypt species showed similar compounds. The relative abundances of methanol and ethanol were greater in stem wood than in leaf tissue suggesting that DART could be used to investigate the tissue-specific transport and emissions of VOCs. PMID:19551840
Galaxy Zoo: the dependence of the star formation-stellar mass relation on spiral disc morphology
Willett, Kyle W.; Schawinski, Kevin; Simmons, Brooke D.; Masters, Karen L.; Skibba, Ramin A.; Kaviraj, Sugata; Melvin, Thomas; Wong, O. Ivy; Nichol, Robert C.; Cheung, Edmond; Lintott, Chris J.; Fortson, Lucy
2015-05-01
We measure the stellar mass-star formation rate (SFR) relation in star-forming disc galaxies at z ≤ 0.085, using Galaxy Zoo morphologies to examine different populations of spirals as classified by their kiloparsec-scale structure. We examine the number of spiral arms, their relative pitch angle, and the presence of a galactic bar in the disc, and show that both the slope and dispersion of the M⋆-SFR relation is constant when varying all the above parameters. We also show that mergers (both major and minor), which represent the strongest conditions for increases in star formation at a constant mass, only boost the SFR above the main relation by ˜0.3 dex; this is significantly smaller than the increase seen in merging systems at z > 1. Of the galaxies lying significantly above the M⋆-SFR relation in the local Universe, more than 50 per cent are mergers. We interpret this as evidence that the spiral arms, which are imperfect reflections of the galaxy's current gravitational potential, are either fully independent of the various quenching mechanisms or are completely overwhelmed by the combination of outflows and feedback. The arrangement of the star formation can be changed, but the system as a whole regulates itself even in the presence of strong dynamical forcing.
Heavy-quark mass dependence in global PDF analyses and 3- and 4-flavour parton distributions
Energy Technology Data Exchange (ETDEWEB)
Martin, A.D. [University of Durham, Institute for Particle Physics Phenomenology, Durham (United Kingdom); Stirling, W.J. [University of Cambridge, Cavendish Laboratory, Cambridge (United Kingdom); Thorne, R.S. [University College London, Department of Physics and Astronomy, London (United Kingdom); Watt, G. [CERN, Theory Group, Physics Department, Geneva 23 (Switzerland)
2010-11-15
We study the sensitivity of our recent MSTW 2008 NLO and NNLO PDF analyses to the values of the charm- and bottom-quark masses, and we provide additional public PDF sets for a wide range of these heavy-quark masses. We quantify the impact of varying m{sub c} and m{sub b} on the cross sections for W, Z and Higgs production at the Tevatron and the LHC. We generate 3- and 4-flavour versions of the (5-flavour) MSTW 2008 PDFs by evolving the input PDFs and {alpha}{sub S} determined from fits in the 5-flavour scheme, including the eigenvector PDF sets necessary for calculation of PDF uncertainties. As an example of their use, we study the difference in the Z total cross sections at the Tevatron and LHC in the 4- and 5-flavour schemes. Significant differences are found, illustrating the need to resum large logarithms in Q{sup 2}/m{sub b}{sup 2} by using the 5-flavour scheme. The 4-flavour scheme is still necessary, however, if cuts are imposed on associated (massive) b-quarks, as is the case for the experimental measurement of Zb anti b production and similar processes. (orig.)
Directory of Open Access Journals (Sweden)
S. S. Lee
2009-09-01
Full Text Available Increasing aerosols decreases the size of droplets and thus their collection efficiencies, leading to an inefficient conversion of droplets to precipitable raindrops. This, in turn, increases the mass of droplets suspended in the air by decreasing the removal of cloud mass by sedimentation and has been known to be a main mechanism which determines the effect of aerosols on cloud mass. However, a recent study showed that this mechanism played a negligible role in the determination of the cloud mass as compared to aerosol-induced feedbacks between microphysics and dynamics in thin stratocumulus clouds with LWP of ~50 g m or less. This is contrary to studies which have shown that the mechanism associated with the aerosol-induced inefficient conversion plays an important role in the determination of the effect of aerosols on cloud mass. These studies are generally based on clouds with LWP >50 g m^{−2}. Hence, it is important to understand whether the role of aerosol-induced feedbacks in the effect of aerosols on cloud mass depends on the level of LWP. This study examines the dependence of the role of the conversion of droplets to raindrops and their sedimentation in the determination of the effect of aerosols on cloud mass on the level of LWP. Pairs of numerical experiments for high and low aerosol cases are run for four cases of stratiform clouds with different LWPs. Comparisons among these cases show that the role of the conversion and sedimentation becomes less important as the level of LWP decreases. Instead, the role of the feedbacks between microphysics and dynamics become more important with the lowering level of LWP. The results of this study indicate that the traditional approach to the understanding of the aerosol-cloud interactions and its application to the parameterization of these interactions in climate models can be misleading. The understanding of feedbacks between microphysics and dynamics induced by aerosol
Liu, Gaochao; Xie, Lizhi; Chen, Xuelei; Zhao, Yongheng
2016-01-01
Massive luminous red galaxies (LRGs) are believed to be evolving passively and can be used as cosmic chronometers to estimate the Hubble constant. However, different LRGs may locate in different environments. The environmental effects may limit the use of the LRGs as cosmic chronometers. We aim to investigate the environmental and mass dependence of the formation of "quiescent" LRGs selected from the Sloan Digital Sky Survey Date Release 8 and to pave the way for using the LRGs as cosmic chronometers. Using the population synthesis software STARLIGHT, we derive the stellar populations in each LRG through the full spectrum fitting and obtain the mean age distribution and the mean star formation history (SFH) of those LRGs. We find that there is no apparent dependence of the mean age and the SFH of quiescent LRGs on their environment, while the ages of those quiescent LRGs weakly depend on their mass. We compare the SFHs of the SDSS LRGs with those obtained from a semi-analytical galaxy formation model, and fin...
Anomalous superfluid density in quantum critical superconductors
Hashimoto, Kenichiro; Mizukami, Yuta; Katsumata, Ryo; Shishido, Hiroaki; Yamashita, Minoru; Ikeda, Hiroaki; Matsuda, Yuji; Schlueter, John A.; Fletcher, Jonathan D.; Carrington, Antony; Gnida, Daniel; Kaczorowski, Dariusz; Shibauchi, Takasada
2013-01-01
When a second-order magnetic phase transition is tuned to zero temperature by a nonthermal parameter, quantum fluctuations are critically enhanced, often leading to the emergence of unconventional superconductivity. In these “quantum critical” superconductors it has been widely reported that the normal-state properties above the superconducting transition temperature Tc often exhibit anomalous non-Fermi liquid behaviors and enhanced electron correlations. However, the effect of these strong critical fluctuations on the superconducting condensate below Tc is less well established. Here we report measurements of the magnetic penetration depth in heavy-fermion, iron-pnictide, and organic superconductors located close to antiferromagnetic quantum critical points, showing that the superfluid density in these nodal superconductors universally exhibits, unlike the expected T-linear dependence, an anomalous 3/2 power-law temperature dependence over a wide temperature range. We propose that this noninteger power law can be explained if a strong renormalization of effective Fermi velocity due to quantum fluctuations occurs only for momenta k close to the nodes in the superconducting energy gap Δ(k). We suggest that such “nodal criticality” may have an impact on low-energy properties of quantum critical superconductors. PMID:23404698
Anomalous interaction of spatial solitons in photorefractive media
DEFF Research Database (Denmark)
Krolikowski, W.; Saffman, M.; Luther-Davies, B.;
1998-01-01
We investigate the interaction of mutually incoherent spatial solitons in photorefractive media with anisotropic nonlocal nonlinear response. We show that the photorefractive nonlinearity leads to an anomalous interaction between solitons. Theoretical and experimental results reveal that an...... incoherent soliton pair may experience both attractive and repulsive forces, depending on their mutual separation....
International Nuclear Information System (INIS)
We calculate the thermodynamic properties of strange quark matter by using the density and temperature dependent particle mass model of Wen et al. For the interaction Hamiltonian we use the one gluon exchange interaction obtained from the Fermi liquid picture. We let the QCD coupling (αc) be constant or vary with density and temperature. A new set of mass scalings for quarks is evaluated from the present interaction, which can be used with thermodynamic formulas derived by Wen et al. Similar to β-stable matter, no stability is found in strange quark matter. Finally, it is shown that the present equation of state of strange quark matter becomes harder with respect to that obtained using the string model, specially with non-constant QCD coupling. (author)
Effects of Density-Dependent Quark Mass on Phase Diagram of Color-Flavor-Locked Quark Matter
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Considering the density dependence of quark mass, we investigate the phase transition between the (unpaired) strange quark matter and the color-flavor-locked matter, which are supposed to be two candidates for the ground state of strongly interacting matter. We find that if the current mass of strange quark ms is small, the strange quark matter remains stable unless the baryon density is very high. If ms is large, the phase transition from the strange quark matter to the color-flavor-locked matter in particular to its gapless phase is found to be different from the results predicted by previous works. A complicated phase diagram of three-flavor quark matter is presented, in which the color-flavor-locked phase region is suppressed for moderate densities.
Dmitriev, Alexander L
2011-01-01
Results of measurements of free falling acceleration of a closed container with a rotor of a mechanical gyroscope placed inside it on the frequency of the rotor rotation are briefly described. Time of separate accelerations measurements is 40 ms, the period of sampling is from 0.5 up to 1.0 minute. In rotation's frequencies range of 20-400 Hz, the negative changes of free falling container acceleration prevail. On individual frequencies the "resonant" maxima and minima of acceleration are observed. The obtained data apparently contradict the equivalence principle of inertial and gravitating masses. The expediency of development of ballistic gravimetry of high time resolution with use of rotating or oscillating test bodies is noted.
Mass-dependent and -independent signature of Fe isotopes in magnetotactic bacteria.
Amor, Matthieu; Busigny, Vincent; Louvat, Pascale; Gélabert, Alexandre; Cartigny, Pierre; Durand-Dubief, Mickaël; Ona-Nguema, Georges; Alphandéry, Edouard; Chebbi, Imène; Guyot, François
2016-05-01
Magnetotactic bacteria perform biomineralization of intracellular magnetite (Fe3O4) nanoparticles. Although they may be among the earliest microorganisms capable of biomineralization on Earth, identifying their activity in ancient sedimentary rocks remains challenging because of the lack of a reliable biosignature. We determined Fe isotope fractionations by the magnetotactic bacterium Magnetospirillum magneticum AMB-1. The AMB-1 strain produced magnetite strongly depleted in heavy Fe isotopes, by 1.5 to 2.5 per mil relative to the initial growth medium. Moreover, we observed mass-independent isotope fractionations in (57)Fe during magnetite biomineralization but not in even Fe isotopes ((54)Fe, (56)Fe, and (58)Fe), highlighting a magnetic isotope effect. This Fe isotope anomaly provides a potential biosignature for the identification of magnetite produced by magnetotactic bacteria in the geological record.
Chung, Kyu-Rhim; Nelson, Gerald; Kim, Seong-Hun; Kook, Yoon-Ah
2007-07-01
This article describes the orthodontic treatment of a 14.5-year-old girl with severe bidentoalveolar protrusion. Specially designed sandblasted, large-grit, acid-etched (SLA) orthodontic microimplants (C-implants, Cimplant Co, Seoul, Korea) were placed in the alveolar bone in all 4 quadrants to provide anchorage for en-masse retraction without the help of banded or bonded molars. Successful retraction was achieved. The mandibular dentition was detailed by using conventional orthodontic appliances during the finishing stage. The osseointegration potential of these microimplants allows them to resist rotational force moments and control 3-dimensional movements of the anterior teeth during retraction. Facial esthetics improved for the patient, fullness of the upper and lower lips was reduced, and the interdental relationship was corrected. Biomechanical considerations, efficacy, and potential complications of the treatment technique are discussed.
Mass-number and excitation-energy dependence of the spin cutoff parameter
Grimes, S. M.; Voinov, A. V.; Massey, T. N.
2016-07-01
The spin cutoff parameter determining the nuclear level density spin distribution ρ (J ) is defined through the spin projection as 1 /2 or equivalently for spherical nuclei, ( 3 ) 1 /2. It is needed to divide the total level density into levels as a function of J . To obtain the total level density at the neutron binding energy from the s -wave resonance count, the spin cutoff parameter is also needed. The spin cutoff parameter has been calculated as a function of excitation energy and mass with a super-conducting Hamiltonian. Calculations have been compared with two commonly used semiempirical formulas. A need for further measurements is also observed. Some complications for deformed nuclei are discussed. The quality of spin cut off parameter data derived from isomeric ratio measurement is examined.
Mass dependence of nuclear short- range correlations and the EMC effect
Cosyn, Wim; Ryckebusch, Jan
2014-01-01
We sketch an approximate method to quantify the number of correlated pairs in any nucleus $A$. It is based on counting independent-particle model (IPM) nucleon-nucleon pairs in a relative $S$-state with no radial excitation. We show that IPM pairs with those quantum numbers are most prone to short-range correlations and are at the origin of the high-momentum tail of the nuclear momentum distributions. Our method allows to compute the $a_2$ ratios extracted from inclusive electron scattering. Furthermore, our results reproduce the observed linear correlation between the number of correlated pairs and the magnitude of the EMC effect. We show that the width of the pair center-of-mass distribution in exclusive two-nucleon knockout yields information on the quantum numbers of the pairs.
Directory of Open Access Journals (Sweden)
E. Isokangas
2014-08-01
Full Text Available A stable isotope study of 67 kettle lakes and ponds situated on an esker aquifer (90 km2 in northern Finland was carried out in the summer of 2013 to determine the role of groundwater inflow in groundwater-dependent lakes. Distinct seasonal fluctuations in the δ18O and δ2H values of lakes are the result of seasonal ice cover prohibiting evaporation during the winter. An isotope mass balance approach was used to calculate the inflow-to-evaporation ratios (ITOT/E of all 67 lakes during the summer of 2013 when the isotopic compositions of the lakes were approaching a steady-state. The normalised relative humidity needed in this approach came from assuming a terminal lake situation for one of the lakes showing the highest isotope enrichment. Since evaporation rates were derived independently of any mass balance considerations, it was possible to determine the total inflow (ITOT and mean turnover time (MTT of the lakes. Furthermore, the groundwater seepage rates of those lakes revealing no visible surface inflow were calculated. Here, a quantitative measure was introduced for the dependence of a lake on groundwater (G index that is defined as the percentage contribution of groundwater inflow to the total inflow of water to the given lake. The G index values of the lakes studied ranged from 27.8–95.0%, revealing large differences in groundwater dependency among the lakes. This study shows the effectiveness of applying an isotope mass balance approach to quantify the groundwater reliance of lakes situated in a relatively small area with similar climatic conditions.
Anomalous Positive Refraction in an Anisotropic Left-Handed Medium
Institute of Scientific and Technical Information of China (English)
HU Wei; LUO Hai-Lu; CAO Jing-Xiao
2005-01-01
@@ We investigate the refraction phenomena of extraordinary light at a planar interface associated with a uniaxial left-handed medium. It is found that the anomalous positive refraction can occur at the interface from anisotropic right-handed medium to a uniaxially anisotropic left-handed medium. When the optical axis of a uniaxial left-handed medium is not normal or parallel to the interface, the refraction of the Poynting vector for the extraordinary waves can be either positive or negative depending on the incident angles, while the refraction of the wave vector is always negative. The physical essential of the anomalous positive refraction results from the anisotropy of uniaxial crystals.
Ozonolysis of beta-pinene: temperature dependence of secondary organic aerosol mass fraction.
Pathak, Ravikant; Donahue, Neil M; Pandis, Spyros N
2008-07-15
The SOA formation from beta-pinene ozonolysis at modest precursor concentrations (2-40 ppb) was investigated in the temperature range of 0-40 degrees C. The presence of inert seeds and high ozone concentrations is necessary to minimize losses of semivolatile vapors to the walls of the smog chamber. beta-pinene secondary organic aerosol production increases significantly with decreasing temperature. An increase by a factor of 2-3, depending on the reacted beta-pinene concentration, was observed as the temperature decreased from 40 to 0 degrees C. This increase appearsto be due mainly to the shifting of partitioning of the semivolatile SOA componentstoward the particulate phase and not to a change of the beta-pinene product distribution with temperature. The measurements are used to develop a new temperature-dependent parametrization for the four-component basis-set. The parametrization predicts much higher SOA production for beta-pinene ozonolysis for typical atmospheric conditions than the values that have been suggested by previous studies.
Graefener, G.; Hamann, W.-R.
2008-01-01
The mass loss from Wolf-Rayet (WR) stars is of fundamental importance for the final fate of massive stars and their chemical yields. Its Z-dependence is discussed in relation to the formation of long-duration Gamma Ray Bursts (GRBs) and the yields from early stellar generations. However, the mechanism of formation of WR-type stellar winds is still under debate. We present the first fully self-consistent atmosphere/wind models for late-type WN stars. We investigate the mechanisms leading to th...
International Nuclear Information System (INIS)
We discuss the evolution and dependence on cloud mass of the star formation rate (SFR) and efficiency (SFE) of star-forming molecular clouds (MCs) within the scenario that clouds are undergoing global collapse and that the SFR is controlled by ionization feedback. We find that low-mass clouds (M max ≲ 104 M ☉) spend most of their evolution at low SFRs, but end their lives with a mini-burst, reaching a peak SFR ∼104 M ☉ Myr–1, although their time-averaged SFR is only (SFR) ∼ 102 M ☉ Myr–1. The corresponding efficiencies are SFEfinal ≲ 60% and (SFE) ≲ 1%. For more massive clouds (M max ≳ 105 M ☉), the SFR first increases and then reaches a plateau because the clouds are influenced by stellar feedback since earlier in their evolution. As a function of cloud mass, (SFR) and (SFE) are well represented by the fits (SFR) ≈ 100(1 + M max/1.4 × 105 M ☉)1.68 M ☉ Myr–1 and (SFE) ≈ 0.03(M max/2.5 × 105 M ☉)0.33, respectively. Moreover, the SFR of our model clouds follows closely the SFR-dense gas mass relation recently found by Lada et al. during the epoch when their instantaneous SFEs are comparable to those of the clouds considered by those authors. Collectively, a Monte Carlo integration of the model-predicted SFR(M) over a Galactic giant molecular cloud mass spectrum yields values for the total Galactic SFR that are within half an order of magnitude of the relation obtained by Gao and Solomon. Our results support the scenario that star-forming MCs may be in global gravitational collapse and that the low observed values of the SFR and SFE are a result of the interruption of each SF episode, caused primarily by the ionizing feedback from massive stars.
Kim, Hak-Sung; Chung, Yong-Seung
2010-05-01
Sandstorms in the desert and loess regions of north China and Mongolia, as well as the associated dustfall episodes on the Korean Peninsula, were monitored in 2005. The ground mass concentrations of PM10 and PM2.5 were analyzed during dustfall episodes at Cheongwon, in central south Korea, based on synoptic features at surface, 850 hPa and 500 hPa levels. A total of seven dustfall episodes lasting eleven days were observed and the mass concentration ratios of PM2.5 and PM10 during dustfall episodes were classified into a severe dustfall episode (SDE) and a moderate dustfall episode (MDE) depending upon two synoptic features. The main synoptic feature was for SDEs, which occurred frequently under a surface anticyclone and cyclone located in the west and east of the Korean Peninsula with large amplitude trough at 500 hPa over the northern Korean Peninsula. The sandstorms at the source headed directly to Korea via a strong N-NW wind without passing through any large cities or industrial areas of east China. The PM10 mass concentration sharply increased during the SDEs; however, the fine aerosol fraction of PM2.5 levels was relatively low with 13.6% of the mass concentration. In a synoptic feature for MDEs, a slow moving cyclone headed to Korea via the industrial areas of northeastern China under a small amplitude trough at a 500 hPa level. A weak anticyclone was also located over China. MDEs showed low mass concentrations of coarse PM10 particles and large fraction of fine PM2.5 particles at 46.3%.
Phenomenological Spin Transport Theory Driven by Anomalous Nernst Effect
Taniguchi, Tomohiro
2016-07-01
Several experimental efforts such as material investigation and structure improvement have been made recently to find a large anomalous Nernst effect in ferromagnetic metals. Here, we develop a theory of spin transport driven by the anomalous Nernst effect in a diffusive ferromagnetic/nonmagnetic multilayer. Starting from a phenomenological formula of a spin-dependent electric current, the theoretical formulas of electric voltage and spin torque generated by the anomalous Nernst effect are derived. The magnitude of the electric voltage generated from the spin current via the inverse spin Hall effect is on the order of 0.1 µV for currently available experimental parameter values. The temperature gradient necessary to switch the magnetization is quite larger than the typical experimental value. The separation of the contributions of the Seebeck and transverse spin Seebeck effects is also discussed.
Time-Dependent Coincidence Method to Measure Plutonium Mass and Multiplication
International Nuclear Information System (INIS)
Future nuclear disarmament agreements between nations may require technical measures to ascertain each participating nation's adherence to the agreement. Almost certainly, measurement technologies and analytical methods will have to be developed by the participating nations jointly. In this way each participant has both confidence in the technology's efficacy and trust in its implementation. With the support of the National Nuclear Security Administration's Office of Nonproliferation Policy (NNSA NA-241), the Oak Ridge National Laboratory (ORNL) and the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF) have taken first steps to jointly develop and implement a radiation measurement technique to inspect plutonium. In June and July 2000, personnel from ORNL and VNIIEF performed joint experiments on unclassified plutonium metal ((delta)-phase, 1.77%-(sup 240)Pu) spherical shells at VNIIEF facilities in Sarov, Russia[1,2]. The measurements were performed using the Nuclear Materials Identification System (NMIS). The subsequent analysis demonstrates how NMIS can be applied to passively measure the mass and multiplication of plutonium spherical shells
Regulation of bone mass and osteoclast function depend on the F-actin modulator SWAP-70.
Garbe, Annette I; Roscher, Anne; Schüler, Christiane; Lutter, Anne-Helen; Glösmann, Martin; Bernhardt, Ricardo; Chopin, Michael; Hempel, Ute; Hofbauer, Lorenz C; Rammelt, Stefan; Egerbacher, Monika; Erben, Reinhold G; Jessberger, Rolf
2012-10-01
Bone remodeling involves tightly regulated bone-resorbing osteoclasts and bone-forming osteoblasts. Determining osteoclast function is central to understanding bone diseases such as osteoporosis and osteopetrosis. Here, we report a novel function of the F-actin binding and regulatory protein SWAP-70 in osteoclast biology. F-actin ring formation, cell morphology, and bone resorption are impaired in Swap-70(-/-) osteoclasts, whereas the expression of osteoclast differentiation markers induced in vitro by macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL) remains unaffected. Swap-70(-/-) mice develop osteopetrosis with increased bone mass, abnormally dense bone, and impaired osteoclast function. Ectopic expression of SWAP-70 in Swap-70(-/-) osteoclasts in vitro rescues their deficiencies in bone resorption and F-actin ring formation. Rescue requires a functional pleckstrin homology (PH) domain, known to support membrane localization of SWAP-70, and the F-actin binding domain. Transplantation of SWAP-70-proficient bone marrow into Swap-70(-/-) mice restores osteoclast resorption capacity in vivo. The identification of the role of SWAP-70 in promoting osteoclast function through modulating membrane-proximal F-actin rearrangements reveals a new pathway to control osteoclasts and bone homeostasis.
Anomalous-viscosity current drive
Stix, T.H.; Ono, M.
1986-04-25
The present invention relates to a method and apparatus for maintaining a steady-state current for magnetically confining the plasma in a toroidal magnetic confinement device using anomalous viscosity current drive. A second aspect of this invention relates to an apparatus and method for the start-up of a magnetically confined toroidal plasma.
Anomalous magnetic moment of anyons
Gat, G; Gat, Gil; Ray, Rashmi
1994-01-01
The anomalous magnetic moment of anyons is calculated to leading order in a 1/N expansion. It is shown that the gyromagnetic ratio g remains 2 to the leading order in 1/N. This result strongly supports that obtained in \\cite{poly}, namely that g=2 is in fact exact.
QCD Anomalous Structure of Electron
Slominski, Wojciech
1998-01-01
The parton content of the electron is analyzed within perturbative QCD. It is shown that electron acquires an anomalous component from QCD, analogously to photon. The evolution equations for the `exclusive' and `inclusive' electron structure function are constructed and solved numerically in the asymptotic $Q^2$ region.
Influence of anomalous VVH and VVHH on determination of Higgs self couplings at ILC
Kumar, Satendra
2014-01-01
The recent discovery of a Higgs boson at LHC, while establishing the Higgs mechanism as the way of electroweak symmetry breaking, started an era of precision measurements involving the Higgs boson. In an effective Lagrangian framework, we consider the e+e- --> ZHH process, at an ILC running at a centre of mass energy of 800 GeV to investigate the effect of the ZZH and ZZHH couplings on the sensitivity of HHH coupling on this process. Our results show that the sensitivity of the trilinear Higgs self couplings on this process has somewhat strong dependence on the Higgs-gauge boson couplings. Single and two parameter reach of ILC with integrated luminosity of 1000 /fb are obtained on the effective couplings, c6 and cH, which are related to the HHH couplings, indicating how these limits are affected by the presence of anomalous ZZH and ZZHH couplings. The kinematic distributions studied to understand the effect of the anomalous couplings, again, show strong influence of Z-H couplings on the dependence of these di...
Cuzzi, J. N.; Hartlep, T.; Estrada, P.
2016-01-01
The initial accretion of primitive bodies from freely-floating nebula particles remains problematic. Traditional growth-by-sticking models in turbulent nebulae encounter a "meter-size barrier" due to both drift and destruction, or even a millimeter-to-centimeter-size "bouncing" barrier. Recent suggestions have been made that some "lucky" particles might be able to outgrow the collision and/or drift barriers, and lead to so-called "streaming instabilities" or SI. However, new full models of growth by sticking in the presence of radial drift show that lucky particles (the largest particles, at the tail of the size distribution, that grow beyond the nominal fragmentation and drift barriers) are far too rare to lead to any collective effects such as streaming or gravitational instabilities. Thus we need to focus on typical radii gamma(sub M) which contain most of the mass. Our models of disks with weak-to-moderate turbulence, which include all the most recent experimental constraints on collisional growth, erosion, bouncing, and fragmentation, as well as radial drift, find that growth stalls quite generally at sizes gamma(sub M) which are too small to settle into layers which are dense enough for any collective effects (streaming or gravitational instabilities) to arise. Even if growth by sticking could somehow breach the nominal barriers (perhaps if the actual sticking or strength is larger than current estimates for pure ice or pure silicate, with specific grain sizes), turbulent nebulae present subsequent formidable obstacles to incremental growth through the 1-10km size range. On the other hand, non-turbulent nebulae alpha is less than 10(Sup -4).
Directory of Open Access Journals (Sweden)
You-Peng Chen
Full Text Available BACKGROUND: Environmental alternations leading to fetal programming of cardiovascular diseases in later life have been attributed to maternal factors. However, animal studies showed that paternal obesity may program cardio-metabolic diseases in the offspring. In the current study we tested the hypothesis that paternal BMI may be associated with fetal growth. METHODS AND RESULTS: We analyzed the relationship between paternal body mass index (BMI and birth weight, ultrasound parameters describing the newborn's body shape as well as parameters describing the newborns endocrine system such as cortisol, aldosterone, renin activity and fetal glycated serum protein in a birth cohort of 899 father/mother/child triplets. Since fetal programming is an offspring sex specific process, male and female offspring were analyzed separately. Multivariable regression analyses considering maternal BMI, paternal and maternal age, hypertension during pregnancy, maternal total glycated serum protein, parity and either gestational age (for birth weight or time of ultrasound investigation (for ultrasound parameters as confounding showed that paternal BMI is associated with growth of the male but not female offspring. Paternal BMI correlated with birth parameters of male offspring only: birth weight; biparietal diameter, head circumference; abdominal diameter, abdominal circumference; and pectoral diameter. Cortisol was likewise significantly correlated with paternal BMI in male newborns only. CONCLUSIONS: Paternal BMI affects growth of the male but not female offspring. Paternal BMI may thus represent a risk factor for cardiovascular diseases of male offspring in later life. It remains to be demonstrated whether this is linked to an offspring sex specific paternal programming of cortisol secretion.
Evidence for a mass dependent step-change in the scaling of efficiency in terrestrial locomotion.
Directory of Open Access Journals (Sweden)
Robert L Nudds
Full Text Available A reanalysis of existing data suggests that the established tenet of increasing efficiency of transport with body size in terrestrial locomotion requires re-evaluation. Here, the statistical model that described the data best indicated a dichotomy between the data for small (1 kg. Within and between these two size groups there was no detectable difference in the scaling exponents (slopes relating metabolic (E(met and mechanical costs (E(mech, CM of locomotion to body mass (M(b. Therefore, no scaling of efficiency (E(mech, CM/E(met with M(b was evident within each size group. Small animals, however, appeared to be generally less efficient than larger animals (7% and 26% respectively. Consequently, it is possible that the relationship between efficiency and M(b is not continuous, but, rather, involves a step-change. This step-change in the efficiency of locomotion mirrors previous findings suggesting a postural cause for an apparent size dichotomy in the relationship between E(met and M(b. Currently data for E(mech, CM is lacking, but the relationship between efficiency in terrestrial locomotion and M(b is likely to be determined by posture and kinematics rather than body size alone. Hence, scaling of efficiency is likely to be more complex than a simple linear relationship across body sizes. A homogenous study of the mechanical cost of terrestrial locomotion across a broad range of species, body sizes, and importantly locomotor postures is a priority for future research.
An anomalous propulsion mechanism
Shaverin, Evgeny
2014-01-01
We consider a gas of free chiral fermions trapped inside a uniform rotating spherical shell. Once the shell becomes transparent the fermions are emitted along the axis of rotation due to the chiral and mixed anomaly. In return, owing to momentum conservation, the shell is propelled forward. We study the dependence of the magnitude of this effect on the shell parameters in a controlled setting and find that it is sensitive to the formation of an ergosphere around the rotating shell. A brief discussion on a possible relation to pulsar kicks is provided.
Flux-induced Soft Terms on Type IIB/F-theory Matter Curves and Hypercharge Dependent Scalar Masses
Camara, Pablo G; Valenzuela, Irene
2014-01-01
Closed string fluxes induce generically SUSY-breaking soft terms on supersymmetric type IIB orientifold compactifications with D3/D7 branes. This was studied in the past by inserting those fluxes on the DBI+CS actions for adjoint D3/D7 fields, where D7-branes had no magnetic fluxes. In the present work we generalise those computations to the phenomenologically more relevant case of chiral bi-fundamental fields laying at 7-brane intersections and F-theory local matter curves. We also include the effect of 7-brane magnetic flux as well as more general closed string backgrounds, including the effect of distant (anti-)D3-branes. We discuss several applications of our results. We find that squark/slepton masses become in general flux-dependent in F-theory GUT's. Hypercharge-dependent non-universal scalar masses with a characteristic sfermion hierarchy m_E^2 < m_L^2 < m_Q^2 < m_D^2 < m_U^2 are obtained. There are also flavor-violating soft terms both for matter fields living at intersecting 7-branes or ...
McDonald, Iain
2015-01-01
The impact of metallicity on the mass-loss rate from red giant branch (RGB) stars is studied through its effect on the parameters of horizontal branch (HB) stars. The scaling factors from Reimers (1975) and Schroder & Cuntz (2005) are determined for 56 well-studied Galactic globular clusters (GCs). The median values among clusters are, respectively, {\\eta}_R = 0.477 +/- 0.070 (+0.050/-0.062) and {\\eta}_SC = 0.172 +/- 0.024 (+0.018/-0.023) (standard deviation and systematic uncertainties, respectively). Mass-loss mechanisms on the RGB have very little metallicity dependence: over a factor of 200 in iron abundance, {\\eta} varies by <~30 per cent, within the current systematic uncertainties on cluster ages and evolution models. Since {\\eta} incorporates cluster age, the low standard deviation of {\\eta} among clusters (~14 per cent) suggests that age can almost entirely account for the "second parameter problem". The remaining spread in {\\eta} correlates with cluster mass and density, suggesting helium enr...
Study of quark mass dependence of binding energy for light nuclei in 2+1 flavor lattice QCD
Yamazaki, Takeshi; Kuramashi, Yoshinobu; Ukawa, Akira
2015-01-01
We investigate the formation of light nuclei with the nuclear mass number less than or equal to four in 2+1 flavor QCD using a non-perturbative improved Wilson quark and Iwasaki gauge actions. The quark mass is decreased from our previous work to the one corresponding to the pion mass of 0.30 GeV. In each multi-nucleon channel, the energy shift of the ground state relative to the assembly of free nucleons is calculated on two volumes, whose spatial extents are 4.3 fm and 5.8 fm. From the volume dependence of the energy shift, we distinguish a bound state of multi nucleons from an attractive scattering state. We find that all the ground states measured in this calculation are bound states. As in the previous studies at larger $m_\\pi$, our result indicates that at $m_\\pi = 0.30$ GeV the effective interaction between nucleons in the light nuclei is relatively stronger than the one in nature, since the results for the binding energies are larger than the experimental values and a bound state appears in the dineut...
Anomalous Wtb coupling at the LHC
Kolodziej, K
2013-01-01
Some normalized distributions of the secondary mu- in the top quark pair production at the LHC through one of the dominant hard scattering reactions gg -> b u anti-d anti-b mu- anti-nu_mu are calculated to leading order in the presence of the most general anomalous Wtb coupling with operators up to dimension five. In spite of the fact that non zero tensor form factors of the coupling modify substantially the top quark pair production rate, they hardly affect the distributions in the transverse momentum, rapidity and cosine of the angle between the momenta of mu- and recoiling top quark in the pp centre of mass frame. The effects of the tensor form factors become visible in distributions in cosine of the angle between the momentum of mu- and the reversed momentum of the b-quark, both boosted first to the rest frame of top quark and then to the rest frame of W-boson.
Hydrodynamic Waves in an Anomalous Charged Fluid
Abbasi, Navid; Rezaei, Zahra
2015-01-01
We study the collective excitations in a relativistic fluid with an anomalous conserved charge. In $3+1$ dimensions, in addition to two ordinary sound modes we find two propagating modes in presence of an external magnetic field: one with a velocity proportional to the coefficient of gauge-gravitational anomaly coefficient and the other with a velocity which depends on both chiral anomaly and the gauge gravitational anomaly coefficients. While the former is the Chiral Alfv\\'en wave recently found in arXiv:1505.05444, the latter is a new type of collective excitations originated from the density fluctuations. We refer to these modes as the Type-M and Type-D chiral Alfv\\'en waves respectively. We show that the Type-M Chiral Alfv\\'en mode is split into two chiral Alfv\\'en modes when taking into account the effect of dissipation processes in the fluid. In 1+1 dimensions we find only one propagating mode associated with the anomalous effects. We explicitly compute the velocity of this wave and show that in contras...
Turbulence: mechanics and structure of anomalous scaling
Directory of Open Access Journals (Sweden)
S. N. Gordienko
2001-01-01
Full Text Available As the finite correlation time of a force driving turbulence is taken into account, a new, dimensionless parameter occurs in the theory of turbulence. This new parameter is responsible for two different mechanisms of formation of anomalous spectra. The first mechanism is related to the change of a governing parameter, which defines the spectrum of turbulent fluctuation. The second mechanism is associated with spontaneous formation of characteristic scales that differ parametrically from the scale of the external force. The last mechanism can explain the intermittent structure of turbulent flows. The appropriate discrete set of the possible characteristic scales and anomalous spectra has been calculated. The results give a new insight into the concept of universality: there is a set of universal power laws, although occurrence in the spectrum segments described by one or another power law from this set depends on the dimensionless parameter mentioned above. It is noted that for the broad class of geophysical flows, the new dimensionless parameter is connected with the so-called degree of turbulence, which guarantees that the smallness of this parameter, as the degree of turbulence is usually small enough. That explains the important role of the Kolmogorov spectrum in geophysical applications.
International Nuclear Information System (INIS)
We use a sample of ≈6000 galaxies detected by the Arecibo Legacy Fast ALFA (ALFALFA) 21 cm survey to measure the clustering properties of H I-selected galaxies. We find no convincing evidence for a dependence of clustering on galactic atomic hydrogen (H I) mass, over the range MHI ≈ 108.5-1010.5 M☉. We show that previously reported results of weaker clustering for low H I mass galaxies are probably due to finite-volume effects. In addition, we compare the clustering of ALFALFA galaxies with optically selected samples drawn from the Sloan Digital Sky Survey (SDSS). We find that H I-selected galaxies cluster more weakly than even relatively optically faint galaxies, when no color selection is applied. Conversely, when SDSS galaxies are split based on their color, we find that the correlation function of blue optical galaxies is practically indistinguishable from that of H I-selected galaxies. At the same time, SDSS galaxies with red colors are found to cluster significantly more than H I-selected galaxies, a fact that is evident in both the projected as well as the full two-dimensional correlation function. A cross-correlation analysis further reveals that gas-rich galaxies 'avoid' being located within ≈3 Mpc of optical galaxies with red colors. Next, we consider the clustering properties of halo samples selected from the Bolshoi ΛCDM simulation. A comparison with the clustering of ALFALFA galaxies suggests that galactic H I mass is not tightly related to host halo mass and that a sizable fraction of subhalos do not host H I galaxies. Lastly, we find that we can recover fairly well the correlation function of H I galaxies by just excluding halos with low spin parameter. This finding lends support to the hypothesis that halo spin plays a key role in determining the gas content of galaxies
Reconnaissance Estimates of Recharge Based on an Elevation-dependent Chloride Mass-balance Approach
Energy Technology Data Exchange (ETDEWEB)
Charles E. Russell; Tim Minor
2002-08-31
Significant uncertainty is associated with efforts to quantity recharge in arid regions such as southern Nevada. However, accurate estimates of groundwater recharge are necessary to understanding the long-term sustainability of groundwater resources and predictions of groundwater flow rates and directions. Currently, the most widely accepted method for estimating recharge in southern Nevada is the Maxey and Eakin method. This method has been applied to most basins within Nevada and has been independently verified as a reconnaissance-level estimate of recharge through several studies. Recharge estimates derived from the Maxey and Eakin and other recharge methodologies ultimately based upon measures or estimates of groundwater discharge (outflow methods) should be augmented by a tracer-based aquifer-response method. The objective of this study was to improve an existing aquifer-response method that was based on the chloride mass-balance approach. Improvements were designed to incorporate spatial variability within recharge areas (rather than recharge as a lumped parameter), develop a more defendable lower limit of recharge, and differentiate local recharge from recharge emanating as interbasin flux. Seventeen springs, located in the Sheep Range, Spring Mountains, and on the Nevada Test Site were sampled during the course of this study and their discharge was measured. The chloride and bromide concentrations of the springs were determined. Discharge and chloride concentrations from these springs were compared to estimates provided by previously published reports. A literature search yielded previously published estimates of chloride flux to the land surface. {sup 36}Cl/Cl ratios and discharge rates of the three largest springs in the Amargosa Springs discharge area were compiled from various sources. This information was utilized to determine an effective chloride concentration for recharging precipitation and its associated uncertainty via Monte Carlo simulations
Spectral Properties of Anomalous X-ray Pulsars
Institute of Scientific and Technical Information of China (English)
Ye Lu; Wei Wang; Yong-Heng Zhao
2003-01-01
We examine the spectra of the persistent emission from anomalous X-ray pulsars (AXPs) and their variation with the spin-down rate Ω. Based on an accretion-powered model, the influences of both the magnetic field and the mass accretion rate on the spectral properties of AXPs are addressed. We then investigate the relation between the spectral property of AXPs and mass accretion rate M. The result shows that there exists a linear correlation between the photon index and the mass accretion rate: the spectral hardness increases with increasing M. A possible emission mechanism for the explanation of the spectral properties of AXPs is also discussed.
Anomalous Brownian refrigerator
Rana, Shubhashis; Pal, P. S.; Saha, Arnab; Jayannavar, A. M.
2016-02-01
We present a detailed study of a Brownian particle driven by Carnot-type refrigerating protocol operating between two thermal baths. Both the underdamped as well as the overdamped limits are investigated. The particle is in a harmonic potential with time-periodic strength that drives the system cyclically between the baths. Each cycle consists of two isothermal steps at different temperatures and two adiabatic steps connecting them. Besides working as a stochastic refrigerator, it is shown analytically that in the quasistatic regime the system can also act as stochastic heater, depending on the bath temperatures. Interestingly, in non-quasistatic regime, our system can even work as a stochastic heat engine for certain range of cycle time and bath temperatures. We show that the operation of this engine is not reliable. The fluctuations of stochastic efficiency/coefficient of performance (COP) dominate their mean values. Their distributions show power law tails, however the exponents are not universal. Our study reveals that microscopic machines are not the microscopic equivalent of the macroscopic machines that we come across in our daily life. We find that there is no one to one correspondence between the performance of our system under engine protocol and its reverse.
Chabab, M.; Batoul, A. El; Lahbas, A.; Oulne, M.
2016-01-01
In this paper, we present a theoretical study of a conjonction of $\\gamma$-rigid and $\\gamma$-stable collective motions in critical point symmetries of the phase transitions from spherical to deformed shapes of nuclei using exactly separable version of the Bohr Hamiltonian with deformation-dependent mass term. The deformation-dependent mass is applied simultaneously to $\\gamma$-rigid and $\\gamma$-stable parts of this famous collective Hamiltonian. Moreover, the $\\beta$ part of the problem is ...
Minimal muon anomalous magnetic moment
Biggio, Carla
2014-01-01
We classify all possible one-particle (scalar and fermion) extensions of the Standard Model that can contribute to the anomalous magnetic moment of leptons. We review the cases already discussed in the literature and complete the picture by performing the calculation for a fermionic doublet with hypercharge -3/2. We conclude that, out of the listed possibilities, only two scalar leptoquarks and the pseudoscalar of a peculiar two-Higgs-doublet model could be the responsibles for the muon anomalous magnetic moment discrepancy. Were this the case, this particles could be seen in the next LHC run. To this aim, especially to test the leptoquark hypothesis, we suggest to look for final states with tops and muons.
Universality of anomalous conductivities in theories with higher-derivative holographic duals
Grozdanov, Sašo
2016-01-01
Anomalous chiral conductivities in theories with global anomalies are independent of whether they are computed in a weakly coupled quantum (or thermal) field theory, hydrodynamics, or at infinite coupling from holography. While the presence of dynamical gauge fields and mixed, gauge-global anomalies can destroy this universality, in their absence, the non-renormalisation of anomalous Ward identities is expected to be obeyed at all intermediate coupling strengths. In holography, bulk theories with higher-derivative corrections incorporate coupling constant corrections to the boundary theory observables in an expansion around infinite coupling. In this work, we investigate the coupling constant dependence and universality of anomalous conductivities (and thus of the anomalous Ward identities) in general, four-dimensional systems that possess asymptotically anti-de Sitter holographic duals with a non-extremal black brane in five dimensions, and anomalous transport introduced into the boundary theory via the bulk...
Effects of surface and interface scattering on anomalous Hall effect in Co/Pd multilayers
Guo, Z. B.
2012-09-27
In this paper, we report the results of surface and interface scattering on anomalous Hall effect in Co/Pd multilayers with perpendicular magnetic anisotropy. The surface scattering effect has been extracted from the total anomalous Hall effect. By scaling surface scattering contribution with ρAHs∼ργss, the exponent γ has been found to decrease with the increase of surface scattering resistivity, which could account for the thickness-dependent anomalous Hall effect. Interface diffusion induced by rapid thermal annealing modifies not only the magnetization and longitudinal resistivity but also the anomalous Hall effect; a large exponent γ ∼ 5.7 has been attributed to interface scattering-dominated anomalous Hall effect.
Anomalous Diffusion in Velocity Space
Trigger, S. A.
2009-01-01
The problem of anomalous diffusion in the momentum space is considered on the basis of the appropriate probability transition function (PTF). New general equation for description of the diffusion of heavy particles in the gas of the light particles is formulated on basis of the new approach similar to one in coordinate space (S. Trigger et al.). The obtained results permit to describe the various situations when the probability transition function (PTF) has a long tail in the momentum space. ...
Titius-Bode law in the Solar System. Dependence of the regularity parameter on the central body mass
Georgiev, Tsvetan B.
2016-07-01
Near-commensurability of the orbital sizes or periods exists in the Solar system for the massive planets and the massive satellites of Jupiter, Saturn and Uranus. It is well revealed by the Titius-Bode law (TBL) long ago by Dermott (1968), but is not been explained convincingly yet. Independently on this fact, the question about the dependence of the scale constant of the TBL on the mass of the central body is open. In this paper we show such a dependence. Due to the dynamic evolution the orbits of the massive planets and satellites may be in a transient stage when a primary TBL is well pronounced. Simultaneously a secondary TBL, a trail from the past as a hint for the future, may be less pronounced. The TBL is fitted after the numeration of the objects. For this reason we derive a special "curve" and we use 2 its minimums to introduce a primary and a secondary numeration for the objects. Thus we derive constants of 2 TBLs and build the searched dependence by twice as many points. In this paper we show and use pairs of TBLs for the satellite systems of Jupiter, Saturn, Uranus, Neptune and Pluto, as well as for the solar system in two cases - with 4 massive planets and with 8 massive planets. In fig. 10 we show the statistically significant dependences where the coefficient of the near-commensurability for the orbital sizes varies from about 1.3 for the satellites of Pluto to about 1.7 for the planets of the Sun.
Advances in the studies of anomalous diffusion in velocity space
Dubinova, A. A.; Trigger, S. A.
2011-01-01
A generalized Fokker-Planck equation is derived to describe particle kinetics in specific situations when the probability transition function (PTF) has a long tail in momentum space. The equation is valid for an arbitrary value of the transferred in a collision act momentum and for the arbitrary mass ratio of the interacting particles. On the basis of the generalized Fokker-Planck equation anomalous diffusion in velocity space is considered for hard sphere model of particle interactions, Coul...
From large N nonplanar anomalous dimensions to open spring theory
Energy Technology Data Exchange (ETDEWEB)
Mello Koch, Robert de, E-mail: robert@neo.phys.wits.ac.za [National Institute for Theoretical Physics, Department of Physics and Centre for Theoretical Physics University of Witwatersrand, Wits, 2050 (South Africa); Kemp, Garreth, E-mail: Garreth.Kemp@students.wits.ac.za [National Institute for Theoretical Physics, Department of Physics and Centre for Theoretical Physics University of Witwatersrand, Wits, 2050 (South Africa); Smith, Stephanie, E-mail: Stephanie.Smith@students.wits.ac.za [National Institute for Theoretical Physics, Department of Physics and Centre for Theoretical Physics University of Witwatersrand, Wits, 2050 (South Africa)
2012-05-23
In this Letter we compute the nonplanar one-loop anomalous dimension of restricted Schur polynomials that have a bare dimension of O(N). This is achieved by mapping the restricted Schur polynomials into states of a specific U(p) irreducible representation. In this way the dilatation operator is mapped into a u(p) valued operator and, as a result, can easily be diagonalized. The resulting spectrum is reproduced by a model of springs between masses.
Two-loop planar master integrals for Higgs$\\to 3$ partons with full heavy-quark mass dependence
Bonciani, Roberto; Frellesvig, Hjalte; Henn, Johannes M; Moriello, Francesco; Smirnov, Vladimir A
2016-01-01
We present the analytic computation of all the planar master integrals which contribute to the two-loop scattering amplitudes for Higgs$\\to 3$ partons, with full heavy-quark mass dependence. These are relevant for the NNLO corrections to fully inclusive Higgs production and to the NLO corrections to Higgs production in association with a jet, in the full theory. The computation is performed using the differential equations method. Whenever possible, a basis of master integrals that are pure functions of uniform weight is used. The result is expressed in terms of one-fold integrals of polylogarithms and elementary functions up to transcendental weight four. Two integral sectors are expressed in terms of elliptic functions. We show that by introducing a one-dimensional parametrization of the integrals the relevant second order differential equation can be readily solved, and the solution can be expressed to all orders of the dimensional regularization parameter in terms of iterated integrals over elliptic kerne...
Daws, Matthew I; Ballard, Christopher; Mullins, Christopher E; Garwood, Nancy C; Murray, Brian; Pearson, Timothy R H; Burslem, David F R P
2007-12-01
A seed size-seed number trade-off exists because smaller seeds are produced in greater number but have a lower probability of establishment. This reduced establishment success of smaller-seeded species may be determined by biophysical constraints imposed by scaling rules. Root and shoot diameter, root growth extension rate (RGER) and shoot length at death for dark-grown seedlings are predicted to scale with the cube root of seed embryo and endosperm mass (m). We confirmed this expectation for ten neotropical gap-dependent tree species with an embryo and endosperm dry mass>1 mg. However, for nine smaller seeded species (mroot and shoot diameters were larger than expected, and consequently, RGER was slower than expected. The maximum shoot thrust of seedlings from seeds with masses>or=1 mg was comparable to the estimated force required to displace overlying litter, supporting the hypothesis that photoblastic behaviour only occurs in seeds with insufficient shoot thrust to displace overlying leaves. Using the model soil water, energy and transpiration to predict soil drying in small and large gaps, we showed that: (1) gaps that receive a significant amount of direct sunlight will dry more quickly than small gaps that do not, (2) compared to the wet-season, soil that is already dry at depth (i.e. the dry-season) will dry faster after rainfall (this drying would most likely kill seedlings from small seeds) and (3) even during the wet-season, dry periods of a few days in large gaps can kill shallow-rooted seedlings. We conclude that the smaller the seed, the more vulnerable its seedling would be to both covering by litter and soil drying because it can only emerge from shallow depths and has a slow RGER. Consequently, we suggest that these allometrically related factors contribute to the reduced establishment success of smaller-seeded species that underpins the seed size-seed number trade-off. PMID:17846798
The Dependence of the $A_V$ Prior for SN\\,Ia on Host Mass and Disk Inclination
Holwerda, B W; Kenworthy, M A; Mack, K J
2015-01-01
Supernovae type Ia (SNIa) are used as "standard candles" for cosmological distance scales. To fit their light curve shape -- absolute luminosity relation, one needs to assume an intrinsic color and a likelihood of host galaxy extinction or a convolution of these, a color distribution prior. The host galaxy extinction prior is typically assumed to be an exponential drop-off for the current supernova programs ($P(A_V) \\propto e^{-A_V/\\tau_0}$). We explore the validity of this prior using the distribution of extinction values inferred when two galaxies accidentally overlap (an occulting galaxy pair). We correct the supernova luminosity distances from the SDSS-III Supernova projects (SDSS-SN) by matching the host galaxies to one of three templates from occulting galaxy pairs based on the host galaxy mass and the $A_V$-bias - prior-scale ($\\tau_0$) relation from Jha et al. (2007). We find that introducing an $A_V$ prior that depends on host mass results in lowered luminosity distances for the SDSS-SN on average bu...
Bassett, Robert; Lotz, Jennifer M; Bell, Eric F; Finkelstein, Steven L; Newman, Jeffrey A; Tran, Kim-Vy; Almaini, Omar; Lani, Caterina; Cooper, Michael; Croton, Darren; Dekel, Avishai; Ferguson, Henry C; Kocevski, Dale D; Koekemoer, Anton M; Koo, David C; McGrath, Elizabeth J; McIntosh, Daniel H; Wechsler, Risa H
2013-01-01
We study the environmental dependence of color, stellar mass, and morphology by comparing galaxies in a forming cluster to those in the field at z = 1:6 with Hubble Space Telescope near-infrared imaging in the CANDELS/UDS field. We quantify the morphology of the galaxies using the effective radius, reff, and S\\'ersic index, n. In both the cluster and field, approximately half of the bulge-dominated galaxies (n > 2) reside on the red sequence of the color-magnitude diagram, and most disk-dominated galaxies (n < 2) have colors expected for star-forming galaxies. There is weak evidence that cluster galaxies have redder rest-frame U - B colors and higher stellar masses compared to the field. Star-forming galaxies in both the cluster and field show no significant differences in their morphologies. In contrast, there is evidence that quiescent galaxies in the cluster have larger median effective radii and smaller S\\'ersic indices compared to the field with a significance of 2?. These differences are most pronoun...
Papastergis, Emmanouil; Haynes, Martha P; Rodríguez-Puebla, Aldo; Jones, Michael G
2013-01-01
We use a sample of ~6000 galaxies detected by the Arecibo Legacy Fast ALFA (ALFALFA) 21cm survey, to measure the clustering properties of HI-selected galaxies. We find no convincing evidence for a dependence of clustering on the galactic atomic hydrogen (HI) mass, over the range M_HI ~ 10^{8.5} - 10^{10.5} M_sun. We show that previously reported results of weaker clustering for low-HI mass galaxies are probably due to finite-volume effects. In addition, we compare the clustering of ALFALFA galaxies with optically selected samples drawn from the Sloan Digital Sky Survey (SDSS). We find that HI-selected galaxies cluster more weakly than even relatively optically faint galaxies, when no color selection is applied. Conversely, when SDSS galaxies are split based on their color, we find that the correlation function of blue optical galaxies is practically indistinguishable from that of HI-selected galaxies. At the same time, SDSS galaxies with red colors are found to cluster significantly more than HI-selected gala...
Milroy, Conor; Martucci, Giovanni; O'Dowd, Colin
2010-05-01
During the EUCAARI Intensive Observing Period held at the Mace Head GAW station from mid-May to mid-June, 2008, the PBL depth has been continuously measured by two ceilometers (Vaisala CL31 and Jenoptik CHM15K) and a microwave radiometer (RPG-HATPRO). The Lidar-Ceilometer, through the gradients in aerosol backscatter profiles, and the microwave profiler, through gradients in the specific humidity profiles, were used to remotely-sense the boundary layer structure. An automatic, newly developed Temporal Height-Tracking (THT) algorithm (Martucci et al., 2010) have been applied to both type of instruments data to retrieve the 2-layered structure of the local marine boundary layer. The two layers are defined as a lower, well mixed layer, i.e. the surface mixed layer, and the layer occupying the region below the free Troposphere inversion, i.e. the decoupled residual or convective layer. A categorization of the incoming air masses has been performed based on their origins and been used to asses the correlation with the PBL depths. The study confirmed the dependence of PBL vertical structure on different air masses and different type of advected aerosol.
Anomalous transport from holography: Part I
Bu, Yanyan; Sharon, Amir
2016-01-01
We revisit the transport properties induced by the chiral anomaly in a charged plasma holographically dual to anomalous $U(1)_V\\times U(1)_A$ Maxwell theory in Schwarzschild-$AdS_5$. Off-shell constitutive relations for vector and axial currents are derived using various approximations generalising most of known in the literature anomaly-induced phenomena and revealing some new ones. In a weak external field approximation, the constitutive relations have all-order derivatives resummed into six momenta-dependent transport coefficient functions: the diffusion, the electric/magnetic conductivity, and three anomaly induced functions. The latter generalise the chiral magnetic and chiral separation effects. Nonlinear transport is studied assuming presence of constant background external fields. The chiral magnetic effect, including all order nonlinearity in magnetic field, is proven to be exact when the magnetic field is the only external field that is turned on. Non-linear corrections to the constitutive relations...
Communication: Probing anomalous diffusion in frequency space
International Nuclear Information System (INIS)
Anomalous diffusion processes are usually detected by analyzing the time-dependent mean square displacement of the diffusing particles. The latter evolves asymptotically as W(t) ∼ 2Dαtα, where Dα is the fractional diffusion constant and 0 < α < 2. In this article we show that both Dα and α can also be extracted from the low-frequency Fourier spectrum of the corresponding velocity autocorrelation function. This offers a simple method for the interpretation of quasielastic neutron scattering spectra from complex (bio)molecular systems, in which subdiffusive transport is frequently encountered. The approach is illustrated and validated by analyzing molecular dynamics simulations of molecular diffusion in a lipid POPC bilayer
Communication: Probing anomalous diffusion in frequency space
Energy Technology Data Exchange (ETDEWEB)
Stachura, Sławomir [Centre de Biophys. Moléculaire, CNRS, Rue Charles Sadron, 45071 Orléans (France); Synchrotron Soleil, L’Orme de Merisiers, 91192 Gif-sur-Yvette (France); Kneller, Gerald R., E-mail: gerald.kneller@cnrs-orleans.fr [Centre de Biophys. Moléculaire, CNRS, Rue Charles Sadron, 45071 Orléans (France); Synchrotron Soleil, L’Orme de Merisiers, 91192 Gif-sur-Yvette (France); Université d’Orléans, Chateau de la Source-Av. du Parc Floral, 45067 Orléans (France)
2015-11-21
Anomalous diffusion processes are usually detected by analyzing the time-dependent mean square displacement of the diffusing particles. The latter evolves asymptotically as W(t) ∼ 2D{sub α}t{sup α}, where D{sub α} is the fractional diffusion constant and 0 < α < 2. In this article we show that both D{sub α} and α can also be extracted from the low-frequency Fourier spectrum of the corresponding velocity autocorrelation function. This offers a simple method for the interpretation of quasielastic neutron scattering spectra from complex (bio)molecular systems, in which subdiffusive transport is frequently encountered. The approach is illustrated and validated by analyzing molecular dynamics simulations of molecular diffusion in a lipid POPC bilayer.
Search for anomalous couplings in the Higgs sector at LEP
Acciarri, M; Adriani, O; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, L; Balandras, A; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Cucciarelli, S; Dai, T S; van Dalen, J A; D'Alessandro, R; De Asmundis, R; Déglon, P L; Degré, A; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Van Dierendonck, D N; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Dufournaud, D; Duinker, P; Durán, I; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Extermann, Pierre; Fabre, M; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Hofer, H; Holzner, G; Hoorani, H; Hou, S R; Hu, Y; Iashvili, I; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Khan, R A; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, J K; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Le Goff, J M; Leiste, R; Levchenko, P M; Li Chuan; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Lugnier, L; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Marian, G; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Moulik, T; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Oulianov, A; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Paramatti, R; Park, H K; Park, I H; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Raven, G; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Rodin, J; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Rubio, Juan Antonio; Ruggiero, G; Rykaczewski, H; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Seganti, A; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Suter, H; Swain, J D; Szillási, Z; Sztaricskai, T; Tang, X W; Tauscher, Ludwig; Taylor, L; Tellili, B; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Valente, E; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, M; Wang, X L; Wang, Z M; Weber, A; Weber, M; Wienemann, P; Wilkens, H; Wu, S X; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Ye, J B; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhu, G Y; Zhu, R Y; Zichichi, A; Zilizi, G; Zimmermann, B; Zöller, M
2000-01-01
We search for a Higgs particle with anomalous couplings in the $\\mathrm{e}^+\\mathrm{e}^-\\rightarrow\\mathrm{H}\\gamma$, $\\mathrm{e}^+\\mathrm{e}^-\\rightarrow\\mathrm{H}\\mathrm{Z}$ and $\\mathrm{e}^+\\mathrm{e}^-\\rightarrow\\mathrm{H}\\mathrm{e}^+\\mathrm{e }^-$ processes with the L3 detector at LEP. We explore the mass range $70~{\\rm GeV} < m_\\mathrm{H} < 170~{\\rm GeV}$ using $176~{\\rm pb}^{-1}$ of integrated luminosity at a center-of-mass energy of $\\sqrt{s} = 189~{\\rm GeV}$. The Higgs decays $\\mathrm{H}\\rightarrow\\mathrm{b}\\mathrm{\\overline{b}}$, $\\mathrm{H}\\rightarrow\\gamma\\gamma$ and $\\mathrm{H}\\rightarrow\\mathrm{ Z}\\gamma$ are considered in the analysis. No evidence for anomalous Higgs production is found. This is interpreted in terms of limits on the anomalous couplings $d$, $d_B$, $\\Delta g_1^\\mathrm{Z}$ and $\\Delta \\kappa_\\gamma$. Limits on the $\\Gamma(\\mathrm{H}\\rightarrow\\gamma\\gamma)$ and $\\Gamma(\\mathrm{H}\\rightarrow\\mathrm{Z}\\gamma)$ partial widths in the explored Higgs mass range are also obtained.
Sun, Tao; Niles, Paul; Bao, Huiming; Socki, Richard
2014-01-01
Physical processes that unmix elements/isotopes of gas molecules involve phase changes, diffusion (chemical or thermal), effusion and gravitational settling. Some of those play significant roles for the evolution of chemical and isotopic compositions of gases in planetary bodies which lead to better understanding of surface paleoclimatic conditions, e.g. gas bubbles in Antarctic ice, and planetary evolution, e.g. the solar-wind erosion induced gas escaping from exosphere on terrestrial planets.. A mass dependent relationship is always expected for the kinetic isotope fractionations during these simple physical processes, according to the kinetic theory of gases by Chapman, Enskog and others [3-5]. For O-bearing (O16, -O17, -O18) molecules the alpha O-17/ alpha O-18 is expected at 0.5 to 0.515, and for S-bearing (S32,-S33. -S34, -S36) molecules, the alpha S-33/ alpha S-34 is expected at 0.5 to 0.508, where alpha is the isotope fractionation factor associated with unmixing processes. Thus, one isotope pair is generally proxied to yield all the information for the physical history of the gases. However, we recently] reported the violation of mass law for isotope fractionation among isotope pairs of multiple isotope system during gas diffusion or convection under thermal gradient (Thermal Gradient Induced Non-Mass Dependent effect, TGI-NMD). The mechanism(s) that is responsible to such striking observation remains unanswered. In our past studies, we investigated polyatomic molecules, O2 and SF6, and we suggested that nuclear spin effect could be responsible to the observed NMD effect in a way of changing diffusion coefficients of certain molecules, owing to the fact of negligible delta S-36 anomaly for SF6.. On the other hand, our results also showed that for both diffusion and convection under thermal gradient, this NMD effect is increased by lower gas pressure, bigger temperature gradient and lower average temperature, which indicate that the nuclear spin effect may
Bagdonaite, Julija; Preval, Simon P; Barstow, Martin A; Barrow, John D; Murphy, Michael T; Ubachs, Wim
2014-01-01
Spectra of molecular hydrogen (H$_2$) are employed to search for a possible proton-to-electron mass ratio ($\\mu$) dependence on gravity. The Lyman transitions of H$_2$, observed with the Hubble Space Telescope towards white dwarf stars that underwent a gravitational collapse, are compared to accurate laboratory spectra taking into account the high temperature conditions ($T \\sim 13\\,000$ K) of their photospheres. We derive sensitivity coefficients $K_i$ which define how the individual H$_2$ transitions shift due to $\\mu$-dependence. The spectrum of white dwarf star GD133 yields a $\\Delta\\mu/\\mu$ constraint of $(-2.7\\pm4.7_{\\rm stat}\\pm 0.2_{\\rm sys})\\times10^{-5}$ for a local environment of a gravitational potential $\\phi\\sim10^4\\ \\phi_\\textrm{Earth}$, while that of G29$-$38 yields $\\Delta\\mu/\\mu=(-5.8\\pm3.8_{\\rm stat}\\pm 0.3_{\\rm sys})\\times10^{-5}$ for a potential of $2 \\times 10^4$ $\\phi_\\textrm{Earth}$.
Krolewski, Alex G
2015-01-01
We study the dependence of quasar clustering on quasar luminosity and black hole mass by measuring the angular overdensity of photometrically selected galaxies imaged by WISE about z $\\sim$ 0.8 quasars from SDSS. By measuring the quasar-galaxy cross-correlation function and using photometrically selected galaxies, we achieve a higher density of tracer objects and a more sensitive detection of clustering than measurements of the quasar autocorrelation function. We test models of quasar formation and evolution by measuring the luminosity dependence of clustering amplitude. We find a significant overdensity of WISE galaxies about z $\\sim$ 0.8 quasars at 0.2--6.4 h$^{-1}$ Mpc in projected comoving separation. We find no appreciable increase in clustering amplitude with quasar luminosity across a decade in luminosity, and a power-law fit between luminosity and clustering amplitude gives an exponent of $-$0.01 $\\pm$ 0.06 (1 $\\sigma$ errorbar). We also fail to find a significant relationship between clustering ampli...
Phleps, Stefanie; Zibetti, Stefano; Budavári, Tamás
2013-01-01
The fraction of galaxies with red colours depends sensitively on environment, and on the way in which environment is measured. To distinguish competing theories for the quenching of star formation, a robust and complete description of environment is required, to be applied to a large sample of galaxies. The environment of galaxies can be described using the density field of neighbours on multiple scales - the multiscale density field. We are using the Millennium simulation and a simple HOD prescription which describes the multiscale density field of Sloan Digital Sky Survey DR7 galaxies to investigate the dependence of the fraction of red galaxies on the environment. Using a volume limited sample where we have sufficient galaxies in narrow density bins, we have more dynamic range in halo mass and density for satellite galaxies than for central galaxies. Therefore we model the red fraction of central galaxies as a constant while we use a functional form to describe the red fraction of satellites as a function ...
The VIMOS-VLT Deep Survey. The dependence of clustering on galaxy stellar mass at z~1
Meneux, B; Garilli, B; Le Fèvre, O; Pollo, A; Blaizot, J P; Bolzonella, M; Lamareille, F; Pozzetti, L; Cappi, A; Iovino, A; Marinoni, C; McCracken, H J; De la Torre, S; Bottini, D; Le Brun, V; MacCagni, D; Picat, J P; Scaramella, R; Scodeggio, M; Tresse, L; Vettolani, G; Zanichelli, A; Abbas, U; Adami, C; Arnouts, S; Bardelli, S; Bongiorno, A; Charlot, S; Ciliegi, P; Contini, T; Cucciati, O; Foucaud, S; Franzetti, P; Gavignaud, I; Ilbert, O; Marano, B; Mazure, A; Merighi, R; Paltani, S; Pellò, R; Radovich, M; Vergani, D; Zamorani, G; Zucca, E
2007-01-01
Aims: We use the VVDS-Deep first-epoch data to measure the dependence of galaxy clustering on galaxy stellar mass, at z~0.85. Methods: We measure the projected correlation function wp(rp) for sub-samples with 0.510^9 Msun to r0 ~ 4.28 h^-1 Mpc for galaxies more massive than 10^10.5 Msun. At the same time, the slope increases from ~ 1.67 to ~ 2.28. A comparison of the observed wp(rp) to local measurements by the SDSS shows that the evolution is faster for objects less massive than ~10^10.5 Msun. This is interpreted as a higher dependence on redshift of the linear bias b_L for the more massive objects. While for the most massive galaxies b_L decreases from 1.5+/-0.2 at z~0.85 to 1.33+/-0.03 at z~0.15, the less massive population maintains a virtually constant valu e b_L~1.3. This result is in agreement with a scenario in which more massive galaxies formed at high redshift in the highest peaks of the density field, while less massive objects form at later epochs from the more general population of dark-matter ha...
International Nuclear Information System (INIS)
The formulae for energetic dependences of the mass attenuation coefficients of γ-radiation of CsI and Zn Se scintillators in the range of energies of 0.01-100 MeV are found. The difference of approximative dependences from the source data is less than 3%
Energy Technology Data Exchange (ETDEWEB)
Papastergis, Emmanouil; Giovanelli, Riccardo; Haynes, Martha P.; Jones, Michael G. [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Rodríguez-Puebla, Aldo, E-mail: papastergis@astro.cornell.edu, E-mail: riccardo@astro.cornell.edu, E-mail: haynes@astro.cornell.edu, E-mail: jonesmg@astro.cornell.edu, E-mail: apuebla@astro.unam.mx [Instituto de Astronomía, Universidad Nacional Autónoma de México, A. P. 70-264, 04510 México, D.F. (Mexico)
2013-10-10
We use a sample of ≈6000 galaxies detected by the Arecibo Legacy Fast ALFA (ALFALFA) 21 cm survey to measure the clustering properties of H I-selected galaxies. We find no convincing evidence for a dependence of clustering on galactic atomic hydrogen (H I) mass, over the range M{sub H{sub I}} ≈ 10{sup 8.5}-10{sup 10.5} M{sub ☉}. We show that previously reported results of weaker clustering for low H I mass galaxies are probably due to finite-volume effects. In addition, we compare the clustering of ALFALFA galaxies with optically selected samples drawn from the Sloan Digital Sky Survey (SDSS). We find that H I-selected galaxies cluster more weakly than even relatively optically faint galaxies, when no color selection is applied. Conversely, when SDSS galaxies are split based on their color, we find that the correlation function of blue optical galaxies is practically indistinguishable from that of H I-selected galaxies. At the same time, SDSS galaxies with red colors are found to cluster significantly more than H I-selected galaxies, a fact that is evident in both the projected as well as the full two-dimensional correlation function. A cross-correlation analysis further reveals that gas-rich galaxies 'avoid' being located within ≈3 Mpc of optical galaxies with red colors. Next, we consider the clustering properties of halo samples selected from the Bolshoi ΛCDM simulation. A comparison with the clustering of ALFALFA galaxies suggests that galactic H I mass is not tightly related to host halo mass and that a sizable fraction of subhalos do not host H I galaxies. Lastly, we find that we can recover fairly well the correlation function of H I galaxies by just excluding halos with low spin parameter. This finding lends support to the hypothesis that halo spin plays a key role in determining the gas content of galaxies.
Energy Technology Data Exchange (ETDEWEB)
Chithiika Ruby, V.; Senthilvelan, M.; Lakshmanan, M. [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirapalli 620 024 (India); Chandrasekar, V. K. [Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401 (India)
2015-01-15
We consider the problem of removal of ordering ambiguity in position dependent mass quantum systems characterized by a generalized position dependent mass Hamiltonian which generalizes a number of Hermitian as well as non-Hermitian ordered forms of the Hamiltonian. We implement point canonical transformation method to map one-dimensional time-independent position dependent mass Schrödinger equation endowed with potentials onto constant mass counterparts which are considered to be exactly solvable. We observe that a class of mass functions and the corresponding potentials give rise to solutions that do not depend on any particular ordering, leading to the removal of ambiguity in it. In this case, it is imperative that the ordering is Hermitian. For non-Hermitian ordering, we show that the class of systems can also be exactly solvable and is also shown to be iso-spectral using suitable similarity transformations. We also discuss the normalization of the eigenfunctions obtained from both Hermitian and non-Hermitian orderings. We illustrate the technique with the quadratic Liénard type nonlinear oscillators, which admit position dependent mass Hamiltonians.
Lin, Z W
2014-04-01
Current methods of evaluating radiation-induced cancer risk depend on the organ dose but not explicitly on extensive quantities such as the organ mass. However, at the same organ dose, one may expect the larger number of cells in a larger organ to lead to a higher cancer risk. Here the author introduces organ- and radiation type-specific cell cancer risk coefficients and obtains analytical relations between cancer risk and the radiation environment, which contains the dependence of cancer risk on organ masses. The excess cancer risk induced by low dose radiation for an organ is shown to be directly proportional to the organ mass. Therefore the total excess risk for all solid cancers depends directly on organ masses and consequently on body weight or size. This method is also being compared with three existing methods of evaluating the radiation-induced cancer risk, and special cases where this formulation matches each method are demonstrated. The results suggest that the direct dependence of cancer risk on organ masses needs to be checked against existing epidemiological data and, if verified, should be included in the methodology for the evaluation of radiation-induced cancer risk, in particular the individual risk. This dependence is also expected to affect the cancer risk transport from one population group to another that is different in organ mass, body weight or height. PMID:24562066
Directory of Open Access Journals (Sweden)
M. Baasandorj
2014-10-01
Full Text Available We present a detailed investigation of the factors governing the quantification of formic acid (FA, acetic acid (AA and their relevant mass analogues by proton transfer reaction-mass spectrometry (PTR-MS, assess the underlying fragmentation pathways and humidity dependencies, and present a new method for separating FA and AA from their main isobaric interferences. PTR-MS sensitivities towards glycolaldehyde, ethyl acetate and peroxyacetic acid at m/z 61 are comparable to that for AA; when present, these species will interfere with ambient AA measurements by PTR-MS. Likewise, when it is present, dimethyl ether can interfere with FA measurements. On the other hand, for E/N = 125 Townsend (Td, the PTR-MS sensitivity towards ethanol at m/z 47 is 5–20× lower than for FA; ethanol will then only be an important interference when present in much higher abundance than FA. Sensitivity towards 2-propanol is m/z 79, which is also commonly used to measure benzene. However, the resulting interference for benzene is only significant when E/N is low (E/N, but decreases with humidity at high E/N due to water-driven fragmentation. Sensitivity towards FA decreases with humidity throughout the full range of E/N. For glycoaldehyde and the alcohols, the sensitivity increases with humidity due to ligand switching reactions (at low E/N and reduced fragmentation in the presence of water (at high E/N. Their role as interferences will typically be greatest at high humidity. For compounds such as AA where the humidity effect depends strongly on the collisional energy in the drift tube, simple humidity correction factors (XR will only be relevant for a specific instrumental configuration. We recommend E/N∼125 Td as an effective condition for AA and FA measurements by PTR-MS, as it optimizes between the competing E/N-dependent mechanisms controlling their sensitivities and those of the interfering species. Finally, we present the design and evaluation of an online acid
Schneider, Fabian R N; de Mink, Selma E; Langer, Norbert; Stolte, Andrea; de Koter, Alex; Gvaramadze, Vasilii V; Hußmann, Benjamin; Liermann, Adriane; Sana, Hugues
2013-01-01
Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters which can be used to infer their ages and to identify products of binary evolution. We model the observed present day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages to 3.5$\\pm$0.7 Myr and 4.8$\\pm$1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e. the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte ...
Energy Technology Data Exchange (ETDEWEB)
Bassett, Robert; Papovich, Casey; Tran, Kim-Vy [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, College Station, TX 77843-4242 (United States); Lotz, Jennifer M.; Ferguson, Henry C.; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Bell, Eric F. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Finkelstein, Steven L. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States); Newman, Jeffrey A. [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Almaini, Omar; Lani, Caterina [School of Physics and Astronomy, University of Nottingham, Nottingham (United Kingdom); Cooper, Michael [Center for Galaxy Evolution, Department of Physics and Astronomy, University of California, Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697 (United States); Croton, Darren [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn (Australia); Dekel, Avishai [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Kocevski, Dale D.; Koo, David C.; McGrath, Elizabeth J. [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); McIntosh, Daniel H. [Department of Physics, University of Missouri-Kansas City, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Wechsler, Risa [Kavli Institute for Particle Astrophysics and Cosmology, Physics Department, and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States)
2013-06-10
We study the environmental dependence of color, stellar mass, and morphology by comparing galaxies in a forming cluster to those in the field at z = 1.6 with Hubble Space Telescope near-infrared imaging in the CANDELS/UDS field. We quantify the morphology of the galaxies using the effective radius, r{sub eff}, and Sersic index, n. In both the cluster and field, approximately half of the bulge-dominated galaxies (n > 2) reside on the red sequence of the color-magnitude diagram, and most disk-dominated galaxies (n < 2) have colors expected for star-forming galaxies. There is weak evidence that cluster galaxies have redder rest-frame U - B colors and higher stellar masses compared to the field. Star-forming galaxies in both the cluster and field show no significant differences in their morphologies. In contrast, there is evidence that quiescent galaxies in the cluster have larger median effective radii and smaller Sersic indices compared to the field with a significance of 2{sigma}. These differences are most pronounced for galaxies at clustercentric distances 1 Mpc
Anomalous Higgs Couplings at Colliders
González-Garciá, M Concepción
1998-01-01
I summarize our results on the attainable limits on the coefficients of dimension-6 operators from the analysis of Higgs boson phenomenology using data taken at Tevatron RUNI and LEPII. Our results show that the coefficients of Higgs-vector boson couplings can be determined with unprecedented accuracy. Assuming that the coefficients of all ``blind'' operators are of the same magnitude, we are also able to impose bounds on the anomalous vector-boson triple couplings comparable to those from double gauge boson production at the Tevatron and LEPII.
Anomalous Hall effect in localization regime
Wu, Lin; Zhu, Kai; Yue, Di; Tian, Yuan; Jin, Xiaofeng
2016-06-01
The anomalous Hall effect in the ultrathin film regime is investigated in Fe(001)(1-3 nm) films epitaxial on MgO(001). The logarithmic localization correction to longitudinal resistivity and anomalous Hall resistivity are observed at low temperature. We identify that the coefficient of skew scattering has a reduction from metallic to localized regime, while the contribution of side jump has inconspicuous change except for a small drop below 10 K. Furthermore, we discover that the intrinsic anomalous Hall conductivity decreases with the reduction of thickness below 2 nm. Our results provide unambiguous experimental evidence to clarify the problem of localization correction to the anomalous Hall effect.
Zhang, Chaoli; Li, Chengyuan; de Grijs, Richard; Bekki, Kenji; Deng, Licai; Zaggia, Simone; Rubele, Stefano; Piatti, Andrés E.; Cioni, Maria-Rosa L.; Emerson, Jim; For, Bi-Qing; Ripepi, Vincenzo; Marconi, Marcella; Ivanov, Valentin D.; Chen, Li
2015-12-01
We use near-infrared observations obtained as part of the Visible and Infrared Survey Telescope for Astronomy (VISTA) Survey of the Magellanic Clouds (VMC), as well as two complementary Hubble Space Telescope (HST) data sets, to study the luminosity and mass functions (MFs) as a function of clustercentric radius of the main-sequence stars in the Galactic globular cluster 47 Tucanae. The HST observations indicate a relative deficit in the numbers of faint stars in the central region of the cluster compared with its periphery, for 18.75 ≤ mF606W ≤ 20.9 mag (corresponding to a stellar mass range of 0.55 mass segregation. The VMC-based stellar MFs exhibit power-law shapes for masses in the range 0.55 mass segregation and tidal stripping, for both the first- and second-generation stars in 47 Tuc.
Anomalous magnetoresistance in NiMnGa thin films
Golub, Vladimir O.; Vovk, Andriy Ya.; Malkinski, Leszek; O'Connor, Charles J.; Wang, Zhenjun; Tang, Jinke
2004-10-01
The origin of anomalous negative magnetoresistance and its temperature dependence in polycrystalline Ni -Mn-Ga films prepared by pulse laser deposition was studied. The investigation of structural, transports, magnetic, and ferromagnetic resonance properties of the films suggests contributions of different mechanisms in magnetotransport. At low magnetic fields the main contribution to magnetoresistance is due to the transport between the areas with different orientation of magnetic moments, while at high fields it is an electron scattering of in spin-disordered areas.
Anomalous transport in toroidal plasmas
International Nuclear Information System (INIS)
When the magnetic moment of particle is conserved, there are three mechanisms which cause anomalous transport. These are: variation of magnetic field strength in flux surface, variation of electrostatic potential in flux surface, and destruction of flux surface. The anomalous transport of different groups of particles resulting from each of these mechanisms is different. This fact can be exploited to determine the cause of transport operative in an experimental situation. This approach can give far more information on the transport than the standard confinement time measurements. To implement this approach, we have developed Monte Carlo codes for toroidal geometries. The equations of motion are developed in a set of non-canonical, practical Boozer co-ordinates by means of Jacobian transformations of the particle drift Hamiltonian equations of motion. Effects of collisions are included by appropriate stochastic changes in the constants of motion. Effects of the loop voltage on particle motions are also included. We plan to apply our method to study two problems: the problem of the hot electron tail observed in edge region of ZT-40, and the energy confinement time in TOKAPOLE II. For the ZT-40 problem three situations will be considered: a single mode in the core, a stochastic region that covers half the minor radius, a stochastic region that covers the entire plasma. A turbulent spectrum of perturbations based on the experimental data of TOKAPOLE II will be developed. This will be used to simulate electron transport resulting from ideal instabilities and resistive instabilities in TOKAPOLE II
Anomalous sound propagation due to the horizontal variation of seabed acoustic properties
Institute of Scientific and Technical Information of China (English)
LI Zhenglin; ZHANG Renhe; PENG Zhaohui; LI Xilu
2004-01-01
The sound propagation in shallow water is greatly influenced by the acoustic properties of seabed. An anomalous transmission loss was observed in an experiment, and a range dependent bottom model with horizontal variation of seabed acoustic property is proposed and could be well used to explain the anomalous phenomena. It is shown that the horizontal variation of bottom properties has a great effect on underwater sound propagation, and it should be given much attention in sound propagation and geoacoustic inversion problems.
The n{sub f} terms of the three-loop cusp anomalous dimension in QCD
Energy Technology Data Exchange (ETDEWEB)
Grozin, Andrey [Russian Academy of Sciences, Novosibirsk (Russian Federation). Budker Inst. of Nuclear Physics; Novosibirsk State Univ. (Russian Federation); Henn, Johannes M. [Institute for Advanced Study, Princeton, NJ (United States); Korchemsky, Gregory P. [CEA Saclay, Gif-sur-Yvette (France). Inst. de Physique Theorique; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2014-07-15
In this talk we present the result for the n{sub f} dependent piece of the three-loop cusp anomalous dimension in QCD. Remarkably, it is parametrized by the same simple functions appearing in analogous anomalous dimensions in N=4 SYM at one and two loops. We also compute all required master integrals using a recently proposed refinement of the differential equation method. The analytic results are expressed in terms of harmonic polylogarithms of uniform weight.
Chabab, M; Lahbas, A; Oulne, M
2016-01-01
In this paper, we present a theoretical study of a conjonction of $\\gamma$-rigid and $\\gamma$-stable collective motions in critical point symmetries of the phase transitions from spherical to deformed shapes of nuclei using exactly separable version of the Bohr Hamiltonian with deformation-dependent mass term. The deformation-dependent mass is applied simultaneously to $\\gamma$-rigid and $\\gamma$-stable parts of this famous collective Hamiltonian. Moreover, the $\\beta$ part of the problem is described by means of Davidson potential, while the $\\gamma$-angular part corresponding to axially symmetric shapes is treated by a Harmonic Osillator potential. The energy eigenvalues and normalized eigenfunctions of the problem are obtained in compact forms by making use of the asymptotic iteration method. The combined effect of the deformation-dependent mass and rigidity as well as harmonic oscillator stiffness parameters on the energy spectrum and wave functions is duly investigated. Also, the electric quadrupole tran...
Heidenreich, J. E., III; Thiemens, M. H.
1985-01-01
A non-mass dependent (NoMaD) oxygen isotope effect is demonstrated in the dissociation of CO2 similar to that observed in the electrosynthesis of ozone. The molecular oxygen produced carries the signature of two separate isotopic fractionation processes; a mass-dependent fractionation probably due to CO2 + O isotopic exchange, and a secondary NoMaD fractionation (delta O-17 = 0.97 + or - 0.09 delta O-18, with the O2 depleted in O-17 and O-18). It is suggested that the effect is due to either the formation or relaxation of ozone in an excited electronic state. This represents the latest advance in the understanding of chemical NoMaD effects which may be essential to the explanation of non-mass-dependent fractionations observed in meteorites.
Institute of Scientific and Technical Information of China (English)
Zhen WANG; Hui ZHANG
2014-01-01
In this work, we obtain the global existence and uniqueness of classical solu-tions to a viscous liquid-gas two-phase model with mass-dependent viscosity and vacuum in one dimension, where the initial vacuum is allowed. We get the upper and lower bounds of gas and liquid masses n and m by the continuity methods which we use to study the compressible Navier-Stokes equations.
Flank, Peter; Wahman, Kerstin; Levi, Richard; Fahlström, Martin
2012-01-01
Objective: To assess risk factors for cardiovascular disease at different body mass index values in persons with wheelchair-dependent paraplegia after spinal cord injuries. Design: Cross-sectional study. Subjects: A total of 135 individuals, age range 18-79 years, with chronic (>= 1 year) post-traumatic paraplegia. Methods: Body mass index was stratified into 6 categorical groups. Cardiovascular disease risk factors for hypertension, diabetes mellitus and a serum lipid profile were analyse...
An, Tae-Ho; Lim, Young Soo; Park, Mi Jin; Tak, Jang-Yeul; Lee, Soonil; Cho, Hyung Koun; Cho, Jun-Young; Park, Chan; Seo, Won-Seon
2016-10-01
Composition-dependent charge transport and temperature-dependent density of state effective mass-dependent Seebeck coefficient were investigated in Bi2-xSbxTe3 (x = 1.56-1.68) compounds. The compounds were prepared by the spark plasma sintering of high-energy ball-milled powder. High-temperature Hall measurements revealed that the charge transport in the compounds was governed dominantly by phonon scattering and influenced additionally by alloy scattering depending on the amount of Sb. Contrary effects of Sb content on the Seebeck coefficient were discussed in terms of carrier concentration and density of state effective mass, and it was elucidated by temperature-normalized Pisarenko plot for the first time.
International Nuclear Information System (INIS)
Recently a promising mechanism for supersymmetry breaking that utilizes both an anomalous U(1) gauge symmetry and an effective mass term m ∼ 1TeV of certain relevant fields has been proposed. In this paper we examine whether such a mechanism can emerge in superstring derived free fermionic models. We observe that certain three generation string solutions, though not all, lead to an anomalous U(1) which couples universally to all three families. The advantages of this three-family universality of U(1)A, compared to the two-family case, proposed in earlier works, in yielding squark degeneracy, while avoiding radiative breaking of color and charge, are noted. The root cause of the flavor universality of U(1)A is the cyclic permutation symmetry that characterizes the Z2 x Z2 orbifold compactification with standard embedding, realized in the free fermionic models by the NAHE set. It is shown that nonrenormalizable terms which contain hidden-sector condensates, generate the required suppression of the relevant mass term m, compared to the Planck scale. While the D-term of the family universal U(1)A leads to squark degeneracy, those of the family dependent U(1)'s, remarkably enough, are found to vanish for the solutions considered, owing to minimization of the potential
Energy Technology Data Exchange (ETDEWEB)
Faraggi, A.E. [Univ. of Florida, Gainesville, FL (United States). Dept. of Physics; Pati, J.C. [Univ. of Maryland, College Park, MD (United States). Dept. of Physics
1997-12-01
Recently a promising mechanism for supersymmetry breaking that utilizes both an anomalous U(1) gauge symmetry and an effective mass term m {approx} 1TeV of certain relevant fields has been proposed. In this paper we examine whether such a mechanism can emerge in superstring derived free fermionic models. We observe that certain three generation string solutions, though not all, lead to an anomalous U(1) which couples universally to all three families. The advantages of this three-family universality of U(1){sub A}, compared to the two-family case, proposed in earlier works, in yielding squark degeneracy, while avoiding radiative breaking of color and charge, are noted. The root cause of the flavor universality of U(1){sub A} is the cyclic permutation symmetry that characterizes the Z{sub 2} x Z{sub 2} orbifold compactification with standard embedding, realized in the free fermionic models by the NAHE set. It is shown that nonrenormalizable terms which contain hidden-sector condensates, generate the required suppression of the relevant mass term m, compared to the Planck scale. While the D-term of the family universal U(1){sub A} leads to squark degeneracy, those of the family dependent U(1)`s, remarkably enough, are found to vanish for the solutions considered, owing to minimization of the potential.
Anomalous osmosis resulting from preferential absorption
Staverman, A.J.; Kruissink, C.A.; Pals, D.T.F.
1965-01-01
An explanation of the anomalous osmosis described in the preceding paper is given in terms of friction coefficients in the glass membrane. It is shown that anomalous osmosis may be expected when the friction coefficients are constant and positive provided that the membrane absorbs solute strongly an
Anomalous commutator corrections to sum rules
International Nuclear Information System (INIS)
In this paper we consider the contributions of anomalous commutators to various QCD sum rules. Using a combination of the Bjorken-Johnson-Low limit with the operator product expansion the results are presented in terms of the vacuum condensates of gauge-invariant operators. It is demonstrated that the anomalous contributions are non-negligible and reconcile various apparently contradictory calculations
Non-Anomalous Semigroups and Real Numbers
Binder, Damon
2016-01-01
Motivated by intuitive properties of physical quantities, the notion of a non-anomalous semigroup is formulated. These are totally ordered semigroups where there are no `infinitesimally close' elements. The real numbers are then defined as the terminal object in a closely related category. From this definition a field structure on $\\mathbb R$ is derived, relating multiplication to morphisms between non-anomalous semigroups.
Bernardi, M; Sheth, R K; Fischer, J -L; Huertas-Company, M; Maraston, C; Shankar, F; Vikram, V
2016-01-01
We quantify the systematic effects on the stellar mass function which arise from assumptions about the stellar population, as well as how one fits the light profiles of the most luminous galaxies at z ~ 0.1. When comparing results from the literature, we are careful to separate out these effects. Our analysis shows that while systematics in the estimated comoving number density which arise from different treatments of the stellar population remain of order M_*) by factors of 3-10 in the mass range 10^11 - 10^11.6 M_Sun, but up to a factor of 100 at higher stellar masses. This impacts studies which match massive galaxies to dark matter halos. Although systematics which arise from different treatments of the stellar population remain of order < 0.5 dex, our finding that systematics in photometry now amount to only about 0.1 dex in the stellar mass density is a significant improvement with respect to a decade ago. Our results highlight the importance of using the same stellar population and photometric model...
Anomalous Hall effect in Fe/Gd bilayers
Xu, W. J.
2010-04-01
Non-monotonic dependence of anomalous Hall resistivity on temperature and magnetization, including a sign change, was observed in Fe/Gd bilayers. To understand the intriguing observations, we fabricated the Fe/Gd bilayers and single layers of Fe and Gd simultaneously. The temperature and field dependences of longitudinal resistivity, Hall resistivity and magnetization in these films have also been carefully measured. The analysis of these data reveals that these intriguing features are due to the opposite signs of Hall resistivity/or spin polarization and different Curie temperatures of Fe and Gd single-layer films. Copyright (C) EPLA, 2010
Analysis on anomalous degradation in silicon solar cell designed for space use
Energy Technology Data Exchange (ETDEWEB)
Ohshima, Takeshi; Morita, Yousuke; Nashiyama, Isamu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Kawasaki, Osamu; Hisamatsu, Tadashi; Yamamoto, Yasunari; Matsuda, Sumio; Nakao, Tetsuya; Wakow, Yoshihito
1997-03-01
Recently, we have found the anomalous degradation of electrical performance in silicon solar cells irradiated with charged particles in a high-fluence region. This anomalous phenomenon has two typical features, which are sudden-drop-down of electrical performances in a high-fluence region and slight recovery of the short circuit current I{sub SC} just before the sudden-drop-down. These features cannot be understood by a conventional model coming from the decrease of minority-carriers life-time. We introduce this anomalous degradation of the electrical performance in Si solar cells irradiated with electrons or protons. We also report the result of simulation for the fluence dependence of the I{sub SC}, and discuss the mechanism of this anomalous phenomenon. (author)
Lu, Y. M.
2013-03-05
Scaling of the anomalous Hall conductivity to longitudinal conductivity σAH∝σ2xx has been observed in the dirty regime of two-dimensional weak and strong localization regions in ultrathin, polycrystalline, chemically disordered, ferromagnetic FePt films. The relationship between electron transport and temperature reveals a quantitatively insignificant Coulomb interaction in these films, while the temperature dependent anomalous Hall conductivity experiences quantum correction from electron localization. At the onset of this correction, the low-temperature anomalous Hall resistivity begins to be saturated when the thickness of the FePt film is reduced, and the corresponding Hall conductivity scaling exponent becomes 2, which is above the recent unified theory of 1.6 (σAH∝σ1.6xx). Our results strongly suggest that the correction of the electron localization modulates the scaling exponent of the anomalous Hall effect.
Directory of Open Access Journals (Sweden)
M. K. Bahar
2013-01-01
Full Text Available Using the asymptotic iteration and wave function ansatz method, we present exact solutions of the Klein-Gordon equation for the quark-antiquark interaction and harmonic oscillator potential in the case of the position-dependent mass.
Shock-wave studies of anomalous compressibility of glassy carbon
Molodets, A. M.; Golyshev, A. A.; Savinykh, A. S.; Kim, V. V.
2016-02-01
The physico-mechanical properties of amorphous glassy carbon are investigated under shock compression up to 10 GPa. Experiments are carried out on the continuous recording of the mass velocity of compression pulses propagating in glassy carbon samples with initial densities of 1.502(5) g/cm3 and 1.55(2) g/cm3. It is shown that, in both cases, a compression wave in glassy carbon contains a leading precursor with amplitude of 0.135(5) GPa. It is established that, in the range of pressures up to 2 GPa, a shock discontinuity in glassy carbon is transformed into a broadened compression wave, and shock waves are formed in the release wave, which generally means the anomalous compressibility of the material in both the compression and release waves. It is shown that, at pressure higher than 3 GPa, anomalous behavior turns into normal behavior, accompanied by the formation of a shock compression wave. In the investigated area of pressure, possible structural changes in glassy carbon under shock compression have a reversible character. A physico-mechanical model of glassy carbon is proposed that involves the equation of state and a constitutive relation for Poisson's ratio and allows the numerical simulation of physico-mechanical and thermophysical properties of glassy carbon of different densities in the region of its anomalous compressibility.
Constraints on Anomalous Quartic Gauge Boson Couplings from $\
Abbiendi, G; Åkesson, P F; Alexander, G; Allison, J; Amaral, P; Anagnostou, G; Anderson, K J; Asai, S; Axen, D A; Azuelos, Georges; Bailey, I; Barberio, E; Barillari, T; Barlow, R J; Batley, J Richard; Bechtle, P; Behnke, T; Bell, K W; Bell, P J; Bella, G; Bellerive, A; Benelli, G; Bethke, Siegfried; Biebel, O; Boeriu, O; Bock, P; Boutemeur, M; Braibant, S; Brigliadori, L; Brown, R M; Büsser, K; Burckhart, H J; Campana, S; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Ciocca, C; Csilling, Akos; Cuffiani, M; Dado, S; de Roeck, A; De Wolf, E A; Desch, Klaus; Dienes, B; Donkers, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Etzion, E; Fabbri, Franco Luigi; Feld, L; Ferrari, P; Fiedler, F; Fleck, I; Ford, M; Frey, A; Gagnon, P; Gary, J W; Gaycken, G; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Giunta, M; Goldberg, J; Gross, E; Grunhaus, Jacob; Gruwé, M; Günther, P O; Sen-Gupta, A; Hajdu, C; Hamann, M; Hanson, G G; Harel, A; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herten, G; Heuer, R D; Hill, J C; Hoffman, K; Horváth, D; Igo-Kemenes, P; Ishii, K; Jeremie, H; Jovanovic, P; Junk, T R; Kanaya, N; Kanzaki, J; Karlen, Dean A; Kawagoe, K; Kawamoto, T; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kluth, S; Kobayashi, T; Kobel, M; Komamiya, S; Kramer, T; Krieger, P; Von Krogh, J; Krüger, K; Kühl, T; Kupper, M; Lafferty, G D; Landsman, Hagar Yaël; Lanske, D; Layter, J G; Lellouch, D; Letts, J; Levinson, L; Lillich, J; Lloyd, S L; Loebinger, F K; Lü, J; Ludwig, A; Ludwig, J; Mader, W; Marcellini, S; Martin, A J; Masetti, G; Mashimo, T; Mättig, P; McKenna, J A; McPherson, R A; Meijers, F; Menges, W; Merritt, F S; Mes, H; Meyer, N; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Moed, S; Mohr, W; Mori, T; Mutter, A; Nagai, K; Nakamura, I; Nanjo, H; Neal, H A; Nisius, R; O'Neale, S W; Oh, A; Oreglia, M J; Orito, S; Pahl, C; Pásztor, G; Pater, J R; Pilcher, J E; Pinfold, J L; Plane, D E; Poli, B; Pooth, O; Przybycien, M B; Quadt, A; Rabbertz, K; Rembser, C; Renkel, P; Roney, J M; Rozen, Y; Runge, K; Sachs, K; Saeki, T; Sarkisyan-Grinbaum, E; Schaile, A D; Schaile, O; Scharff-Hansen, P; Schieck, J; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Sherwood, P; Skuja, A; Smith, A M; Sobie, R J; Söldner-Rembold, S; Spanó, F; Stahl, A; Strom, D; Ströhmer, R; Tarem, S; Tasevsky, M; Teuscher, R; Thomson, M A; Torrence, E; Toya, D; Tran, P; Trigger, I; Trócsányi, Z L; Tsur, E; Turner-Watson, M F; Ueda, I; Ujvári, B; Vollmer, C F; Vannerem, P; Vertesi, R; Verzocchi, M; Voss, H; Vossebeld, Joost Herman; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wengler, T; Wermes, N; Wilson, G W; Wilson, J A; Wolf, G; Wyatt, T R; Yamashita, S; Zer-Zion, D; Zivkovic, L
2004-01-01
Anomalous quartic couplings between the electroweak gauge bosons may contribute to the vv gamma gamma and qq gamma gamma final states produced in e+e- collisions. This analysis uses the LEP2 OPAL data sample at centre-of-mass energies up to 209 GeV. Event selections identify vv gamma gamma and qq gamma gamma events in which the two photons are reconstructed within the detector acceptance. The cross-section for the process e+e- -> qq gamma gamma is measured. Averaging over all energies, the ratio of the observed e+e- -> qq gamma gamma cross-section to the Standard Model expectation is R(data/SM) = 0.92 +- 0.07 +- 0.04 where the errors represent the statistical and systematic uncertainties respectively. The vv gamma gamma and qq gamma gamma data are used to constrain possible anomalous W+W- gamma gamma and ZZ gamma gamma couplings. Combining with previous OPAL results from the W+W- gamma final state, the 95% confidence level limits on the anomalous coupling parameters aoz, acz, aow and acw are found to be: -0.0...
Stueckelberg Axions and Anomalous Abelian Extensions of the Standard Model
Morelli, Simone
2009-01-01
This thesis work analyzes basic field theoretical aspects of a class of models motivated by orientifold vacua of string theory and some of their phenomenological applications at the Large Hadron Collider. They extend the gauge structure of the Standard Model by anomalous extra U(1) symmetries, which involve Stuckelberg axions for anomaly cancellation and are accompanied by Chern-Simons interactions. In particular, these effective actions are characterized by a physical pseudoscalar (the axi-Higgs) in the CP-odd spectrum, which has the properties of a generalized Peccei-Quinn axion, with independent mass and couplings to the gauge fields. Amplitudes mediated by anomalous gauge interactions are studied at the new collider in some specific channels such as Drell-Yan and double prompt-photon and shown to be small. Finally, we address the problem of the relation between the Green-Schwarz and the Wess-Zumino mechanism(s) for anomaly cancellations in effective lagrangeans involving anomalous gauge interactions, with...
Search for anomalous weak dipole moments of the $\\tau$ lepton
Heister, A; Barate, R; De Bonis, I; Décamp, D; Goy, C; Lees, J P; Merle, E; Minard, M N; Pietrzyk, B; Bravo, S; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Martínez, M; Pacheco, A; Ruiz, H; Colaleo, A; Creanza, D; De Palma, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Azzurri, P; Buchmüller, O L; Cattaneo, M; Cerutti, F; Clerbaux, B; Drevermann, H; Forty, R W; Frank, M; Gianotti, F; Hansen, J B; Harvey, J; Hutchcroft, D E; Janot, P; Jost, B; Kado, M; Mato, P; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Schneider, O; Sguazzoni, G; Tejessy, W; Teubert, F; Valassi, Andrea; Videau, I; Ward, J; Badaud, F; Falvard, A; Gay, P; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Rougé, A; Rumpf, M; Swynghedauw, M; Verderi, M; Videau, H L; Ciulli, V; Focardi, E; Parrini, G; Antonelli, A; Antonelli, M; Bencivenni, G; Bossi, F; Capon, G; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Lynch, J G; Negus, P; O'Shea, V; Raine, C; Thompson, A S; Wasserbaech, S R; Cavanaugh, R J; Geweniger, C; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Stenzel, H; Tittel, K; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, P J; Girone, M; Marinelli, N; Sedgbeer, J K; Thompson, J C; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bouhova-Thacker, E; Bowdery, C K; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Pearson, M R; Robertson, N A; Jakobs, K; Kleinknecht, K; Renk, B; Sander, H G; Wachsmuth, H W; Zeitnitz, C; Bonissent, A; Coyle, P; Leroy, O; Payre, P; Rousseau, D; Talby, M; Ragusa, F; David, A; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Männer, W; Moser, H G; Settles, Ronald; Wolf, G; Boucrot, J; Callot, O; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Lefrançois, J; Veillet, J J; Yuan, C; Bagliesi, G; Boccali, T; Foà, L; Giammanco, A; Giassi, A; Ligabue, F; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Tenchini, Roberto; Venturi, A; Verdini, P G; Blair, G A; Cowan, G; Green, M G; Medcalf, T; Misiejuk, A; Strong, J A; Teixeira-Dias, P; Clifft, R W; Edgecock, T R; Norton, P R; Tomalin, I R; Bloch-Devaux, B; Colas, P; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Schuller, J P; Vallage, B; Konstantinidis, N P; Litke, A M; Taylor, G; Booth, C N; Cartwright, S L; Combley, F; Lehto, M H; Thompson, L F; Böhrer, A; Brandt, S; Grupen, Claus; Ngac, A; Prange, G; Giannini, G; Rothberg, J E; Armstrong, S R; Berkelman, K; Cranmer, K; Ferguson, D P S; Gao, Y; Gonzáles, S; Hayes, O J; Hu, H; Jin, S; Kile, J; McNamara, P A; Nielsen, J; Pan, Y B; Von Wimmersperg-Töller, J H; Wiedenmann, W; Wu, J; Wu Sau Lan; Wu, X; Zobernig, G; Dissertori, G
2003-01-01
The anomalous weak dipole moments of the $\\tau$ lepton are measured in a data sample collected by ALEPH from 1990 to 1995 corresponding to an integrated luminosity of 155~pb$^{-1}$. Tau leptons produced in the reaction $e^+ e^- \\rightarrow \\tau^+ \\tau^-$ at energies close to the ${\\rm Z}$ mass are studied using their semileptonic decays to $\\pi$, $\\rho$, $a_1 \\rightarrow \\pi 2\\pi^0$ or $a_1 \\rightarrow 3 \\pi$. The real and imaginary components of both the anomalous weak magnetic dipole moment and the CP-violating anomalous weak electric dipole moment, $ {\\rm Re}\\,\\mu_{\\tau}$, ${\\rm Im}\\,\\mu_{\\tau}$, ${\\rm Re}\\,d_{\\tau}$ and ${\\rm Im}\\,d_{\\tau}$, are measured simultaneously by means of a likelihood fit built from the full differential cross section. No evidence of new physics is found. The following bounds are obtained (95\\% CL): $|{\\rm Re}\\, \\mu_{\\tau} | < 1.14 \\times 10^{-3}$, $|{\\rm Im}\\, \\mu_{\\tau} | < 2.65 \\times 10^{-3}$, $|{\\rm Re}\\, d_{\\tau} | < 0.91 \\times 10^{-3}$, and $|{\\rm Im}\\, d_{\\tau} ...
Brouwer, Margot M.; Cacciato, Marcello; Dvornik, Andrej; Eardley, Lizzie; Heymans, Catherine; Hoekstra, Henk; Kuijken, Konrad; McNaught-Roberts, Tamsyn; Sifón, Cristóbal; Viola, Massimo; Alpaslan, Mehmet; Bilicki, Maciej; Bland-Hawthorn, Joss; Brough, Sarah; Choi, Ami; Driver, Simon P.; Erben, Thomas; Grado, Aniello; Hildebrandt, Hendrik; Holwerda, Benne W.; Hopkins, Andrew M.; de Jong, Jelte T. A.; Liske, Jochen; McFarland, John; Nakajima, Reiko; Napolitano, Nicola R.; Norberg, Peder; Peacock, John A.; Radovich, Mario; Robotham, Aaron S. G.; Schneider, Peter; Sikkema, Gert; van Uitert, Edo; Verdoes Kleijn, Gijs; Valentijn, Edwin A.
2016-11-01
Galaxies and their dark matter haloes are part of a complex network of mass structures, collectively called the cosmic web. Using the tidal tensor prescription these structures can be classified into four cosmic environments: voids, sheets, filaments and knots. As the cosmic web may influence the formation and evolution of dark matter haloes and the galaxies they host, we aim to study the effect of these cosmic environments on the average mass of galactic haloes. To this end we measure the galaxy-galaxy lensing profile of 91 195 galaxies, within 0.039 < z < 0.263, from the spectroscopic Galaxy And Mass Assembly survey, using {˜ }100 ° ^2 of overlapping data from the Kilo-Degree Survey. In each of the four cosmic environments we model the contributions from group centrals, satellites and neighbouring groups to the stacked galaxy-galaxy lensing profiles. After correcting the lens samples for differences in the stellar mass distribution, we find no dependence of the average halo mass of central galaxies on their cosmic environment. We do find a significant increase in the average contribution of neighbouring groups to the lensing profile in increasingly dense cosmic environments. We show, however, that the observed effect can be entirely attributed to the galaxy density at much smaller scales (within 4 h-1 Mpc), which is correlated with the density of the cosmic environments. Within our current uncertainties we find no direct dependence of galaxy halo mass on their cosmic environment.
Lao, Hai-Ling; Wei, Hua-Rong; Liu, Fu-Hu; A. Lacey, Roy
2016-07-01
Transverse momentum spectra of different particles produced in mid-rapidity interval in lead-lead (Pb-Pb) collisions with different centrality intervals, measured by the ALICE Collaboration at center-of-mass energy per nucleon pair √{s_{NN}} = 2.76 TeV, are conformably and approximately described by the Tsallis distribution. The dependences of parameters (effective temperature, entropy index, and normalization factor) on event centrality and particle rest mass are obtained. The source temperature at the kinetic freeze-out is obtained to be the intercept in the linear relation between effective temperature and particle rest mass, while the particle (transverse) flow velocity in the source rest frame is extracted to be the slope in the linear relation between mean (transverse) momentum and mean moving mass. It is shown that the source temperature increases with increase of particle rest mass, which exhibits an evidence of mass-dependent differential kinetic freeze-out scenario or multiple kinetic freeze-out scenario.
Energy Technology Data Exchange (ETDEWEB)
Panahi, H., E-mail: t-panahi@guilan.ac.ir [Department of Physics, University of Guilan, 41335-1914 Rasht (Iran, Islamic Republic of); Golshahi, S. [Department of Physics, Rasht Branch, Islamic Azad University, Rasht (Iran, Islamic Republic of); Doostdar, M. [Department of Physics, University of Guilan, 41335-1914 Rasht (Iran, Islamic Republic of)
2013-06-01
In this paper we have calculated variationally the ground state binding energy of a hydrogenic donor impurity in square quantum well and V-shaped quantum well as a function of the well width in the presence of magnetic fields with both constant and position dependent effective mass. The wave function of electrons confined to donor impurity within the quantum well is considered as the two dimensional and three dimensional trial wave functions. It has been found that by increasing the well width, the binding energy decreases smoothly to bulk values while its steepness is sharper in square quantum well in comparison with V-shaped quantum well. Increasing the magnetic field leads to the enhancement of binding energy. At higher magnetic fields, by increasing the well width, binding energy tends to a constant value. The effect of position dependent effective mass on the enhancement of binding energy is more evident in comparison with constant effective mass one.
International Nuclear Information System (INIS)
In this paper we have calculated variationally the ground state binding energy of a hydrogenic donor impurity in square quantum well and V-shaped quantum well as a function of the well width in the presence of magnetic fields with both constant and position dependent effective mass. The wave function of electrons confined to donor impurity within the quantum well is considered as the two dimensional and three dimensional trial wave functions. It has been found that by increasing the well width, the binding energy decreases smoothly to bulk values while its steepness is sharper in square quantum well in comparison with V-shaped quantum well. Increasing the magnetic field leads to the enhancement of binding energy. At higher magnetic fields, by increasing the well width, binding energy tends to a constant value. The effect of position dependent effective mass on the enhancement of binding energy is more evident in comparison with constant effective mass one
Institute of Scientific and Technical Information of China (English)
Altu(g) Arda; Ramazan Sever
2011-01-01
The effective mass one-dimensional Schr(o)dinger equation for the generalized Morse potential is solved by using Nikiforov-Uvarov method. Energy eigenvalues and corresponding eigenfunctions axe computed analytically. The results are also reduced to the constant mass case. Energy eigenvalues are computed numerically for some diatomic molecules. They are in agreement with the ones obtained before.
Kim, Jihn E
2012-01-01
I will talk on my recent works. Axino, related to the SUSY transformation of axion, can mix with Goldstino in principle. In this short talk, I would like to explain what is the axino mass and its plausible mass range. The axino mass is known to have a hierarchical mass structure depending on accidental symmetries. With only one axino, if G_A=0 where G=K+ 2ln|W|, we obtain axino mass= gravitino mass. For G_A nonzero, the axino mass depends on the details of the Kaehler potential. I also comment on the usefulness of a new parametrization of the CKM matrix.
Anomalous transport from holography: Part II
Bu, Yanyan; Sharon, Amir
2016-01-01
This is a second study of chiral anomaly induced transport within a holographic model consisting of anomalous $U(1)_V\\times U(1)_A$ Maxwell theory in Schwarzschild-$AdS_5$ spacetime. In the first part, chiral magnetic/separation effects (CME/CSE) are considered in presence of a static spatially-inhomogeneous external magnetic field. Gradient corrections to CME/CSE are analytically evaluated up to third order in the derivative expansion. Some of the third order gradient corrections lead to an anomaly-induced negative $B^2$-correction to the diffusion constant. We also find non-linear modifications to the chiral magnetic wave (CMW). In the second part, we focus on the experimentally interesting case of the axial chemical potential being induced dynamically by a constant magnetic and time-dependent electric fields. Constitutive relations for the vector/axial currents are computed employing two different approximations: (a) derivative expansion (up to third order) but fully nonlinear in the external fields, and (...
Heterogeneous anomalous diffusion in view of superstatistics
Energy Technology Data Exchange (ETDEWEB)
Itto, Yuichi
2014-08-22
Highlights: • A theory is developed for a generalized fractional kinetics in view of superstatistics. • The present theory explicitly takes into account the existence of a large time-scale separation in the infection pathway. • The present theory implies a scaling nature of the motion of the virus. - Abstract: It is experimentally known that virus exhibits stochastic motion in cytoplasm of a living cell in the free form as well as the form being contained in the endosome and the exponent of anomalous diffusion of the virus fluctuates depending on localized areas of the cytoplasm. Here, a theory is developed for establishing a generalized fractional kinetics for the infection pathway of the virus in the cytoplasm in view of superstatistics, which offers a general framework for describing nonequilibrium complex systems with two largely separated time scales. In the present theory, the existence of a large time-scale separation in the infection pathway is explicitly taken into account. A comment is also made on scaling nature of the motion of the virus that is suggested by the theory.
DEFF Research Database (Denmark)
Matthiesen, Rune; Bunkenborg, Jakob; Stensballe, Allan;
2004-01-01
The Virtual Expert Mass Spectrometrist (VEMS) program package was developed for flexible, automated, and manual de novo tandem mass spectrometry (MS/MS) protein sequencing, and includes accessory programs for matrix-assisted laser desorption/ionization-mass spectrometry (MS) interpretation, and...... analysis of the fragmentation spectra obtained by liquid chromatrography-MS/MS analysis of peptides from an anionic peroxidase enriched protein fraction from potato root tissue. The extended analysis mode resulted in the additional assignment of spectra for nine modified tryptic peptides and nine...... miscleaved peptides, in addition to the 45 spectra from regular tryptic peptides. Of the nine modified peptides, three were glycosylated....
Anomalous Kinetics in Velocity Space: equations and models
Trigger, S. A.
2009-01-01
Equation for anomalous diffusion in momentum space, recently obtained in the recent paper (S.A. Trigger, ArXiv 0907.2793 v1, [cond-matt. stat.-mech.], 16 July 2009) is solved for the stationary and non-stationary cases on basis of the appropriate probability transition function (PTF). Consideration of diffusion for heavy particles in a gas of the light particles can be essentially simplified due to small ratio of the masses of the particles. General equation for the distribution of the light ...
Tau anomalous magnetic moment in γγ colliders
Peressutti, Javier; Sampayo, Oscar A.
2012-08-01
We investigate the possibility of setting model independent limits for a nonstandard anomalous magnetic moment aτNP of the tau lepton, in future γγ colliders based on Compton backscattering. For a hypothetical collider we find that, at various levels of confidence, the limits for aτNP could be improved, compared to previous studies based on LEP1, LEP2 and SLD data. We show the results for a realistic range of the center of mass energy of the e+e- collider. As a more direct application, we also present the results of the simulation for the photon collider at the TESLA project.
Experimental search for anomalous spin-spin interactions
International Nuclear Information System (INIS)
This paper reports on a Cavendish-type torsion pendulum, having test masses with 2.5 x 1011 polarized electrons and attracting masses with 8 x 1023 polarized electrons, is used to search for an anomalous spin interaction of macroscopic range. Competition from magnetic forces is reduced by using ferrimagnetic Dy-Fe masses which exhibit orbital compensation of the electron spin magnetic moments. Combined with magnetic shielding, the sensitivity is 2 x 10-4 of the gravitational force. Fluctuations set the overall experimental limit at about 5 times this level. The authors' results set limits on electron spin interactions and on moments which are not of electromagnetic origin. In terms of a standard dipole-dipole form, the limit is 1.5 x 20-12 of the interaction strength between the magnetic moments of the electrons. Compared to previous results, this is a six-fold improvement
Ghatak, J; Umananda Bhatta, M; Sundaravel, B; Nair, K G M; Liou, Sz-Chian; Chen, Cheng-Hsuan; Wang, Yuh-Lin; Satyam, P V
2008-08-13
We report a direct observation of dramatic mass transport due to 1.5 MeV Au(2+) ion impact on isolated Au nanostructures of average size ≈7.6 nm and height ≈6.9 nm that are deposited on Si(111) substrate under high flux (3.2 × 10(10)-6.3 × 10(12) ions cm(-2) s(-1)) conditions. The mass transport from nanostructures was found to extend up to a distance of about 60 nm into the substrate, much beyond their size. This forward mass transport is compared with the recoil implantation profiles using SRIM simulation. The observed anomalies with theory and simulations are discussed. At a given energy, the incident flux plays a major role in mass transport and its redistribution. The mass transport is explained on the basis of thermal effects and the creation of rapid diffusion paths in the nanoscale regime during the course of ion irradiation. The unusual mass transport is found to be associated with the formation of gold silicide nano-alloys at subsurfaces. The complexity of the ion-nanostructure interaction process is discussed with a direct observation of melting (in the form of spherical fragments on the surface) phenomena. Transmission electron microscopy, scanning transmission electron microscopy, and Rutherford backscattering spectroscopy methods have been used.
Bernardi, M; Sheth, R K; Vikram, V; Huertas-Company, M; Mei, S; Shankar, F
2013-01-01
In addition to the large systematic differences arising from assumptions about the stellar mass-to-light ratio, the massive end of the stellar mass function is rather sensitive to how one fits the light profiles of the most luminous galaxies. We quantify this by comparing the luminosity and stellar mass functions based on SDSS cmodel magnitudes, and PyMorph single-Sersic and Sersic-Exponential fits to the surface brightness profiles of galaxies in the SDSS. The PyMorph fits return more light, so that the predicted masses are larger than when cmodel magnitudes are used. As a result, the total stellar mass density at z~0.1 is about 1.2x larger than in our previous analysis of the SDSS. The differences are most pronounced at the massive end, where the measured number density of objects having M* > 6 x 10^{11} Msun is ~5x larger. Alternatively, at number densities of 10^{-6} Mpc^{-3}, the limiting stellar mass is 2x larger. The differences with respect to fits by other authors, typically based on Petrosian-like m...
Anomalous magnetic moment with heavy virtual leptons
Energy Technology Data Exchange (ETDEWEB)
Kurz, Alexander [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Liu, Tao; Steinhauser, Matthias [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2013-11-15
We compute the contributions to the electron and muon anomalous magnetic moment induced by heavy leptons up to four-loop order. Asymptotic expansion is applied to obtain three analytic expansion terms which show rapid convergence.
Anomalous Fractional Diffusion Equation for Transport Phenomena
Institute of Scientific and Technical Information of China (English)
QiuhuaZENG; HouqiangLI; 等
1999-01-01
We derive the standard diffusion equation from the continuity equation and by discussing the defectiveness of earlier proposed equations,we get the generalized fractional diffusion equation for anomalous diffusion.
Anomalous transport in the crowded world of biological cells
Höfling, Felix; Franosch, Thomas
2013-04-01
A ubiquitous observation in cell biology is that the diffusive motion of macromolecules and organelles is anomalous, and a description simply based on the conventional diffusion equation with diffusion constants measured in dilute solution fails. This is commonly attributed to macromolecular crowding in the interior of cells and in cellular membranes, summarizing their densely packed and heterogeneous structures. The most familiar phenomenon is a sublinear, power-law increase of the mean-square displacement (MSD) as a function of the lag time, but there are other manifestations like strongly reduced and time-dependent diffusion coefficients, persistent correlations in time, non-Gaussian distributions of spatial displacements, heterogeneous diffusion and a fraction of immobile particles. After a general introduction to the statistical description of slow, anomalous transport, we summarize some widely used theoretical models: Gaussian models like fractional Brownian motion and Langevin equations for visco-elastic media, the continuous-time random walk model, and the Lorentz model describing obstructed transport in a heterogeneous environment. Particular emphasis is put on the spatio-temporal properties of the transport in terms of two-point correlation functions, dynamic scaling behaviour, and how the models are distinguished by their propagators even if the MSDs are identical. Then, we review the theory underlying commonly applied experimental techniques in the presence of anomalous transport like single-particle tracking, fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP). We report on the large body of recent experimental evidence for anomalous transport in crowded biological media: in cyto- and nucleoplasm as well as in cellular membranes, complemented by in vitro experiments where a variety of model systems mimic physiological crowding conditions. Finally, computer simulations are discussed which play an important
Saha, Surajit; Ganguly, Jayanta; Pal, Suvajit; Ghosh, Manas
2016-08-01
We study the modulation of electro-optic effect (EOE) of impurity doped QD under the influence of geometrical anisotropy and position-dependent effective mass (PDEM) in presence of Gaussian white noise. Always a comparison has been made between fixed effective mass (FEM) and PDEM to understand the role of the latter. In addition, the role of mode of application of noise (additive/multiplicative) has also been analyzed. The EOE profiles are found to be enriched with shift of peak position and maximization of peak intensity. The observations reveal sensitive interplay between noise and anisotropy/PDEM to fine-tune the features of EOE profiles.
Anomalous transport due to scale anomaly
Chernodub, M N
2016-01-01
We show that the scale anomaly in field theories leads to new anomalous transport effects that emerge in external electromagnetic field in inhomogeneous gravitational background. In inflating geometry the QED scale anomaly generates electric current which flows in opposite direction with respect to background electric field. In static spatially inhomogeneous gravitational background the dissipationless electric current flows transversely both to the magnetic field axis and to the gradient of the inhomogeneity. The anomalous currents are proportional to the beta function of the theory.
Graur, Or; Modjaz, Maryam
2014-01-01
Using a method to discover and classify supernovae (SNe) in galaxy spectra, we detect 91 Type Ia SNe (SNe Ia) and 16 Type II SNe (SNe II) among ~740,000 galaxies of all types and ~215,000 star-forming galaxies without active galactic nuclei, respectively, in Data Release 9 of the Sloan Digital Sky Survey. Of these SNe, 22 SNe Ia and 8 SNe II are new discoveries reported here for the first time. We use our SN samples to measure SN rates per unit mass as a function of galaxy stellar mass, star-formation rate (SFR), and specific SFR (sSFR), as derived by the MPA-JHU Galspec pipeline. We confirm the rate-mass correlations, first discovered by the Lick Observatory Supernova Search, for both SNe Ia and SNe II at median redshifts of ~0.1 and ~0.075, respectively. The mass-normalized SN Ia and SN II rates, averaged over all masses and redshifts in their respective galaxy samples, are 0.10 +/- 0.01 (stat) +/- 0.01 (sys) X 10^-12 Msol^-1 yr^-1 and 0.52 +0.16 -0.13 (stat) +0.02 -0.05 (sys) X 10^-12 Msol^-1 yr^-1, respec...
Liu, Beibei; Lin, Doug
2016-01-01
Radial velocity and transit surveys have found that the fraction of FGKM stars with close-in super-Earth(s) ($\\eta_\\oplus$) is around $30 \\%- 50\\%$, independent of the stellar mass $M_\\ast$ and metallicity $Z_\\ast$. In contrast, the fraction of solar-type stars harboring one or more gas giants ($\\eta_J $) with masses $M_{\\rm p} > 100 \\ M_\\oplus $ is nearly $ 10\\%-15\\%$, and it appears to increase with both $M_\\ast$ and $Z_\\ast$. Regardless of the properties of their host stars, the total mass of some multiple super-Earth systems exceeds the core mass of Jupiter and Saturn. We suggest that both super-Earths and supercritical cores of gas giants were assembled from a population of embryos that underwent convergent type I migration from their birthplaces to a transition location between viscously heated and irradiation heated disk regions. We attribute the cause for the $\\eta_\\oplus$-$\\eta_{\\rm J}$ dichotomy to conditions required for embryos to merge and to acquire supercritical core mass ($M_c \\sim 10 \\ M_\\opl...
Kulkarni, S.; Wilman, D.; Erwin, P.; Koppenhöfer, J.; Gutierrez, L.; Beckman, J.; Saglia, R.; Bender, R.
2014-03-01
We present the first results from the Hα Galaxy Groups Imaging Survey (HAGGIS), a narrow-band imaging survey of SDSS groups at z Issac Newton Telescope (INT). In total, we observed 100 galaxy groups with a wide range of halo mass (1012 - 1014 M⊙) in pairs of narrow-band filters selected to get continuum subtracted rest-frame Hα images for each galaxy. The excellent data allows us to detect Hα down to the 10-18 ergs/s/cm2/arcsec2 level. Here, we examine the role played by halo mass and galaxy stellar mass in deciding the overall star formation activity in star forming disks by comparing stacked Hα profiles of galaxies in different halo mass and stellar mass bins. With this preliminary study, we have found that the star-formation activity in star-forming galaxies decreases in larger halos compared to the field galaxies. Using median equivalent width profiles, we can infer how environmental processes affect star-forming galaxies differently at different radii.