Mass anomalous dimension in SU(2) with six fundamental fermions
DEFF Research Database (Denmark)
Bursa, Francis; Del Debbio, Luigi; Keegan, Liam; Pica, Claudio; Pickup, Thomas
2010-01-01
We simulate SU(2) gauge theory with six massless fundamental Dirac fermions. We measure the running of the coupling and the mass in the Schroedinger Functional scheme. We observe very slow running of the coupling constant. We measure the mass anomalous dimension gamma, and find it is between 0.13.......135 and 1.03 in the range of couplings consistent with the existence of an IR fixed point.......We simulate SU(2) gauge theory with six massless fundamental Dirac fermions. We measure the running of the coupling and the mass in the Schroedinger Functional scheme. We observe very slow running of the coupling constant. We measure the mass anomalous dimension gamma, and find it is between 0...
Mass anomalous dimension of SU(2) with Nf=8 using the spectral density method
Suorsa, Joni M; Rantaharju, Jarno; Rantalaiho, Teemu; Rummukainen, Kari; Tuominen, Kimmo; Weir, David J
2015-01-01
SU(2) with Nf=8 is believed to have an infrared conformal fixed point. We use the spectral density method to evaluate the coupling constant dependence of the mass anomalous dimension for massless HEX smeared, clover improved Wilson fermions with Schr\\"odinger functional boundary conditions.
Anomalous scaling in an age-dependent branching model
Keller-Schmidt, Stephanie; Tugrul, Murat; Eguiluz, Victor M.; Hernandez-Garcia, Emilio; Klemm, Konstantin
2010-01-01
We introduce a one-parametric family of tree growth models, in which branching probabilities decrease with branch age $\\tau$ as $\\tau^{-\\alpha}$. Depending on the exponent $\\alpha$, the scaling of tree depth with tree size $n$ displays a transition between the logarithmic scaling of random trees and an algebraic growth. At the transition ($\\alpha=1$) tree depth grows as $(\\log n)^2$. This anomalous scaling is in good agreement with the trend observed in evolution of biological species, thus p...
Anomalous scaling in an age-dependent branching model
Keller-Schmidt, Stephanie; Tugrul, Murat; Eguíluz, Víctor M.; Hernández-García, Emilio; Klemm, Konstantin
2015-01-01
We introduce a one-parametric family of tree growth models, in which branching probabilities decrease with branch age $\\tau$ as $\\tau^{-\\alpha}$. Depending on the exponent $\\alpha$, the scaling of tree depth with tree size $n$ displays a transition between the logarithmic scaling of random trees and an algebraic growth. At the transition ($\\alpha=1$) tree depth grows as $(\\log n)^2$. This anomalous scaling is in good agreement with the trend observed in evolution of biological species, thus p...
Anomalous scaling in an age-dependent branching model.
Keller-Schmidt, Stephanie; Tuğrul, Murat; Eguíluz, Víctor M; Hernández-García, Emilio; Klemm, Konstantin
2015-02-01
We introduce a one-parametric family of tree growth models, in which branching probabilities decrease with branch age τ as τ(-α). Depending on the exponent α, the scaling of tree depth with tree size n displays a transition between the logarithmic scaling of random trees and an algebraic growth. At the transition (α=1) tree depth grows as (logn)(2). This anomalous scaling is in good agreement with the trend observed in evolution of biological species, thus providing a theoretical support for age-dependent speciation and associating it to the occurrence of a critical point. PMID:25768548
Quark mass anomalous dimension from the twisted mass Dirac operator spectrum
Energy Technology Data Exchange (ETDEWEB)
Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics
2013-12-15
We investigate whether it is possible to extract the quark mass anomalous dimension and its scale dependence from the spectrum of the twisted mass Dirac operator in Lattice QCD. The answer to this question appears to be positive, provided that one goes to large enough eigenvalues, sufficiently above the non-perturbative regime. The obtained results are compared to continuum perturbation theory. By analyzing possible sources of systematic effects, we find the domain of applicability of the approach, extending from an energy scale of around 1.5 to 4 GeV. The lower limit is dictated by physics (non-perturbative effects at low energies), while the upper bound is set by the ultraviolet cut-off of present-day lattice simulations. We use gauge field configuration ensembles generated by the European Twisted Mass Collaboration (ETMC) with 2 flavours of dynamical twisted mass quarks, at 4 lattice spacings in the range between around 0.04 and 0.08 fm.
Anomalous scaling in an age-dependent branching model
Keller-Schmidt, Stephanie; Tugrul, Murat; Víctor M Eguíluz; Hernández-García, Emilio; Klemm, Konstantin
2015-01-01
© 2015 American Physical Society. We introduce a one-parametric family of tree growth models, in which branching probabilities decrease with branch age τ as τ-α. Depending on the exponent α, the scaling of tree depth with tree size n displays a transition between the logarithmic scaling of random trees and an algebraic growth. At the transition (α=1) tree depth grows as (logn)2. This anomalous scaling is in good agreement with the trend observed in evolution of biological species, thus provid...
On the anomalous mass defect of strange stars in the Field Correlator Method
Pereira, F. I. M.
2016-09-01
We investigate general aspects of the mass defects of strange stars in the context of the Field Correlator Method, without magnetic field. The main parameters of the model that enter the corresponding nonperturbative equation of state of the quark gluon plasma are the gluon condensate G2 and the large distance static Q Q bar potential V1. We calculate mass defects of stellar configurations in the central density range 11 mass defects are strongly dependent on the model parameters. For a large range of values of G2 and V1, we obtain anomalous mass defects with magnitudes around 1053 erg, of the same order of the observed energies of gamma-ray bursts and neutrino emissions in SN1987A, and of the theoretically predicted energies of the quark-novae explosions.
Propagators and Time-Dependent Diffusion Coefficients for Anomalous Diffusion
Wu, Jianrong; Berland, Keith M.
2008-01-01
Complex diffusive dynamics are often observed when one is investigating the mobility of macromolecules in living cells and other complex environments, yet the underlying physical or chemical causes of anomalous diffusion are often not fully understood and are thus a topic of ongoing research interest. Theoretical models capturing anomalous dynamics are widely used to analyze mobility data from fluorescence correlation spectroscopy and other experimental measurements, yet there is significant ...
Anomalous reaction-transport processes: the dynamics beyond the Mass Action Law
Campos Moreno, Daniel; Fedotov, Sergei; Méndez López, Vicenç
2008-01-01
In this paper we reconsider the Mass Action Law (MAL) for the anomalous reversible reaction $A\\rightleftarrows B$ with diffusion. We provide a mesoscopic description of this reaction when the transitions between two states $A$ and $B$ are governed by anomalous (heavy-tailed) waiting-time distributions. We derive the set of mesoscopic integro-differential equations for the mean densities of reacting and diffusing particles in both states. We show that the effective reaction rate memory kernels...
Lepton anomalous magnetic moments from twisted mass fermions
Burger, Florian; Jansen, Karl; Petschlies, Marcus
2014-01-01
We present our results for the leading-order hadronic quark-connected contributions to the electron, the muon, and the tau anomalous magnetic moments obtained with four dynamical quarks. Performing the continuum limit and an analysis of systematic effects, full agreement with phenomenological results is found. To estimate the impact of omitting the quark-disconnected contributions to the hadronic vacuum polarisation we investigate them on one of the four-flavour ensembles. Additionally, the light quark contributions on the four-flavour sea are compared to the values obtained for $N_f=2$ physically light quarks. In the latter case different methods to fit the hadronic vacuum polarisation function are tested.
Neutrino masses, anomalous U(1) gauge symmetry and doublet-triplet splitting
International Nuclear Information System (INIS)
We propose an attractive scenario of grand unified theories in which doublet-triplet splitting is naturally realized in SO(10) unification using the Dimopoulos-Wilczek mechanism. The anomalous U(1)A gauge symmetry plays an essential role in the double-triplet splitting mechanism. It is interesting that the anomalous U(1)A charges determine the unification scale and mass spectrum of additional particles, as well as the order of the Yukawa couplings of quarks and leptons. For the neutrino sector, bi-maximal mixing angles are naturally obtained, and proton decay via dimension 5 operators is suppressed. It is suggestive that the anomalous U(1)A gauge symmetry motivated by superstring theory effectively solves the two biggest problems in grand unified theories, the fermion mass hierarchy problem and doublet-triplet splitting problem. (author)
Dependence of (anomalous) fading of infra-red stimulated luminescence on trap occupancy in feldspars
DEFF Research Database (Denmark)
Morthekai, P.; Jain, Mayank; Gach, Grzegorz; Elema, Dennis Ringkjøbing; Prip, Henrik
2013-01-01
after 90Sr/90Y beta particle irradiation (3.5–15%/decade) for all the measured feldspar mineral specimens. Similarly, the fading rates after x-rays of 50 kV and 10 kV fall in between those of beta particle and proton irradiations. Our results suggest that rate of anomalous fading in feldspars depends on......Dose dependency of anomalous fading of infra-red stimulated luminescence (IRSL) from feldspars has been investigated using radiations of different ionisation qualities. The rate of fading of the IRSL signal after proton irradiation (9.4–30%/decade) is on an average almost twice compared to that...
Anomalous Temperature Dependence of Vibrational Lifetimes in Water and Ice
Woutersen, Sander; Emmerichs, Uli; Nienhuys, Han-Kwang; Bakker, Huib J.
1998-08-01
We have used femtosecond two-color midinfrared spectroscopy to determine the temperature dependence of the OH-stretching lifetime in dilute HDO:D2O solution, both in the liquid and solid (ice Ih) state. Like many other properties of water, the vibrational lifetime shows a remarkable temperature dependence: In liquid water the vibrational relaxation of the OH-stretching mode is twice as slow as in ice, and becomes even slower with increasing temperature.
Mass anomalous dimension of SU(2) with N_{f}=8 using the spectral density method
DEFF Research Database (Denmark)
Suorsa, Joni M.; Leino, Viljami; Rantaharju, Jarno; Rantalaiho, Teemu; Rummukainen, Kari; Tuominen, Kimmo; Weir, David J.
2015-01-01
SU(2) with Nf=8 is believed to have an infrared conformal fixed point. We use the spectral density method to evaluate the coupling constant dependence of the mass anomalous dimension for massless HEX smeared, clover improved Wilson fermions with Schr\\"odinger functional boundary conditions....
Anomalous temperature dependence of excitation transfer between quantum dots
Czech Academy of Sciences Publication Activity Database
Král, Karel; Menšík, Miroslav
2015-01-01
Roč. 7, č. 4 (2015), 325-330. ISSN 2164-6627 R&D Projects: GA MŠk(CZ) LD14011; GA MŠk LH12236; GA MŠk LH12186 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : excitation transfer * quantum dots * temperature dependence * electron-phonon interaction Subject RIV: BM - Solid Matter Physics ; Magnetism
Anomalous temperature dependence of the fluorescence lifetime of phycobiliproteins
International Nuclear Information System (INIS)
Using a single photon counting technique we have investigated fluorescence decay spectra of phycobiliproteins with picosecond time resolution. The studies were performed in a wide range of temperatures—from 4 to 300 K. Comparing the fluorescence decay kinetics of samples rapidly frozen in liquid nitrogen with samples that were frozen slowly revealed that the temperature-dependent changes of phycobiliproteins fluorescence lifetime reflect the presence of three different stages, with a phase transition between 273 and 263 K that strongly depends on the rate of freezing. When the temperature decreases from 300 to 273 K, the fluorescence lifetime increases from 1.6 to 1.8 ns. In the region from 273 to 263 K we observed a decrease of the fluorescence lifetime, which strongly depends on the freezing rate: a slight decrease at high freezing rate and a drop down to 200 ps lifetime at slow freezing rate. In the low-temperature regime from 263 to 4 K a linear increase in the fluorescence lifetime was observed for all samples. It was found that the strong temperature dependence of the phycobiliprotein fluorescence, especially in the range between 263 and 273 K, is due to the interaction of the solvent with the chromophore bound to the protein. This feature is explained by a photoisomerization of the phycobiliproteins into a quenching form which is naturally prevented by the protein environment. The formation of ice microcrystals at low freezing rate eliminates this ‘protective’ effect of the protein environment. (letter)
Anomalous temperature dependence of the fluorescence lifetime of phycobiliproteins
Maksimov, E. G.; Schmitt, F.-J.; Hätti, P.; Klementiev, K. E.; Paschenko, V. Z.; Renger, G.; Rubin, A. B.
2013-05-01
Using a single photon counting technique we have investigated fluorescence decay spectra of phycobiliproteins with picosecond time resolution. The studies were performed in a wide range of temperatures—from 4 to 300 K. Comparing the fluorescence decay kinetics of samples rapidly frozen in liquid nitrogen with samples that were frozen slowly revealed that the temperature-dependent changes of phycobiliproteins fluorescence lifetime reflect the presence of three different stages, with a phase transition between 273 and 263 K that strongly depends on the rate of freezing. When the temperature decreases from 300 to 273 K, the fluorescence lifetime increases from 1.6 to 1.8 ns. In the region from 273 to 263 K we observed a decrease of the fluorescence lifetime, which strongly depends on the freezing rate: a slight decrease at high freezing rate and a drop down to 200 ps lifetime at slow freezing rate. In the low-temperature regime from 263 to 4 K a linear increase in the fluorescence lifetime was observed for all samples. It was found that the strong temperature dependence of the phycobiliprotein fluorescence, especially in the range between 263 and 273 K, is due to the interaction of the solvent with the chromophore bound to the protein. This feature is explained by a photoisomerization of the phycobiliproteins into a quenching form which is naturally prevented by the protein environment. The formation of ice microcrystals at low freezing rate eliminates this ‘protective’ effect of the protein environment.
Frequency dependence of anomalous transport in field theory and holography⋆,⋆⋆
Directory of Open Access Journals (Sweden)
Megías Eugenio
2014-01-01
Full Text Available We study the frequency dependence of anomalous transport coefficients for a relativistic gas of free chiral fermions and for a strongly coupled conformal field theory with holographic dual. We perform the computation by using the Kubo formulae for- malism, and compare with a hydrodynamic calculation of two point functions. Some implications for heavy ion physics are discussed.
Pauli equation with position-dependent mass
International Nuclear Information System (INIS)
The motion of electron with position-dependent mass is studied. The number of zero modes for an electron with position dependent mass in magnetic field is found as well. This result is the generation of Aharonov-Casher theorem obtained for constant mass for the case of position-dependent mass
Origin of the anomalous temperature dependence of coercivity in soft ferromagnets
International Nuclear Information System (INIS)
We report on the origin of the anomalous temperature dependence of coercivity observed in some soft ferromagnets by studying the magnetic and electronic properties of FeZr films doped using ion implantation by H, He, B, C, and N. The anomalous increase of the coercivity with temperature was observed only in the C- and B-doped samples. Using x-ray photoelectron spectroscopy, we show that the anomalous behavior of the coercivity coincides with the occurrence of an electron charge transfer for those implanted samples. The origin of the anomaly is discussed in terms of (i) magnetic softness, (ii) nature of the Fe-C and -B covalent bonds, and (iii) large charge transfer
Polarization dependent diffraction anomalous fine structure of rutile TiO2 001 and 111 reflections
International Nuclear Information System (INIS)
Energy and polarization dependent Diffraction Anomalous Fine Structure (DAFS) also known as Anisotropic Anomalous Scattering (AAS) can be employed in addition to X-ray Absorption Fine Structure (XAFS) to study electronic transitions from core states to unoccupied states. Here, we present results from resonant X-ray diffraction experiments on TiO2 rutile, space group (136) P42/mnm. For this model structure, site symmetry information was extracted from determination of the structure factor tensor by refining elements of Ti atomic scattering factor tensors. Influences of oxygen vacancies on the anomalous scattering contributions have been studied on a series of rutile wafers of different oxygen concentration. Samples investigated were 10 x 10 x 1 mm3 single crystal wafers and experiments were carried out at DESY/HASYLAB beamlines C and E2 using a Si(111) double crystal monochromator in the vicinity of the Ti-K absorption edge. Considered reflections include the 'forbidden' 001 and allowed 111 reflection.
Anomalous Temperature Dependence of Magnetic Moment in Monodisperse Antiferromagnetic Nanoparticles
Gillaspie, Dane; Gu, B.; Wang, W.; Shen, J.
2005-03-01
1 Condensed Matter Sciences Division, Oak Ridge National Laboratory*, TN 37831 2 Department of Physics and Astronomy, The University of Tennessee, TN 37996 3 Environmental Sciences Division, Oak Ridge National Laboratory*, TN 37831 Recent experiments [1] and theory [2] from AFM nanoparticles showed that they exhibit sizable net magnetization, which increases with increasing temperature. In order to further understand such peculiar temperature dependence, we have measured the magnetic properties of monodisperse hematite (α-Fe2O3) nanoparticles, grown using a microemulsion precipitation technique, which minimizes the impact of the particle moment distribution on the measured properties of the samples. Our measured results indicate that the net magnetization of these nanoparticles, when small, indeed increases linearly with increasing temperature. This is in sharp contrast to the bulk-like behavior of α-Fe2O3, which was observed in particles with size larger than 120 nm. [1] M. Seehra et al, Phys. Rev. B 61, 3513 (2000) [2] S. Mørup, C. Frandsen, Phys. Rev. Lett. 92, 217201 (2004) *Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725
Capilla, J. E.; Sanchez Fuster, I.; Sanchez Barrero, L.
2012-12-01
The limitations of the classical Advection-Dispersion Equation (ADE) approach to model mass transport remain a subject of research. The term anomalous transport is usually applied when the ADE fails to reproduce real field or lab experiments tracer tests data. Some authors address this limitation using high-resolution heterogeneous hydraulic conductivity (K) fields. Besides, the non-Fickian behavior of transport is another issue addressed. However, the effects of the spatial variability of dispersivity, and the influence of the model support scale on this property, have been rarely studied. The lack of experimental knowledge on the dispersivity behavior leads to model this basic parameter as an averaged calibrated parameter highly dependent on the model discretization size. In order to study the local behavior of the dispersivity a porous medium tank was designed and built at the Technical University of Valencia (Spain). This paper presents new results and conclusions obtained from the experiments conducted in this lab prototype. The steady flow through the porous medium tank lab is quasi-2D, and the K field imitates the patterns of spatial variability found in a real and highly heterogeneous formation (MADE2 site). The tracer tests are run using a conservative dye tracer and the tank is monitored by a grid of pressure transducers and taking digital images that are processed to map the evolution of solute concentrations in the tank. The set of exhaustive head and concentration data is used to compute detail local information of the effective dispersivity field at different time steps, and at different support scales. The analysis of results shows that the dispersivity field displays patterns of spatial variability related with the physical nature of the local material and also with the local evolution of concentrations at every grid block. We have found that the anomalous transport behavior observed in the lab tank can be accurately modeled using the classical ADE
The origin of compact galaxies with anomalously high black hole masses.
Barber, C.; Schaye, J.; Bower, R. G.; Crain, R. A.; Schaller, M.; Theuns, T.
2016-01-01
Observations of local galaxies harbouring supermassive black holes (BH) of anomalously high mass, MBH, relative to their stellar mass, M*, appear to be at odds with simple models of the co-evolution between galaxies and their central BHs. We study the origin of such outliers in a Λ cold dark matter context using the EAGLE cosmological, hydrodynamical simulation. We find 15 ‘MBH(M*)-outlier' galaxies, defined as having MBH more than 1.5 dex above the median MBH(M*) relation in the simulation, ...
Constraint on the QED vertex from the mass anomalous dimension γm = 1
International Nuclear Information System (INIS)
We discuss the structure of the non-perturbative fermion-boson vertex in quenched QED. We show that it is possible to construct a vertex which not only ensures that the fermion propagator is multiplicatively renormalizable, obeys the appropriate Ward-Takahashi identity, reproduces perturbation theory for weak couplings and guarantees that the critical coupling at which the mass is dynamically generated is gauge independent but also makes sure that the value for the anomalous dimension for the mass function is strictly 1, as Holdom and Mahanta have proposed. (author). 8 refs
The origin of compact galaxies with anomalously high black hole masses.
Barber, C; Schaye, J.; Bower, R. G.; Crain, R.A.; Schaller, M.; Theuns, T.
2016-01-01
Observations of local galaxies harbouring supermassive black holes (BHs) of anomalously high mass, M_BH, relative to their stellar mass, M_star, appear to be at odds with simple models of the co-evolution between galaxies and their central BHs. We study the origin of such outliers in a Lambda cold dark matter context using the EAGLE cosmological, hydrodynamical simulation. We find 15 'M_BH(M_star)-outlier' galaxies, defined as having M_BH more than 1.5 dex above the median M_BH(M_star) relati...
Dependence of (anomalous) fading of infra-red stimulated luminescence on trap occupancy in feldspars
International Nuclear Information System (INIS)
Dose dependency of anomalous fading of infra-red stimulated luminescence (IRSL) from feldspars has been investigated using radiations of different ionisation qualities. The rate of fading of the IRSL signal after proton irradiation (9.4–30%/decade) is on an average almost twice compared to that after 90Sr/90Y beta particle irradiation (3.5–15%/decade) for all the measured feldspar mineral specimens. Similarly, the fading rates after x-rays of 50 kV and 10 kV fall in between those of beta particle and proton irradiations. Our results suggest that rate of anomalous fading in feldspars depends on the number density of the trapped charge carriers. These results support the hypothesis that anomalous fading occurs across randomly distributed donor-acceptor distances as opposed to pairs with a fixed distance. -- Highlights: • Proton irradiated IRSL in feldspar fades twice as fast as that of beta particles. • Systematic increase of fading rates with beta particles, x-rays and proton. • Observation suggests the dose rate is dose dependent i.e., burial age. • Tunnelling model with randomly distributed sites is favoured by the results
Anomalous temperature dependency of the Anderson-Grüneisen parameters in high ionic conductors
International Nuclear Information System (INIS)
The Anderson-Grüneisen (AG) parameter carries information on the anharmonicity of the atomic vibrations of the materials. Therefore, its study is expected to provide useful insights to understand the ion transport properties in solids. However, few attentions on the AG parameter of ionic conductors have been paid till now. In the present paper, a comparative study on the temperature dependence of the AG parameter in superionic materials and other crystals is presented. It is shown that the AG parameter of superionic materials exhibit anomalously large temperature dependencies. The relations of this finding with the material properties of ionic conductors are briefly discussed.
Anomalous Fano resonance of massive Dirac particle through a time-dependent barrier
Zhang, Cunxi; Liu, Jie; Fu, Libin
2015-06-01
As is well known Fano resonance arises from the interference between a localized state and a continuum state. Using the standard Floquet theory and the scattering matrix method, we study theoretically the massive Dirac particle transmission over a quantum barrier with an oscillating field. It is found that the massive relativistic particles can generate not only normal Fano resonance in the transmission due to the interference between a localized state (bound state) and the continuum state, but also anomalous Fano resonance due to the interference between a delocalized state (extended state) and the continuum state. The dependence of line shapes on driving parameters for these two kinds of Fano resonances is quite different. For normal Fano resonance the asymmetry parameter is approximately proportional to a power law of the amplitude of the oscillating field, while for the anomalous Fano resonance the asymmetry parameters change slightly with different oscillation amplitudes. In practice, the anomalous Fano resonance can be identified by observing asymmetry parameters in experiment.
Higgs mass and muon anomalous magnetic moment in the U(1) extended MSSM
Endo, Motoi; Iwamoto, Sho; Nakayama, Kazunori; Yokozaki, Norimi
2011-01-01
We study phenomenological aspects of the MSSM with extra U(1) gauge symmetry. We find that the lightest Higgs boson mass can be increased up to 125GeV without introducing a large SUSY scale or large A-terms, in the frameworks of the CMSSM and gauge mediated SUSY breaking (GMSB) models. This scenario can simultaneously explain the discrepancy of the muon anomalous magnetic moment (muon g-2) at the 1 sigma / 2 sigma level for U(1)-extended CMSSM / GMSB models. In the CMSSM case, the dark matter abundance can also be explained.
Anomalous coupling, top-mass and parton-shower effects in W + W - production
Bellm, J.; Gieseke, S.; Greiner, N.; Heinrich, G.; Plätzer, S.; Reuschle, C.; von Soden-Fraunhofen, J. F.
2016-05-01
We calculate the process ppto {W}+{W}-to {e}+{ν}_e{μ}-{overline{ν}}_{μ } at NLO QCD, including also effective field theory (EFT) operators mediating the ggW + W - interaction, which first occur at dimension eight. We further combine the NLO and EFT matrix elements produced by G oS am with the H erwig7/M atchbox framework, which offers the possibility to study the impact of a parton shower. We assess the effects of the anomalous couplings by comparing them to top-mass effects as well as uncertainties related to variations of the renormalisation, factorisation and hard shower scales.
Energy Technology Data Exchange (ETDEWEB)
Migliori, A.; Maxton, P.M.; Clogston, A.M.; Zirngiebl, E.; Lowe, M.
1988-12-15
We measured the temperature dependence of the intensity of the two lowest Raman modes in single crystals of l-alanine. The sum of the intensities obeys Maxwell-Boltzman statistics accurately from 20 to 340 K but the intensities of the individual lines are anomalous. This behavior is explained by assuming that both lines share the same degrees of freedom but that a mode instability is triggered abruptly at an occupation of seven quanta. This instability, which has an activation energy of 500 K, is observed at temperatures as low as 20 K, possibly indicating the existence of dynamic localization of vibrational energy.
Gao, Xing; Shi, Zhijun; Lau, Andrew; Liu, Changqin; Yang, Guang; Silberschmidt, Vadim V
2016-05-01
This study is focused on anomalous strain-rate-dependent behaviour of bacterial cellulose (BC) hydrogel that can be strain-rate insensitive, hardening, softening, or strain-rate insensitive in various ranges of strain rate. BC hydrogel consists of randomly distributed nanofibres and a large content of free water; thanks to its ideal biocompatibility, it is suitable for biomedical applications. Motivated by its potential applications in complex loading conditions of body environment, its time-dependent behaviour was studied by means of in-aqua uniaxial tension tests at constant temperature of 37 °C at various strain rates ranging from 0.000 1s(-1) to 0.3s(-1). Experimental results reflect anomalous strain-rate-dependent behaviour that was not documented before. Micro-morphological observations allowed identification of deformation mechanisms at low and high strain rates in relation to microstructural changes. Unlike strain-rate softening behaviours in other materials, reorientation of nanofibres and kinematics of free-water flow dominate the softening behaviour of BC hydrogel at high strain rates. PMID:26952406
Anomalous roughness of turbulent interfaces with system size dependent local roughness exponent
International Nuclear Information System (INIS)
In a system far from equilibrium the system size can play the role of control parameter that governs the spatiotemporal dynamics of the system. Accordingly, the kinetic roughness of interfaces in systems far from equilibrium may depend on the system size. To get an insight into this problem, we performed a detailed study of rough interfaces formed in paper combustion experiments. Using paper sheets of different width λ, we found that the turbulent flame fronts display anomalous multi-scaling characterized by non-universal global roughness exponent α and by the system size dependent spectrum of local roughness exponents, ζq(λ)=ζ1(1)q-ωλφq=0.93q-0.15. The structure factor of turbulent flame fronts also exhibits unconventional scaling dependence on λ. These results are expected to apply to a broad range of far from equilibrium systems when the kinetic energy fluctuations exceed a certain critical value.
Institute of Scientific and Technical Information of China (English)
Quanli; Dong; Dawei; Yuan; Shoujun; Wang; Xun; Liu; Yutong; Li; Xiaoxuan; Lin; Huigang; Wei; Jiayong; Zhong; Shaoen; Jiang; Yongkun; Ding; Bobin; Jiang; Kai; Du; Yongjian; Tang; Mingyang; Yu; Xiantu; He; Neng; Hua; Zhanfeng; Qiao; Kuixi; Huang; Ming; Chen; Jianqiang; Zhu; Gang; Zhao; Zhengming; Sheng; Jie; Zhang
2013-01-01
The driving mechanism of solar flares and coronal mass ejections is a topic of ongoing debate, apart from the consensus that magnetic reconnection plays a key role during the impulsive process. While present solar research mostly depends on observations and theoretical models, laboratory experiments based on high-energy density facilities provide the third method for quantitatively comparing astrophysical observations and models with data achieved in experimental settings.In this article, we show laboratory modeling of solar flares and coronal mass ejections by constructing the magnetic reconnection system with two mutually approaching laser-produced plasmas circumfused of self-generated megagauss magnetic fields. Due to the Euler similarity between the laboratory and solar plasma systems, the present experiments demonstrate the morphological reproduction of flares and coronal mass ejections in solar observations in a scaled sense,and confirm the theory and model predictions about the current-sheet-born anomalous plasmoid as the initial stage of coronal mass ejections, and the behavior of moving-away plasmoid stretching the primary reconnected field lines into a secondary current sheet conjoined with two bright ridges identified as solar flares.
Anomalous dependence of population growth on the birth rate in the plant-herbivore system
Energy Technology Data Exchange (ETDEWEB)
Cui, Xue M. [Chungbuk National University, Cheongju (Korea, Republic of); Yanbian University, Yanji (China); Han, Seung K.; Chung, Jean S. [Chungbuk National University, Cheongju (Korea, Republic of)
2010-12-15
We performed a simulation of the two-species plant-herbivore system by using the agent-based NetLogo program and constructed a dynamic model of populations consistent with the simulation results. The dynamic model is a three-dimensional system including the mean energy of the herbivore in addition to two variables denoting the populations of plants and herbivores. A steady-state analysis of the dynamic model shows that the dependence of the herbivore population on the birth and the death rates observed from the agent model is consistent with the prediction of the dynamic model. Especially, the anomalous dependence of the herbivore population on the birth rate, where the population decreases with the birth rate for small death rate, is consistently explained by a phase plane analysis of the dynamic model.
Anomalous strain rate dependence of the flow stress in polycrystalline TiAl intermetallic compounds
International Nuclear Information System (INIS)
Plastic deformation of TiAl and TiAl-V intermetallic compounds have been studied by compression experiment at various temperatures and strain rates. The results showed that plastic deformation was controlled primarily by Peierls Nabarro, cross slip and creep mechanisms of dislocations in distinct temperature ranges. In TiAl-V alloy deformed at range of 600-700K, anomalous strain rate dependence of flow stress was observed, i.e., the larger the plastic strain was, the more negative the dependence. A possible mechanism of the anomaly could be interpreted by thermal activation of dislocation cross slipping. The effects of temperature and strain rate on work-hardening exponent were also studied and discussed in the present paper
The temperature dependent anomalous Hall effect in La-Ca-Mn-O films
International Nuclear Information System (INIS)
The colossal magnetoresistance of La1-xCaxMnO3 has been reported in many experiments. The authors present their study of the anomalous Hall effect in epitaxial La0.67Ca0.33MnO3 thin films. They have measured the temperature dependence of resistivity, magnetization and AHE coefficients between 300K and 5K for the samples grown on different substrates. From these studies, the relation between the resistivity and AHE coefficient as well as the temperature dependence of AHE coefficient are explored. The results show that the direction of AHE is reversed below approximately 100K. This sign reversal is discussed in term of the change of band structure and the co-existence of hole-like and electron-like conduction
Gopalswamy, Nat; Akiyama, Sachiko; Yashiro, Seiji; Xie, Hong; Makela, Pertti; Michalek, Grzegorz
2014-01-01
The familiar correlation between the speed and angular width of coronal mass ejections (CMEs) is also found in solar cycle 24, but the regression line has a larger slope: for a given CME speed, cycle 24 CMEs are significantly wider than those in cycle 23. The slope change indicates a significant change in the physical state of the heliosphere, due to the weak solar activity. The total pressure in the heliosphere (magnetic + plasma) is reduced by approximately 40%, which leads to the anomalous expansion of CMEs explaining the increased slope. The excess CME expansion contributes to the diminished effectiveness of CMEs in producing magnetic storms during cycle 24, both because the magnetic content of the CMEs is diluted and also because of the weaker ambient fields. The reduced magnetic field in the heliosphere may contribute to the lack of solar energetic particles accelerated to very high energies during this cycle.
International Nuclear Information System (INIS)
The temperature dependence of the magneto-conductance (MC) in organic electron donor-acceptor hybrid and layer heterojunction diodes was studied. The MC value increased with temperature in layer heterojunction and in 10 wt. % hybrid devices. An anomalous decrease of the MC with temperature was observed in 25 wt. %–50 wt. % hybrid devices. Further increasing donor concentration to 75 wt. %, the MC again increased with temperature. The endothermic exciplex-exciton energy transfer and the change in electroplex/exciton ratio caused by change in charge transport with temperature may account for these phenomena. Comparative studies of the temperature evolutions of the IV curves and the electroluminescence and photoluminescence spectra back our hypothesis
The origin of compact galaxies with anomalously high black hole masses
Barber, Christopher; Bower, Richard G; Crain, Robert A; Schaller, Matthieu; Theuns, Tom
2016-01-01
Observations of local galaxies harbouring supermassive black holes (BH) of anomalously high mass, M_BH, relative to their stellar mass, M_star, appear to be at odds with simple models of the co-evolution between galaxies and their central BHs. We study the origin of such outliers in a LCDM context using the EAGLE cosmological, hydrodynamical simulation. We find 15 "M_BH(M_star)-outlier" galaxies, defined as having M_BH more than 1.5 dex above the median M_BH(M_star) relation in the simulation, M_{BH,med}. All M_BH(M_star)-outliers are satellite galaxies, typically with M_star ~ 10^10 M_sun and M_BH ~ 10^8 M_sun. They have all become outliers primarily due to tidal stripping of their outer stellar component acting over several Gyr, with a secondary effect of rapid BH growth at high-z causing some to lie approximately 1 dex above the z=0 relation prior to stripping. The same mechanisms also cause the M_BH(M_star)-outlier satellites to be amongst the most compact galaxies in the simulation, making them ideal can...
The four-loop DRED gauge β-function and fermion mass anomalous dimension for general gauge groups
International Nuclear Information System (INIS)
We present four-loop results for the gauge β-function and the fermion mass anomalous dimension for a gauge theory with a general gauge group and a multiplet of fermions transforming according to an arbitrary representation, calculated using the dimensional reduction scheme. In the special case of a supersymmetric theory we confirm previous calculations of both the gauge β-function and the gaugino mass β-function
Shear viscosity of liquid mixtures: Mass dependence
International Nuclear Information System (INIS)
Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model. (author)
The origin of compact galaxies with anomalously high black hole masses
Barber, Christopher; Schaye, Joop; Bower, Richard G.; Crain, Robert A.; Schaller, Matthieu; Theuns, Tom
2016-07-01
Observations of local galaxies harbouring supermassive black holes (BH) of anomalously high mass, MBH, relative to their stellar mass, M*, appear to be at odds with simple models of the co-evolution between galaxies and their central BHs. We study the origin of such outliers in a Λ cold dark matter context using the EAGLE cosmological, hydrodynamical simulation. We find 15 `MBH(M*)-outlier' galaxies, defined as having MBH more than 1.5 dex above the median MBH(M*) relation in the simulation, MBH, med(M*). All MBH(M*)-outliers are satellite galaxies, typically with M* ˜ 1010 M⊙ and MBH ˜ 108 M⊙. They have all become outliers due to a combination of tidal stripping of their outer stellar component acting over several Gyr and early formation times leading to rapid BH growth at high redshift, with the former mechanism being most important for 67 per cent of these outliers. The same mechanisms also cause the MBH(M*)-outlier satellites to be amongst the most compact galaxies in the simulation, making them ideal candidates for ultracompact dwarf galaxy progenitors. The 10 most extreme central galaxies found at z = 0 (with log10(MBH/MBH, med(M*)) ∈ [1.2, 1.5]) grow rapidly in MBH to lie well above the present-day MBH - M* relation at early times (z ≳ 2), and either continue to evolve parallel to the z = 0 relation or remain unchanged until the present day, making them `relics' of the high-redshift universe. This high-z formation mechanism may help to explain the origin of observed MBH(M*)-outliers with extended dark matter haloes and undisturbed morphologies.
Anomalous length dependence of the conductance of graphene nanoribbons with zigzag edges
Bilić, Ante
2013-01-01
Charge transport through two sets of symmetric graphene nanoribbons with zigzag shaped edges in a two-terminal device has been investigated, using density functional theory combined with the non-equilibrium Green\\'s function method. The conductance has been explored as a function of nanoribbon length, bias voltage, and the strength of terminal coupling. The set of narrower nanoribbons, in the form of thiolated linear acenes, shows an anomalous length dependence of the conductance, which at first exhibits a drop and a minimum, followed by an evident rise. The length trend is shown to arise because of a gradual transformation in the transport mechanism, which changes from being governed by a continuum of out-of-plane π type and in-plane state channels to being fully controlled by a single, increasingly more resonant, occupied π state channel. For the set of nanoribbons with a wider profile, a steady increase is observed across the whole length range, owing to the absence of the former transport mechanism. The predicted trends are confirmed by the inclusion of self-interaction correction in the calculations. For both sets of nanoribbons the replacement of the strongly coupling thiol groups by weakly bonding phenathroline has been found to cause a strong attenuation with the length and a generally low conductance. © 2013 American Institute of Physics.
Energy Technology Data Exchange (ETDEWEB)
Kim, Sang-Il; Seo, Min-Su; Park, Seung-Young, E-mail: parksy@kbsi.re.kr [Division of Materials Science, Korea Basic Science Institute, Daejeon 305-806 (Korea, Republic of); Kim, Dong-Jun; Park, Byong-Guk [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)
2015-05-07
The dependence of the measured DC voltage on the non-magnetic material (NM) in NM/CoFeB and CoFeB/NM bilayers is studied under ferromagnetic resonance conditions in a TE{sub 011} resonant cavity. The directional change of the inverse spin Hall effect (ISHE) voltage V{sub ISHE} for the stacking order of the bilayer can separate the pure V{sub ISHE} and the anomalous Hall effect (AHE) voltage V{sub AHE} utilizing the method of addition and subtraction. The Ta and Ti NMs show a broad deviation of the spin Hall angle θ{sub ISH}, which originates from the AHE in accordance with the high resistivity of NMs. However, the Pt and Pd NMs show that the kinds of NMs with low resistivity are consistent with the previously reported θ{sub ISH} values. Therefore, the characteristics that NM should simultaneously satisfy to obtain a reasonable V{sub ISHE} value in bilayer systems are large θ{sub ISH} and low resistivity.
Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe2
Das, Pranab Kumar; di Sante, D.; Vobornik, I.; Fujii, J.; Okuda, T.; Bruyer, E.; Gyenis, A.; Feldman, B. E.; Tao, J.; Ciancio, R.; Rossi, G.; Ali, M. N.; Picozzi, S.; Yadzani, A.; Panaccione, G.; Cava, R. J.
2016-02-01
The behaviour of electrons and holes in a crystal lattice is a fundamental quantum phenomenon, accounting for a rich variety of material properties. Boosted by the remarkable electronic and physical properties of two-dimensional materials such as graphene and topological insulators, transition metal dichalcogenides have recently received renewed attention. In this context, the anomalous bulk properties of semimetallic WTe2 have attracted considerable interest. Here we report angle- and spin-resolved photoemission spectroscopy of WTe2 single crystals, through which we disentangle the role of W and Te atoms in the formation of the band structure and identify the interplay of charge, spin and orbital degrees of freedom. Supported by first-principles calculations and high-resolution surface topography, we reveal the existence of a layer-dependent behaviour. The balance of electron and hole states is found only when considering at least three Te-W-Te layers, showing that the behaviour of WTe2 is not strictly two dimensional.
Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe2.
Das, Pranab Kumar; Di Sante, D; Vobornik, I; Fujii, J; Okuda, T; Bruyer, E; Gyenis, A; Feldman, B E; Tao, J; Ciancio, R; Rossi, G; Ali, M N; Picozzi, S; Yadzani, A; Panaccione, G; Cava, R J
2016-01-01
The behaviour of electrons and holes in a crystal lattice is a fundamental quantum phenomenon, accounting for a rich variety of material properties. Boosted by the remarkable electronic and physical properties of two-dimensional materials such as graphene and topological insulators, transition metal dichalcogenides have recently received renewed attention. In this context, the anomalous bulk properties of semimetallic WTe2 have attracted considerable interest. Here we report angle- and spin-resolved photoemission spectroscopy of WTe2 single crystals, through which we disentangle the role of W and Te atoms in the formation of the band structure and identify the interplay of charge, spin and orbital degrees of freedom. Supported by first-principles calculations and high-resolution surface topography, we reveal the existence of a layer-dependent behaviour. The balance of electron and hole states is found only when considering at least three Te-W-Te layers, showing that the behaviour of WTe2 is not strictly two dimensional. PMID:26924386
Quark mass dependence of H-dibaryon
Yamaguchi, Yasuhiro
2016-01-01
The H-dibaryon is the exotic multiquark state with baryon number 2 and strangeness $-2$. The existence of the deeply bound H-dibaryon is excluded by the observation of the double hypernuclei. However the recent Lattice QCD simulations have found the bound state below the $\\Lambda\\Lambda$ threshold with large quark masses by HALQCD and NPLQCD collaborations. In this talk, the quark mass dependence of the H-dibaryon mass is discussed using the pionless effective field theory (EFT) where a bare H-dibaryon field is coupled with two-baryon states. We determine the parameters in this theory by fitting the recent Lattice QCD results in the SU(3) limit. As a result, we obtain the attractive scattering length at the physical point where the H-dibaryon is unbound.
Thickness Dependence of the Quantum Anomalous Hall Effect in Magnetic Topological Insulator Films.
Feng, Xiao; Feng, Yang; Wang, Jing; Ou, Yunbo; Hao, Zhenqi; Liu, Chang; Zhang, Zuocheng; Zhang, Liguo; Lin, Chaojing; Liao, Jian; Li, Yongqing; Wang, Li-Li; Ji, Shuai-Hua; Chen, Xi; Ma, Xucun; Zhang, Shou-Cheng; Wang, Yayu; He, Ke; Xue, Qi-Kun
2016-08-01
The evolution of the quantum anomalous Hall effect with the thickness of Cr-doped (Bi,Sb)2 Te3 magnetic topological insulator films is studied, revealing how the effect is caused by the interplay of the surface states, band-bending, and ferromagnetic exchange energy. Homogeneity in ferromagnetism is found to be the key to high-temperature quantum anomalous Hall material. PMID:27166762
Charge-dependent correlations from event-by-event anomalous hydrodynamics
Hirono, Yuji; Kharzeev, Dmitri E
2016-01-01
We report on our recent attempt of quantitative modeling of the Chiral Magnetic Effect (CME) in heavy-ion collisions. We perform 3+1 dimensional anomalous hydrodynamic simulations on an event-by-event basis, with constitutive equations that contain the anomaly-induced effects. We also develop a model of the initial condition for the axial charge density that captures the statistical nature of random chirality imbalances created by the color flux tubes. Basing on the event-by-event hydrodynamic simulations for hundreds of thousands of collisions, we calculate the correlation functions that are measured in experiments, and discuss how the anomalous transport affects these observables.
Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe2
Das, P. K.; Di Sante, D.; Vobornik, I.; Fujii, J.; Okuda, T; Bruyer, E.; Gyenis, A.; Feldman, B; Tao, J.; Ciancio, R.; Rossi, G.; Ali, M.(National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia); Picozzi, S.; Yazdani, A.; G. Panaccione
2016-01-01
The behaviour of electrons and holes in a crystal lattice is a fundamental quantum phenomenon, accounting for a rich variety of material properties. Boosted by the remarkable electronic and physical properties of two-dimensional materials such as graphene and topological insulators, transition metal dichalcogenides have recently received renewed attention. In this context, the anomalous bulk properties of semimetallic WTe2 have attracted considerable interest. Here we report angle- and spin-r...
Czech Academy of Sciences Publication Activity Database
Čermák, Jiří; Král, Lubomír
Ostrava : Tanger Ltd, 2014. ISBN 978-80-87294-52-9. [Metal 2014. International Conference on Metallurgy and Materials /23./. Brno (CZ), 21.05.2014-23.05.2014] R&D Projects: GA ČR(CZ) GAP108/11/0148; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Diffusion * Carbon * phase decomposition * Carbon-supersaturation * Cr-Mo steels Subject RIV: BJ - Thermodynamics http://www.metal2014.com/cz/zobrazit-seznam-prispevku/2498-carbon-diffusion-in-carbon-supersaturated-9cr-1mo-steel-anomalous-temperature-dependence-of-carbon-diffusivity/
DEFF Research Database (Denmark)
Gorczyca, I.; Kamińska, A.; Staszczak, G.;
2010-01-01
The pressure-induced changes in the electronic band structures of In-containing nitride alloys, InxGa1-xN and InxAl1-xN are examined experimentally as well as by ab initio calculations. It is found that the band gap pressure coefficients, dEg/dp, exhibit very large bowing with x, and calculations...... with existing data for InxGa1-xN layers. We discuss possible explanations of the anomalously large magnitude of the dEg/dp bowing in these nitride alloys....
Resonant cavity mode dependence of anomalous and inverse spin Hall effect
International Nuclear Information System (INIS)
The direct current electric voltage induced by the Inverse Spin Hall Effect (ISHE) and Anomalous Hall Effect (AHE) was investigated in the TE011 and TE102 cavities. The ISHE and AHE components were distinguishable through the fitting of the voltage spectrum. The unwanted AHE was minimized by placing the DUT (Device Under Test) at the center of both the TE011 and TE102 cavities. The voltage of ISHE in the TE011 cavity was larger than that in the TE102 cavity due to the higher quality factor of the former. Despite optimized centering, AHE voltage from TE011 cavity was also higher. The reason was attributed to the E-field distribution inside the cavity. In the case of the TE011 cavity, the DUT was easily exposed to the E-field in all directions. Therefore, the parasitic AHE voltage in the TE102 cavity was less sensitive than that in the TE011 cavity to decentering problem
International Nuclear Information System (INIS)
The excitation wavelength dependence of the anomalous circular photogalvanic effect (ACPGE) current arising from the reciprocal spin Hall effect (RSHE) in undoped InGaAs/AlGaAs quantum wells is measured under normal incidence of circularly polarized light at room temperature. We found that the spot location with the maximum ACPGE current is wavelength independent. And the normalized ACPGE current decreases at smaller wavelengths, which can be attributed to the sharp decrease of the spin relaxation time (τs) and the hot electron relaxation time (τ1) at smaller wavelengths. The study of the excitation wavelength dependence of ACPGE current is a good supplement to the in-depth investigation of RSHE
Inosov, D. S.; Fink, J.; Kordyuk, A. A.; Borisenko, S. V.; Zabolotnyy, V. B.; Schuster, R.; Knupfer, M.; Büchner, B.; Follath, R.; Dürr, H. A.; Eberhardt, W.; Hinkov, V.; Keimer, B.; Berger, H.
2007-12-01
Using high-resolution angle-resolved photoemission spectroscopy we have studied the momentum and photon energy dependence of the anomalous high-energy dispersion, termed waterfalls, between the Fermi level and 1 eV binding energy in several high-Tc superconductors. We observe strong changes of the dispersion between different Brillouin zones and a strong dependence on the photon energy around 75 eV, which we associate with the resonant photoemission at the Cu3p→3dx2-y2 edge. We conclude that the high-energy “waterfall” dispersion results from a strong suppression of the photoemission intensity at the center of the Brillouin zone due to matrix element effects and is, therefore, not an intrinsic feature of the spectral function. This indicates that the new high-energy scale in the electronic structure of cuprates derived from the waterfall-like dispersion may be incorrect.
Institute of Scientific and Technical Information of China (English)
Juan Yang; Yu Liu; Daqi Zhang; Xiao Wang; Ruoming Li; Yan Li
2015-01-01
Owing to the unique conjugated structure, the chemical-reaction selectivity of single-walled carbon nanotubes （SWNTs） has attracted great attention. By utilizing the radial deformation of SWNTs caused by the strong interactions with the quartz lattice, we achieve an anomalous diameter-dependent reaction selectivity of quartz lattice-oriented SWNTs in treatment with iodine vapor; this is distinctly different from the widely reported and well accepted higher reaction activity in small-diameter tubes compared to large-diameter tubes. The radial deformation of SWNTs on quartz substrate is verified by detailed Raman spectroscopy and mappings in both G-band and radial breathing mode. Due to the strong interaction between SWNTs and the quartz lattice, large-diameter tubes present a larger degree of radial deformation and more delocalized partial electrons are distributed at certain sidewall sites with high local curvature. It is thus easier for the carbon--carbon bonds at these high-curvature sites on large-diameter tubes to break down during reaction. This anomalous reaction activity offers a novel approach for selective removal of small-band~aD large-diameter tubes.
Relaxation and anomalous T- and H-dependence of the μ coefficient in (K,Ba)BiO3 superconductors
International Nuclear Information System (INIS)
Ac shielding and classical DC relaxation experiments have been used to study the flux creep phenomena in the cubic (K,Ba)BiO3 superconductor (Tc ∝ 30 K). The relaxation rate is found to be constant (S ∝ 1.5%) at low temperature and magnetic field and increases sharply as the vortex-glass transition line is approached. This behavior can be attributed to an anomalous decrease of the μ exponent (U(J) = U0(J0/J)μ) close to Tg(H). In this regime, the temperature dependence of the apparent critical current J is then directly related to μ(T) as J(T) = J0/[kT/U0.ln(1/ωτ)] μ(T). A similar analysis can be made on the J(B) data recently published by Abulafia et al. (1996) on YBaCuO single crystals. (orig.)
Anomalous temperature dependence of PAL and 2D-ACAR in Ni-rich Ni-Ti alloy
International Nuclear Information System (INIS)
Ni-rich NiTi alloys have been investigated by means of PAL spectroscopy, electrical resistivity measurement, 2D-ACAR and first principle calculation. An anomaly of positron lifetime has been observed for Ni52Ti48 alloy which does not exhibit the martensitic transformation: positron lifetime increases by about 25% with lowering temperature. Almost the same change in positron lifetime is observed on the subsequent heating run with little hysteresis. The 2D-ACAR for the same alloy also depends on temperature anomalously: the peak height of the 2D-ACAR increases by 20% and the anisotropy decreases by 60% with lowering temperature. Experimental results are discussed with the idea of Fermi surface nesting of B2-NiTi which has been evaluated from the 2D-ACAR spectra by LCW theory. (orig.)
On the anomalous mass defect of strange stars in the Field Correlator Method
Pereira, F. I. M.
2016-09-01
We investigate general aspects of the mass defects of strange stars in the context of the Field Correlator Method, without magnetic field. The main parameters of the model that enter the corresponding nonperturbative equation of state of the quark gluon plasma are the gluon condensate G2 and the large distance static Q Q bar potential V1. We calculate mass defects of stellar configurations in the central density range 11 quark-novae explosions.
Biswas, Anirban; Khan, Sarif
2016-01-01
The observation of neutrino masses, mixing and the existence of dark matter are amongst the most important signatures of physics beyond the Standard Model (SM). In this paper, we propose to extend the SM by a local $L_\\mu - L_\\tau$ gauge symmetry, two additional complex scalars and three right-handed neutrinos. The $L_\\mu - L_\\tau$ gauge symmetry is broken spontaneously when one of the scalars acquires a vacuum expectation value. The $L_\\mu - L_\\tau$ gauge symmetry is known to be anomaly free and can explain the beyond SM measurement of the anomalous muon $({\\rm g-2})$ through additional contribution arising from the extra $Z_{\\mu\\tau}$ mediated diagram. Small neutrino masses are explained naturally through the Type-I seesaw mechanism, while the mixing angles are predicted to be in their observed ranges due to the broken $L_\\mu-L_\\tau$ symmetry. The second complex scalar is shown to be stable and becomes the dark matter candidate in our model. We show that while the $Z_{\\mu\\tau}$ portal is ineffective for the...
Current mass dependence of the quark condensate and the constituent quark mass
Musakhanov, M.
2001-01-01
We discuss the current mass dependence of the basic quantities of the quark models -- constituent quark mass M and quark condensate i. The framework of the consideration is QCD instanton vacuum model.
Burger, Florian; Hotzel, Grit; Jansen, Karl; Petschlies, Marcus; Renner, Dru B
2013-01-01
We present results for the leading order QCD correction to the anomalous magnetic moment of the muon including the first two generations of quarks as dynamical degrees of freedom. Several light quark masses are examined in order to yield a controlled extrapolation to the physical pion mass. We analyse ensembles for three different lattice spacings and several volumes in order to investigate lattice artefacts and finite-size effects, respectively. We also provide preliminary results for this quantity for two flavours of mass-degenerate quarks at the physical value of the pion mass.
Energy Technology Data Exchange (ETDEWEB)
Burger, Florian [Humboldt U. Berlin; Feng, Xu [KEK; Hotzel, Grit [Humboldt U. Berlin; Jansen, Karl [DESY; Petschlies, Marcus [The Cyprus Institute; Renner, Dru B. [JLAB
2013-11-01
We present results for the leading order QCD correction to the anomalous magnetic moment of the muon including the first two generations of quarks as dynamical degrees of freedom. Several light quark masses are examined in order to yield a controlled extrapolation to the physical pion mass. We analyse ensembles for three different lattice spacings and several volumes in order to investigate lattice artefacts and finite-size effects, respectively. We also provide preliminary results for this quantity for two flavours of mass-degenerate quarks at the physical value of the pion mass.
Energy Technology Data Exchange (ETDEWEB)
Burger, Florian; Hotzel, Grit [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Feng, Xu [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Petschlies, Marcus [The Cyprus Institute, Nicosia (Cyprus); Renner, Dru B. [Jefferson Lab, Newport News, VA (United States)
2013-12-15
We present results for the leading order QCD correction to the anomalous magnetic moment of the muon including the first two generations of quarks as dynamical degrees of freedom. Several light quark masses are examined in order to yield a controlled extrapolation to the physical pion mass. We analyse ensembles for three different lattice spacings and several volumes in order to investigate lattice artefacts and finite-size effects, respectively. We also provide preliminary results for this quantity for two flavours of mass-degenerate quarks at the physical value of the pion mass.
Impact parameter dependence of isospin effects on the mass dependence of balance energy
Gautam, Sakshi; Sood, Aman D.
2010-01-01
We study the effect of isospin degree of freedom on the balance energy as well as its mass dependence throughout the mass range 48-270 for two sets of isobaric systems with N/Z = 1 and 1.4 using isospin-dependent quantum molecular dynamics (IQMD) model. Our fndings reveal the dominance of Coulomb repulsion in isospin effects on balance energy as well as its mass dependence throughout the range of the colliding geometry.
Anomalous temperature dependence of the Casimir force for thin metal films.
Yampol'skii, V A; Savel'ev, Sergey; Mayselis, Z A; Apostolov, S S; Nori, Franco
2008-08-29
Within the framework of the Drude dispersive model, we predict an unusual nonmonotonic temperature dependence of the Casimir force for thin metal films. For certain conditions, this force decreases with temperature due to the decrease of the metallic conductivity, whereas the force increases at high temperatures due to the increase of the thermal radiation pressure. We consider the attraction of a film to: either (i) a bulk ideal metal with a planar boundary, or (ii) a bulk metal sphere (lens). The experimental observation of the predicted decreasing temperature dependence of the Casimir force can put an end to the long-standing discussion on the role of the electron relaxation in the Casimir effect. PMID:18851637
Arrese-Igor, Silvia; Alegría, Ángel; Moreno Segurado, Ángel J.; Colmenero de León, Juan
2011-01-01
We address the general question of how the molecular weight dependence of chain dynamics in unentangled polymers is modified by blending. By dielectric spectroscopy we measure the normal mode relaxation of polyisoprene in blends with a slower component of poly(ter-butylstyrene). Unentangled polyisoprene in the blend exhibits strong deviations from Rouse scaling, approaching 'entangled-like' behavior at low temperatures in concomitance with the increase of the dynamic asymmetry in the blend. T...
International Nuclear Information System (INIS)
Molecular dynamics simulations of amorphous silica nanowires under tension were analyzed for size and surface stress effects on mechanical properties and for structural modifications via bond angle distributions. Their fracture behavior was also investigated beyond the elastic limit. The Young’s moduli of silica nanowires were predicted to be about 75–100 GPa, depending on the nanowire size. The ultimate strength was calculated to be ∼10 GPa, depending on the diameter, which is in excellent agreement with the experiments. The dependence of the Young’s modulus on nanowire diameter is explained in terms of surface compressive stress effects. The fracture behavior of nanowires was also found to be influenced by surface compressive stresses. Bond angle distribution analysis of various nanowires reveals significant compressive surface states, as evidenced by the appearance of a secondary peak in the Si-O-Si bond angle distribution at ∼97°, which is absent in bulk silica. The strain rate was found to have a negligible effect on the Young’s modulus of the silica nanowires, but it has a critical role in determining their fracture mode. (paper)
Anomalous temperature-dependent spin-valley polarization in monolayer WS2
Hanbicki, A. T.; Kioseoglou, G.; Currie, M.; Hellberg, C. Stephen; McCreary, K. M.; Friedman, A. L.; Jonker, B. T.
2016-01-01
Single layers of transition metal dichalcogenides (TMDs) are direct gap semiconductors with nondegenerate valley indices. An intriguing possibility for these materials is the use of their valley index as an alternate state variable. Several limitations to such a utility include strong intervalley scattering, as well as multiparticle interactions leading to multiple emission channels. We prepare single-layer WS2 films such that the photoluminescence is from either the neutral or charged exciton (trion). After excitation with circularly polarized light, the neutral exciton emission has zero polarization. However, the trion emission has a large polarization (28%) at room temperature. The trion emission also has a unique, non-monotonic temperature dependence that is a consequence of the multiparticle nature of the trion. This temperature dependence enables us to determine that intervalley scattering, electron-hole radiative recombination, and Auger processes are the dominant mechanisms at work in this system. Because this dependence involves trion systems, one can use gate voltages to modulate the polarization (or intensity) emitted from TMD structures.
Dependence of Quark Effective Mass on Gluon Propagators
Institute of Scientific and Technical Information of China (English)
HE Xiao-Rong; ZHOU Li-Juan; MA Wei-Xing
2005-01-01
Based on Dyson-Schwinger Equations (DSEs) in the "rainbow" approximation, the dependence of quark effective mass on gluon propagator is investigated by use of three different phenomenological gluon propagators with two parameters, the strength parameter x and range parameter △. Our theoretical calculations for the quark effective mass Mf(p2), defined by the self-energy functions Af(p2) and Bf(p2) of the DSEs, show that the dynamically running quark effective mass is strongly dependent on gluon propagator. Therefore, because gluon propagator is completely unknown,the quark effective mass cannot be exactly determined theoretically.
Four-loop β function and mass anomalous dimension in dimensional reduction
International Nuclear Information System (INIS)
Within the framework of QCD we compute renormalization constants for the strong coupling and the quark masses to four-loop order. We apply the D-bar R-bar scheme and put special emphasis on the additional couplings which have to be taken into account. This concerns the ε-scalar-quark Yukawa coupling as well as the vertex containing four ε-scalars. For a supersymmetric Yang Mills theory, we find, in contrast to a previous claim, that the evanescent Yukawa coupling equals the strong coupling constant through three loops as required by supersymmetry
Glacier mass balance in high-arctic areas with anomalous gravity
Sharov, A.; Rieser, D.; Nikolskiy, D.
2012-04-01
All known glaciological models describing the evolution of Arctic land- and sea-ice masses in changing climate treat the Earth's gravity as horizontally constant, but it isn't. In the High Arctic, the strength of the gravitational field varies considerably across even short distances under the influence of a density gradient, and the magnitude of free air gravity anomalies attains 100 mGal and more. On long-term base, instantaneous deviations of gravity can have a noticeable effect on the regime and mass budget of glaciological objects. At best, the gravity-induced component of ice mass variations can be determined on topographically smooth, open and steady surfaces, like those of arctic planes, regular ice caps and landfast sea ice. The present research is devoted to studying gravity-driven impacts on glacier mass balance in the outer periphery of four Eurasian shelf seas with a very cold, dry climate and rather episodic character of winter precipitation. As main study objects we had chosen a dozen Russia's northernmost insular ice caps, tens to hundreds of square kilometres in extent, situated in a close vicinity of strong gravity anomalies and surrounded with extensive fields of fast and/or drift ice for most of the year. The supposition about gravitational forcing on glacioclimatic settings in the study region is based on the results of quantitative comparison and joint interpretation of existing glacier change maps and available data on the Arctic gravity field and solid precipitation. The overall mapping of medium-term (from decadal to half-centennial) changes in glacier volumes and quantification of mass balance characteristics in the study region was performed by comparing reference elevation models of study glaciers derived from Russian topographic maps 1:200,000 (CI = 20 or 40 m) representing the glacier state as in the 1950s-1980s with modern elevation data obtained from satellite radar interferometry and lidar altimetry. Free-air gravity anomalies were
Iha, Hisashi; Suzuki, Hiroshi
2016-01-01
We study four-dimensional conformal field theories with an $SU(N)$ global symmetry by employing the numerical conformal bootstrap. We consider the crossing relation associated with a four-point function of a spin~$0$ operator~$\\phi_i^{\\Bar{k}}$ which belongs to the adjoint representation of~$SU(N)$. For~$N=12$ for example, we found that the theory contains a spin~$0$ $SU(12)$-breaking relevant operator if the scaling dimension of~$\\phi_i^{\\Bar{k}}$, $\\Delta_{\\phi_i^{\\Bar{k}}}$, is smaller than~$1.63$. Considering the lattice simulation of the many-flavor QCD with $12$~flavors on the basis of the staggered fermion, the above $SU(12)$-breaking relevant operator, if it exists, would be induced by the flavor breaking effect of the staggered fermion and would prevent an approach to an infrared fixed point. Actual lattice simulations do not show such signs. Thus, assuming the absence of the above $SU(12)$-breaking relevant operator, we have an upper bound on the mass anomalous dimension at the fixed point~$\\gamma_m...
Iha, Hisashi; Makino, Hiroki; Suzuki, Hiroshi
2016-05-01
We study four-dimensional conformal field theories with an SU(N) global symmetry by employing the numerical conformal bootstrap. We consider the crossing relation associated with a four-point function of a spin 0 operator φ _i^{bar {k}} which belongs to the adjoint representation of SU(N). For N=12 for example, we found that the theory contains a spin 0 SU(12)-breaking relevant operator when the scaling dimension of φ _i^{bar {k}}, Δ _{φ _i^{bar {k}}}, is smaller than 1.71. Considering the lattice simulation of many-flavor quantum chromodynamics with 12 flavors on the basis of the staggered fermion, the above SU(12)-breaking relevant operator, if it exists, would be induced by the flavor-breaking effect of the staggered fermion and prevent an approach to an infrared fixed point. Actual lattice simulations do not show such signs. Thus, assuming the absence of the above SU(12)-breaking relevant operator, we have an upper bound on the mass anomalous dimension at the fixed point γ _m^*≤ 1.29 from the relation γ _m^*=3-Δ _{φ _i^{bar {k}}}. Our upper bound is not so strong practically but it is strict within the numerical accuracy. We also find a kink-like behavior in the boundary curve for the scaling dimension of another SU(12)-breaking operator.
Seki, Kazuhiko; Bagchi, Kaushik; Bagchi, Biman
2016-05-21
Diffusion in one dimensional rugged energy landscape (REL) is predicted to be pathologically different (from any higher dimension) with a much larger chance of encountering broken ergodicity [D. L. Stein and C. M. Newman, AIP Conf. Proc. 1479, 620 (2012)]. However, no quantitative study of this difference has been reported, despite the prevalence of multidimensional physical models in the literature (like a high dimensional funnel guiding protein folding/unfolding). Paradoxically, some theoretical studies of these phenomena still employ a one dimensional diffusion description for analytical tractability. We explore the dimensionality dependent diffusion on REL by carrying out an effective medium approximation based analytical calculations and compare them with the available computer simulation results. We find that at an intermediate level of ruggedness (assumed to have a Gaussian distribution), where diffusion is well-defined, the value of the effective diffusion coefficient depends on dimensionality and changes (increases) by several factors (∼5-10) in going from 1d to 2d. In contrast, the changes in subsequent transitions (like 2d to 3d and 3d to 4d and so on) are far more modest, of the order of 10-20% only. When ruggedness is given by random traps with an exponential distribution of barrier heights, the mean square displacement (MSD) is sub-diffusive (a well-known result), but the growth of MSD is described by different exponents in one and higher dimensions. The reason for such strong ruggedness induced retardation in the case of one dimensional REL is discussed. We also discuss the special limiting case of infinite dimension (d = ∞) where the effective medium approximation becomes exact and where theoretical results become simple. We discuss, for the first time, the role of spatial correlation in the landscape on diffusion of a random walker. PMID:27208935
Energy Technology Data Exchange (ETDEWEB)
Kimball, Derek F.J.; Lacey, Ian; Valdez, Julian; Swiatlowski, Jerlyn; Rios, Cesar; Peregrina-Ramirez, Rodrigo; Montcrieffe, Caitlin; Kremer, Jackie; Dudley, Jordan; Sanchez, C. [Department of Physics, California State University - East Bay, Hayward, California, 94542-3084 (United States)
2013-07-15
The experimental concept of a search for a long-range coupling between rubidium (Rb) nuclear spins and the mass of the Earth is described. The experiment is based on simultaneous measurement of the spin precession frequencies for overlapping ensembles of {sup 85}Rb and {sup 87}Rb atoms contained within an evacuated, antirelaxation-coated vapor cell. Rubidium atoms are spin-polarized in the presence of an applied magnetic field by synchronous optical pumping with circularly polarized laser light. Spin precession is probed by measuring optical rotation of far-off-resonant, linearly polarized laser light. Simultaneous measurement of {sup 85}Rb and {sup 87}Rb spin precession frequencies enables suppression of magnetic-field-related systematic effects. The nuclear structure of the Rb isotopes makes the experiment particularly sensitive to anomalous spin-dependent interactions of the proton. Experimental sensitivity and a variety of systematic effects are discussed, and initial data are presented. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Mass-dependent Lorentz Violation and Neutrino Velocity
Li, Miao
2011-01-01
Motivated by a recent and several earlier measurement results of the neutrino velocity, we attempt to resolve the apparent discrepancies between them from the viewpoint of mass-energy relation in special relativity. It is argued that a complicated tachyonic neutrino model or a mass-dependent Lorentz violation theory can do this job.
International Nuclear Information System (INIS)
High temperature, self-propagating reactions are observed in vapor-deposited Al/Zr multilayered foils of overall atomic ratios 3 Al:1 Zr and 2 Al:1 Zr and nanoscale layer thicknesses; however, the reaction velocities do not exhibit the inverse dependence on bilayer thickness that is expected based on changes in the average diffusion distance. Instead, for bilayer thicknesses of 20-30 nm, the velocity is essentially constant at ∼7.7 m/s. We explore several possible explanations for this anomalous behavior, including microstructural factors, changes in the phase evolution, and phase transformations in the reactant layers, but find no conclusive explanations. We determine that the phase evolution during self-propagating reactions in foils with a 3 Al:1 Zr stoichiometry is a rapid transformation from Al/Zr multilayers to the equilibrium intermetallic Al3Zr compound with no intermediate crystalline phases. This phase evolution is the same for foils of 90 nm bilayer thicknesses and foils of bilayer thicknesses in the range of 27 nm to 35 nm. Further, for foils with a bilayer thickness of 90 nm and a 3 Al:1 Zr overall chemistry, the propagation front is planar and steady, in contrast to unsteady reaction fronts in foils with 1 Al:1 Zr overall chemistry and similar bilayer thicknesses
Anand, Mohit; Sinha, Anil K
2012-12-01
Kinetic studies and product profiling was done to understand the anomalous cracking of jathropha oil triglycerides in the presence of sulfided Co-Mo/Al(2)O(3) catalyst. At temperatures between 320 and 340 °C, only deoxygenation and oligomerization reactions took place whereas at temperatures above 340 °C, internal conversions between the products and direct conversion to lighter and middle distillates were favored High pressures (80 bar) and H(2)/feed ratios (>1500) were necessary to minimize oligomerization of the products and to increase the lifespan of the catalyst. Lumped kinetic models were validated with experimental results. Activation energies for the formation of lighter (83 kJ/mol) and middle fractions (126 kJ/mol) were higher than those for the heavy (47 kJ/mol) and deoxygenated (47 kJ/mol) products. Jatropha oil triglycerides hydroconversion pathways were dependent on temperature and the triglycerides could be hydrocracked to lower range hydrocarbons (C5-C14) by increasing the reaction temperatures. PMID:23073102
Harmonic oscillator with time - dependent mass and frequency
International Nuclear Information System (INIS)
A general treatment of the quantal harmonic oscillator with time-dependent mass and frequency is presented. The treatment is based on the use of some time-dependent transformations in the method of invariants of Lewis and Riesenfeld. Exact coherent states for such a system are also constructed. (A.C.A.S.)
Energy Technology Data Exchange (ETDEWEB)
Yang, Y. J.; Bao, J.; Gao, C., E-mail: zlluo@ustc.edu.cn, E-mail: cgao@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026 (China); CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Yang, M. M.; Luo, Z. L., E-mail: zlluo@ustc.edu.cn, E-mail: cgao@ustc.edu.cn; Hu, C. S.; Chen, X. C.; Pan, G. Q. [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026 (China); Huang, H. L. [CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, S.; Wang, J. W.; Li, P. S.; Liu, Y.; Zhao, Y. G. [Department of Physics and State Key Laboratory of New Ceramics, Fine Processing, Tsinghua University, Beijing 100084 (China); Jiang, T.; Liu, Y. K.; Li, X. G. [Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science, Technology of China, Hefei, Anhui 230026 (China)
2014-05-07
A series of Zn{sub x}Fe{sub 3−x}O{sub 4} (ZFO, x = 0.4) thin films were epitaxially deposited on single-crystal (001)-SrTiO{sub 3} (STO) substrates by radio frequency magnetron sputtering. The anomalous thickness-dependent strain states of ZFO films were found, i.e., a tensile in-plane strain exists in the thinner ZFO film and which monotonously turns into compressive in the thicker films. Considering the lattice constant of bulk ZFO is bigger than that of STO, this strain state cannot be explained in the conventional framework of lattice-mismatch-induced strain in the hetero-epitaxial system. This unusual phenomenon is proposed to be closely related to the Volmer-Weber film growth mode in the thinner films and incorporation of the interstitial atoms into the island's boundaries during subsequent epitaxial growth of the thicker films. The ZFO/STO epitaxial film is found in the nature of magnetic semiconductor by transport measurements. The in-plane magnetization of the ZFO/STO films is found to increase as the in-plane compressive strain develops, which is further proved in the (001)-ZFO/PMN-PT film where the film strain state can be in situ controlled with applied electric field. This compressive-strain-enhanced magnetization can be attributed to the strain-mediated electric-field-induced in-plane magnetic anisotropy field enhancement. The above results indicate that strain engineering on magnetic oxide semiconductor ZFO films is promising for novel oxide-electronic devices.
Yang, Y. J.; Yang, M. M.; Luo, Z. L.; Hu, C. S.; Bao, J.; Huang, H. L.; Zhang, S.; Wang, J. W.; Li, P. S.; Liu, Y.; Zhao, Y. G.; Chen, X. C.; Pan, G. Q.; Jiang, T.; Liu, Y. K.; Li, X. G.; Gao, C.
2014-05-01
A series of ZnxFe3-xO4 (ZFO, x = 0.4) thin films were epitaxially deposited on single-crystal (001)-SrTiO3 (STO) substrates by radio frequency magnetron sputtering. The anomalous thickness-dependent strain states of ZFO films were found, i.e., a tensile in-plane strain exists in the thinner ZFO film and which monotonously turns into compressive in the thicker films. Considering the lattice constant of bulk ZFO is bigger than that of STO, this strain state cannot be explained in the conventional framework of lattice-mismatch-induced strain in the hetero-epitaxial system. This unusual phenomenon is proposed to be closely related to the Volmer-Weber film growth mode in the thinner films and incorporation of the interstitial atoms into the island's boundaries during subsequent epitaxial growth of the thicker films. The ZFO/STO epitaxial film is found in the nature of magnetic semiconductor by transport measurements. The in-plane magnetization of the ZFO/STO films is found to increase as the in-plane compressive strain develops, which is further proved in the (001)-ZFO/PMN-PT film where the film strain state can be in situ controlled with applied electric field. This compressive-strain-enhanced magnetization can be attributed to the strain-mediated electric-field-induced in-plane magnetic anisotropy field enhancement. The above results indicate that strain engineering on magnetic oxide semiconductor ZFO films is promising for novel oxide-electronic devices.
International Nuclear Information System (INIS)
The high-pressure compression behaviour of 3 different cation forms of gallosilicate zeolite with CGS topology has been investigated using in situ synchrotron X-ray powder diffraction and a diamond-anvil cell technique. Under hydrostatic conditions mediated by a nominally penetrating pressure-transmitting medium, unit-cell lengths and volume compression is modulated by different degrees of pressure-induced hydration and accompanying channel distortion. In a Na-exchanged CGS (Na10Ga10Si22O64.16H2O), the unit-cell volume expands by ca. 0.6% upon applying hydrostatic pressure to 0.2 GPa, whereas, in an as-synthesized K-form (K10Ga10Si22O64.5H2O), this initial volume expansion is suppressed to ca. 0.1% at 0.16 GPa. In the early stage of hydrostatic compression below ∼1 GPa, relative decrease in the ellipticity of the non-planar 10-rings is observed, which is then reverted to a gradual increase in the ellipticity at higher pressures above ∼1 GPa, implying a change in the compression mechanism. In a Sr-exchanged sample (Sr5Ga10Si22O64.19H2O), on the other hand, no initial volume expansion is observed. Instead, a change in the slope of volume contraction is observed near 1.5 GPa, which leads to a 2-fold increase in the compressibility. This is interpreted as pressure-induced rearrangement of water molecules to facilitate further volume contraction at higher pressures. - Graphical abstract: Three different cation forms of gallosilicate CGS zeolites have been investigated using synchrotron X-ray powder diffraction and a diamond-anvil cell. Under hydrostatic conditions, unit-cell lengths and volume show anomalous compression behaviours depending on the non-framework cation type and initial hydration level, which implies different modes of pressure-induced hydration and channel distortion
Energy Technology Data Exchange (ETDEWEB)
Pan, S. S., E-mail: sspan@issp.ac.cn, E-mail: ghli@issp.ac.cn; Li, F. D.; Liu, Q. W.; Xu, S. C.; Luo, Y. Y. [Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanostructures, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, G. H., E-mail: sspan@issp.ac.cn, E-mail: ghli@issp.ac.cn [Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanostructures, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026 (China)
2015-05-07
SnO{sub 2} quantum dots (QDs) are potential materials for deep ultraviolet (DUV) light emitting devices. In this study, we report the temperature and excitation power-dependent exciton luminescence from SnO{sub 2} QDs. The exciton emission exhibits anomalous blue shift, accompanied with band width reduction with increasing temperature and excitation power above 300 K. The anomalous temperature dependences of the peak energy and band width are well interpreted by the strongly localized carrier thermal hopping process and Gaussian shape of band tails states, respectively. The localized wells and band tails at conduction minimum are considered to be induced by the surface oxygen defects and local potential fluctuation in SnO{sub 2} QDs.
Pion-mass dependence of three-nucleon observables
Hammer, H. -W.; D. R. Phillips; Platter, L.
2007-01-01
We use an effective field theory (EFT) which contains only short-range interactions to study the dependence of a variety of three-nucleon observables on the pion mass. The pion-mass dependence of input quantities in our ``pionless'' EFT is obtained from a recent chiral EFT calculation. To the order we work at, these quantities are the 1S0 scattering length and effective range, the deuteron binding energy, the 3S1 effective range, and the binding energy of one three-nucleon bound state. The ch...
Isotopic mass-dependence of noble gas diffusion coefficients inwater
Energy Technology Data Exchange (ETDEWEB)
Bourg, I.C.; Sposito, G.
2007-06-25
Noble gas isotopes are used extensively as tracers inhydrologic and paleoclimatic studies. These applications requireknowledge of the isotopic mass (m) dependence of noble gas diffusioncoefficients in water (D), which has not been measured but is estimatedusing experimental D-values for the major isotopes along with an untestedrelationship from kinetic theory, D prop m-0.5. We applied moleculardynamics methods to determine the mass dependence of D for four noblegases at 298 K, finding that D prop m-beta with beta<0.2, whichrefutes the kinetic theory model underlying all currentapplications.
On the quark-mass dependence of the baryon ground-state masses
Semke, A
2011-01-01
We perform a chiral extrapolation of the baryon octet and decuplet masses in a relativistic formulation of chiral perturbation theory. A partial summation is assumed as implied by the use of physical baryon and meson masses in the one-loop diagrams. Upon a chiral expansion our results are consistent with strict chiral perturbation theory at the next-to-next-to-next-to-leading order. All counter terms are correlated by a large-$N_c$ operator analysis. Our results are confronted with recent results of unquenched three flavor lattice simulations. We adjust the parameter set to the pion-mass dependence of the nucleon and omega masses as computed by the BMW group and predict the pion-mass dependence of the remaining baryon octet and decuplet states. The current lattice simulations can be described accurately and smoothly up to pion masses of about 600 MeV. In particular we recover the recent results of HSC without any further adjustments.
Analysis of the mass formula dependence of spallation product distribution
International Nuclear Information System (INIS)
A new version of a spallation reaction simulation code NUCLEUS has been developed by incorporating the newly revised Uno and Yamada's mass formula. The mass formula dependence of the spallation product distribution has been investigated by comparing the new results with those calculated by the original version which uses the combination of the Cameron's mass formula and the mass table compiled by Wapstra et al. Detailed differences between these two mass formulas are shown in the comparisons of mass excess values. The distributions of spallation products of a uranium target nucleus bombarded by high energy (0.38 - 2.9 GeV) protons have been calculated with the new and original versions of NUCLEUS. The calculated results show that there is no significant discrepancy in the non-fission component of cumulative product yields such as the mass distribution and the number of emitted neutrons but in the fission component Uno and Yamada's mass formula reproduces the measured data obtained from thin foil experiments significantly better, especially in the neutron excess side, than the Cameron's one. (author)
Haham, N.; Konczykowski, M.; Kuiper, B.; Koster, G.; Klein, L.
2013-01-01
We measure the anomalous Hall effect (AHE) in several patterns of the itinerant ferromagnet SrRuO 3 before and after the patterns are irradiated with electrons. The irradiation increases the resistivity of the patterns due to the introduction of point defects and we find that the AHE coefficient R
Inclination Dependence of Estimated Galaxy Masses and Star Formation Rates
Hernandez, Betsy; Maller, Ariyeh; McKernan, Barry; Ford, Saavik
2016-01-01
We examine the inclination dependence of inferred star formation rates and galaxy mass estimates in the Sloan Digital Sky Survey by combining the disk/bulge de-convolved catalog of Simard et al 2011 with stellar mass estimates catalog of Mendel et al 2014 and star formation rates measured from spectra by Brinchmann et al 2004. We know that optical star formation indicators are reddened by dust, but calculated star formation rates and stellar mass estimates should account for this. However, we find that face-on galaxies have a higher calculated average star formation rates than edge-on galaxies. We also find edge-on galaxies have ,on average, slightly smaller but similar estimated masses to face-on galaxies, suggesting that there are issues with the applied dust corrections for both models.
The dependence of quasar variability on black hole mass
Wold, M; Shang, Z
2006-01-01
In order to investigate the dependence of quasar variability on fundamental physical parameters like black hole mass, we have matched quasars from the QUEST1 Variability Survey with broad-lined objects from the Sloan Digital Sky Survey. The matched sample contains approximately 100 quasars, and the Sloan spectra are used to estimate black hole masses and bolometric luminosities. Variability amplitudes are measured from the QUEST1 light curves. We find that black hole mass correlates with several measures of the variability amplitude at the 99% significance level or better. The correlation does not appear to be caused by obvious selection effects inherent to flux-limited quasar samples, host galaxy contamination or other well-known correlations between quasar variability and luminosity/redshift. We evaluate variability as a function of rest-frame time lag using structure functions, and find further support for the variability--black hole mass correlation. The correlation is strongest for time lags of the order...
The dependence of convective core overshooting on stellar mass
Claret, Antonio
2016-01-01
Convective core overshooting extends the main-sequence lifetime of a star. Evolutionary tracks computed with overshooting are quite different from those that use the classical Schwarzschild criterion, which leads to rather different predictions for the stellar properties. Attempts over the last two decades to calibrate the degree of overshooting with stellar mass using detached double-lined eclipsing binaries have been largely inconclusive, mainly due to a lack of suitable observational data. Here we revisit the question of a possible mass dependence of overshooting with a more complete sample of binaries, and examine any additional relation there might be with evolutionary state or metal abundance Z. We use a carefully selected sample of 33 double-lined eclipsing binaries strategically positioned in the H-R diagram, with accurate absolute dimensions and component masses ranging from 1.2 to 4.4 solar masses. We compare their measured properties with stellar evolution calculations to infer semi-empirical value...
Zhu, Laipan; Liu, Yu; Gao, Hansong; Qin, Xudong; Li, Yuan; Wu, Qing; Chen, Yonghai
2014-01-01
We observed an anomalous linear photogalvanic effect (ALPGE) in undoped InGaAs/AlGaAs multiple quantum well and studied its wavelength dependence in details. This effect is believed to originate from the optical momentum alignment effect and the inhomogeneity of light intensity. We find that the spot location with the maximum ALPGE current is wavelength independent. And the normalized ALPGE current decreasing at smaller wavelengths is attributed to the sharp decrease of the momentum and energy relaxation time. The electrical measurement of the spectra dependence of ALPGE is highly sensitive proving to be an effective method for detecting the momentum anisotropy of photoinduced carriers and band coupling. PMID:25258612
Quark mass dependence of the X(3872) binding energy
Baru, V; Filin, A A; Hanhart, C; Meißner, U -G; Nefediev, A V
2013-01-01
We explore the quark-mass dependence of the pole position of the X(3872) state within the molecular picture. The calculations are performed within the framework of a nonrelativistic Faddeev-type three-body equation for the $D\\bar{D}\\pi$ system in the $J^{PC}=1^{++}$ channel. The $\\pi D$ interaction is parametrised via a $D^*$ pole, and a three-body force is included to render the equations well defined. Its strength is adjusted such that the X(3872) appears as a $D\\bar{D}^*$ bound state 0.5 MeV below the neutral threshold. We find that the trajectory of the X(3872) depends strongly on the assumed quark-mass dependence of the short-range interactions which can be determined in future lattice QCD calculations. At the same time we are able to provide nontrivial information on the chiral extrapolation in the $X$ channel.
Anomalous Dimensions of Conformal Baryons
Pica, Claudio
2016-01-01
We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small for a wide range of number of flavours. We also find that this is always smaller than the anomalous dimension of the fermion mass operator. These findings challenge the partial compositeness paradigm.
A Stellar-mass-dependent Drop in Planet Occurrence Rates
Mulders, Gijs D.; Pascucci, Ilaria; Apai, Dániel
2015-01-01
The Kepler spacecraft has discovered a large number of planets with up to one-year periods and down to terrestrial sizes. While the majority of the target stars are main-sequence dwarfs of spectral type F, G, and K, Kepler covers stars with effective temperatures as low as 2500 K, which corresponds to M stars. These cooler stars allow characterization of small planets near the habitable zone, yet it is not clear if this population is representative of that around FGK stars. In this paper, we calculate the occurrence of planets around stars of different spectral types as a function of planet radius and distance from the star and show that they are significantly different from each other. We further identify two trends. First, the occurrence of Earth- to Neptune-sized planets (1-4 R ⊕) is successively higher toward later spectral types at all orbital periods probed by Kepler; planets around M stars occur twice as frequently as around G stars, and thrice as frequently as around F stars. Second, a drop in planet occurrence is evident at all spectral types inward of a ~10 day orbital period, with a plateau further out. By assigning to each spectral type a median stellar mass, we show that the distance from the star where this drop occurs is stellar mass dependent, and scales with semi-major axis as the cube root of stellar mass. By comparing different mechanisms of planet formation, trapping, and destruction, we find that this scaling best matches the location of the pre-main-sequence co-rotation radius, indicating efficient trapping of migrating planets or planetary building blocks close to the star. These results demonstrate the stellar-mass dependence of the planet population, both in terms of occurrence rate and of orbital distribution. The prominent stellar-mass dependence of the inner boundary of the planet population shows that the formation or migration of planets is sensitive to the stellar parameters.
A STELLAR-MASS-DEPENDENT DROP IN PLANET OCCURRENCE RATES
International Nuclear Information System (INIS)
The Kepler spacecraft has discovered a large number of planets with up to one-year periods and down to terrestrial sizes. While the majority of the target stars are main-sequence dwarfs of spectral type F, G, and K, Kepler covers stars with effective temperatures as low as 2500 K, which corresponds to M stars. These cooler stars allow characterization of small planets near the habitable zone, yet it is not clear if this population is representative of that around FGK stars. In this paper, we calculate the occurrence of planets around stars of different spectral types as a function of planet radius and distance from the star and show that they are significantly different from each other. We further identify two trends. First, the occurrence of Earth- to Neptune-sized planets (1-4 R ⊕) is successively higher toward later spectral types at all orbital periods probed by Kepler; planets around M stars occur twice as frequently as around G stars, and thrice as frequently as around F stars. Second, a drop in planet occurrence is evident at all spectral types inward of a ∼10 day orbital period, with a plateau further out. By assigning to each spectral type a median stellar mass, we show that the distance from the star where this drop occurs is stellar mass dependent, and scales with semi-major axis as the cube root of stellar mass. By comparing different mechanisms of planet formation, trapping, and destruction, we find that this scaling best matches the location of the pre-main-sequence co-rotation radius, indicating efficient trapping of migrating planets or planetary building blocks close to the star. These results demonstrate the stellar-mass dependence of the planet population, both in terms of occurrence rate and of orbital distribution. The prominent stellar-mass dependence of the inner boundary of the planet population shows that the formation or migration of planets is sensitive to the stellar parameters
A STELLAR-MASS-DEPENDENT DROP IN PLANET OCCURRENCE RATES
Energy Technology Data Exchange (ETDEWEB)
Mulders, Gijs D.; Pascucci, Ilaria [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Apai, Dániel [Department of Astronomy, The University of Arizona, Tucson, AZ 85721, USA. (United States)
2015-01-10
The Kepler spacecraft has discovered a large number of planets with up to one-year periods and down to terrestrial sizes. While the majority of the target stars are main-sequence dwarfs of spectral type F, G, and K, Kepler covers stars with effective temperatures as low as 2500 K, which corresponds to M stars. These cooler stars allow characterization of small planets near the habitable zone, yet it is not clear if this population is representative of that around FGK stars. In this paper, we calculate the occurrence of planets around stars of different spectral types as a function of planet radius and distance from the star and show that they are significantly different from each other. We further identify two trends. First, the occurrence of Earth- to Neptune-sized planets (1-4 R {sub ⊕}) is successively higher toward later spectral types at all orbital periods probed by Kepler; planets around M stars occur twice as frequently as around G stars, and thrice as frequently as around F stars. Second, a drop in planet occurrence is evident at all spectral types inward of a ∼10 day orbital period, with a plateau further out. By assigning to each spectral type a median stellar mass, we show that the distance from the star where this drop occurs is stellar mass dependent, and scales with semi-major axis as the cube root of stellar mass. By comparing different mechanisms of planet formation, trapping, and destruction, we find that this scaling best matches the location of the pre-main-sequence co-rotation radius, indicating efficient trapping of migrating planets or planetary building blocks close to the star. These results demonstrate the stellar-mass dependence of the planet population, both in terms of occurrence rate and of orbital distribution. The prominent stellar-mass dependence of the inner boundary of the planet population shows that the formation or migration of planets is sensitive to the stellar parameters.
Mass-dependence of self-diffusion coefficients in disparate-mass binary fluid mixtures
I. Binas; I.Mryglod
2009-01-01
Self-diffusion coefficients of a binary fluid mixture with components differing only in their particle masses are studied, in particular the case when mass ratio μ of light and heavy particles tends to zero. These coefficients were calculated within the memory function formalism, using the systematic subsequence of approximations for the relaxation times of velocity autocorrelation function. We obtained a general relation for the self-diffusion coefficients which show polynomial dependence on...
Exactly solvable potentials with finite positive position-dependent mass
International Nuclear Information System (INIS)
Complete text of publication follows. Quantum mechanical potential problems with position-dependent mass occur in various branches of physics. There have been considerable efforts recently to obtain the exact analytical solution of the Schroedinger equation with various effective masses, but the results are less numerous and less systematic than in the case of constant-mass potential problems. The quantum mechanically acceptable one-dimensional position-dependent mass problems can be transformed to the form (- d/dx 1/M(x) d/dx + Veff (x)) ψ(x) = Eψ(x). (1) The procedure of solving this equation is usually done by adapting the methods applied in the constant mass case, i.e. Eq. (1) is transformed to the differential equation of some F special function of mathematical physics by substituting ψ(x) = f(x)F(g(x)). The g(x) function maps the domain of definition of ψ to that of F in a monotonous way. The mass function M(x) also has to be included in this procedure, and in the previous works it has been defined in terms of the derivative of g(x). Since g(x) and g'(x) are usually not bound and can be zero, the resulting mass function also has these features typically. The physical interpretation of the zeros and the singularities of M(x) usually need some kind of justification, but it may not be compatible with the actual physical nature of the problem. Recently we generalized the procedure of solving the position-dependent mass Schroedinger equation in a way that guarantees that M(x) remains finite and positive everywhere. We developed the formalism for the generalized Laguerre polynomials F(g) = Lnα (g) and considered the mass function M(g(x)) M0(γ + g(x))(δ + g(x))-1. The g(x) function was defined by g'(x) g(x)[B(δ + g(x)]-1/2, which contains as special cases the g(x) functions generating the harmonic oscillator (δ = 0) and the Morse potential (δ → ∞, Bδ = const.). Integrating g'(x) results in an implicit x(g) function x + K = (Bδ)1/2 ln ((δ + g)1/2 -
Anomalous Magnetohydrodynamics
Giovannini, Massimo
2013-01-01
Anomalous symmetries induce currents which can be parallel rather than orthogonal to the hypermagnetic field. Building on the analogy with charged liquids at high magnetic Reynolds numbers, the persistence of anomalous currents is scrutinized for parametrically large conductivities when the plasma approximation is accurate. Different examples in globally neutral systems suggest that the magnetic configurations minimizing the energy density with the constraint that the helicity be conserved co...
Anomalous bootstrap current due to drift waves
International Nuclear Information System (INIS)
An anomalous parallel current driven by radial flux in tokamak is discussed. Drift waves, which cause an anomalous cross field diffusion, can generate a parallel current in a sheared magnetic field, if the fluctuation level has radial dependence. (author)
Noncommutativity into Dirac Equation with mass dependent on the position
International Nuclear Information System (INIS)
Full text: In recent years, there is growing interest in the study of theories in non-commutative spaces. Non-commutative fields theories are related with compactifications of M theory, string theory and the quantum Hall effect. Moreover, the role of the non-commutativity of theories of a particle finds large applications when analyzed in scenarios of quantum mechanics and relativistic quantum mechanics. In these contexts investigations on the Schrodinger and Dirac equations with mass depending on the position (MDP) has attracted much attention in the literature. Systems endowed with MDP models are useful for the study of many physical problems. In particular, they are used to study the energy density in problems of many bodies, determining the electronic properties of semiconductor heterostructures and also to describe the properties of heterojunctions and quantum dots. In particular, the investigation of relativistic effects it is important for systems containing heavy atoms or doping by heavy ions. For these types of materials, the study of the properties of the Dirac equation, in the case where the mass becomes variable is of great interest. In this paper, we seek for the non-relativistic limit of the Dirac Hamiltonian in the context of a theory of effective mass, through a Foldy-Wouthuysen transformation. We analyse the Dirac equation with mass dependent on the position, in a smooth step shape mass distribution, in non-commutative space (NC). This potential type kink was recently discussed by several authors in the commutative context and now we present our results in the non-commutative context. (author)
Galaxy metallicities depend primarily on stellar mass and molecular gas mass
Bothwell, M S; Cicone, C; Peng, Y; Wagg, J
2016-01-01
In this work we present an analysis of the behaviour of galaxies in a four-dimensional parameter space defined by stellar mass, metallicity, star formation rate, and molecular gas mass. We analyse a combined sample of 227 galaxies, which draws from a number of surveys across the redshift range 0 90% of the sample at z~0), and covers > 3 decades in stellar mass.Using Principle Component Analysis, we demonstrate that galaxies in our sample lie on a 2-dimensional plane within this 4D parameter space, indicative of galaxies that exist in an equilibrium between gas inflow and outflow. Furthermore, we find that the metallicity of galaxies depends only on stellar mass and molecular gas mass. In other words, gas-phase metallicity has a negligible dependence on star formation rate, once the correlated effect of molecular gas content is accounted for. The well-known `fundamental metallicity relation', which describes a close and tight relationship between metallicity and SFR (at fixed stellar mass) is therefore entire...
Quark mass dependence of the X(3872) binding energy
Energy Technology Data Exchange (ETDEWEB)
Baru, V., E-mail: vadimb@tp2.rub.de [Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Institute for Theoretical and Experimental Physics, B. Cheremushkinskaya 25, 117218 Moscow (Russian Federation); Epelbaum, E. [Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Filin, A.A. [Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Institute for Theoretical and Experimental Physics, B. Cheremushkinskaya 25, 117218 Moscow (Russian Federation); Hanhart, C. [Forschungszentrum Jülich, Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, D-52425 Jülich (Germany); Meißner, U.-G. [Forschungszentrum Jülich, Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, D-52425 Jülich (Germany); Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); Nefediev, A.V. [Institute for Theoretical and Experimental Physics, B. Cheremushkinskaya 25, 117218 Moscow (Russian Federation); National Research Nuclear University MEPhI, 115409, Moscow (Russian Federation); Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Moscow Region (Russian Federation)
2013-10-07
We explore the quark-mass dependence of the pole position of the X(3872) state within the molecular picture. The calculations are performed within the framework of a nonrelativistic Faddeev-type three-body equation for the DD{sup ¯}π system in the J{sup PC}=1{sup ++} channel. The πD interaction is parametrised via a D{sup ⁎} pole, and a three-body force is included to render the equations well defined. Its strength is adjusted such that the X(3872) appears as a DD{sup ¯⁎} bound state 0.5 MeV below the neutral threshold. We find that the trajectory of the X(3872) depends strongly on the assumed quark-mass dependence of the short-range interactions which can be determined in future lattice QCD calculations. At the same time we are able to provide nontrivial information on the chiral extrapolation in the X channel.
Hadron Spectra and Quark Mass Dependence in Holographic QCD
Hashimoto, K.
Hadron masses and their quark-mass dependence are imporatant observablesin strongly coupled QCD. We apply holography, a string theory technique, to this problem, and find a qualitative coincidence with observed data of baryon spectra. This talk, presented on 9th Feruary 2010 in ``NFQCD'' workshop at YITP, is based on three papers written with my collaborators [K.~Hashimoto, T.~Hirayama, F.~L.~Lin and H.~U.~Yee, J. High Energy Phys. 07 (2008), 089, arXiv:0803.4192. K.~Hashimoto, T.~Hirayama and D.~K.~Hong, Phys. Rev. D 81 (2010), 045016, arXiv:0906.0402. K.~Hashimoto, N.~Iizuka, T.~Ishii and D.~Kadoh, Phys. Lett. B 691 (2010), 65, arXiv:0910.1179.
Kuentz, M
2003-01-01
A two-dimensional lattice gas automaton (LGA) is used for simulating concentration-dependent diffusion in a microscopically random heterogeneous structure. The heterogeneous medium is initialized at a low density rho sub 0 and then submitted to a steep concentration gradient by continuous injection of particles at a concentration rho sub 1 >rho sub 0 from a one-dimensional source to model spreading of a density front. Whereas the nonlinear diffusion equation generally used to describe concentration-dependent diffusion processes predicts a scaling law of the type phi = xt sup - sup 1 sup / sup 2 in one dimension, the spreading process is shown to deviate from the expected t sup 1 sup / sup 2 scaling. The time exponent is found to be larger than 1/2, i.e. diffusion of the density front is enhanced with respect to standard Fickian diffusion. It is also established that the anomalous time exponent decreases as time elapses: anomalous spreading is thus not a timescaling process. We demonstrate that occurrence of a...
Gunawardhana, M L P; Sharp, R G; Brough, S; Taylor, E; Bland-Hawthorn, J; Maraston, C; Tuffs, R J; Popescu, C C; Wijesinghe, D; Jones, D H; Croom, S; Sadler, E; Wilkins, S; Driver, S P; Liske, J; Norberg, P; Baldry, I K; Bamford, S P; Loveday, J; Peacock, J A; Robotham, A S G; Zucker, D B; Parker, Q A; Conselice, C J; Cameron, E; Frenk, C S; Hill, D T; Kelvin, L S; Kuijken, K; Madore, B F; Nichol, B; Parkinson, H R; Pimbblet, K A; Prescott, M; Sutherland, W J; Thomas, D; van Kampen, E
2011-01-01
The stellar initial mass function (IMF) describes the distribution in stellar masses produced from a burst of star formation. For more than fifty years, the implicit assumption underpinning most areas of research involving the IMF has been that it is universal, regardless of time and environment. We measure the high-mass IMF slope for a sample of low-to-moderate redshift galaxies from the Galaxy And Mass Assembly survey. The large range in luminosities and galaxy masses of the sample permits the exploration of underlying IMF dependencies. A strong IMF-star formation rate dependency is discovered, which shows that highly star forming galaxies form proportionally more massive stars (they have IMFs with flatter power-law slopes) than galaxies with low star formation rates. This has a significant impact on a wide variety of galaxy evolution studies, all of which rely on assumptions about the slope of the IMF. Our result is supported by, and provides an explanation for, the results of numerous recent explorations ...
RESOLVE and ECO: The Halo Mass-dependent Shape of Galaxy Stellar and Baryonic Mass Functions
Eckert, Kathleen D.; Kannappan, Sheila J.; Stark, David V.; Moffett, Amanda J.; Berlind, Andreas A.; Norris, Mark A.
2016-06-01
In this work, we present galaxy stellar and baryonic (stars plus cold gas) mass functions (SMF and BMF) and their halo mass dependence for two volume-limited data sets. The first, RESOLVE-B, coincides with the Stripe 82 footprint and is extremely complete down to baryonic mass M bary ∼ 109.1 M ⊙, probing the gas-rich dwarf regime below M bary ∼ 1010 M ⊙. The second, ECO, covers a ∼40× larger volume (containing RESOLVE-A) and is complete to M bary ∼ 109.4 M ⊙. To construct the SMF and BMF we implement a new “cross-bin sampling” technique with Monte Carlo sampling from the full likelihood distributions of stellar or baryonic mass. Our SMFs exhibit the “plateau” feature starting below M star ∼ 1010 M ⊙ that has been described in prior work. However, the BMF fills in this feature and rises as a straight power law below ∼1010 M ⊙, as gas-dominated galaxies become the majority of the population. Nonetheless, the low-mass slope of the BMF is not as steep as that of the theoretical dark matter halo MF. Moreover, we assign group halo masses by abundance matching, finding that the SMF and BMF, separated into four physically motivated halo mass regimes, reveal complex structure underlying the simple shape of the overall MFs. In particular, the satellite MFs are depressed below the central galaxy MF “humps” in groups with mass <1013.5 M ⊙ yet rise steeply in clusters. Our results suggest that satellite destruction and stripping are active from the point of nascent group formation. We show that the key role of groups in shaping MFs enables reconstruction of a given survey’s SMF or BMF based on its group halo mass distribution.
The dependence of the nucleon mass on the pion mass in the extended quark sigma model
International Nuclear Information System (INIS)
The dependence of the nucleon mass on the pion mass is studied in the framework of the extended quark sigma model. We apply the modified quark sigma model to analyze the pion–nucleon sigma term. Analytic expressions are derived using the Feynman–Hellman theorem. The field equations are solved in the mean-field approximation. The results are compared with the CP-PACS group and the cloudy bag model. The results indicate that the extended linear sigma model provides good agreement compared to other models in the mean-field approximation. (author)
Energy Technology Data Exchange (ETDEWEB)
Lapas, Luciano C., E-mail: luciano.lapas@unila.edu.br [Universidade Federal da Integração Latino-Americana, Caixa Postal 2067, 85867-970 Foz do Iguaçu, Paraná (Brazil); Ferreira, Rogelma M. S., E-mail: rogelma.maria@gmail.com [Centro de Ciências Exatas e Tecnológicas, Universidade Federal do Recôncavo da Bahia, 44380-000 Cruz das Almas, Bahia (Brazil); Rubí, J. Miguel, E-mail: mrubi@ub.edu [Departament de Física Fonamental, Facultat de Física, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona (Spain); Oliveira, Fernando A., E-mail: fernando.oliveira@pq.cnpq.br [Instituto de Física and Centro Internacional de Física da Matéria Condensada, Universidade de Brasília, Caixa Postal 04513, 70919-970 Brasília, Distrito Federal (Brazil)
2015-03-14
We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton’s law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.
International Nuclear Information System (INIS)
We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton’s law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics
Lapas, Luciano C.; Ferreira, Rogelma M. S.; Rubí, J. Miguel; Oliveira, Fernando A.
2015-03-01
We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.
Mass-dependence of self-diffusion coefficients in disparate-mass binary fluid mixtures
Directory of Open Access Journals (Sweden)
I. Binas
2009-01-01
Full Text Available Self-diffusion coefficients of a binary fluid mixture with components differing only in their particle masses are studied, in particular the case when mass ratio μ of light and heavy particles tends to zero. These coefficients were calculated within the memory function formalism, using the systematic subsequence of approximations for the relaxation times of velocity autocorrelation function. We obtained a general relation for the self-diffusion coefficients which show polynomial dependence on the mass ratio μ. The obtained expression has a correct Brownian limit. We developed the hierarchy of approximations for the self-diffusion coefficients that tends to an exact result from above and below when the order of approximations increases.
Yang, Yongzhang; Li, Zhengxin; Ping, Jinsong
2012-08-01
The relation between the gravity changes and the plumb line variations on ground, in case of the presentation of an anomalous mass underground is stud ied theoretically, formulas are figured out, including the one which describes the relation between the gravity change and the plumb line variation in a more simple way. In a simulation the actual precision of the obtained result is estimated, while the gr avity data of the West Yunnan gravity network, China is also used for the same purpose at the same time. Additionally, by taking use data of this network (32 batches during 1985 - 1998), we analyzed the obtained results of plumb line variation determined at certain sites, and found the similar phenomena which have been reported previously for the Northern China area.
RESOLVE and ECO: The Halo Mass-Dependent Shape of Galaxy Stellar and Baryonic Mass Functions
Eckert, Kathleen D; Stark, David V; Moffett, Amanda J; Berlind, Andreas A; Norris, Mark A
2016-01-01
In this work, we present galaxy stellar and baryonic (stars plus cold gas) mass functions (SMF and BMF) and their halo mass dependence for two volume-limited data sets. The first, RESOLVE-B, coincides with the Stripe 82 footprint and is extremely complete down to baryonic mass Mbary ~ 10^9.1 Msun, probing the gas-rich dwarf regime below Mbary ~ 10^10 Msun. The second, ECO, covers a ~40 times larger volume (containing RESOLVE-A) and is complete to Mbary ~ 10^9.4 Msun. To construct the SMF and BMF we implement a new "cross-bin sampling" technique with Monte Carlo sampling from the full likelihood distributions of stellar or baryonic mass. Our SMFs exhibit the "plateau" feature starting below Mstar ~ 10^10 Msun that has been described in prior work. However, the BMF fills in this feature and rises as a straight power law below ~10^10 Msun, as gas-dominated galaxies become the majority of the population. Nonetheless, the low-mass slope of the BMF is not as steep as that of the theoretical dark matter halo MF. Mor...
Data dependent systems methodology for lumped mass modeling of structures
Pandit, Sudhakar M.
1988-01-01
Limitations of the frequency domain methods in analyzing structura1 vibrations has created an awareness of the comparative merits of the time domain methods. Although time domain methods would be ideal for modeling large precisions space systems, the popular methods based on fitting theoretical response to actual data by least squares are too sensitive to noise and require too much data to be suitable for orbiting space crafts. This paper briefly reviews the theory and illustrative applications of a time domain methodology called Data Dependent Systems (DDS) that eliminates these limitations. Simulation results are presented to demonstrate a better than 4-place accuracy in the identifications of all system parameters, both modal (frequencies, damping ratios, and mode shapes) and physical (mass, stiffness, and damping matrices).
Superintegrable and shape invariant systems with position dependent mass
International Nuclear Information System (INIS)
Second order integrals of motion for 3d quantum mechanical systems with position dependent masses (PDM) are classified. Namely, all PDM systems are specified which, in addition to their rotation invariance, admit at least 1 second order integral of motion. All such systems appear to be also shape invariant and exactly solvable. Moreover, some of them possess the property of double shape invariance and can be solved using two different superpotentials. Among them there are systems with double shape invariance which present nice bridges between the Coulomb and isotropic oscillator systems. A simple algorithm for calculating the discrete spectrum and the corresponding state vectors for the considered PDM systems is presented and applied to solve five of the found systems. (paper)
How Lyman Alpha Emission Depends On Galaxy Stellar Mass
Oyarzún, Grecco A; González, Valentino; Mateo, Mario; Bailey, John I; Finkelstein, Steven L; Lira, Paulina; Crane, Jeffrey D; Olszewski, Edward W
2016-01-01
In this work, we show how the stellar mass (M) of galaxies affects the 3
Unparticles and anomalous dimensions in the cuprates
Karch, Andreas; Limtragool, Kridsanaphong; Phillips, Philip W.
2016-03-01
Motivated by the overwhelming evidence some type of quantum criticality underlies the power-law for the optical conductivity and T-linear resistivity in the cuprates, we demonstrate here how a scale-invariant or unparticle sector can lead to a unifying description of the observed scaling forms. We adopt the continuous mass formalism or multi band (flavor) formalism of the unparticle sector by letting various microscopic parameters be mass-dependent. In particular, we show that an effective mass that varies with the flavor index as well as a running band edge and lifetime capture the AC and DC transport phenomenology of the cuprates. A key consequence of the running mass is that the effective dynamical exponent can differ from the underlying bare critical exponent, thereby providing a mechanism for realizing the fractional values of the dynamical exponent required in a previous analysis [1]. We also predict that regardless of the bare dynamical exponent, z, a non-zero anomalous dimension for the current is required. Physically, the anomalous dimension arises because the charge depends on the flavor, mass or energy. The equivalent phenomenon in a d + 1 gravitational construction is the running of the charge along the radial direction. The nature of the superconducting instability in the presence of scale invariant stuff shows that the transition temperature is not necessarily a monotonic function of the pairing interaction.
Position-dependent mass quantum Hamiltonians: general approach and duality
International Nuclear Information System (INIS)
We analyze a general family of position-dependent mass (PDM) quantum Hamiltonians which are not self-adjoint and include, as particular cases, some Hamiltonians obtained in phenomenological approaches to condensed matter physics. We build a general family of self-adjoint Hamiltonians which are quantum mechanically equivalent to the non-self-adjoint proposed ones. Inspired by the probability density of the problem, we construct an ansatz for the solutions of the family of self-adjoint Hamiltonians. We use this ansatz to map the solutions of the time independent Schrödinger equations generated by the non-self-adjoint Hamiltonians into the Hilbert space of the solutions of the respective dual self-adjoint Hamiltonians. This mapping depends on both the PDM and on a function of position satisfying a condition that assures the existence of a consistent continuity equation. We identify the non-self-adjoint Hamiltonians here studied with a very general family of Hamiltonians proposed in a seminal article of Harrison (1961 Phys. Rev. 123 85) to describe varying band structures in different types of metals. Therefore, we have self-adjoint Hamiltonians that correspond to the non-self-adjoint ones found in Harrison’s article. (paper)
Gabor, M. S.; Petrisor, T.; Pop, O.; Colis, S.; Tiusan, C.
2015-10-01
We report a detailed study of the temperature dependence of the magnetic anisotropy in Ta/Co2FeAl/MgO structures by means of Anomalous Hall Effect measurements. The volume magnetic anisotropy, although negligible at room temperature, shows a non-negligible value at low temperatures and favors an in-plane easy magnetization axis. The surface magnetic anisotropy, which promotes the perpendicular magnetic easy axis, shows an increase from 0.76 ± 0.05 erg /cm2 at 300 K, up to 1.08 ± 0.04 erg /cm2 at 5 K, attributed to the evolution of the Co2FeAl layer saturation magnetization with temperature.
A stellar-mass-dependent drop in planet occurrence rates
Mulders, Gijs D; Apai, Daniel
2014-01-01
The Kepler Space Telescope has discovered a large number of planets up to one year periods and down to terrestrial sizes. The cool star subsample allows characterization of small planets near the habitable zone, yet it is not clear if this population is representative of that around sun-like stars. In this paper, we show that occurrence rates of planets around M, K, G, and F stars observed with Kepler are significantly different from each other. We identify two trends with stellar mass: First, the occurrence of Earth to Neptune-sized planets (1 to 4 Earth radii) is successively higher towards cooler stars at all orbital periods probed by Kepler, confirming the result of Howard et al. (2012) and extending it down to Earth-sized planets; Second, a drop in occurrence rates towards the star is evident for all spectral types inwards of a ~10 day orbital period, with a plateau further out. The distance from the star where this drop occurs depends on spectral type, and scales with semi-major axis as the cube root of...
Microbial mass-dependent fractionation of chromium isotopes
Sikora, E.R.; Johnson, T.M.; Bullen, T.D.
2008-01-01
Mass-dependent fractionation of Cr isotopes occurs during dissimilatory Cr(VI) reduction by Shewanella oneidensis strain MR-1. Cells suspended in a simple buffer solution, with various concentrations of lactate or formate added as electron donor, reduced 5 or 10 ??M Cr(VI) to Cr(III) over days to weeks. In all nine batch experiments, 53Cr/52Cr ratios of the unreacted Cr(VI) increased as reduction proceeded. In eight experiments covering a range of added donor concentrations up to 100 ??M, isotopic fractionation factors were nearly invariant, ranging from 1.0040 to 1.0045, with a mean value somewhat larger than that previously reported for abiotic Cr(VI) reduction (1.0034). One experiment containing much greater donor concentration (10 mM lactate) reduced Cr(VI) much faster and exhibited a lesser fractionation factor (1.0018). These results indicate that 53Cr/52Cr measurements should be effective as indicators of Cr(VI) reduction, either bacterial or abiotic. However, variability in the fractionation factor is poorly constrained and should be studied for a variety of microbial and abiotic reduction pathways. ?? 2008 Elsevier Ltd.
Position-dependent mass, finite-gap systems, and supersymmetry
Bravo, Rafael
2016-01-01
The ordering problem in quantum systems with position-dependent mass (PDM) is treated by inclusion of the classically fictitious similarity transformation into the kinetic term. This provides a generation of supersymmetry with the first order supercharges from the kinetic term alone, while inclusion of the potential term allows to generate also nonlinear supersymmetry with higher order supercharges. A broad class of finite-gap systems with PDM is obtained by different reduction procedures, and general results on supersymmetry generation are applied to them. We show that elliptic finite-gap systems of Lame and Darboux-Treibich-Verdier types can be obtained by reduction to Seiffert's spherical spiral and Bernoulli lemniscate in the presence of Calogero-like or harmonic oscillator potentials, or by angular momentum reduction of a free motion on some AdS_2-related surfaces in the presence of Aharonov-Bohm flux. The limiting cases include the Higgs and Mathews-Lakshmanan oscillator models as well as a reflectionle...
Position-dependent mass, finite-gap systems, and supersymmetry
Bravo, Rafael; Plyushchay, Mikhail S.
2016-05-01
The ordering problem in quantum systems with position-dependent mass (PDM) is treated by inclusion of the classically fictitious similarity transformation into the kinetic term. This provides a generation of supersymmetry with the first-order supercharges from the kinetic term alone, while inclusion of the potential term allows us also to generate nonlinear supersymmetry with higher-order supercharges. A broad class of finite-gap systems with PDM is obtained by different reduction procedures, and general results on supersymmetry generation are applied to them. We show that elliptic finite-gap systems of Lamé and Darboux-Treibich-Verdier types can be obtained by reduction to Seiffert's spherical spiral and Bernoulli lemniscate in the presence of Calogero-like or harmonic oscillator potentials, or by angular momentum reduction of a free motion on some AdS2 -related surfaces in the presence of Aharonov-Bohm flux. The limiting cases include the Higgs and Mathews-Lakshmanan oscillator models as well as a reflectionless model with PDM exploited recently in the discussion of cosmological inflationary scenarios.
Galaxy Mergers and Dark Matter Halo Mergers in LCDM: Mass, Redshift, and Mass-Ratio Dependence
Energy Technology Data Exchange (ETDEWEB)
Stewart, Kyle R.; Bullock, James S.; Barton, Elizabeth J.; /UC, Irvine; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC
2009-08-03
We employ a high-resolution LCDM N-body simulation to present merger rate predictions for dark matter halos and investigate how common merger-related observables for galaxies - such as close pair counts, starburst counts, and the morphologically disturbed fraction - likely scale with luminosity, stellar mass, merger mass ratio, and redshift from z = 0 to z = 4. We provide a simple 'universal' fitting formula that describes our derived merger rates for dark matter halos a function of dark halo mass, merger mass ratio, and redshift, and go on to predict galaxy merger rates using number density-matching to associate halos with galaxies. For example, we find that the instantaneous merger rate of m/M > 0.3 mass ratio events into typical L {approx}> fL{sub *} galaxies follows the simple relation dN/dt {approx_equal} 0.03(1+f)Gyr{sup -1} (1+z){sup 2.1}. Despite the rapid increase in merger rate with redshift, only a small fraction of > 0.4L{sub *} high-redshift galaxies ({approx} 3% at z = 2) should have experienced a major merger (m/M > 0.3) in the very recent past (t < 100 Myr). This suggests that short-lived, merger-induced bursts of star formation should not contribute significantly to the global star formation rate at early times, in agreement with observational indications. In contrast, a fairly high fraction ({approx} 20%) of those z = 2 galaxies should have experienced a morphologically transformative merger within a virial dynamical time. We compare our results to observational merger rate estimates from both morphological indicators and pair-fraction based determinations between z = 0-2 and show that they are consistent with our predictions. However, we emphasize that great care must be made in these comparisons because the predicted observables depend very sensitively on galaxy luminosity, redshift, overall mass ratio, and uncertain relaxation timescales for merger remnants. We show that the majority of bright galaxies at z = 3 should have undergone a
International Nuclear Information System (INIS)
We use recent experimental measurements of tau branching fractions to determine the weak charged current magnetic and electric dipole moments of the tau and the Michel parameter η with unprecedented precision. These results are then used to constrain the tau compositeness scale and the allowed parameter space for Higgs doublet models. We also present new constraints on the mass of the tau neutrino and its mixing with a fourth generation neutrino
International Nuclear Information System (INIS)
We study electron hopping in thin metal-insulator-metal structures which involves two defect centres with a strong electron-phonon coupling. We calculate the dependences of the current, J, on voltage, V, and temperature, T, and show that they are consistent with those observed in molecular monolayers of fatty acids. We analyse in detail an unusual, near-exponential temperature dependence of the current: J(T) ∝ exp (T/T0) T ≥ 50 K in eicosanoic acid (C20) organic monolayers sandwiched between Pt electrodes, where the parameter T0 increases with the bias voltage. We show that at relatively high voltages the two-defect small-polaron hopping results in N-shape current-voltage characteristics which were observed in some organic molecular monolayers
Biswas, Anirban; Choubey, Sandhya; Khan, Sarif
2016-01-01
The observation of neutrino masses, mixing and the existence of dark matter are amongst the most important signatures of physics beyond the Standard Model (SM). In this paper, we propose to extend the SM by a local $L_\\mu - L_\\tau$ gauge symmetry, two additional complex scalars and three right-handed neutrinos. The $L_\\mu - L_\\tau$ gauge symmetry is broken spontaneously when one of the scalars acquires a vacuum expectation value. The $L_\\mu - L_\\tau$ gauge symmetry is known to be anomaly free...
Compositions of Normal and Anomalous Eucrite-Type Mafic Achondrites
Mittlefehldt, D. W.; Peng, Z. X.; Mertzman, S. A.
2016-01-01
The most common asteroidal igneous meteorites are eucrite-type mafic achondrites - basalts and gabbros composed of ferroan pigeonite, ferroan augite, calcic plagioclase, silica, ilmenite, troilite, Ca-phosphate, chromite and Fe-metal. These rocks are thought to have formed on a single asteroid along with howardites and diogenites. However, high precision O-isotopic analyses have shown that some mafic achondrites have small, well-resolved, non-mass-dependent differences that have been interpreted as indicating derivation from different asteroids. Some of these O-anomalous mafic achondrites also have anomalous petrologic characteristics, strengthening the case that they hail from distinct parent asteroids. We present the results of bulk compositional studies of a suite of normal and anomalous eucrite-type basalts and cumulate gabbros.
Jia, Lian-Bao
2016-01-01
The WIMPs are considered one of the most favorable dark matter (DM) candidates, but as the upper bound on the interaction between DM and standard model (SM) particles obtained by the upgraded facilities for direct detection of DM gets lower and lower. Researchers turn their attention to search for less massive DM candidates, i.e. light dark matter of MeV scale. The recently measured anomalous transition in $^8$Be suggests that there exists a vectorial boson which may mediate the interaction between DM and SM particles. Based on this scenario, we combine the relevant cosmological data to constrain the mass range of DM, and have found that there exists a model parameter space where the requirements are satisfied, a range of $10.4 \\lesssim m_{\\phi} \\lesssim 16.7 $ MeV for scalar DM, and $13.6 \\lesssim m_{V} \\lesssim 16.7$ MeV for vectorial DM is demanded. Then a possibility of directly detecting such light DM particles at the earth detector via the DM-electron scattering is briefly studied in this framework.
Dependence of lattice hadron masses on external magnetic fields
International Nuclear Information System (INIS)
We study the variation of the hadron masses in the presence of external magnetic fields of strength of the order of the masses themselves. We identify the main factors affecting the lattice simulation results: - The boundary discontinuities for eB2a2. - The SU(6) choice of the hadron wave-function. We confirm qualitatively the earlier theoretical ansatz on the linear behaviour of the masses with the magnetic field and, as a by-product, we improve the lattice measurements of the nucleon magnetic moments. However our systematic and statistical errors preclude us from measuring the theoretically predicted field strength at which the proton becomes heavier than the neutron. (orig.)
Charm quark mass dependence in a global QCD analysis
Gao, Jun; Guzzi, Marco; Nadolsky, Pavel M.
2013-01-01
We study the effect of the charm quark mass in the CTEQ global analysis of parton distribution functions (PDFs) of the proton. Constraints on the $\\bar{\\rm MS}$ mass of the charm quark are examined at the next-to-next-to-leading order (NNLO) accuracy in the S-ACOT-$\\chi$ heavy-quark factorization scheme. The value of the charm quark mass from the hadronic scattering data in the CT10 NNLO fit, including semiinclusive charm production in DIS at HERA collider, is found to agree with the world av...
Role of isospin degree of freedom on the mass dependence of balance energy
Gautam, Sakshi; Sood, Aman D.
2010-01-01
The effect of isospin degree of freedom on balance energy and its mass dependence has been studied for the mass range between 50 and 350. Our results shows the dominance of Coulomb potential in isospin effects.
Is the Binary Mass Ratio Distribution Separation-Dependent?
Gullikson, Kevin; Kraus, Adam L.
2016-01-01
Recent discoveries of planets orbiting retired A-stars on close orbits and young A-stars on very wide orbits have renewed interest in the properties of nearby intermediate-mass stars. Especially interesting are the young stars because directly-imaged planets orbiting them may be bright enough for characterization (e.g. HR 8799, Beta Pictoris, etc). However, intermediate-mass stars and especially young intermediate mass stars are part of multiple systems more often than not. Close stellar companions may affect the formation and orbital evolution of any planets, and the properties of the companions can help constrain the binary formation mechanism. The mass ratio distribution of a population of binary stars, especially if the distribution for close companions is significantly different from that of wide companions, is helpful to distinguish companions that were born in or affected by the circumstellar disk from those which formed through fragmentation of the molecular core. Previous imaging surveys have found that binary systems with A-type primary stars tend to have cool companions with extreme mass ratios. There are hints at a much flatter mass ratio distribution for close companions, but strong completeness effects complicate the picture. We have conducted a spectroscopic survey of ~400 nearby main sequence A- and B-type stars, aimed at detecting stellar companions as late as M4 for all orbital separations stars by cross-correlating the spectra against model templates for F-M type stars; a significant peak in the cross-correlation function indicates a detection. Our cross-correlation technique can detect low-mass companions with orbits that are too wide to detect with radial velocity monitoring and too small to detect with imaging techniques, making it complementary to work already done. We will present results from our survey and compare the mass ratio distribution we measure to the corresponding distribution for wide companions.
The mass dependence of dwarf satellite galaxy quenching
International Nuclear Information System (INIS)
We combine observations of the Local Group with data from the NASA-Sloan Atlas to show the variation in the quenched fraction of satellite galaxies from low-mass dwarf spheroidals and dwarf irregulars to more massive dwarfs similar to the Magellanic Clouds. While almost all of the low-mass (M * ≲ 107 M ☉) dwarfs are quenched, at higher masses the quenched fraction decreases to approximately 40%-50%. This change in the quenched fraction is large and suggests a sudden change in the effectiveness of quenching that correlates with satellite mass. We combine this observation with models of satellite infall and ram pressure stripping to show that the low-mass satellites must quench within 1-2 Gyr of pericenter passage to maintain a high quenched fraction, but that many more massive dwarfs must continue to form stars today even though they likely fell into their host >5 Gyr ago. We also characterize how the susceptibility of dwarfs to ram pressure must vary as a function of mass if it is to account for the change in quenched fractions. Though neither model predicts the quenching effectiveness a priori, this modeling illustrates the physical requirements that the observed quenched fractions place on possible quenching mechanisms.
The Mass Dependence of Dwarf Satellite Galaxy Quenching
Slater, Colin T
2014-01-01
We combine observations of the Local Group with data from the NASA-Sloan Atlas to show the variation in the quenched fraction of satellite galaxies from low mass dwarf spheroidals and dwarf irregulars to more massive dwarfs similar to the Magellanic clouds. While almost all of the low mass ($M_\\star \\lesssim 10^7$ $M_\\odot$) dwarfs are quenched, at higher masses the quenched fraction decreases to approximately 40-50%. This change in the quenched fraction is large, and suggests a sudden change in the effectiveness of quenching that correlates with satellite mass. We combine this observation with models of satellite infall and ram pressure stripping to show that the low mass satellites must quench within 1-2 Gyr of pericenter passage to maintain a high quenched fraction, but that many more massive dwarfs must continue to form stars today even though they likely fell in to their host >5 Gyr ago. We also characterize how the susceptibility of dwarfs to ram pressure must vary as a function of mass if it is to acco...
The mass dependence of dwarf satellite galaxy quenching
Energy Technology Data Exchange (ETDEWEB)
Slater, Colin T.; Bell, Eric F., E-mail: ctslater@umich.edu, E-mail: ericbell@umich.edu [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States)
2014-09-10
We combine observations of the Local Group with data from the NASA-Sloan Atlas to show the variation in the quenched fraction of satellite galaxies from low-mass dwarf spheroidals and dwarf irregulars to more massive dwarfs similar to the Magellanic Clouds. While almost all of the low-mass (M {sub *} ≲ 10{sup 7} M {sub ☉}) dwarfs are quenched, at higher masses the quenched fraction decreases to approximately 40%-50%. This change in the quenched fraction is large and suggests a sudden change in the effectiveness of quenching that correlates with satellite mass. We combine this observation with models of satellite infall and ram pressure stripping to show that the low-mass satellites must quench within 1-2 Gyr of pericenter passage to maintain a high quenched fraction, but that many more massive dwarfs must continue to form stars today even though they likely fell into their host >5 Gyr ago. We also characterize how the susceptibility of dwarfs to ram pressure must vary as a function of mass if it is to account for the change in quenched fractions. Though neither model predicts the quenching effectiveness a priori, this modeling illustrates the physical requirements that the observed quenched fractions place on possible quenching mechanisms.
Mass Dependence of the Entropy Product and Sum
Zhang, Yuan
2014-01-01
For black holes with multiple horizons, the area product of all horizons has been proven to be mass independent in many cases. Counterexamples were also found in some occasions. In this paper, we first prove a theorem derived from the first law of black hole thermodynamics and a mathematical lemma related to the Vandermonde determinant. With these arguments, we develop some general criterion for the mass independence of the entropy product as well as the entropy sum. In particular, if a $d$-dimensional spacetime is spherically symmetric and its the radial metric function $f(r)$ is a Laurent series in $r$ with the lowest power $-m$ and the highest power $n$, we find the criteria is extremely simple: The entropy product is mass independent if and only if $m\\geq d-2$ and $n\\geq4-d$. The entropy sum is mass independent if and only if $m\\geq d-2$ and $n\\geq 2$. Compared to previous works, our method does not require an exact expression of the metric. Our arguments turn out to be useful even for rotating black hole...
Nonlocal Anomalous Hall Effect
Zhang, Steven S.-L.; Vignale, Giovanni
2016-04-01
The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect—the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt /YIG structures.
Mass- and isospin-dependence of short-range correlated pairs
Mosel, U
2016-01-01
The target-mass number dependence of nucleon-nucleon pairs with short-range correlations is explored in a physically transparent geometrical model. The observed $A$-dependence of 2-nucleon ejection cross sections in $(e,e')$ reactions is found to reflect the mass-dependence of nuclear density distributions. The dependence of proton-proton vs. proton-neutron pairs is also analyzed in this model. The mass-number dependence relative to $^{12}C$ can be understood using simple combinatorics.
On the quark-mass dependence of baryon ground-state masses
Energy Technology Data Exchange (ETDEWEB)
Semke, Alexander
2010-02-17
Baryon masses of the flavour SU(3) octet and decuplet baryons are calculated in the framework of the Chiral Perturbations Theory - the effective field theory of the strong interaction. The chiral extrapolation to the higher meson (quark) masses is carried out. The comparison with the recent results on the baryon masses from lattice calculations are presented. (orig.)
On the quark-mass dependence of baryon ground-state masses
International Nuclear Information System (INIS)
Baryon masses of the flavour SU(3) octet and decuplet baryons are calculated in the framework of the Chiral Perturbations Theory - the effective field theory of the strong interaction. The chiral extrapolation to the higher meson (quark) masses is carried out. The comparison with the recent results on the baryon masses from lattice calculations are presented. (orig.)
Institute of Scientific and Technical Information of China (English)
Axel Schulze-Halberg
2005-01-01
We study space-time transformations of the time-dependent Schr(o)dinger equation (TDSE) with time- and position-dependent (effective) mass. We obtain the most general space-time transformation that maps such a TDSE onto another one of its kind. The transformed potential is given in explicit form.
THE MASS DEPENDENCE BETWEEN PROTOPLANETARY DISKS AND THEIR STELLAR HOSTS
International Nuclear Information System (INIS)
We present a substantial extension of the millimeter (mm) wave continuum photometry catalog for circumstellar dust disks in the Taurus star-forming region, based on a new ''snapshot'' λ = 1.3 mm survey with the Submillimeter Array. Combining these new data with measurements in the literature, we construct a mm-wave luminosity distribution, f(Lmm), for Class II disks that is statistically complete for stellar hosts with spectral types earlier than M8.5 and has a 3σ depth of roughly 3 mJy. The resulting census eliminates a longstanding selection bias against disks with late-type hosts, and thereby demonstrates that there is a strong correlation between Lmm and the host spectral type. By translating the locations of individual stars in the Hertzsprung-Russell diagram into masses and ages, and adopting a simple conversion between Lmm and the disk mass, Md , we confirm that this correlation corresponds to a statistically robust relationship between the masses of dust disks and the stars that host them. A Bayesian regression technique is used to characterize these relationships in the presence of measurement errors, data censoring, and significant intrinsic scatter: the best-fit results indicate a typical 1.3 mm flux density of ∼25 mJy for 1 M☉ hosts and a power-law scaling Lmm∝M*1.5-2.0. We suggest that a reasonable treatment of dust temperature in the conversion from Lmm to Md favors an inherently linear Md ∝M* scaling, with a typical disk-to-star mass ratio of ∼0.2%-0.6%. The measured rms dispersion around this regression curve is ±0.7 dex, suggesting that the combined effects of diverse evolutionary states, dust opacities, and temperatures in these disks imprint a full width at half-maximum range of a factor of ∼40 on the inferred Md (or Lmm) at any given host mass. We argue that this relationship between Md and M* likely represents the origin of the inferred correlation between giant planet frequency and host star mass in the exoplanet population, and
QCD One-Loop Effective Coupling Constant and Quark Mass Given in a Mass-Dependent Renormalization
Institute of Scientific and Technical Information of China (English)
SU Jun-Chen; SHAN Lian-You; CAO Ying-Hui
2001-01-01
The QCD one-loop renormalization is restudied in a mass-dependent subtraction scheme in which the quark mass is not set to vanish and the renormalization point is chosen to be an arbitrary time-like momentum. The correctness of the subtraction is ensured by the Ward identities which are respected in all the processes of subtraction.By considering the mass effect, the effective coupling constant and the effective quark masses derived by solving the renormalization group equations are given in improved expressions which are different from the previous results.PACS numbers: 11.10.Gh, 11.10.Hi, 12.38.-t, 12.38.Bx
Quark Mass Dependence of Nucleon Magnetic Moment and Charge Radii
Institute of Scientific and Technical Information of China (English)
MA Wei-Xing; ZHOU Li-Juan; GU Yun-Ting; PING Rong-Gang
2005-01-01
Understanding hadron structure within the framework of QCD is an extremely challenging problem. Our purpose here is to explain the model-independent consequences of the approximated chiral symmetry of QCD for two famous results concerning the quark structure of the nucleon. We show that both the apparent success of the constituent quark model in reproducing the ratio of proton to neutron magnetic moments and the apparent success of the Foldy term in reproducing the observed charge radius of the neutron are coincidental. That is, a relatively small change of the current quark mass would spoil both results.
Isospin dependence of nucleon effective masses in neutron-rich matter
Li, Bao-An; Chen, Lie-Wen; Li, Xiao-Hua
2016-01-01
In this talk, we first briefly review the isospin dependence of the total nucleon effective mass $M^{\\ast}_{J}$ inferred from analyzing nucleon-nucleus scattering data within an isospin dependent non-relativistic optical potential model, and the isospin dependence of the nucleon E-mass $M^{\\ast,\\rm{E}}_{J}$ obtained from applying the Migdal-Luttinger theorem to a phenomenological single-nucleon momentum distribution in nuclei constrained by recent electron-nucleus scattering experiments. Combining information about the isospin dependence of both the nucleon total effective mass and E-mass, we then infer the isospin dependence of nucleon k-mass using the well-known relation $M^{\\ast}_{J}=M^{\\ast,\\rm{E}}_{J}\\cdot M^{\\ast,\\rm{k}}_{J}$. Implications of the results on the nucleon mean free path (MFP) in neutron-rich matter are discussed.
Ladder operators and associated algebra for position-dependent effective mass systems
Amir, Naila; Iqbal, Shahid
2015-07-01
An algebraic treatment of shape-invariant quantum-mechanical position-dependent effective mass systems is discussed. Using shape invariance, a general recipe for construction of ladder operators and associated algebraic structure of the pertaining system, is obtained. These operators are used to find exact solutions of general one-dimensional systems with spatially varying mass. We apply our formalism to specific translationally shape-invariant potentials having position-dependent effective mass.
Quark mass density- and temperature- dependent model for bulk strange quark matter
al, Yun Zhang et.
2002-01-01
It is shown that the quark mass density-dependent model can not be used to explain the process of the quark deconfinement phase transition because the quark confinement is permanent in this model. A quark mass density- and temperature-dependent model in which the quark confinement is impermanent has been suggested. We argue that the vacuum energy density B is a function of temperature. The dynamical and thermodynamical properties of bulk strange quark matter for quark mass density- and temper...
Binary accretion rates: dependence on temperature and mass-ratio
Young, Matthew D
2015-01-01
We perform a series of 2D smoothed particle hydrodynamics (SPH) simulations of gas accretion onto binaries via a circumbinary disc, for a range of gas temperatures and binary mass ratios ($q$). We show that increasing the gas temperature increases the accretion rate onto the primary for all values of the binary mass ratio: for example, for $q=0.1$ and a fixed binary separation, an increase of normalised sound speed by a factor of $5$ (from our "cold" to "hot" simulations) changes the fraction of the accreted gas that flows on to the primary from $ 10\\%$ to $\\sim40\\%$. We present a simple parametrisation for the average accretion rate of each binary component accurate to within a few percent and argue that this parametrisation (rather than those in the literature based on warmer simulations) is relevant to supermassive black hole accretion and all but the widest stellar binaries. We present trajectories for the growth of $q$ during circumbinary disc accretion and argue that the period distribution of stellar "...
Anomalous Hall effect in polycrystalline Ni films
Guo, Zaibing
2012-02-01
We systematically studied the anomalous Hall effect in a series of polycrystalline Ni films with thickness ranging from 4 to 200 nm. It is found that both the longitudinal and anomalous Hall resistivity increased greatly as film thickness decreased. This enhancement should be related to the surface scattering. In the ultrathin films (46 nm thick), weak localization corrections to anomalous Hall conductivity were studied. The granular model, taking into account the dominated intergranular tunneling, has been employed to explain this phenomenon, which can explain the weak dependence of anomalous Hall resistivity on longitudinal resistivity as well. © 2011 Elsevier Ltd. All rights reserved.
Spatial dependence of 2MASS luminosity and mass functions in the old open cluster NGC 188
Bonatto, C; Santos, J F C
2005-01-01
Luminosity and mass functions in the old open cluster NGC 188 are analysed by means of J and H 2MASS photometry. Within the uncertainties, the observed projected radial density profile of NGC 188 departs from the two-parameter King model in two inner regions, which reflects the non-virialized dynamical state and possibly, some degree of non-sphericity in the spatial shape of this old open cluster. Fits with two and three-parameter King models to the radial distribution of stars resulted in a core radius of 1.3 pc and a tidal radius of 21 pc. The present 2MASS analysis resulted in significant slope variations with distance in the mass function $\\phi(m)\\propto m^{-(1+\\chi)}$, being flat in the central parts ($\\chi=0.6\\pm0.7$) and steep in the cluster outskirts ($\\chi=7.2\\pm0.6$). The overall mass function has a slope $\\chi=1.9\\pm0.7$, slightly steeper than a standard Salpeter mass function. Solar metallicity Padova isochrone fits to the near-infrared colour-magnitude diagram of NGC 188 resulted in an age of $7....
Semiclassical Method to Schr(o)dinger Equation with Position-Dependent Effective Mass
Institute of Scientific and Technical Information of China (English)
CHEN Gang; XUAN Pei-Cai; CHEN Zi-Dong
2006-01-01
In this paper, two novel semiclassical methods including the standard and supersymmetric WKB quantization conditions are suggested to discuss the Schrodinger equation with position-dependent effective mass. From a proper coordinate transformation, the formalism of the Schrodinger equation with position-dependent effective mass is mapped into isospectral one with constant mass and therefore for a given mass distribution and physical potential function the bound state energy spectrum can be determined easily by above method associated with a simple integral formula. It is shown that our method can give the analytical results for some exactly-solvable quantum systems.
Generalized Harmonic Oscillator and the Schr(o)dinger Equation with Position-Dependent Mass
Institute of Scientific and Technical Information of China (English)
JU Guo-Xing; CAI Chang-Ying; REN Zhong-Zhou
2009-01-01
We study the generalized harmonic oscillator that has both the position-dependent mass and the potential depending on the form of mass function in a more general framework. The explicit expressions of the eigenvalue and eigenfunction for such a system are given, they have the same forms as those for the usual harmonic oscillator with constant mass. The coherent state and its properties for the system with PDM are also discussed. We give the corresponding effective potentials for several mass functions, the systems with such potentials are isospectral to the usual harmonic oscillator.
Evolution of low-mass X-ray binaries: dependence on the mass of the compact object
Institute of Scientific and Technical Information of China (English)
Qian Xu; Tao Li; Xiang-Dong Li
2012-01-01
We perform numerical calculations to simulate the evolution of low-mass X-ray binary systems.For the accreting compact object we consider the initial mass of 1.4,10,20,100,200,500 and 1000 M☉,corresponding to neutron stars (NSs),stellarmass black holes (BHs) and intermediate-mass BHs.Mass transfer in these binaries is driven by nuclear evolution of the donors and/or orbital angular momentum loss due to magnetic braking and gravitational wave radiation.For the different systems,we determine their bifurcation periods Pbif that separate the formation of converging systems from the diverging ones,and show that Pbif changes from ～ 1 d to (≥)3 d for a 1 M☉ donor star,with increasing initial accretor mass from 1.4 to 1000 M☉.This means that the dominant mechanism of orbital angular momentum loss changes from magnetic braking to gravitational radiation.As an illustration we compare the evolution of binaries consisting of a secondary star of 1 M☉ at a fixed initial period of 2 d.In the case of the NS or stellar-mass BH accretor,the system evolves to a well-detached He white dwarf-neutron star/black hole pair,but it evolves to an ultracompact binary if the compact object is an intermediate-mass BH.Thus the binary evolution heavily depends upon the mass of the compact object.However,we show that the final orbital period-white dwarf mass relation found for NS low-mass X-ray binaries is fairly insensitive to the initial mass of the accreting star,even if it is an intermediate-mass BH.
Moments of heavy quark correlators with two masses: exact mass dependence to three loops
Grigo, Jonathan; Marquard, Peter; Steinhauser, Matthias
2012-01-01
We compute moments of non-diagonal correlators with two massive quarks. Results are obtained where no restriction on the ratio of the masses is assumed. Both analytical and numerical methods are applied in order to evaluate the two-scale master integrals at three loops. We provide explicit results for the latter which are useful for other calculations. As a by-product we obtain results for the electroweak $\\rho$ parameter up to three loops which can be applied to a fourth generation of quarks with arbitrary masses.
Effect of mass asymmetry on the mass dependence of balance energy
Goyal, Supriya
2011-01-01
We demonstrate the role of the mass asymmetry on the balance energy (Ebal) by studying asymmetric reactions throughout the periodic table and over entire colliding geometry. Our results, which are almost independent of the system size and as well as of the colliding geometries indicate a sizeable effect of the asymmetry of the reaction on the balance energy.
Temperature dependence of meson screening masses; a comparison of effective model with lattice QCD
Ishii, Masahiro; Kashiwa, Kouji; Kouno, Hiroaki; Yahiro, Masanobu
2015-01-01
Temperature dependence of pion and sigma-meson screening masses is evaluated by the Polyakov-loop extended Nambu--Jona-Lasinio model with the entanglement vertex (EPNJL model). We propose a practical way of calculating meson screening masses in the NJL-type effective models. The method based on the Pauli-Villars regularization solves the well-known difficulty that the evaluation of screening masses is not easy in the NJL-type effective models. The method is applied to analyze temperature dependence of pion screening masses calculated with state-of-the-art lattice simulations with success in reproducing the lattice QCD results. We predict the temperature dependence of pole mass by using EPNJL model.
Determination of the temperature dependence of the up- down-quark mass in QCD
Dominguez, C A
2016-01-01
The temperature dependence of the sum of the QCD up- and down-quark masses, $(m_u + m_d)$ and the pion decay constant, $f_\\pi$, are determined from two thermal finite energy QCD sum rules for the pseudoscalar-current correlator. This quark-mass remains mostly constant for temperatures well below the critical temperature for deconfinement/chiral-symmetry restoration. As this critical temperature is approached, the quark-mass increases sharply with increasing temperature. This increase is far more pronounced if the temperature dependence of the pion mass (determined independently from other methods) is taken into account. The behavior of $f_\\pi(T)$ is consistent with the expectation from chiral symmetry, i.e. that it should follow the thermal dependence of the quark condensate, independently of the quark mass.
Environment-dependent genetic correlations between development time and body mass in a scorpionfly
Engqvist, Leif
2007-01-01
Development time and body mass at maturation are two important fitness traits fundamental for our understanding of life history theory. Generally, fast development is associated with small adult body mass, as it will take longer to grow large. However, the strength of this trade-off may depend on average food availability, as the potential benefit of long development will depend on the rate of food intake. Here, I report results of a food manipulation experiment during larval development of t...
Energy Technology Data Exchange (ETDEWEB)
Beane, S R; Detmold, W; Lin, H W; Luu, T C; Orginos, K; Parreno, A; Savage, M J; Torok, A; Walker-Loud, A
2011-07-01
The volume dependence of the octet baryon masses and relations among them are explored with Lattice QCD. Calculations are performed with nf = 2 + 1 clover fermion discretization in four lattice volumes, with spatial extent L ? 2.0, 2.5, 3.0 and 4.0 fm, with an anisotropic lattice spacing of b_s ? 0.123 fm in the spatial direction, and b_t = b_s/3.5 in the time direction, and at a pion mass of m_\\pi ? 390 MeV. The typical precision of the ground-state baryon mass determination is dependence of the masses, the Gell-Mann Okubo mass-relation, and of other mass combinations. A comparison with the predictions of heavy baryon chiral perturbation theory is performed in both the SU(2)L ? SU(2)R and SU(3)L ? SU(3)R expansions. Predictions of the three-flavor expansion for the hadron masses are found to describe the observed volume dependences reasonably well. Further, the ?N? axial coupling constant is extracted from the volume dependence of the nucleon mass in the two-flavor expansion, with only small modifications in the three-flavor expansion from the inclusion of kaons and eta's. At a given value of m?L, the finite-volume contributions to the nucleon mass are predicted to be significantly smaller at m_\\pi ? 140 MeV than at m_\\pi ? 390 MeV due to a coefficient that scales as ? m_\\pi^3. This is relevant for the design of future ensembles of lattice gauge-field configurations. Finally, the volume dependence of the pion and kaon masses are analyzed with two-flavor and three-flavor chiral perturbation theory.
Indian Academy of Sciences (India)
V K Gupta; Asha Gupta; S Singh; J D Anand
2003-10-01
We report on the study of the mass–radius (–) relation and the radial oscillations of magnetized proto strange stars. For the quark matter we have employed the very recent modiﬁcation, the temperature- and density-dependent quark mass model of the well-known density-dependent quark mass model. We ﬁnd that the effect of magnetic ﬁeld, both on the maximum mass and radial frequencies, is rather small. Also a proto strange star, whether magnetized or otherwise, is more likely to evolve into a strange star rather than transform into a black hole.
Color-flavor locked strange quark matter in a mass density-dependent model
International Nuclear Information System (INIS)
Properties of color-flavor locked (CFL) strange quark matter have been studied in a mass-density-dependent model, and compared with the results in the conventional bag model. In both models, the CFL phase is more stable than the normal nuclear matter for reasonable parameters. However, the lower density behavior of the sound velocity in this model is completely opposite to that in the bag model, which makes the maximum mass of CFL quark stars in the mass-density-dependent model larger than that in the bag model. (authors)
Neutrino Masses, Scale-Dependent Growth, and Redshift-Space Distortions
Hernández, Oscar F
2016-01-01
Massive neutrinos leave a unique signature in the large scale clustering of matter. We investigate the wavenumber dependence of the growth factor arising from neutrino masses and use a Fisher analysis to determine the aspects of a galaxy survey needed to measure this scale dependence.
Conformally Flat Metric, Position-Dependent Mass and Cold Dark Matter
Tomilchik, L M; Tomilchik, Lev M.; Kudryashov, Vladimir V.
2004-01-01
The maximal acceleration (MA) problem associated with the position-dependent rest mass concept is considered. New arguments in favor of the mass-dependent maximal acceleration (MDMA) are put forward. The hypothesis that there exists a maximal force with the numerical value equal to the inverse Einstein's gravitation constant is advanced. The Lagrangian and Hamiltonian classical dynamics of a point-like particle with the coordinate-dependent mass is given. The effective Lagrangian for the pure gravitational interaction of a test particle is proposed. Within the scope of this model the typical spiral galaxy rotation is described. It is shown that by this model the peculiar form of the corresponding rotation curve is as a whole reproduced without recourse to the dark matter concept. Also, it is demonstrated that the canonical quantization of this model leads directly to the Dirac oscillator model for a particle with Plank's mass.
Production and Resource Scheduling in Mass Customization with Dependent Setup Consideration
DEFF Research Database (Denmark)
Nielsen, Izabela Ewa; Bocewicz, G.; Do, Ngoc Anh Dung
2014-01-01
contribute to the success of mass customization. This paper addresses the problem of production and resource scheduling for a production system with dependent setup and internal transportation such as AGVs in a mass customization environment. A constraint-programming-based methodology is developed to satisfy......Mass customization has been implemented in services and manufactures to increase the competitiveness of companies. In a manufacturing company, the procedure for production and resource scheduling has to be changed to adapt to mass customization. A good production and resource scheduling will...... the customer demands on-time. An example is presented to illustrate the performance of the proposed methodology....
Does the body mass depend upon its speed. Discussion via exchange of letters
Amusia, Miron Ya
2013-01-01
The presented letters covers an almost year-long discussion of the author and a Very Qualified scientist, VQS, about the dependence of mass upon speed if relativistic corrections are taken into account. VQS believes that since mass is a scalar, it cannot depend upon speed and has to be the same in all inertial coordinate frames. In his view, the very idea of speed dependence of the mass of a particle or a body is incorrect and misleading. As such, the notion of speed dependence of a particle mass has to be eliminated from textbooks on physics and from teaching of this subject. The author claims that this notion has the right to exist, is easily understandable and convenient for most of the students, both non physicists and even physicist. His view is that it is nothing wrong in expressions like particle mass increases with the growth of speed. His view upon the debate is that both approaches are equally correct. His view is that the dilemma depends or not depends is a matter of taste and convenience, not of s...
A new methodology to test galaxy formation models using the dependence of clustering on stellar mass
Campbell, David J R; Mitchell, Peter D; Helly, John C; Gonzalez-Perez, Violeta; Lacey, Cedric G; Lagos, Claudia del P; Simha, Vimal; Farrow, Daniel J
2014-01-01
We present predictions for the two-point correlation function of galaxy clustering as a function of stellar mass, computed using two new versions of the GALFORM semi-analytic galaxy formation model. These models make use of a new high resolution, large volume N-body simulation, set in the WMAP7 cosmology. One model uses a universal stellar initial mass function (IMF), while the other assumes different IMFs for quiescent star formation and bursts. Particular consideration is given to how the assumptions required to estimate the stellar masses of observed galaxies (such as the choice of IMF, stellar population synthesis model and dust extinction) influence the perceived dependence of galaxy clustering on stellar mass. Broad-band spectral energy distribution fitting is carried out to estimate stellar masses for the model galaxies in the same manner as in observational studies. We show clear differences between the clustering signals computed using the true and estimated model stellar masses. As such, we highligh...
Analytical theory for the initial mass function: III time dependence and star formation rate
Hennebelle, Patrick
2013-01-01
The present paper extends our previous theory of the stellar initial mass function (IMF) by including the time-dependence, and by including the impact of magnetic field. The predicted mass spectra are similar to the time independent ones with slightly shallower slopes at large masses and peak locations shifted toward smaller masses by a factor of a few. Assuming that star-forming clumps follow Larson type relations, we obtain core mass functions in good agreement with the observationally derived IMF, in particular when taking into account the thermodynamics of the gas. The time-dependent theory directly yields an analytical expression for the star formation rate (SFR) at cloud scales. The SFR values agree well with the observational determinations of various Galactic molecular clouds. Furthermore, we show that the SFR does not simply depend linearly on density, as sometimes claimed in the literature, but depends also strongly on the clump mass/size, which yields the observed scatter. We stress, however, that ...
EVIDENCE FOR ENVIRONMENTAL DEPENDENCE OF THE UPPER STELLAR INITIAL MASS FUNCTION IN ORION A
International Nuclear Information System (INIS)
We extend our previous study of the stellar population of L1641, the lower-density star-forming region of the Orion A cloud south of the dense Orion Nebula Cluster (ONC), with the goal of testing whether there is a statistically significant deficiency of high-mass stars in low-density regions. Previously, we compared the observed ratio of low-mass stars to high-mass stars with theoretical models of the stellar initial mass function (IMF) to infer a deficiency of the highest-mass stars in L1641. We expand our population study to identify the intermediate-mass (late B to G) L1641 members in an attempt to make a more direct comparison with the mass function of the nearby ONC. The spectral-type distribution and the K-band luminosity function of L1641 are similar to those of the ONC, but problems of incompleteness and contamination prevent us from making a detailed test for differences. We limit our analysis to statistical tests of the ratio of high-mass to low-mass stars, which indicate a probability of only 3% that the ONC and the southern region of L1641 were drawn from the same population, supporting the hypothesis that the upper-mass end of the IMF is dependent on environmental density.
THE MASS-DEPENDENCE OF ANGULAR MOMENTUM EVOLUTION IN SUN-LIKE STARS
Energy Technology Data Exchange (ETDEWEB)
Matt, Sean P.; Baraffe, Isabelle; Chabrier, Gilles [Department of Physics and Astronomy, University of Exeter, Physics Building, Stocker Road, Exeter, EX4 4QL (United Kingdom); Brun, A. Sacha [Laboratoire AIM Paris-Saclay, CEA/Irfu Université Paris-Diderot CNRS/INSU, F-91191 Gif-sur-Yvette (France); Bouvier, Jérôme, E-mail: s.matt@exeter.ac.uk [Université de Grenoble Alpes, IPAG, F-38000 Grenoble (France)
2015-02-01
To better understand the observed distributions of the rotation rate and magnetic activity of Sun-like and low-mass stars, we derive a physically motivated scaling for the dependence of the stellar wind torque on the Rossby number. The torque also contains an empirically derived scaling with stellar mass (and radius), which provides new insight into the mass-dependence of stellar magnetic and wind properties. We demonstrate that this new formulation explains why the lowest mass stars are observed to maintain rapid rotation for much longer than solar-mass stars, and simultaneously why older populations exhibit a sequence of slowly rotating stars, in which the low-mass stars rotate more slowly than solar-mass stars. The model also reproduces some previously unexplained features in the period-mass diagram for the Kepler field, notably: the particular shape of the ''upper envelope'' of the distribution, suggesting that ∼95% of Kepler field stars with measured rotation periods are younger than ∼4 Gyr; and the shape of the ''lower envelope'', corresponding to the location where stars transition between magnetically saturated and unsaturated regimes.
Jia, Lian-Bao; Li, Xue-Qian
2016-01-01
The WIMPs are considered one of the most favorable dark matter (DM) candidates, but as the upper bound on the interaction between DM and standard model (SM) particles obtained by the upgraded facilities for direct detection of DM gets lower and lower. Researchers turn their attention to search for less massive DM candidates, i.e. light dark matter of MeV scale. The recently measured anomalous transition in $^8$Be suggests that there exists a vectorial boson which may mediate the interaction b...
Midya, Bikashkali; Roychoudhury, Rajkumar
2010-01-01
Here we have studied first and second-order intertwining approach to generate isospectral partner potentials of position-dependent (effective) mass Schroedinger equation. The second-order intertwiner is constructed directly by taking it as second order linear differential operator with position depndent coefficients and the system of equations arising from the intertwining relationship is solved for the coefficients by taking an ansatz. A complete scheme for obtaining general solution is obtained which is valid for any arbitrary potential and mass function. The proposed technique allows us to generate isospectral potentials with the following spectral modifications: (i) to add new bound state(s), (ii) to remove bound state(s) and (iii) to leave the spectrum unaffected. To explain our findings with the help of an illustration, we have used point canonical transformation (PCT) to obtain the general solution of the position dependent mass Schrodinger equation corresponding to a potential and mass function. It is...
Higgs boson pair production in gluon fusion at NLO with full top-quark mass dependence
Borowka, S; Heinrich, G; Jones, S P; Kerner, M; Schlenk, J; Schubert, U; Zirke, T
2016-01-01
We present the calculation of the cross section and invariant mass distribution for Higgs boson pair production in gluon fusion at next-to-leading order (NLO) in QCD. Top-quark masses are fully taken into account throughout the calculation. The virtual two-loop amplitude has been generated using an extension of the program GoSam supplemented with an interface to Reduze for the integral reduction. The occurring integrals have been calculated numerically using the program SecDec. Our results, including the full top-quark mass dependence for the first time, allow us to assess the validity of various approximations proposed in the literature, which we also recalculate. We find substantial deviations between the NLO result and the different approximations, which emphasizes the importance of including the full top-quark mass dependence at NLO.
Energy Technology Data Exchange (ETDEWEB)
Panahi, H; Bakhshi, Z, E-mail: t-panahi@guilan.ac.ir [Department of Physics, University of Guilan, Rasht 51335-1914 (Iran, Islamic Republic of)
2011-04-29
We study the one-dimensional non-Hermitian imaginary potential with a real energy spectrum in the framework of the position-dependent effective mass Dirac equation. The Dirac equation is mapped into the exactly solvable Schroedinger-like equation endowed with position-dependent effective mass that we present a new procedure to solve it. The point canonical transformation in non-relativistic quantum mechanics is applied as an algebraic method to obtain the mass function and then by using the obtained mass function, the imaginary potential can be obtained. The spinor wavefunctions for some of the obtained electrostatic potentials are given in terms of orthogonal polynomials. We also obtain the relativistic bound state spectrum for each case in terms of the bound state spectrum of the solvable potentials.
International Nuclear Information System (INIS)
We study the one-dimensional non-Hermitian imaginary potential with a real energy spectrum in the framework of the position-dependent effective mass Dirac equation. The Dirac equation is mapped into the exactly solvable Schroedinger-like equation endowed with position-dependent effective mass that we present a new procedure to solve it. The point canonical transformation in non-relativistic quantum mechanics is applied as an algebraic method to obtain the mass function and then by using the obtained mass function, the imaginary potential can be obtained. The spinor wavefunctions for some of the obtained electrostatic potentials are given in terms of orthogonal polynomials. We also obtain the relativistic bound state spectrum for each case in terms of the bound state spectrum of the solvable potentials.
Spin dependence of the quasiparticle masses in CeRu2Si2
International Nuclear Information System (INIS)
We have measured the spin dependence of the quasiparticle masses on the two small ellipsoidal Fermi surface sheets of CeRu2Si2 via the dHvA effect. The field variation of the effective masses above the metamagnetic transition was obtained for the β' and γ' oscillations. We find that ma*(β')∼5m↑*(β'), ma*(γ')∼3m↑*(γ')
Mass dependence of shear viscosity in a binary fluid mixture: mode-coupling theory.
Ali, Sk Musharaf; Samanta, Alok; Choudhury, Niharendu; Ghosh, Swapan K
2006-11-01
An expression for the shear viscosity of a binary fluid mixture is derived using mode-coupling theory in order to study the mass dependence. The calculated results on shear viscosity for a binary isotopic Lennard-Jones fluid mixture show good agreement with results from molecular dynamics simulation carried out over a wide range of mass ratio at different composition. Also proposed is a new generalized Stokes-Einstein relation connecting the individual diffusivities to shear viscosity. PMID:17279895
Vitamin B12–dependent taurine synthesis regulates growth and bone mass
Roman-Garcia, Pablo; Quiros-Gonzalez, Isabel; Mottram, Lynda; Lieben, Liesbet; Sharan, Kunal; Wangwiwatsin, Arporn; Tubio, Jose; Lewis, Kirsty; Wilkinson, Debbie; Santhanam, Balaji; Sarper, Nazan; Clare, Simon; Vassiliou, George S; Velagapudi, Vidya R.; Dougan, Gordon
2014-01-01
Both maternal and offspring-derived factors contribute to lifelong growth and bone mass accrual, although the specific role of maternal deficiencies in the growth and bone mass of offspring is poorly understood. In the present study, we have shown that vitamin B12 (B12) deficiency in a murine genetic model results in severe postweaning growth retardation and osteoporosis, and the severity and time of onset of this phenotype in the offspring depends on the maternal genotype. Using integrated p...
The environmental dependence of the stellar mass-size relation in STAGES galaxies
Maltby, David T; Gray, Meghan E; Barden, Marco; Haeussler, Boris; Wolf, Christian; Peng, Chien Y; Jahnke, Knud; McIntosh, Daniel H; Boehm, Asmus; van Kampen, Eelco
2009-01-01
We present the stellar mass-size relations for elliptical, lenticular, and spiral galaxies in the field and cluster environments using HST/ACS imaging and data from the Space Telescope A901/2 Galaxy Evolution Survey (STAGES). We use a large sample of ~1200 field and cluster galaxies, and a sub-sample of cluster core galaxies, and quantify the significance of any putative environmental dependence on the stellar mass-size relation. For elliptical, lenticular, and high-mass (log M*/M_sun > 10) spiral galaxies we find no evidence to suggest any such environmental dependence, implying that internal drivers are governing their size evolution. For intermediate/low-mass spirals (log M*/M_sun < 10) we find evidence, significant at the 2-sigma level, for a possible environmental dependence on galaxy sizes: the mean effective radius a_e for lower-mass spirals is ~15-20 per cent larger in the field than in the cluster. This is due to a population of low-mass large-a_e field spirals that are largely absent from the clu...
Diffusion in time-dependent random environments: mass fluctuations and scaling properties
International Nuclear Information System (INIS)
A mass-ejection model in a time-dependent random environment with both temporal and spatial correlations is introduced. When the environment has a finite correlation length, individual particle trajectories are found to diffuse at large times with a displacement distribution that approaches a Gaussian. The collective dynamics of diffusing particles reaches a statistically stationary state, which is characterized in terms of a fluctuating mass density field. The probability distribution of density is studied numerically for both smooth and non-smooth scale-invariant random environments. Competition between trapping in the regions where the ejection rate of the environment vanishes and mixing due to its temporal dependence leads to large fluctuations of mass. These mechanisms are found to result in the presence of intermediate power-law tails in the probability distribution of the mass density. For spatially differentiable environments, the exponent of the right tail is shown to be universal and equal to -3/2. However, at small values, it is found to depend on the environment. Finally, spatial scaling properties of the mass distribution are investigated. The distribution of the coarse-grained density is shown to possess some rescaling properties that depend on the scale, the amplitude of the ejection rate and the Hölder exponent of the environment. (paper)
Anomalous extracellular diffusion in rat cerebellum.
Xiao, Fanrong; Hrabe, Jan; Hrabetova, Sabina
2015-05-01
Extracellular space (ECS) is a major channel transporting biologically active molecules and drugs in the brain. Diffusion-mediated transport of these substances is hindered by the ECS structure but the microscopic basis of this hindrance is not fully understood. One hypothesis proposes that the hindrance originates in large part from the presence of dead-space (DS) microdomains that can transiently retain diffusing molecules. Because previous theoretical and modeling work reported an initial period of anomalous diffusion in similar environments, we expected that brain regions densely populated by DS microdomains would exhibit anomalous extracellular diffusion. Specifically, we targeted granular layers (GL) of rat and turtle cerebella that are populated with large and geometrically complex glomeruli. The integrative optical imaging (IOI) method was employed to evaluate diffusion of fluorophore-labeled dextran (MW 3000) in GL, and the IOI data analysis was adapted to quantify the anomalous diffusion exponent dw from the IOI records. Diffusion was significantly anomalous in rat GL, where dw reached 4.8. In the geometrically simpler turtle GL, dw was elevated but not robustly anomalous (dw = 2.6). The experimental work was complemented by numerical Monte Carlo simulations of anomalous ECS diffusion in several three-dimensional tissue models containing glomeruli-like structures. It demonstrated that both the duration of transiently anomalous diffusion and the anomalous exponent depend on the size of model glomeruli and the degree of their wrapping. In conclusion, we have found anomalous extracellular diffusion in the GL of rat cerebellum. This finding lends support to the DS microdomain hypothesis. Transiently anomalous diffusion also has a profound effect on the spatiotemporal distribution of molecules released into the ECS, especially at diffusion distances on the order of a few cell diameters, speeding up short-range diffusion-mediated signals in less permeable
The orientation dependence of quasar single-epoch black hole mass scaling relationships
Runnoe, Jessie C.; Brotherton, Michael; Shang, Zhaohui; Wills, Beverley; DiPompeo, Michael
2012-01-01
Black hole masses are estimated for radio-loud quasars using several self-consistent scaling relationships based on emission-line widths and continuum luminosities. The emission lines used, H-beta, Mg II, and C IV, have different dependencies on orientation as estimated by radio core dominance. We compare differences in the log of black hole masses estimated from different emission lines and show that they depend on radio core dominance in the sense that core-dominated, jet-on objects have sy...
Ishii, Masahiro; Yahiro, Masanobu
2016-01-01
We propose a practical effective model by introducing temperature ($T$) dependence to the coupling strengths of four-quark and six-quark Kobayashi-Maskawa-'t Hooft interactions in the 2+1 flavor Polyakov-loop extended Nambu-Jona-Lasinio model. The $T$ dependence is determined from LQCD data on the renormalized chiral condensate around the pseudocritical temperature $T_c^{\\chi}$ of chiral crossover and the screening-mass difference between $\\pi$ and $a_0$ mesons in $T > 1.1T_c^\\chi$ where only the $U(1)_{\\rm A}$-symmetry breaking survives. The model well reproduces LQCD data on screening masses $M_{\\xi}^{\\rm scr}(T)$ for both scalar and pseudoscalar mesons, particularly in $T \\ge T_c^{\\chi}$. Using this effective model, we predict meson pole masses $M_{\\xi}^{\\rm pole}(T)$ for scalar and pseudoscalar mesons. For $\\eta'$ meson, the prediction is consistent with the experimental value at finite $T$ measured in heavy-ion collisions. We point out that the relation $M_{\\xi}^{\\rm scr}(T)-M_{\\xi}^{\\rm pole}(T) \\approx...
International Nuclear Information System (INIS)
The Debye screening masses of the σ, ω and neutral ρ mesons and the photon are calculated in the relativistic mean-field approximation. As the density of the nucleon increases, all the screening masses of mesons increase. A different result with Brown–Rho scaling is shown, which implies a reduction in the mass of all the mesons in the nuclear matter, except the pion. Replacing the masses of the mesons with their corresponding screening masses in the Walecka-1 model, five saturation properties of the nuclear matter are fixed reasonably, and then a density-dependent relativistic mean-field model is proposed without introducing the nonlinear self-coupling terms of mesons. (author)
Remarks on the solution of the position-dependent mass Schroedinger equation
International Nuclear Information System (INIS)
An approximate method is proposed to solve the position-dependent mass (PDM) Schroedinger equation. The procedure suggested here leads to the solution of the PDM Schroedinger equation without transforming the potential function to the mass space or vice versa. The method based on the asymptotic Taylor expansion of the function produces an approximate analytical expression for eigenfunction and numerical results for eigenvalues of the PDM Schroedinger equation. The results show that the PDM and constant mass Schroedinger equations are not isospectral. The calculations are carried out with the aid of a computer system of symbolic or numerical calculation by constructing a simple algorithm.
Asymptotic Behavior of a Viscous Liquid-Gas Model with Mass-Dependent Viscosity and Vacuum
liu, Qingqing
2011-01-01
In this paper, we consider two classes of free boundary value problems of a viscous two-phase liquid-gas model relevant to the flow in wells and pipelines with mass-dependent viscosity coefficient. The liquid is treated as an incompressible fluid whereas the gas is assumed to be polytropic. We obtain the asymptotic behavior and decay rates of the mass functions $n(x,t)$,\\$m(x,t)$ when the initial masses are assumed to be connected to vacuum both discontinuously and continuously, which improves the corresponding result about Navier-Stokes equations in \\cite{Zhu}.
Asymptotic behavior of a viscous liquid-gas model with mass-dependent viscosity and vacuum
Liu, Qingqing; Zhu, Changjiang
In this paper, we consider two classes of free boundary value problems of a viscous two-phase liquid-gas model relevant to the flow in wells and pipelines with mass-dependent viscosity coefficient. The liquid is treated as an incompressible fluid whereas the gas is assumed to be polytropic. We obtain the asymptotic behavior and decay rates of the mass functions n(x,t), m(x,t) when the initial masses are assumed to be connected to vacuum both discontinuously and continuously, which improves the corresponding result about Navier-Stokes equations in Zhu (2010) [23].
Asymptotic Behavior of a Viscous Liquid-Gas Model with Mass-Dependent Viscosity and Vacuum
Liu, Qingqing; Zhu, Changjiang
2011-01-01
In this paper, we consider two classes of free boundary value problems of a viscous two-phase liquid-gas model relevant to the flow in wells and pipelines with mass-dependent viscosity coefficient. The liquid is treated as an incompressible fluid whereas the gas is assumed to be polytropic. We obtain the asymptotic behavior and decay rates of the mass functions $n(x,t)$,\\$m(x,t)$ when the initial masses are assumed to be connected to vacuum both discontinuously and continuously, which improve...
Meier, Matthias M M; Marty, Bernard
2016-01-01
We have measured the concentration, isotopic composition and thermal release profiles of Mercury (Hg) in a suite of meteorites, including both chondrites and achondrites. We find large variations in Hg concentration between different meteorites (ca. 10 ppb to 14'000 ppb), with the highest concentration orders of magnitude above the expected bulk solar system silicates value. From the presence of several different Hg carrier phases in thermal release profiles (150 to 650 {\\deg}C), we argue that these variations are unlikely to be mainly due to terrestrial contamination. The Hg abundance of meteorites shows no correlation with petrographic type, or mass-dependent fractionation of Hg isotopes. Most carbonaceous chondrites show mass-independent enrichments in the odd-numbered isotopes 199Hg and 201Hg. We show that the enrichments are not nucleosynthetic, as we do not find corresponding nucleosynthetic deficits of 196Hg. Instead, they can partially be explained by Hg evaporation and redeposition during heating of ...
Velter-Stefanescu, M.; Duliu, O. G.
2007-04-01
A ceramic high temperature superconductor [HTS] of Y-Ba-Cu-O type has been investigated at 77 K by using a standard X-band Electron Paramagnetic Resonance (EPR) configuration. At very low microwave power (DPPH signal, pleading for an unambiguous absorption process, but it commutes to a typical superconductor signal (i.e. opposite to DPPH signal phase) with increasing the microwave power. At the same time, Cu2+ signal appreciably changes its shape with increasing microwave power. These anomalous behaviors could be in part explained by a conventional SQUID response at microwave frequency by taking into account that the sample itself could be described by a collection of both Josephson and proximity junctions.
The ATLAS and CMS Collaborations
2016-01-01
A procedure is presented to combine data from the ATLAS and CMS experiments on $ZZ$ production to obtain constraints on anomalous neutral triple gauge boson couplings. Statistical and systematic uncertainties and their correlations are taken into account. Data from $pp$ collisions at a center-of-mass energy of 7 TeV delivered by the LHC are used. The datasets correspond to integrated luminosities of 4.6 and 5.0 $\\rm{fb^{−1}}$ for ATLAS and CMS, respectively. The combination is performed in the fully leptonic decay channels ZZ → 2l2ν (ATLAS) and ZZ → 4l (ATLAS, CMS). Combined limits on the coupling parameters are −0.010 < f4γ < 0.011, −0.0087 < f4Z < 0.0091, −0.011 < f5γ < 0.010, and −0.0091 < f5Z < 0.0089 at 95% C.L., where all other parameters are fixed to the standard model values. These results represent the first combined limits of the ATLAS and CMS collaborations for anomalous gauge boson couplings.
Singhal, R K; Dalela, S; Sekhar, B; Jain, D C; Garg, K B
2003-01-01
Some experiments have recently shown that in the YBCO detwinned system charge aggregation takes place in the Cu-O sub 2 plane along the b-axis at T>>T sub c followed by formation of Cooper pairs, again in the normal state. Polarised X-ray absorption measurements at the O K and Cu L sub 3 absorption edges in E parallel b orientation have been carried out on underdoped and overdoped single crystals of La sub 2 sub - sub x Sr sub x CuO sub 4 through a temperature range of 10-300 K to study the dependence of the itinerant hole density. Both the crystals do show an anomalous temperature dependence but there is a wide divergence in the earlier and our results. This paper discusses the results and possible causes for the difference.
NEW CONSTRAINTS ON MASS-DEPENDENT DISRUPTION OF STAR CLUSTERS IN M51
International Nuclear Information System (INIS)
We use UBVI Hα images of the Whirlpool galaxy, M51, taken with the Advanced Camera for Surveys and WFPC2 cameras on the Hubble Space Telescope (HST) to select star clusters, and to estimate their masses and ages by comparing their observed colors with predictions from population synthesis models. We construct the mass function of intermediate-age (1-4 x 108 yr) clusters, and find that it is well described by a power law, ψ(M) ∝ Mβ, with β = -2.1 ± 0.2, for clusters more massive than M ∼ 6 x 103 Msun. This extends the mass function of intermediate-age clusters in M51 to masses lower by nearly a factor of five over previous determinations. The mass function does not show evidence for curvature at either the high or low mass end. This shape indicates that there is no evidence for the earlier disruption of lower mass clusters compared with their higher mass counterparts (i.e., no mass-dependent disruption) over the observed range of masses and ages, or for a physical upper mass limit MC with which clusters in M51 can form. These conclusions differ from previous suggestions based on poorer-quality HST observations. We discuss their implications for the formation and disruption of the clusters. Ages of clusters in two 'feathers', stellar features extending from the outer portion of a spiral arm, show that the feather with a larger pitch angle formed earlier, and over a longer period, than the other.
Quantum particles trapped in a position-dependent mass barrier; a d-dimensional recipe
International Nuclear Information System (INIS)
We consider a free particle, V(r)=0, with a position-dependent mass m(r)=1/(1+σ2r2)2 in the d-dimensional Schrodinger equation. The effective potential turns out to be a generalized Poschl-Teller potential that admits exact solution
Flatland Position-Dependent-Mass: Polar Coordinates, Separability and Exact Solvability
Directory of Open Access Journals (Sweden)
Omar Mustafa
2010-10-01
Full Text Available The kinetic energy operator with position-dependent-mass in plane polar coordinates is obtained. The separability of the corresponding Schrödinger equation is discussed. A hypothetical toy model is reported and two exactly solvable examples are studied.
Properties of Quasi-Oscillator in Position-Dependent Mass Formalism
Zare, Soroush
2016-01-01
After introducing Schr\\"odinger equation within position- dependent mass formalism, a quasi-oscillator has been considered. Eigen functions and energy spectra have been obtained analytical. Then thermodynamic properties, information entropy and uncertainty in coordinate and momentum corresponding the considered system have calculated as well as some depicted.
Environmental dependence of the H I mass function in the ALFALFA 70% catalogue
Jones, Michael G.; Papastergis, Emmanouil; Haynes, Martha P.; Giovanelli, Riccardo
2016-04-01
We search for environmental dependence of the H I mass function in the Arecibo Legacy Fast ALFA survey (ALFALFA) 70 per cent catalogue. The catalogue is split into quartiles of environment density based on the projected neighbour density of neighbours found in both Sloan Digital Sky Survey (SDSS) and 2MASS Redshift Survey (2MRS) volume-limited reference catalogues. We find the Schechter function `knee' mass to be dependent on environment, with the value of log (M*/M⊙) shifting from 9.81 ± 0.02 to 10.00 ± 0.03 between the lowest and highest density quartiles. However, this dependence was only observed when defining environment based on the SDSS reference catalogue, not 2MRS. We interpret these results as meaning that the local environment is the dominant cause of the shift in M*, and that the larger scales that 2MRS probes (compared to SDSS) are almost irrelevant. In addition, we also use a fixed aperture method to probe environment, and find tentative evidence that H I-deficiency depresses the value of M* in the highest density regions. We find no significant dependence of the low-mass slope on environment in any test, using either method. Tensions between these results and those from the literature, are discussed and alternative explanations are explored.
Institute of Scientific and Technical Information of China (English)
鞠国兴
2011-01-01
Using the coordinate transformation method, we study the polynomial solutions of the Schr6dinger equation with position-dependent mass （PDM）. The explicit expressions for the potentials, energy eigenvalues, and eigenfunctions of the systems are given. The issues related to normalization of the wavefunetions and Hermiticity of the Hamiltonian are also analyzed.
New scenarios for classical and quantum mechanical systems with position dependent mass
Morris, J R
2015-01-01
An inhomogeneous Kaluza-Klein compactification to four dimensions, followed by a conformal transformation, results in a system with position dependent mass (PDM). This origin of a PDM is quite different from the condensed matter one. A substantial generalization of a previously studied nonlinear oscillator with variable mass is obtained, wherein the position dependence of the mass of a nonrelativistic particle is due to a dilatonic coupling function emerging from the extra dimension. Previously obtained solutions for such systems can be extended and reinterpreted as nonrelativistic particles interacting with dilaton fields, which, themselves, can have interesting structures. An application is presented for the nonlinear oscillator, where within the new scenario the particle is coupled to a dilatonic string.
Parity nonconservation in nuclear fission: does it depend on fragment mass/energy?
International Nuclear Information System (INIS)
For fission of 233U induced by polarized cold neutrons the dependence of the PNC asymmetry coefficient αnf(mLF, TKE) on light fragment mass mLF and total kinetic energy TKE was studied. Concurrently the angular distribution predicted for PNC reactions was tested. Altogether more than 2x1010 fission events with high mass/energy resolution have been collected. This corresponds to an increase in the statistics compared to previous experiments (U. Graf, F. Goennenwein, P. Geltenbort, et al., Z. Phys. A 351 (1995) 281 and V.A. Vesna, V.A. Knyaz'kov, E.A. Kolomenskii et al., JETP. Lett. 31 (1980) 663) by a factor of about 20. The preliminary analysis of the PNC asymmetry shows no significant variation of αnf for different fragment masses/energies, whereas the prediction concerning the angular dependence was confirmed with a precision not obtained up to now
The mass dependence of the signal peak height of a Bragg-curve ionization chamber
International Nuclear Information System (INIS)
The Bragg-curve detector of the parallel plate ionization chamber type generates a signal that is a distorted replica of the original Bragg-curve. In result of this distortion, the signal peak height is not only a function of the atomic number of the heavy ion, as it is often stated, but also of the particle mass. This mass effect was studied with the aid of computer simulation, and it was found to be dependent on the Frisch grid to anode gap width and on the detector gas. The charge resolution of the detector is affected very significantly by this mass dependence of the signal peak height. Therefore, a careful selection of the detector gas and the grid to anode gap width is necessary, if good charge resolution over a wide range of heavy ions is required. (orig.)
The mass dependence of the signal peak height of a Bragg-curve ionization chamber
Shenhav, N. J.; Stelzer, H.
1985-01-01
The Bragg-curve detector of the parallel plate ionization chamber type generates a signal that is a distorted replica of the original Bragg-curve. In result of this distortion, the signal peak height is not only a function of the atomic number of the heavy ion, as it is often stated, but also of the particle mass. This mass effect was studied with the aid of computer simulation, and it was found to be dependent on the Frisch grid to anode gap width and on the detector gas. The charge resolution of the detector is affected very significantly by this mass dependence of the signal peak height. Therefore, a careful selection of the detector gas and the grid to anode gap width is necessary, if good charge resolution over a wide range of heavy ions is required.
International Nuclear Information System (INIS)
The mass spectra of vapor-phase n-hexane, cyclohexane, and diethyl ether are measured as a function of temperature by photoionization mass spectrometry. Three fixed wavelengths are used, the Kr I, Ar I, and Ne I resonance lines. The results are interpreted on the basis of a simplified version of the quasi-equilibrium theory. In this model it is assumed that the density of states of a transition state can be described by the density of states of the neutral molecule multiplied by a phase space scaling factor. The phase space scaling factors are fitted for an optimum reconstruction of the photon and temperature-dependent mass spectra. The knowledge obtained about the fragmentation reaction rates of n-hexane is applied to field ionization mass spectra, which results in an estimate of the average energy deposition in the molecular ion of 0.77 ± 0.1 eV
Orbital Evolution of Mass-transferring Eccentric Binary Systems. I. Phase-dependent Evolution
Dosopoulou, Fani; Kalogera, Vicky
2016-07-01
Observations reveal that mass-transferring binary systems may have non-zero orbital eccentricities. The time evolution of the orbital semimajor axis and eccentricity of mass-transferring eccentric binary systems is an important part of binary evolution theory and has been widely studied. However, various different approaches to and assumptions on the subject have made the literature difficult to comprehend and comparisons between different orbital element time evolution equations not easy to make. Consequently, no self-consistent treatment of this phase has ever been included in binary population synthesis codes. In this paper, we present a general formalism to derive the time evolution equations of the binary orbital elements, treating mass loss and mass transfer as perturbations of the general two-body problem. We present the self-consistent form of the perturbing acceleration and phase-dependent time evolution equations for the orbital elements under different mass loss/transfer processes. First, we study the cases of isotropic and anisotropic wind mass loss. Then, we proceed with non-isotropic ejection and accretion in a conservative as well as a non-conservative manner for both point masses and extended bodies. We compare the derived equations with similar work in the literature and explain the existing discrepancies.
Evidence for non-analytic light quark mass dependence in the baryon spectrum
Walker-Loud, Andre
2011-01-01
Using precise lattice QCD computations of the baryon spectrum, we present the first direct evidence for the presence of contributions to the baryon masses which are non-analytic in the light quark masses; contributions which are often denoted "chiral logarithms". We isolate the poor convergence of SU(3) baryon chiral perturbation theory to the flavor-singlet mass combination. The flavor-octet baryon mass splittings, which are corrected by chiral logarithms at next to leading order in SU(3) chiral perturbation theory, yield baryon-pion axial coupling constants D, F, C and H consistent with QCD values; the first evidence of chiral logarithms in the baryon spectrum. The Gell-Mann--Okubo relation, a flavor-27 baryon mass splitting, which is dominated by chiral corrections from light quark masses, provides further evidence for the presence of non-analytic light quark mass dependence in the baryon spectrum; we simultaneously find the GMO relation to be inconsistent with the first few terms in a taylor expansion in ...
The charmonium dissociation in an "anomalous wind"
Sadofyev, Andrey V
2016-01-01
We study the charmonium dissociation in a strongly coupled chiral plasma in the presence of magnetic field and axial charge imbalance. This type of plasma carries ``anomalous flow" induced by the chiral anomaly and exhibits novel transport phenomena such as chiral magnetic effect. We found that the ``anomalous flow" would modify the charmonium color screening length by using the gauge/gravity correspondence. We derive an analytical expression quantifying the ``anomalous flow" experienced by a charmonium for a large class of chiral plasma with a gravity dual. We elaborate on the similarity and {\\it qualitative} difference between anomalous effects on the charmonium color screening length which are {\\it model-dependent} and those on the heavy quark drag force which are fixed by the second law of thermodynamics. We speculate on the possible charmonium dissociation induced by chiral anomaly in heavy ion collisions.
The charmonium dissociation in an "anomalous wind"
Sadofyev, Andrey V.; Yin, Yi
2016-01-01
We study the charmonium dissociation in a strongly coupled chiral plasma in the presence of magnetic field and axial charge imbalance. This type of plasma carries "anomalous flow" induced by the chiral anomaly and exhibits novel transport phenomena such as chiral magnetic effect. We found that the "anomalous flow" would modify the charmonium color screening length by using the gauge/gravity correspondence. We derive an analytical expression quantifying the "anomalous flow" experienced by a charmonium for a large class of chiral plasma with a gravity dual. We elaborate on the similarity and qualitative difference between anomalous effects on the charmonium color screening length which are model-dependent and those on the heavy quark drag force which are fixed by the second law of thermodynamics. We speculate on the possible charmonium dissociation induced by the chiral anomaly in heavy ion collisions.
Ortenzi, L.; Gretarsson, H.; Kasahara, S.; Matsuda, Y.; Shibauchi, T.; Finkelstein, K. D.; Wu, W.; Julian, S. R.; Kim, Young-June; Mazin, I. I.; Boeri, L.
2015-01-01
We report a combination of Fe K β x-ray emission spectroscopy and density functional reduced Stoner theory calculations to investigate the correlation between structural and magnetic degrees of freedom in CaFe2(As1-xPx) 2 . The puzzling temperature behavior of the local moment found in rare earth-doped CaFe2As2 [H. Gretarsson et al., Phys. Rev. Lett. 110, 047003 (2013)] is also observed in CaFe2(As1-xPx) 2 . We explain this phenomenon based on first-principles calculations with scaled magnetic interaction. One scaling parameter is sufficient to describe quantitatively the magnetic moments in both CaFe2(As1-xPx) 2 (x =0.055 ) and Ca0.78La0.22Fe2As2 at all temperatures. The anomalous growth of the local moments with increasing temperature can be understood from the observed large thermal expansion of the c -axis lattice parameter combined with strong magnetoelastic coupling. These effects originate from the strong tendency to form As-As dimers across the Ca layer in the CaFe2As2 family of materials. Our results emphasize the dual local-itinerant character of magnetism in Fe pnictides.
2002-01-01
The proposal concerns an extension to higher energies of previous experiments which have provided evidence for anomalously short reaction mean free paths among projectile fragments from heavy ion interactions.\\\\ \\\\ It is intended to provide information on the interaction properties of projectile fragments, mainly 3He, P, D, T as well as of scattered 4He nuclei in passive detectors exposed to beams of energies exceeding those available in previous experim factor of about 7. \\\\ \\\\ Interaction mean free paths and event topologies will be measured in a nuclear emulsion stack (LBL) of 7.5~cm~x~5~cm~x~25~cm dimensions. Decay effects will be recorded by comparing the activity of spallation residues in dense and diluted copper target assemblies (Marburg). Target fragmentation will be studied in a stack of silverchloride crystal foils (Frankfurt) of about 7~cm~x~6~cm~x~1~cm dimensions. The \\alpha beam ejected at EJ~62 will be used to provide both exposures at high intensity of 10|1|2 alphas on th and at low intensity ...
Temperature dependence of the cyclotron mass in ZnCdSe/ZnSe multi-QWs
International Nuclear Information System (INIS)
The temperature dependence of the cyclotron resonance mass (CRM) of the magnetopolaron in ZnCdSe/ZnSe multi-quantum wells with strong magnetic field is investigated theoretically using the Lee-Low-Pines variational method. Contributions to the CRM, due to the nonparabolicity of the conduction band and the coupling of electron with both confined longitudinal optical and interface optical phonons, are considered. Results of our calculations are compared with the experimental data, and a qualitative agreement is found over a large temperature range. We show that these three contributions complement each other to determine the cyclotron mass as a function of the temperature. (author)
Mass dispersions in a time-dependent mean-field approach
International Nuclear Information System (INIS)
Characteristic functions for single-particle (s.p.) observables are evaluated by means of a time-dependent variational principle, which involves a state and an observable as conjugate variables. This provides a mean-field expression for fluctuations of s.p. observables, such as mass dispersions. The result differs from TDHF, it requires only the use of existing codes, and it presents attractive theoretical features. First numerical tests are encouraging. In particular, a calculation for 16O + 16O provides a significant increase of the predicted mass dispersion
Bulk viscosity of strange quark matter in density dependent quark mass model
Indian Academy of Sciences (India)
J D Anand; N Chandrika Devi; V K Gupta; S Singh
2000-05-01
We have studied the bulk viscosity of strange quark matter in the density dependent quark mass model (DDQM) and compared results with calculations done earlier in the MIT bag model where , masses were neglected and ﬁrst order interactions were taken into account. We ﬁnd that at low temperatures and high relative perturbations, the bulk viscosity is higher by 2 to 3 orders of magnitude while at low perturbations the enhancement is by 1–2 order of magnitude as compared to earlier results. Also the damping time is 2–3 orders of magnitude lower implying that the star reaches stability much earlier than in MIT bag model calculations.
Time dependent quantum harmonic oscillator subject to a sudden change of mass: continuous solution
Energy Technology Data Exchange (ETDEWEB)
Moya C, H. [INAOE, Coordinacion de Optica, AP 51 y 216, 72000 Puebla (Mexico); Fernandez G, M. [Depto. de Fisica, CBI, Universidad Autonoma Metropolitana - Iztapalapa, 09340, Mexico, D.F. AP 55-534 (Mexico)
2007-07-01
We show that a harmonic oscillator subject to a sudden change of mass produces squeezed states. Our study is based on an approximate analytic solution to the time-dependent harmonic oscillator equation with a sub period function parameter. This continuous treatment differs from former studies that involve the matching of two time-independent solutions at the discontinuity. This formalism requires an ad hoc transformation of the original differential equation and is also applicable for rapid, although not necessarily instantaneous, mass variations. (Author)
Improved angular momentum evolution model for solar-like stars II. Exploring the mass dependence
Gallet, Florian
2015-01-01
We developed angular momentum evolution models for 0.5 and 0.8 $M_{\\odot}$ stars. The parametric models include a new wind braking law based on recent numerical simulations of magnetised stellar winds, specific dynamo and mass-loss rate prescriptions, as well as core/envelope decoupling. We compare model predictions to the distributions of rotational periods measured for low mass stars belonging to star forming regions and young open clusters. Furthermore, we explore the mass dependence of model parameters by comparing these new models to the solar-mass models we developed earlier. Rotational evolution models are computed for slow, median, and fast rotators at each stellar mass. The models reproduce reasonably well the rotational behaviour of low-mass stars between 1~Myr and 8-10~Gyr, including pre-main sequence to zero-age main sequence spin up, prompt zero-age main sequence spin down, and early-main sequence convergence of the surface rotation rates. Fast rotators are found to have systematically shorter di...
Halo mass dependence of H I and O VI absorption: evidence for differential kinematics
International Nuclear Information System (INIS)
We studied a sample of 14 galaxies (0.1 < z < 0.7) using HST/WFPC2 imaging and high-resolution HST/COS or HST/STIS quasar spectroscopy of Lyα, Lyβ, and O VI λλ1031, 1037 absorption. The galaxies, having 10.8 ≤ log (M h/M ☉) ≤ 12.2, lie within D = 300 kpc of quasar sightlines, probing out to D/R vir = 3. When the full range of M h and D/R vir of the sample are examined, ∼40% of the H I absorbing clouds can be inferred to be escaping their host halo. The fraction of bound clouds decreases as D/R vir increases such that the escaping fraction is ∼15% for D/R vir < 1, ∼45% for 1 ≤ D/R vir < 2, and ∼90% for 2 ≤ D/R vir < 3. Adopting the median mass log M h/M ☉ = 11.5 to divide the sample into 'higher' and 'lower' mass galaxies, we find a mass dependency for the hot circumgalactic medium kinematics. To our survey limits, O VI absorption is found in only ∼40% of the H I clouds in and around lower mass halos as compared to ∼85% around higher mass halos. For D/R vir < 1, lower mass halos have an escape fraction of ∼65%, whereas higher mass halos have an escape fraction of ∼5%. For 1 ≤ D/R vir < 2, the escape fractions are ∼55% and ∼35% for lower mass and higher mass halos, respectively. For 2 ≤ D/R vir < 3, the escape fraction for lower mass halos is ∼90%. We show that it is highly likely that the absorbing clouds reside within 4R vir of their host galaxies and that the kinematics are dominated by outflows. Our finding of 'differential kinematics' is consistent with the scenario of 'differential wind recycling' proposed by Oppenheimer et al. We discuss the implications for galaxy evolution, the stellar to halo mass function, and the mass-metallicity relationship of galaxies.
The outcome of supernovae in massive binaries; removed mass, and its separation dependence
Energy Technology Data Exchange (ETDEWEB)
Hirai, Ryosuke; Sawai, Hidetomo; Yamada, Shoichi [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555 (Japan)
2014-09-01
The majority of massive stars are formed in binary systems. It is hence reasonable to expect that most core-collapse supernovae (CCSNe) take place in binaries and the existence of a companion star may leave some imprints in observed features. Having this in mind, we have conducted two-dimensional hydrodynamical simulations of the collisions of CCSNe ejecta with the companion star in an almost-equal-mass (∼10 M {sub ☉}) binary to find out possible consequences of such events. In particular we pay attention to the amount of mass removed and its dependence on the binary separation. In contrast to the previous surmise, we find that the companion mass is stripped not by momentum transfer but by shock heating. Up to 25% of the original mass can be removed for the closest separations and the removed mass decreases as M {sub ub}∝a {sup –4.3} with the binary separation a. By performing some experimental computations with artificially modified densities of incident ejecta, we show that if the velocity of ejecta is fixed, the density of incident ejecta is the single important parameter that actually determines the removed mass as M{sub ub}∝ρ{sub ej}{sup 1.4}. On the other hand, another set of simulations with modified velocities of incident ejecta demonstrate that the strength of the forward shock, which heats up the stellar material and causes the mass loss of the companion star, is actually the key parameter for the removed mass.
Institute of Scientific and Technical Information of China (English)
M.Eshghi; M.Hamzavi; S.M.Ikhdair
2013-01-01
The spatially-dependent mass Dirac equation is solved exactly for attractive scalar and repulsive vector Coulomb potentials,including a tensor interaction under the spin and pseudospin symmetric limits.Closed forms of the energy eigenvalue equation and wave functions are obtained for arbitrary spin-orbit quantum number κ.Some numerical results are also given,and the effect of tensor interaction on the bound states is presented.It is shown that tensor interaction removes the degeneracy between two states in the spin doublets.We also investigate the effects of the spatially-dependent mass on the bound states under spin symmetric limit conditions in the absence of tensor interaction.
Various aspects of the Deformation Dependent Mass model of nuclear structure
Petrellis, D; Minkov, N
2015-01-01
Recently, a variant of the Bohr Hamiltonian was proposed where the mass term is allowed to depend on the beta variable of nuclear deformation. Analytic solutions of this modified Hamiltonian have been obtained using the Davidson and the Kratzer potentials, by employing techniques from supersymmetric quantum mechanics. Apart from the new set of analytic solutions, the newly introduced Deformation-Dependent Mass (DDM) model offered a remedy to the problematic behaviour of the moment of inertia in the Bohr Hamiltonian, where it appears to increase proportionally to the square of beta. In the DDM model the moments of inertia increase at a much lower rate, in agreement with experimental data. The current work presents an application of the DDM-model suitable for the description of nuclei at the point of shape/phase transitions between vibrational and gamma-unstable or prolate deformed nuclei and is based on a method that was successfully applied before in the context of critical point symmetries.
Quadratic algebras and position-dependent mass Schr\\"odinger equations
Quesne, C
2007-01-01
During recent years, exact solutions of position-dependent mass Schr\\"odinger equations have inspired intense research activities, based on the use of point canonical transformations, Lie algebraic methods or supersymmetric quantum mechanical techniques. Here we highlight the interest of another approach to such problems, relying on quadratic algebras. We illustrate this point by constructing spectrum generating algebras for a class of $d$-dimensional radial harmonic oscillators with $d\\ge2$ (including the one-dimensional oscillator on the line via some minor changes) and a specific mass choice. This provides us with a counterpart of the well-known su(1,1) Lie algebraic approach to the constant-mass oscillators.
Anomalous Hall effect in YIG$|$Pt bilayers
Meyer, Sibylle; Schlitz, Richard; Geprägs, Stephan; Opel, Matthias; Huebl, Hans; Gross, Rudolf; Goennenwein, Sebastian T. B.
2015-01-01
We measure the ordinary and the anomalous Hall effect in a set of yttrium iron garnet$|$platinum (YIG$|$Pt) bilayers via magnetization orientation dependent magnetoresistance experiments. Our data show that the presence of the ferrimagnetic insulator YIG leads to an anomalous Hall like signature in Pt, sensitive to both Pt thickness and temperature. Interpretation of the experimental findings in terms of the spin Hall anomalous Hall effect indicates that the imaginary part of the spin mixing ...
Classical oscillator with position-dependent mass in a complex domain
Ghosh, Subir; Modak, Sujoy Kumar
2008-01-01
We study complexified Harmonic Oscillator with a position-dependent mass, termed as Complex Exotic Oscillator (CEO). The complexification induces a gauge invariance [19,11]. The role of PT -symmetry is discussed from the perspective of classical trajectories of CEO for real energy. Some trajectories of CEO are similar to those for the particle in a quartic potential in the complex domain [10, 32].
Improved Quark Mass Density-Dependent Model with Non-Linear Scalar Interaction
Institute of Scientific and Technical Information of China (English)
WU Chen; QIAN Wei-Liang; SU Ru-Keng
2005-01-01
@@ We present an improved quark mass density-dependent model which includes the quark and non-linear scalar field coupling. The wavefunction of quark is given. The rms charge radius, the magnetic moment, and the ratio between the axial-vector and the vectorβ-decay coupling constants of the nucleon are calculated. We find that the results given the present model are in agreement with experiments.
The environmental dependence of the stellar mass fundamental plane of early-type galaxies
Hou, Lei
2016-01-01
Aims. We investigate the environmental dependence of the stellar mass fundamental plane (FP$_*$) using the early-type galaxy sample from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7). Methods. The FP$_*$ is calculated by replacing the luminosity in the fundamental plane (FP) with stellar mass. Based on the SDSS group catalog, we characterize the galaxy environment according to the mass of the host dark matter halo and the position in the halo. In halos with the same mass bin, the color distributions of central and satellite galaxies are different. Therefore, we calculate FP$_*$ coefficients of galaxies in different environments and compare them with those of the FP to study the contribution of the stellar population. Results. We find that coefficient $a$ of the FP$_*$ is systematically larger than that of the FP, but coefficient $b$ of the FP$_*$ is similar to the FP. Moreover, the environmental dependence of the FP$_*$ is similar to that of the FP. For central galaxies, FP$_*$ coefficients are signi...
Star cluster life-times: dependence on mass, radius and environment
Gieles, Mark; Baumgardt, Holger
2007-01-01
The dissolution time (t_dis) of clusters in a tidal field does not scale with the ``classical'' expression for the relaxation time. First, the scaling with N, and hence cluster mass, is shallower due to the finite escape time of stars. Secondly, the cluster half-mass radius is of little importance. This is due to a balance between the relative tidal field strength and internal relaxation, which have an opposite effect on t_dis, but of similar magnitude. When external perturbations, such as encounters with giant molecular clouds (GMC) are important, t_dis for an individual cluster depends strongly on radius. The mean dissolution time for a population of clusters, however, scales in the same way with mass as for the tidal field, due to the weak dependence of radius on mass. The environmental parameters that determine t_dis are the tidal field strength and the density of molecular gas. We compare the empirically derived t_dis of clusters in six galaxies to theoretical predictions and argue that encounters with G...
Anomalous Chiral Superfluidity
Lublinsky, Michael(Physics Department, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel); Zahed, Ismail
2009-01-01
We discuss both the anomalous Cartan currents and the energy-momentum tensor in a left chiral theory with flavour anomalies as an effective theory for flavored chiral phonons in a chiral superfluid with the gauged Wess-Zumino-Witten term. In the mean-field (leading tadpole) approximation the anomalous Cartan currents and the energy momentum tensor take the form of constitutive currents in the chiral superfluid state. The pertinence of higher order corrections and the Adler-Bardeen theorem is ...
PRIMUS: The dependence of AGN accretion on host stellar mass and color
Aird, James; Moustakas, John; Blanton, Michael R; Burles, Scott M; Cool, Richard J; Eisenstein, Daniel J; Smith, M Stephen M; Wong, Kenneth C; Zhu, Guangtun
2011-01-01
We present evidence that the incidence of active galactic nuclei (AGN) and the distribution of their accretion rates do not depend on the stellar masses of their host galaxies, contrary to previous studies. We use hard (2-10 keV) X-ray data from three extragalactic fields (XMM-LSS, COSMOS and ELAIS-S1) with redshifts from the PRIsm MUlti-object Survey (PRIMUS) to identify 264 AGN with L_{2-10 keV}=10^{42-44} erg/s within a parent sample of ~25,000 galaxies at 0.2
The Outcome of Supernovae in Massive Binaries; Removed Mass, and its Separation Dependence
Hirai, Ryosuke; Yamada, Shoichi
2014-01-01
The majority of massive stars are formed in binary systems. It is hence reasonable to expect that most core-collapse supernovae (CCSNe) take place in binaries and the existence of a companion star may leave some imprints in observed features. Having this in mind, we have conducted two-dimensional hydrodynamical simulations of the collisions of CCSNe ejecta with the companion star in an almost-equal-mass ($\\sim 10M_\\odot$) binary to find out possible consequences of such events. In particular we pay attention to the amount of mass removed and its dependence on the binary separation. In contrast to the previous surmise, we find that the companion mass is stripped not by momentum transfer but by shock heating. Up to $25\\%$ of the original mass can be removed for the closest separations and the removed mass decreases as $M_{ub} \\propto a^{-4.2}$ with the binary separation $a$. By performing some experimental computations with artificially-modified densities of incident ejecta, we show that if the velocity of ejec...
Anomalous Growth of Aging Populations
Grebenkov, Denis S.
2016-04-01
We consider a discrete-time population dynamics with age-dependent structure. At every time step, one of the alive individuals from the population is chosen randomly and removed with probability q_k depending on its age, whereas a new individual of age 1 is born with probability r. The model can also describe a single queue in which the service order is random while the service efficiency depends on a customer's "age" in the queue. We propose a mean field approximation to investigate the long-time asymptotic behavior of the mean population size. The age dependence is shown to lead to anomalous power-law growth of the population at the critical regime. The scaling exponent is determined by the asymptotic behavior of the probabilities q_k at large k. The mean field approximation is validated by Monte Carlo simulations.
Metallicity dependence of high-mass X-ray binary populations
Douna, V. M.; Pellizza, L. J.; Mirabel, I. F.; Pedrosa, S. E.
2015-07-01
Context. High-mass X-ray binaries (HMXBs) might have contributed a non-negligible fraction of the energy feedback to the interstellar and intergalactic media at high redshift, becoming important sources for the heating and ionization history of the Universe. However, the importance of this contribution depends on the hypothesized increase in the number of HMXBs formed in low-metallicity galaxies and in their luminosities. Aims: In this work we test the aforementioned hypothesis, and quantify the metallicity dependence of HMXB population properties. Methods: We compile from the literature a large set of data on the sizes and X-ray luminosities of HMXB populations in nearby galaxies with known metallicities and star formation rates. We use Bayesian inference to fit simple Monte Carlo models that describe the metallicity dependence of the size and luminosity of the HMXB populations. Results: We find that HMXBs are typically ten times more numerous per unit star formation rate in low-metallicity galaxies (12 + log (O / H) < 8, namely <20% solar) than in solar-metallicity galaxies. The metallicity dependence of the luminosity of HMXBs is small compared to that of the population size. Conclusions: Our results support the hypothesis that HMXBs are more numerous in low-metallicity galaxies, implying the need to investigate the feedback in the form of X-rays and energetic mass outflows of these high-energy sources during cosmic dawn.
Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration.
Stevens, Daniel A; Lee, Yunjong; Kang, Ho Chul; Lee, Byoung Dae; Lee, Yun-Il; Bower, Aaron; Jiang, Haisong; Kang, Sung-Ung; Andrabi, Shaida A; Dawson, Valina L; Shin, Joo-Ho; Dawson, Ted M
2015-09-15
Mutations in parkin lead to early-onset autosomal recessive Parkinson's disease (PD) and inactivation of parkin is thought to contribute to sporadic PD. Adult knockout of parkin in the ventral midbrain of mice leads to an age-dependent loss of dopamine neurons that is dependent on the accumulation of parkin interacting substrate (PARIS), zinc finger protein 746 (ZNF746), and its transcriptional repression of PGC-1α. Here we show that adult knockout of parkin in mouse ventral midbrain leads to decreases in mitochondrial size, number, and protein markers consistent with a defect in mitochondrial biogenesis. This decrease in mitochondrial mass is prevented by short hairpin RNA knockdown of PARIS. PARIS overexpression in mouse ventral midbrain leads to decreases in mitochondrial number and protein markers and PGC-1α-dependent deficits in mitochondrial respiration. Taken together, these results suggest that parkin loss impairs mitochondrial biogenesis, leading to declining function of the mitochondrial pool and cell death. PMID:26324925
The Optical-UV Emissivity of Quasars: Dependence on Black Hole Mass and Radio Loudness
Shankar, Francesco; Calderone, Giorgio; Knigge, Christian; Matthews, James; Buckland, Rachel; Hryniewicz, Krzysztof; Sivakoff, Gregory; Dai, Xinyu; Richardson, Kayleigh; Riley, Jack; Gray, James; La Franca, Fabio; Altamirano, Diego; Croston, Judith; Gandhi, Poshak; Hönig, Sebastian; McHardy, Ian; Middleton, Matthew
2016-02-01
We analyzed a large sample of radio-loud and radio-quiet quasar spectra at redshift 1.0 ≤ z ≤ 1.2 to compare the inferred underlying quasar continuum slopes (after removal of the host galaxy contribution) with accretion disk models. The latter predict redder (decreasing) α3000 continuum slopes ({L}ν \\propto {ν }α at 3000 Å) with increasing black hole mass, bluer α3000 with increasing luminosity at 3000 Å, and bluer α3000 with increasing spin of the black hole, when all other parameters are held fixed. We find no clear evidence for any of these predictions in the data. In particular, we find the following. (i) α3000 shows no significant dependence on black hole mass or luminosity. Dedicated Monte Carlo tests suggest that the substantial observational uncertainties in the black hole virial masses can effectively erase any intrinsic dependence of α3000 on black hole mass, in line with some previous studies. (ii) The mean slope α3000 of radio-loud sources, thought to be produced by rapidly spinning black holes, is comparable to, or even redder than, that of radio-quiet quasars. Indeed, although quasars appear to become more radio loud with decreasing luminosity, we still do not detect any significant dependence of α3000 on radio loudness. The predicted mean α3000 slopes tend to be bluer than in the data. Disk models with high inclinations and dust extinction tend to produce redder slopes closer to empirical estimates. Our mean α3000 values are close to the ones independently inferred at z < 0.5, suggesting weak evolution with redshift, at least for moderately luminous quasars.
Meier, Matthias M. M.; Cloquet, Christophe; Marty, Bernard
2016-06-01
We have measured the concentration, isotopic composition and thermal release profiles of Mercury (Hg) in a suite of meteorites, including both chondrites and achondrites. We find large variations in Hg concentration between different meteorites (ca. 10 ppb to 14,000 ppb), with the highest concentration orders of magnitude above the expected bulk solar system silicates value. From the presence of several different Hg carrier phases in thermal release profiles (150-650 °C), we argue that these variations are unlikely to be mainly due to terrestrial contamination. The Hg abundance of meteorites shows no correlation with petrographic type, or mass-dependent fractionation of Hg isotopes. Most carbonaceous chondrites show mass-independent enrichments in the odd-numbered isotopes 199Hg and 201Hg. We show that the enrichments are not nucleosynthetic, as we do not find corresponding nucleosynthetic deficits of 196Hg. Instead, they can partially be explained by Hg evaporation and redeposition during heating of asteroids from primordial radionuclides and late-stage impact heating. Non-carbonaceous chondrites, most achondrites and the Earth do not show these enrichments in vapor-phase Hg. All meteorites studied here have however isotopically light Hg (δ202Hg = ∼-7 to -1) relative to the Earth's average crustal values, which could suggest that the Earth has lost a significant fraction of its primordial Hg. However, the late accretion of carbonaceous chondritic material on the order of ∼2%, which has been suggested to account for the water, carbon, nitrogen and noble gas inventories of the Earth, can also contribute most or all of the Earth's current Hg budget. In this case, the isotopically heavy Hg of the Earth's crust would have to be the result of isotopic fractionation between surface and deep-Earth reservoirs.
Wang, Zhuhong; Chen, Jiubin; Feng, Xinbin; Hintelmann, Holger; Yuan, Shengliu; Cai, Hongming; Huang, Qiang; Wang, Shuxiao; Wang, Fengyang
2015-11-01
The isotopic composition of mercury (Hg) is increasingly used to constrain the sources and pathways of this metal in the atmosphere. Though China has the highest Hg production, consumption and emission in the world, Hg isotope ratios are rarely reported for Chinese wet deposition. In this study, we examined, for the first time outside North America, both mass-dependent fractionation (MDF, expressed as δ202Hg) and mass-independent fractionation of odd (odd-MIF, Δ199Hg) and even (even-MIF, Δ200Hg) Hg isotopes in 15 precipitation samples collected from September 2012 to August 2013 in Guiyang (SW China). All samples displayed significant negative δ202Hg (-0.44 ∼ -4.27‰), positive Δ199Hg (+0.19 to +1.16‰) and slightly positive Δ200Hg (-0.01‰ to +0.20‰). Potential sources of Hg in precipitation were identified by coupling both MDF and MIF of Hg isotopes with a back-trajectory model. The results showed that local emission from coal-fired power plants and cement plants and western long-range transportation are two main contributing sources, while the contribution of Hg from south wind events would be very limited on an annual basis. The relatively lower Δ200Hg values in Guiyang precipitation may indicate a dilution effect by local sources and/or insignificant even-MIF in the tropopause contribution of this subtropical region. Our study demonstrates the usefulness of isotope fractionation, especially MIF for tracing sources and pathways of Hg in the atmosphere.
Anomalous transport effects in magnetically-confined plasma columns
International Nuclear Information System (INIS)
The evolution of density structure in a magnetized plasma column is analyzed accounting for anomalous diffusion due to the lower hybrid drift instability. The plasma column is found to be divided into regions of classical, anomalous, and intermediate diffusivity. The bulk behavior, described in terms of radial confinement time, depends most sensitively upon the particle line density (ion/cm). For broad plasmas (large line density), the transport is characteristic of classical diffusion, and for slender plasmas (small line density) the transport is characteristic of anomalous diffusion. For intermediate line densities, the transport undertakes a rapid transition from classical to anomalous. Correlations between the theoretical results and past experiments are described
Quantum information entropies for position-dependent mass Schrödinger problem
Energy Technology Data Exchange (ETDEWEB)
Yañez-Navarro, G. [Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, UPALM, Mexico D. F. 07738 (Mexico); Sun, Guo-Hua, E-mail: sunghdb@yahoo.com [Centro Universitario Valle de Chalco, Universidad Autónoma del Estado de México, Valle de Chalco Solidaridad, Estado de México, 56615 (Mexico); Dytrych, T., E-mail: tdytrych@gmail.com [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Launey, K.D., E-mail: kristina@baton.phys.lsu.edu [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Dong, Shi-Hai, E-mail: dongsh2@yahoo.com [Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, UPALM, Mexico D. F. 07738 (Mexico); Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Draayer, J.P., E-mail: draayer@sura.org [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States)
2014-09-15
The Shannon entropy for the position-dependent Schrödinger equation for a particle with a nonuniform solitonic mass density is evaluated in the case of a trivial null potential. The position S{sub x} and momentum S{sub p} information entropies for the three lowest-lying states are calculated. In particular, for these states, we are able to derive analytical solutions for the S{sub x} entropy as well as for the Fourier transformed wave functions, while the S{sub p} quantity is calculated numerically. We notice the behavior of the S{sub x} entropy, namely, it decreases as the mass barrier width narrows and becomes negative beyond a particular width. The negative Shannon entropy exists for the probability densities that are highly localized. The mass barrier determines the stability of the system. The dependence of S{sub p} on the width is contrary to the one for S{sub x}. Some interesting features of the information entropy densities ρ{sub s}(x) and ρ{sub s}(p) are demonstrated. In addition, the Bialynicki-Birula–Mycielski (BBM) inequality is tested for a number of states and found to hold for all the cases.
Quantum information entropies for position-dependent mass Schrödinger problem
International Nuclear Information System (INIS)
The Shannon entropy for the position-dependent Schrödinger equation for a particle with a nonuniform solitonic mass density is evaluated in the case of a trivial null potential. The position Sx and momentum Sp information entropies for the three lowest-lying states are calculated. In particular, for these states, we are able to derive analytical solutions for the Sx entropy as well as for the Fourier transformed wave functions, while the Sp quantity is calculated numerically. We notice the behavior of the Sx entropy, namely, it decreases as the mass barrier width narrows and becomes negative beyond a particular width. The negative Shannon entropy exists for the probability densities that are highly localized. The mass barrier determines the stability of the system. The dependence of Sp on the width is contrary to the one for Sx. Some interesting features of the information entropy densities ρs(x) and ρs(p) are demonstrated. In addition, the Bialynicki-Birula–Mycielski (BBM) inequality is tested for a number of states and found to hold for all the cases
Hao, Weiqiang; Wang, Junde; Zhang, Xiangmin
2006-12-01
In order to investigate the concentration dependence of mass transfer coefficients in RPLC, experimental breakthrough curves obtained by staircase frontal analysis (FA) were fitted to the simplified models such as multiplate (MP) model, equilibrium dispersive (ED) model, and transport model, and the sophisticated models such as lumped pore diffusion (POR) model and general rate (GR) model. The MP model was used to obtain the initial guesses of the parameters of the ED and the transport models. Then the best values were obtained by minimizing the differences between theoretical and experimental values with a nonlinear fitting procedure. The values of the parameters of the POR and the GR models can be calculated by using the expressions derived from the plate height equations, which was further validated by using the fitting method. It was found that the mass transfer coefficients would depend on the solute concentration. This can be ascribed to the surface diffusivity, which correlates with the concentration and is lumped into the mass transfer coefficients for both simplified and sophisticated models. PMID:17305235
Bohr Hamiltonian with a deformation-dependent mass term: physical meaning of the free parameter
Bonatsos, Dennis; Petrellis, D
2015-01-01
Embedding of the 5-dimensional (5D) space of the Bohr Hamiltonian with a deformation-dependent mass (DDM) into a 6-dimensional (6D) space shows that the free parameter in the dependence of the mass on the deformation is connected to the curvature of the 5D space, with the special case of constant mass corresponding to a flat 5D space. Comparison of the DDM Bohr Hamiltonian to the 5D classical limit of Hamiltonians of the 6D interacting boson model (IBM), shows that the DDM parameter is proportional to the strength of the pairing interaction in the U(5) (vibrational) symmetry limit, while it is proportional to the quadrupole-quadrupole interaction in the SU(3) (rotational) symmetry limit, and to the difference of the pairing interactions among s, d bosons and d bosons alone in the O(6) (gamma-soft) limit. The presence of these interactions leads to a curved 5D space in the classical limit of IBM, in contrast to the flat 5D space of the original Bohr Hamiltonian, which is made curved by the introduction of the ...
An Update on the Non-Mass-Dependent Isotope Fractionation under Thermal Gradient
Sun, Tao; Niles, Paul; Bao, Huiming; Socki, Richard; Liu, Yun
2013-01-01
Mass flow and compositional gradient (elemental and isotope separation) occurs when flu-id(s) or gas(es) in an enclosure is subjected to a thermal gradient, and the phenomenon is named thermal diffusion. Gas phase thermal diffusion has been theoretically and experimentally studied for more than a century, although there has not been a satisfactory theory to date. Nevertheless, for isotopic system, the Chapman-Enskog theory predicts that the mass difference is the only term in the thermal diffusion separation factors that differs one isotope pair to another,with the assumptions that the molecules are spherical and systematic (monoatomic-like structure) and the particle collision is elastic. Our previous report indicates factors may be playing a role because the Non-Mass Dependent (NMD) effect is found for both symmetric and asymmetric, linear and spherical polyatomic molecules over a wide range of temperature (-196C to +237C). The observed NMD phenomenon in the simple thermal-diffusion experiments demands quantitative validation and theoretical explanation. Besides the pressure and temperature dependency illustrated in our previous reports, efforts are made in this study to address issues such as the role of convection or molecular structure and whether it is a transient, non-equilibrium effect only.
Quark mass dependence of H-dibaryon in $\\Lambda\\Lambda$ scattering
Yamaguchi, Yasuhiro
2016-01-01
We study the quark mass dependence of the H-dibaryon in the strangeness $S=-2$ baryon-baryon scattering. A low-energy effective field theory is used to describe the coupled-channel scattering, in which the quark mass dependence is incorporated so as to reproduce the lattice QCD data in the SU(3) limit. We point out the existence of the Castillejo-Dalitz-Dyson (CDD) pole in the $\\Lambda\\Lambda$ scattering amplitude below the threshold in the SU(3) limit, which may cause the Ramsauer-Townsend effect near the $N\\Xi$ threshold at the physical point. The H-dibaryon is unbound at the physical point, and a resonance appears just below the $N\\Xi$ threshold. As a consequence of the coupled-channel dynamics, the pole associated with the resonance is not continuously connected to the bound state in the SU(3) limit. Through the extrapolation in quark masses, we show that the unitary limit of the $\\Lambda\\Lambda$ scattering is achieved between the physical point and the SU(3) limit. We discuss the possible realization of ...
Anomalous diffraction in hyperbolic materials
Alberucci, Alessandro; Boardman, Allan D; Assanto, Gaetano
2016-01-01
We demonstrate that light is subject to anomalous (i.e., negative) diffraction when propagating in the presence of hyperbolic dispersion. We show that light propagation in hyperbolic media resembles the dynamics of a quantum particle of negative mass moving in a two-dimensional potential. The negative effective mass implies time reversal if the medium is homogeneous. Such property paves the way to diffraction compensation, spatial analogue of dispersion compensating fibers in the temporal domain. At variance with materials exhibiting standard elliptic dispersion, in inhomogeneous hyperbolic materials light waves are pulled towards regions with a lower refractive index. In the presence of a Kerr-like optical response, bright (dark) solitons are supported by a negative (positive) nonlinearity.
The Mass Dependance of Satellite Quenching in Milky Way-like Halos
Phillips, John I; Cooper, Michael C; Boylan-Kolchin, Michael; Bullock, James S; Tollerud, Erik
2014-01-01
Using the Sloan Digital Sky Survey, we examine the quenching of satellite galaxies around isolated Milky Way-like hosts in the local Universe. We find that the efficiency of satellite quenching around isolated galaxies is low and roughly constant over two orders of magnitude in satellite stellar mass ($M_{*}$ = $10^{8.5}-10^{10.5} \\, M_{\\odot}$), with only $\\sim~20\\%$ of systems quenched as a result of environmental processes. While largely independent of satellite stellar mass, satellite quenching does exhibit clear dependence on the properties of the host. We show that satellites of passive hosts are substantially more likely to be quenched than those of star-forming hosts, and we present evidence that more massive halos quench their satellites more efficiently. These results extend trends seen previously in more massive host halos and for higher satellite masses. Taken together, it appears that galaxies with stellar masses larger than about $10^{8}~M_{\\odot}$ are uniformly resistant to environmental quench...
Orbital evolution of mass-transferring eccentric binary systems. I. Phase-dependent evolution
Dosopoulou, Fani
2016-01-01
Observations reveal that a large amount of close binary systems have a finite eccentricity. The time-evolution of the orbital semi-major axis and eccentricity of mass-transferring eccentric binary systems is an important part of binary evolution theory and has been widely studied. However, various different approaches and assumptions on the subject have made the literature difficult to comprehend and comparisons between different orbital element time-evolution equations not easy to make. Consequently, no self-consistent treatment of this phase has been ever included in binary population synthesis codes. In this paper, we present a general formalism to derive the time-evolution equations of the binary orbital elements, treating mass-loss and mass-transfer as perturbations to the general two-body problem. We present the self-consistent form of the perturbing acceleration and the phase-dependent time-evolution equations for the orbital elements under different mass-loss/transfer processes. First, we study the ca...
The Absence of an Environmental Dependence in the Mass-Metallicity Relation at z=2
Kacprzak, Glenn G; Nanayakkara, Themiya; Kobayashi, Chiaki; Tran, Kim-Vy H; Kewley, Lisa J; Glazebrook, Karl; Spitler, Lee; Taylor, Philip; Cowley, Michael; Labbé, Ivo; Straatman, Caroline; Tomczak, Adam
2015-01-01
We investigate the environmental dependence of the mass-metallicity relation at z=2 with MOSFIRE/Keck as part of the ZFIRE survey. Here, we present the chemical abundance of a Virgo-like progenitor at z=2.095 that has an established red sequence. We identified 43 cluster ($=2.095\\pm0.004$) and 74 field galaxies ($=2.195\\pm0.083$) for which we can measure metallicities. For the first time, we show that there is no discernible difference between the mass-metallicity relation of field and cluster galaxies to within 0.02dex. Both our field and cluster galaxy mass-metallicity relations are consistent with recent field galaxy studies at z~2. We present hydrodynamical simulations for which we derive mass-metallicity relations for field and cluster galaxies. We find at most a 0.1dex offset towards more metal-rich simulated cluster galaxies. Our results from both simulations and observations are suggestive that environmental effects, if present, are small and are secondary to the ongoing inflow and outflow processes t...
Cervantes-Sodi, B; Park, Changbom; Kim, Juhan
2008-01-01
We use a sample of galaxies from the Sloan Digital Sky Survey (SDSS) to search for correlations between the $\\lambda$ spin parameter and the environment and mass of galaxies. In order to calculate the total value of $\\lambda$ for each observed galaxy, we employed a simple model of the dynamical structure of the galaxies which allows a rough estimate of the value of $\\lambda$ using only readily obtainable observables from the luminous galaxies. Use of a large volume limited sample (upwards of 11,000) allows reliable inferences of mean values and dispersions of $\\lambda$ distributions. We find, in agreement with some N-body cosmological simulations, no significant dependence of $\\lambda$ on the environmental density of the galaxies. For the case of mass, our results show a marked correlation with $\\lambda$, in the sense that low mass galaxies present both higher mean values of $\\lambda$ and associated dispersions, than high mass galaxies. This last direct empirical result, at odds with expectations from N-body ...
Environmental dependence of the HI mass function in the ALFALFA 70% catalogue
Jones, Michael G; Haynes, Martha P; Giovanelli, Riccardo
2015-01-01
We search for environmental dependence of the HI mass function in the ALFALFA 70% catalogue. The catalogue is split into quartiles of environment density based on the projected neighbour density of neighbours found in both SDSS and 2MRS volume limited reference catalogues. We find the Schechter function 'knee' mass to be dependent on environment, with the value of $\\log ({M_{*}/\\mathrm{M_{\\odot}}})$ shifting from $9.81 \\pm 0.02$ to $10.00 \\pm 0.03$ between the lowest and highest density quartiles. However, this dependence was only observed when defining environment based on the SDSS reference catalogue, not 2MRS. We interpret these results as meaning that the local environment is the dominant cause of the shift in $M_{*}$, and that the larger scales that 2MRS probes (compared to SDSS) are almost irrelevant. In addition, we also use a fixed aperture method to probe environment, and find tentative evidence that HI-deficiency depresses the value of $M_{*}$ in the highest density regions. We find no significant d...
Normal and anomalous stress relaxation in metallic glasses
International Nuclear Information System (INIS)
Stress relaxation in certain metallic glasses at room temperature has been studied. Anomalous relaxation after off-loading of strained samples is detected. A dislocation model permitting to explain qualitatively the presence of anomalous relaxation is suggested. Activation volume of relaxation and its dependence on stress are calculated
Inoue, Takashi; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji
2013-01-01
Quark mass dependence of the equation of state (EOS) for nucleonic matter is investigated, on the basis of the Brueckner-Hartree-Fock method with the nucleon-nucleon interaction extracted from lattice QCD simulations. We observe saturation of nuclear matter at the lightest available quark mass corresponding to the pseudo-scalar meson mass ~ 469 MeV. Mass-radius relation of the neutron stars is also studied with the EOS for neutron-star matter from the same nuclear force in lattice QCD. We observe that the EOS becomes stiffer and thus the maximum mass of neutron star increases as the quark mass decreases toward the physical point.
Searching for the fourth family quarks through anomalous decays
International Nuclear Information System (INIS)
The flavor democracy hypothesis predicts the existence of the fourth standard model family. Because of the high masses of the fourth family quarks, their anomalous decays could be dominant if certain criteria are met. This will drastically change the search strategy at hadron colliders. We show that the fourth standard model family down quarks with masses up to 400-450 GeV can be observed (or excluded) via anomalous decays by Tevatron.
Relativistic particle scattering states with tensor potential and spatially-dependent mass
International Nuclear Information System (INIS)
We investigate the relativistic equation for particles with spin 1/2 in the q-parameter modified Poeschl-Teller potential, including Coulomb-like tensor interaction with spatially-dependent mass for the D-dimension. We present approximate solutions of the Dirac equation with these potentials for any spin-orbit quantum number κ under spin symmetry. The normalized wave functions are expressed in terms of the hyper-geometric series of the scattering states on the k/2π scale. We also give the formula for the phase shifts, and use the Nikiforov-Uvarov method to obtain the energy eigen-values equation. (authors)
Lattice spacing dependence of the first order phase transition for dynamical twisted mass fermions
International Nuclear Information System (INIS)
We study the phase structure of lattice QCD when Wilson twisted mass fermions with the Wilson plaquette gauge action are used in a range of β values where a first order phase transition is observed. In particular, we investigate the dependence of the first order phase transition on the value of the lattice spacing. Using only data in one phase and neglecting possible problems arising from the phase transition we are able to perform a first scaling test for physical quantities using this action. (orig.)
Top mass dependent alpha_s^3 corrections to B-meson mixing in the MSSM
Virto, Javier
2011-01-01
We compute the top mass dependent NLO strong interaction matching conditions to the Delta F=2 effective Hamiltonian in the general MSSM. We study the relevance of such corrections, comparing its size with that of previously known NLO corrections in the limit mt->0, in scenarios with degeneracy, alignment, and hierarchical squarks. We find that, while these corrections are generally small, there are regions in the parameter space where the contributions to the Wilson coefficients C1 and C4 could partially overcome the expected suppression m_t/M_SUSY.
Full top quark mass dependence in Higgs boson pair production at NLO
Borowka, S; Heinrich, G; Jones, S P; Kerner, M; Schlenk, J; Zirke, T
2016-01-01
We study the effects of the exact top-quark mass dependent two-loop corrections to Higgs boson pair production by gluon fusion at the LHC and at a 100 TeV hadron collider. We perform a detailed comparison of the full next-to-leading order result to various approximations at the level of differential distributions and also analyse non-standard Higgs self-coupling scenarios. We find that the different next-to-leading order approximations differ from the full result by up to 50 percent in relevant differential distributions. This clearly stresses the importance of the full NLO result.
Alignments of dark matter halos with large-scale tidal fields: mass and redshift dependence
Chen, Sijie; Mo, H J; Shi, Jingjing
2016-01-01
Large scale tidal field estimated directly from the distribution of dark matter halos is used to investigate how halo shapes and spin vectors are aligned with the cosmic web. The major, intermediate and minor axes of halos are aligned with the corresponding tidal axes, and halo spin axes tend to be parallel with the intermediate axes and perpendicular to the major axes of tidal field. The strengths of these alignments generally increase with halo mass and redshift, but the dependencies are only through the peak height, {\
Phase Structure in a Quark Mass Density-and-Temperature-Dependent Model
Institute of Scientific and Technical Information of China (English)
WEN Xin-Jian; PENG Guang-Xiong; SHEN Peng-Nian
2007-01-01
The phase diagram of bulk quark matter in equilibrium with a finite hadronic gas is studied. Different from previous investigations, we treat the quark phase with the quark rnass density-and-temperature-dependent model to take the strong quark interaction into account, while the hadron phase is treated by hard core repulsion factor. It is found that the phase diagram in this model is, in several aspects, different from those in the conventional MIT bag model, especially at high temperature. The new phase diagram also has strong effects on the mass-radius relation of compact hybrid stars.
Dependence of phase transition on the mass number of hot nuclei
International Nuclear Information System (INIS)
The dependence of phase transition, associated with the disassembly of hot nuclei, on the mass number of hot nuclei is investigated. By studying six hot nuclei ranging from 56Ni* to 238U*, it is found that in the curves of excitation energy of hot nuclei vs. thermodynamic temperature T(E*) of 63Cu* and heavier ones there are always two temperature plateaus, but in T(E*) of 56Ni* the first temperature plateau (at lower excitation energy) shrinks into a kink
Dependence of the phase transition on the mass number of hot nuclei before break-up
International Nuclear Information System (INIS)
The dependence of the phase transition, associated with the disassembly of hot nuclei, on the mass number of hot nuclei is investigated. By studying seven nuclei ranged from 48Ti* to 238U*, we can always find two obvious plateau structures in the curves of excitation energy E* versus thermodynamic temperature T(E*) for 63Cu* and heavier nuclei. But for 56Ni* and 48Ti* the first plateau structure (at lower excitation energy) with respect to the onset of fission mode disappears. (orig.)
Dibaryon systems in the quark mass density- and temperature-dependent model
Zhang, Yun; Su, Ru-Keng
2003-01-01
Using the quark mass density- and temperature-dependent model, we have studied the properties of the dibaryon systems. The binding energy, radius and mean lifetime of Omega-Omega and Omega-Xi are given. We find the dibaryons Omega-Omega, Omega-Xi are metastable at zero temperature, but the strong decay channel for Omega-Omega opens when temperature arrives at 129.3MeV. It is shown that our results are in good agreement with those given by the chiral S(3) quark model.
Temporal dependence of the mass ablation rate in uv irradiated spherical targets
International Nuclear Information System (INIS)
In this talk, measurements of thermal transport in spherical geometry using time-resolved x-ray spectroscopy are presented. The time dependence of the mass ablation rate (m) is determined by following the progress of the ablation surface through thin layers of material embedded at various depths below the surface of the target. These measurements made with 6, 12 and 24 uv (351 nm) beams from OMEGA are compared to previous thermal transport data and are in qualitative agreement with detailed LILAC hydrodynamic code simulations which predict a sharp decrease in m after the peak of the laser pulse. Viewgraphs of the talk comprise the report
Improved quark mass density- dependent model with quark and non-linear scalar field coupling
Su, C; Su, R K; Su, Chen; Qian, Wei Liang; Su, Ru-Keng
2005-01-01
The improved quark mass density- dependent model which includes the coupling between the quarks and a non-linear scalar field is presented. Numerical analysis of solutions of the model is performed over a wide range of parameters. The wave functions of ground state and the lowest one-particle excited states with even and odd parity are given. The root-mean squared radius, the magnetic moment and the ratio between the axial-vector and the vector $\\beta$-decay coupling constants of the nucleon are calculated. We found that the present model is successful to describe the properties of nucleon.
González-Garciá, M Concepción
1999-01-01
We review the effects of new effective interactions on Higgs-boson phenomenology. New physics in the electroweak bosonic sector is expected to induce additional interactions between the Higgs doublet field and the electroweak gauge bosons, leading to anomalous Higgs couplings as well as anomalous gauge-boson self-interactions. Using a linearly realized SU(2)/sub L/*U(1)/sub Y/ invariant effective Lagrangian to describe the bosonic sector of the Standard Model, we review the effects of the new effective interactions on the Higgs- boson production rates and decay modes. We summarize the results from searches for the new Higgs signatures induced by the anomalous interactions in order to constrain the scale of new physics, in particular at CERN LEP and Fermilab Tevatron colliders. (43 refs).
Institute of Scientific and Technical Information of China (English)
Liu Yu-Min; Yu Zhong-Yuan
2009-01-01
Calculations of electronic structures about the semiconductor quantum dot and the semiconductor quantum ring are presented in this paper. To reduce the calculation costs, for the quantum dot and the quantum ring, their simplified axially symmetric shapes are utilized in our analysis. The energy dependent effective mass is taken into account in solving the Schrodinger equations in the single band effective mass approximation. The calculated results show that the energy dependent effective mass should be considered only for relatively small volume quantum dots or small quantum rings. For large size quantum materials, both the energy dependent effective mass and the parabolic effective mass can give the same results. The energy states and the effective masses of the quantum dot and the quantum ring as a function of geometric parameters are also discussed in detail.
RLC circuit realization of a q-deformed harmonic oscillator with time dependent mass
International Nuclear Information System (INIS)
We consider an RLC circuit type realization of a q-deformed harmonic oscillator. The differential equations of motion characterizing this circuit are derived, and it is shown that the RLC circuit gets modified as a result of the q-deformation. The natural frequency, the capacitance and the external power source are all modified and become q-dependent. The energy aspects of the circuit are also studied and the effects of the deformation are shown. - Highlights: • Classically q-deformed harmonic oscillators are equivalent to driven oscillators. • RLC circuit realization of q-deformed harmonic oscillators is derived. • A mass dependent q-deformed harmonic oscillator is used for this realization. • The capacitance and natural frequency are modified because of the deformation. • Energy aspects of the circuit are studied and the effect of deformation is observed
Rañada, Manuel F.
2016-06-01
The superintegrability of two-dimensional Hamiltonians with a position dependent mass (pdm) is studied (the kinetic term contains a factor m that depends of the radial coordinate). First, the properties of Killing vectors are studied and the associated Noether momenta are obtained. Then the existence of several families of superintegrable Hamiltonians is proved and the quadratic integrals of motion are explicitly obtained. These families include, as particular cases, some systems previously obtained making use of different approaches. We also relate the superintegrability of some of these pdm systems with the existence of complex functions endowed with interesting Poisson bracket properties. Finally the relation of these pdm Hamiltonians with the Euclidean Kepler problem and with the Euclidean harmonic oscillator is analyzed.
Anomalous gauge boson interactions
International Nuclear Information System (INIS)
We discuss the direct measurement of the trilinear vector boson couplings in present and future collider experiments. The major goals of such experiments will be the confirmation of the Standard Model (SM) predictions and the search for signals of new physics. We review our current theoretical understanding of anomalous trilinear gauge-boson self interactions. If the energy scale of the new physics is ∼ 1 TeV, these low energy anomalous couplings are expected to be no larger than Ο(10-2). Constraints from high precision measurements at LEP and low energy charged and neutral current processes are critically reviewed
Institute of Scientific and Technical Information of China (English)
JU Guo-Xing; CAI Chang-Ying; XIANG Yang; REN Zhong-Zhou
2007-01-01
Using the coordinate transformation method, we solve the one-dimensional Schr(o)dinger equation with position-dependent mass. The explicit expressions for the potentials, energy eigenvalues, and eigcnfunctions of the systems are given. The eigenfunctions can be expressed in terms of the Jacobi, Hermite, and generalized Laguerre polynomials. All potentials for these solvable systems have an extra term Vm, which is produced from the dependence of mass on the position, compared with those for the systems of constant mass. The properties of Vm for several mass functions are discussed.
Quark Matter at High Density based on Extended Confined-isospin-density-dependent-mass Model
Qauli, A I
2016-01-01
We investigate the effect of the inclusion of relativistic Coulomb terms in a confined-isospin-density-dependent-mass (CIDDM) model of strange quark matter (SQM). We found that if we include Coulomb term in scalar density form, SQM equation of state (EOS) at high densities is stiffer but if we include Coulomb term in vector density form is softer than that of standard CIDDM model. We also investigate systematically the role of each term of the extended CIDDM model. Compared with what was reported in Ref.~\\cite {ref:isospin}, we found the stiffness of SQM EOS is controlled by the interplay among the the oscillator harmonic, isospin asymmetry and Coulomb contributions depending on the parameter's range of these terms. We have found that the absolute stable condition of SQM and the mass of 2 $M_\\odot$ pulsars can constrain the parameter of oscillator harmonic $\\kappa_1$ $\\approx 0.53$ in the case Coulomb term excluded. If the Coulomb term is included, for the models with their parameters are consistent with SQM ...
Energy Technology Data Exchange (ETDEWEB)
Mátyus, Edit, E-mail: matyus@chem.elte.hu [Institute of Chemistry, Eötvös University, P.O. Box 32, H-1518 Budapest 112 (Hungary); Szidarovszky, Tamás [MTA-ELTE Research Group on Complex Chemical Systems, Pázmány Péter sétány 1/A, H-1117 Budapest (Hungary); Császár, Attila G., E-mail: csaszar@chem.elte.hu [Institute of Chemistry, Eötvös University, P.O. Box 32, H-1518, Budapest 112, Hungary and MTA-ELTE Research Group on Complex Chemical Systems, Pázmány Péter sétány 1/A, H-1117 Budapest (Hungary)
2014-10-21
Introducing different rotational and vibrational masses in the nuclear-motion Hamiltonian is a simple phenomenological way to model rovibrational non-adiabaticity. It is shown on the example of the molecular ion H{sub 3}{sup +}, for which a global adiabatic potential energy surface accurate to better than 0.1 cm{sup −1} exists [M. Pavanello, L. Adamowicz, A. Alijah, N. F. Zobov, I. I. Mizus, O. L. Polyansky, J. Tennyson, T. Szidarovszky, A. G. Császár, M. Berg et al., Phys. Rev. Lett. 108, 023002 (2012)], that the motion-dependent mass concept yields much more accurate rovibrational energy levels but, unusually, the results are dependent upon the choice of the embedding of the molecule-fixed frame. Correct degeneracies and an improved agreement with experimental data are obtained if an Eckart embedding corresponding to a reference structure of D{sub 3h} point-group symmetry is employed. The vibrational mass of the proton in H{sub 3}{sup +} is optimized by minimizing the root-mean-square (rms) deviation between the computed and recent high-accuracy experimental transitions. The best vibrational mass obtained is larger than the nuclear mass of the proton by approximately one third of an electron mass, m{sub opt,p}{sup (v)}=m{sub nuc,p}+0.31224 m{sub e}. This optimized vibrational mass, along with a nuclear rotational mass, reduces the rms deviation of the experimental and computed rovibrational transitions by an order of magnitude. Finally, it is shown that an extension of the algorithm allowing the use of motion-dependent masses can deal with coordinate-dependent mass surfaces in the rovibrational Hamiltonian, as well.
Temperature dependence of dissolution rate of a lead oxide mass exchanger in lead–bismuth eutectic
International Nuclear Information System (INIS)
A Computational Fluid Dynamic (CFD) model of a lead oxide mass exchanger (PbO MX) was developed. The mass exchanger consisted of a packed bed of PbO spheres. The geometry was created using Discrete Elements Method (DEM) software while the meshing, the solving and the post-processing were done by the commercial CFD package CFX. The dissolution process was modeled by implementing in the code oxygen mass transfer through the boundary layer. The dissolution rate was then predicted for different temperatures. Experiments were also performed at the LBE material test loop known as the DELTA loop. Oxygen concentration at the outlet of the PbO MX was measured for different conditions using a potentiometric oxygen sensor and the dissolution rate was determined for five different temperatures. The experimental data were compared with the numerical model. The temperature dependence of the dissolution rate was then determined in terms of Sherwood number by fitting the simulation results while keeping constant Reynolds number. The results showed that the Sherwood number for PbO MX in flowing LBE varies with Sc0.323
The confines of triple oxygen isotope exponents in elemental and complex mass-dependent processes
Bao, Huiming; Cao, Xiaobin; Hayles, Justin A.
2015-12-01
Small differences in triple isotope relationships, or Δ17O in the case of oxygen, have been increasingly used to study a range of problems including hydrological cycles, stratosphere-troposphere exchange, biogeochemical pathways and fluxes, and the Moon's origin in the geochemical and cosmochemical communities. A Δ17O value depends on the triple isotope exponent θ of involved reaction steps. However, the probabilistic distribution of the intrinsic and apparent θ values has not been examined for elemental processes and for processes that are out of equilibrium or bearing reservoir-transport complexities. A lack of knowledge on the confines of θ may hamper our understanding of the subtle differences among mass-dependent processes and may result in mischaracterization of a set of mass-dependent processes as being in violation of mass-dependent rules. Here we advocate a reductionist approach and explore θ confines starting from kinetic isotope effects (KIEs) within the framework of transition state theory (TST). The advantage of our KIE approach is that any elemental or composite, equilibrium or non-equilibrium process can be reduced to a set of KIEs with corresponding θKIE. We establish that the KIE between a reactant and a transition state (TS) is intrinsic. Given a range of KIEs known for Earth processes involving oxygen, we use a Monte Carlo calculation method and a range of oxygen-bonded molecular masses to obtain a distribution of θKIE values and subsequently that of θeq. Next, complexities are examined by looking into expected effects due to reaction progress, unbalanced fluxes, and reference frame. Finally, compounded reservoir-transport effects are examined using two simple processes - Rayleigh Distillation (RD) and Fractional Distillation (FD). Our results show that the apparent θ values between two species or two states of the same evolving species have much broader confines than the commonly used "canonical" confines of 0.51-0.53, particularly
ATLAS sensitivity to Wtb anomalous couplings in top quark decays
Aguilar-Saavedra, J A; Castro, N; Onofre, A; Veloso, F
2006-01-01
We study the sensitivity of the ATLAS experiment to Wtb anomalous couplings in top pair production with semileptonic decay, pp -> t tbar -> W+ b W- bbar with one of the W bosons decaying leptonically and the other hadronically. Several observables are examined, including the W helicity fractions and new quantities recently introduced, such as the ratios of helicity fractions and some angular asymmetries defined in the W rest frame. The dependence on anomalous couplings of all these observables has been previously obtained. In this work we show that some of the new observables also have smaller systematic uncertainties than the helicity fractions, with a dependence on anomalous couplings similar or stronger than for helicity fractions. Consequently, their measurement can significantly improve the limits on anomalous couplings. Moreover, the most sensitive measurements can be combined. In this case, the precision achieved in the determination of Wtb anomalous couplings can be of a few percent in the semileptoni...
Tovée, M.J.; Emery, J L; Cohen-Tovée, E M
2000-01-01
A disturbance in the evaluation of personal body mass and shape is a key feature of both anorexia and bulimia nervosa. However, it is uncertain whether overestimation is a causal factor in the development of these eating disorders or is merely a secondary effect of having a low body mass. Moreover, does this overestimation extend to the perception of other people's bodies? Since body mass is an important factor in the perception of physical attractiveness, we wanted to determine whether this ...
Anomalous pion decay revisited
Battistel, O A; Nemes, M C; Hiller, B
1999-01-01
An implicit four dimensional regularization is applied to calculate the axial-vector-vector anomalous amplitude. The present technique always complies with results of Dimensional Regularization and can be easily applied to processes involving odd numbers of $\\gamma_5$ matrices. This is illustrated explicitely in the example of this letter.
Czech Academy of Sciences Publication Activity Database
Nagaosa, N.; Sinova, Jairo; Onoda, S.; MacDonald, A. H.; Ong, N. P.
2010-01-01
Roč. 82, č. 2 (2010), s. 1539-1592. ISSN 0034-6861 Institutional research plan: CEZ:AV0Z10100521 Keywords : anomalous Hall effect * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 51.695, year: 2010
Anomalous Cepheids in the Sculptor dwarf galaxy
International Nuclear Information System (INIS)
The Sculptor dwarf galaxy contains at least three Cepheids (V25, V26, and V119), each with a period near 1 day and B magnitudes about 1.4 mag brighter than those of the Sculptor RR Lyrae stars. Low-resolution spectra of these so-called anomalous Cepheids were obtained. Metal abundances of the Cepheids have been determined by the Delta-S method and are found to be: Fe/H = -1.9 + or - 0.2, -1.8 + or - 0.2, and -2.2 + or - 0.3 for V25, V26, and V119, respectively. These values are consistent with the metal abundances of Sculptor red giants estimated from the color of the giant branch. Pulsational masses have been estimated for V25 and V26, but there is a need for improved photometry of these stars to obtain accurate results. It cannot be unambiguously established whether the Sculptor anomalous Cepheids are evolved single stars, aged about 3 Gyr, or whether they are created by mass transfer in older binary systems. The occurrence of anomalous Cepheids in other systems is discussed. There is some evidence that most anomalous Cepheids in the Small Magellanic Cloud are evolved single stars. 89 references
Energy and Mass-Number Dependence of Hadron-Nucleus Total Reaction Cross Sections
Kohama, Akihisa; Iida, Kei; Oyamatsu, Kazuhiro
2016-09-01
We thoroughly investigate how proton-nucleus total reaction cross sections depend on the target mass number A and the proton incident energy. In doing so, we systematically analyze nuclear reaction data that are sensitive to nuclear size, namely, proton-nucleus total reaction cross sections and differential elastic cross sections, using a phenomenological black-sphere approximation of nuclei that we are developing. In this framework, the radius of the black sphere is found to be a useful length scale that simultaneously accounts for the observed proton-nucleus total reaction cross section and first diffraction peak in the proton elastic differential cross section. This framework, which is shown here to be applicable to antiprotons, is expected to be applicable to any kind of projectile that is strongly attenuated in the nucleus. On the basis of a cross-section formula constructed within this framework, we find that a less familiar A1/6 dependence plays a crucial role in describing the energy dependence of proton-nucleus total reaction cross sections.
Directory of Open Access Journals (Sweden)
G. Rastgarzadeh
2006-06-01
Full Text Available Monte Carlo simulation with CORSIKA code using QGSJET hadronic interaction model is applied on more than 5000 cosmic ray primaries to investigate dependence of maximum air shower development (Hmax on mass and energy of primaries.
Medium dependence of the vector-meson mass: dynamical and/or Brown-Rho scaling?
International Nuclear Information System (INIS)
We discuss the similarities and differences for the theories of Rapp, Wambach and collaborators (called R/W in short) and those based on Brown-Rho scaling (called B/R), as applied to reproduce the dileptons measured by the CERES collaboration in the CERN experiments. In both theories the large number of dileptons at invariant masses ∼ mρ/2 are shown to be chiefly produced by a density-dependent ρ-meson mass. In R/W the medium dependence is dynamically calculated using hadronic variables defined in the matter-free vacuum. In B/R scaling it follows from movement towards chiral symmetry restoration due to medium-induced vacuum change, and is described in terms of constituent (or quasiparticle) quarks. We argue that the R/W description should be reliable up to densities somewhat beyond nuclear density, where hadrons are the effective variables. At higher density there should be a crossover to constituent quarks as effective variables scaling according to B/R. In the crossover region, the two descriptions must be ''dual'' For the moment there is a factor ≥ 2 difference between the predicted number of dileptons from the two theories, B/R scaling giving the larger number. We show that a substantial factor results because in B/R, fluctuation is made about the ''vacuum'' modified by density, so that a different mass mρ* appears in the Lagrangian for each density, thereby rendering residual interactions between hadrons weaker, whereas R/W calculate a mass mρ for each density with an effective Lagrangian defined in the zero-density vacuum, which has the free mρ in the Lagrangian and hence the coupling is strong. Thus more diagrams need to be incorporated in R/W to reduce the discrepancy. On the other hand, R/W include processes which may be additional to these of B/R. These constitute several (smaller) corrections. It is argued that the N*-hole state [N*(1520)N-1]1- is almost completely ρ-meson like in content; i.e., it is, to a good approximation, just the state
Tovée, M J; Emery, J L; Cohen-Tovée, E M
2000-10-01
A disturbance in the evaluation of personal body mass and shape is a key feature of both anorexia and bulimia nervosa. However, it is uncertain whether overestimation is a causal factor in the development of these eating disorders or is merely a secondary effect of having a low body mass. Moreover, does this overestimation extend to the perception of other people's bodies? Since body mass is an important factor in the perception of physical attractiveness, we wanted to determine whether this putative overestimation of self body mass extended to include the perceived attractiveness of others. We asked 204 female observers (31 anorexic, 30 bulimic and 143 control) to estimate the body mass and rate the attractiveness of a set of 25 photographic images showing people of varying body mass index (BMI). BMI is a measure of weight scaled for height (kg m(- 2)). The observers also estimated their own BMI. Anorexic and bulimic observers systematically overestimated the body mass of both their own and other people's bodies, relative to controls, and they rated a significantly lower body mass to be optimally attractive. When the degree of overestimation is plotted against the BMI of the observer there is a strong correlation. Taken across all our observers, as the BMI of the observer declines, the overestimation of body mass increases. One possible explanation for this result is that the overestimation is a secondary effect caused by weight loss. Moreover, if the degree of body mass overestimation is taken into account, then there are no significant differences in the perceptions of attractiveness between anorexic and bulimic observers and control observers. Our results suggest a significant perceptual overestimation of BMI that is based on the observer's own BMI and not correlated with cognitive factors, and suggests that this overestimation in eating-disordered patients must be addressed directly in treatment regimes. PMID:11075712
International Nuclear Information System (INIS)
We present the evolution of the stellar mass function (SMF) of galaxies from z = 4.0 to z = 1.3 measured from a sample constructed from the deep near-infrared Multi-wavelength Survey by Yale-Chile, the Faint Infrared Extragalactic Survey, and the Great Observatories Origins Deep Survey-Chandra Deep Field South surveys, all having very high-quality optical to mid-infrared data. This sample, unique in that it combines data from surveys with a large range of depths and areas in a self-consistent way, allowed us to (1) minimize the uncertainty due to cosmic variance and empirically quantify its contribution to the total error budget; (2) simultaneously probe the high-mass end and the low-mass end (down to ∼0.05 times the characteristic stellar mass) of the SMF with good statistics; and (3) empirically derive the redshift-dependent completeness limits in stellar mass. We provide, for the first time, a comprehensive analysis of random and systematic uncertainties affecting the derived SMFs, including the effect of metallicity, extinction law, stellar population synthesis model, and initial mass function. We find that the mass density evolves by a factor of ∼17+7-10 since z = 4.0, mostly driven by a change in the normalization Φ*. If only random errors are taken into account, we find evidence for mass-dependent evolution, with the low-mass end evolving more rapidly than the high-mass end. However, we show that this result is no longer robust when systematic uncertainties due to the SED-modeling assumptions are taken into account. Another significant uncertainty is the contribution to the overall stellar mass density of galaxies below our mass limit; future studies with WFC3 will provide better constraints on the SMF at masses below 1010 Msun at z>2. Taking our results at face value, we find that they are in conflict with semianalytic models of galaxy formation. The models predict SMFs that are in general too steep, with too many low-mass galaxies and too few high-mass
Indian Academy of Sciences (India)
M K Bahar; F Yasuk
2013-02-01
Approximate solutions of the Dirac equation with position-dependent mass are presented for the inversely quadratic Yukawa potential and Coulomb-like tensor interaction by using the asymptotic iteration method. The energy eigenvalues and the corresponding normalized eigenfunctions are obtained in the case of position-dependent mass and arbitrary spin-orbit quantum number k state and approximation on the spin-orbit coupling term.
Classical oscillator with position-dependent mass in a complex domain
Ghosh, Subir; Modak, Sujoy Kumar
2009-03-01
We study complexified Harmonic Oscillator with a position-dependent mass, termed as Complex Exotic Oscillator (CEO). The complexification induces a gauge invariance [A.V. Smilga, J. Phys. A 41 (2008) 244026, arXiv:0706.4064; A. Mostafazadeh, J. Math. Phys. 43 (2002) 205; A. Mostafazadeh, J. Math. Phys. 43 (2002) 2814; A. Mostafazadeh, J. Math. Phys. 43 (2002) 3944]. The role of PT-symmetry is discussed from the perspective of classical trajectories of CEO for real energy. Some trajectories of CEO are similar to those for the particle in a quartic potential in the complex domain [C.M. Bender, S. Boettcher, P.N. Meisinger, J. Math. Phys. 40 (1999) 2201; C.M. Bender, D.D. Holm, D. Hook, J. Phys. A 40 (2007) F793, arXiv:0705.3893].
Classical oscillator with position-dependent mass in a complex domain
International Nuclear Information System (INIS)
We study complexified Harmonic Oscillator with a position-dependent mass, termed as Complex Exotic Oscillator (CEO). The complexification induces a gauge invariance [A.V. Smilga, J. Phys. A 41 (2008) 244026, (arXiv:0706.4064); A. Mostafazadeh, J. Math. Phys. 43 (2002) 205; A. Mostafazadeh, J. Math. Phys. 43 (2002) 2814; A. Mostafazadeh, J. Math. Phys. 43 (2002) 3944]. The role of PT-symmetry is discussed from the perspective of classical trajectories of CEO for real energy. Some trajectories of CEO are similar to those for the particle in a quartic potential in the complex domain [C.M. Bender, S. Boettcher, P.N. Meisinger, J. Math. Phys. 40 (1999) 2201; C.M. Bender, D.D. Holm, D. Hook, J. Phys. A 40 (2007) F793, (arXiv:0705.3893)
Institute of Scientific and Technical Information of China (English)
SONG Li-Hua; LIU Na; DUAN Chun-Gui
2013-01-01
Hadron production in lepton-nucleus deep inelastic scattering is studied in a quark energy loss model.The leading-order computations for hadron multiplicity ratios are presented and compared with the selected HERMES pions production data with the quark hadronization occurring outside the nucleus by means of the hadron formation time.It is found that the obtained energy loss per unit length is 0.440±0.013 GeV/fm for an outgoing quark by the global fit.It is confirmed that the atomic mass number dependence of hadron attenuation is theoretically and experimentally in good agreement with the A2/3 power law for quark hadronization occurring outside the nucleus.
Relativistic particle scattering states with tensor potential and spatially-dependent mass
Institute of Scientific and Technical Information of China (English)
M.Eshghi; M.R.Abdi
2013-01-01
We investigate the relativistic equation for particles with spin 1/2 in the q-parameter modified P(o)schlTeller potential,including Coulomb-like tensor interaction with spatially-dependent mass for the D-dimension.We present approximate solutions of the Dirac equation with these potentials for any spin-orbit quantum number κ under spin symmetry.The normalized wave functions are expressed in terms of the hyper-geometric series of the scattering states on the k/2π scale.We also give the formula for the phase shifts,and use the Nikiforov-Uvarov method to obtain the energy eigen-values equation.
Soliton solutions of an improved quark mass density-dependent model at finite temperature
International Nuclear Information System (INIS)
The improved quark mass density-dependent model (IQMDD) based on soliton bag model is studied at finite temperature. Applying the finite temperature field theory, the effective potential of the IQMDD model and the bag constant B(T) have been calculated at different temperatures. It is shown that there is a critical temperature TC≅110 MeV. We also calculate the soliton solutions of the IQMDD model at finite temperature. It turns out that when TC, there is a bag constant B(T) and the soliton solutions are stable. However, when T>TC the bag constant B(T)=0 and there is no soliton solution, therefore, the confinement of quarks are removed quickly
Fisher information for the position-dependent mass Schrödinger system
Falaye, B. J.; Serrano, F. A.; Dong, Shi-Hai
2016-01-01
This study presents the Fisher information for the position-dependent mass Schrödinger equation with hyperbolic potential V (x) = -V0csch2 (ax). The analysis of the quantum-mechanical probability for the ground and exited states (n = 0, 1, 2) has been obtained via the Fisher information. This controls both chemical and physical properties of some molecular systems. The Fisher information is considered only for x > 0 due to the singular point at x = 0. We found that Fisher-information-based uncertainty relation and the Cramer-Rao inequality holds. Some relevant numerical results are presented. The results presented show that the Cramer-Rao and the Heisenberg products in both spaces provide a natural measure for anharmonicity of -V0csch2 (ax).
On Hamiltonians with position-dependent mass from Kaluza-Klein compactifications
Ballesteros, Ángel; Naranjo, Pedro
2016-01-01
In a recent paper [1], an inhomogeneous compactification of the extra dimension of a five dimensional Kaluza-Klein metric has been shown to generate a position-dependent mass in the corresponding four dimensional system. As an application of this dimensional reduction mechanism, a specific static dilatonic scalar field has been connected with a PDM Lagrangian describing a well-known nonlinear PDM oscillator. Here we present two more instances of this construction that lead to two distinguished superintegrable PDM systems: the so-called Darboux III and Taub-NUT Hamiltonians, and the properties of the inhomogeneous extra dimensions connected with them are compared with the ones in the nonlinear oscillator model. It is worth stressing that the Darboux III and Taub-NUT define exactly solvable quantum models, whose spectrum and eigenfuctions are explicitly known. Finally, it is shown that the compactification introduced in [1] can be alternatively interpreted as a mechanism for the dynamical generation of curvatur...
Dirac Particle for the Position Dependent Mass in the Generalized Asymmetric Woods-Saxon Potential
Directory of Open Access Journals (Sweden)
Soner Alpdoğan
2014-01-01
Full Text Available The one-dimensional Dirac equation with position dependent mass in the generalized asymmetric Woods-Saxon potential is solved in terms of the hypergeometric functions. The transmission and reflection coefficients are obtained by considering the one-dimensional electric current density for the Dirac particle and the equation describing the bound states is found by utilizing the continuity conditions of the obtained wave function. Also, by using the generalized asymmetric Woods-Saxon potential solutions, the scattering states are found out without making calculation for the Woods-Saxon, Hulthen, cusp potentials, and so forth, which are derived from the generalized asymmetric Woods-Saxon potential and the conditions describing transmission resonances and supercriticality are achieved. At the same time, the data obtained in this work are compared with the results achieved in earlier studies and are observed to be consistent.
The dependence of oxygen and nitrogen abundances on stellar mass from the CALIFA survey
Pérez-Montero, E; Vílchez, J M; Sánchez, S F; Kehrig, C; Husemann, B; Puertas, S Duarte; Iglesias-Pármao, J; Galbany, L; Mollá, M; Walcher, C J; Ascasíbar, Y; Delgado, R M González; Marino, R A; Masegosa, J; Pérez, E; Rosales-Ortega, F F; Sánchez-Blázquez, P; Bland-hawthorn, J; Bomans, D; López-Sánchez, A R; Ziegler, B
2016-01-01
We analysed the optical spectra of HII regions extracted from a sample of 350 galaxies of the CALIFA survey. We calculated total O/H abundances and, for the first time, N/O ratios using the semi-empirical routine HII-CHI-mistry, which, according to P\\'erez-Montero (2014), is consistent with the direct method and reduces the uncertainty in the O/H derivation using [NII] lines owing to the dispersion in the O/H-N/O relation. Then we performed linear fittings to the abundances as a function of the de-projected galactocentric distances. The analysis of the radial distribution both for O/H and N/O in the non-interacting galaxies reveals that both average slopes are negative, but a non-negligible fraction of objects have a flat or even a positive gradient (at least 10\\% for O/H and 4\\% for N/O). The slopes normalised to the effective radius appear to have a slight dependence on the total stellar mass and the morphological type, as late low-mass objects tend to have flatter slopes. No clear relation is found, howeve...
Full mass dependence in Higgs boson production in association with jets at the LHC and FCC
Greiner, Nicolas; Luisoni, Gionata; Schonherr, Marek; Winter, Jan-Christopher
2016-01-01
The first computation of Higgs production in association with three jets at NLO in QCD has recently been performed using the effective theory, where the top quark is treated as an infinitely heavy particle and integrated out. This approach is restricted to the regions in phase space where the typical scales are not larger than the top quark mass. Here we investigate this statement at a quantitative level by calculating the leading-order contributions to the production of a Standard Model Higgs boson in association with up to three jets taking full top-quark and bottom-quark mass dependence into account. We find that the transverse momentum of the hardest particle or jet plays a key role in the breakdown of the effective theory predictions, and that discrepancies can easily reach an order of magnitude for transverse momenta of about 1 TeV. The impact of bottom-quark loops are found to be visible in the small transverse momentum region, leading to corrections of up to 5 percent. We further study the impact of m...
From outside-in to inside-out: galaxy assembly mode depends on stellar mass
Pan, Zhizheng; Lin, Weipeng; Wang, Jing; Fan, Lulu; Kong, Xu
2015-01-01
In this Letter, we investigate how galaxy mass assembly mode depends on stellar mass $M_{\\ast}$, using a large sample of $\\sim$10, 000 low redshift galaxies. Our galaxy sample is selected to have SDSS $R_{90}>5\\arcsec.0$, which allows the measures of both the integrated and the central NUV$-r$ color indices. We find that: in the $M_{\\ast}-($ NUV$-r$) green valley, the $M_{\\ast}10^{10.5}~M_{\\sun}$ galaxies have negative color gradients. When their central $D_{n}4000$ index values exceed 1.6, the $M_{\\ast}10^{10.5}~M_{\\sun}$ galaxies still lie on the UV blue cloud or the green valley region. We conclude that the main galaxy assembly mode is transiting from "the outside-in" mode to "the inside-out" mode at $M_{\\ast} 10^{10.5}~M_{\\sun}$. We argue that the physical origin of this is the compromise between the internal and the external process that driving the star formation quenching in galaxies. These results can be checked with the upcoming large data produced by the on-going IFS survey projects, such as CALIFA,...
International Nuclear Information System (INIS)
Rutherford backscattering and channelling analysis of high-dose, room-temperature, ion-implanted germanium has revealed an anomalous near-surface yield deficit. Implant dose and species dependencies and the effect of annealing have been examined. A marked loss of implanted impurity was also noted. The yield deficit is attributed to the absorption of oxygen and other light mass contaminants into a highly porous implanted layer upon exposure to air. Loss of implant species is attributed to enhanced sputtering effects
Identification of POMC exonic variants associated with substance dependence and body mass index.
Directory of Open Access Journals (Sweden)
Fan Wang
Full Text Available BACKGROUND: Risk of substance dependence (SD and obesity has been linked to the function of melanocortin peptides encoded by the proopiomelanocortin gene (POMC. METHODS AND RESULTS: POMC exons were Sanger sequenced in 280 African Americans (AAs and 308 European Americans (EAs. Among them, 311 (167 AAs and 114 EAs were affected with substance (alcohol, cocaine, opioid and/or marijuana dependence and 277 (113 AAs and164 EAs were screened controls. We identified 23 variants, including two common polymorphisms (rs10654394 and rs1042571 and 21 rare variants; 12 of which were novel. We used logistic regression to analyze the association between the two common variants and SD or body mass index (BMI, with sex, age, and ancestry proportion as covariates. The common variant rs1042571 in the 3'UTR was significantly associated with BMI in EAs (Overweight: P(adj = 0.005; Obese: P(adj = 0.018; Overweight+Obese: P(adj = 0.002 but not in AAs. The common variant, rs10654394, was not associated with BMI and neither common variant was associated with SD in either population. To evaluate the association between the rare variants and SD or BMI, we collapsed rare variants and tested their prevalence using Fisher's exact test. In AAs, rare variants were nominally associated with SD overall and with specific SD traits (SD: P(FET,1df = 0.026; alcohol dependence: P(FET,1df = 0.027; cocaine dependence: P(FET,1df = 0.007; marijuana dependence: P(FET,1df = 0.050 (the P-value from cocaine dependence analysis survived Bonferroni correction. There was no such effect in EAs. Although the frequency of the rare variants did not differ significantly between the normal-weight group and the overweight or obese group in either population, certain rare exonic variants occurred only in overweight or obese subjects without SD. CONCLUSION: These findings suggest that POMC exonic variants may influence risk for both SD and elevated BMI, in a population-specific manner. However, common
Terschlüsen, Carla
2016-01-01
The contributions of one-loop diagrams with dynamical vector mesons to masses and decay constants of pseudoscalar mesons are determined. Hereby, a relativistic Lagrangian for both the pseudoscalar-meson octet and the vector-meson nonet is used. The vector mesons are given in the antisymmetric tensor representation. Both the differences between static and dynamical vector mesons and the differences between calculations with and without vector mesons are studied as functions of the light quark mass.
Anomalous interactions at a linear collider
Indian Academy of Sciences (India)
Sudhansu S Biswal; Debajyoti Choudhury; Rohini M Godbole; Ritesh K Singh
2007-11-01
We examine, in a model independent way, the sensitivity of a linear collider to the couplings of a light Higgs boson to a pair of gauge bosons, including the possibility of CP violation. We construct several observables that probe the various possible anomalous couplings. For an intermediate mass Higgs, a collider operating at a center of mass energy of 500 GeV and with an integrated luminosity of 500 fb-1 is shown to be able to constrain the vertex at the few per cent level, with even higher sensitivity for some of the couplings. However, lack of sufficient number of observables as well as contamination from the vertex limits the precision to which anomalous part of the coupling can be probed.
Light-ion elastic scattering potentials: Energy and projectile-mass dependence
International Nuclear Information System (INIS)
Volume integrals of the real potentials derived from elastic scattering studies of deuterons, tritons, 3He, and α particles have been calculated for data available from the lowest to the highest energy. These volume integrals have been plotted as a function of energy per nucleon for each projectile. By selecting energy regions where there were least ambiguities in the potentials and averaging the volume integrals in 1 MeV bins, the energy dependences were determined. The volume integrals show a logarithmic dependence on the energy per nucleon. The zero crossing of the potentials is at about the same value of ∼650 MeV/nucleon for all projectiles. With increasing projectile mass, the potentials become weaker, possibly due to Pauli blocking effects in the projectile. Neutron-rich projectiles have smaller volume integrals due to the manifestation of the isospin effect. A similar analysis of the imaginary volume integrals shows that they increase from zero at the lowest energies to about 100-150 MeV fm3 around 10 MeV/nucleon and then remain essentially constant
International Nuclear Information System (INIS)
High energetic heavy ions giving unique irradiation effects on aqueous solutions are promising tool for the application in chemistry and biology fields. Reactions in aqueous solutions are mainly induced by OH (hydroxyl) radicals upon heavy ion irradiation. Characteristics of oxidations of solutes are strongly dependent on initial spatial distribution and subsequent diffusion of OH radicals. The heavy ion deposits its kinetic energy densely along and around its trajectory to make track structure. The initial spatial distribution of OH radicals is the same as that of the energy deposition, which is determined by incident ion mass and its specific energy. OH radicals, however, disperse as time passed within their life, and it makes the interpretation of relevant chemical reactions very complicate. Investigations based on three influences, which are ion mass, specific energy and elapse time in ns scale are indispensable to clarify such complicated chemical reactions in the track. The study was performed using aqueous phenol solutions in which the reactions of OH radicals and phenol are well known. Oxygen-saturated aqueous phenol solutions were irradiated with 50 MeV He, 220 MeV C, and 350 MeV Ne ions provided from an AVF cyclotron in TIARA facility at JAEA/Takasaki. Thin aluminum foils were placed on the irradiation cell for reducing the incident energy of the ion. The solutions were analyzed before and after irradiations by high performance liquid chromatography with a reversed phase column at 40 degree centigrade. Three oxidized products, hydroquinone, resorcinol and catechol, are formed through the reaction adding one OH radical to phenyl ring at p-, m- and o- positions. The number (N) of oxidized products per a single ion, which is integration of differential G-value (G'-value) over entire ion trajectory, increased super-linearly as a function of incident energy of the ion. The G'-value of the oxidized products are estimated by differentiating N with a polynomial
Search for Anomalous Couplings in the Higgs Sector at LEP
Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, F; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosemann, C; Rosenbleck, C; Rosier-Lees, S; Roth, S; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, Q; Wang, X L; Wang, Z M; Weber, M; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M
2004-01-01
Anomalous couplings of the Higgs boson are searched for through the processes e^+ e^- -> H gamma, e^+ e^- -> e^+ e^- H and e^+ e^- -> HZ. The mass range 70 GeV ffbar, H -> gamma gamma, H -> Z\\gamma and H -> WW^(*) are considered and no evidence is found for anomalous Higgs production or decay. Limits on the anomalous couplings d, db, Delta(g1z), Delta(kappa_gamma) and xi^2 are derived as well as limits on the H -> gamma gamma and H -> Z gamma decay rates.
Singh, N N
2001-01-01
The contribution of scale-dependent vacuum expectation values (VEVs) of Higgs scalars, which gives significant effects in the evolution of fundamental fermion masses in the Minimal Supersymmetric Standard Model (MSSM), is now considered in the derivation of the one-loop analytic expression for the evolution of the left-handed Majorana neutrino masses with energies. The inclusion of such effect of the running VEV increases the stability of the neutrino masses under quantum corrections and leads to a mild decrease of neutrino masses with higher energies.
The pH-responsive behaviour of poly(acrylic acid) in aqueous solution is dependent on molar mass.
Swift, T; Swanson, L.; Geoghegan, M; Rimmer, S.
2016-01-01
Fluorescence spectroscopy on a series of aqueous solutions of poly(acrylic acid) containing a luminescent label showed that polymers with molar mass, Mn < 16.5 kDa did not exhibit a pH responsive conformational change, which is typical of higher molar mass poly(acrylic acid). Below this molar mass, polymers remained in an extended conformation, regardless of pH. Above this molar mass, a pH-dependent conformational change was observed. Diffusion-ordered nuclear magnetic resonance spectroscopy ...
Fenz, W; Mryglod, I M; Prytula, O; Folk, R
2009-08-01
Correlation functions and transport coefficients of self-diffusion and shear viscosity of a binary Lennard-Jones mixture with components differing only in their particle mass are studied up to high values of the mass ratio mu, including the limiting case mu = infinity, for different mole fractions x. Within a large range of x and mu the product of the diffusion coefficient of the heavy species D(2) and the total shear viscosity of the mixture eta(m) is found to remain constant, obeying a generalized Stokes-Einstein relation. At high liquid density, large mass ratios lead to a pronounced cage effect that is observable in the mean square displacement, the velocity autocorrelation function, and the van Hove correlation function. PMID:19792112
Fenz, W.; Mryglod, I. M.; Prytula, O.; Folk, R.
2009-08-01
Correlation functions and transport coefficients of self-diffusion and shear viscosity of a binary Lennard-Jones mixture with components differing only in their particle mass are studied up to high values of the mass ratio μ , including the limiting case μ=∞ , for different mole fractions x . Within a large range of x and μ the product of the diffusion coefficient of the heavy species D2 and the total shear viscosity of the mixture ηm is found to remain constant, obeying a generalized Stokes-Einstein relation. At high liquid density, large mass ratios lead to a pronounced cage effect that is observable in the mean square displacement, the velocity autocorrelation function, and the van Hove correlation function.
W.Fenz; Mryglod, I. M.; Prytula, O.; Folk, R.
2009-01-01
Correlation functions and transport coefficients of self-diffusion and shear viscosity of a binary Lennard-Jones mixture with components differing only in their particle mass are studied up to high values of the mass ratio $\\mu$, including the limiting case $\\mu=\\infty$, for different mole fractions $x$. Within a large range of $x$ and $\\mu$ the product of the diffusion coefficient of the heavy species $D_{2}$ and the total shear viscosity of the mixture $\\eta_{m}$ is found to remain constant...
Sun, Bao-Xi; Lu, Xiao-Fu; Shen, Peng-Nian; Zhao, En-Guang
2002-01-01
The Debye screening masses of the $\\sigma$, $\\omega$ and neutral $\\rho$ mesons and the photon are calculated in the relativistic mean-field approximation. As the density of the nucleon increases, all the screening masses of mesons increase. It shows a different result with Brown-Rho scaling, which implies a reduction in the mass of all the mesons in the nuclear matter except the pion. Replacing the masses of the mesons with their corresponding screening masses in Walecka-1 model, five saturat...
International Nuclear Information System (INIS)
We consider one-dimensional stationary position-dependent effective mass quantum model and derive a generalized Korteweg-de Vries (KdV) equation in (1+1) dimension through Lax pair formulation, one being the effective mass Schrödinger operator and the other being the time-evolution of wave functions. We obtain an infinite number of conserved quantities for the generated nonlinear equation and explicitly show that the new generalized KdV equation is an integrable system. Inverse scattering transform method is applied to obtain general solution of the nonlinear equation, and then N-soliton solution is derived for reflectionless potentials. Finally, a special choice has been made for the variable mass function to get mass-deformed soliton solution. The influence of position and time-dependence of mass and also of the different representations of kinetic energy operator on the nature of such solitons is investigated in detail. The remarkable features of such solitons are demonstrated in several interesting figures and are contrasted with the conventional KdV-soliton associated with constant-mass quantum model
Energy Technology Data Exchange (ETDEWEB)
Ganguly, A., E-mail: gangulyasish@rediffmail.com, E-mail: aganguly@maths.iitkgp.ernet.in; Das, A., E-mail: amiya620@gmail.com [Department of Mathematics, IIT Kharagpur, Kharagpur, 721302 West Bengal (India)
2014-11-15
We consider one-dimensional stationary position-dependent effective mass quantum model and derive a generalized Korteweg-de Vries (KdV) equation in (1+1) dimension through Lax pair formulation, one being the effective mass Schrödinger operator and the other being the time-evolution of wave functions. We obtain an infinite number of conserved quantities for the generated nonlinear equation and explicitly show that the new generalized KdV equation is an integrable system. Inverse scattering transform method is applied to obtain general solution of the nonlinear equation, and then N-soliton solution is derived for reflectionless potentials. Finally, a special choice has been made for the variable mass function to get mass-deformed soliton solution. The influence of position and time-dependence of mass and also of the different representations of kinetic energy operator on the nature of such solitons is investigated in detail. The remarkable features of such solitons are demonstrated in several interesting figures and are contrasted with the conventional KdV-soliton associated with constant-mass quantum model.
Ablikim, M; Ahmed, S; Ai, X C; Albayrak, O; Albrecht, M; Ambrose, D J; Amoroso, A; An, F F; An, Q; Bai, J Z; Ferroli, R Baldini; Ban, Y; Bennett, D W; Bennett, J V; Berger, N; Bertani, M; Bettoni, D; Bian, J M; Bianchi, F; Boger, E; Boyko, I; Briere, R A; Cai, H; Cai, X; Cakir, O; Calcaterra, A; Cao, G F; Cetin, S A; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, H Y; Chen, J C; Chen, M L; Chen, S; Chen, S J; Chen, X; Chen, X R; Chen, Y B; Cheng, H P; Chu, X K; Cibinetto, G; Dai, H L; Dai, J P; Dbeyssi, A; Dedovich, D; Deng, Z Y; Denig, A; Denysenko, I; Destefanis, M; De Mori, F; Ding, Y; Dong, C; Dong, J; Dong, L Y; Dong, M Y; Dou, Z L; Du, S X; Duan, P F; Fan, J Z; Fang, J; Fang, S S; Fang, X; Fang, Y; Farinelli, R; Fava, L; Fedorov, O; Feldbauer, F; Felici, G; Feng, C Q; Fioravanti, E; Fritsch, M; Fu, C D; Gao, Q; Gao, X L; Gao, X Y; Gao, Y; Gao, Z; Garzia, I; Goetzen, K; Gong, L; Gong, W X; Gradl, W; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, R P; Guo, Y; Guo, Y P; Haddadi, Z; Hafner, A; Han, S; Hao, X Q; Harris, F A; He, K L; Heinsius, F H; Held, T; Heng, Y K; Holtmann, T; Hou, Z L; Hu, C; Hu, H M; Hu, J F; Hu, T; Hu, Y; Huang, G S; Huang, Y P; Huang, J S; Huang, X T; Huang, X Z; Huang, Y; Huang, Z L; Hussain, T; Ji, Q; Ji, Q P; Ji, X B; Ji, X L; Jiang, L W; Jiang, X S; Jiang, X Y; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Johansson, T; Julin, A; Kalantar-Nayestanaki, N; Kang, X L; Kang, X S; Kavatsyuk, M; Ke, B C; Kiese, P; Kliemt, R; Kloss, B; Kolcu, O B; Kopf, B; Kornicer, M; Kupsc, A; Kühn, W; Lange, J S; Lara, M; Larin, P; Leithoff, H; Leng, C; Li, C; Li, Cheng; Li, D M; Li, F; Li, F Y; Li, G; Li, H B; Li, H J; Li, J C; Li, Jin; Li, K; Li, K; Li, Lei; Li, P R; Li, Q Y; Li, T; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Li, Y B; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Lin, D X; Liu, B; Liu, B J; Liu, C X; Liu, D; Liu, F H; Liu, Fang; Liu, Feng; Liu, H B; Liu, H H; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Liu, J Y; Liu, K; Liu, K Y; Liu, L D; Liu, P L; Liu, Q; Liu, S B; Liu, X; Liu, Y B; Liu, Y Y; Liu, Z A; Liu, Zhiqing; Loehner, H; Lou, X C; Lu, H J; Lu, J G; Lu, Y; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lyu, X R; Ma, F C; Ma, H L; Ma, L L; Ma, M M; Ma, Q M; Ma, T; Ma, X N; Ma, X Y; Ma, Y M; Maas, F E; Maggiora, M; Malik, Q A; Mao, Y J; Mao, Z P; Marcello, S; Messchendorp, J G; Mezzadri, G; Min, J; Mitchell, R E; Mo, X H; Mo, Y J; Morales, C Morales; Muchnoi, N Yu; Muramatsu, H; Musiol, P; Nefedov, Y; Nerling, F; Nikolaev, I B; Ning, Z; Nisar, S; Niu, S L; Niu, X Y; Olsen, S L; Ouyang, Q; Pacetti, S; Pan, Y; Patteri, P; Pelizaeus, M; Peng, H P; Peters, K; Pettersson, J; Ping, J L; Ping, R G; Poling, R; Prasad, V; Qi, H R; Qi, M; Qian, S; Qiao, C F; Qin, L Q; Qin, N; Qin, X S; Qin, Z H; Qiu, J F; Rashid, K H; Redmer, C F; Ripka, M; Rong, G; Rosner, Ch; Ruan, X D; Sarantsev, A; Savrié, M; Schnier, C; Schoenning, K; Schumann, S; Shan, W; Shao, M; Shen, C P; Shen, P X; Shen, X Y; Sheng, H Y; Shi, M; Song, W M; Song, X Y; Sosio, S; Spataro, S; Sun, G X; Sun, J F; Sun, S S; Sun, X H; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Tapan, I; Thorndike, E H; Tiemens, M; Uman, I; Varner, G S; Wang, B; Wang, B L; Wang, D; Wang, D Y; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, S G; Wang, W; Wang, W P; Wang, X F; Wang, Y; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z H; Wang, Z Y; Wang, Z Y; Weber, T; Wei, D H; Wei, J B; Weidenkaff, P; Wen, S P; Wiedner, U; Wolke, M; Wu, L H; Wu, L J; Wu, Z; Xia, L; Xia, L G; Xia, Y; Xiao, D; Xiao, H; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, J J; Xu, L; Xu, Q J; Xu, Q N; Xu, X P; Yan, L; Yan, W B; Yan, W C; Yan, Y H; Yang, H J; Yang, H X; Yang, L; Yang, Y X; Ye, M; Ye, M H; Yin, J H; Yu, B X; Yu, C X; Yu, J S; Yuan, C Z; Yuan, W L; Yuan, Y; Yuncu, A; Zafar, A A; Zallo, A; Zeng, Y; Zeng, Z; Zhang, B X; Zhang, B Y; Zhang, C; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J; Zhang, J J; Zhang, J L; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, K; Zhang, L; Zhang, S Q; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Y N; Zhang, Y T; Zhang, Yu; Zhang, Z H; Zhang, Z P; Zhang, Z Y; Zhao, G; Zhao, J W; Zhao, J Y; Zhao, J Z; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, Q W; Zhao, S J; Zhao, T C; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, W J; Zheng, Y H; Zhong, B; Zhou, L; Zhou, X; Zhou, X K; Zhou, X R; Zhou, X Y; Zhu, K; Zhu, K J; Zhu, S; Zhu, S H; Zhu, X L; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, J; Zotti, L; Zou, B S; Zou, J H
2016-01-01
Using $1.09\\times10^{9}$ $J/\\psi$ events collected by the BESIII experiment in 2012, we study the $J/\\psi\\rightarrow\\gamma\\eta^{\\prime}\\pi^{+}\\pi^{-}$ process and observe a significant abrupt change in the slope of the $\\eta^{\\prime}\\pi^{+}\\pi^{-}$ invariant mass distribution at the proton-antiproton ($p\\bar{p}$) mass threshold. We use two models to characterize the $\\eta^{\\prime}\\pi^{+}\\pi^{-}$ line shape around $1.85~\\text{GeV}/c^{2}$: one which explicitly incorporates the opening of a decay threshold in the mass spectrum (Flatt\\'{e} formula), and another which is the coherent sum of two resonant amplitudes. Both fits show almost equally good agreement with data, and suggest the existence of either a broad state around $1.85~\\text{GeV}/c^{2}$ with strong couplings to $p\\bar{p}$ final states or a narrow state just below the $p\\bar{p}$ mass threshold. Although we cannot distinguish between the fits, either one supports the existence of a $p\\bar{p}$ molecule-like state or bound state with greater than $7\\sigma...
Scale-dependent effects of summer density on autumn mass in reindeer
Directory of Open Access Journals (Sweden)
Øystein Holand
2010-03-01
Full Text Available The ongoing dispute about reindeer overabundance in the West Finnmark (Norway herding region has accentuated the need for an in-depth understanding of the density-dependent and -independent processes driving this pastoral system, as well as the spatial and temporal scale(s they operate on. Using 20 604 records of individual male reindeer yearlings we assessed the spatial and temporal variation in animals’ performance (measured by their autumn carcass mass, and investigated summer density dependent effects on autumn carcass masses at different scales. We defined three spatial scales; a regional scale represented by the whole summer range of West Finnmark, a sub-regional scale represented by the mainland (14 and the island (11 summer districts, and a fine scale represented by eight individual summer districts. We defined two temporal scales; the whole collection phase (13 years and a temporal dimension based on the three periods of population growth. We found carcass masses to be higher at island than at mainland and to vary among districts. Effect of period was found at the regional, sub-regional and often at the district scale. The autumn carcass masses were sensitive to density at West Finnmark and mainland scales, but not at island scale, the effect being negative. This suggests intra-specific competition for summer forage due to consistent higher density resulting in reduced range quality at mainland as compared to island. On the finest scale the density effect was highly variable. Response of carcass mass to density appeared to be scale dependent both in space and time at regional and sub-regional scales. These findings underline the importance, for skilful management, of site specific biological understanding of (1 the density dependent processes and (2 the spatial and temporal scales these processes are operating on. Adaptive management strategies for sustainable use of the summer forage resources in West Finnmark have therefore to be
International Nuclear Information System (INIS)
Purified and functionalized in boiling concentrated (68%) HNO3 acid the oxidized multiwall carbon nanotubes (ox-MWCNTs) under thermal treatment from RT to 630 °C and at 350 °C time dependent (1-4 h) were investigated using the surface sensitive electron and mass spectroscopy methods. Mass spectroscopy indicates significant desorption of H2 and H2O to about 300 °C. Higher H2 desorption rate from RT up to about 100 °C is most likely caused by decomposition of organic acid impurities included within a bundle and in channels of the ox-MWCNTs after their functionalization by HNO3. In the range of 100-300 °C part of the detected H2, accompanied by desorption of CO2, may origin from desorbed water. Above 300 °C, the small amount of desorbing H2O may result from transformation of carboxylic groups into carboxylic acid anhydride. Significant desorption of CO2 starting from 150 °C may result from decomposition of carboxylic groups, whereas desorption of CO starting at about 300 °C from decomposition of acid anhydride groups created from carboxylic groups during thermal dehydration. Desorption of CO and CO2 at about 470 °C may be due to decomposition of hydroxyl O-H and carbonyl C=O groups. Above 600 °C mainly decomposition of C=O groups takes place and results in small desorption of CO. Time dependent (1-4 h) thermal treatment of ox-MWCNTs at 350 °C shows in XPS spectra decreasing amount of C-O in carboxyl groups and increasing amount of C=O in carbonyl and acid anhydride groups arising from carboxyl groups decomposition. Between 350 °C and 470 °C the higher desorption rate of CO2 than CO indicates significant decomposition of carboxyl and carboxyl anhydride groups. At 350 °C the dynamic changes are indicated by the energy, intensity and full width at half maximum (FWHM) of the π → π* interband transition and π loss peak, and quasi-elastic peak FWHM. During 4 h at 350 °C no C sp2 reconstruction is observed. For the applied procedure of MWCNTs oxidation
Jimmy,; Saintonge, Amélie; Accurso, Gioacchino; Brough, Sarah; Oliva-Altamirano, Paola
2015-01-01
Using a sample of dwarf galaxies observed using the VIMOS IFU on the VLT, we investigate the mass-metallicity relation (MZR) as a function of star formation rate (FMR$_{\\text{SFR}}$) as well as HI-gas mass (FMR$_{\\text{HI}}$). We combine our IFU data with a subsample of galaxies from the ALFALFA HI survey crossmatched to the Sloan Digital Sky Survey to study the FMR$_{\\text{SFR}}$ and FMR$_{\\text{HI}}$ across the stellar mass range 10$^{6.6}$ to 10$^{8.8}$ M$_\\odot$, with metallicities as low as 12+log(O/H) = 7.67. We find the 1$\\sigma$ mean scatter in the MZR to be 0.05 dex. The 1$\\sigma$ mean scatter in the FMR$_{\\text{SFR}}$ (0.02 dex) is significantly lower than that of the MZR. The FMR$_{\\text{SFR}}$ is not consistent between the IFU observed galaxies and the ALFALFA/SDSS galaxies for SFRs lower than 10$^{-2.4}$ M$_\\odot$ yr$^{-1}$, however this could be the result of limitations of our measurements in that regime. The lowest mean scatter (0.01 dex) is found in the FMR$_{\\text{HI}}$. We also find that th...
Alignments of Dark Matter Halos with Large-scale Tidal Fields: Mass and Redshift Dependence
Chen, Sijie; Wang, Huiyuan; Mo, H. J.; Shi, Jingjing
2016-07-01
Large-scale tidal fields estimated directly from the distribution of dark matter halos are used to investigate how halo shapes and spin vectors are aligned with the cosmic web. The major, intermediate, and minor axes of halos are aligned with the corresponding tidal axes, and halo spin axes tend to be parallel with the intermediate axes and perpendicular to the major axes of the tidal field. The strengths of these alignments generally increase with halo mass and redshift, but the dependence is only on the peak height, ν \\equiv {δ }{{c}}/σ ({M}{{h}},z). The scaling relations of the alignment strengths with the value of ν indicate that the alignment strengths remain roughly constant when the structures within which the halos reside are still in a quasi-linear regime, but decreases as nonlinear evolution becomes more important. We also calculate the alignments in projection so that our results can be compared directly with observations. Finally, we investigate the alignments of tidal tensors on large scales, and use the results to understand alignments of halo pairs separated at various distances. Our results suggest that the coherent structure of the tidal field is the underlying reason for the alignments of halos and galaxies seen in numerical simulations and in observations.
Concentration Dependent Speciation and Mass Transport Properties of Switchable Polarity Solvents
Energy Technology Data Exchange (ETDEWEB)
Aaron D. Wilson; Christopher J. Orme
2014-12-01
Tertiary amine switchable polarity solvents (SPS) consisting of predominantly water, tertiary amine, and tertiary ammonium and bicarbonate ions were produced at various concentrations for three different amines: N,N-dimethylcyclohexylamine, N,N-dimethyloctylamine, and 1 cyclohexylpiperidine. For all concentrations, physical properties were measured including viscosity, molecular diffusion coefficients, freezing point depression, and density. Based on these measurements a variation on the Mark Houwink equation was developed to predict the viscosity of any tertiary amine SPS as a function of concentration using the amine’s molecular mass. The observed physical properties allowed the identification of solution state speciation of non-osmotic SPS, where the amine to carbonic acid ratio is significantly greater than one. These results indicate that at most concentrations the stoichiometric excess amine is involved in solvating a proton with two amines. The physical properties of osmotic SPS have consistent concentration dependence behavior over a wide range of concentrations; this consistence suggests osmotic pressures based on low concentrations freezing point studies can be reliably extrapolated to higher concentrations.
The quantum anomalous Hall effect
LIU, CHAO-XING; Zhang, Shou-Cheng; Qi, Xiao-Liang
2015-01-01
The quantum anomalous Hall effect is defined as a quantized Hall effect realized in a system without external magnetic field. Quantum anomalous Hall effect is a novel manifestation of topological structure in many-electron systems, and may have potential applications in future electronic devices. In recent years, quantum anomalous Hall effect has been proposed theoretically and realized experimentally. In this review article, we provide a systematic overview of the theoretical and experimenta...
Anomalous Cepheid period-luminosity relationships
International Nuclear Information System (INIS)
The P-L relationship for anomalous Cepheids (ACs) splits into two well-defined lines in the log P - M(B) plane. One line corresponds to pulsation in the fundamental mode, and the other corresponds to the first-overtone. If these P-L relationships are universal, then they can be used to estimate distances to nearby dwarf galaxies. Knowledge of pulsation modes of the ACs in Draco suggests a mass range of 1.04 to 1.7 solar mass
Borowka, S.; Greiner, N.; Heinrich, G.; Jones, S. P.; Kerner, M.; Schlenk, J.; Schubert, U.; Zirke, T.
2016-07-01
We present the calculation of the cross section and invariant mass distribution for Higgs boson pair production in gluon fusion at next-to-leading order (NLO) in QCD. Top-quark masses are fully taken into account throughout the calculation. The virtual two-loop amplitude has been generated using an extension of the program GoSam supplemented with an interface to Reduze for the integral reduction. The occurring integrals have been calculated numerically using the program SecDec. Our results, including the full top-quark mass dependence for the first time, allow us to assess the validity of various approximations proposed in the literature, which we also recalculate. We find substantial deviations between the NLO result and the different approximations, which emphasizes the importance of including the full top-quark mass dependence at NLO.
Borowka, S; Greiner, N; Heinrich, G; Jones, S P; Kerner, M; Schlenk, J; Schubert, U; Zirke, T
2016-07-01
We present the calculation of the cross section and invariant mass distribution for Higgs boson pair production in gluon fusion at next-to-leading order (NLO) in QCD. Top-quark masses are fully taken into account throughout the calculation. The virtual two-loop amplitude has been generated using an extension of the program GoSam supplemented with an interface to Reduze for the integral reduction. The occurring integrals have been calculated numerically using the program SecDec. Our results, including the full top-quark mass dependence for the first time, allow us to assess the validity of various approximations proposed in the literature, which we also recalculate. We find substantial deviations between the NLO result and the different approximations, which emphasizes the importance of including the full top-quark mass dependence at NLO. PMID:27419563
Klok, E.J.; Oerlemans, J.
2004-01-01
This paper presents a study of the climate sensitivity of the mass balance of Morteratschgletscher in Switzerland, estimated from a two-dimensional mass balance model. Since the albedo scheme chosen is often the largest error source in mass balance models, we investigated the impact of using differe
International Nuclear Information System (INIS)
The variable phase method is applied to the one dimensional Schrodinger equation with position-dependent (effective) mass, to derive first-order differential equations for the transmission and reflection amplitudes, and bound-state energies, which are particularly convenient for numerical computations. When the mass and potential have the same asymptotics at both ends of the real line, the method also allows to prove a factorization property of the scattering matrix. (author)
Jimmy; Tran, Kim-Vy; Saintonge, Amélie; Accurso, Gioacchino; Brough, Sarah; Oliva-Altamirano, Paola
2015-10-01
Using a sample of dwarf galaxies observed using the VIMOS IFU on the Very Large Telescope, we investigate the mass–metallicity relation (MZR) as a function of star formation rate (FMRSFR) as well as HI-gas mass (FMRHI). We combine our IFU data with a subsample of galaxies from the ALFALFA HI survey crossmatched to the Sloan Digital Sky Survey (SDSS) to study the FMRSFR and FMRHI across the stellar mass range 106.6–108.8 M⊙, with metallicities as low as 12 + log(O/H) = 7.67. We find the 1σ mean scatter in the MZR to be 0.05 dex. The 1σ mean scatter in the FMRSFR (0.02 dex) is significantly lower than that of the MZR. The FMRSFR is not consistent between the IFU observed galaxies and the ALFALFA/SDSS galaxies for SFRs lower than 10‑2.4 M⊙ yr‑1, however, this could be the result of limitations of our measurements in that regime. The lowest mean scatter (0.01 dex) is found in the FMRHI. We also find that the FMRHI is consistent between the IFU observed dwarf galaxies and the ALFALFA/SDSS crossmatched sample. We introduce the fundamental metallicity luminosity counterpart to the FMR, again characterized in terms of SFR (FMLSFR) and HI-gas mass (FMLHI). We find that the FMLHI relation is consistent between the IFU observed dwarf galaxy sample and the larger ALFALFA/SDSS sample. However, the 1σ scatter for the FMLHI relation is not improved over the FMRHI scenario. This leads us to conclude that the FMRHI is the best candidate for a physically motivated fundamental metallicity relation. Based on VLT service mode observations (Programs 081.B-0649 and 083.B-0662) gathered at the European Southern Observatory, Chile.
Hα EQUIVALENT WIDTHS FROM THE 3D-HST SURVEY: EVOLUTION WITH REDSHIFT AND DEPENDENCE ON STELLAR MASS
International Nuclear Information System (INIS)
We investigate the evolution of the Hα equivalent width, EW(Hα), with redshift and its dependence on stellar mass, using the first data from the 3D-HST survey, a large spectroscopic Treasury program with the Hubble Space Telescope Wide Field Camera 3. Combining our Hα measurements of 854 galaxies at 0.8 1.8 with little mass dependence. Qualitatively, this measurement is a model-independent confirmation of the evolution of star-forming galaxies with redshift. A quantitative conversion of EW(Hα) to specific star formation rate (sSFR) is model dependent because of differential reddening corrections between the continuum and the Balmer lines. The observed EW(Hα) can be reproduced with the characteristic evolutionary history for galaxies, whose star formation rises with cosmic time to z ∼ 2.5 and then decreases to z = 0. This implies that EW(Hα) rises to 400 Å at z = 8. The sSFR evolves faster than EW(Hα), as the mass-to-light ratio also evolves with redshift. We find that the sSFR evolves as (1 + z)3.2, nearly independent of mass, consistent with previous reddening insensitive estimates. We confirm previous results that the observed slope of the sSFR-z relation is steeper than the one predicted by models, but models and observations agree in finding little mass dependence.
Energy Technology Data Exchange (ETDEWEB)
Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Lab. of Physics; Akopov, N. [Yerevan Physics Institute (Armenia); Akopov, Z. [DESY, Hamburg (DE)] (and others)
2009-11-15
The nuclear-mass dependence of azimuthal cross section asymmetries with respect to charge and longitudinal polarization of the lepton beam is studied for hard exclusive electroproduction of real photons. The observed beam-charge and beam-helicity asymmetries are attributed to the interference between the Bethe-Heitler and deeply virtual Compton scattering processes. For various nuclei, the asymmetries are extracted for both coherent and incoherent-enriched regions, which involve different (combinations of) generalized parton distributions. For both regions, the asymmetries are compared to those for a free proton, and no nuclear-mass dependence is found. (orig.)
International Nuclear Information System (INIS)
The contribution of scale-dependent vacuum expectation values (VEVs) of Higgs scalars, which gives significant effects in the evolution of the fundamental fermion masses in the minimal supersymmetric standard model (MSSM), is now considered in the derivation of the analytic one-loop expression for the evolution of the left-handed Majorana neutrino masses with energies. The inclusion of such an effect of the running VEV increases the stability of the neutrino masses under quantum corrections even for the low values of tan β≥1.42 at the scale μ=1012 GeV, and leads to a mild decrease of the neutrino masses with higher energies. Such a trend is common with that of other fundamental fermion masses. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Singh, N.N. [Dept. of Physics and Astronomy, Univ. of Southampton (United Kingdom)
2001-02-01
The contribution of scale-dependent vacuum expectation values (VEVs) of Higgs scalars, which gives significant effects in the evolution of the fundamental fermion masses in the minimal supersymmetric standard model (MSSM), is now considered in the derivation of the analytic one-loop expression for the evolution of the left-handed Majorana neutrino masses with energies. The inclusion of such an effect of the running VEV increases the stability of the neutrino masses under quantum corrections even for the low values of tan {beta}{>=}1.42 at the scale {mu}=10{sup 12} GeV, and leads to a mild decrease of the neutrino masses with higher energies. Such a trend is common with that of other fundamental fermion masses. (orig.)
Marchesini, Danilo; van Dokkum, Pieter G.; Förster Schreiber, Natascha M.; Franx, Marijn; Labbé, Ivo; Wuyts, Stijn
2009-08-01
We present the evolution of the stellar mass function (SMF) of galaxies from z = 4.0 to z = 1.3 measured from a sample constructed from the deep near-infrared Multi-wavelength Survey by Yale-Chile, the Faint Infrared Extragalactic Survey, and the Great Observatories Origins Deep Survey-Chandra Deep Field South surveys, all having very high-quality optical to mid-infrared data. This sample, unique in that it combines data from surveys with a large range of depths and areas in a self-consistent way, allowed us to (1) minimize the uncertainty due to cosmic variance and empirically quantify its contribution to the total error budget; (2) simultaneously probe the high-mass end and the low-mass end (down to ~0.05 times the characteristic stellar mass) of the SMF with good statistics; and (3) empirically derive the redshift-dependent completeness limits in stellar mass. We provide, for the first time, a comprehensive analysis of random and systematic uncertainties affecting the derived SMFs, including the effect of metallicity, extinction law, stellar population synthesis model, and initial mass function. We find that the mass density evolves by a factor of ~17+7 -10 since z = 4.0, mostly driven by a change in the normalization Φsstarf. If only random errors are taken into account, we find evidence for mass-dependent evolution, with the low-mass end evolving more rapidly than the high-mass end. However, we show that this result is no longer robust when systematic uncertainties due to the SED-modeling assumptions are taken into account. Another significant uncertainty is the contribution to the overall stellar mass density of galaxies below our mass limit; future studies with WFC3 will provide better constraints on the SMF at masses below 1010 M sun at z>2. Taking our results at face value, we find that they are in conflict with semianalytic models of galaxy formation. The models predict SMFs that are in general too steep, with too many low-mass galaxies and too few high-mass
Fingerprints of anomalous primordial Universe on the abundance of large scale structures
Energy Technology Data Exchange (ETDEWEB)
Baghram, Shant; Abolhasani, Ali Akbar [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Firouzjahi, Hassan; Namjoo, Mohammad Hossein, E-mail: baghram@sharif.edu, E-mail: abolhasani@ipm.ir, E-mail: firouz@mail.ipm.ir, E-mail: MohammadHossein.Namjoo@utdallas.edu [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)
2014-12-01
We study the predictions of anomalous inflationary models on the abundance of structures in large scale structure observations. The anomalous features encoded in primordial curvature perturbation power spectrum are (a): localized feature in momentum space, (b): hemispherical asymmetry and (c): statistical anisotropies. We present a model-independent expression relating the number density of structures to the changes in the matter density variance. Models with localized feature can alleviate the tension between observations and numerical simulations of cold dark matter structures on galactic scales as a possible solution to the missing satellite problem. In models with hemispherical asymmetry we show that the abundance of structures becomes asymmetric depending on the direction of observation to sky. In addition, we study the effects of scale-dependent dipole amplitude on the abundance of structures. Using the quasars data and adopting the power-law scaling k{sup n{sub A}-1} for the amplitude of dipole we find the upper bound n{sub A} < 0.6 for the spectral index of the dipole asymmetry. In all cases there is a critical mass scale M{sub c} in which for M
Marchesini, Danilo; Schreiber, Natascha M Forster; Franx, Marijn; Labbe', Ivo; Wuyts, Stijn
2008-01-01
[Abridged] We present the evolution of the stellar mass function (SMF) of galaxies from z=4.0 to z=1.3 measured from a sample constructed from the deep NIR MUSYC, the FIRES, and the GOODS-CDFS surveys, all having very high-quality optical to mid-infrared data. This sample, unique for its combination of depth and surveyed area, allowed us to 1) minimize the uncertainty due to cosmic variance and empirically quantify its contribution to the total error budget; 2) probe the high-mass end with unprecedented good statistics; 3) empirically derive the redshift-dependent completeness limits in stellar mass; 4) probe the low-mass end of the SMF down to ~0.05 times the characteristic stellar mass. We provide, for the first time, a comprehensive analysis of random and systematic uncertainties affecting the derived SMFs. We find that the mass density evolves by a factor of ~17 since z=4.0, and a factor of ~4 since z=1.3. The evolution appears to be mostly driven by a change in the normalization Phi* but we also find evi...
On the non-evolution of the dependence of black hole masses on bolometric luminosities for QSOs
Institute of Scientific and Technical Information of China (English)
Martín López-Corredoira; Carlos M. Gutiérrez
2012-01-01
There are extremely luminous quasi stellar objects (QSOs) at high redshift which are absent at low redshift.The lower luminosities at low redshifts can be understood as the external manifestation of either a lower Eddington ratio or a lower mass.To distinguish between both effects,we determine the possible dependence of masses and Eddington ratios of QSOs with a fixed luminosity as a function of redshifts; this avoids the Malmquist bias or any other selection effect.For the masses and Eddington ratios derived for a sample of QSOs in the Sloan Digital Sky Survey,we model their evolution by a double linear fit separating the dependence on redshifts and luminosities.The validity of the fits and possible systematic effects were tested by the use of different estimators of masses or bolometric luminosities,and possible intergalactic extinction effects.The results do not show any significant evolution of black hole masses or Eddington ratios for equal luminosity QSOs.The black hole mass only depends on the bolometric luminosity without significant dependence on the redshift as (MBH/109M☉)≈ 3.4 (Lbol/(1047ergs-1)0.65on average for z ≤ 5.This must not be confused with the possible evolution in the formation of black holes in QSOs.The variations of the environment might influence the formation of the black holes but not their subsequent accretion.It also leaves a question to be solved:Why are there not QSOs with very high mass at low redshift? A brief discussion of the possible reasons for this is tentatively pointed out.
Energy Technology Data Exchange (ETDEWEB)
Fumagalli, Mattia; Patel, Shannon G.; Franx, Marijn; Labbe, Ivo [Leiden Observatory, Leiden University, P.O. Box 9513, 2300-RA Leiden (Netherlands); Brammer, Gabriel [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001, Vitacura, Santiago (Chile); Van Dokkum, Pieter; Lundgren, Britt; Momcheva, Ivelina; Skelton, Rosalind E.; Whitaker, Katherine E.; Nelson, Erica [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Da Cunha, Elisabete; Rix, Hans-Walter; Schmidt, Kasper B. [Max Planck Institute for Astronomy (MPIA), Koenigstuhl 17, D-69117 Heidelberg (Germany); Kriek, Mariska [Department of Astronomy, University of California, Berkeley, CA 94720 (United States)
2012-10-01
We investigate the evolution of the H{alpha} equivalent width, EW(H{alpha}), with redshift and its dependence on stellar mass, using the first data from the 3D-HST survey, a large spectroscopic Treasury program with the Hubble Space Telescope Wide Field Camera 3. Combining our H{alpha} measurements of 854 galaxies at 0.8 < z < 1.5 with those of ground-based surveys at lower and higher redshift, we can consistently determine the evolution of the EW(H{alpha}) distribution from z = 0 to z = 2.2. We find that at all masses the characteristic EW(H{alpha}) is decreasing toward the present epoch, and that at each redshift the EW(H{alpha}) is lower for high-mass galaxies. We find EW(H{alpha}) {approx}(1 + z){sup 1.8} with little mass dependence. Qualitatively, this measurement is a model-independent confirmation of the evolution of star-forming galaxies with redshift. A quantitative conversion of EW(H{alpha}) to specific star formation rate (sSFR) is model dependent because of differential reddening corrections between the continuum and the Balmer lines. The observed EW(H{alpha}) can be reproduced with the characteristic evolutionary history for galaxies, whose star formation rises with cosmic time to z {approx} 2.5 and then decreases to z = 0. This implies that EW(H{alpha}) rises to 400 A at z = 8. The sSFR evolves faster than EW(H{alpha}), as the mass-to-light ratio also evolves with redshift. We find that the sSFR evolves as (1 + z){sup 3.2}, nearly independent of mass, consistent with previous reddening insensitive estimates. We confirm previous results that the observed slope of the sSFR-z relation is steeper than the one predicted by models, but models and observations agree in finding little mass dependence.
Mass dependence of the activation enthalpy and entropy of unentangled linear alkane chains
International Nuclear Information System (INIS)
The mass scaling of the self-diffusion coefficient D of polymers in the liquid state, D ∼ Mβ, is one of the most basic characteristics of these complex fluids. Although traditional theories such as the Rouse and reptation models of unentangled and entangled polymer melts, respectively, predict that β is constant, this exponent for alkanes has been estimated experimentally to vary from −1.8 to −2.7 upon cooling. Significantly, β changes with temperature T under conditions where the chains are not entangled and at temperatures far above the glass transition temperature Tg where dynamic heterogeneity does not complicate the description of the liquid dynamics. Based on atomistic molecular dynamics simulations on unentangled linear alkanes in the melt, we find that the variation of β with T can be directly attributed to the dependence of the enthalpy ΔHa and entropy ΔSa of activation on the number of alkane backbone carbon atoms, n. In addition, we find a sharp change in the melt dynamics near a “critical” chain length, n ≈ 17. A close examination of this phenomenon indicates that a “buckling transition” from rod-like to coiled chain configurations occurs at this characteristic chain length and distinct entropy-enthalpy compensation relations, ΔSa ∝ ΔHa, hold on either side of this polymer conformational transition. We conclude that the activation free energy parameters exert a significant influence on the dynamics of polymer melts that is not anticipated by either the Rouse and reptation models. In addition to changes of ΔHa and ΔSa with M, we expect changes in these free energy parameters to be crucial for understanding the dynamics of polymer blends, nanocomposites, and confined polymers because of changes of the fluid free energy by interfacial interactions and geometrical confinement
Mass dependence of the activation enthalpy and entropy of unentangled linear alkane chains
Energy Technology Data Exchange (ETDEWEB)
Jeong, Cheol; Douglas, Jack F. [Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)
2015-10-14
The mass scaling of the self-diffusion coefficient D of polymers in the liquid state, D ∼ M{sup β}, is one of the most basic characteristics of these complex fluids. Although traditional theories such as the Rouse and reptation models of unentangled and entangled polymer melts, respectively, predict that β is constant, this exponent for alkanes has been estimated experimentally to vary from −1.8 to −2.7 upon cooling. Significantly, β changes with temperature T under conditions where the chains are not entangled and at temperatures far above the glass transition temperature T{sub g} where dynamic heterogeneity does not complicate the description of the liquid dynamics. Based on atomistic molecular dynamics simulations on unentangled linear alkanes in the melt, we find that the variation of β with T can be directly attributed to the dependence of the enthalpy ΔH{sub a} and entropy ΔS{sub a} of activation on the number of alkane backbone carbon atoms, n. In addition, we find a sharp change in the melt dynamics near a “critical” chain length, n ≈ 17. A close examination of this phenomenon indicates that a “buckling transition” from rod-like to coiled chain configurations occurs at this characteristic chain length and distinct entropy-enthalpy compensation relations, ΔS{sub a} ∝ ΔH{sub a}, hold on either side of this polymer conformational transition. We conclude that the activation free energy parameters exert a significant influence on the dynamics of polymer melts that is not anticipated by either the Rouse and reptation models. In addition to changes of ΔH{sub a} and ΔS{sub a} with M, we expect changes in these free energy parameters to be crucial for understanding the dynamics of polymer blends, nanocomposites, and confined polymers because of changes of the fluid free energy by interfacial interactions and geometrical confinement.
Pflamm-Altenburg, Jan; Kroupa, Pavel
2013-01-01
It is widely accepted that the distribution function of the masses of young star clusters is universal and can be purely interpreted as a probability density distribution function with a constant upper mass limit. As a result of this picture the masses of the most-massive objects are exclusively determined by the size of the sample. Here we show, with very high confidence, that the masses of the most-massive young star clusters in M33 decrease with increasing galactocentric radius in contradiction to the expectations from a model of a randomly sampled constant cluster mass function with a constant upper mass limit. Pure stochastic star formation is thereby ruled out. We use this example to elucidate how naive analysis of data can lead to unphysical conclusions.
Anomalous dimension, chiral phase transition and inverse magnetic catalysis in soft-wall AdS/QCD
Fang, Zhen
2016-07-01
A modified soft-wall AdS/QCD model with a z-dependent bulk scalar mass is proposed. We argue for the necessity of a modified bulk scalar mass from the quark mass anomalous dimension and carefully constrain the form of bulk mass by the corresponding UV and IR asymptotics. After fixing the form of bulk scalar mass, we calculate the mass spectra of (axial-)vector and pseudoscalar mesons, which have a good agreement with the experimental data. The behavior of chiral phase transition is also investigated, and the results are consistent with the standard scenario and lattice simulations. Finally, the issue of chiral magnetic effects is addressed. We find that the inverse magnetic catalysis emerges naturally from the modified soft-wall model, which is consistent with the recent lattice simulations.
Samui, Saumyadip; Srianand, Raghunathan
2009-01-01
The form of the halo mass function is a basic ingredient in any semi-analytical galaxy formation model. We study the existing forms of the mass functions in the literature and compare their predictions for semi-analytical galaxy formation models. Two methods are used in the literature to compute the net formation rate of halos, one by simply taking the derivative of the halo mass function and the other using the prescription due to Sasaki (1994). For the Press-Schechter (PS) mass function, we compare various model predictions, using these two methods. However, as the Sasaki formalism cannot be easily generalized for other mass functions, we use the derivative while comparing model predictions of different mass functions. We show that the reionization history and UV luminosity function of Lyman break galaxies (LBGs) predicted by the PS mass function differs from those using any other existing mass function, like Sheth-Tormen (ST) mass function.In particular the reionization efficiency of molecular cooled halos...
International Nuclear Information System (INIS)
Exact solutions of Schroedinger equation are obtained for the modified Kratzer and the corrected Morse potentials with the position-dependent effective mass. The bound state energy eigenvalues and the corresponding eigenfunctions are calculated for any angular momentum for target potentials. Various forms of point canonical transformations are applied. (author)
Energy Technology Data Exchange (ETDEWEB)
Vubangsi, M.; Tchoffo, M.; Fai, L. C. [Mesoscopic and Multilayer Structures Laboratory, Physics Department, University of Dschang, P.O. Box 417 Dschang (Cameroon); Pisma’k, Yu. M. [Department of Theoretical Physics, Saint Petersburg State University, Saint Petersburg (Russian Federation)
2015-12-15
The problem of a particle with position and time-dependent effective mass in a one-dimensional infinite square well is treated by means of a quantum canonical formalism. The dynamics of a launched wave packet of the system reveals a peculiar revival pattern that is discussed. .
Indian Academy of Sciences (India)
Ş Şentürk; F Demiray; O Özsoy
2007-09-01
Energy resolution of the time-of-ﬂight mass spectrometer was considered. The estimations indicate that the time-lag energy focusing method provides better resolution for the parallel case while the turnaround time is more convenient for the perpendicular position. Hence the applicability of the methods used for the energy resolution depends on beam source arrangement.
Institute of Scientific and Technical Information of China (English)
CAI Chang-Ying; REN Zhong-Zhou; JU Guo-Xing
2005-01-01
For an exponentially position-dependent mass, we obtain the exact solutions of the three-dimensional Schrodinger equation by using coordinate transformation method for the reference problems with Coulomb potential,Kratzer potential, and spherically square potential well of infinite depth, respectively. The explicit expressions for the energy eigenvalues and the corresponding eigenfunctions of the three systems are presented.
Spectrum of anomalous magnetohydrodynamics
Giovannini, Massimo
2016-05-01
The equations of anomalous magnetohydrodynamics describe an Abelian plasma where conduction and chiral currents are simultaneously present and constrained by the second law of thermodynamics. At high frequencies the magnetic currents play the leading role, and the spectrum is dominated by two-fluid effects. The system behaves instead as a single fluid in the low-frequency regime where the vortical currents induce potentially large hypermagnetic fields. After deriving the physical solutions of the generalized Appleton-Hartree equation, the corresponding dispersion relations are scrutinized and compared with the results valid for cold plasmas. Hypermagnetic knots and fluid vortices can be concurrently present at very low frequencies and suggest a qualitatively different dynamics of the hydromagnetic nonlinearities.
Energy Technology Data Exchange (ETDEWEB)
Ferragut, Erik M.; Laska, Jason A.; Bridges, Robert A.
2016-06-07
A system is described for receiving a stream of events and scoring the events based on anomalousness and maliciousness (or other classification). The system can include a plurality of anomaly detectors that together implement an algorithm to identify low-probability events and detect atypical traffic patterns. The anomaly detector provides for comparability of disparate sources of data (e.g., network flow data and firewall logs.) Additionally, the anomaly detector allows for regulatability, meaning that the algorithm can be user configurable to adjust a number of false alerts. The anomaly detector can be used for a variety of probability density functions, including normal Gaussian distributions, irregular distributions, as well as functions associated with continuous or discrete variables.
Shtukenberg, Alexander; Kahr, Bart
2007-01-01
Optical anomalies in crystals are puzzles that collectively constituted the greatest unsolved problems in crystallography in the 19th Century. The most common anomaly is a discrepancy between a crystal’s symmetry as determined by its shape or by X-ray analysis, and that determined by monitoring the polarization state of traversing light. These discrepancies were perceived as a great impediment to the development of the sciences of crystals on the basis of Curie’s Symmetry Principle, the grand organizing idea in the physical sciences to emerge in the latter half of the 19th Century. Optically Anomalous Crystals begins with an historical introduction covering the contributions of Brewster, Biot, Mallard, Brauns, Tamman, and many other distinguished crystallographers. From this follows a tutorial in crystal optics. Further chapters discuss the two main mechanisms of optical dissymmetry: 1. the piezo-optic effect, and 2. the kinetic ordering of atoms. The text then tackles complex, inhomogeneous crystals, and...
Indian Academy of Sciences (India)
Karan Singh Vinayak; Suneel Kumar
2014-03-01
Within the framework of isospin-dependent quantum molecular dynamics (IQMD) model, we demonstrate the evolution of intermediate mass fragments in heavy-ion collisions. In this paper, we study the time evolution, impact parameter, and excitation energy dependence of IMF production for the different forms of density-dependent symmetry energy. The IMF production and charge distribution show a minor but considerable sensitivity towards various forms of densitydependent symmetry energy. The Coulomb interactions affect the IMF production significantly at peripheral collisions. The IMF production increases with the stiffness of symmetry energy.
Institute of Scientific and Technical Information of China (English)
JU Guo-Xing; XIANG Yang; REN Zhong-Zhou
2006-01-01
The properties of the s-wave for a quasi-free particle with position-dependent mass (PDM) have been discussed in details. Differed from the system with constant mass in which the localization of the s-wave for the free quantum particle around the origin only occurs in two dimensions, the quasi-free particle with PDM can experience attractive forces in D dimensions except D=1 when its mass function satisfies some conditions. The effective mass of a particle varying with its position can induce effective interaction, which may be attractive in some cases. The analytical expressions of the eigenfunctions and the corresponding probability densities for the s-waves of the two- and three-dimensional systems with a special PDM are given, and the existences of localization around the origin for these systems are shown.
Anomalous transport theory for toroidal helical plasmas
International Nuclear Information System (INIS)
Anomalous transport coefficients in toroidal helical plasmas are studied, based on the innovative theoretical method. The self-sustained turbulence is analyzed by balancing the nonlinear growth due to the current diffusivity with the nonlinear damping by the ion viscosity and thermal conductivity. Interchange and ballooning mode turbulence is investigated, and the geometrical dependence of the anomalous transport coefficient is clarified. Variation of transport owing to the geometrical difference in toroidal helical plasmas is illustrated. The mechanism for confinement improvement is searched for. To verify the nonlinear destabilization and the self-sustained state, the nonlinear simulation of the interchange mode turbulence is performed in a sheared slab. It is demonstrated that the nonlinear enhancement of the growth rate occurs when the fluctuation amplitude exceeds the critical level. In the saturation stage, the fluctuation level becomes higher associated with the enhanced nonlinear growth. (author)
Anomalous magnetoresistance on the topological surface
International Nuclear Information System (INIS)
We report theoretical study of charge transport in two-dimensional ferromag-net/ferromagnet junction on a topological insulator. The conductance across the interface shows anomalous dependence on the directions of the magnetizations of the two ferromagnets. This stems from the way how the wavefunctions connect between both sides. It is found that the conductance depends strongly on the in-plane direction of the magnetization. Moreover, in stark contrast to the conventional magnetoresistance effect, the conductance at the parallel configuration can be much smaller than that at the antiparallel configuration.
A set of sum rules for anomalous gauge boson couplings
Papavassiliou, J; Papavassiliou, Joannis; Philippides, Kostas
1999-01-01
The dependence of the differential cross-section for on-shell W-pair production on the anomalous trilinear gauge couplings invariant under C and P is examined. It is shown that the contributions of the anomalous magnetic moments of the W boson due to the photon and the Z can be individually projected out by means of two appropriately constructed polynomials. The remaining four anomalous couplings are shown to satisfy a set of model-independent sum rules. Specific models which predict special relations among the anomalous couplings are then studied; in particular, the composite model of Brodsky and Hiller, and the linear and non-linear effective Lagrangian approaches. The relations predicted by these models, when combined with the aforementioned sum rules, give rise to definite predictions, particular to each model. These predictions can be used, at least in principle, in order to exclude or constrain such models.
Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Atkinson, Markus; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bittner, Bernhard; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Cole, Stephen; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Dassoulas, James; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dinut, Florin; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; do Vale, Maria Aline Barros; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doxiadis, Alexander; Doyle, Tony; Dressnandt, Nandor; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Duguid, Liam; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edson, William; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fowler, Andrew; Fox, Harald; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Frank, Tal; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilchriese, Murdock; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gosdzik, Bjoern; Goshaw, Alfred; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guest, Daniel; Guicheney, Christophe; Guindon, Stefan; Gul, Umar; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Henß, Tobias; Hernandez, Carlos Medina; Hernández Jiménez, Yesenia; Herrberg, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Hong, Tae Min; Hooft van Huysduynen, Loek; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jen-La Plante, Imai; Jennens, David; Jenni, Peter; Loevschall-Jensen, Ask Emil; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Joram, Christian; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karakostas, Konstantinos; Karnevskiy, Mikhail; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Kekelidze, George; Keller, John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollefrath, Michael; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kreiss, Sven; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lane, Jenna; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepold, Florian; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Lulu; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, XinChou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lukas, Wolfgang; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundberg, Olof; Lundquist, Johan; Lungwitz, Matthias; Lynn, David; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Maddocks, Harvey Jonathan; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Martens, Kalen; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzaferro, Luca; Mazzanti, Marcello; Mc Donald, Jeffrey; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Moles-Valls, Regina; Molfetas, Angelos; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Lopez, Sebastian; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pinto, Belmiro; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Plotnikova, Elena; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radeka, Veljko; Radescu, Voica; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodd, Nicholas; Roe, Adam; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schneider, Basil; Schnoor, Ulrike; Schoening, Andre; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciolla, Gabriella; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snyder, Scott; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valentinetti, Sara; Valero, Alberto; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Vegni, Guido; Veillet, Jean-Jacques; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Rui; Wang, Song-Ming; Wang, Tan; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Wetter, Jeffrey; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xu, Chao; Xu, Da; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Liwen; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Byszewski, Marcin; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimin, Nikolai; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz
2012-01-01
An inclusive search for anomalous production of two prompt, isolated leptons with the same electric charge is presented. The search is performed in a data sample corresponding to 4.7 fb-1 of integrated luminosity collected in 2011 at $\\sqrt{s}$ = 7 TeV with the ATLAS detector at the LHC. Pairs of leptons (ee, emu, and mumu) with large transverse momentum are selected, and the dilepton invariant mass distribution is examined for any deviation from the Standard Model expectation. No excess is found, and upper limits on the production cross section of like-sign lepton pairs from physics processes beyond the Standard Model are placed as a function of the dilepton invariant mass within a fiducial region close to the experimental selection criteria. The 95% confidence level upper limits on the cross section of anomalous ee, emu, or mumu production range between 1.7 fb and 64 fb depending on the dilepton mass and flavour combination.
Dependence of the muon pseudorapidity on the cosmic ray mass composition around the knee
Rastegarzadeh, Gohar; Nemati, Mohammad
2015-11-01
In order to identify the mass composition of cosmic rays (CRs), we have investigated the mean muon pseudorapidity () values of muonic component in extensive air showers (EASs). For this purpose we have simulated EASs by CORSIKA 7.4 code for Hydrogen, Oxygen and Iron nucleus. The energy range was selected between 1014 eV and 1016 eV with zenith angle from 0°-18°. We have compared our calculations with KASCADE muon tracking detector (MTD) measurements to obtain results on the primary mass relationship with mean muon pseudorapidity values of EASs muonic component. It is shown that after the knee energies, experimental data tend to the heavy primaries and mass composition becomes heavier. Finally, linear equations between the mass of primary and mean η values for different energies are obtained.
THE DEPENDENCE OF PRESTELLAR CORE MASS DISTRIBUTIONS ON THE STRUCTURE OF THE PARENTAL CLOUD
International Nuclear Information System (INIS)
The mass distribution of prestellar cores is obtained for clouds with arbitrary internal mass distributions using a selection criterion based on the thermal and turbulent Jeans mass and applied hierarchically from small to large scales. We have checked this methodology by comparing our results for a log-normal density probability distribution function with the theoretical core mass function (CMF) derived by Hennebelle and Chabrier, namely a power law at large scales and a log-normal cutoff at low scales, but our method can be applied to any mass distributions representing a star-forming cloud. This methodology enables us to connect the parental cloud structure with the mass distribution of the cores and their spatial distribution, providing an efficient tool for investigating the physical properties of the molecular clouds that give rise to the prestellar core distributions observed. Simulated fractional Brownian motion (fBm) clouds with the Hurst exponent close to the value H = 1/3 give the best agreement with the theoretical CMF derived by Hennebelle and Chabrier and Chabrier's system initial mass function. Likewise, the spatial distribution of the cores derived from our methodology shows a surface density of companions compatible with those observed in Trapezium and Ophiucus star-forming regions. This method also allows us to analyze the properties of the mass distribution of cores for different realizations. We found that the variations in the number of cores formed in different realizations of fBm clouds (with the same Hurst exponent) are much larger than the expected root N statistical fluctuations, increasing with H.
Orbital evolution of mass-transferring eccentric binary systems. I. Phase-dependent evolution
Dosopoulou, Fani; Kalogera, Vicky
2016-01-01
Observations reveal that mass-transferring binary systems may have non-zero orbital eccentricities. The time-evolution of the orbital semi-major axis and eccentricity of mass-transferring eccentric binary systems is an important part of binary evolution theory and has been widely studied. However, various different approaches and assumptions on the subject have made the literature difficult to comprehend and comparisons between different orbital element time-evolution equations not easy to ma...
THE DEPENDENCE OF PRESTELLAR CORE MASS DISTRIBUTIONS ON THE STRUCTURE OF THE PARENTAL CLOUD
Energy Technology Data Exchange (ETDEWEB)
Parravano, Antonio [Centro De Fisica Fundamental, Universidad de Los Andes, Merida (Venezuela, Bolivarian Republic of); Sanchez, Nestor [S. D. Astronomia y Geodesia, Fac. CC. Matematicas, Universidad Complutense de Madrid (Spain); Alfaro, Emilio J. [Instituto de Astrofisica de Andalucia (CSIC), Granada (Spain)
2012-08-01
The mass distribution of prestellar cores is obtained for clouds with arbitrary internal mass distributions using a selection criterion based on the thermal and turbulent Jeans mass and applied hierarchically from small to large scales. We have checked this methodology by comparing our results for a log-normal density probability distribution function with the theoretical core mass function (CMF) derived by Hennebelle and Chabrier, namely a power law at large scales and a log-normal cutoff at low scales, but our method can be applied to any mass distributions representing a star-forming cloud. This methodology enables us to connect the parental cloud structure with the mass distribution of the cores and their spatial distribution, providing an efficient tool for investigating the physical properties of the molecular clouds that give rise to the prestellar core distributions observed. Simulated fractional Brownian motion (fBm) clouds with the Hurst exponent close to the value H = 1/3 give the best agreement with the theoretical CMF derived by Hennebelle and Chabrier and Chabrier's system initial mass function. Likewise, the spatial distribution of the cores derived from our methodology shows a surface density of companions compatible with those observed in Trapezium and Ophiucus star-forming regions. This method also allows us to analyze the properties of the mass distribution of cores for different realizations. We found that the variations in the number of cores formed in different realizations of fBm clouds (with the same Hurst exponent) are much larger than the expected root N statistical fluctuations, increasing with H.
International Nuclear Information System (INIS)
We show a textbook potential for single-field inflation, namely the Coleman–Weinberg model can induce double inflation and formation of primordial black holes (PBHs), because fluctuations that leave the horizon near the end of first inflation are anomalously enhanced at the onset of second inflation when the time-dependent mode turns into a growing mode rather than a decaying mode. The mass of PBHs produced in this mechanism with an appreciable density are distributed at certain intervals depending on the model parameters. We also calculate the effects of non-Gaussian statistics due to higher-order interactions on the abundance of PBHs, which turns out to be small
Body-mass dependence of age-related deterioration in human muscular function.
Meltzer, D E
1996-04-01
Maximal anaerobic power of human muscles declines with increasing chronological age and is correlated with body mass. This study investigated whether the rate of deterioration in human muscular function among trained weight lifters is also correlated with body mass. Cross-sectional analysis of performance data of over 1,100 Masters competitors in Olympic-style weight lifting was carried out; eight body-weight classes and six age groups were represented. Two-lift total data (sum of snatch and clean and jerk lifts) were analyzed. Mean deterioration rates in the performance of athletes of widely diverse body masses were compared over the following age ranges: 42-57, 42-62, and 42-67 yr. No statistically significant correlation (P < 0.05) was found between rate of performance decline and body mass. The relationship between body mass and the magnitude of age-related variation of deterioration rate was also studied; no significant correlation was found. Previous studies have demonstrated that performance in Olympic-style weight lifting is correlated with maximal anaerobic muscular power. This leads us to suggest that the age-related deterioration rate of anaerobic power in trained subjects may not be correlated with the body mass of the individual. PMID:8926240
Moresco, M; Cimatti, A; Zamorani, G; Mignoli, M; Di Cesare, S; Bolzonella, M; Zucca, E; Lilly, S; Kovac, K; Scodeggio, M; Cassata, P; Tasca, L; Vergani, D; Halliday, C; Carollo, M; Contini, T; Kneib, J -P; Le Fèvre, O; Mainieri, V; Renzini, A; Bardelli, S; Bongiorno, A; Caputi, K; Coppa, G; Cucciati, O; de la Torre, S; de Ravel, L; Franzetti, P; Garilli, B; Iovino, A; Kampczyk, P; Knobel, C; Lamareille, F; Le Borgne, J F; Le Brun, V; Maier, C; Pello, R; Peng, Y; Montero, E Perez; Ricciardelli, E; Silverman, J D; Tanaka, M; Tresse, L; Abbas, U; Bottini, D; Cappi, A; Guzzo, L; Koekemoer, A M; Leauthaud, A; Maccagni, D; Marinoni, C; McCracken, H J; Memeo, P; Meneux, B; Nair, P; Oesch, P; Porciani, C; Scaramella, R; Scarlata, C; Scoville, N
2010-01-01
We present the analysis of the U-V rest-frame color distribution and some spectral features as a function of mass and environment for two sample of early-type galaxies up to z=1 extracted from the zCOSMOS spectroscopic survey. The first sample ("red galaxies") is defined with a photometric classification, while the second ("ETGs") by combining morphological, photometric, and spectroscopic properties to obtain a more reliable sample. We find that the color distribution of red galaxies is not strongly dependent on environment for all mass bins, with galaxies in overdense regions redder than galaxies in underdense regions with a difference of 0.027\\pm0.008 mag. The dependence on mass is far more significant, with average colors of massive galaxies redder by 0.093\\pm0.007 mag than low-mass galaxies throughout the entire redshift range. We study the color-mass relation, finding a mean slope 0.12\\pm0.005, while the color-environment relation is flatter, with a slope always smaller than 0.04. The spectral analysis t...
Glucagon Couples Hepatic Amino Acid Catabolism to mTOR-Dependent Regulation of α-Cell Mass
Directory of Open Access Journals (Sweden)
Mark J. Solloway
2015-07-01
Full Text Available Understanding the regulation of islet cell mass has important implications for the discovery of regenerative therapies for diabetes. The liver plays a central role in metabolism and the regulation of endocrine cell number, but liver-derived factors that regulate α-cell and β-cell mass remain unidentified. We propose a nutrient-sensing circuit between liver and pancreas in which glucagon-dependent control of hepatic amino acid metabolism regulates α-cell mass. We found that glucagon receptor inhibition reduced hepatic amino acid catabolism, increased serum amino acids, and induced α-cell proliferation in an mTOR-dependent manner. In addition, mTOR inhibition blocked amino-acid-dependent α-cell replication ex vivo and enabled conversion of α-cells into β-like cells in vivo. Serum amino acids and α-cell proliferation were increased in neonatal mice but fell throughout postnatal development in a glucagon-dependent manner. These data reveal that amino acids act as sensors of glucagon signaling and can function as growth factors that increase α-cell proliferation.
The zCOSMOS Survey. The dependence of clustering on luminosity and stellar mass at z=0.2-1
Meneux, B.; Guzzo, L.; de la Torre, S.; Porciani, C.; Zamorani, G.; Abbas, U; Bolzonella, M.; Garilli, B.; Iovino, A; Pozzetti, L.; Zucca, E.; Lilly, S.; Fevre, O. Le; Kneib, J.-P.; Carollo, C. M.
2009-01-01
We study the dependence of galaxy clustering on luminosity and stellar mass at redshifts z ~ [0.2-1] using the first zCOSMOS 10K sample. We measure the redshift-space correlation functions xi(rp,pi) and its projection wp(rp) for sub-samples covering different luminosity, mass and redshift ranges. We quantify in detail the observational selection biases and we check our covariance and error estimate techniques using ensembles of semi-analytic mock catalogues. We finally compare our measurement...
Non-perturbative quark mass dependence in the heavy-light sector of two-flavour QCD
International Nuclear Information System (INIS)
We present preliminary results of the non-perturbative heavy quark mass dependence of heavy-light meson observables in the continuum limit of finite-volume two-flavour lattice QCD. These observables, which are derived from heavy-light Schroedinger functional correlation functions and computed over a range of renormalization group invariant heavy quark masses from the charm to beyond the bottom region, allow for a quantitative comparison with the predictions of HQET and are of practical relevance for solving renormalization problems in HQET non-perturbatively by a matching to QCD in finite volume. (orig.)
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Dependence of yields of OH (hydroxyl) radicals on the mass and specific energy of heavy ions and elapsed time after irradiation was investigated, to understand chemical reactions of aqueous solutions. The yields of irradiation products of phenol, super-linearly increased with the incident energy of He, C, and Ne ions ranging from 2 to 18 MeV/u. The yields of the OH radicals were estimated by analyzing the yields of the irradiation products of phenol.The yields of the OH radicals increased with the specific energy for each ion, but decreased both with the mass of each ion at the same specific energy and elapsed time after irradiation.
Pasca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.; Kim, Y.
2016-05-01
The mass, charge, isotopic, and kinetic-energy distributions of fission fragments are studied within an improved scission-point statistical model in the reactions 235U+n and 239Pu+n at different energies of the incident neutron. The charge and mass distributions of the electromagnetic- and neutron-induced fission of 214,218Ra, 230,232,238U are also shown. The available experimental data are well reproduced and the energy-dependencies of the observable characteristics of fission are predicted for future experiments.
Energy Technology Data Exchange (ETDEWEB)
Engelhardt, Michael; Musch, Bernhard; Bhattacharya, Tanmoy; Gupta, Rajan; Hagler, Phillip; Negele, John; Pochinsky, Andrew; Shafer, Andreas; Syritsyn, Sergey; Yoon, Boram
2014-12-01
Lattice QCD calculations of transverse momentum-dependent parton distributions (TMDs) in a nucleon are performed based on a definition of TMDs via hadronic matrix elements of quark bilocal operators containing staple-shaped gauge connections. A parametrization of the matrix elements in terms of invariant amplitudes serves to cast them in the Lorentz frame preferred for the lattice calculation. Using a RBC/UKQCD domain wall fermion ensemble corresponding to a pion mass of 297MeV, on a lattice with spacing 0.084fm, selected TMD observables are accessed and compared to previous explorations at heavier pion masses on coarser lattices.
MAJOR-MERGER GALAXY PAIRS IN THE COSMOS FIELD—MASS-DEPENDENT MERGER RATE EVOLUTION SINCE z = 1
International Nuclear Information System (INIS)
We present results of a statistical study of the cosmic evolution of the mass-dependent major-merger rate since z = 1. A stellar mass limited sample of close major-merger pairs (the CPAIR sample) was selected from the archive of the COSMOS survey. Pair fractions at different redshifts derived using the CPAIR sample and a local K-band-selected pair sample show no significant variations with stellar mass. The pair fraction exhibits moderately strong cosmic evolution, with the best-fitting function of fpair = 10–1.88(±0.03)(1 + z)2.2(±0.2). The best-fitting function for the merger rate is Rmg (Gyr–1) = 0.053 × (Mstar/1010.7 M☉ )0.3(1 + z)2.2/(1 + z/8). This rate implies that galaxies of Mstar ∼ 1010-1011.5 M☉ have undergone ∼0.5-1.5 major mergers since z = 1. Our results show that, for massive galaxies (Mstar ≥ 1010.5 M☉) at z ≤ 1, major mergers involving star-forming galaxies (i.e., wet and mixed mergers) can account for the formation of both ellipticals and red quiescent galaxies (RQGs). On the other hand, major mergers cannot be responsible for the formation of most low mass ellipticals and RQGs of Mstar ∼10.3 M☉. Our quantitative estimates indicate that major mergers have significant impact on the stellar mass assembly of the most massive galaxies (Mstar ≥ 1011.3 M☉), but for less massive galaxies the stellar mass assembly is dominated by the star formation. Comparison with the mass-dependent (ultra)luminous infrared galaxies ((U)LIRG) rates suggests that the frequency of major-merger events is comparable to or higher than that of (U)LIRGs.
On the photon anomalous magnetic moment
Villalba, S; Villalba, Selym; Rojas, Hugo Perez
2006-01-01
It is shown that due to radiative corrections a photon having a non vanishing component of its momentum perpendicular to it, bears a non-zero magnetic moment. All modes of propagation of the polarization operator in one loop approximation are discussed and in this field regime the dispersion equation and the corresponding magnetic moment are derived. Near the first thresholds of cyclotron resonance the photon magnetic moment has a peak larger than the electron anomalous magnetic moment. Related to this magnetic moment, the arising of some sort of photon "dynamical mass" and a gyromagnetic ratio are discussed. These latter results might be interesting in an astrophysical context.
The Dependence of Prestellar Core Mass Distributions on the Structure of the Parental Cloud
Parravano, Antonio; Alfaro, Emilio J
2012-01-01
The mass distribution of prestellar cores is obtained for clouds with arbitrary internal mass distributions using a selection criterion based on the thermal and turbulent Jeans mass and applied hierarchically from small to large scales. We have checked this methodology comparing our results for a lognormal density PDF with the theoretical CMF derived by Hennebelle and Chabrier, namely a power-law at large scales and a log-normal cutoff at low scales, but our method can be applied to any mass distributions representing a star-forming cloud. This methodology enables us to connect the parental cloud structure with the mass distribution of the cores and their spatial distribution, providing an efficient tool for investigating the physical properties of the molecular clouds that give rise to the prestellar core distributions observed. Simulated fBm clouds with the Hurst exponent close to the value H=1/3 give the best agreement with the theoretical CMF derived by Hennebelle and Chabrier and Chabrier's system IMF. L...
COMPACT REMNANT MASS FUNCTION: DEPENDENCE ON THE EXPLOSION MECHANISM AND METALLICITY
International Nuclear Information System (INIS)
The mass distribution of neutron stars and stellar-mass black holes provides vital clues into the nature of stellar core collapse and the physical engine responsible for supernova explosions. A number of supernova engines have been proposed: neutrino- or oscillation-driven explosions enhanced by early (developing in 10-50 ms) and late-time (developing in 200 ms) convection as well as magnetic field engines (in black hole accretion disks or neutron stars). Using our current understanding of supernova engines, we derive mass distributions of stellar compact remnants. We provide analytic prescriptions for both single-star models (as a function of initial star mass) and for binary-star models—prescriptions for compact object masses for major population synthesis codes. These prescriptions have implications for a range of observations: X-ray binary populations, supernova explosion energies, and gravitational wave sources. We show that advanced gravitational radiation detectors (like LIGO/VIRGO or the Einstein Telescope) will be able to further test the supernova explosion engine models once double black hole inspirals are detected.
COMPACT REMNANT MASS FUNCTION: DEPENDENCE ON THE EXPLOSION MECHANISM AND METALLICITY
Energy Technology Data Exchange (ETDEWEB)
Fryer, Chris L. [CCS Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Belczynski, Krzysztof; Wiktorowicz, Grzegorz; Dominik, Michal [Astronomical Observatory, University of Warsaw, Al. Ujazdowskie 4, 00-478 Warsaw (Poland); Kalogera, Vicky [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Holz, Daniel E. [Theory Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2012-04-10
The mass distribution of neutron stars and stellar-mass black holes provides vital clues into the nature of stellar core collapse and the physical engine responsible for supernova explosions. A number of supernova engines have been proposed: neutrino- or oscillation-driven explosions enhanced by early (developing in 10-50 ms) and late-time (developing in 200 ms) convection as well as magnetic field engines (in black hole accretion disks or neutron stars). Using our current understanding of supernova engines, we derive mass distributions of stellar compact remnants. We provide analytic prescriptions for both single-star models (as a function of initial star mass) and for binary-star models-prescriptions for compact object masses for major population synthesis codes. These prescriptions have implications for a range of observations: X-ray binary populations, supernova explosion energies, and gravitational wave sources. We show that advanced gravitational radiation detectors (like LIGO/VIRGO or the Einstein Telescope) will be able to further test the supernova explosion engine models once double black hole inspirals are detected.
THE MASS-DEPENDENT CLUSTERING HISTORY OF K-SELECTED GALAXIES AT z < 4 IN THE SXDS/UDS FIELD
International Nuclear Information System (INIS)
We investigate mass-dependent galaxy evolution based on a large sample of (more than 50,000) K-band selected galaxies in a multi-wavelength catalog of the Subaru/XMM-Newton Deep Survey and the UKIRT Infrared Deep Sky Survey/Ultra Deep Survey. We employ optical to near-infrared photometry to determine photometric redshifts of these galaxies. Then, we estimate the stellar mass of our sample galaxies using a standard fitting procedure as we used for estimation of the photometric redshift. From the sample galaxies, we obtain the stellar mass function of galaxies and the cosmic stellar mass density up to z ∼ 4. Our results are consistent with previous studies and we find a considerable number of low-mass galaxies (M* ∼ 1010.5) at the redshift range 3 14 Msun) to low (1013 Msun) with decreasing redshift at around z ∼ 2. We also find some high-mass density regions of massive galaxies at 1.4 ≤ z < 2.5 in our sample. These concentrations of massive galaxies may be candidate progenitors of the present-day clusters of galaxies. At this redshift range, massive star-forming galaxies are the dominant population making up the structures and the passively evolving galaxies show stronger clustering and they may have formed earlier than those star-forming galaxies.
Indian Academy of Sciences (India)
Swapnil S Jawkar; Sudhanshu S Jha
2005-01-01
Using the general formulation for obtaining chemical potential of an ideal Fermi gas of particles at temperature , with particle rest mass $m_{0}$ and average density $\\langle N \\rangle/V$ , the dependence of the mean square number fluctuation $\\langle N^{2} \\rangle/V$ on the particle mass $m_{0}$ has been calculated explicitly. The numerical calculations are exact in all cases whether rest mass energy $m_{0}c^{2}$ is very large (non-relativistic case), very small (ultrarelativistic case) or of the same order as the thermal energy $k_{B}T$ . Application of our results to the detection of the universal very low energy cosmic neutrino background (CNB), from any of the three species of neutrinos, shows that it is possible to estimate the neutrino mass of these species if from approximate experimental measurements of their momentum distribution one can extract, someday, not only the density $\\langle N_{} \\rangle/V$ but also the mean square fluctuation $\\langle N_{}^{2} \\rangle/V$. If at the present epoch, the universe is expanding much faster than thermalization rate for CNB, it is shown that our analysis leads to a scaled neutrino mass $m_{}$ instead of the actual mass $m_{0}.
Anomalous Single Production of the Fourth Generation Quarks at Future $ep$ and $\\gamma p$ Colliders
Çiftçi, A Kenan
2009-01-01
Possible anomalous single productions of the fourth standard model generation up and down type quarks at LHC based ep and γp colliders are studied. Some decay channels are considered. Signatures for signals an d corre- sponding standard model backgrounds are discussed. Discovery limi ts for quark mass and achievable values of anomalous coupling strength are determined
Orientation of x-lines in asymmetric magnetic reconnection - mass ratio dependency
Liu, Yi-Hsin; Kuznetsova, Masha
2015-01-01
Using fully kinetic simulations, we study the x-line orientation of magnetic reconnection in an asymmetric configuration. A spatially localized perturbation is employed to induce a single x-line, that has sufficient freedom to choose its orientation in three-dimensional systems. The effect of ion to electron mass ratio is investigated, and the x-line appears to bisect the magnetic shear angle across the current sheet in the large mass ratio limit. The orientation can generally be deduced by scanning through corresponding 2D simulations to find the reconnection plane that maximizes the peak reconnection electric field. The deviation from the bisection angle in the lower mass ratio limit can be explained by the physics of tearing instability.
The Nc dependencies of baryon masses: Analysis with Lattice QCD and Effective Theory
Energy Technology Data Exchange (ETDEWEB)
Calle Cordon, Alvaro C. [JLAB; DeGrand, Thomas A. [University of Colorado; Goity, Jose L. [JLAB
2014-07-01
Baryon masses at varying values of Nc and light quark masses are studied with Lattice QCD and the results are analyzed in a low energy effective theory based on a combined framework of the 1/Nc and Heavy Baryon Chiral Perturbation Theory expansions. Lattice QCD results for Nc=3, 5 and 7 obtained in quenched calculations, as well as results for unquenched calculations for Nc=3, are used for the analysis. The results are consistent with a previous analysis of Nc=3 LQCD results, and in addition permit the determination of sub-leading in 1/Nc effects in the spin-flavor singlet component of the baryon masses as well as in the hyperfine splittings.
Anomalous radiative transitions
International Nuclear Information System (INIS)
Anomalous transitions involving photons derived by many-body interaction of the form ∂μGμ in the standard model are studied for the first time. This does not affect the equation of motion in the bulk, but modifies the wavefunctions, and causes an unusual transition characterized by a time-independent probability. In the transition probability at a time interval T expressed generally in the form P=TΓ0+P(d), now with P(d)≠0. The diffractive term P(d) has its origin in the overlap of waves of the initial and final states, and reveals the characteristics of waves. In particular, the processes of the neutrino–photon interaction ordinarily forbidden by the Landau–Yang theorem (Γ0=0) manifest themselves through the boundary interaction. The new term leads physical processes over a wide energy range to have finite probabilities. New methods of detecting neutrinos using lasers are proposed, based on this diffractive term; these would enhance the detectability of neutrinos by many orders of magnitude
Characterization of the mass-dependent transmission efficiency of a CIMS
Heinritzi, Martin; Simon, Mario; Steiner, Gerhard; Wagner, Andrea C.; Kürten, Andreas; Hansel, Armin; Curtius, Joachim
2016-04-01
Knowledge about mass discrimination effects in a chemical ionization mass spectrometer (CIMS) is crucial for quantifying, e.g., the recently discovered extremely low volatile organic compounds (ELVOCs) and other compounds for which no calibration standard exists so far. Here, we present a simple way of estimating mass discrimination effects of a nitrate-based chemical ionization atmospheric pressure interface time-of-flight (CI-APi-TOF) mass spectrometer. Characterization of the mass discrimination is achieved by adding different perfluorinated acids to the mass spectrometer in amounts sufficient to deplete the primary ions significantly. The relative transmission efficiency can then be determined by comparing the decrease of signals from the primary ions and the increase of signals from the perfluorinated acids at higher masses. This method is in use already for PTR-MS; however, its application to a CI-APi-TOF brings additional difficulties, namely clustering and fragmentation of the measured compounds, which can be treated with statistical analysis of the measured data, leading to self-consistent results. We also compare this method to a transmission estimation obtained with a setup using an electrospray ion source, a high-resolution differential mobility analyzer and an electrometer, which estimates the transmission of the instrument without the CI source. Both methods give different transmission curves, indicating non-negligible mass discrimination effects of the CI source. The absolute transmission of the instrument without the CI source was estimated with the HR-DMA method to plateau between the m/z range of 127 and 568 Th at around 1.5 %; however, for the CI source included, the depletion method showed a steady increase in relative transmission efficiency from the m/z range of the primary ion (mainly at 62 Th) to around 550 Th by a factor of around 5. The main advantages of the depletion method are that the instrument is used in the same operation mode as
Habitable Zones Around Main-Sequence Stars: Dependence on Planetary Mass
Kopparapu, Ravi Kumar; Ramirez, Ramses M.; SchottelKotte, James; Kasting, James F.; Domagal-Goldman, Shawn; Eymet, Vincent
2014-01-01
The ongoing discoveries of extrasolar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K - 7200 K, for planetary masses between 0.1 ME and 5 ME. Assuming H2O (inner HZ) and CO2 (outer HZ) dominated atmospheres, and scaling the background N2 atmospheric pressure with the radius of the planet, our results indicate that lar...
Charm quark mass dependence in the CTEQ NNLO global QCD analysis
Gao, Jun; Guzzi, Marco; Nadolsky, Pavel M.
2013-01-01
We discuss the impact of the charm quark mass in the CTEQ NNLO global analysis of parton distribution functions of the proton. The $\\bar{\\rm MS}$ mass $m_c(m_c)$ of the charm quark is extracted in the S-ACOT-$\\chi$ heavy-quark factorization scheme at ${\\cal O}(\\alpha_s^2)$ accuracy and found to be in agreement with the world-average value. Impact on $m_c(m_c)$ of combined HERA-1 data on semiinclusive charm production at HERA collider and contributing systematic uncertainties are reviewed.
Directory of Open Access Journals (Sweden)
Christiane Quesne
2007-05-01
Full Text Available An exactly solvable position-dependent mass Schrödinger equation in two dimensions, depicting a particle moving in a semi-infinite layer, is re-examined in the light of recent theories describing superintegrable two-dimensional systems with integrals of motion that are quadratic functions of the momenta. To get the energy spectrum a quadratic algebra approach is used together with a realization in terms of deformed parafermionic oscillator operators. In this process, the importance of supplementing algebraic considerations with a proper treatment of boundary conditions for selecting physical wavefunctions is stressed. Some new results for matrix elements are derived. This example emphasizes the interest of a quadratic algebra approach to position-dependent mass Schrödinger equations.
Position-dependent effective mass Dirac equations with PT-symmetric and non-PT-symmetric potentials
International Nuclear Information System (INIS)
We present a new procedure to construct the one-dimensional non-Hermitian imaginary potential with a real energy spectrum in the context of the position-dependent effective mass Dirac equation with the vector-coupling scheme in 1+1 dimensions. In the first example, we consider a case for which the mass distribution combines linear and inversely linear forms, the Dirac problem with a PT-symmetric potential is mapped into the exactly solvable Schroedinger-like equation problem with the isotonic oscillator by using the local scaling of the wavefunction. In the second example, we take a mass distribution with smooth step shape, the Dirac problem with a non-PT-symmetric imaginary potential is mapped into the exactly solvable Schroedinger-like equation problem with the Rosen-Morse potential. The real relativistic energy levels and corresponding wavefunctions for the bound states are obtained in terms of the supersymmetric quantum mechanics approach and the function analysis method
Isokangas, E.; K. Rozanski; P. M. Rossi; A.-K. Ronkanen; Kløve, B.
2014-01-01
A stable isotope study of 67 kettle lakes and ponds situated on an esker aquifer (90 km2) in northern Finland was carried out in the summer of 2013 to determine the role of groundwater inflow in groundwater-dependent lakes. Distinct seasonal fluctuations in the δ18O and δ2H values of lakes are the result of seasonal ice cover prohibiting evaporation during the winter. An isotope mass balance approach was used to calculate the infl...
Czech Academy of Sciences Publication Activity Database
Hreha, P.; Radvanská, A.; Hloch, Sergej; Peržel, V.; Krolczyk, G.; Monková, K.
2014-01-01
Roč. 77, 1-4 (2014), s. 763-774. ISSN 0268-3768 Institutional support: RVO:68145535 Keywords : Abrasive water jet * Abrasive mass flow rate * Vibration Subject RIV: JQ - Machines ; Tools Impact factor: 1.458, year: 2014 http://link.springer.com/article/10.1007%2Fs00170-014-6497-9#page-1
A new class of quasi-exactly solvable potentials with a position-dependent mass
International Nuclear Information System (INIS)
A new class of quasi-exactly solvable potentials with a variable mass in the Schroedinger equation is presented. We have derived a general expression for the potentials, including Natanzon confluent potentials. The general solution of the Schroedinger equation is determined and the eigenstates are expressed in terms of the orthogonal polynomials. (author). Letter-to-the-editor
Sensitivity of $\\beta$-decay rates to the radial dependence of the nucleon effective mass
Severyukhin, A P; Borzov, I N; Van Giai, Nguyen
2015-01-01
We analyze the sensitivity of $\\beta$-decay rates in 78 Ni and 100,132 Sn to a correction term in Skyrme energy-density functionals (EDF) which modifies the radial shape of the nucleon effective mass. This correction is added on top of several Skyrme parametrizations which are selected from their effective mass properties and predictions about the stability properties of 132 Sn. The impact of the correction on high-energy collective modes is shown to be moderate. From the comparison of the effects induced by the surface-peaked effective mass in the three doubly magic nuclei, it is found that 132 Sn is largely impacted by the correction, while 78 Ni and 100 Sn are only moderately affected. We conclude that $\\beta$-decay rates in these nuclei can be used as a test of different parts of the nuclear EDF: 78 Ni and 100 Sn are mostly sensitive to the particle-hole interaction through the B(GT) values, while 132 Sn is sensitive to the radial shape of the effective mass. Possible improvements of these different parts...
Isokangas, E.; Rozanski, K.; Rossi, P. M.; Ronkanen, A.-K.; Kløve, B.
2015-03-01
A stable isotope study of 67 kettle lakes and ponds situated on an esker aquifer (90 km2) in northern Finland was carried out to determine the role and extent of groundwater inflow in groundwater-dependent lakes. Distinct seasonal fluctuations in the δ18O and δ2H values of lakes are the result of seasonal ice cover prohibiting evaporation during the winter. An iterative isotope mass balance approach was used to calculate the inflow-to-evaporation ratios (ITOT/E) of all 67 lakes during the summer of 2013 when the isotopic compositions of the lakes were approaching a steady-state. The balance calculations were carried out independently for 2H and 18O data. Since evaporation rates were derived independently of any mass balance considerations, it was possible to determine the total inflow (ITOT) and mean turnover time (MTT) of the lakes. Furthermore, the groundwater seepage rates to all studied lakes were calculated. A quantitative measure was introduced for the dependence of a lake on groundwater (G index) that is defined as the percentage contribution of groundwater inflow to the total inflow of water to the given lake. The G index values of the lakes studied ranged from ca. 39 to 98%, revealing generally large groundwater dependency among the studied lakes. This study shows the effectiveness of applying an isotope mass balance approach to quantify the groundwater reliance of lakes situated in a relatively small area with similar climatic conditions.
Anomalous magnetotransport of a surface electron layer above liquid helium
International Nuclear Information System (INIS)
The magnetoconductivity σxx of a surface electron layer above liquid helium has been measured at temperatures between 0.5-1.6 K, for concentrations up to about 4x108 cm-2, in magnetic fields up to 25 kOe. As was observed, σxx first decreases with lowering temperature, then has a minimum and at T xy, the earlier ascertained anomalous behaviour of the magnetoresistance ρxx taken into consideration. The calculated dependence of ρxx on T is in satisfactory agreement with the anomalous dependence ρxx(T) found earlier by experiment
Anomalous transport of the cuprate strange metal from holography
Ge, Xian-Hui; Wu, Shang-Yu; Wu, Shao-Feng
2016-01-01
We study the anomalous transport of the cuprate strange metals by exploring a new black hole solution in AdS spacetime with a hyperscaling violating factor via the gauge/gravity duality. We show that both the linear T-dependence resistivity and the quadratic T-dependence inverse Hall angle can be naturally achieved. Other anomalous temperature scaling of transport quantities of cuprates, such as 1) the Hall Lorenz ratio, 2) the Nernst coefficient and 3) the magnetoresistance can also be reproduced. In the zero temperature limit, the Lorenz ratio obeys the Wiedemann-Franz law, suggestive of a Fermi-liquid ground state.
Petrology of Anomalous Eucrites
Mittlefehldt, D. W.; Peng, Z. X.; Ross, D. K.
2015-01-01
Most mafic achondrites can be broadly categorized as being "eucritic", that is, they are composed of a ferroan low-Ca clinopyroxene, high-Ca plagioclase and a silica phase. They are petrologically distinct from angritic basalts, which are composed of high-Ca, Al-Ti-rich clinopyroxene, Carich olivine, nearly pure anorthite and kirschsteinite, or from what might be called brachinitic basalts, which are composed of ferroan orthopyroxene and high-Ca clinopyroxene, intermediate-Ca plagioclase and ferroan olivine. Because of their similar mineralogy and composition, eucrite-like mafic achondrites formed on compositionally similar asteroids under similar conditions of temperature, pressure and oxygen fugacity. Some of them have distinctive isotopic compositions and petrologic characteristics that demonstrate formation on asteroids different from the parent of the HED clan (e.g., Ibitira, Northwest Africa (NWA) 011). Others show smaller oxygen isotopic distinctions but are otherwise petrologically and compositionally indistinguishable from basaltic eucrites (e.g., Pasamonte, Pecora Escarpment (PCA) 91007). The degree of uniformity in delta O-17 of eucrites and diogenites is one piece of evidence considered to favor of a magma-ocean scenario for their petrogenesis. Given that the O isotopic differences separating Pasamonte and PCA 91007 from other eucrites are small, and that there is an absence of other distinguishing characteristics, a legitimate question is: Did the HED parent asteroid fail to homogenize via a magma-ocean stage, thus explaining outliers like Pasamonte? We are initiating a program of study of anomalous eucrite-like achondrites as one part of our effort to seek a resolution of this issue. Here we present preliminary petrologic information on Asuka (A-) 881394, Elephant Moraine (EET) 87520 and EET 87542. We will have studied several more by conference time.
Centre of mass decoherence due to time dilation: paradoxical frame-dependence
Diósi, Lajos
2015-01-01
The recently proposed centre of mass decoherence of composite objects due to gravitational time-dilation [Pikovski et al., Nat.Phys. 15. June (2015); arXive:1311.1095] is confronted with the principle of equivalence between gravity and observer's acceleration. In the laboratory frame, a positional superposition $\\vert x_1\\rangle+\\vert x_2\\rangle$ can quickly decohere whereas in the free-falling frame, as I argue, the superposition can survive for almost arbitrary long times. The paradoxical result is explained by the so far unappreciated feature of the proposed model: the centre of mass canonical subsystem is ambiguous, it is different in the laboratory and the free-falling frames, respectively.
Dependence of the outer density profiles of halos on their mass accretion rate
International Nuclear Information System (INIS)
We present a systematic study of the density profiles of ΛCDM halos, focusing on the outer regions, 0.1 < r/R vir < 9. We show that the median and mean profiles of halo samples of a given peak height exhibit significant deviations from the universal analytic profiles discussed previously in the literature, such as the Navarro-Frenk-White and Einasto profiles, at radii r ≳ 0.5R 200m. In particular, at these radii the logarithmic slope of the median density profiles of massive or rapidly accreting halos steepens more sharply than predicted. The steepest slope of the profiles occurs at r ≈ R 200m, and its absolute value increases with increasing peak height or mass accretion rate, reaching slopes of –4 and steeper. Importantly, we find that the outermost density profiles at r ≳ R 200m are remarkably self-similar when radii are rescaled by R 200m. This self-similarity indicates that radii defined with respect to the mean density are preferred for describing the structure and evolution of the outer profiles. However, the inner density profiles are most self-similar when radii are rescaled by R 200c. We propose a new fitting formula that describes the median and mean profiles of halo samples selected by their peak height or mass accretion rate with accuracy ≲ 10% at all radii, redshifts, and masses we studied, r ≲ 9R vir, 0 < z < 6, and M vir > 1.7 × 1010 h –1 M ☉. We discuss observational signatures of the profile features described above and show that the steepening of the outer profile should be detectable in future weak-lensing analyses of massive clusters. Such observations could be used to estimate the mass accretion rate of cluster halos.
ALLOWED QUANTITY OF EXPLOSIVE CHARGE DEPENDING ON RELATIVE SEISMIC SENSITIVITY OF ROCK MASS
Josip Mesec
2005-01-01
During the last decade and more, seismic observations during blasting were carried out, particularly when blasting, near sensitive, i.e. endangered structures have been executed. Permitted oscillation speeds of ground and rock mass particles for certain structures are not standardized by Croatian regulations; therefore, international standards DIN, USBM, etc., are used in practice. This paper analyses research conducted during testing, special, shallow or massive blasting in sediment rock...
Evidence for a Mass Dependent Step-Change in the Scaling of Efficiency in Terrestrial Locomotion
Nudds, Robert L.; Codd, Jonathan R.; William I Sellers
2009-01-01
A reanalysis of existing data suggests that the established tenet of increasing efficiency of transport with body size in terrestrial locomotion requires re-evaluation. Here, the statistical model that described the data best indicated a dichotomy between the data for small (1 kg). Within and between these two size groups there was no detectable difference in the scaling exponents (slopes) relating metabolic (E met) and mechanical costs (E mech, CM) of locomotion to body mass (M b). Therefore...
Quark and sigma mass dependence of nucleon properties from linear sigma model
International Nuclear Information System (INIS)
The sensitivity of static nucleon properties (magnetic moment, axial-vector coupling constant gA, pion–nucleon coupling constant gπNN and sigma commutator term σπN) to the quark and sigma masses have been investigated in the mean-field approximation. We have solved the field equations in the mean-field approximation with different sets of model parameters. Good results have been obtained in comparison with the other models and experimental data. (author)
Habitable Zones Around Main-Sequence Stars: Dependence on Planetary Mass
Kopparapu, Ravi kumar; SchottelKotte, James; Kasting, James F; Domagal-Goldman, Shawn; Eymet, Vincent
2014-01-01
The ongoing discoveries of extrasolar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K - 7200 K, for planetary masses between 0.1 ME and 5 ME. Assuming H2O (inner HZ) and CO2 (outer HZ) dominated atmospheres, and scaling the background N2 atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (~10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H2O column depth. For larger planets, the H2O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing longwave radiation. Hence the inner edge moves inward (...
Directory of Open Access Journals (Sweden)
Engel A
2011-06-01
Full Text Available Alice Engel1,2, Jana Helfrich1, Nina Manderscheid1, Petra B Musholt3, Thomas Forst3, Andreas Pfützner3, Norbert Dahmen1,21Department of Psychiatry, University of Mainz, Germany; 2Fachklinik Katzenelnbogen, Katzenelnbogen, Germany; 3IKFE, Institute for Clinical Research and Development, Mainz, GermanyBackground: Narcolepsy is a severe sleep-wake cycle disorder resulting in most cases from a lack of orexin, the energy balance-regulating hormone. Narcoleptic patients have been reported to suffer from an excess morbidity of Type 2 diabetes, even after correction for their often elevated body mass index.Methods: To explore whether narcolepsy is specifically associated with a propensity to develop insulin resistance, we measured fasting glucose, insulin, and intact proinsulin levels in 43 narcoleptic patients and 47 controls matched for body mass index and age. The proinsulin-to-insulin ratio was calculated. Insulin resistance was determined using the homeostatic model assessment method.Results: Narcoleptic patients did not show elevated insulin resistance parameters.Conclusion: In contrast with earlier reports, we found no evidence that narcolepsy specifically elevates the risk of insulin resistance (and consequently of type 2 diabetes independently of body mass index.Keywords: fasting glucose, insulin, intact proinsulin, narcolepsy, obesity
Liu, Beibei; Zhang, Xiaojia; Lin, Douglas N. C.
2016-06-01
Radial velocity and transit surveys have found that the fraction of FGKM stars with close-in super-Earth(s) (η ⊕) is around 30%–50%, independent of the stellar mass M * and metallicity Z *. In contrast, the fraction of solar-type stars harboring one or more gas giants (η J) with masses M p > 100 M ⊕ is nearly 10%–15%, and it appears to increase with both M * and Z *. Regardless of the properties of their host stars, the total mass of some multiple super-Earths systems exceeds the core mass of Jupiter and Saturn. We suggest that both super-Earths and supercritical cores of gas giants were assembled from a population of embryos that underwent convergent type I migration from their birthplaces to a transition location between viscously heated and irradiation-heated disk regions. We attribute the cause for the η ⊕–η J dichotomy to conditions required for embryos to merge and to acquire supercritical core mass ({M}{{c}}∼ 10 {M}\\oplus ) for the onset of efficient gaseous envelope accretion. We translate this condition into a critical disk accretion rate, and our analysis and simulation results show that it weakly depends on M * and decreases with metallicity of disk gas Z d. We find that embryos are more likely to merge into supercritical cores around relatively massive and metal-rich stars. This dependence accounts for the observed η J–M *. We also consider the {Z}{{d}}{--}{Z}* dispersed relationship and reproduce the observed η J–Z * correlation.
Systematic dependence of asymmetric parameter in light and medium mass region
International Nuclear Information System (INIS)
The study of collective nuclear structure with N, Z, NB and NpNn provide a detailed information of nuclear interactions involved. Several studies have been carried out to study the collectivity, deformation and systematic dependence of other nuclear properties on NpNn. In this paper, we study the role of valence nucleons and holes on the nuclear structure, through NpNn
Imaging of beta-Cell Mass and Insulitis in Insulin-Dependent (Type 1) Diabetes Mellitus
Di Gialleonardo, Valentina; de Vries, Erik F. J.; Di Girolamo, Marco; Quintero, Ana M.; Dierckx, Rudi A. J. O.; Signore, Alberto
2012-01-01
Insulin-dependent (type 1) diabetes mellitus is a metabolic disease with a complex multifactorial etiology and a poorly understood pathogenesis. Genetic and environmental factors cause an autoimmune reaction against pancreatic beta-cells, called insulitis, confirmed in pancreatic samples obtained at
Anomalous single top quark production at the LHC
Najafabadi, M. Mohammadi; Pooya, G.
2010-09-01
The anomalous top quark interactions with gluon (tug, tcg) allow the production of single top quarks at the Large Hadron Collider (LHC). Using the angular distribution of the charged lepton from the W boson in the top decay, we show that with the data of 10 fb-1 of integrated luminosity and in the collisions with the center of mass energy of 14 TeV, the anomalous up and charm quarks coupling parameters κu, c/Λ can be measured down to 0.005 and 0.007 TeV-1, respectively.
HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: DEPENDENCE ON PLANETARY MASS
Energy Technology Data Exchange (ETDEWEB)
Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kasting, James F. [Department of Geosciences, Penn State University, 443 Deike Building, University Park, PA 16802 (United States); SchottelKotte, James [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Domagal-Goldman, Shawn [NASA Astrobiology Institute' s Virtual Planetary Laboratory, P.O. Box 351580, Seattle, WA 98195 (United States); Eymet, Vincent, E-mail: ruk15@psu.edu [Laboratoire d' Astrophysique de Bordeaux, Universite de Bordeaux 1, UMR 5804, F-33270 Floirac (France)
2014-06-01
The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1 M {sub ⊕} and 5 M {sub ⊕}. Assuming H{sub 2}O-(inner HZ) and CO{sub 2}-(outer HZ) dominated atmospheres, and scaling the background N{sub 2} atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (∼10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H{sub 2}O column depth. For larger planets, the H{sub 2}O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing longwave radiation. Hence the inner edge moves inward (∼7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.
HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: DEPENDENCE ON PLANETARY MASS
International Nuclear Information System (INIS)
The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1 M ⊕ and 5 M ⊕. Assuming H2O-(inner HZ) and CO2-(outer HZ) dominated atmospheres, and scaling the background N2 atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (∼10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H2O column depth. For larger planets, the H2O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing longwave radiation. Hence the inner edge moves inward (∼7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs
Habitable Zones Around Main-Sequence Stars: Dependence on Planetary Mass
Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kotte, James Schottel; Kasting, James F.; Domagal-Goldman, Shawn; Eymet, Vincent
2014-01-01
The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1M and 5M. Assuming H2O-(inner HZ) and CO2-(outer HZ) dominated atmospheres, and scaling the background N2 atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (approx.10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H2O column depth. For larger planets, the H2O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing long-wave radiation. Hence the inner edge moves inward (approx.7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.
Electron beam induced mass loss dependence on aging of Epon resin sections
Czech Academy of Sciences Publication Activity Database
Skoupý, Radim; Krzyžánek, Vladislav; Kočová, L.; Nebesářová, Jana
Budapest : Akadémiai Kiadó, 2015, s. 112-113. ISBN 978-963-05-9653-4. [MCM 2015. Multinational Congress on Microscopy /12./. Eger (HU), 23.08.2015-28.08.2015] R&D Projects: GA ČR(CZ) GA14-20012S; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 ; RVO:60077344 Keywords : STEM * mass loss * resin * Epon Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering
Galaxy Zoo: the dependence of the star formation-stellar mass relation on spiral disk morphology
Willett, Kyle W; Simmons, Brooke D; Masters, Karen L; Skibba, Ramin A; Kaviraj, Sugata; Melvin, Thomas; Wong, O Ivy; Nichol, Robert C; Cheung, Edmond; Lintott, Chris J; Fortson, Lucy
2015-01-01
We measure the stellar mass-star formation rate relation in star-forming disk galaxies at z1. Of the galaxies lying significantly above the M-SFR relation in the local Universe, more than 50% are mergers. We interpret this as evidence that the spiral arms, which are imperfect reflections of the galaxy's current gravitational potential, are either fully independent of the various quenching mechanisms or are completely overwhelmed by the combination of outflows and feedback. The arrangement of the star formation can be changed, but the system as a whole regulates itself even in the presence of strong dynamical forcing.
Maleknia, Simin D; Vail, Teresa M; Cody, Robert B; Sparkman, David O; Bell, Tina L; Adams, Mark A
2009-08-01
A method is described for the rapid identification of biogenic, volatile organic compounds (VOCs) emitted by plants, including the analysis of the temperature dependence of those emissions. Direct analysis in real time (DART) enabled ionization of VOCs from stem and leaf of several eucalyptus species including E. cinerea, E. citriodora, E. nicholii and E. sideroxylon. Plant tissues were placed directly in the gap between the DART ionization source skimmer and the capillary inlet of the time-of-flight (TOF) mass spectrometer. Temperature-dependent emission of VOCs was achieved by adjusting the temperature of the helium gas into the DART ionization source at 50, 100, 200 and 300 degrees C, which enabled direct evaporation of compounds, up to the onset of pyrolysis of plant fibres (i.e. cellulose and lignin). Accurate mass measurements facilitated by TOF mass spectrometry provided elemental compositions for the VOCs. A wide range of compounds was detected from simple organic compounds (i.e. methanol and acetone) to a series of monoterpenes (i.e. pinene, camphene, cymene, eucalyptol) common to many plant species, as well as several less abundant sesquiterpenes and flavonoids (i.e. naringenin, spathulenol, eucalyptin) with antioxidant and antimicrobial properties. The leaf and stem tissues for all four eucalypt species showed similar compounds. The relative abundances of methanol and ethanol were greater in stem wood than in leaf tissue suggesting that DART could be used to investigate the tissue-specific transport and emissions of VOCs. PMID:19551840
Heavy-quark mass dependence in global PDF analyses and 3- and 4-flavour parton distributions
Energy Technology Data Exchange (ETDEWEB)
Martin, A.D. [University of Durham, Institute for Particle Physics Phenomenology, Durham (United Kingdom); Stirling, W.J. [University of Cambridge, Cavendish Laboratory, Cambridge (United Kingdom); Thorne, R.S. [University College London, Department of Physics and Astronomy, London (United Kingdom); Watt, G. [CERN, Theory Group, Physics Department, Geneva 23 (Switzerland)
2010-11-15
We study the sensitivity of our recent MSTW 2008 NLO and NNLO PDF analyses to the values of the charm- and bottom-quark masses, and we provide additional public PDF sets for a wide range of these heavy-quark masses. We quantify the impact of varying m{sub c} and m{sub b} on the cross sections for W, Z and Higgs production at the Tevatron and the LHC. We generate 3- and 4-flavour versions of the (5-flavour) MSTW 2008 PDFs by evolving the input PDFs and {alpha}{sub S} determined from fits in the 5-flavour scheme, including the eigenvector PDF sets necessary for calculation of PDF uncertainties. As an example of their use, we study the difference in the Z total cross sections at the Tevatron and LHC in the 4- and 5-flavour schemes. Significant differences are found, illustrating the need to resum large logarithms in Q{sup 2}/m{sub b}{sup 2} by using the 5-flavour scheme. The 4-flavour scheme is still necessary, however, if cuts are imposed on associated (massive) b-quarks, as is the case for the experimental measurement of Zb anti b production and similar processes. (orig.)
Galaxy Zoo: the dependence of the star formation-stellar mass relation on spiral disc morphology
Willett, Kyle W.; Schawinski, Kevin; Simmons, Brooke D.; Masters, Karen L.; Skibba, Ramin A.; Kaviraj, Sugata; Melvin, Thomas; Wong, O. Ivy; Nichol, Robert C.; Cheung, Edmond; Lintott, Chris J.; Fortson, Lucy
2015-05-01
We measure the stellar mass-star formation rate (SFR) relation in star-forming disc galaxies at z ≤ 0.085, using Galaxy Zoo morphologies to examine different populations of spirals as classified by their kiloparsec-scale structure. We examine the number of spiral arms, their relative pitch angle, and the presence of a galactic bar in the disc, and show that both the slope and dispersion of the M⋆-SFR relation is constant when varying all the above parameters. We also show that mergers (both major and minor), which represent the strongest conditions for increases in star formation at a constant mass, only boost the SFR above the main relation by ˜0.3 dex; this is significantly smaller than the increase seen in merging systems at z > 1. Of the galaxies lying significantly above the M⋆-SFR relation in the local Universe, more than 50 per cent are mergers. We interpret this as evidence that the spiral arms, which are imperfect reflections of the galaxy's current gravitational potential, are either fully independent of the various quenching mechanisms or are completely overwhelmed by the combination of outflows and feedback. The arrangement of the star formation can be changed, but the system as a whole regulates itself even in the presence of strong dynamical forcing.
Directory of Open Access Journals (Sweden)
S. S. Lee
2009-09-01
Full Text Available Increasing aerosols decreases the size of droplets and thus their collection efficiencies, leading to an inefficient conversion of droplets to precipitable raindrops. This, in turn, increases the mass of droplets suspended in the air by decreasing the removal of cloud mass by sedimentation and has been known to be a main mechanism which determines the effect of aerosols on cloud mass. However, a recent study showed that this mechanism played a negligible role in the determination of the cloud mass as compared to aerosol-induced feedbacks between microphysics and dynamics in thin stratocumulus clouds with LWP of ~50 g m or less. This is contrary to studies which have shown that the mechanism associated with the aerosol-induced inefficient conversion plays an important role in the determination of the effect of aerosols on cloud mass. These studies are generally based on clouds with LWP >50 g m^{−2}. Hence, it is important to understand whether the role of aerosol-induced feedbacks in the effect of aerosols on cloud mass depends on the level of LWP. This study examines the dependence of the role of the conversion of droplets to raindrops and their sedimentation in the determination of the effect of aerosols on cloud mass on the level of LWP. Pairs of numerical experiments for high and low aerosol cases are run for four cases of stratiform clouds with different LWPs. Comparisons among these cases show that the role of the conversion and sedimentation becomes less important as the level of LWP decreases. Instead, the role of the feedbacks between microphysics and dynamics become more important with the lowering level of LWP. The results of this study indicate that the traditional approach to the understanding of the aerosol-cloud interactions and its application to the parameterization of these interactions in climate models can be misleading. The understanding of feedbacks between microphysics and dynamics induced by aerosol
Time dependent quaritum harmonic oscillator subject to a sudden change of mass: continuous solution
Moya-Cessa, H.; M. Fernández Guasti
2007-01-01
We show that a harmonic oscillator subject to a sudden change of mas s produces squeezed states. Our study is based on an approximate analytic solution to the time-dependent harmonic oscillator equation with a subperiod function parameter. This continuous treatment differs from former studies that involve the matching of two time-independent solutions at the discontinuity. This formalism requires an ad hoc transformation of the original differential equation and isalso applicable for rapid, a...
Anomalous position of the gallbladder
Energy Technology Data Exchange (ETDEWEB)
Han, Tae II; Lim, Joo Won; Ko, Young Tae; Lee, Dong Ho; Yoon, Yup [Kyung Hee University Hospital, Seoul (Korea, Republic of)
1994-12-15
To determine the significance of anomalous position of the gallbladder. Sixteen patients with anomalous position of the gallbladder were evaluated for analysis. The diagnosis was confirmed by ultrasonography(15 patients) and oral cholecystography(1 patient). Among those, six patients underwent CT scan and a patient had 99mTc-DISIDA scan. The images were analysed with respect to the location of the GB and configuration and associated abnormality of the liver and hepatobiliary systems. Medical records of each patient were also reviewed. Among 16 patients having an anomalous position of the gallbladder, nine had retrodisplaced gallbladder, four had left-sided gallbladder, two had supra hepatic gallbladder, and one had floating gallbladder. Except for one patient, fifteen had abnormality in the liver such as focal atrophic or hypoplastic change and liver cirrhosis. Intrahepatic stones were demonstrated in 6 patients. Our results showed that anomalous position of the gallbladder was commonly associated with atrophy or hypoplasia of the liver rather than congenital in origin. The possibility of an anomalous location of gallbladder should be kept in mind when GB is not in its normal location.
El Kamel, F.
2015-07-01
Electrical measurements are realized on Cu/HfO2/Pt capacitors to extract the electron effective mass in HfO2 and the barrier height at the Cu/HfO2 interface. The dominant conduction mechanisms are found to be the Schottky emission at medium voltages and the Fowler-Nordheim tunneling at high voltages. Previous research has usually been carried out by assuming a constant value for either the electron effective mass in oxide or the interfacial potential barrier height to determine the other parameter. However, in contrast to that general practice, an iterative method was proposed in the present study to determine, at the same time, the electron effective mass in HfO2 and the barrier height at the Cu/HfO2 interface without making any prior assumption about their values. The temperature dependence of these two parameters was also studied in the 298-423 K range. It is found that they strongly vary with temperature. The effective mass decreases quadratically with temperature, while the barrier height increases linearly with temperature.
Liu, Gaochao; Xie, Lizhi; Chen, Xuelei; Zhao, Yongheng
2016-01-01
Massive luminous red galaxies (LRGs) are believed to be evolving passively and can be used as cosmic chronometers to estimate the Hubble constant. However, different LRGs may locate in different environments. The environmental effects may limit the use of the LRGs as cosmic chronometers. We aim to investigate the environmental and mass dependence of the formation of "quiescent" LRGs selected from the Sloan Digital Sky Survey Date Release 8 and to pave the way for using the LRGs as cosmic chronometers. Using the population synthesis software STARLIGHT, we derive the stellar populations in each LRG through the full spectrum fitting and obtain the mean age distribution and the mean star formation history (SFH) of those LRGs. We find that there is no apparent dependence of the mean age and the SFH of quiescent LRGs on their environment, while the ages of those quiescent LRGs weakly depend on their mass. We compare the SFHs of the SDSS LRGs with those obtained from a semi-analytical galaxy formation model, and fin...
Comparison of the anomalous and non-anomalous generalized Schwinger models via functional formalism
International Nuclear Information System (INIS)
The Green functions of the two versions of the two versions of the generalized Schwinger model, the anomalous and the non-anomalous one, in their higher order Lagrangian density form are calculated. Furthermore it is shown through a sequence of transformations that the bosonized Lagrangian density is equivalent to the former, at least for the bosonic correlation functions. The introduction of the sources from the beginning, leading to a gauge-invariant source term is also considered. It is verified that the two models have the same correlation functions only of the gauge-invariant sector is taken into account. Finally it is presented a generalization of the Wess-Zumino term, and its physical consequences are studied, in particular the appearance of gauge-dependent massive excitations. (author)
International Nuclear Information System (INIS)
We calculate the thermodynamic properties of strange quark matter by using the density and temperature dependent particle mass model of Wen et al. For the interaction Hamiltonian we use the one gluon exchange interaction obtained from the Fermi liquid picture. We let the QCD coupling (αc) be constant or vary with density and temperature. A new set of mass scalings for quarks is evaluated from the present interaction, which can be used with thermodynamic formulas derived by Wen et al. Similar to β-stable matter, no stability is found in strange quark matter. Finally, it is shown that the present equation of state of strange quark matter becomes harder with respect to that obtained using the string model, specially with non-constant QCD coupling. (author)
Effects of Density-Dependent Quark Mass on Phase Diagram of Color-Flavor-Locked Quark Matter
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Considering the density dependence of quark mass, we investigate the phase transition between the (unpaired) strange quark matter and the color-flavor-locked matter, which are supposed to be two candidates for the ground state of strongly interacting matter. We find that if the current mass of strange quark ms is small, the strange quark matter remains stable unless the baryon density is very high. If ms is large, the phase transition from the strange quark matter to the color-flavor-locked matter in particular to its gapless phase is found to be different from the results predicted by previous works. A complicated phase diagram of three-flavor quark matter is presented, in which the color-flavor-locked phase region is suppressed for moderate densities.
Mass-number and excitation-energy dependence of the spin cutoff parameter
Grimes, S. M.; Voinov, A. V.; Massey, T. N.
2016-07-01
The spin cutoff parameter determining the nuclear level density spin distribution ρ (J ) is defined through the spin projection as 1 /2 or equivalently for spherical nuclei, ( 3 ) 1 /2. It is needed to divide the total level density into levels as a function of J . To obtain the total level density at the neutron binding energy from the s -wave resonance count, the spin cutoff parameter is also needed. The spin cutoff parameter has been calculated as a function of excitation energy and mass with a super-conducting Hamiltonian. Calculations have been compared with two commonly used semiempirical formulas. A need for further measurements is also observed. Some complications for deformed nuclei are discussed. The quality of spin cut off parameter data derived from isomeric ratio measurement is examined.
Mass-dependent and -independent signature of Fe isotopes in magnetotactic bacteria
Amor, Matthieu; Busigny, Vincent; Louvat, Pascale; Gélabert, Alexandre; Cartigny, Pierre; Durand-Dubief, Mickaël; Ona-Nguema, Georges; Alphandéry, Edouard; Chebbi, Imène; Guyot, François
2016-05-01
Magnetotactic bacteria perform biomineralization of intracellular magnetite (Fe3O4) nanoparticles. Although they may be among the earliest microorganisms capable of biomineralization on Earth, identifying their activity in ancient sedimentary rocks remains challenging because of the lack of a reliable biosignature. We determined Fe isotope fractionations by the magnetotactic bacterium Magnetospirillum magneticum AMB-1. The AMB-1 strain produced magnetite strongly depleted in heavy Fe isotopes, by 1.5 to 2.5 per mil relative to the initial growth medium. Moreover, we observed mass-independent isotope fractionations in 57Fe during magnetite biomineralization but not in even Fe isotopes (54Fe, 56Fe, and 58Fe), highlighting a magnetic isotope effect. This Fe isotope anomaly provides a potential biosignature for the identification of magnetite produced by magnetotactic bacteria in the geological record.
A Search for the Fourth SM Family Quarks through Anomalous Decays
Sahin, M; Turkoz, S
2010-01-01
Existence of the fourth family follows from the basics of the Standard Model. Because of the high masses of the fourth family quarks, their anomalous decays could be dominant. This will drastically change the search strategy at hadron colliders. We show that the fourth SM family down quarks with masses up to 400-450 GeV can be observed (or excluded) via anomalous decays by Tevatron before the LHC.
Anomalous Sudakov Form Factors
Ciafaloni, Marcello; Comelli, Denis
2009-01-01
While radiative corrections of infrared origin normally depress high energy amplitudes (Sudakov form factors), we find that in some cases resummation of leading effects produces exponentials with positive exponents, giving rise to amplitudes that grow indefinitely with energy. The effect happens in broken gauge theories like the electroweak sector of the Standard Model, and is related to the existence of amplitudes that do not respect the gauge symmetry. Contrary to expectations, these amplitudes, although mass suppressed, do not vanish in the very high energy limit, but rather become dominant. As a working example we consider a model with two chiral abelian gauge groups U'(1)times U(1) with large mass splitting M(Z') >> M(Z), and we compute leading radiative corrections corrections to the decay of the heavy extra Z' boson into light fermions. The chirality breaking magnetic dipole moment becomes the dominant contribution to the Z' width at very high energies.
International Nuclear Information System (INIS)
The availability of tunable synchrotron radiation has made it possible systematically to perform x-ray diffraction studies in regions of anomalous scattering near absorption edges, e.g. in order to derive phase information for crystal structure determination. An overview is given of recent experimental and theoretical work and discuss the properties of the anomalous atomic scattering factor, with emphasis on threshold resonances and damping effects. The results are applied to a discussion of the very strong anomalous dispersion recently observed near the L3 edge in a cesium complex. Also given is an overview of elements and levels where similar behavior can be expected. Finally, the influence of solid state and chemical effects on the absorption edge structure is discussed. 64 references
Anomalous Earth flybys of spacecraft
Wilhelm, Klaus; Dwivedi, Bhola N.
2015-07-01
A small deviation from the potential is expected for the gravitational interaction of extended bodies. It is explained as a consequence of a recently proposed gravitational impact model (Wilhelm et al. in Astrophys. Space Sci. 343:135-144, 2013) and has been applied to anomalous perihelion advances by Wilhelm and Dwivedi (New Astron. 31:51-55, 2014). The effect—an offset of the effective gravitational centre from the geometric centre of a spherical symmetric body—might also be responsible for the observed anomalous orbital energy gains and speed increases during Earth flybys of several spacecraft. However, close flybys would require detailed considerations of the orbit geometry. In this study, an attempt is made to explain the anomalous Earth flybys of the Galileo, NEAR Shoemaker and Rosetta spacecraft.
Directory of Open Access Journals (Sweden)
E. Isokangas
2014-08-01
Full Text Available A stable isotope study of 67 kettle lakes and ponds situated on an esker aquifer (90 km2 in northern Finland was carried out in the summer of 2013 to determine the role of groundwater inflow in groundwater-dependent lakes. Distinct seasonal fluctuations in the δ18O and δ2H values of lakes are the result of seasonal ice cover prohibiting evaporation during the winter. An isotope mass balance approach was used to calculate the inflow-to-evaporation ratios (ITOT/E of all 67 lakes during the summer of 2013 when the isotopic compositions of the lakes were approaching a steady-state. The normalised relative humidity needed in this approach came from assuming a terminal lake situation for one of the lakes showing the highest isotope enrichment. Since evaporation rates were derived independently of any mass balance considerations, it was possible to determine the total inflow (ITOT and mean turnover time (MTT of the lakes. Furthermore, the groundwater seepage rates of those lakes revealing no visible surface inflow were calculated. Here, a quantitative measure was introduced for the dependence of a lake on groundwater (G index that is defined as the percentage contribution of groundwater inflow to the total inflow of water to the given lake. The G index values of the lakes studied ranged from 27.8–95.0%, revealing large differences in groundwater dependency among the lakes. This study shows the effectiveness of applying an isotope mass balance approach to quantify the groundwater reliance of lakes situated in a relatively small area with similar climatic conditions.
Graefener, G.; Hamann, W.-R.
2008-01-01
The mass loss from Wolf-Rayet (WR) stars is of fundamental importance for the final fate of massive stars and their chemical yields. Its Z-dependence is discussed in relation to the formation of long-duration Gamma Ray Bursts (GRBs) and the yields from early stellar generations. However, the mechanism of formation of WR-type stellar winds is still under debate. We present the first fully self-consistent atmosphere/wind models for late-type WN stars. We investigate the mechanisms leading to th...
Isokangas, E.; K. Rozanski; P. M. Rossi; Ronkanen, A.-K. (Anna-Kaisa); Kløve, B.
2015-01-01
A stable isotope study of 67 kettle lakes and ponds situated on an esker aquifer (90 km2) in northern Finland was carried out to determine the role and extent of groundwater inflow in groundwater-dependent lakes. Distinct seasonal fluctuations in the δ18O and δ2H values of lakes are the result of seasonal ice cover prohibiting evaporation during the winter. An iterative isotope mass balance approach was used to calculate the inflow-to-evaporation ratios (ITOT/E) of all 67 la...
Effective actions for anomalous hydrodynamics
International Nuclear Information System (INIS)
We argue that an effective field theory of local fluid elements captures the constraints on hydrodynamic transport stemming from the presence of quantum anomalies in the underlying microscopic theory. Focussing on global current anomalies for an arbitrary flavour group, we derive the anomalous constitutive relations in arbitrary even dimensions. We demonstrate that our results agree with the constraints on anomaly governed transport derived hitherto using a local version of the second law of thermodynamics. The construction crucially uses the anomaly inflow mechanism and involves a novel thermofield double construction. In particular, we show that the anomalous Ward identities necessitate non-trivial interaction between the two parts of the Schwinger-Keldysh contour
International Nuclear Information System (INIS)
We discuss the evolution and dependence on cloud mass of the star formation rate (SFR) and efficiency (SFE) of star-forming molecular clouds (MCs) within the scenario that clouds are undergoing global collapse and that the SFR is controlled by ionization feedback. We find that low-mass clouds (M max ≲ 104 M ☉) spend most of their evolution at low SFRs, but end their lives with a mini-burst, reaching a peak SFR ∼104 M ☉ Myr–1, although their time-averaged SFR is only (SFR) ∼ 102 M ☉ Myr–1. The corresponding efficiencies are SFEfinal ≲ 60% and (SFE) ≲ 1%. For more massive clouds (M max ≳ 105 M ☉), the SFR first increases and then reaches a plateau because the clouds are influenced by stellar feedback since earlier in their evolution. As a function of cloud mass, (SFR) and (SFE) are well represented by the fits (SFR) ≈ 100(1 + M max/1.4 × 105 M ☉)1.68 M ☉ Myr–1 and (SFE) ≈ 0.03(M max/2.5 × 105 M ☉)0.33, respectively. Moreover, the SFR of our model clouds follows closely the SFR-dense gas mass relation recently found by Lada et al. during the epoch when their instantaneous SFEs are comparable to those of the clouds considered by those authors. Collectively, a Monte Carlo integration of the model-predicted SFR(M) over a Galactic giant molecular cloud mass spectrum yields values for the total Galactic SFR that are within half an order of magnitude of the relation obtained by Gao and Solomon. Our results support the scenario that star-forming MCs may be in global gravitational collapse and that the low observed values of the SFR and SFE are a result of the interruption of each SF episode, caused primarily by the ionizing feedback from massive stars.
Kim, Hak-Sung; Chung, Yong-Seung
2010-05-01
Sandstorms in the desert and loess regions of north China and Mongolia, as well as the associated dustfall episodes on the Korean Peninsula, were monitored in 2005. The ground mass concentrations of PM10 and PM2.5 were analyzed during dustfall episodes at Cheongwon, in central south Korea, based on synoptic features at surface, 850 hPa and 500 hPa levels. A total of seven dustfall episodes lasting eleven days were observed and the mass concentration ratios of PM2.5 and PM10 during dustfall episodes were classified into a severe dustfall episode (SDE) and a moderate dustfall episode (MDE) depending upon two synoptic features. The main synoptic feature was for SDEs, which occurred frequently under a surface anticyclone and cyclone located in the west and east of the Korean Peninsula with large amplitude trough at 500 hPa over the northern Korean Peninsula. The sandstorms at the source headed directly to Korea via a strong N-NW wind without passing through any large cities or industrial areas of east China. The PM10 mass concentration sharply increased during the SDEs; however, the fine aerosol fraction of PM2.5 levels was relatively low with 13.6% of the mass concentration. In a synoptic feature for MDEs, a slow moving cyclone headed to Korea via the industrial areas of northeastern China under a small amplitude trough at a 500 hPa level. A weak anticyclone was also located over China. MDEs showed low mass concentrations of coarse PM10 particles and large fraction of fine PM2.5 particles at 46.3%.
Time-Dependent Coincidence Method to Measure Plutonium Mass and Multiplication
International Nuclear Information System (INIS)
Future nuclear disarmament agreements between nations may require technical measures to ascertain each participating nation's adherence to the agreement. Almost certainly, measurement technologies and analytical methods will have to be developed by the participating nations jointly. In this way each participant has both confidence in the technology's efficacy and trust in its implementation. With the support of the National Nuclear Security Administration's Office of Nonproliferation Policy (NNSA NA-241), the Oak Ridge National Laboratory (ORNL) and the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF) have taken first steps to jointly develop and implement a radiation measurement technique to inspect plutonium. In June and July 2000, personnel from ORNL and VNIIEF performed joint experiments on unclassified plutonium metal ((delta)-phase, 1.77%-(sup 240)Pu) spherical shells at VNIIEF facilities in Sarov, Russia[1,2]. The measurements were performed using the Nuclear Materials Identification System (NMIS). The subsequent analysis demonstrates how NMIS can be applied to passively measure the mass and multiplication of plutonium spherical shells
Renz, Christian; Oeljeklaus, Silke; Grinhagens, Sören; Warscheid, Bettina; Johnsson, Nils; Gronemeyer, Thomas
2016-01-01
The septins are a conserved family of GTP-binding proteins that, in the baker's yeast, assemble into a highly ordered array of filaments at the mother bud neck. These filaments undergo significant structural rearrangements during the cell cycle. We aimed at identifying key components that are involved in or regulate the transitions of the septins. By combining cell synchronization and quantitative affinity-purification mass-spectrometry, we performed a screen for specific interaction partners of the septins at three distinct stages of the cell cycle. A total of 83 interaction partners of the septins were assigned. Surprisingly, we detected DNA-interacting/nuclear proteins and proteins involved in ribosome biogenesis and protein synthesis predominantly present in alpha-factor arrested that do not display an assembled septin structure. Furthermore, two distinct sets of regulatory proteins that are specific for cells at S-phase with a stable septin collar or at mitosis with split septin rings were identified. Complementary methods like SPLIFF and immunoprecipitation allowed us to more exactly define the spatial and temporal characteristics of selected hits of the AP-MS screen. PMID:26871441
Anomalous interaction of spatial solitons in photorefractive media
DEFF Research Database (Denmark)
Krolikowski, W.; Saffman, M.; Luther-Davies, B.;
1998-01-01
We investigate the interaction of mutually incoherent spatial solitons in photorefractive media with anisotropic nonlocal nonlinear response. We show that the photorefractive nonlinearity leads to an anomalous interaction between solitons. Theoretical and experimental results reveal that an...... incoherent soliton pair may experience both attractive and repulsive forces, depending on their mutual separation....
Anomalous Higgs couplings in angular asymmetries of H --> Zl+l- and e+e- --> HZ
Beneke, Martin; Wang, Yu-Ming
2014-01-01
We study in detail the impact of anomalous Higgs couplings in angular asymmetries of the crossing-symmetric processes H --> Zl+l- and e+e- --> HZ. Beyond Standard Model physics is parametrized in terms of the SU(3)xSU(2)_LxU(1)_Y dimension-six effective Lagrangian. In the light of present bounds on d = 6 interactions we study how angular asymmetries can reveal non-standard CP-even and CP-odd couplings. We provide approximate expressions to all observables of interest making transparent their dominant dependence on anomalous couplings. We show that some asymmetries may reveal BSM effects that are hidden in other observables. In particular, CP-even and CP-odd d = 6 HZgamma couplings as well as (to a lesser extent) HZll contact interactions can generate asymmetries at the several percent level, while having small or no effects on the di-lepton invariant mass spectrum of H --> Zl+l-. Finally, the higher di-lepton invariant mass probed in e+e- --> HZ leads to interesting differences in the asymmetries with respect...
Marston, Philip L
2014-03-01
The phase and group velocities of elastic guided waves are important in the physical interpretation of high frequency scattering by fluid-loaded elastic shells. Outside the context of scattering, those properties are also important for understanding the energy flow in acoustic metamaterials. In a recent investigation of acoustic metamaterials exhibiting anomalous wave propagation [J. Acoust. Soc. Am. 132, 2887-2895 (2012)] criticism of negative group velocity terminology was generalized to elastic waves guided on ordinary materials. Some context and justification for retaining the identification of negative group velocities associated with a type of backscattering enhancement for shells are explained here. The phase evolution direction is determined by the boundary conditions. PMID:24606246
Cuzzi, J. N.; Hartlep, T.; Estrada, P.
2016-01-01
The initial accretion of primitive bodies from freely-floating nebula particles remains problematic. Traditional growth-by-sticking models in turbulent nebulae encounter a "meter-size barrier" due to both drift and destruction, or even a millimeter-to-centimeter-size "bouncing" barrier. Recent suggestions have been made that some "lucky" particles might be able to outgrow the collision and/or drift barriers, and lead to so-called "streaming instabilities" or SI. However, new full models of growth by sticking in the presence of radial drift show that lucky particles (the largest particles, at the tail of the size distribution, that grow beyond the nominal fragmentation and drift barriers) are far too rare to lead to any collective effects such as streaming or gravitational instabilities. Thus we need to focus on typical radii gamma(sub M) which contain most of the mass. Our models of disks with weak-to-moderate turbulence, which include all the most recent experimental constraints on collisional growth, erosion, bouncing, and fragmentation, as well as radial drift, find that growth stalls quite generally at sizes gamma(sub M) which are too small to settle into layers which are dense enough for any collective effects (streaming or gravitational instabilities) to arise. Even if growth by sticking could somehow breach the nominal barriers (perhaps if the actual sticking or strength is larger than current estimates for pure ice or pure silicate, with specific grain sizes), turbulent nebulae present subsequent formidable obstacles to incremental growth through the 1-10km size range. On the other hand, non-turbulent nebulae alpha is less than 10(Sup -4).
Evidence for a mass dependent step-change in the scaling of efficiency in terrestrial locomotion.
Directory of Open Access Journals (Sweden)
Robert L Nudds
Full Text Available A reanalysis of existing data suggests that the established tenet of increasing efficiency of transport with body size in terrestrial locomotion requires re-evaluation. Here, the statistical model that described the data best indicated a dichotomy between the data for small (1 kg. Within and between these two size groups there was no detectable difference in the scaling exponents (slopes relating metabolic (E(met and mechanical costs (E(mech, CM of locomotion to body mass (M(b. Therefore, no scaling of efficiency (E(mech, CM/E(met with M(b was evident within each size group. Small animals, however, appeared to be generally less efficient than larger animals (7% and 26% respectively. Consequently, it is possible that the relationship between efficiency and M(b is not continuous, but, rather, involves a step-change. This step-change in the efficiency of locomotion mirrors previous findings suggesting a postural cause for an apparent size dichotomy in the relationship between E(met and M(b. Currently data for E(mech, CM is lacking, but the relationship between efficiency in terrestrial locomotion and M(b is likely to be determined by posture and kinematics rather than body size alone. Hence, scaling of efficiency is likely to be more complex than a simple linear relationship across body sizes. A homogenous study of the mechanical cost of terrestrial locomotion across a broad range of species, body sizes, and importantly locomotor postures is a priority for future research.
Evidence for a mass dependent step-change in the scaling of efficiency in terrestrial locomotion.
Nudds, Robert L; Codd, Jonathan R; Sellers, William I
2009-01-01
A reanalysis of existing data suggests that the established tenet of increasing efficiency of transport with body size in terrestrial locomotion requires re-evaluation. Here, the statistical model that described the data best indicated a dichotomy between the data for small (1 kg). Within and between these two size groups there was no detectable difference in the scaling exponents (slopes) relating metabolic (E(met)) and mechanical costs (E(mech, CM)) of locomotion to body mass (M(b)). Therefore, no scaling of efficiency (E(mech, CM)/E(met)) with M(b) was evident within each size group. Small animals, however, appeared to be generally less efficient than larger animals (7% and 26% respectively). Consequently, it is possible that the relationship between efficiency and M(b) is not continuous, but, rather, involves a step-change. This step-change in the efficiency of locomotion mirrors previous findings suggesting a postural cause for an apparent size dichotomy in the relationship between E(met) and M(b). Currently data for E(mech, CM) is lacking, but the relationship between efficiency in terrestrial locomotion and M(b) is likely to be determined by posture and kinematics rather than body size alone. Hence, scaling of efficiency is likely to be more complex than a simple linear relationship across body sizes. A homogenous study of the mechanical cost of terrestrial locomotion across a broad range of species, body sizes, and importantly locomotor postures is a priority for future research. PMID:19738898
AIROS-2A, Space-Independent Reactor Kinetics and Space-Dependent Heat Transfer, Mass Transfer
International Nuclear Information System (INIS)
1 - Description of problem or function: AIROS2A solves the space- independent reactor kinetics equations and provides for the determination of reactivity by solving in addition the discretized equations that represent the spatial heat and mass transfer model for several fuel channels. In addition, variation of the film coefficient with flow is accounted for along with the provision for flow decay and afterglow heating. Scrams can be initiated by delayed signals from instruments that sense any quantity calculated, e.g., power, inverse period or temperature. Generalized feedback equations are used to provide flexibility in the models that represent multichannel heat transfer including conduction and convection, energy, pressure and other phenomenon such as fuel melting, coolant boiling and voiding burn-out. The reactivity equation is also generalized. The reactivity feedback coefficients can be constant or vary as the square root or reciprocal of temperature. Furthermore, any feedback variable can be used to initiate a reactivity scram, each with a unique delay time. An input generator computes the conduction and convection coefficients for an n x m nodal, multichannel system using built- in tables of specific heat, density, conductivity and viscosity for the common fuel, structure and coolant materials, and performs an initial temperature calculation. The film coefficients may be specified or calculated using Lyon's equation or the Dittus- Boelter equation. 2 - Method of solution: The numerical technique used to integrate the neutron and feedback differential equations is that developed by E. R. Cohen as previously used in the AIREK codes. An improved interval switching technique allows rapid calculations with predetermined accuracy. 3 - Restrictions on the complexity of the problem - Maxima of: 15 delayed neutron precursor groups; 400 feedback variables; 90 feedback variables printed out. Any number of channels and nodes per channel within the limitation above are
Flux-induced Soft Terms on Type IIB/F-theory Matter Curves and Hypercharge Dependent Scalar Masses
Camara, Pablo G; Valenzuela, Irene
2014-01-01
Closed string fluxes induce generically SUSY-breaking soft terms on supersymmetric type IIB orientifold compactifications with D3/D7 branes. This was studied in the past by inserting those fluxes on the DBI+CS actions for adjoint D3/D7 fields, where D7-branes had no magnetic fluxes. In the present work we generalise those computations to the phenomenologically more relevant case of chiral bi-fundamental fields laying at 7-brane intersections and F-theory local matter curves. We also include the effect of 7-brane magnetic flux as well as more general closed string backgrounds, including the effect of distant (anti-)D3-branes. We discuss several applications of our results. We find that squark/slepton masses become in general flux-dependent in F-theory GUT's. Hypercharge-dependent non-universal scalar masses with a characteristic sfermion hierarchy m_E^2 < m_L^2 < m_Q^2 < m_D^2 < m_U^2 are obtained. There are also flavor-violating soft terms both for matter fields living at intersecting 7-branes or ...
Directory of Open Access Journals (Sweden)
Christiane Quesne
2009-04-01
Full Text Available On using the known equivalence between the presence of a position-dependent mass (PDM in the Schrödinger equation and a deformation of the canonical commutation relations, a method based on deformed shape invariance has recently been devised for generating pairs of potential and PDM for which the Schrödinger equation is exactly solvable. This approach has provided the bound-state energy spectrum, as well as the ground-state and the first few excited-state wavefunctions. The general wavefunctions have however remained unknown in explicit form because for their determination one would need the solutions of a rather tricky differential-difference equation. Here we show that solving this equation may be avoided by combining the deformed shape invariance technique with the point canonical transformation method in a novel way. It consists in employing our previous knowledge of the PDM problem energy spectrum to construct a constant-mass Schrödinger equation with similar characteristics and in deducing the PDM wavefunctions from the known constant-mass ones. Finally, the equivalence of the wavefunctions coming from both approaches is checked.
Li, I H; Gilbank, David; Balogh, Michael; Bower, Richard; Baldry, Ivan; Davies, Greg; Hau, George; McCarthy, Pat
2010-01-01
Using the sample from the \\it Redshift One LDSS3 Emission line Survey \\rm (ROLES), we probe the dependence of star formation rate (SFR) and specific star formation rate (sSFR) as a function of stellar mass $M_*$ and environment as defined by local galaxy density, in the CDFS field. Our spectroscopic sample consists of 312 galaxies with $K_{AB}8.5$, and with [OII] derived star-formation rates SFR$>0.3M_{\\sun}/$yr, at $0.889\\leq z \\leq 1.149$. The results have been compared directly with the Sloan Digital Sky Survey Stripe 82 sample at $0.032\\leq z \\leq 0.05$. For star-forming galaxies, we confirm that there is little correlation between SFR and density at $z\\sim 0$. However, for the lowest mass galaxies in our $z\\sim 1$ sample, those with $\\log(M_*/M_{\\sun})<10$, we find that both the median SFR and specific SFR {\\it increase} significantly with increasing local density. The "downsizing" trend for low mass galaxies to be quenched progressively later in time appears to be more pronounced in moderately overde...
Anomalous-viscosity current drive
Stix, T.H.; Ono, M.
1986-04-25
The present invention relates to a method and apparatus for maintaining a steady-state current for magnetically confining the plasma in a toroidal magnetic confinement device using anomalous viscosity current drive. A second aspect of this invention relates to an apparatus and method for the start-up of a magnetically confined toroidal plasma.
QCD Anomalous Structure of Electron
Slominski, Wojciech
1998-01-01
The parton content of the electron is analyzed within perturbative QCD. It is shown that electron acquires an anomalous component from QCD, analogously to photon. The evolution equations for the `exclusive' and `inclusive' electron structure function are constructed and solved numerically in the asymptotic $Q^2$ region.
Anomalous magnetic moment of anyons
Gat, G; Gat, Gil; Ray, Rashmi
1994-01-01
The anomalous magnetic moment of anyons is calculated to leading order in a 1/N expansion. It is shown that the gyromagnetic ratio g remains 2 to the leading order in 1/N. This result strongly supports that obtained in \\cite{poly}, namely that g=2 is in fact exact.
Phenomenological Spin Transport Theory Driven by Anomalous Nernst Effect
Taniguchi, Tomohiro
2016-07-01
Several experimental efforts such as material investigation and structure improvement have been made recently to find a large anomalous Nernst effect in ferromagnetic metals. Here, we develop a theory of spin transport driven by the anomalous Nernst effect in a diffusive ferromagnetic/nonmagnetic multilayer. Starting from a phenomenological formula of a spin-dependent electric current, the theoretical formulas of electric voltage and spin torque generated by the anomalous Nernst effect are derived. The magnitude of the electric voltage generated from the spin current via the inverse spin Hall effect is on the order of 0.1 µV for currently available experimental parameter values. The temperature gradient necessary to switch the magnetization is quite larger than the typical experimental value. The separation of the contributions of the Seebeck and transverse spin Seebeck effects is also discussed.
Anomalous Hall effect in YIG|Pt bilayers
International Nuclear Information System (INIS)
We measure the ordinary and the anomalous Hall effect in a set of yttrium iron garnet|platinum (YIG|Pt) bilayers via magnetization orientation dependent magnetoresistance experiments. Our data show that the presence of the ferrimagnetic insulator YIG leads to an anomalous Hall effect like voltage in Pt, which is sensitive to both Pt thickness and temperature. Interpretation of the experimental findings in terms of the spin Hall anomalous Hall effect indicates that the imaginary part of the spin mixing conductance Gi plays a crucial role in YIG|Pt bilayers. In particular, our data suggest a sign change in Gi between 10 K and 300 K. Additionally, we report a higher order Hall effect contribution, which appears in thin Pt films on YIG at low temperatures
Anomalous Hall effect in YIG|Pt bilayers
Energy Technology Data Exchange (ETDEWEB)
Meyer, Sibylle, E-mail: sibylle.meyer@wmi.badw.de; Schlitz, Richard [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Geprägs, Stephan; Opel, Matthias [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Huebl, Hans; Goennenwein, Sebastian T. B. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Nanosystems Initiative Munich, 80799 München (Germany); Gross, Rudolf [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Nanosystems Initiative Munich, 80799 München (Germany)
2015-03-30
We measure the ordinary and the anomalous Hall effect in a set of yttrium iron garnet|platinum (YIG|Pt) bilayers via magnetization orientation dependent magnetoresistance experiments. Our data show that the presence of the ferrimagnetic insulator YIG leads to an anomalous Hall effect like voltage in Pt, which is sensitive to both Pt thickness and temperature. Interpretation of the experimental findings in terms of the spin Hall anomalous Hall effect indicates that the imaginary part of the spin mixing conductance G{sub i} plays a crucial role in YIG|Pt bilayers. In particular, our data suggest a sign change in G{sub i} between 10 K and 300 K. Additionally, we report a higher order Hall effect contribution, which appears in thin Pt films on YIG at low temperatures.
International Nuclear Information System (INIS)
We use a sample of ≈6000 galaxies detected by the Arecibo Legacy Fast ALFA (ALFALFA) 21 cm survey to measure the clustering properties of H I-selected galaxies. We find no convincing evidence for a dependence of clustering on galactic atomic hydrogen (H I) mass, over the range MHI ≈ 108.5-1010.5 M☉. We show that previously reported results of weaker clustering for low H I mass galaxies are probably due to finite-volume effects. In addition, we compare the clustering of ALFALFA galaxies with optically selected samples drawn from the Sloan Digital Sky Survey (SDSS). We find that H I-selected galaxies cluster more weakly than even relatively optically faint galaxies, when no color selection is applied. Conversely, when SDSS galaxies are split based on their color, we find that the correlation function of blue optical galaxies is practically indistinguishable from that of H I-selected galaxies. At the same time, SDSS galaxies with red colors are found to cluster significantly more than H I-selected galaxies, a fact that is evident in both the projected as well as the full two-dimensional correlation function. A cross-correlation analysis further reveals that gas-rich galaxies 'avoid' being located within ≈3 Mpc of optical galaxies with red colors. Next, we consider the clustering properties of halo samples selected from the Bolshoi ΛCDM simulation. A comparison with the clustering of ALFALFA galaxies suggests that galactic H I mass is not tightly related to host halo mass and that a sizable fraction of subhalos do not host H I galaxies. Lastly, we find that we can recover fairly well the correlation function of H I galaxies by just excluding halos with low spin parameter. This finding lends support to the hypothesis that halo spin plays a key role in determining the gas content of galaxies
Reconnaissance Estimates of Recharge Based on an Elevation-dependent Chloride Mass-balance Approach
Energy Technology Data Exchange (ETDEWEB)
Charles E. Russell; Tim Minor
2002-08-31
Significant uncertainty is associated with efforts to quantity recharge in arid regions such as southern Nevada. However, accurate estimates of groundwater recharge are necessary to understanding the long-term sustainability of groundwater resources and predictions of groundwater flow rates and directions. Currently, the most widely accepted method for estimating recharge in southern Nevada is the Maxey and Eakin method. This method has been applied to most basins within Nevada and has been independently verified as a reconnaissance-level estimate of recharge through several studies. Recharge estimates derived from the Maxey and Eakin and other recharge methodologies ultimately based upon measures or estimates of groundwater discharge (outflow methods) should be augmented by a tracer-based aquifer-response method. The objective of this study was to improve an existing aquifer-response method that was based on the chloride mass-balance approach. Improvements were designed to incorporate spatial variability within recharge areas (rather than recharge as a lumped parameter), develop a more defendable lower limit of recharge, and differentiate local recharge from recharge emanating as interbasin flux. Seventeen springs, located in the Sheep Range, Spring Mountains, and on the Nevada Test Site were sampled during the course of this study and their discharge was measured. The chloride and bromide concentrations of the springs were determined. Discharge and chloride concentrations from these springs were compared to estimates provided by previously published reports. A literature search yielded previously published estimates of chloride flux to the land surface. {sup 36}Cl/Cl ratios and discharge rates of the three largest springs in the Amargosa Springs discharge area were compiled from various sources. This information was utilized to determine an effective chloride concentration for recharging precipitation and its associated uncertainty via Monte Carlo simulations
Bessette, Erin E; Goodenough, Angela K; Langouët, Sophie; Yasa, Isil; Kozekov, Ivan D; Spivack, Simon D; Turesky, Robert J
2009-01-15
A two-dimensional linear quadrupole ion trap mass spectrometer (LIT/MS) was employed to simultaneously screen for DNA adducts of environmental, dietary, and endogenous genotoxicants, by data-dependent constant neutral loss scanning followed by triple-stage mass spectrometry (CNL-MS3). The loss of the deoxyribose (dR) from the protonated DNA adducts ([M + H - 116]+) in the MS/MS scan mode triggered the acquisition of MS3 product ion spectra of the aglycone adducts [BH2]+. Five DNA adducts of the tobacco carcinogen 4-aminobiphenyl (4-ABP) were detected in human hepatocytes treated with 4-ABP, and three DNA adducts of the cooked-meat carcinogen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) were identified in the livers of rats exposed to MeIQx, by the CNL-MS3 scan mode. Buccal cell DNA from tobacco smokers was screened for DNA adducts of various classes of carcinogens in tobacco smoke including 4-ABP, 2-amino-9H-pyrido[2,3-b]indole (AalphaC), and benzo[a]pyrene (BaP); the cooked-meat carcinogens MeIQx, AalphaC, and 2-amino-1-methyl-6-phenylmidazo[4,5-b]pyridine (PhIP); and the lipid peroxidation products acrolein (AC) and trans-4-hydroxynonenal (HNE). The CNL-MS3 scanning technique can be used to simultaneously screen for multiple DNA adducts derived from different classes of carcinogens, at levels of adduct modification approaching 1 adduct per 108 unmodified DNA bases, when 10 microg of DNA is employed for the assay. PMID:19086795
An anomalous propulsion mechanism
Shaverin, Evgeny
2014-01-01
We consider a gas of free chiral fermions trapped inside a uniform rotating spherical shell. Once the shell becomes transparent the fermions are emitted along the axis of rotation due to the chiral and mixed anomaly. In return, owing to momentum conservation, the shell is propelled forward. We study the dependence of the magnitude of this effect on the shell parameters in a controlled setting and find that it is sensitive to the formation of an ergosphere around the rotating shell. A brief discussion on a possible relation to pulsar kicks is provided.
Gauge Trimming of Neutrino Masses
Energy Technology Data Exchange (ETDEWEB)
Chen, Mu-Chun; /Fermilab /UC, Irvine; de Gouvea, Andre; /Northwestern U. /Fermilab; Dobrescu, Bogdan A.; /Fermilab
2006-12-01
We show that under a new U(1) gauge symmetry, which is non-anomalous in the presence of one ''right-handed neutrino'' per generation and consistent with the standard model Yukawa couplings, the most general fermion charges are determined in terms of four rational parameters. This generalization of the B-L symmetry with generation-dependent lepton charges leads to neutrino masses induced by operators of high dimensionality. Neutrino masses are thus naturally small without invoking physics at energies above the TeV scale, whether neutrinos are Majorana or Dirac fermions. This ''Leptocratic'' Model predicts the existence of light quasi-sterile neutrinos with consequences for cosmology, and implies that collider experiments may reveal the origin of neutrino masses.
Temperature and ion-mass dependence of amorphization dose for ion beam irradiated zircon (ZrSiO4)
International Nuclear Information System (INIS)
The temperature dependence of amorphization dose for zircon under 1.5 MeV Kr ion irradiation has been investigated using the ANL HVEM-Tandem Facility. Three regimes were observed in the amorphization dose-temperature curve. In the first regime (15 to 300 K), the critical amorphization dose increased from 3.06 to 4.5 ions/nm2. In the second regime (300 to 473 K), there is little change in the amorphizationdose. In the third regime (> 473 K), the amorphization dose increased exponentially to 8.3 ions/nm2 at 913 K. This temperature dependence of amorphization dose can be described by two processes with different activation energies (0.018 and 0.31 eV respectively) which are attributed to close pair recombination in the cascades at low temperatures and radiation-enhanced epitaxial recrystallization at higher temperatures. The upper temperature limit for amorphization of zircon is estimated to be 1100 K. The ion-mass dependence of the amorphization dose (in dpa) has also been discussed in terms of the energy to recoils based on data obtained from He, Ne, Ar, Kr, Xe irradiations and a 238Pu-doped sample
M. K. Bahar; Yasuk, ; F.
2013-01-01
Using the asymptotic iteration and wave function ansatz method, we present exact solutions of the Klein-Gordon equation for the quark-antiquark interaction and harmonic oscillator potential in the case of the position-dependent mass.
Anomalous Wtb coupling at the LHC
Kolodziej, K
2013-01-01
Some normalized distributions of the secondary mu- in the top quark pair production at the LHC through one of the dominant hard scattering reactions gg -> b u anti-d anti-b mu- anti-nu_mu are calculated to leading order in the presence of the most general anomalous Wtb coupling with operators up to dimension five. In spite of the fact that non zero tensor form factors of the coupling modify substantially the top quark pair production rate, they hardly affect the distributions in the transverse momentum, rapidity and cosine of the angle between the momenta of mu- and recoiling top quark in the pp centre of mass frame. The effects of the tensor form factors become visible in distributions in cosine of the angle between the momentum of mu- and the reversed momentum of the b-quark, both boosted first to the rest frame of top quark and then to the rest frame of W-boson.
Dominguez, Gerardo; Christensen, Elizabeth; Boyer, Charisa; Park, Manesseh; Benitez, Ezra; Nunn, Morgan; Thiemens, Mark H.; Jackson, Terri
2016-06-01
Decades of careful laboratory analysis of primitive meteorites have revealed an intriguing and unexplained pattern in the distribution of oxygen isotopes in the solar system. With the recent analysis of solar wind oxygen by NASA’s Genesis mission, it appears that the Sun has a distinct oxygen isotopic composition from the terrestrial planets, asteroids, and comets. These differences cannot be explained by mass-dependent diffusion and require a physical-chemical mechanism or mechanisms that separate oxygen isotopes in a non-mass dependent manner.Several hypothesis have been proposed to explain the anomalous distribution. Photochemical self-shielding of CO may explain the anomalous distribution, however, this mechanism has key weaknesses including the requirement of a very fine tuned timescale to explain the isotopic differences between the Sun and bulk of the terrestrial planets. Recently, attention has been directed at understanding specific chemical reactions that occur on interstellar dust grains due to their similarities with non-equilibrium photochemical reactions believed to be responsible for the mass-independent isotopic fractionation patterns observed in Earth’s atmosphere. A specific focus has been directed towards understanding the formation of H2O because some of its precursor (HO2, and O3) are well-known to acquire mass-independent isotopic signatures when formed in the gas-phase.In this presentation, I describe a series of laboratory astrophysical experiments whose goal is to understand the distribution of oxygen isotopes in the solar system and perhaps, by extension, the distribution in other planetary systems. Preliminary results for the isotopic composition of O3 formed at 5K will be presented as well as the first, to our knowledge, measurements of the isotopic composition of H2O (18O/16O, 17O/16O, D/H) formed at 32K. We find that H2O formed in the astrophysical conditions we simulated acquired an anomalous isotopic composition with a triple
Anomalous Micellization of Pluronic Block Copolymers
Leonardi, Amanda; Ryu, Chang Y.
2014-03-01
Poly(ethylene oxide) - poly(propylene oxide) - poly(ethylene oxide) (PEO-PPO-PEO) block copolymers, commercially known as Pluronics, are a unique family of amphiphilic triblock polymers, which self-assemble into micelles in aqueous solution. These copolymers have shown promise in therapeutic, biomedical, cosmetic, and nanotech applications. As-received samples of Pluronics contain low molecular weight impurities (introduced during the manufacturing and processing), that are ignored in most applications. It has been observed, however, that in semi-dilute aqueous solutions, at concentrations above 1 wt%, the temperature dependent micellization behavior of the Pluronics is altered. Anomalous behavior includes a shift of the critical micellization temperature and formation of large aggregates at intermediate temperatures before stable sized micelles form. We attribute this behavior to the low molecular weight impurities that are inherent to the Pluronics which interfere with the micellization process. Through the use of Dynamic Light Scattering and HPLC, we compared the anomalous behavior of different Pluronics of different impurity levels to their purified counterparts.
Hydrodynamic Waves in an Anomalous Charged Fluid
Abbasi, Navid; Rezaei, Zahra
2015-01-01
We study the collective excitations in a relativistic fluid with an anomalous conserved charge. In $3+1$ dimensions, in addition to two ordinary sound modes we find two propagating modes in presence of an external magnetic field: one with a velocity proportional to the coefficient of gauge-gravitational anomaly coefficient and the other with a velocity which depends on both chiral anomaly and the gauge gravitational anomaly coefficients. While the former is the Chiral Alfv\\'en wave recently found in arXiv:1505.05444, the latter is a new type of collective excitations originated from the density fluctuations. We refer to these modes as the Type-M and Type-D chiral Alfv\\'en waves respectively. We show that the Type-M Chiral Alfv\\'en mode is split into two chiral Alfv\\'en modes when taking into account the effect of dissipation processes in the fluid. In 1+1 dimensions we find only one propagating mode associated with the anomalous effects. We explicitly compute the velocity of this wave and show that in contras...
Turbulence: mechanics and structure of anomalous scaling
Directory of Open Access Journals (Sweden)
S. N. Gordienko
2001-01-01
Full Text Available As the finite correlation time of a force driving turbulence is taken into account, a new, dimensionless parameter occurs in the theory of turbulence. This new parameter is responsible for two different mechanisms of formation of anomalous spectra. The first mechanism is related to the change of a governing parameter, which defines the spectrum of turbulent fluctuation. The second mechanism is associated with spontaneous formation of characteristic scales that differ parametrically from the scale of the external force. The last mechanism can explain the intermittent structure of turbulent flows. The appropriate discrete set of the possible characteristic scales and anomalous spectra has been calculated. The results give a new insight into the concept of universality: there is a set of universal power laws, although occurrence in the spectrum segments described by one or another power law from this set depends on the dimensionless parameter mentioned above. It is noted that for the broad class of geophysical flows, the new dimensionless parameter is connected with the so-called degree of turbulence, which guarantees that the smallness of this parameter, as the degree of turbulence is usually small enough. That explains the important role of the Kolmogorov spectrum in geophysical applications.
Li, Baowen; Wang, Jiao; Wang, Lei; Zhang, Gang
2004-01-01
We study anomalous heat conduction and anomalous diffusion in low dimensional systems ranging from nonlinear lattices, single walled carbon nanotubes, to billiard gas channels. We find that in all discussed systems, the anomalous heat conductivity can be connected with the anomalous diffusion, namely, if energy diffusion is $\\sigma^2(t)\\equiv =2Dt^{\\alpha} (01$) implies an anomalous heat conduction with a divergent thermal conductivity ($\\beta>0$), and more interestingly, a subdiffusion ($\\a...
Chabab, M.; Batoul, A. El; Lahbas, A.; Oulne, M.
2016-01-01
In this paper, we present a theoretical study of a conjonction of $\\gamma$-rigid and $\\gamma$-stable collective motions in critical point symmetries of the phase transitions from spherical to deformed shapes of nuclei using exactly separable version of the Bohr Hamiltonian with deformation-dependent mass term. The deformation-dependent mass is applied simultaneously to $\\gamma$-rigid and $\\gamma$-stable parts of this famous collective Hamiltonian. Moreover, the $\\beta$ part of the problem is ...
Neutrino masses and oscillations
International Nuclear Information System (INIS)
New effects related to refraction of neutrinos in different media are reviewed and implication of the effects to neutrino mass and mixing are discussed. Patterns of neutrino masses and mixing implied by existing hints/bounds are described. Recent results on neutrino mass generation are presented. They include neutrino masses in SO(10) GUT's and models with anomalous U(1), generation of neutrino mass via neutrino-neutralino mixing, models of sterile neutrino. (author). 95 refs, 9 figs
Spectral Properties of Anomalous X-ray Pulsars
Institute of Scientific and Technical Information of China (English)
Ye Lu; Wei Wang; Yong-Heng Zhao
2003-01-01
We examine the spectra of the persistent emission from anomalous X-ray pulsars (AXPs) and their variation with the spin-down rate Ω. Based on an accretion-powered model, the influences of both the magnetic field and the mass accretion rate on the spectral properties of AXPs are addressed. We then investigate the relation between the spectral property of AXPs and mass accretion rate M. The result shows that there exists a linear correlation between the photon index and the mass accretion rate: the spectral hardness increases with increasing M. A possible emission mechanism for the explanation of the spectral properties of AXPs is also discussed.
International Nuclear Information System (INIS)
The energy eigenvalues and the corresponding eigenfunctions of the one-dimensional Klein–Gordon equation with q-parameter Pöschl–Teller potential are analytically obtained within the position-dependent mass formalism. The parametric generalization of the Nikiforov–Uvarov method is used in the calculations by choosing a mass distribution. (general)
Titius-Bode law in the Solar System. Dependence of the regularity parameter on the central body mass
Georgiev, Tsvetan B.
2016-07-01
Near-commensurability of the orbital sizes or periods exists in the Solar system for the massive planets and the massive satellites of Jupiter, Saturn and Uranus. It is well revealed by the Titius-Bode law (TBL) long ago by Dermott (1968), but is not been explained convincingly yet. Independently on this fact, the question about the dependence of the scale constant of the TBL on the mass of the central body is open. In this paper we show such a dependence. Due to the dynamic evolution the orbits of the massive planets and satellites may be in a transient stage when a primary TBL is well pronounced. Simultaneously a secondary TBL, a trail from the past as a hint for the future, may be less pronounced. The TBL is fitted after the numeration of the objects. For this reason we derive a special "curve" and we use 2 its minimums to introduce a primary and a secondary numeration for the objects. Thus we derive constants of 2 TBLs and build the searched dependence by twice as many points. In this paper we show and use pairs of TBLs for the satellite systems of Jupiter, Saturn, Uranus, Neptune and Pluto, as well as for the solar system in two cases - with 4 massive planets and with 8 massive planets. In fig. 10 we show the statistically significant dependences where the coefficient of the near-commensurability for the orbital sizes varies from about 1.3 for the satellites of Pluto to about 1.7 for the planets of the Sun.
Koyama, Yusei; Smail, Ian; Kurk, Jaron; Geach, James E.; Sobral, David; Kodama, Tadayuki; Nakata, Fumiaki; Swinbank, A. M.; Best, Philip N.; Hayashi, Masao; Tadaki, Ken-ichi
2013-09-01
This paper discusses the evolution of the correlation between galaxy star formation rates (SFRs) and stellar mass (M*) over the last ˜10 Gyr, particularly focusing on its environmental dependence. We first present the mid-infrared (MIR) properties of the Hα-selected galaxies in a rich cluster Cl 0939+4713 at z = 0.4. We use wide-field Spitzer/MIPS 24 μm data to show that the optically red Hα emitters, which are most prevalent in group-scale environments, tend to have higher SFRs and higher dust extinction than the majority population of blue Hα sources. With an MIR stacking analysis, we find that the median SFR of Hα emitters is higher in higher density environment at z = 0.4. We also find that star-forming galaxies in high-density environment tend to have higher specific SFR (SSFR), although the trend is much less significant compared to that of SFR. This increase of SSFR in high-density environment is not visible when we consider the SFR derived from Hα alone, suggesting that the dust attenuation in galaxies depends on environment; galaxies in high-density environment tend to be dustier (by up to ˜0.5 mag), probably reflecting a higher fraction of nucleated, dusty starbursts in higher density environments at z = 0.4. We then discuss the environmental dependence of the SFR-M* relation for star-forming galaxies since z ˜ 2, by compiling our comparable, narrow-band-selected, large Hα emitter samples in both distant cluster environments and field environments. We find that the SSFR of Hα-selected galaxies (at the fixed mass of log (M*/M⊙) = 10) rapidly evolves as (1 + z)3, but the SFR-M* relation is independent of the environment since z ˜ 2, as far as we rely on the Hα-based SFRs (with M*-dependent extinction correction). Even if we consider the possible environmental variation in the dust attenuation, we conclude that the difference in the SFR-M* relation between cluster and field star-forming galaxies is always small (≲0.2 dex level) at any time
Anomalous Brownian refrigerator
Rana, Shubhashis; Pal, P. S.; Saha, Arnab; Jayannavar, A. M.
2016-02-01
We present a detailed study of a Brownian particle driven by Carnot-type refrigerating protocol operating between two thermal baths. Both the underdamped as well as the overdamped limits are investigated. The particle is in a harmonic potential with time-periodic strength that drives the system cyclically between the baths. Each cycle consists of two isothermal steps at different temperatures and two adiabatic steps connecting them. Besides working as a stochastic refrigerator, it is shown analytically that in the quasistatic regime the system can also act as stochastic heater, depending on the bath temperatures. Interestingly, in non-quasistatic regime, our system can even work as a stochastic heat engine for certain range of cycle time and bath temperatures. We show that the operation of this engine is not reliable. The fluctuations of stochastic efficiency/coefficient of performance (COP) dominate their mean values. Their distributions show power law tails, however the exponents are not universal. Our study reveals that microscopic machines are not the microscopic equivalent of the macroscopic machines that we come across in our daily life. We find that there is no one to one correspondence between the performance of our system under engine protocol and its reverse.
Daws, Matthew I; Ballard, Christopher; Mullins, Christopher E; Garwood, Nancy C; Murray, Brian; Pearson, Timothy R H; Burslem, David F R P
2007-12-01
A seed size-seed number trade-off exists because smaller seeds are produced in greater number but have a lower probability of establishment. This reduced establishment success of smaller-seeded species may be determined by biophysical constraints imposed by scaling rules. Root and shoot diameter, root growth extension rate (RGER) and shoot length at death for dark-grown seedlings are predicted to scale with the cube root of seed embryo and endosperm mass (m). We confirmed this expectation for ten neotropical gap-dependent tree species with an embryo and endosperm dry mass>1 mg. However, for nine smaller seeded species (mroot and shoot diameters were larger than expected, and consequently, RGER was slower than expected. The maximum shoot thrust of seedlings from seeds with masses>or=1 mg was comparable to the estimated force required to displace overlying litter, supporting the hypothesis that photoblastic behaviour only occurs in seeds with insufficient shoot thrust to displace overlying leaves. Using the model soil water, energy and transpiration to predict soil drying in small and large gaps, we showed that: (1) gaps that receive a significant amount of direct sunlight will dry more quickly than small gaps that do not, (2) compared to the wet-season, soil that is already dry at depth (i.e. the dry-season) will dry faster after rainfall (this drying would most likely kill seedlings from small seeds) and (3) even during the wet-season, dry periods of a few days in large gaps can kill shallow-rooted seedlings. We conclude that the smaller the seed, the more vulnerable its seedling would be to both covering by litter and soil drying because it can only emerge from shallow depths and has a slow RGER. Consequently, we suggest that these allometrically related factors contribute to the reduced establishment success of smaller-seeded species that underpins the seed size-seed number trade-off. PMID:17846798
The Dependence of the $A_V$ Prior for SN\\,Ia on Host Mass and Disk Inclination
Holwerda, B W; Kenworthy, M A; Mack, K J
2015-01-01
Supernovae type Ia (SNIa) are used as "standard candles" for cosmological distance scales. To fit their light curve shape -- absolute luminosity relation, one needs to assume an intrinsic color and a likelihood of host galaxy extinction or a convolution of these, a color distribution prior. The host galaxy extinction prior is typically assumed to be an exponential drop-off for the current supernova programs ($P(A_V) \\propto e^{-A_V/\\tau_0}$). We explore the validity of this prior using the distribution of extinction values inferred when two galaxies accidentally overlap (an occulting galaxy pair). We correct the supernova luminosity distances from the SDSS-III Supernova projects (SDSS-SN) by matching the host galaxies to one of three templates from occulting galaxy pairs based on the host galaxy mass and the $A_V$-bias - prior-scale ($\\tau_0$) relation from Jha et al. (2007). We find that introducing an $A_V$ prior that depends on host mass results in lowered luminosity distances for the SDSS-SN on average bu...
Milroy, Conor; Martucci, Giovanni; O'Dowd, Colin
2010-05-01
During the EUCAARI Intensive Observing Period held at the Mace Head GAW station from mid-May to mid-June, 2008, the PBL depth has been continuously measured by two ceilometers (Vaisala CL31 and Jenoptik CHM15K) and a microwave radiometer (RPG-HATPRO). The Lidar-Ceilometer, through the gradients in aerosol backscatter profiles, and the microwave profiler, through gradients in the specific humidity profiles, were used to remotely-sense the boundary layer structure. An automatic, newly developed Temporal Height-Tracking (THT) algorithm (Martucci et al., 2010) have been applied to both type of instruments data to retrieve the 2-layered structure of the local marine boundary layer. The two layers are defined as a lower, well mixed layer, i.e. the surface mixed layer, and the layer occupying the region below the free Troposphere inversion, i.e. the decoupled residual or convective layer. A categorization of the incoming air masses has been performed based on their origins and been used to asses the correlation with the PBL depths. The study confirmed the dependence of PBL vertical structure on different air masses and different type of advected aerosol.
Papastergis, Emmanouil; Haynes, Martha P; Rodríguez-Puebla, Aldo; Jones, Michael G
2013-01-01
We use a sample of ~6000 galaxies detected by the Arecibo Legacy Fast ALFA (ALFALFA) 21cm survey, to measure the clustering properties of HI-selected galaxies. We find no convincing evidence for a dependence of clustering on the galactic atomic hydrogen (HI) mass, over the range M_HI ~ 10^{8.5} - 10^{10.5} M_sun. We show that previously reported results of weaker clustering for low-HI mass galaxies are probably due to finite-volume effects. In addition, we compare the clustering of ALFALFA galaxies with optically selected samples drawn from the Sloan Digital Sky Survey (SDSS). We find that HI-selected galaxies cluster more weakly than even relatively optically faint galaxies, when no color selection is applied. Conversely, when SDSS galaxies are split based on their color, we find that the correlation function of blue optical galaxies is practically indistinguishable from that of HI-selected galaxies. At the same time, SDSS galaxies with red colors are found to cluster significantly more than HI-selected gala...
Lee, Duane M; Tumlinson, Jason; Sen, Bodhisattva; Simon, Joshua D
2013-01-01
One way to constrain the nature of the high-redshift progenitors of the Milky Way is to look at the low-metallicity stellar populations of the different Galactic components today. For example, high-resolution spectroscopy of very metal poor (VMP) stars demonstrates remarkable agreement between the distribution of [Ti/Fe] in the stellar populations of the Milky Way halo (MW) and ultra-faint dwarf (UFD) galaxies. In contrast, for the neutron capture (nc) abundance ratio distributions [(Sr,Ba)/Fe], the peak of the small UFD sample (6 stars) exhibits a signicant under-abundance relative to the VMP stars in the larger MW halo sample (~ 300 stars). We present a simple scenario that can simultaneously explain these similarities and differences by assuming: (i) that the MW VMP stars were predominately enriched by a prior generation of stars which possessed a higher total mass than the prior generation of stars that enriched the UFD VMP stars; and (ii) a much stronger mass-dependent yield (MDY) for nc-elements than fo...
Minimal muon anomalous magnetic moment
Biggio, Carla
2014-01-01
We classify all possible one-particle (scalar and fermion) extensions of the Standard Model that can contribute to the anomalous magnetic moment of leptons. We review the cases already discussed in the literature and complete the picture by performing the calculation for a fermionic doublet with hypercharge -3/2. We conclude that, out of the listed possibilities, only two scalar leptoquarks and the pseudoscalar of a peculiar two-Higgs-doublet model could be the responsibles for the muon anomalous magnetic moment discrepancy. Were this the case, this particles could be seen in the next LHC run. To this aim, especially to test the leptoquark hypothesis, we suggest to look for final states with tops and muons.
Anomalous Diffusion in Velocity Space
Trigger, S. A.
2009-01-01
The problem of anomalous diffusion in the momentum space is considered on the basis of the appropriate probability transition function (PTF). New general equation for description of the diffusion of heavy particles in the gas of the light particles is formulated on basis of the new approach similar to one in coordinate space (S. Trigger et al.). The obtained results permit to describe the various situations when the probability transition function (PTF) has a long tail in the momentum space. ...
Sun, Tao; Niles, Paul; Bao, Huiming; Socki, Richard
2014-01-01
Physical processes that unmix elements/isotopes of gas molecules involve phase changes, diffusion (chemical or thermal), effusion and gravitational settling. Some of those play significant roles for the evolution of chemical and isotopic compositions of gases in planetary bodies which lead to better understanding of surface paleoclimatic conditions, e.g. gas bubbles in Antarctic ice, and planetary evolution, e.g. the solar-wind erosion induced gas escaping from exosphere on terrestrial planets.. A mass dependent relationship is always expected for the kinetic isotope fractionations during these simple physical processes, according to the kinetic theory of gases by Chapman, Enskog and others [3-5]. For O-bearing (O16, -O17, -O18) molecules the alpha O-17/ alpha O-18 is expected at 0.5 to 0.515, and for S-bearing (S32,-S33. -S34, -S36) molecules, the alpha S-33/ alpha S-34 is expected at 0.5 to 0.508, where alpha is the isotope fractionation factor associated with unmixing processes. Thus, one isotope pair is generally proxied to yield all the information for the physical history of the gases. However, we recently] reported the violation of mass law for isotope fractionation among isotope pairs of multiple isotope system during gas diffusion or convection under thermal gradient (Thermal Gradient Induced Non-Mass Dependent effect, TGI-NMD). The mechanism(s) that is responsible to such striking observation remains unanswered. In our past studies, we investigated polyatomic molecules, O2 and SF6, and we suggested that nuclear spin effect could be responsible to the observed NMD effect in a way of changing diffusion coefficients of certain molecules, owing to the fact of negligible delta S-36 anomaly for SF6.. On the other hand, our results also showed that for both diffusion and convection under thermal gradient, this NMD effect is increased by lower gas pressure, bigger temperature gradient and lower average temperature, which indicate that the nuclear spin effect may
Universality of anomalous conductivities in theories with higher-derivative holographic duals
Grozdanov, Sašo
2016-01-01
Anomalous chiral conductivities in theories with global anomalies are independent of whether they are computed in a weakly coupled quantum (or thermal) field theory, hydrodynamics, or at infinite coupling from holography. While the presence of dynamical gauge fields and mixed, gauge-global anomalies can destroy this universality, in their absence, the non-renormalisation of anomalous Ward identities is expected to be obeyed at all intermediate coupling strengths. In holography, bulk theories with higher-derivative corrections incorporate coupling constant corrections to the boundary theory observables in an expansion around infinite coupling. In this work, we investigate the coupling constant dependence and universality of anomalous conductivities (and thus of the anomalous Ward identities) in general, four-dimensional systems that possess asymptotically anti-de Sitter holographic duals with a non-extremal black brane in five dimensions, and anomalous transport introduced into the boundary theory via the bulk...
Effects of surface and interface scattering on anomalous Hall effect in Co/Pd multilayers
Guo, Z. B.
2012-09-27
In this paper, we report the results of surface and interface scattering on anomalous Hall effect in Co/Pd multilayers with perpendicular magnetic anisotropy. The surface scattering effect has been extracted from the total anomalous Hall effect. By scaling surface scattering contribution with ρAHs∼ργss, the exponent γ has been found to decrease with the increase of surface scattering resistivity, which could account for the thickness-dependent anomalous Hall effect. Interface diffusion induced by rapid thermal annealing modifies not only the magnetization and longitudinal resistivity but also the anomalous Hall effect; a large exponent γ ∼ 5.7 has been attributed to interface scattering-dominated anomalous Hall effect.
Advances in the studies of anomalous diffusion in velocity space
Dubinova, A. A.; Trigger, S. A.
2011-01-01
A generalized Fokker-Planck equation is derived to describe particle kinetics in specific situations when the probability transition function (PTF) has a long tail in momentum space. The equation is valid for an arbitrary value of the transferred in a collision act momentum and for the arbitrary mass ratio of the interacting particles. On the basis of the generalized Fokker-Planck equation anomalous diffusion in velocity space is considered for hard sphere model of particle interactions, Coul...
Energy dependence of normal branch quasi-periodic intensity oscillations in low-mass X-ray binaries
Miller, Guy S.; Lamb, Frederick K.
1992-04-01
The properties of the approximately 6 Hz quasi-periodic X-ray intensity oscillations observed in the low-mass X-ray binary Cyg X-2 when it is on the normal spectral branch are shown to be consistent with a model in which photons from a central source with a fixed spectrum are Comptonized by an oscillating radial inflow. As the electron scattering optical depth of the flow varies, the spectrum of the escaping X-rays appears to rotate about a pivot energy that depends mainly on the electron temperature in the flow. The temperature derived from the observed energy dependence of the Cyg X-2 normal branch oscillations is approximately 1 keV, in good agreement with the estimated Compton temperature of its X-ray spectrum. The mean optical depth tau of the Comptonizing flow is inferred to be about 10, while the change in tau over an oscillation is estimated to be about 1; both values are in good agreement with radiation hydrodcode simulations of the radial flow.
Bagdonaite, Julija; Preval, Simon P; Barstow, Martin A; Barrow, John D; Murphy, Michael T; Ubachs, Wim
2014-01-01
Spectra of molecular hydrogen (H$_2$) are employed to search for a possible proton-to-electron mass ratio ($\\mu$) dependence on gravity. The Lyman transitions of H$_2$, observed with the Hubble Space Telescope towards white dwarf stars that underwent a gravitational collapse, are compared to accurate laboratory spectra taking into account the high temperature conditions ($T \\sim 13\\,000$ K) of their photospheres. We derive sensitivity coefficients $K_i$ which define how the individual H$_2$ transitions shift due to $\\mu$-dependence. The spectrum of white dwarf star GD133 yields a $\\Delta\\mu/\\mu$ constraint of $(-2.7\\pm4.7_{\\rm stat}\\pm 0.2_{\\rm sys})\\times10^{-5}$ for a local environment of a gravitational potential $\\phi\\sim10^4\\ \\phi_\\textrm{Earth}$, while that of G29$-$38 yields $\\Delta\\mu/\\mu=(-5.8\\pm3.8_{\\rm stat}\\pm 0.3_{\\rm sys})\\times10^{-5}$ for a potential of $2 \\times 10^4$ $\\phi_\\textrm{Earth}$.
Krolewski, Alex G
2015-01-01
We study the dependence of quasar clustering on quasar luminosity and black hole mass by measuring the angular overdensity of photometrically selected galaxies imaged by WISE about z $\\sim$ 0.8 quasars from SDSS. By measuring the quasar-galaxy cross-correlation function and using photometrically selected galaxies, we achieve a higher density of tracer objects and a more sensitive detection of clustering than measurements of the quasar autocorrelation function. We test models of quasar formation and evolution by measuring the luminosity dependence of clustering amplitude. We find a significant overdensity of WISE galaxies about z $\\sim$ 0.8 quasars at 0.2--6.4 h$^{-1}$ Mpc in projected comoving separation. We find no appreciable increase in clustering amplitude with quasar luminosity across a decade in luminosity, and a power-law fit between luminosity and clustering amplitude gives an exponent of $-$0.01 $\\pm$ 0.06 (1 $\\sigma$ errorbar). We also fail to find a significant relationship between clustering ampli...
McNaught-Roberts, Tamsyn; Baugh, Carlton; Lacey, Cedric; Loveday, J; Peacock, J; Baldry, I; Bland-Hawthorn, J; Brough, S; Driver, Simon P; Robotham, A S G; Vazquez-Mata, J A
2014-01-01
We use 80922 galaxies in the Galaxy And Mass Assembly (GAMA) survey to measure the galaxy luminosity function (LF) in different environments over the redshift range 0.04
Phleps, Stefanie; Zibetti, Stefano; Budavári, Tamás
2013-01-01
The fraction of galaxies with red colours depends sensitively on environment, and on the way in which environment is measured. To distinguish competing theories for the quenching of star formation, a robust and complete description of environment is required, to be applied to a large sample of galaxies. The environment of galaxies can be described using the density field of neighbours on multiple scales - the multiscale density field. We are using the Millennium simulation and a simple HOD prescription which describes the multiscale density field of Sloan Digital Sky Survey DR7 galaxies to investigate the dependence of the fraction of red galaxies on the environment. Using a volume limited sample where we have sufficient galaxies in narrow density bins, we have more dynamic range in halo mass and density for satellite galaxies than for central galaxies. Therefore we model the red fraction of central galaxies as a constant while we use a functional form to describe the red fraction of satellites as a function ...
Koyama, Yusei; Kurk, Jaron; Geach, James E; Sobral, David; Kodama, Tadayuki; Nakata, Fumiaki; Swinbank, A M; Best, Philip N; Hayashi, Masao; Tadaki, Ken-ichi
2013-01-01
This paper discusses the evolution of the correlation between galaxy star formation rates (SFRs) and stellar mass (M*) over the last ~10 Gyrs, particularly focusing on its environmental dependence. We first present the mid-infrared (MIR) properties of the H-alpha-selected galaxies in a rich cluster Cl0939+4713 at z=0.4. We use wide-field Spitzer/MIPS24um data to show that the optically red H-alpha emitters, which are most prevalent in group-scale environments, tend to have higher SFRs and stronger dust extinction than the majority population of blue H-alpha sources. With a MIR stacking analysis, we also find that the median SFR of H-alpha emitters increases in higher-density environment at z=0.4, and this trend is confirmed for both red and blue galaxies. The trend becomes much less significant when we compare their specific SFR (SSFR), although we find that there still remains a weak, but positive correlation between SSFR and galaxy number density. We then discuss the environmental dependence of the SFR vers...
Woo, Joanna; Faber, S M; Noeske, Kai; Koo, David C; Gerke, Brian F; Cooper, Michael C; Salim, Samir; Dutton, Aaron A; Newman, Jeffrey; Weiner, Benjamin J; Bundy, Kevin; Willmer, Christopher N A; Davis, Marc; Yan, Renbin
2012-01-01
We study the dependence of star-formation quenching on galaxy masses and environ- ment, in the SDSS (z ~ 0.1) and the AEGIS (z ~ 1). We address stellar mass M*, halo mass Mh, density over the nearest N neighbours deltaN, and distance to the halo centre D. Quenching is defined by low star formation rate rather than red colour, since one third of red galaxies are star forming. The fraction of quenched galaxies predominantly depends on Mh, while for satellites it also depends on D. For centrals the quenched fraction depends only weakly on deltaN and M* at low z, and somewhat more at z ~ 1, when the quenched fraction and Mh are lower. For satellites, M*-dependent quenching is noticeable at high D, reflecting a quenching dependence on sub-halo mass for recently captured satellites. At small D, where satellites likely fell in long ago, quenching strongly depends on Mh, and not on M*. The Mh-dependence of quenching is consistent with theoretical wisdom where virial shock heating in massive haloes shuts down accretio...
International Nuclear Information System (INIS)
The formulae for energetic dependences of the mass attenuation coefficients of γ-radiation of CsI and Zn Se scintillators in the range of energies of 0.01-100 MeV are found. The difference of approximative dependences from the source data is less than 3%
Energy Technology Data Exchange (ETDEWEB)
Papastergis, Emmanouil; Giovanelli, Riccardo; Haynes, Martha P.; Jones, Michael G. [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Rodríguez-Puebla, Aldo, E-mail: papastergis@astro.cornell.edu, E-mail: riccardo@astro.cornell.edu, E-mail: haynes@astro.cornell.edu, E-mail: jonesmg@astro.cornell.edu, E-mail: apuebla@astro.unam.mx [Instituto de Astronomía, Universidad Nacional Autónoma de México, A. P. 70-264, 04510 México, D.F. (Mexico)
2013-10-10
We use a sample of ≈6000 galaxies detected by the Arecibo Legacy Fast ALFA (ALFALFA) 21 cm survey to measure the clustering properties of H I-selected galaxies. We find no convincing evidence for a dependence of clustering on galactic atomic hydrogen (H I) mass, over the range M{sub H{sub I}} ≈ 10{sup 8.5}-10{sup 10.5} M{sub ☉}. We show that previously reported results of weaker clustering for low H I mass galaxies are probably due to finite-volume effects. In addition, we compare the clustering of ALFALFA galaxies with optically selected samples drawn from the Sloan Digital Sky Survey (SDSS). We find that H I-selected galaxies cluster more weakly than even relatively optically faint galaxies, when no color selection is applied. Conversely, when SDSS galaxies are split based on their color, we find that the correlation function of blue optical galaxies is practically indistinguishable from that of H I-selected galaxies. At the same time, SDSS galaxies with red colors are found to cluster significantly more than H I-selected galaxies, a fact that is evident in both the projected as well as the full two-dimensional correlation function. A cross-correlation analysis further reveals that gas-rich galaxies 'avoid' being located within ≈3 Mpc of optical galaxies with red colors. Next, we consider the clustering properties of halo samples selected from the Bolshoi ΛCDM simulation. A comparison with the clustering of ALFALFA galaxies suggests that galactic H I mass is not tightly related to host halo mass and that a sizable fraction of subhalos do not host H I galaxies. Lastly, we find that we can recover fairly well the correlation function of H I galaxies by just excluding halos with low spin parameter. This finding lends support to the hypothesis that halo spin plays a key role in determining the gas content of galaxies.
Energy Technology Data Exchange (ETDEWEB)
Chithiika Ruby, V.; Senthilvelan, M.; Lakshmanan, M. [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirapalli 620 024 (India); Chandrasekar, V. K. [Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401 (India)
2015-01-15
We consider the problem of removal of ordering ambiguity in position dependent mass quantum systems characterized by a generalized position dependent mass Hamiltonian which generalizes a number of Hermitian as well as non-Hermitian ordered forms of the Hamiltonian. We implement point canonical transformation method to map one-dimensional time-independent position dependent mass Schrödinger equation endowed with potentials onto constant mass counterparts which are considered to be exactly solvable. We observe that a class of mass functions and the corresponding potentials give rise to solutions that do not depend on any particular ordering, leading to the removal of ambiguity in it. In this case, it is imperative that the ordering is Hermitian. For non-Hermitian ordering, we show that the class of systems can also be exactly solvable and is also shown to be iso-spectral using suitable similarity transformations. We also discuss the normalization of the eigenfunctions obtained from both Hermitian and non-Hermitian orderings. We illustrate the technique with the quadratic Liénard type nonlinear oscillators, which admit position dependent mass Hamiltonians.
Schneider, Fabian R N; de Mink, Selma E; Langer, Norbert; Stolte, Andrea; de Koter, Alex; Gvaramadze, Vasilii V; Hußmann, Benjamin; Liermann, Adriane; Sana, Hugues
2013-01-01
Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters which can be used to infer their ages and to identify products of binary evolution. We model the observed present day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages to 3.5$\\pm$0.7 Myr and 4.8$\\pm$1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e. the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte ...
Communication: Probing anomalous diffusion in frequency space
International Nuclear Information System (INIS)
Anomalous diffusion processes are usually detected by analyzing the time-dependent mean square displacement of the diffusing particles. The latter evolves asymptotically as W(t) ∼ 2Dαtα, where Dα is the fractional diffusion constant and 0 < α < 2. In this article we show that both Dα and α can also be extracted from the low-frequency Fourier spectrum of the corresponding velocity autocorrelation function. This offers a simple method for the interpretation of quasielastic neutron scattering spectra from complex (bio)molecular systems, in which subdiffusive transport is frequently encountered. The approach is illustrated and validated by analyzing molecular dynamics simulations of molecular diffusion in a lipid POPC bilayer
Anomalous transport from holography: Part I
Bu, Yanyan; Sharon, Amir
2016-01-01
We revisit the transport properties induced by the chiral anomaly in a charged plasma holographically dual to anomalous $U(1)_V\\times U(1)_A$ Maxwell theory in Schwarzschild-$AdS_5$. Off-shell constitutive relations for vector and axial currents are derived using various approximations generalising most of known in the literature anomaly-induced phenomena and revealing some new ones. In a weak external field approximation, the constitutive relations have all-order derivatives resummed into six momenta-dependent transport coefficient functions: the diffusion, the electric/magnetic conductivity, and three anomaly induced functions. The latter generalise the chiral magnetic and chiral separation effects. Nonlinear transport is studied assuming presence of constant background external fields. The chiral magnetic effect, including all order nonlinearity in magnetic field, is proven to be exact when the magnetic field is the only external field that is turned on. Non-linear corrections to the constitutive relations...
Search for anomalous couplings in the Higgs sector at LEP
Acciarri, M; Adriani, O; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, L; Balandras, A; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Cucciarelli, S; Dai, T S; van Dalen, J A; D'Alessandro, R; De Asmundis, R; Déglon, P L; Degré, A; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Van Dierendonck, D N; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Dufournaud, D; Duinker, P; Durán, I; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Extermann, Pierre; Fabre, M; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Hofer, H; Holzner, G; Hoorani, H; Hou, S R; Hu, Y; Iashvili, I; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Khan, R A; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, J K; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Le Goff, J M; Leiste, R; Levchenko, P M; Li Chuan; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Lugnier, L; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Marian, G; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Moulik, T; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Oulianov, A; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Paramatti, R; Park, H K; Park, I H; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Raven, G; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Rodin, J; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Rubio, Juan Antonio; Ruggiero, G; Rykaczewski, H; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Seganti, A; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Suter, H; Swain, J D; Szillási, Z; Sztaricskai, T; Tang, X W; Tauscher, Ludwig; Taylor, L; Tellili, B; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Valente, E; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, M; Wang, X L; Wang, Z M; Weber, A; Weber, M; Wienemann, P; Wilkens, H; Wu, S X; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Ye, J B; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhu, G Y; Zhu, R Y; Zichichi, A; Zilizi, G; Zimmermann, B; Zöller, M
2000-01-01
We search for a Higgs particle with anomalous couplings in the $\\mathrm{e}^+\\mathrm{e}^-\\rightarrow\\mathrm{H}\\gamma$, $\\mathrm{e}^+\\mathrm{e}^-\\rightarrow\\mathrm{H}\\mathrm{Z}$ and $\\mathrm{e}^+\\mathrm{e}^-\\rightarrow\\mathrm{H}\\mathrm{e}^+\\mathrm{e }^-$ processes with the L3 detector at LEP. We explore the mass range $70~{\\rm GeV} < m_\\mathrm{H} < 170~{\\rm GeV}$ using $176~{\\rm pb}^{-1}$ of integrated luminosity at a center-of-mass energy of $\\sqrt{s} = 189~{\\rm GeV}$. The Higgs decays $\\mathrm{H}\\rightarrow\\mathrm{b}\\mathrm{\\overline{b}}$, $\\mathrm{H}\\rightarrow\\gamma\\gamma$ and $\\mathrm{H}\\rightarrow\\mathrm{ Z}\\gamma$ are considered in the analysis. No evidence for anomalous Higgs production is found. This is interpreted in terms of limits on the anomalous couplings $d$, $d_B$, $\\Delta g_1^\\mathrm{Z}$ and $\\Delta \\kappa_\\gamma$. Limits on the $\\Gamma(\\mathrm{H}\\rightarrow\\gamma\\gamma)$ and $\\Gamma(\\mathrm{H}\\rightarrow\\mathrm{Z}\\gamma)$ partial widths in the explored Higgs mass range are also obtained.
Lee, Shinbuhm; Lee, Jae Sung; Park, Jong-Bong; Koo Kyoung, Yong; Lee, Myoung-Jae; Won Noh, Tae
2014-06-01
In conventional semiconductor theory, greater doping decreases the electronic resistance of a semiconductor. For the bipolar resistance switching (BRS) phenomena in oxides, the same doping principle has been used commonly to explain the relationship between the density variation of oxygen vacancies (Vo¨) and the electronic resistance. We find that the Vo¨ density can change at a depth of ˜10 nm below the Pt electrodes in Pt/Nb:SrTiO3 cells, depending on the resistance state. Using electron energy loss spectroscopy and secondary ion mass spectrometry, we found that greater Vo¨ density underneath the electrode resulted in higher resistance, contrary to the conventional doping principle of semiconductors. To explain this seemingly anomalous experimental behavior, we provide quantitative explanations on the anomalous BRS behavior by simulating the mobile Vo¨ [J. S. Lee et al., Appl. Phys. Lett. 102, 253503 (2013)] near the Schottky barrier interface.
International Nuclear Information System (INIS)
In conventional semiconductor theory, greater doping decreases the electronic resistance of a semiconductor. For the bipolar resistance switching (BRS) phenomena in oxides, the same doping principle has been used commonly to explain the relationship between the density variation of oxygen vacancies (Vo¨) and the electronic resistance. We find that the Vo¨ density can change at a depth of ∼10 nm below the Pt electrodes in Pt/Nb:SrTiO3 cells, depending on the resistance state. Using electron energy loss spectroscopy and secondary ion mass spectrometry, we found that greater Vo¨ density underneath the electrode resulted in higher resistance, contrary to the conventional doping principle of semiconductors. To explain this seemingly anomalous experimental behavior, we provide quantitative explanations on the anomalous BRS behavior by simulating the mobile Vo¨ [J. S. Lee et al., Appl. Phys. Lett. 102, 253503 (2013)] near the Schottky barrier interface
Directory of Open Access Journals (Sweden)
Shinbuhm Lee
2014-06-01
Full Text Available In conventional semiconductor theory, greater doping decreases the electronic resistance of a semiconductor. For the bipolar resistance switching (BRS phenomena in oxides, the same doping principle has been used commonly to explain the relationship between the density variation of oxygen vacancies (Vo¨ and the electronic resistance. We find that the Vo¨ density can change at a depth of ∼10 nm below the Pt electrodes in Pt/Nb:SrTiO3 cells, depending on the resistance state. Using electron energy loss spectroscopy and secondary ion mass spectrometry, we found that greater Vo¨ density underneath the electrode resulted in higher resistance, contrary to the conventional doping principle of semiconductors. To explain this seemingly anomalous experimental behavior, we provide quantitative explanations on the anomalous BRS behavior by simulating the mobile Vo¨ [J. S. Lee et al., Appl. Phys. Lett. 102, 253503 (2013] near the Schottky barrier interface.
Energy Technology Data Exchange (ETDEWEB)
Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia
2012-11-29
was found to be Au11L52+ at lower coverage and Au11L5+ at higher coverage, respectively. A coverage-dependent electron tunneling mechanism is proposed to account for the observed reduction of charge of mass-selected multiply charged gold clusters soft landed on SAMs. The results demonstrate that one of the critical parameters that influence the chemical and physical properties of supported metal clusters, ionic charge state, may be controlled by selecting the coverage of charged species soft landed onto surfaces.
International Nuclear Information System (INIS)
Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M ☉ limit and observations of four stars with initial masses of 165-320 M ☉ in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M ☉ star. Using the stellar population of R136, we revise the upper mass limit to values in the range 200-500 M ☉.
International Nuclear Information System (INIS)
Values of the ratio of the mass energy absorption coefficient, water to air, (μ-baren/ρ)w,air, are required for insertion into the expression recommended for determining absorbed dose to water, Dw, in kilovoltage X ray beams using an air kerma calibrated ionization chamber. Values for both primary (i.e. free-in-air) spectra and spectra at depths within a water phantom have been calculated for low and medium energy X rays using the Monte Carlo method. These are [(μ-baren/ρ)w,air]p, for HVLs between 0.05 and 22 mm A1 (0.03 and 6 mm Cu), and (μ-baren(z, f)/ρ)w,air, for HVLs between 1 and 22 mm A1 (0.01 and 6 mm Cu), at depths (z) between 0 and 10 cm with circular field sizes (f) between 0.5 and 30 cm2 equivalent square. Primary spectra and the corresponding HVLs (in mm Cu or A1) were calculated using he programs of Birch and Marshall. X ray unit target angles and inherent/added filtrations were consistent with those used for the measured spectra of Seelentag et al. The EGS4 (Electron Gamma Shower version 4) Monte Carlo package was used to simulate photon transport within a water phantom through adaptation of the user code FLURZ. Monoenergetic μ-baren/ρ data were extracted from the work of Hubbell. It is evident that the first HVL is inadequate as a unique look-up parameter for (μ-baren/ρ)w,air. The variation of (μ-baren(z, f)/ρ)w,air with f and z is shown. The dependence of (μ-baren(z, f)/ρ)w,air on f is significant, especially for less than 10 cm square fields. The corresponding dependence on z is less critical. (author). 14 refs, 4 figs, 1 tab
Anomalous Higgs Couplings at Colliders
González-Garciá, M Concepción
1998-01-01
I summarize our results on the attainable limits on the coefficients of dimension-6 operators from the analysis of Higgs boson phenomenology using data taken at Tevatron RUNI and LEPII. Our results show that the coefficients of Higgs-vector boson couplings can be determined with unprecedented accuracy. Assuming that the coefficients of all ``blind'' operators are of the same magnitude, we are also able to impose bounds on the anomalous vector-boson triple couplings comparable to those from double gauge boson production at the Tevatron and LEPII.
Chabab, M; Lahbas, A; Oulne, M
2016-01-01
In this paper, we present a theoretical study of a conjonction of $\\gamma$-rigid and $\\gamma$-stable collective motions in critical point symmetries of the phase transitions from spherical to deformed shapes of nuclei using exactly separable version of the Bohr Hamiltonian with deformation-dependent mass term. The deformation-dependent mass is applied simultaneously to $\\gamma$-rigid and $\\gamma$-stable parts of this famous collective Hamiltonian. Moreover, the $\\beta$ part of the problem is described by means of Davidson potential, while the $\\gamma$-angular part corresponding to axially symmetric shapes is treated by a Harmonic Osillator potential. The energy eigenvalues and normalized eigenfunctions of the problem are obtained in compact forms by making use of the asymptotic iteration method. The combined effect of the deformation-dependent mass and rigidity as well as harmonic oscillator stiffness parameters on the energy spectrum and wave functions is duly investigated. Also, the electric quadrupole tran...