Anomalous center of mass shift gravitational dipole moment
Jeong, E J
1996-01-01
The anomalous, energy dependent shift of the center of mass of an idealized, perfectly rigid, uniformly rotating hemispherical shell which is caused by the relativistic mass increase effect is investigated in detail. It is shown that a classical object on impact which has the harmonic binding force between the adjacent constituent particles has the similar effect of the energy dependent, anomalous shift of the center of mass. From these observations, the general mode of the linear acceleration is suggested to be caused by the anomalous center of mass shift whether it's due to classical or relativistic origin. The effect of the energy dependent center of mass shift perpendicular to the plane of rotation of a rotating hemisphere appears as the non zero gravitational dipole moment in general relativity. Controlled experiment for the measurement of the gravitational dipole field and its possible links to the cylindrical type line formation of a worm hole in the extreme case are suggested. The jets from the black ...
Anomalous mass dimension in multiflavor QCD
Doff, A.; Natale, A. A.
2016-10-01
Models of strongly interacting theories with a large mass anomalous dimension (γm) provide an interesting possibility for the dynamical origin of the electroweak symmetry breaking. A laboratory for these models is QCD with many flavors, which may present a nontrivial fixed point associated to a conformal region. Studies based on conformal field theories and on Schwinger-Dyson equations have suggested the existence of bounds on the mass anomalous dimension at the fixed points of these models. In this note we discuss γm values of multiflavor QCD exhibiting a nontrivial fixed point and affected by relevant four-fermion interactions.
Anomalous center of mass shift: gravitational dipole moment.
Jeong, Eue Jin
1997-02-01
The anomalous, energy dependent shift of the center of mass of an idealized, perfectly rigid, uniformly rotating hemispherical shell which is caused by the relativistic mass increase effect is investigated in detail. It is shown that a classical object on impact which has the harmonic binding force between the adjacent constituent particles has the similar effect of the energy dependent, anomalous shift of the center of mass. From these observations, the general mode of the linear acceleration is suggested to be caused by the anomalous center of mass shift whether it's due to classical or relativistic origin. The effect of the energy dependent center of mass shift perpendicular to the plane of rotation of a rotating hemisphere appears as the non zero gravitational dipole moment in general relativity. Controlled experiment for the measurement of the gravitational dipole field and its possible links to the cylindrical type line formation of a worm hole in the extreme case are suggested. The jets from the black hole accretion disc and the observed anomalous red shift from far away galaxies are considered to be the consequences of the two different aspects of the dipole gravity.
The spectrum and mass anomalous dimension of SU(2) adjoint QCD with two Dirac flavours
Bergner, Georg; Montvay, Istvan; Münster, Gernot; Piemonte, Stefano
2016-01-01
In this work we present the results of our investigation of SU(2) gauge theory with two Dirac fermions in the adjoint representation, also known as Minimal Walking Technicolour. We have done numerical lattice simulations of this theory at two different values of the gauge coupling and several fermion masses. Our results include the particle spectrum and the mass anomalous dimension. The spectrum contains so far unconsidered states, a fermion-gluon state and flavour singlet mesons. The mass anomalous dimension is determined from the scaling of the masses and the mode number. The remnant dependence of the universal mass ratios and mass anomalous dimension on the gauge coupling indicates the relevance of scaling corrections.
Mass anomalous dimension of SU(2) using the spectral density method
Suorsa, Joni M; Rantaharju, Jarno; Rantalaiho, Teemu; Rummukainen, Kari; Tuominen, Kimmo; Tähtinen, Sara
2016-01-01
SU(2) with N_f = 6 and N_f = 8 are believed to have an infrared conformal fixed point. We use the spectral density method cross referenced with the mass step scaling method to evaluate the coupling constant dependence of the mass anomalous dimension for massless HEX smeared, clover improved Wilson fermions with Schr\\"odinger functional boundary conditions.
Mass anomalous dimension in SU(2) with six fundamental fermions
DEFF Research Database (Denmark)
Bursa, Francis; Del Debbio, Luigi; Keegan, Liam;
2010-01-01
We simulate SU(2) gauge theory with six massless fundamental Dirac fermions. We measure the running of the coupling and the mass in the Schroedinger Functional scheme. We observe very slow running of the coupling constant. We measure the mass anomalous dimension gamma, and find it is between 0.13...
Anomalous mass dimension of multi-flavor QCD
Doff, A
2016-01-01
Models of strongly interacting theories with a large mass anomalous dimension ($\\gamma_m$) provide an interesting possibility for the dynamical origin of the electroweak symmetry breaking. A laboratory for these models is QCD with many flavors, which may present a non-trivial fixed point associated to a conformal region. Studies based on conformal field theories and on Schwinger-Dyson equations have suggested the existence of bounds on the mass anomalous dimension at the fixed points of these models. In this note we discuss $\\gamma_m$ values of multi-flavor QCD exhibiting a non-trivial fixed point and affected by relevant four-fermion interactions.
Mass anomalous dimension of SU(2) with Nf=8 using the spectral density method
Suorsa, Joni M; Rantaharju, Jarno; Rantalaiho, Teemu; Rummukainen, Kari; Tuominen, Kimmo; Weir, David J
2015-01-01
SU(2) with Nf=8 is believed to have an infrared conformal fixed point. We use the spectral density method to evaluate the coupling constant dependence of the mass anomalous dimension for massless HEX smeared, clover improved Wilson fermions with Schr\\"odinger functional boundary conditions.
Mass anomalous dimension in SU(2) with six fundamental fermions
Bursa, Francis; Keegan, Liam; Pica, Claudio; Pickup, Thomas
2010-01-01
We simulate SU(2) gauge theory with six massless fundamental Dirac fermions. We measure the running of the coupling and the mass in the Schroedinger Functional scheme. We observe very slow running of the coupling constant. We measure the mass anomalous dimension gamma, and find it is between 0.135 and 1.03 in the range of couplings consistent with the existence of an IR fixed point.
Anomalous scaling in an age-dependent branching model
Keller-Schmidt, Stephanie; Tugrul, Murat; Eguíluz, Víctor M; Hernández-García, Emilio; Klemm, Konstantin
2015-01-01
We introduce a one-parametric family of tree growth models, in which branching probabilities decrease with branch age $\\tau$ as $\\tau^{-\\alpha}$. Depending on the exponent $\\alpha$, the scaling of tree depth with tree size $n$ displays a transition between the logarithmic scaling of random trees and an algebraic growth. At the transition ($\\alpha=1$) tree depth grows as $(\\log n)^2$. This anomalous scaling is in good agreement with the trend observed in evolution of biological species, thus p...
Anomalous pressure dependence of the torsional levels in solid nitromethane
Cavagnat, D.; Magerl, A.; Vettier, C.; Anderson, I. S.; Trevino, S. F.
1985-01-01
Inelastic neutron-scattering measurement of the torsional levels of CH3NO2 and CD3NO2 are presented as functions of pressure and temperature. In contrast to all previously observed pressure dependence of hindered rotors, the ground-state tunnel splitting increases and the energies of the bound torsional levels decrease with pressure. A potential which reproduces these anomalous effects is found and the source of the anomaly explained.
Anomalous scaling in an age-dependent branching model.
Keller-Schmidt, Stephanie; Tuğrul, Murat; Eguíluz, Víctor M; Hernández-García, Emilio; Klemm, Konstantin
2015-02-01
We introduce a one-parametric family of tree growth models, in which branching probabilities decrease with branch age τ as τ(-α). Depending on the exponent α, the scaling of tree depth with tree size n displays a transition between the logarithmic scaling of random trees and an algebraic growth. At the transition (α=1) tree depth grows as (logn)(2). This anomalous scaling is in good agreement with the trend observed in evolution of biological species, thus providing a theoretical support for age-dependent speciation and associating it to the occurrence of a critical point.
Mass anomalous dimension in SU(2) with two adjoint fermions
Bursa, Francis; Keegan, Liam; Pica, Claudio; Pickup, Thomas
2009-01-01
We study SU(2) lattice gauge theory with two flavours of Dirac fermions in the adjoint representation. We measure the running of the coupling in the Schroedinger Functional (SF) scheme and find it is consistent with the existence of an infrared fixed point (IRFP). We discuss how systematic errors affect the evidence for an IRFP. We present the first measurement of the running of the mass in the SF scheme. Assuming the existence of a fixed point, we can deduce the anomalous dimension at the fixed point. At the current level of accuracy, we can estimate 0.05 < gamma < 0.56 at the IRFP.
Quark mass anomalous dimension from the twisted mass Dirac operator spectrum
Energy Technology Data Exchange (ETDEWEB)
Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics
2013-12-15
We investigate whether it is possible to extract the quark mass anomalous dimension and its scale dependence from the spectrum of the twisted mass Dirac operator in Lattice QCD. The answer to this question appears to be positive, provided that one goes to large enough eigenvalues, sufficiently above the non-perturbative regime. The obtained results are compared to continuum perturbation theory. By analyzing possible sources of systematic effects, we find the domain of applicability of the approach, extending from an energy scale of around 1.5 to 4 GeV. The lower limit is dictated by physics (non-perturbative effects at low energies), while the upper bound is set by the ultraviolet cut-off of present-day lattice simulations. We use gauge field configuration ensembles generated by the European Twisted Mass Collaboration (ETMC) with 2 flavours of dynamical twisted mass quarks, at 4 lattice spacings in the range between around 0.04 and 0.08 fm.
Anomalous Temperature Dependence of the Band Gap in Black Phosphorus.
Villegas, Cesar E P; Rocha, A R; Marini, Andrea
2016-08-10
Black phosphorus (BP) has gained renewed attention due to its singular anisotropic electronic and optical properties that might be exploited for a wide range of technological applications. In this respect, the thermal properties are particularly important both to predict its room temperature operation and to determine its thermoelectric potential. From this point of view, one of the most spectacular and poorly understood phenomena is indeed the BP temperature-induced band gap opening; when temperature is increased, the fundamental band gap increases instead of decreases. This anomalous thermal dependence has also been observed recently in its monolayer counterpart. In this work, based on ab initio calculations, we present an explanation for this long known and yet not fully explained effect. We show that it arises from a combination of harmonic and lattice thermal expansion contributions, which are in fact highly interwined. We clearly narrow down the mechanisms that cause this gap opening by identifying the peculiar atomic vibrations that drive the anomaly. The final picture we give explains both the BP anomalous band gap opening and the frequency increase with increasing volume (tension effect).
Flavour Dependent Gauged Radiative Neutrino Mass Model
Baek, Seungwon; Yagyu, Kei
2015-01-01
We propose a one-loop induced radiative neutrino mass model with anomaly free flavour dependent gauge symmetry: $\\mu$ minus $\\tau$ symmetry $U(1)_{\\mu-\\tau}$. A neutrino mass matrix satisfying current experimental data can be obtained by introducing a weak isospin singlet scalar boson that breaks $U(1)_{\\mu-\\tau}$ symmetry, an inert doublet scalar field, and three right-handed neutrinos in addition to the fields in the standard model. We find that a characteristic structure appears in the neutrino mass matrix: two-zero texture form which predicts three non-zero neutrino masses and three non-zero CP-phases which can be determined five well measured experimental inputs of two squared mass differences and three mixing angles. Furthermore, it is clarified that only the inverted mass hierarchy is allowed in our model. In a favored parameter set from the neutrino sector, the discrepancy in the muon anomalous magnetic moment between the experimental data and the the standard model prediction can be explained by the ...
Institute of Scientific and Technical Information of China (English)
Gui-Ping Wu; Guang-Li Huang; Hai-Sheng Ji
2010-01-01
Anomalous resistivity is critical for triggering fast magnetic reconnection in the nearly collisionless coronal plasma.Its nonlinear dependence on bulk drift velocity is usually assumed in MHD simulations.However,the mechanism for the production of anomalous resistivity and its evolution is still an open question.We numerically solved the one dimension Vlasov equation with the typical solar coronal parameters and realistic mass ratios to infer the relationship between anomalous resistivity and bulk drift velocity of electrons in the reconnecting current sheets as well as its nonlinear characteristics.Our principal findings are summarized as follows: 1)the relationship between the anomalous resistivity and bulk drift velocity of electrons relative to ions may be described as ηmax = 0.03724(vd/ve)5.702 Ω m for vd/ve in the range of 1.4-2.0 and ηmax = 0.8746(vd/ve)1.284 Ωm for vd/ve in the range of 2.5-4.5; 2)if drift velocity is just slightly larger than the threshold of ion-acoustic instability,the anomalous resistivity due to the wave-particle interactions is enhanced by about five orders as compared with classic resistivity due to Coulomb collisions.With the increase of drift velocity from 1.4ve to 4.5ve,the anomalous resistivity continues to increase 100 times; 3)in the rise phase of unstable waves,the anomalous resistivity has the same order as the one estimated from quasi-linear theory; after saturation of unstable waves,the anomalous resistivity decreases at least about one order as compared with its peak value; 4)considering that the final velocity of electrons ejected out of the reconnecting current sheet(RCS)decreases with the distance from the neutral point in the neutral plane,the anomalous resistivity decreases with the distance from the neutral point,which is favorable for the Petschek-like reconnection to take place.
Anomalous Increase of Apparent Mass in a Silo due to Percolation
Institute of Scientific and Technical Information of China (English)
Ram Chand; Abdul Qadir; SHI Qing-Fan; ZHENG Ning; SUN Gang
2011-01-01
The apparent mass at the bottom of a granular pile confined in a vertical tube decreases for denser granular packing. We report that the denser granular packing comprising two different diameters of granules augments the apparent mass instead. This anomalous behavior occurs when small granules are stacked on the large ones. In the case of anomalous increase, a percolation effect is found and correlated with the augment of apparent mass at the bottom of the granular column. Finally, the results are qualitatively explained by using the Janssen model.%@@ The apparent mass at the bottom of a granular pile confined in a vertical tube decreases for denser granular packing.We report that the denser granular packing comprising two different diameters of granules augments the apparent mass instead.This anomalous behavior occurs when small granules are stacked on the large ones.In the case of anomalous increase,a percolation effect is found and correlated with the augment of apparent mass at the bottom of the granular column.Finally,the results are qualitatively explained by using the Janssen model.
Dependence of (anomalous) fading of infra-red stimulated luminescence on trap occupancy in feldspars
DEFF Research Database (Denmark)
Morthekai, P.; Jain, Mayank; Gach, Grzegorz
2013-01-01
Dose dependency of anomalous fading of infra-red stimulated luminescence (IRSL) from feldspars has been investigated using radiations of different ionisation qualities. The rate of fading of the IRSL signal after proton irradiation (9.4–30%/decade) is on an average almost twice compared to that a......Dose dependency of anomalous fading of infra-red stimulated luminescence (IRSL) from feldspars has been investigated using radiations of different ionisation qualities. The rate of fading of the IRSL signal after proton irradiation (9.4–30%/decade) is on an average almost twice compared...
Mass anomalous dimension of SU(2) with N_{f}=8 using the spectral density method
DEFF Research Database (Denmark)
Suorsa, Joni M.; Leino, Viljami; Rantaharju, Jarno
2015-01-01
SU(2) with Nf=8 is believed to have an infrared conformal fixed point. We use the spectral density method to evaluate the coupling constant dependence of the mass anomalous dimension for massless HEX smeared, clover improved Wilson fermions with Schr\\"odinger functional boundary conditions....
Mass anomalous dimension and running of the coupling in SU(2) with six fundamental fermions
Bursa, Francis; Keegan, Liam; Pica, Claudio; Pickup, Thomas
2010-01-01
We simulate SU(2) gauge theory with six massless fundamental Dirac fermions. By using the Schr\\"odinger Functional method we measure the running of the coupling and the fermion mass over a wide range of length scales. We observe very slow running of the coupling and construct an estimator for the fermion mass anomalous dimension giving $0.135 <\\gamma< 1.03$ in the region compatible with an IR fixed point.
The precise time-dependent solution of the Fokker–Planck equation with anomalous diffusion
Energy Technology Data Exchange (ETDEWEB)
Guo, Ran; Du, Jiulin, E-mail: jiulindu@aliyun.com
2015-08-15
We study the time behavior of the Fokker–Planck equation in Zwanzig’s rule (the backward-Ito’s rule) based on the Langevin equation of Brownian motion with an anomalous diffusion in a complex medium. The diffusion coefficient is a function in momentum space and follows a generalized fluctuation–dissipation relation. We obtain the precise time-dependent analytical solution of the Fokker–Planck equation and at long time the solution approaches to a stationary power-law distribution in nonextensive statistics. As a test, numerically we have demonstrated the accuracy and validity of the time-dependent solution. - Highlights: • The precise time-dependent solution of the Fokker–Planck equation with anomalous diffusion is found. • The anomalous diffusion satisfies a generalized fluctuation–dissipation relation. • At long time the time-dependent solution approaches to a power-law distribution in nonextensive statistics. • Numerically we have demonstrated the accuracy and validity of the time-dependent solution.
Feynman–Kac equation for anomalous processes with space- and time-dependent forces
Cairoli, Andrea; Baule, Adrian
2017-04-01
Functionals of a stochastic process Y(t) model many physical time-extensive observables, for instance particle positions, local and occupation times or accumulated mechanical work. When Y(t) is a normal diffusive process, their statistics are obtained as the solution of the celebrated Feynman–Kac equation. This equation provides the crucial link between the expected values of diffusion processes and the solutions of deterministic second-order partial differential equations. When Y(t) is non-Brownian, e.g. an anomalous diffusive process, generalizations of the Feynman–Kac equation that incorporate power-law or more general waiting time distributions of the underlying random walk have recently been derived. A general representation of such waiting times is provided in terms of a Lévy process whose Laplace exponent is directly related to the memory kernel appearing in the generalized Feynman–Kac equation. The corresponding anomalous processes have been shown to capture nonlinear mean square displacements exhibiting crossovers between different scaling regimes, which have been observed in numerous experiments on biological systems like migrating cells or diffusing macromolecules in intracellular environments. However, the case where both space- and time-dependent forces drive the dynamics of the generalized anomalous process has not been solved yet. Here, we present the missing derivation of the Feynman–Kac equation in such general case by using the subordination technique. Furthermore, we discuss its extension to functionals explicitly depending on time, which are of particular relevance for the stochastic thermodynamics of anomalous diffusive systems. Exact results on the work fluctuations of a simple non-equilibrium model are obtained. An additional aim of this paper is to provide a pedagogical introduction to Lévy processes, semimartingales and their associated stochastic calculus, which underlie the mathematical formulation of anomalous diffusion as a
Anomalous coupling, top-mass and parton-shower effects in W + W - production
Bellm, J.; Gieseke, S.; Greiner, N.; Heinrich, G.; Plätzer, S.; Reuschle, C.; von Soden-Fraunhofen, J. F.
2016-05-01
We calculate the process ppto {W}+{W}-to {e}+{ν}_e{μ}-{overline{ν}}_{μ } at NLO QCD, including also effective field theory (EFT) operators mediating the ggW + W - interaction, which first occur at dimension eight. We further combine the NLO and EFT matrix elements produced by G oS am with the H erwig7/M atchbox framework, which offers the possibility to study the impact of a parton shower. We assess the effects of the anomalous couplings by comparing them to top-mass effects as well as uncertainties related to variations of the renormalisation, factorisation and hard shower scales.
Gao, Xing; Shi, Zhijun; Lau, Andrew; Liu, Changqin; Yang, Guang; Silberschmidt, Vadim V
2016-05-01
This study is focused on anomalous strain-rate-dependent behaviour of bacterial cellulose (BC) hydrogel that can be strain-rate insensitive, hardening, softening, or strain-rate insensitive in various ranges of strain rate. BC hydrogel consists of randomly distributed nanofibres and a large content of free water; thanks to its ideal biocompatibility, it is suitable for biomedical applications. Motivated by its potential applications in complex loading conditions of body environment, its time-dependent behaviour was studied by means of in-aqua uniaxial tension tests at constant temperature of 37 °C at various strain rates ranging from 0.000 1s(-1) to 0.3s(-1). Experimental results reflect anomalous strain-rate-dependent behaviour that was not documented before. Micro-morphological observations allowed identification of deformation mechanisms at low and high strain rates in relation to microstructural changes. Unlike strain-rate softening behaviours in other materials, reorientation of nanofibres and kinematics of free-water flow dominate the softening behaviour of BC hydrogel at high strain rates.
Anomalous transport in fluid field with random waiting time depending on the preceding jump length
Zhang, Hong; Li, Guo-Hua
2016-11-01
Anomalous (or non-Fickian) transport behaviors of particles have been widely observed in complex porous media. To capture the energy-dependent characteristics of non-Fickian transport of a particle in flow fields, in the present paper a generalized continuous time random walk model whose waiting time probability distribution depends on the preceding jump length is introduced, and the corresponding master equation in Fourier-Laplace space for the distribution of particles is derived. As examples, two generalized advection-dispersion equations for Gaussian distribution and lévy flight with the probability density function of waiting time being quadratic dependent on the preceding jump length are obtained by applying the derived master equation. Project supported by the Foundation for Young Key Teachers of Chengdu University of Technology, China (Grant No. KYGG201414) and the Opening Foundation of Geomathematics Key Laboratory of Sichuan Province, China (Grant No. scsxdz2013009).
Institute of Scientific and Technical Information of China (English)
Quanli; Dong; Dawei; Yuan; Shoujun; Wang; Xun; Liu; Yutong; Li; Xiaoxuan; Lin; Huigang; Wei; Jiayong; Zhong; Shaoen; Jiang; Yongkun; Ding; Bobin; Jiang; Kai; Du; Yongjian; Tang; Mingyang; Yu; Xiantu; He; Neng; Hua; Zhanfeng; Qiao; Kuixi; Huang; Ming; Chen; Jianqiang; Zhu; Gang; Zhao; Zhengming; Sheng; Jie; Zhang
2013-01-01
The driving mechanism of solar flares and coronal mass ejections is a topic of ongoing debate, apart from the consensus that magnetic reconnection plays a key role during the impulsive process. While present solar research mostly depends on observations and theoretical models, laboratory experiments based on high-energy density facilities provide the third method for quantitatively comparing astrophysical observations and models with data achieved in experimental settings.In this article, we show laboratory modeling of solar flares and coronal mass ejections by constructing the magnetic reconnection system with two mutually approaching laser-produced plasmas circumfused of self-generated megagauss magnetic fields. Due to the Euler similarity between the laboratory and solar plasma systems, the present experiments demonstrate the morphological reproduction of flares and coronal mass ejections in solar observations in a scaled sense,and confirm the theory and model predictions about the current-sheet-born anomalous plasmoid as the initial stage of coronal mass ejections, and the behavior of moving-away plasmoid stretching the primary reconnected field lines into a secondary current sheet conjoined with two bright ridges identified as solar flares.
The formation of anomalous Hall effect depending on W atoms in ZnO thin films
Energy Technology Data Exchange (ETDEWEB)
Can, Musa Mutlu, E-mail: musamutlucan@gmail.com [Faculty of Engineering and Natural Sciences, Nanotechnology Research and Application Center, Sabancı University, Tuzla, 34956 İstanbul (Turkey); CNR-SPIN, Universitá di Napoli “Federico II”, Compl. Univ. di Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy); Shah, S. Ismat [Department of Physics and Astronomy, Department of Material Science and Engineering, University of Delaware, Newark, DE 19716 (United States); Fırat, Tezer [Department of Physics Engineering, Hacettepe University, Beytepe 06800 Ankara (Turkey)
2014-06-01
This article investigates the effects of intrinsic point defects and extrinsic W atoms on magneto electrical properties in the ZnO lattice. The analyses were accomplished for ∼0.5% W including ZnO thin films, grown using a radio frequency (RF) magnetron sputtering system. The polarized spin current dependent magnetic formation was investigated by longitudinal and transverse magneto electrical measurements in a temperature range of 5 K to 300 K. The positive magneto resistivity (PMR) ratios reached 28.8%, 12.7%, and 17.6% at 5 K for thin films, having different post-deposition annealing conditions as a consequence of ionic W dependent defects in the lattice. Furthermore, an anomalous Hall effect, originating from polarized spin currents, was understood from the split in Hall resistance versus magnetic field (R{sub xy}(H)) curves for the thin film with high amount of Zn{sup 2+} and W{sup 6+} ionic defects.
Gopalswamy, Nat; Akiyama, Sachiko; Yashiro, Seiji; Xie, Hong; Makela, Pertti; Michalek, Grzegorz
2014-01-01
The familiar correlation between the speed and angular width of coronal mass ejections (CMEs) is also found in solar cycle 24, but the regression line has a larger slope: for a given CME speed, cycle 24 CMEs are significantly wider than those in cycle 23. The slope change indicates a significant change in the physical state of the heliosphere, due to the weak solar activity. The total pressure in the heliosphere (magnetic + plasma) is reduced by approximately 40%, which leads to the anomalous expansion of CMEs explaining the increased slope. The excess CME expansion contributes to the diminished effectiveness of CMEs in producing magnetic storms during cycle 24, both because the magnetic content of the CMEs is diluted and also because of the weaker ambient fields. The reduced magnetic field in the heliosphere may contribute to the lack of solar energetic particles accelerated to very high energies during this cycle.
The origin of compact galaxies with anomalously high black hole masses
Barber, Christopher; Bower, Richard G; Crain, Robert A; Schaller, Matthieu; Theuns, Tom
2016-01-01
Observations of local galaxies harbouring supermassive black holes (BH) of anomalously high mass, M_BH, relative to their stellar mass, M_star, appear to be at odds with simple models of the co-evolution between galaxies and their central BHs. We study the origin of such outliers in a LCDM context using the EAGLE cosmological, hydrodynamical simulation. We find 15 "M_BH(M_star)-outlier" galaxies, defined as having M_BH more than 1.5 dex above the median M_BH(M_star) relation in the simulation, M_{BH,med}. All M_BH(M_star)-outliers are satellite galaxies, typically with M_star ~ 10^10 M_sun and M_BH ~ 10^8 M_sun. They have all become outliers primarily due to tidal stripping of their outer stellar component acting over several Gyr, with a secondary effect of rapid BH growth at high-z causing some to lie approximately 1 dex above the z=0 relation prior to stripping. The same mechanisms also cause the M_BH(M_star)-outlier satellites to be amongst the most compact galaxies in the simulation, making them ideal can...
Thickness Dependence of the Quantum Anomalous Hall Effect in Magnetic Topological Insulator Films.
Feng, Xiao; Feng, Yang; Wang, Jing; Ou, Yunbo; Hao, Zhenqi; Liu, Chang; Zhang, Zuocheng; Zhang, Liguo; Lin, Chaojing; Liao, Jian; Li, Yongqing; Wang, Li-Li; Ji, Shuai-Hua; Chen, Xi; Ma, Xucun; Zhang, Shou-Cheng; Wang, Yayu; He, Ke; Xue, Qi-Kun
2016-08-01
The evolution of the quantum anomalous Hall effect with the thickness of Cr-doped (Bi,Sb)2 Te3 magnetic topological insulator films is studied, revealing how the effect is caused by the interplay of the surface states, band-bending, and ferromagnetic exchange energy. Homogeneity in ferromagnetism is found to be the key to high-temperature quantum anomalous Hall material.
The origin of compact galaxies with anomalously high black hole masses
Barber, Christopher; Schaye, Joop; Bower, Richard G.; Crain, Robert A.; Schaller, Matthieu; Theuns, Tom
2016-07-01
Observations of local galaxies harbouring supermassive black holes (BH) of anomalously high mass, MBH, relative to their stellar mass, M*, appear to be at odds with simple models of the co-evolution between galaxies and their central BHs. We study the origin of such outliers in a Λ cold dark matter context using the EAGLE cosmological, hydrodynamical simulation. We find 15 `MBH(M*)-outlier' galaxies, defined as having MBH more than 1.5 dex above the median MBH(M*) relation in the simulation, MBH, med(M*). All MBH(M*)-outliers are satellite galaxies, typically with M* ˜ 1010 M⊙ and MBH ˜ 108 M⊙. They have all become outliers due to a combination of tidal stripping of their outer stellar component acting over several Gyr and early formation times leading to rapid BH growth at high redshift, with the former mechanism being most important for 67 per cent of these outliers. The same mechanisms also cause the MBH(M*)-outlier satellites to be amongst the most compact galaxies in the simulation, making them ideal candidates for ultracompact dwarf galaxy progenitors. The 10 most extreme central galaxies found at z = 0 (with log10(MBH/MBH, med(M*)) ∈ [1.2, 1.5]) grow rapidly in MBH to lie well above the present-day MBH - M* relation at early times (z ≳ 2), and either continue to evolve parallel to the z = 0 relation or remain unchanged until the present day, making them `relics' of the high-redshift universe. This high-z formation mechanism may help to explain the origin of observed MBH(M*)-outliers with extended dark matter haloes and undisturbed morphologies.
Shear viscosity of liquid mixtures Mass dependence
Kaushal, R
2002-01-01
Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model.
Anomalous temperature dependent photoluminescence properties of CdSxSe1-x quantum dots
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
CdSxSe1-x quantum dots were fabricated by a simple spin-coating heat volatilization method on InP wafer.Temperature dependent photoluminescence of CdSxSe1-x quantum dots was carried out in a range of 10-300 K.The integrated photoluminescence intensity revealed an anomalous behavior with increasing temperature in the range of 180-200 K.The band gap energy showed a redshift of 61.34 meV when the temperature increased from 10 to 300 K.The component ratio of S to Se in the CdSxSe1-x quantum dots was valued by both the X-ray diffraction data and photoluminescence peak energy at room temperature according to Vegard Law.Moreover,the parameters of the Varshni relation for CdS0.9Se0.1 materials were also obtained using photoluminescence peak energy as a function of temperature and the best-fit curve:α=(3.5 ± 0.1)10-4 eV/K,and β=210 ± 10 K (close to the Debye temperature θD of the material).
Qomi, Mohammad Javad Abdolhosseini; Bauchy, Mathieu; Ulm, Franz-Josef; Pellenq, Roland J-M
2014-02-07
With shear interest in nanoporous materials, the ultraconfining interlayer spacing of calcium-silicate-hydrate (C-S-H) provides an excellent medium to study reactivity, structure, and dynamic properties of water. In this paper, we present how substrate composition affects chemo-physical properties of water in ultraconfined hydrophilic media. This is achieved by performing molecular dynamics simulation on a set of 150 realistic models with different compositions of calcium and silicon contents. It is demonstrated that the substrate chemistry directly affects the structural properties of water molecules. The motion of confined water shows a multi-stage dynamics which is characteristic of supercooled liquids and glassy phases. Inhomogeneity in that dynamics is used to differentiate between mobile and immobile water molecules. Furthermore, it is shown that the mobility of water molecules is composition-dependent. Similar to the pressure-driven self-diffusivity anomaly observed in bulk water, we report the first study on composition-driven diffusion anomaly, the self diffusivity increases with increasing confined water density in C-S-H. Such anomalous behavior is explained by the decrease in the typical activation energy required for a water molecule to escape its dynamical cage.
Anomalous length dependence of the conductance of graphene nanoribbons with zigzag edges
Bilić, Ante
2013-01-01
Charge transport through two sets of symmetric graphene nanoribbons with zigzag shaped edges in a two-terminal device has been investigated, using density functional theory combined with the non-equilibrium Green\\'s function method. The conductance has been explored as a function of nanoribbon length, bias voltage, and the strength of terminal coupling. The set of narrower nanoribbons, in the form of thiolated linear acenes, shows an anomalous length dependence of the conductance, which at first exhibits a drop and a minimum, followed by an evident rise. The length trend is shown to arise because of a gradual transformation in the transport mechanism, which changes from being governed by a continuum of out-of-plane π type and in-plane state channels to being fully controlled by a single, increasingly more resonant, occupied π state channel. For the set of nanoribbons with a wider profile, a steady increase is observed across the whole length range, owing to the absence of the former transport mechanism. The predicted trends are confirmed by the inclusion of self-interaction correction in the calculations. For both sets of nanoribbons the replacement of the strongly coupling thiol groups by weakly bonding phenathroline has been found to cause a strong attenuation with the length and a generally low conductance. © 2013 American Institute of Physics.
Energy Technology Data Exchange (ETDEWEB)
Kim, Sang-Il; Seo, Min-Su; Park, Seung-Young, E-mail: parksy@kbsi.re.kr [Division of Materials Science, Korea Basic Science Institute, Daejeon 305-806 (Korea, Republic of); Kim, Dong-Jun; Park, Byong-Guk [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)
2015-05-07
The dependence of the measured DC voltage on the non-magnetic material (NM) in NM/CoFeB and CoFeB/NM bilayers is studied under ferromagnetic resonance conditions in a TE{sub 011} resonant cavity. The directional change of the inverse spin Hall effect (ISHE) voltage V{sub ISHE} for the stacking order of the bilayer can separate the pure V{sub ISHE} and the anomalous Hall effect (AHE) voltage V{sub AHE} utilizing the method of addition and subtraction. The Ta and Ti NMs show a broad deviation of the spin Hall angle θ{sub ISH}, which originates from the AHE in accordance with the high resistivity of NMs. However, the Pt and Pd NMs show that the kinds of NMs with low resistivity are consistent with the previously reported θ{sub ISH} values. Therefore, the characteristics that NM should simultaneously satisfy to obtain a reasonable V{sub ISHE} value in bilayer systems are large θ{sub ISH} and low resistivity.
Hakala, J; Gorelov, D; Eronen, T; Jokinen, A; Kankainen, A; Kolhinen, V S; Kortelainen, M; Moore, I D; Penttilä, H; Rinta-Antila, S; Rissanen, J; Saastamoinen, A; Sonnenschein, V; Äystö, J
2012-01-01
Atomic masses of the neutron-rich isotopes $^{121-128}$Cd, $^{129,131}$In, $^{130-135}$Sn, $^{131-136}$Sb, and $^{132-140}$Te have been measured with high precision (10 ppb) using the Penning trap mass spectrometer JYFLTRAP. Among these, the masses of four r-process nuclei $^{135}$Sn, $^{136}$Sb, and $^{139,140}$Te were measured for the first time. The data reveals a strong $N$=82 shell gap at $Z$=50 but indicates the importance of correlations for $Z>50$. An empirical neutron pairing gap expressed as the odd-even staggering of isotopic masses shows a strong quenching across $N$=82 for Sn, with the $Z$-dependence that is unexplainable by the current theoretical models.
Mass Dependence of Disappearance of Transverse Flow
Sood, A D; Sood, Aman D.; Puri, Rajeev K.
2004-01-01
A complete theoretical study is presented for the disappearance of flow, for the first time, by analyzing 15 reactions with masses between 47 and 476 units. We demonstrate that the effect of nucleon-nucleon cross-section reduces to insignificant level for heavier colliding nuclei in agreement with previous studies. A stiff equation of state with nucleon-nucleon cross-sections of 35-40 mb is able to explain all the measured balance energies within few percent. A power law is also given for the mass dependence of the disappearance of flow which is in excellent agreement with experimental data.
Charge-dependent correlations from event-by-event anomalous hydrodynamics
Hirono, Yuji; Kharzeev, Dmitri E
2016-01-01
We report on our recent attempt of quantitative modeling of the Chiral Magnetic Effect (CME) in heavy-ion collisions. We perform 3+1 dimensional anomalous hydrodynamic simulations on an event-by-event basis, with constitutive equations that contain the anomaly-induced effects. We also develop a model of the initial condition for the axial charge density that captures the statistical nature of random chirality imbalances created by the color flux tubes. Basing on the event-by-event hydrodynamic simulations for hundreds of thousands of collisions, we calculate the correlation functions that are measured in experiments, and discuss how the anomalous transport affects these observables.
Quark mass dependence of H-dibaryon
Yamaguchi, Yasuhiro
2016-01-01
The H-dibaryon is the exotic multiquark state with baryon number 2 and strangeness $-2$. The existence of the deeply bound H-dibaryon is excluded by the observation of the double hypernuclei. However the recent Lattice QCD simulations have found the bound state below the $\\Lambda\\Lambda$ threshold with large quark masses by HALQCD and NPLQCD collaborations. In this talk, the quark mass dependence of the H-dibaryon mass is discussed using the pionless effective field theory (EFT) where a bare H-dibaryon field is coupled with two-baryon states. We determine the parameters in this theory by fitting the recent Lattice QCD results in the SU(3) limit. As a result, we obtain the attractive scattering length at the physical point where the H-dibaryon is unbound.
Jiang, Shao-Jian; Zhou, Fei
2015-07-01
The stability of Bose gases near resonance has been a puzzling problem in recent years. In this article, we demonstrate that in addition to generating thermal pressure, thermal atoms enhance the repulsiveness of the scale-dependent interactions between condensed atoms due to a renormalization effect and further stabilize the Bose gases. Consequently, we find that, as a precursor of instability, the compressibility develops an anomalous structure as a function of scattering length and is drastically reduced compared with the mean-field value. Furthermore, the density profile of a Bose gas in a harmonic trap is found to develop a flat top near the center. This is due to the anomalous behavior of compressibility and can be a potential smoking gun for probing such an effect.
Anomalous Velocity Dependence of the Friction Coefficient of an Air Supported Pulley
Crismani, Matteo; Nauenberg, Michael
2009-11-01
A standard undergraduate lab exercise to verify Newton's law, F = ma, is to measure the acceleration a of a glider of mass m suspended on an air track. In our experiment the glider is accelerated by a thin tape attached to the glider at one end, and to a weight of mass M at the other end. The weight hangs vertically via a pulley over which the tape is suspended by air pressure. In the absence of friction, the force pulling the glider is F = (M m/(M + m)g, where g is the acceleration of gravity. To the accuracy provided by the fast electronic timers (accurate to 1/10000 second) used in our experiment to measure the velocity and the acceleration of the glider, we verified that the friction due to the air track can be neglected. But we found that this is not the case for the friction due to the air pulley which adds a component -v/T to the force F on the glider, where T is the friction coefficient. We have measured the dependence of this coefficient on v, and found an excellent analytic fit to our data. This fit deviates considerable from the conventional assumption that 1/T is a constant and/or depends linearly on v.
Anomalous temperature dependence of H{sub c2} in BiSrCuO
Energy Technology Data Exchange (ETDEWEB)
Broto, J.M. [Service National Des Champs Magnetiques Pulses, 31077 Toulouse Cedex (France); Rakoto, H. [Service National Des Champs Magnetiques Pulses, 31077 Toulouse Cedex (France); Ousset, J.C. [Service National Des Champs Magnetiques Pulses, 31077 Toulouse Cedex (France); Coffe, G. [Service National Des Champs Magnetiques Pulses, 31077 Toulouse Cedex (France); Askenazy, S. [Service National Des Champs Magnetiques Pulses, 31077 Toulouse Cedex (France); Osofsky, M.S. [Naval Research Laboratory, Washington, DC 20375-5000 (United States); Soulen, R.J. Jr. [Naval Research Laboratory, Washington, DC 20375-5000 (United States); Wolf, S.A. [Naval Research Laboratory, Washington, DC 20375-5000 (United States); Pari, P. [Centre d`Etudes de Saclay, Service de Physique de l`Etat Condense, Laboratoire des Basses Temperatures, 91191 Gif-sur-Yvette (France); Bozovic, I. [Edward L. Ginzton Research Center, Varian Associates, Palo Alto, CA 94304-1025 (United States); Eckstein, J.N. [Edward L. Ginzton Research Center, Varian Associates, Palo Alto, CA 94304-1025 (United States); Virshup, G.F. [Edward L. Ginzton Research Center, Varian Associates, Palo Alto, CA 94304-1025 (United States)
1995-05-01
H{sub c2}(T) has been measured for thin BSCO films at temperatures down to 65 mK and pulsed fields up to 35 T. H{sub c2}(T) diverged anomalously as the temperature decreased: at the lowest temperature, it was five times that expected for a conventional superconductor. Although deviations from the conventional behavior have been observed in other superconductors, such strong divergence over such a large range of reduced temperature has not been seen before. (orig.).
Kimball, D F Jackson; Valdez, J; Swiatlowski, J; Rios, C; Peregrina-Ramirez, R; Montcrieffe, C; Kremer, J; Dudley, J; Sanchez, C
2013-01-01
The experimental concept of a search for a long-range coupling between rubidium (Rb) nuclear spins and the mass of the Earth is described. The experiment is based on simultaneous measurement of the spin precession frequencies for overlapping ensembles of Rb-85 and Rb-87 atoms contained within an evacuated, antirelaxation-coated vapor cell. Rubidium atoms are spin-polarized in the presence of an applied magnetic field by synchronous optical pumping with circularly polarized laser light. Spin precession is probed by measuring optical rotation of far-off-resonant, linearly polarized laser light. Simultaneous measurement of Rb-85 and Rb-87 spin precession frequencies enables suppression of magnetic-field-related systematic effects. The nuclear structure of the Rb isotopes makes the experiment particularly sensitive to anomalous spin-dependent interactions of the proton. Experimental sensitivity and a variety of systematic effects are discussed, and initial data are presented.
Biswas, Anirban; Choubey, Sandhya; Khan, Sarif
2016-09-01
The observation of neutrino masses, mixing and the existence of dark matter are amongst the most important signatures of physics beyond the Standard Model (SM). In this paper, we propose to extend the SM by a local L μ - L τ gauge symmetry, two additional complex scalars and three right-handed neutrinos. The L μ - L τ gauge symmetry is broken spontaneously when one of the scalars acquires a vacuum expectation value. The L μ - L τ gauge symmetry is known to be anomaly free and can explain the beyond SM measurement of the anomalous muon ( g - 2) through additional contribution arising from the extra Z μτ mediated diagram. Small neutrino masses are explained naturally through the Type-I seesaw mechanism, while the mixing angles are predicted to be in their observed ranges due to the broken L μ - L τ symmetry. The second complex scalar is shown to be stable and becomes the dark matter candidate in our model. We show that while the Z μτ portal is ineffective for the parameters needed to explain the anomalous muon ( g - 2) data, the correct dark matter relic abundance can easily be obtained from annihilation through the Higgs portal. Annihilation of the scalar dark matter in our model can also explain the Galactic Centre gamma ray excess observed by Fermi-LAT. We show the predictions of our model for future direct detection experiments and neutrino oscillation experiments.
Anomalous temperature dependence of the current in a metal-oxide-polymer resistive switching diode
Energy Technology Data Exchange (ETDEWEB)
Gomes, Henrique L; Rocha, Paulo R F; Kiazadeh, Asal [Center of Electronics Optoelectronics and Telecommunications (CEOT) Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); De Leeuw, Dago M [Philips Research Laboratories, Professor Holstlaan 4, 5656 AA Eindhoven (Netherlands); Meskers, Stefan C J, E-mail: hgomes@ualg.pt [Molecular Materials and Nanosystems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)
2011-01-19
Metal-oxide polymer diodes exhibit non-volatile resistive switching. The current-voltage characteristics have been studied as a function of temperature. The low-conductance state follows a thermally activated behaviour. The high-conductance state shows a multistep-like behaviour and below 300 K an enormous positive temperature coefficient. This anomalous behaviour contradicts the widely held view that switching is due to filaments that are formed reversibly by the diffusion of metal atoms. Instead, these findings together with small-signal impedance measurements indicate that creation and annihilation of filaments is controlled by filling of shallow traps localized in the oxide or at the oxide/polymer interface.
Blum, Thomas; Hayakawa, Masashi; Izubuchi, Taku; Jin, Luchang; Jung, Chulwoo; Lehner, Christoph
2016-01-01
We report a lattice QCD calculation of the hadronic light-by-light contribution to the muon anomalous magnetic moment at physical pion mass. The calculation includes the connected diagrams and the leading, quark-line-disconnected diagrams. We incorporate algorithmic improvements developed in our previous work. The calculation was performed on the $48^3 \\times 96$ ensemble generated with a physical-pion-mass and a 5.5 fm spatial extent by the RBC and UKQCD collaborations using the chiral, domain wall fermion (DWF) formulation. We find $a_\\mu^{\\text{HLbL}} = 5.35 (1.35) \\times 10^{- 10}$, where the error is statistical only. The finite-volume and finite lattice-spacing errors could be quite large and are the subject of on-going research. The omitted disconnected graphs, while expected to give a correction of order 10\\%, also need to be computed.
Quark-mass dependence of baryon resonances
Energy Technology Data Exchange (ETDEWEB)
Lutz, M.F.M. [Gesellschaft fuer Schwerionenforschung (GSI), Planck Str. 1, D-64291 Darmstadt (Germany) and Institut fuer Kernphysik, TU Darmstadt, D-64289 Darmstadt (Germany)]. E-mail: m.lutz@gsi.de; Garcia-Recio, C. [Departamento de Fisica Moderna, Universidad de Granada, E-18071 Granada (Spain); Kolomeitsev, E.E. [Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Nieves, J. [Departamento de Fisica Moderna, Universidad de Granada, E-18071 Granada (Spain)
2005-05-30
We study the quark-mass dependence of JP=12- s-wave and JP=32- d-wave baryon resonances. Parameter-free results are obtained in terms of the leading order chiral Lagrangian. In the 'heavy' SU(3) limit with m{pi}=mK{approx}500 MeV the s-wave resonances turn into bound states forming two octets plus a singlet representations of the SU(3) group. Similarly the d-wave resonances turn into bound states forming an octet and a decuplet in this limit. A contrasted result is obtained in the 'light' SU(3) limit with m{pi}=mK{approx}140 MeV for which no resonances exist.
Institute of Scientific and Technical Information of China (English)
Juan Yang; Yu Liu; Daqi Zhang; Xiao Wang; Ruoming Li; Yan Li
2015-01-01
Owing to the unique conjugated structure, the chemical-reaction selectivity of single-walled carbon nanotubes （SWNTs） has attracted great attention. By utilizing the radial deformation of SWNTs caused by the strong interactions with the quartz lattice, we achieve an anomalous diameter-dependent reaction selectivity of quartz lattice-oriented SWNTs in treatment with iodine vapor; this is distinctly different from the widely reported and well accepted higher reaction activity in small-diameter tubes compared to large-diameter tubes. The radial deformation of SWNTs on quartz substrate is verified by detailed Raman spectroscopy and mappings in both G-band and radial breathing mode. Due to the strong interaction between SWNTs and the quartz lattice, large-diameter tubes present a larger degree of radial deformation and more delocalized partial electrons are distributed at certain sidewall sites with high local curvature. It is thus easier for the carbon--carbon bonds at these high-curvature sites on large-diameter tubes to break down during reaction. This anomalous reaction activity offers a novel approach for selective removal of small-band~aD large-diameter tubes.
Size-dependent anomalous dielectric behavior in La2O3: SiO2 nano-glass composite system
Kao, T. H.; Mukherjee, S.; Lin, Y. H.; Chou, C. C.; Yang, H. D.
2012-12-01
An intriguing anomalous dielectric behavior is observed in nanoparticle (NP) La2O3: SiO2 nano-glass composite system synthesized via sol-gel route at different calcination temperatures. Temperature dependent dielectric properties exhibit a notable dielectric broadening, indicating of diffuse phase transition with high ɛ', quite different from and much higher than pure bulk La2O3 and SiO2. We postulate such dielectric effect in the context of the oxygen vacancies of the rare earth oxide nano-glass composite, where lattice strain related with NPs and their size plays a vital role. Such a material might be treated as a potential candidate to solve the problem of devices miniaturization.
Biswas, Anirban; Khan, Sarif
2016-01-01
The observation of neutrino masses, mixing and the existence of dark matter are amongst the most important signatures of physics beyond the Standard Model (SM). In this paper, we propose to extend the SM by a local $L_\\mu - L_\\tau$ gauge symmetry, two additional complex scalars and three right-handed neutrinos. The $L_\\mu - L_\\tau$ gauge symmetry is broken spontaneously when one of the scalars acquires a vacuum expectation value. The $L_\\mu - L_\\tau$ gauge symmetry is known to be anomaly free and can explain the beyond SM measurement of the anomalous muon $({\\rm g-2})$ through additional contribution arising from the extra $Z_{\\mu\\tau}$ mediated diagram. Small neutrino masses are explained naturally through the Type-I seesaw mechanism, while the mixing angles are predicted to be in their observed ranges due to the broken $L_\\mu-L_\\tau$ symmetry. The second complex scalar is shown to be stable and becomes the dark matter candidate in our model. We show that while the $Z_{\\mu\\tau}$ portal is ineffective for the...
Mass anomalous dimension and running of the coupling in SU(2) with six fundamental fermions
DEFF Research Database (Denmark)
Bursa, Francis; Del Debbio, Luigi; Keegan, Liam
2010-01-01
We simulate SU(2) gauge theory with six massless fundamental Dirac fermions. By using the Schr\\"odinger Functional method we measure the running of the coupling and the fermion mass over a wide range of length scales. We observe very slow running of the coupling and construct an estimator...
Energy Technology Data Exchange (ETDEWEB)
Burger, Florian [Humboldt U. Berlin; Feng, Xu [KEK; Hotzel, Grit [Humboldt U. Berlin; Jansen, Karl [DESY; Petschlies, Marcus [The Cyprus Institute; Renner, Dru B. [JLAB
2013-11-01
We present results for the leading order QCD correction to the anomalous magnetic moment of the muon including the first two generations of quarks as dynamical degrees of freedom. Several light quark masses are examined in order to yield a controlled extrapolation to the physical pion mass. We analyse ensembles for three different lattice spacings and several volumes in order to investigate lattice artefacts and finite-size effects, respectively. We also provide preliminary results for this quantity for two flavours of mass-degenerate quarks at the physical value of the pion mass.
Energy Technology Data Exchange (ETDEWEB)
Burger, Florian; Hotzel, Grit [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Feng, Xu [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Petschlies, Marcus [The Cyprus Institute, Nicosia (Cyprus); Renner, Dru B. [Jefferson Lab, Newport News, VA (United States)
2013-12-15
We present results for the leading order QCD correction to the anomalous magnetic moment of the muon including the first two generations of quarks as dynamical degrees of freedom. Several light quark masses are examined in order to yield a controlled extrapolation to the physical pion mass. We analyse ensembles for three different lattice spacings and several volumes in order to investigate lattice artefacts and finite-size effects, respectively. We also provide preliminary results for this quantity for two flavours of mass-degenerate quarks at the physical value of the pion mass.
Ritter, D.; Hamm, R. A.; Feygenson, A.; Panish, M. B.
1992-06-01
The collector multiplication in InP/Ga0.47In0.53As heterojunction bipolar transistors was found to increase with temperature, and to have a weak electric field dependence. This anomalous behavior has a profound impact on device characteristics.
Anomalous Particle Size Dependence of Magnetic Relaxation Phenomena in Goethite Nanoparticles
DEFF Research Database (Denmark)
Frandsen, Cathrine; Madsen, Daniel Esmarch; Boothroyd, Chris B.
2015-01-01
By use of Mossbauer spectroscopy we have studied the magnetic properties of samples of goethite nanoparticles with different particle size. The spectra are influenced by fluctuations of the magnetization directions, but the size dependence is not in accordance with the Neel-Brown expression for s...
Anomalous excitation-power-dependent photoluminescence of InGaAsN/GaAs T-shaped quantum wire
Energy Technology Data Exchange (ETDEWEB)
Klangtakai, Pawinee; Pimanpang, Samuk [Faculty of Science, Department of Physics, Khon Kaen University, 123 Mittraphap Rd., Muang, Khon Kaen, 40002 (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen, 40002 (Thailand); Integrated Nanotechnology Research Center, Khon Kaen University, Khon Kaen, 40002 (Thailand); Sanorpim, Sakuntam [Faculty of Science, Department of Physics, Chulalongkorn University, Phayathai Rd., Patumwan, Bangkok, 10330 (Thailand); Karlsson, Fredrik; Holtz, Per Olof [Department of Physics, Chemistry, and Biology (IFM), Linkoeping University, 58183, Linkoeping (Sweden); Onabe, Kentaro [Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561 (Japan)
2014-08-15
The selected InGaAsN/GaAs T-shaped quantum wire (T-QWR) fabricated by metal organic vapor phase epitaxy has been investigated by microphotoluminescence (μ-PL) and excitation-power-dependent μ-PL. The optical characteristics of one-dimensional structure were taken at low-temperature (4 K) and room temperature (RT) to clarify the intersection of two familiar quantum wells (QWs) in the [001] and [110] directions, named QW1 and QW2, respectively. For the excitation-power-dependent measurement, the intensity of the excitation source was used in the range of 0.001I{sub 0} to I{sub 0}. The result shows that all of emissions related to QW1 and QWR peaks have a nonsymmetric line shape as evidenced by the tailing on the lower-energy side. All peaks shift to higher-energy side (blueshift) with the increase of the excitation power intensity. The blueshift and the low-energy tailing of PL peaks are attributed to the alloying effect. However, the emission peak related to QWR region shows a larger blueshift rate than that of QW1 on increasing of the excitation power intensity. This is an anomalous characteristic for the low-dimensional structure, affected by the large fluctuation state in the QWR region. This fluctuation state is combined of both edges of QWs (QW1 and QW2). (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Glacier mass balance in high-arctic areas with anomalous gravity
Sharov, A.; Rieser, D.; Nikolskiy, D.
2012-04-01
All known glaciological models describing the evolution of Arctic land- and sea-ice masses in changing climate treat the Earth's gravity as horizontally constant, but it isn't. In the High Arctic, the strength of the gravitational field varies considerably across even short distances under the influence of a density gradient, and the magnitude of free air gravity anomalies attains 100 mGal and more. On long-term base, instantaneous deviations of gravity can have a noticeable effect on the regime and mass budget of glaciological objects. At best, the gravity-induced component of ice mass variations can be determined on topographically smooth, open and steady surfaces, like those of arctic planes, regular ice caps and landfast sea ice. The present research is devoted to studying gravity-driven impacts on glacier mass balance in the outer periphery of four Eurasian shelf seas with a very cold, dry climate and rather episodic character of winter precipitation. As main study objects we had chosen a dozen Russia's northernmost insular ice caps, tens to hundreds of square kilometres in extent, situated in a close vicinity of strong gravity anomalies and surrounded with extensive fields of fast and/or drift ice for most of the year. The supposition about gravitational forcing on glacioclimatic settings in the study region is based on the results of quantitative comparison and joint interpretation of existing glacier change maps and available data on the Arctic gravity field and solid precipitation. The overall mapping of medium-term (from decadal to half-centennial) changes in glacier volumes and quantification of mass balance characteristics in the study region was performed by comparing reference elevation models of study glaciers derived from Russian topographic maps 1:200,000 (CI = 20 or 40 m) representing the glacier state as in the 1950s-1980s with modern elevation data obtained from satellite radar interferometry and lidar altimetry. Free-air gravity anomalies were
Iha, Hisashi; Suzuki, Hiroshi
2016-01-01
We study four-dimensional conformal field theories with an $SU(N)$ global symmetry by employing the numerical conformal bootstrap. We consider the crossing relation associated with a four-point function of a spin~$0$ operator~$\\phi_i^{\\Bar{k}}$ which belongs to the adjoint representation of~$SU(N)$. For~$N=12$ for example, we found that the theory contains a spin~$0$ $SU(12)$-breaking relevant operator if the scaling dimension of~$\\phi_i^{\\Bar{k}}$, $\\Delta_{\\phi_i^{\\Bar{k}}}$, is smaller than~$1.63$. Considering the lattice simulation of the many-flavor QCD with $12$~flavors on the basis of the staggered fermion, the above $SU(12)$-breaking relevant operator, if it exists, would be induced by the flavor breaking effect of the staggered fermion and would prevent an approach to an infrared fixed point. Actual lattice simulations do not show such signs. Thus, assuming the absence of the above $SU(12)$-breaking relevant operator, we have an upper bound on the mass anomalous dimension at the fixed point~$\\gamma_m...
Energy Technology Data Exchange (ETDEWEB)
Kimball, Derek F.J.; Lacey, Ian; Valdez, Julian; Swiatlowski, Jerlyn; Rios, Cesar; Peregrina-Ramirez, Rodrigo; Montcrieffe, Caitlin; Kremer, Jackie; Dudley, Jordan; Sanchez, C. [Department of Physics, California State University - East Bay, Hayward, California, 94542-3084 (United States)
2013-07-15
The experimental concept of a search for a long-range coupling between rubidium (Rb) nuclear spins and the mass of the Earth is described. The experiment is based on simultaneous measurement of the spin precession frequencies for overlapping ensembles of {sup 85}Rb and {sup 87}Rb atoms contained within an evacuated, antirelaxation-coated vapor cell. Rubidium atoms are spin-polarized in the presence of an applied magnetic field by synchronous optical pumping with circularly polarized laser light. Spin precession is probed by measuring optical rotation of far-off-resonant, linearly polarized laser light. Simultaneous measurement of {sup 85}Rb and {sup 87}Rb spin precession frequencies enables suppression of magnetic-field-related systematic effects. The nuclear structure of the Rb isotopes makes the experiment particularly sensitive to anomalous spin-dependent interactions of the proton. Experimental sensitivity and a variety of systematic effects are discussed, and initial data are presented. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Computation of quark mass anomalous dimension at $O(1/N_{f}^{2})$ in quantum chromodynamics
Ciuchini, M; Gracey, J A; Manashov, A N
2000-01-01
We present the formalism to calculate d-dimensional critical exponents in QCD in the large N_f expansion where N_f is the number of quark flavours. It relies in part on demonstrating that at the d-dimensional fixed point of QCD the critical theory is equivalent to a non-abelian version of the Thirring model. We describe the techniques used to compute critical two and three loop Feynman diagrams and as an application determine the quark wave function, eta, and mass renormalization critical exponents at O(1/N_f^2) in d-dimensions. Their values when expressed in relation to four dimensional perturbation theory are in exact agreement with the known four loop MSbar results. Moreover, new coefficients in these renormalization group functions are determined to six loops and O(1/N_f^2). The computation of the exponents in the Schwinger Dyson approach is also provided and an expression for eta in arbitrary covariant gauge is given.
Temperature dependence anomalous dielectric relaxation in Co doped ZnO nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Ansari, Sajid Ali; Nisar, Ambreen; Fatma, Bushara [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z.H. College of Engg. and Tech., Aligarh Muslim University, Aligarh 202 002 (India); Khan, Wasi, E-mail: wasiamu@gmail.com [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z.H. College of Engg. and Tech., Aligarh Muslim University, Aligarh 202 002 (India); Chaman, M. [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z.H. College of Engg. and Tech., Aligarh Muslim University, Aligarh 202 002 (India); Mewat Engg. College (Wakf) Mewat, Haryana (India); Azam, Ameer [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z.H. College of Engg. and Tech., Aligarh Muslim University, Aligarh 202 002 (India); Centre of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Naqvi, A.H. [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z.H. College of Engg. and Tech., Aligarh Muslim University, Aligarh 202 002 (India)
2012-12-15
Graphical abstract: Display Omitted Highlights: ► We prepared Co doped ZnO by facile gel-combustion method. ► Studied temperature dependent dielectric properties in detail. ► Relaxation time shifts toward the higher temperature as increase in Co content. ► SEM analysis shows formation and agglomeration of nanoparticles. ► Dielectric constants, loss and ac conductivity increases with rise in temperature. ► The dielectric constant, loss and ac conductivity decreases as Co ion increases. -- Abstract: We have reported temperature and frequency dependence of dielectric behavior of nanocrystalline Zn{sub 1−x}Co{sub x}O (x = 0.0, 0.01, 0.05 and 0.1) samples prepared by gel-combustion method. The synthesized samples were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and LCR-meter, respectively. The XRD analysis reveals that ZnO has a hexagonal (wurtzite) crystal structure. The morphology and size of the nanoparticles (∼10–25 nm) were observed by SEM for 5% Co doped ZnO sample. In dielectric properties, complex permittivity (ε{sup *} = ε′ − jε″), loss tangent (tan δ) and ac conductivity (σ{sub ac}) in the frequency range 75 kHz to 5 MHz were analyzed with temperature range 150–400 °C. The experimental results indicate that ε′, ε″, tan δ and σ{sub ac} decreases with increase in frequency and temperature. The transition temperature as obtained in dispersion curve of dielectric constant shifts toward higher temperature with increase Co content.
Institute of Scientific and Technical Information of China (English)
YANG Xin-Rong; XU Bo; WANG Hai-Fei; ZHAO Guo-Qing; SHI Shu-Hui; SHEN Xiao-Zhi; LI Jun-Feng; WANG Zhan-Guo
2011-01-01
Self-assembled InAs quantum wires (QWRs) are fabricated on an InP substrate by solid-source molecular beam epitaxy (SSMBE). Photoluminescence (PL) spectra are investigated in these nanostructures as a function of temperature. An anomalous enhancement of PL intensity and a temperature insensitive PL emission are observed from lnAs nanostructures grown on InP substrates using lnAIGaAs as the matrix layer and the origin of this phenomenon is discussed. We attribute the anomalous temperature dependence of photoluminescence to the formation of Al-rich and In-rich region in the InAlGaAs buffer layer and the cap layer.%@@ Self-assembled InAs quantum wires (QWRs) are fabricated on an InP substrate by solid-source molecular beam epitaxy (SSMBE).Photoluminescence (PL) spectra are investigated in these nanostructures as a function of temperature.An anomalous enhancement of PL intensity and a temperature insensitive PL emission are observed from InAs nanostructures grown on InP substrates using InAlGaAs as the matrix layer and the origin of this phenomenon is discussed.We attribute the anomalous temperature dependence of photoluminescence to the formation of Al-rich and In-rich region in the InAlGaAs buffer layer and the cap layer.
Z sup 0 -boson contribution in anomalous electron momenta in plane-wave electromagnetic field
Klimenko, E Y
2002-01-01
The Z sup 0 -boson contribution to the mass of electron moving in plane-wave field is considered. The dependence of the Z sup 0 -boson contribution to electron anomalous magnetic momentum and anomalous electric momentum on the external field parameters is studied within the frames of the Weinberg-Salam-Glashow standard model
Dependence of Quark Effective Mass on Gluon Propagators
Institute of Scientific and Technical Information of China (English)
HE Xiao-Rong; ZHOU Li-Juan; MA Wei-Xing
2005-01-01
Based on Dyson-Schwinger Equations (DSEs) in the "rainbow" approximation, the dependence of quark effective mass on gluon propagator is investigated by use of three different phenomenological gluon propagators with two parameters, the strength parameter x and range parameter △. Our theoretical calculations for the quark effective mass Mf(p2), defined by the self-energy functions Af(p2) and Bf(p2) of the DSEs, show that the dynamically running quark effective mass is strongly dependent on gluon propagator. Therefore, because gluon propagator is completely unknown,the quark effective mass cannot be exactly determined theoretically.
Energy Technology Data Exchange (ETDEWEB)
Sanishvili, R.; Besnard, C.; Camus, F.; Fleurant, M.; Pattison, P.; Bricogne, G.; Schiltz, M.; Biosciences Division; Ecole Polytechnique Federale de Lausanne; ESRF; Global Phasing Ltd.
2007-01-01
In this paper the anisotropy of anomalous scattering at the Br K-absorption edge in brominated nucleotides is investigated, and it is shown that this effect can give rise to a marked directional dependence of the anomalous signal strength in X-ray diffraction data. This implies that choosing the correct orientation for crystals of such molecules can be a crucial determinant of success or failure when using single- and multiple-wavelength anomalous diffraction (SAD or MAD) methods to solve their structure. In particular, polarized absorption spectra on an oriented crystal of a brominated DNA molecule were measured, and were used to determine the orientation that yields a maximum anomalous signal in the diffraction data. Out of several SAD data sets, only those collected at or near that optimal orientation allowed interpretable electron density maps to be obtained. The findings of this study have implications for instrumental choices in experimental stations at synchrotron beamlines, as well as for the development of data collection strategy programs.
Energy Technology Data Exchange (ETDEWEB)
Yang, Y. J.; Bao, J.; Gao, C., E-mail: zlluo@ustc.edu.cn, E-mail: cgao@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026 (China); CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Yang, M. M.; Luo, Z. L., E-mail: zlluo@ustc.edu.cn, E-mail: cgao@ustc.edu.cn; Hu, C. S.; Chen, X. C.; Pan, G. Q. [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026 (China); Huang, H. L. [CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, S.; Wang, J. W.; Li, P. S.; Liu, Y.; Zhao, Y. G. [Department of Physics and State Key Laboratory of New Ceramics, Fine Processing, Tsinghua University, Beijing 100084 (China); Jiang, T.; Liu, Y. K.; Li, X. G. [Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science, Technology of China, Hefei, Anhui 230026 (China)
2014-05-07
A series of Zn{sub x}Fe{sub 3−x}O{sub 4} (ZFO, x = 0.4) thin films were epitaxially deposited on single-crystal (001)-SrTiO{sub 3} (STO) substrates by radio frequency magnetron sputtering. The anomalous thickness-dependent strain states of ZFO films were found, i.e., a tensile in-plane strain exists in the thinner ZFO film and which monotonously turns into compressive in the thicker films. Considering the lattice constant of bulk ZFO is bigger than that of STO, this strain state cannot be explained in the conventional framework of lattice-mismatch-induced strain in the hetero-epitaxial system. This unusual phenomenon is proposed to be closely related to the Volmer-Weber film growth mode in the thinner films and incorporation of the interstitial atoms into the island's boundaries during subsequent epitaxial growth of the thicker films. The ZFO/STO epitaxial film is found in the nature of magnetic semiconductor by transport measurements. The in-plane magnetization of the ZFO/STO films is found to increase as the in-plane compressive strain develops, which is further proved in the (001)-ZFO/PMN-PT film where the film strain state can be in situ controlled with applied electric field. This compressive-strain-enhanced magnetization can be attributed to the strain-mediated electric-field-induced in-plane magnetic anisotropy field enhancement. The above results indicate that strain engineering on magnetic oxide semiconductor ZFO films is promising for novel oxide-electronic devices.
Nucleon effective mass and the A dependence of structure functions
Energy Technology Data Exchange (ETDEWEB)
Garcia Canal, C.A.; Santangelo, E.M.; Vucetich, H.
1984-10-08
The nucleon effective mass was successfully used, as the only free parameter, to adjust the ratio R(A) of structure functions measured in a nucleus of mass number A and in the deuteron, for each A value in the SLAC set of experimental data. The resulting A dependence of the effective mass, being linear in A/sup -1/3/, is consistent with the behavior expected from nuclear structure considerations. The extrapolated value of the effective mass for nuclear matter agrees with previous estimations.
Quark mass dependence of two-flavor QCD
Creutz, Michael
2011-01-01
I explore the rich phase diagram of two-flavor QCD as a function of the quark masses. The theory involves three parameters, including one that is CP violating. As the masses vary, regions of both first- and second-order transitions are expected. For nondegenerate quarks, nonperturbative effects cease to be universal, leaving individual quark mass ratios with a renormalization scheme dependence. This raises complications in matching lattice results with perturbative schemes and demonstrates the tautology of attacking the strong CP problem via a vanishing up-quark mass.
Quark mass dependence of two-flavor QCD
Creutz, Michael
2010-01-01
I explore the rich phase diagram of two-flavor QCD as a function of the quark masses. The theory involves three parameters, including one that is CP violating. As the masses vary, regions of both first and second order transitions are expected. For non-degenerate quarks, non-perturbative effects cease to be universal, leaving individual quark mass ratios with a renormalization scheme dependence. This raises complications in matching lattice results with perturbative schemes and demonstrates the tautology of attacking the strong CP problem via a vanishing up quark mass.
Beta Function and Anomalous Dimensions
Pica, Claudio
2010-01-01
We demonstrate that it is possible to determine the coefficients of an all-order beta function linear in the anomalous dimensions using as data the two-loop coefficients together with the first one of the anomalous dimensions which are universal. The beta function allows to determine the anomalous dimension of the fermion masses at the infrared fixed point, and the resulting values compare well with the lattice determinations.
Anomalous Dimensions of Conformal Baryons
Pica, Claudio
2016-01-01
We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small for a wide range of number of flavours. We also find that this is always smaller than the anomalous dimension of the fermion mass operator. These findings challenge the partial compositeness paradigm.
The clustering of SDSS galaxy groups: mass and color dependence
Wang, Yu; Mo, H J; Bosch, Frank C van den; Weinmann, Simone W; Chu, Yaoquan
2007-01-01
We use a sample of galaxy groups selected from the SDSS DR 4 with an adaptive halo-based group finder to probe how the clustering strength of groups depends on their masses and colors. In particular, we determine the relative biases of groups of different masses, as well as that of groups with the same mass but with different colors. In agreement with previous studies, we find that more massive groups are more strongly clustered, and the inferred mass dependence of the halo bias is in good agreement with predictions for the $\\Lambda$CDM cosmology. Regarding the color dependence, we find that groups with red centrals are more strongly clustered than groups of the same mass but with blue centrals. Similar results are obtained when the color of a group is defined to be the total color of its member galaxies. The color dependence is more prominent in less massive groups and becomes insignificant in groups with masses $\\gta 10^{14}\\msunh$. We construct a mock galaxy redshift survey constructed from the large Mille...
Torsion effects on a relativistic position-dependent mass system
Vitória, R L L
2016-01-01
We analyse a relativistic scalar particle with a position-dependent mass in a spacetime with a space-like dislocation by showing that relativistic bound states solutions can be achieved. Further, we consider the presence of the Coulomb potential and analyse the relativistic position-dependent mass system subject to the Coulomb potential in the spacetime with a space-like dislocation. We also show that a new set of relativistic bound states solutions can be obtained, where there also exists the influence of torsion of the relativistic energy levels. Finally, we investigate an analogue of the Aharonov-Bohm effect for bound states in this position-dependent mass in a spacetime with a space-like dislocation.
Medium mass fragments production due to momentum dependent interactions
Kumar, Sanjeev; Puri, Rajeev K; 10.1103/PhysRevC.78.064602
2010-01-01
The role of system size and momentum dependent effects are analyzed in multifragmenation by simulating symmetric reactions of Ca+Ca, Ni+Ni, Nb+Nb, Xe+Xe, Er+Er, Au+Au, and U+U at incident energies between 50 MeV/nucleon and 1000 MeV/nucleon and over full impact parameter zones. Our detailed study reveals that there exist a system size dependence when reaction is simulated with momentum dependent interactions. This dependence exhibits a mass power law behavior.
Isotopic mass-dependence of noble gas diffusion coefficients inwater
Energy Technology Data Exchange (ETDEWEB)
Bourg, I.C.; Sposito, G.
2007-06-25
Noble gas isotopes are used extensively as tracers inhydrologic and paleoclimatic studies. These applications requireknowledge of the isotopic mass (m) dependence of noble gas diffusioncoefficients in water (D), which has not been measured but is estimatedusing experimental D-values for the major isotopes along with an untestedrelationship from kinetic theory, D prop m-0.5. We applied moleculardynamics methods to determine the mass dependence of D for four noblegases at 298 K, finding that D prop m-beta with beta<0.2, whichrefutes the kinetic theory model underlying all currentapplications.
On the quark-mass dependence of the baryon ground-state masses
Semke, A
2011-01-01
We perform a chiral extrapolation of the baryon octet and decuplet masses in a relativistic formulation of chiral perturbation theory. A partial summation is assumed as implied by the use of physical baryon and meson masses in the one-loop diagrams. Upon a chiral expansion our results are consistent with strict chiral perturbation theory at the next-to-next-to-next-to-leading order. All counter terms are correlated by a large-$N_c$ operator analysis. Our results are confronted with recent results of unquenched three flavor lattice simulations. We adjust the parameter set to the pion-mass dependence of the nucleon and omega masses as computed by the BMW group and predict the pion-mass dependence of the remaining baryon octet and decuplet states. The current lattice simulations can be described accurately and smoothly up to pion masses of about 600 MeV. In particular we recover the recent results of HSC without any further adjustments.
Quark mass and isospin dependence of the deconfining critical temperature
Fraga, E S; Villavicencio, C
2008-01-01
We propose a phenomenological framework to investigate the thermodynamics of strongly interacting matter which incorporates explicit dependence on quark masses, isospin and baryonic chemical potentials for the case of two flavors. In the low-energy sector, the system is described by a minimal chiral perturbation theory effective action, corresponding to a hot gas of pion quasiparticles and heavy nucleons. For the high-temperature sector we adopt a simple extension of the fuzzy bag model. Despite the simplicity of the setting, our findings for the critical temperature dependence on the pion mass and on the isospin chemical potential are in remarkably good agreement with lattice data. We also discuss the effects of mass asymmetry and baryon chemical potential.
The dependence of convective core overshooting on stellar mass
Claret, Antonio
2016-01-01
Convective core overshooting extends the main-sequence lifetime of a star. Evolutionary tracks computed with overshooting are quite different from those that use the classical Schwarzschild criterion, which leads to rather different predictions for the stellar properties. Attempts over the last two decades to calibrate the degree of overshooting with stellar mass using detached double-lined eclipsing binaries have been largely inconclusive, mainly due to a lack of suitable observational data. Here we revisit the question of a possible mass dependence of overshooting with a more complete sample of binaries, and examine any additional relation there might be with evolutionary state or metal abundance Z. We use a carefully selected sample of 33 double-lined eclipsing binaries strategically positioned in the H-R diagram, with accurate absolute dimensions and component masses ranging from 1.2 to 4.4 solar masses. We compare their measured properties with stellar evolution calculations to infer semi-empirical value...
Quark mass dependence of quarkonium properties at finite temperature
Ohno, H; Kaczmarek, O
2014-01-01
Quarkonium properties at finite temperature have been studied with quark masses of the charm and bottom quarks. Our simulations have been performed in quenched QCD with the $O(a)$-improved Wilson quarks on large and fine isotropic lattices with the spatial lattice extents $N_\\sigma =$ 96, 192 and the corresponding lattice spacings $a =$ 0.0190, 0.00967 fm, respectively, at temperatures in a range between about 0.7$T_c$ and 1.4$T_c$. We show temperature and quark mass dependence of quarkonium correlation functions and related physical quantities: the quark number susceptibility and the heavy quark diffusion constant.
Blum, Thomas; Christ, Norman; Hayakawa, Masashi; Izubuchi, Taku; Jin, Luchang; Jung, Chulwoo; Lehner, Christoph
2017-01-01
We report a lattice QCD calculation of the hadronic light-by-light contribution to the muon anomalous magnetic moment at a physical pion mass. The calculation includes the connected diagrams and the leading, quark-line-disconnected diagrams. We incorporate algorithmic improvements developed in our previous work. The calculation was performed on the 4 83×96 ensemble generated with a physical pion mass and a 5.5 fm spatial extent by the RBC and UKQCD Collaborations using the chiral, domain wall fermion formulation. We find aμHLbL=5.35 (1.35 )×10-10 , where the error is statistical only. The finite-volume and finite lattice-spacing errors could be quite large and are the subject of ongoing research. The omitted disconnected graphs, while expected to give a correction of order 10%, also need to be computed.
A STELLAR-MASS-DEPENDENT DROP IN PLANET OCCURRENCE RATES
Energy Technology Data Exchange (ETDEWEB)
Mulders, Gijs D.; Pascucci, Ilaria [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Apai, Dániel [Department of Astronomy, The University of Arizona, Tucson, AZ 85721, USA. (United States)
2015-01-10
The Kepler spacecraft has discovered a large number of planets with up to one-year periods and down to terrestrial sizes. While the majority of the target stars are main-sequence dwarfs of spectral type F, G, and K, Kepler covers stars with effective temperatures as low as 2500 K, which corresponds to M stars. These cooler stars allow characterization of small planets near the habitable zone, yet it is not clear if this population is representative of that around FGK stars. In this paper, we calculate the occurrence of planets around stars of different spectral types as a function of planet radius and distance from the star and show that they are significantly different from each other. We further identify two trends. First, the occurrence of Earth- to Neptune-sized planets (1-4 R {sub ⊕}) is successively higher toward later spectral types at all orbital periods probed by Kepler; planets around M stars occur twice as frequently as around G stars, and thrice as frequently as around F stars. Second, a drop in planet occurrence is evident at all spectral types inward of a ∼10 day orbital period, with a plateau further out. By assigning to each spectral type a median stellar mass, we show that the distance from the star where this drop occurs is stellar mass dependent, and scales with semi-major axis as the cube root of stellar mass. By comparing different mechanisms of planet formation, trapping, and destruction, we find that this scaling best matches the location of the pre-main-sequence co-rotation radius, indicating efficient trapping of migrating planets or planetary building blocks close to the star. These results demonstrate the stellar-mass dependence of the planet population, both in terms of occurrence rate and of orbital distribution. The prominent stellar-mass dependence of the inner boundary of the planet population shows that the formation or migration of planets is sensitive to the stellar parameters.
Lapas, Luciano C.; Ferreira, Rogelma M. S.; Rubí, J. Miguel; Oliveira, Fernando A.
2015-03-01
We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.
Lapas, Luciano C; Ferreira, Rogelma M S; Rubí, J Miguel; Oliveira, Fernando A
2015-03-14
We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.
Fractal model of anomalous diffusion.
Gmachowski, Lech
2015-12-01
An equation of motion is derived from fractal analysis of the Brownian particle trajectory in which the asymptotic fractal dimension of the trajectory has a required value. The formula makes it possible to calculate the time dependence of the mean square displacement for both short and long periods when the molecule diffuses anomalously. The anomalous diffusion which occurs after long periods is characterized by two variables, the transport coefficient and the anomalous diffusion exponent. An explicit formula is derived for the transport coefficient, which is related to the diffusion constant, as dependent on the Brownian step time, and the anomalous diffusion exponent. The model makes it possible to deduce anomalous diffusion properties from experimental data obtained even for short time periods and to estimate the transport coefficient in systems for which the diffusion behavior has been investigated. The results were confirmed for both sub and super-diffusion.
Extreme mass ratio inspiral rates: dependence on the massive black hole mass
Hopman, Clovis
2009-01-01
We study the rate at which stars spiral into a massive black hole (MBH) due to the emission of gravitational waves (GWs), as a function of the mass M of the MBH. In the context of our model, it is shown analytically that the rate approximately depends on the MBH mass as M^{-1/4}. Numerical simulations confirm this result, and show that for all MBH masses, the event rate is highest for stellar black holes, followed by white dwarfs, and lowest for neutron stars. The Laser Interferometer Space Antenna (LISA) is expected to see hundreds of these extreme mass ratio inspirals per year. Since the event rate derived here formally diverges as M->0, the model presented here cannot hold for MBHs of masses that are too low, and we discuss what the limitations of the model are.
Noncommutativity into Dirac Equation with mass dependent on the position
Energy Technology Data Exchange (ETDEWEB)
Bastos, Samuel Batista; Almeida, Carlos Alberto Santos [Universidade Federal do Ceara - UFC, Fortaleza, CE (Brazil); Nunes, Luciana Angelica da Silva [Universidade Federal Rural do Semi-arido - UFERSA, Mossoro, RN (Brazil)
2013-07-01
Full text: In recent years, there is growing interest in the study of theories in non-commutative spaces. Non-commutative fields theories are related with compactifications of M theory, string theory and the quantum Hall effect. Moreover, the role of the non-commutativity of theories of a particle finds large applications when analyzed in scenarios of quantum mechanics and relativistic quantum mechanics. In these contexts investigations on the Schrodinger and Dirac equations with mass depending on the position (MDP) has attracted much attention in the literature. Systems endowed with MDP models are useful for the study of many physical problems. In particular, they are used to study the energy density in problems of many bodies, determining the electronic properties of semiconductor heterostructures and also to describe the properties of heterojunctions and quantum dots. In particular, the investigation of relativistic effects it is important for systems containing heavy atoms or doping by heavy ions. For these types of materials, the study of the properties of the Dirac equation, in the case where the mass becomes variable is of great interest. In this paper, we seek for the non-relativistic limit of the Dirac Hamiltonian in the context of a theory of effective mass, through a Foldy-Wouthuysen transformation. We analyse the Dirac equation with mass dependent on the position, in a smooth step shape mass distribution, in non-commutative space (NC). This potential type kink was recently discussed by several authors in the commutative context and now we present our results in the non-commutative context. (author)
Kisaka, Shota
2010-01-01
We investigate the evolution of supermassive black hole mass (M_BH) and the host spheroid mass (M_sph) in order to track the history of the M_BH-M_sph relationship. The typical mass increase of M_BH is calculated by a continuity equation and accretion history, which is estimated from the active galactic nucleus (AGN) luminosity function. The increase in M_sph is also calculated by using a continuity equation and a star formation model, which uses observational data for the formation rate and stellar mass function. We find that the black hole to spheroid mass ratio is expected to be substantially unchanged since z~1.2 for high mass objects (M_BH>10^8.5M_SUN and M_sph>10^11.3M_SUN). In the same redshift range, the spheroid mass is found to increase more rapidly than the black hole mass if M_sph>10^11M_SUN. The proposed mass-dependent model is consistent with the current available observational data in the M_BH-M_sph diagram.
Galaxy metallicities depend primarily on stellar mass and molecular gas mass
Bothwell, M S; Cicone, C; Peng, Y; Wagg, J
2016-01-01
In this work we present an analysis of the behaviour of galaxies in a four-dimensional parameter space defined by stellar mass, metallicity, star formation rate, and molecular gas mass. We analyse a combined sample of 227 galaxies, which draws from a number of surveys across the redshift range 0 90% of the sample at z~0), and covers > 3 decades in stellar mass.Using Principle Component Analysis, we demonstrate that galaxies in our sample lie on a 2-dimensional plane within this 4D parameter space, indicative of galaxies that exist in an equilibrium between gas inflow and outflow. Furthermore, we find that the metallicity of galaxies depends only on stellar mass and molecular gas mass. In other words, gas-phase metallicity has a negligible dependence on star formation rate, once the correlated effect of molecular gas content is accounted for. The well-known `fundamental metallicity relation', which describes a close and tight relationship between metallicity and SFR (at fixed stellar mass) is therefore entire...
Quark mass dependence of s-wave baryon resonances
Energy Technology Data Exchange (ETDEWEB)
Garcia-Recio, C.; Nieves, J. [Granada Univ. (Spain). Dept. de Fisica Moderna; Lutz, M.F.M. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)
2003-06-01
We study the quark mass dependence of J{sup P} = 1/2{sup -} s-wave baryon resonances. Parameter free results are obtained in terms of the leading order chiral Lagrangian. In the 'heavy' SU(3) limit with m{sub {pi}} = m{sub K} {approx_equal} 500 MeV the resonances turn into bound states forming two octets plus a singlet representations of the SU(3) group. A contrasted result is obtained in the 'light' SU(3) limit with m{sub {pi}} = m{sub K} {approx_equal} 140 MeV for which no resonances exist. Using physical quark masses our analysis suggests to assign to the S = -2 resonances {xi}(1690) and {xi}(1620) the quantum numbers J{sup P} = 1/2{sup -}. (orig.)
Large blue isocurvature spectral index signals time-dependent mass
Chung, Daniel J. H.
2016-08-01
We show that if a spectator linear isocurvature dark matter field degree of freedom has a constant mass through its entire evolution history, the maximum measurable isocurvature spectral index that is consistent with the current tensor-to-scalar ratio bound of about r ≲0.1 is about nI≲2.4 , even if experiments can be sensitive to a 10-6 contamination of the predominantly adiabatic power spectrum with an isocurvature power spectrum at the shortest observable length scales. Hence, any foreseeable future measurement of a blue isocurvature spectral index larger than ˜2.4 may provide nontrivial evidence for dynamical degrees of freedom with time-dependent masses during inflation. The bound is not sensitive to the details of the reheating scenario and can be made mildly smaller if r is better constrained in the future.
Two-loop anomalous dimensions for currents of baryons with two heavy quarks in NRQCD
Kiselev, V V
1998-01-01
We present analytical results on the two-loop anomalous dimensions of currents for baryons, containing two heavy quarks $J = [Q^{iT}C\\Gamma\\tau Q^j]\\Gamma' q^k\\epsilon_{ijk}$ with arbitrary Dirac matrices $\\Gamma$ and velocity of heavy quarks and the inverse heavy quark mass. It is shown, that in this approximation the anomalous dimensions do not depend on the Dirac structure of the current under consideration.
Energy Technology Data Exchange (ETDEWEB)
Puttisong, Y.; Huang, Y. Q.; Buyanova, I. A.; Chen, W. M. [Department of Physics, Chemistry and Biology, Linköping University, S-581 83 Linköping (Sweden); Yang, X. J.; Subagyo, A.; Sueoka, K.; Murayama, A. [Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo 060-0814 (Japan)
2014-09-29
We show that circularly polarized emission light from InGaAs/GaAs quantum dot (QD) ensembles under optical spin injection from an adjacent GaAs layer can switch its helicity depending on emission wavelengths and optical excitation density. We attribute this anomalous behavior to simultaneous contributions from both positive and negative trions and a lower number of photo-excited holes than electrons being injected into the QDs due to trapping of holes at ionized acceptors and a lower hole mobility. Our results call for caution in reading out electron spin polarization by optical polarization of the QD ensembles and also provide a guideline in improving efficiency of spin light emitting devices that utilize QDs.
First Numerical Simulations of Anomalous Hydrodynamics
Hongo, Masaru; Hirano, Tetsufumi
2013-01-01
Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. This is the first attempt to perform fully non-linear numerical simulations of anomalous hydrodynamics. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters ($v_2^\\pm$) as a function of the net charge asymmetry $A_\\pm$, we quantitatively verify that the linear dependence of $\\Delta v_2 \\equiv v_2^- - v_2^+$ on the net charge asymmetry $A_\\pm$ cannot be regarded as a sensitive signal of anomalous transports, contrary to previous studies. We, however, find that the intercept $\\Delta v_2(A_\\pm=0)$ is sensitive to anomalous transport effects.
RESOLVE and ECO: The Halo Mass-Dependent Shape of Galaxy Stellar and Baryonic Mass Functions
Eckert, Kathleen D; Stark, David V; Moffett, Amanda J; Berlind, Andreas A; Norris, Mark A
2016-01-01
In this work, we present galaxy stellar and baryonic (stars plus cold gas) mass functions (SMF and BMF) and their halo mass dependence for two volume-limited data sets. The first, RESOLVE-B, coincides with the Stripe 82 footprint and is extremely complete down to baryonic mass Mbary ~ 10^9.1 Msun, probing the gas-rich dwarf regime below Mbary ~ 10^10 Msun. The second, ECO, covers a ~40 times larger volume (containing RESOLVE-A) and is complete to Mbary ~ 10^9.4 Msun. To construct the SMF and BMF we implement a new "cross-bin sampling" technique with Monte Carlo sampling from the full likelihood distributions of stellar or baryonic mass. Our SMFs exhibit the "plateau" feature starting below Mstar ~ 10^10 Msun that has been described in prior work. However, the BMF fills in this feature and rises as a straight power law below ~10^10 Msun, as gas-dominated galaxies become the majority of the population. Nonetheless, the low-mass slope of the BMF is not as steep as that of the theoretical dark matter halo MF. Mor...
Lapas, Luciano C.; Ferreira, Rogelma M. S.; Oliveira, Fernando A.; Rubí, J. Miguel
2014-01-01
We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergo a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature ma...
How Lyman Alpha Emission Depends On Galaxy Stellar Mass
Oyarzún, Grecco A; González, Valentino; Mateo, Mario; Bailey, John I; Finkelstein, Steven L; Lira, Paulina; Crane, Jeffrey D; Olszewski, Edward W
2016-01-01
In this work, we show how the stellar mass (M) of galaxies affects the 3
Position-dependent mass quantum Hamiltonians: general approach and duality
Rego-Monteiro, M. A.; Rodrigues, Ligia M. C. S.; Curado, E. M. F.
2016-03-01
We analyze a general family of position-dependent mass (PDM) quantum Hamiltonians which are not self-adjoint and include, as particular cases, some Hamiltonians obtained in phenomenological approaches to condensed matter physics. We build a general family of self-adjoint Hamiltonians which are quantum mechanically equivalent to the non-self-adjoint proposed ones. Inspired by the probability density of the problem, we construct an ansatz for the solutions of the family of self-adjoint Hamiltonians. We use this ansatz to map the solutions of the time independent Schrödinger equations generated by the non-self-adjoint Hamiltonians into the Hilbert space of the solutions of the respective dual self-adjoint Hamiltonians. This mapping depends on both the PDM and on a function of position satisfying a condition that assures the existence of a consistent continuity equation. We identify the non-self-adjoint Hamiltonians here studied with a very general family of Hamiltonians proposed in a seminal article of Harrison (1961 Phys. Rev. 123 85) to describe varying band structures in different types of metals. Therefore, we have self-adjoint Hamiltonians that correspond to the non-self-adjoint ones found in Harrison’s article.
Anomalous dimensions of higher spin currents in large N CFTs
Hikida, Yasuaki
2016-01-01
We examine anomalous dimensions of higher spin currents in the critical O(N) scalar model and the Gross-Neveu model in arbitrary d dimensions. These two models are proposed to be dual to the type A and type B Vasiliev theories, respectively. We reproduce the known results on the anomalous dimensions to the leading order in 1/N by using conformal perturbation theory. This work can be regarded as an extension of previous work on the critical O(N) scalars in 3 dimensions, where it was shown that the bulk computation for the masses of higher spin fields on AdS_4 can be mapped to the boundary one in conformal perturbation theory. The anomalous dimensions of the both theories agree with each other up to an overall factor depending only on d, and the coincidence is explained for d=3 by making use of N=2 supersymmetry.
Anomalous thickness-dependent optical energy gap of ALD-grown ultra-thin CuO films
Tripathi, T. S.; Terasaki, I.; Karppinen, M.
2016-11-01
Usually an inverse square relation between the optical energy gap and the size of crystallites is observed for semiconducting materials due to the strong quantum localization effect. Coulomb attraction that may lead to a proportional dependence is often ignored or considered less important to the optical energy gap when the crystallite size or the thickness of a thin film changes. Here we report a proportional dependence between the optical energy gap and the thickness of ALD-grown CuO thin films due to a strong Coulomb attraction. The ultrathin films deposited in the thickness range of 9-81 nm show a p-type semiconducting behavior when analyzed by Seebeck coefficient and electrical resistivity measurements. The indirect optical energy gap nature of the films is verified from UV-vis spectrophotometric measurements. A progressive increase in the indirect optical energy gap from 1.06 to 1.24 eV is observed with the increase in the thickness of the films. The data are analyzed in the presence of Coulomb attractions using the Brus model. The optical energy gap when plotted against the cubic root of the thickness of the films shows a linear dependence.
Jia, Lian-Bao
2016-01-01
The WIMPs are considered one of the most favorable dark matter (DM) candidates, but as the upper bound on the interaction between DM and standard model (SM) particles obtained by the upgraded facilities for direct detection of DM gets lower and lower. Researchers turn their attention to search for less massive DM candidates, i.e. light dark matter of MeV scale. The recently measured anomalous transition in $^8$Be suggests that there exists a vectorial boson which may mediate the interaction between DM and SM particles. Based on this scenario, we combine the relevant cosmological data to constrain the mass range of DM, and have found that there exists a model parameter space where the requirements are satisfied, a range of $10.4 \\lesssim m_{\\phi} \\lesssim 16.7 $ MeV for scalar DM, and $13.6 \\lesssim m_{V} \\lesssim 16.7$ MeV for vectorial DM is demanded. Then a possibility of directly detecting such light DM particles at the earth detector via the DM-electron scattering is briefly studied in this framework.
Microbial mass-dependent fractionation of chromium isotopes
Sikora, Eric R.; Johnson, Thomas M.; Bullen, Thomas D.
2008-08-01
Mass-dependent fractionation of Cr isotopes occurs during dissimilatory Cr(VI) reduction by Shewanella oneidensis strain MR-1. Cells suspended in a simple buffer solution, with various concentrations of lactate or formate added as electron donor, reduced 5 or 10 μM Cr(VI) to Cr(III) over days to weeks. In all nine batch experiments, 53Cr/ 52Cr ratios of the unreacted Cr(VI) increased as reduction proceeded. In eight experiments covering a range of added donor concentrations up to 100 μM, isotopic fractionation factors were nearly invariant, ranging from 1.0040 to 1.0045, with a mean value somewhat larger than that previously reported for abiotic Cr(VI) reduction (1.0034). One experiment containing much greater donor concentration (10 mM lactate) reduced Cr(VI) much faster and exhibited a lesser fractionation factor (1.0018). These results indicate that 53Cr/ 52Cr measurements should be effective as indicators of Cr(VI) reduction, either bacterial or abiotic. However, variability in the fractionation factor is poorly constrained and should be studied for a variety of microbial and abiotic reduction pathways.
Microbial mass-dependent fractionation of chromium isotopes
Sikora, E.R.; Johnson, T.M.; Bullen, T.D.
2008-01-01
Mass-dependent fractionation of Cr isotopes occurs during dissimilatory Cr(VI) reduction by Shewanella oneidensis strain MR-1. Cells suspended in a simple buffer solution, with various concentrations of lactate or formate added as electron donor, reduced 5 or 10 ??M Cr(VI) to Cr(III) over days to weeks. In all nine batch experiments, 53Cr/52Cr ratios of the unreacted Cr(VI) increased as reduction proceeded. In eight experiments covering a range of added donor concentrations up to 100 ??M, isotopic fractionation factors were nearly invariant, ranging from 1.0040 to 1.0045, with a mean value somewhat larger than that previously reported for abiotic Cr(VI) reduction (1.0034). One experiment containing much greater donor concentration (10 mM lactate) reduced Cr(VI) much faster and exhibited a lesser fractionation factor (1.0018). These results indicate that 53Cr/52Cr measurements should be effective as indicators of Cr(VI) reduction, either bacterial or abiotic. However, variability in the fractionation factor is poorly constrained and should be studied for a variety of microbial and abiotic reduction pathways. ?? 2008 Elsevier Ltd.
Galaxy Mergers and Dark Matter Halo Mergers in LCDM: Mass, Redshift, and Mass-Ratio Dependence
Energy Technology Data Exchange (ETDEWEB)
Stewart, Kyle R.; Bullock, James S.; Barton, Elizabeth J.; /UC, Irvine; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC
2009-08-03
We employ a high-resolution LCDM N-body simulation to present merger rate predictions for dark matter halos and investigate how common merger-related observables for galaxies - such as close pair counts, starburst counts, and the morphologically disturbed fraction - likely scale with luminosity, stellar mass, merger mass ratio, and redshift from z = 0 to z = 4. We provide a simple 'universal' fitting formula that describes our derived merger rates for dark matter halos a function of dark halo mass, merger mass ratio, and redshift, and go on to predict galaxy merger rates using number density-matching to associate halos with galaxies. For example, we find that the instantaneous merger rate of m/M > 0.3 mass ratio events into typical L {approx}> fL{sub *} galaxies follows the simple relation dN/dt {approx_equal} 0.03(1+f)Gyr{sup -1} (1+z){sup 2.1}. Despite the rapid increase in merger rate with redshift, only a small fraction of > 0.4L{sub *} high-redshift galaxies ({approx} 3% at z = 2) should have experienced a major merger (m/M > 0.3) in the very recent past (t < 100 Myr). This suggests that short-lived, merger-induced bursts of star formation should not contribute significantly to the global star formation rate at early times, in agreement with observational indications. In contrast, a fairly high fraction ({approx} 20%) of those z = 2 galaxies should have experienced a morphologically transformative merger within a virial dynamical time. We compare our results to observational merger rate estimates from both morphological indicators and pair-fraction based determinations between z = 0-2 and show that they are consistent with our predictions. However, we emphasize that great care must be made in these comparisons because the predicted observables depend very sensitively on galaxy luminosity, redshift, overall mass ratio, and uncertain relaxation timescales for merger remnants. We show that the majority of bright galaxies at z = 3 should have undergone a
Clasohm, Lucy Y; Vakarelski, Ivan U; Dagastine, Raymond R; Chan, Derek Y C; Stevens, Geoffrey W; Grieser, Franz
2007-08-28
Recent advances in atomic force microscopy (AFM) force measurement techniques have allowed the direct measurement and theoretical interpretation of the interaction between a liquid droplet and a solid surface or between two liquid droplets. In this study, we investigated the interaction across an aqueous thin film between fluorocarbon (perfluoropentane) droplets, hydrocarbon (tetradecane) droplets, and a droplet and a flat mica surface in the absence of stabilizers. It was found that even at a relatively elevated electrolyte concentration of 0.1 M NaNO3, depending on the solution pH, interactions between two identical droplets or a droplet and a mica surface could be repulsive. A simple theoretical analysis of the magnitude and range of these interactive forces suggests that the DLVO theory cannot explain the observed behavior. The measured force behavior is discussed in the context of ion adsorption, and the arising charging effects, at the bare oil-water interface.
Nonlocal Anomalous Hall Effect.
Zhang, Steven S-L; Vignale, Giovanni
2016-04-01
The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect-the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt/YIG structures.
Nonlocal Anomalous Hall Effect
Zhang, Steven S.-L.; Vignale, Giovanni
2016-04-01
The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect—the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt /YIG structures.
Aaboud, Morad; Abbott, Brad; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Aben, Rosemarie; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adachi, Shunsuke; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alshehri, Azzah Aziz; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethani, Agni; Bethke, Siegfried; Bevan, Adrian John; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Billoud, Thomas Remy Victor; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bisanz, Tobias; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blue, Andrew; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas Peter; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelijn, Remco; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chatterjee, Avishek; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocca, Claudia; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cormier, Kyle James Read; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cueto, Ana; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Czirr, Hendrik; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Merlin; Davison, Peter; Dawe, Edmund; Dawson, Ian; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Díez Cornell, Sergio; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dolejsi, Jiri; Dolezal, Zdenek; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudder, Andreas Christian; Duffield, Emily Marie; Duflot, Laurent; Dührssen, Michael; Dumancic, Mirta; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edwards, Nicholas Charles; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Ezzi, Mohammed; Fabbri, Federica; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farina, Edoardo Maria; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Rob Roy MacGregor; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Louis Guillaume; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gasnikova, Ksenia; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisen, Marc; Geisler, Manuel Patrice; Gellerstedt, Karl; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Gui, Bin; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Ruchi; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Hageböck, Stephan; Hagihara, Mutsuto; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hartmann, Nikolai Marcel; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayakawa, Daiki; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Herde, Hannah; Herget, Verena; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Holmes, Tova Ray; Homann, Michael; Honda, Takuya; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hoya, Joaquin; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Qipeng; Hu, Shuyang; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Huo, Peng; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuriy; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Paul; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanneau, Fabien; Jeanty, Laura; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Jivan, Harshna; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kaji, Toshiaki; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kanjir, Luka; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Kharlamova, Tatyana; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kilby, Callum; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koehler, Nicolas Maximilian; Koffas, Thomas; Koffeman, Els; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Koulouris, Aimilianos; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kravchenko, Anton; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lanfermann, Marie Christine; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Benoit; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Dave; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Changqiao; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Hongbin; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina Maria; Loch, Peter; Loebinger, Fred; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; López, Jorge Andrés; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Malone, Claire; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Luciano; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Maznas, Ioannis; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McDonald, Emily; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Melo, Matej; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Minegishi, Yuji; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Mlynarikova, Michaela; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Stefanie; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Muškinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nguyen Manh, Tuan; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'grady, Fionnbarr; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganini, Michela; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Perez Codina, Estel; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puddu, Daniele; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Ratti, Maria Giulia; Rauch, Daniel; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Ravinovich, Ilia; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reed, Robert; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reiss, Andreas; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodina, Yulia; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Roloff, Jennifer; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosien, Nils-Arne; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sandhoff, Marisa; Sandoval, Carlos; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sato, Koji; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Savic, Natascha; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Leigh; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schott, Matthias; Schouwenberg, Jeroen; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schulte, Alexandra; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shirabe, Shohei; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shope, David Richard; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sivoklokov, Serguei; Sjölin, Jörgen; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smiesko, Juraj; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Ian Michael; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Hong Ye; Sood, Alexander; Sopczak, Andre; Sopko, Vit; Sorin, Veronica; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Masahiro; Tanaka, Reisaburo; Tanaka, Shuji; Tanioka, Ryo; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Tornambe, Peter; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tu, Yanjun; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turgeman, Daniel; Turra, Ruggero; Tuts, Michael; Tyndel, Mike; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usui, Junya; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vasquez, Gerardo; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veeraraghavan, Venkatesh; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Wenxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Weber, Stephen; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Michael David; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wolf, Tim Michael Heinz; Wolter, Marcin Wladyslaw; Wolters, Helmut; Worm, Steven D; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Matt; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zwalinski, Lukasz
2017-01-01
A search is presented for anomalous quartic gauge boson couplings in vector-boson scattering. The data for the analysis correspond to $20.2$ fb$^{-1}$ of $\\sqrt{s}=8$ TeV $pp$ collisions, and were collected in 2012 by the ATLAS experiment at the Large Hadron Collider. The search looks for the production of $WW$ or $WZ$ boson pairs accompanied by a high-mass dijet system, with one $W$ decaying leptonically, and a $W$ or $Z$ decaying hadronically. The hadronically decaying $W/Z$ is reconstructed as either two small-radius jets or one large-radius jet using jet substructure techniques. Constraints on the anomalous quartic gauge boson coupling parameters $\\alpha_4$ and $\\alpha_5$ are set by fitting the transverse mass of the diboson system, and the resulting 95 % confidence intervals are $-0.024<\\alpha_4<0.030$ and $-0.028<\\alpha_5<0.033$.
Location Dependence of Mass Sensitivity for Acoustic Wave Devices
Directory of Open Access Journals (Sweden)
Kewei Zhang
2015-09-01
Full Text Available It is introduced that the mass sensitivity (Sm of an acoustic wave (AW device with a concentrated mass can be simply determined using its mode shape function: the Sm is proportional to the square of its mode shape. By using the Sm of an AW device with a uniform mass, which is known for almost all AW devices, the Sm of an AW device with a concentrated mass at different locations can be determined. The method is confirmed by numerical simulation for one type of AW device and the results from two other types of AW devices.
Dependence of X-ray Burst Models on Nuclear Masses
Schatz, H
2016-01-01
X-ray burst model predictions of light curves and final composition of the nuclear ashes are affected by uncertain nuclear physics. Nuclear masses play an important role. Significant progress has been made in measuring the masses of very neutron deficient rare isotopes along the path of the rapid proton capture process (rp-process) in X-ray bursts. This paper identifies the remaining nuclear mass uncertainties in X-ray burst models using a one zone model that takes into account the changes in temperature and density evolution caused by changes in the nuclear physics. Two types of bursts are investigated - a typical mixed H/He burst with a limited rp-process and an extreme mixed H/He burst with an extended rp-process. Only three remaining nuclear mass uncertainties affect the light curve predictions of a typical H/He burst, and only three additional masses affect the composition strongly. A larger number of mass uncertainties remains to be addressed for the extreme H/He burst. Mass uncertainties of better than...
The Dependence of Galaxy Type on Host Halo Mass
Weinmann, S M; Yang, X; Mo, H J; Weinmann, Simone M.; Bosch, Frank C. van den; Yang, Xiaohu
2006-01-01
We examine the relation between galaxy properties and environment in the SDSS DR2, quantifying environment in terms of the mass of the host halo, which is obtained with a new iterative group finder. We find that galaxy type fractions scale strongly and smoothly with halo mass, but, at fixed mass, not with luminosity. We compare these findings with the semi-analytical galaxy formation model of Croton et al. (2006). The discrepancies we find can be explained with an oversimplified implementation of strangulation, the neglect of tidal stripping, and shortcomings in the treatments of dust extinction and/or AGN feedback.
The Mass Dependence of Dwarf Satellite Galaxy Quenching
Slater, Colin T.; Bell, Eric F.
2014-09-01
We combine observations of the Local Group with data from the NASA-Sloan Atlas to show the variation in the quenched fraction of satellite galaxies from low-mass dwarf spheroidals and dwarf irregulars to more massive dwarfs similar to the Magellanic Clouds. While almost all of the low-mass (M sstarf 5 Gyr ago. We also characterize how the susceptibility of dwarfs to ram pressure must vary as a function of mass if it is to account for the change in quenched fractions. Though neither model predicts the quenching effectiveness a priori, this modeling illustrates the physical requirements that the observed quenched fractions place on possible quenching mechanisms.
Anomalous Hall effect in polycrystalline Ni films
Guo, Zaibing
2012-02-01
We systematically studied the anomalous Hall effect in a series of polycrystalline Ni films with thickness ranging from 4 to 200 nm. It is found that both the longitudinal and anomalous Hall resistivity increased greatly as film thickness decreased. This enhancement should be related to the surface scattering. In the ultrathin films (46 nm thick), weak localization corrections to anomalous Hall conductivity were studied. The granular model, taking into account the dominated intergranular tunneling, has been employed to explain this phenomenon, which can explain the weak dependence of anomalous Hall resistivity on longitudinal resistivity as well. © 2011 Elsevier Ltd. All rights reserved.
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
The mass dependence of critical parameters for the liquid-gas phase transition andmultiplicity of intermediate mass fragment in the heavyion reaction is qualitatively explored under the frameworkof lattice gas model. Some results are compared with experimental data.
The Mass Dependence of Dwarf Satellite Galaxy Quenching
Slater, Colin T
2014-01-01
We combine observations of the Local Group with data from the NASA-Sloan Atlas to show the variation in the quenched fraction of satellite galaxies from low mass dwarf spheroidals and dwarf irregulars to more massive dwarfs similar to the Magellanic clouds. While almost all of the low mass ($M_\\star \\lesssim 10^7$ $M_\\odot$) dwarfs are quenched, at higher masses the quenched fraction decreases to approximately 40-50%. This change in the quenched fraction is large, and suggests a sudden change in the effectiveness of quenching that correlates with satellite mass. We combine this observation with models of satellite infall and ram pressure stripping to show that the low mass satellites must quench within 1-2 Gyr of pericenter passage to maintain a high quenched fraction, but that many more massive dwarfs must continue to form stars today even though they likely fell in to their host >5 Gyr ago. We also characterize how the susceptibility of dwarfs to ram pressure must vary as a function of mass if it is to acco...
Flow-dependent mass transfer may trigger endothelial signaling cascades.
Vandrangi, Prashanthi; Sosa, Martha; Shyy, John Y-J; Rodgers, Victor G J
2012-01-01
It is well known that fluid mechanical forces directly impact endothelial signaling pathways. But while this general observation is clear, less apparent are the underlying mechanisms that initiate these critical signaling processes. This is because fluid mechanical forces can offer a direct mechanical input to possible mechanotransducers as well as alter critical mass transport characteristics (i.e., concentration gradients) of a host of chemical stimuli present in the blood stream. However, it has recently been accepted that mechanotransduction (direct mechanical force input), and not mass transfer, is the fundamental mechanism for many hemodynamic force-modulated endothelial signaling pathways and their downstream gene products. This conclusion has been largely based, indirectly, on accepted criteria that correlate signaling behavior and shear rate and shear stress, relative to changes in viscosity. However, in this work, we investigate the negative control for these criteria. Here we computationally and experimentally subject mass-transfer limited systems, independent of mechanotransduction, to the purported criteria. The results showed that the negative control (mass-transfer limited system) produced the same trends that have been used to identify mechanotransduction-dominant systems. Thus, the widely used viscosity-related shear stress and shear rate criteria are insufficient in determining mechanotransduction-dominant systems. Thus, research should continue to consider the importance of mass transfer in triggering signaling cascades.
Impact parameter dependence of collective flow and its disappearance for different mass asymmetries
Goyal, Supriya
2011-01-01
We study the role of impact parameter on the collective flow and its disappearance for different mass asymmetric reactions. The mass asymmetry is varied from 0 to 0.7 keeping the total mass of the system fixed. Our results clearly indicate a significant role of impact parameter on the collective flow and its disappearance for the mass asymmetric reactions. The impact parameter dependence is also found to vary with mass asymmetry of the reaction.
Analytical approximation to the dynamics of a binary stars system with time depending mass variation
López, Gustavo V
2016-01-01
We study the classical dynamics of a binary stars when there is an interchange of mass between them. Assuming that one of the star is more massive than the other, the dynamics of the lighter one is analyzed as a function of its time depending mass variation. Within our approximations and models for mass transference, we obtain a general result which establishes that if the lightest star looses mass, its period increases. If the lightest star win mass, its period decreases.
Ablikim, M; Bai, J Z; Ban, Y; Cai, X; Chen, H F; Chen, H S; Chen, H X; Chen, J C; Chen, Jin; Chen, Y B; Chu, Y P; Dai, Y S; Diao, L Y; Deng, Z Y; Dong, Q F; Du, S X; Fang, J; Fang, S S; Fu, C D; Gao, C S; Gao, Y N; Gu, S D; Gu, Y T; Guo, Y N; He, K L; He, M; Heng, Y K; Hou, J; Hu, H M; Hu, J H; Hu, T; Huang, G S; Huang, X T; Ji, X B; Jiang, X S; Jiang, X Y; Jiao, J B; Jin, D P; Jin, S; Lai, Y F; Li, G; Li, H B; Li, J; Li, R Y; Li, S M; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Liang, Y F; Liao, H B; Liu, B J; Liu, C X; Liu, F; Liu, Fang; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Liu, Jian; Liu, Q; Liu, R G; Liu, Z A; Lou, Y C; Lu, F; Lu, G R; Lu, J G; Luo, C L; Ma, F C; Ma, H L; Ma, L L; Ma, Q M; Mao, Z P; Mo, X H; Nie, J; Ping, R G; Qi, N D; Qin, H; Qiu, J F; Ren, Z Y; Rong, G; Ruan, X D; Shan, L Y; Shang, L; Shen, D L; Shen, X Y; Sheng, H Y; Sun, H S; Sun, S S; Sun, Y Z; Sun, Z J; Tang, X; Tong, G L; Wang, D Y; Wang, L; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, W F; Wang, Y F; Wang, Z; Wang, Z Y; Wang, Zheng; Wei, C L; Wei, D H; Weng, Y; Wu, N; Xia, X M; Xie, X X; Xu, G F; Xu, X P; Xu, Y; Yan, M L; Yang, H X; Yang, Y X; Ye, M H; Ye, Y X; Yu, G W; Yuan, C Z; Yuan, Y; Zang, S L; Zeng, Y; Zhang, B X; Zhang, B Y; Zhang, C C; Zhang, D H; Zhang, H Q; Zhang, H Y; Zhang, J W; Zhang, J Y; Zhang, S H; Zhang, X Y; Zhang, Yiyun; Zhang, Z X; Zhang, Z P; Zhao, D X; Zhao, J W; Zhao, M G; Zhao, P P; Zhao, W R; Zhao, Z G; Zheng, H Q; Zheng, J P; Zheng, Z P; Zhou, L; Zhu, K J; Zhu, Q M; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, B A; Zhuang, X A; Zou, B S
2008-09-05
We observe an obvious anomalous line shape of the e;{+}e;{-}--> hadrons total cross sections in the energy region between 3.700 and 3.872 GeV. It is inconsistent with the explanation for only one simple psi(3770) resonance with a statistical significance of 7sigma. The anomalous line shape may be explained by two possible enhancements of the inclusive hadron production near the center-of-mass energies of 3.764 and 3.779 GeV, indicating that either there is likely a new structure in addition to the psi(3770) resonance around 3.773 GeV, or there are some physics effects reflecting the DD[over ] production dynamics.
Mass- and isospin-dependence of short-range correlated pairs
Mosel, U
2016-01-01
The target-mass number dependence of nucleon-nucleon pairs with short-range correlations is explored in a physically transparent geometrical model. The observed $A$-dependence of 2-nucleon ejection cross sections in $(e,e')$ reactions is found to reflect the mass-dependence of nuclear density distributions. The dependence of proton-proton vs. proton-neutron pairs is also analyzed in this model. The mass-number dependence relative to $^{12}C$ can be understood using simple combinatorics.
On the quark-mass dependence of baryon ground-state masses
Energy Technology Data Exchange (ETDEWEB)
Semke, Alexander
2010-02-17
Baryon masses of the flavour SU(3) octet and decuplet baryons are calculated in the framework of the Chiral Perturbations Theory - the effective field theory of the strong interaction. The chiral extrapolation to the higher meson (quark) masses is carried out. The comparison with the recent results on the baryon masses from lattice calculations are presented. (orig.)
Institute of Scientific and Technical Information of China (English)
Axel Schulze-Halberg
2005-01-01
We study space-time transformations of the time-dependent Schr(o)dinger equation (TDSE) with time- and position-dependent (effective) mass. We obtain the most general space-time transformation that maps such a TDSE onto another one of its kind. The transformed potential is given in explicit form.
QCD One-Loop Effective Coupling Constant and Quark Mass Given in a Mass-Dependent Renormalization
Institute of Scientific and Technical Information of China (English)
SU Jun-Chen; SHAN Lian-You; CAO Ying-Hui
2001-01-01
The QCD one-loop renormalization is restudied in a mass-dependent subtraction scheme in which the quark mass is not set to vanish and the renormalization point is chosen to be an arbitrary time-like momentum. The correctness of the subtraction is ensured by the Ward identities which are respected in all the processes of subtraction.By considering the mass effect, the effective coupling constant and the effective quark masses derived by solving the renormalization group equations are given in improved expressions which are different from the previous results.PACS numbers: 11.10.Gh, 11.10.Hi, 12.38.-t, 12.38.Bx
A squeeze-like operator approach to position-dependent mass in quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Moya-Cessa, Héctor M.; Soto-Eguibar, Francisco [Instituto Nacional de Astrofísica, Óptica y Electrónica, Calle Luis Enrique Erro No. 1, Santa María Tonantzintla, San Andrés Cholula, Puebla CP 72840 (Mexico); Christodoulides, Demetrios N. [CREOL/College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816-2700 (United States)
2014-08-15
We provide a squeeze-like transformation that allows one to remove a position dependent mass from the Hamiltonian. Methods to solve the Schrödinger equation may then be applied to find the respective eigenvalues and eigenfunctions. As an example, we consider a position-dependent-mass that leads to the integrable Morse potential and therefore to well-known solutions.
Isospin dependence of nucleon effective masses in neutron-rich matter
Li, Bao-An; Chen, Lie-Wen; Li, Xiao-Hua
2016-01-01
In this talk, we first briefly review the isospin dependence of the total nucleon effective mass $M^{\\ast}_{J}$ inferred from analyzing nucleon-nucleus scattering data within an isospin dependent non-relativistic optical potential model, and the isospin dependence of the nucleon E-mass $M^{\\ast,\\rm{E}}_{J}$ obtained from applying the Migdal-Luttinger theorem to a phenomenological single-nucleon momentum distribution in nuclei constrained by recent electron-nucleus scattering experiments. Combining information about the isospin dependence of both the nucleon total effective mass and E-mass, we then infer the isospin dependence of nucleon k-mass using the well-known relation $M^{\\ast}_{J}=M^{\\ast,\\rm{E}}_{J}\\cdot M^{\\ast,\\rm{k}}_{J}$. Implications of the results on the nucleon mean free path (MFP) in neutron-rich matter are discussed.
Analytic results in the position-dependent mass Schrodinger problem
Cunha, M S
2013-01-01
We investigate the Schrodinger equation for a particle with a nonuniform solitonic mass density. First, we discuss in extent the (nontrivial) $V(x)=0$ case whose solutions are hipergeometric functions in $\\tanh^2 x$. Then, we consider an external hyperbolic-tangent potential. We show that the effective quantum mechanical problem is given by a Heun class equation and find {analytically} an eigenbasis for the space of solutions. We also compute the eigenstates for a potential of the form $V(x)=V_0 \\sinh^2x$
Quark Mass Dependence of Nucleon Magnetic Moment and Charge Radii
Institute of Scientific and Technical Information of China (English)
MA Wei-Xing; ZHOU Li-Juan; GU Yun-Ting; PING Rong-Gang
2005-01-01
Understanding hadron structure within the framework of QCD is an extremely challenging problem. Our purpose here is to explain the model-independent consequences of the approximated chiral symmetry of QCD for two famous results concerning the quark structure of the nucleon. We show that both the apparent success of the constituent quark model in reproducing the ratio of proton to neutron magnetic moments and the apparent success of the Foldy term in reproducing the observed charge radius of the neutron are coincidental. That is, a relatively small change of the current quark mass would spoil both results.
The Environmental Dependence of the Galaxy Stellar Mass Function in the ECO Survey
Richstein, Hannah; Berlind, Andreas A.; Calderon, Victor; Eckert, Kathleen D.; Kannappan, Sheila; Moffett, Amanda J.; Stark, David
2017-01-01
We study the environmental dependence of the galaxy stellar mass function in the ECO survey and compare it with models that associate galaxies with dark matter halos. Specifically, we quantify the environment of each galaxy in the ECO survey using an Nth nearest neighbor distance metric, and we measure how the galaxy stellar mass distribution varies from low density to high density environments. As expected, we find that massive galaxies preferentially populate high density regions, while low mass galaxies preferentially populate lower density environments. We investigate whether this trend can be explained simply by the stellar-to-halo mass relation combined with the environmental dependence of the halo mass function. In other words, we test the hypothesis that the stellar mass of a galaxy depends solely on the mass of its dark matter halo and does not exhibit a residual dependence on the halo’s larger environment. To test this hypothesis, we first construct mock ECO catalogs by populating dark matter halos in an N-body simulation with galaxies using a model that preserves the overall clustering strength of the galaxy population. We then assign stellar masses to the mock galaxies using physically motivated models that connect stellar mass to halo mass and are constrained to match the global ECO stellar mass function. Finally, we impose the radial and angular selection functions of the ECO survey and repeat our environmental analysis on the mock catalogs. We find that the environmental dependence of stellar mass in the mock catalogs is in agreement with that observed in the ECO survey. Our results are thus consistent with the simple hypothesis that galaxy stellar mass only depends on halo mass. The RESOLVE/ECO surveys were supported by NSF award AST-0955368.
Mass-dependent fractionation of nickel isotopes in meteoritic metal
Cook, David L.; Wadhwa, Meenakshi; Clayton, Robert N.; Dauphas, Nicolas; Janney, Philip E.; Davis, Andrew M.
We measured nickel isotopes via multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) in the bulk metal from 36 meteorites, including chondrites, pallasites, and irons (magmatic and non-magmatic). The Ni isotopes in these meteorites are mass fractionated; the fractionation spans an overall range of ≈0.4‰ amu-1. The ranges of Ni isotopic compositions (relative to the SRM 986 Ni isotopic standard) in metal from iron meteorites (≈0.0 to ≈0.3‰ amu-1) and chondrites (≈0.0 to ≈0.2‰ amu-1) are similar, whereas the range in pallasite metal (≈-0.1 to 0.0‰ amu-1) appears distinct. The fractionation of Ni isotopes within a suite of fourteen IIIAB irons (≈0.0 to ≈0.3‰ amu-1) spans the entire range measured in all magmatic irons. However, the degree of Ni isotopic fractionation in these samples does not correlate with their Ni content, suggesting that core crystallization did not fractionate Ni isotopes in a systematic way. We also measured the Ni and Fe isotopes in adjacent kamacite and taenite from the Toluca IAB iron meteorite. Nickel isotopes show clearly resolvable fractionation between these two phases; kamacite is heavier relative to taenite by ≈0.4‰ amu-1. In contrast, the Fe isotopes do not show a resolvable fractionation between kamacite and taenite. The observed isotopic compositions of kamacite and taenite can be understood in terms of kinetic fractionation due to diffusion of Ni during cooling of the Fe-Ni alloy and the development of the Widmanstätten pattern.
CMS and ATLAS Collaborations
2016-01-01
A procedure is presented to combine data from the ATLAS and CMS experiments on ZZ production to obtain constraints on anomalous neutral triple gauge boson couplings. Statistical and systematic uncertainties and their correlations are taken into account. Data from pp collisions at a center-of-mass energy of 7 TeV delivered by the LHC are used. The datasets correspond to integrated luminosities of $4.6$ and $5.0~\\mathrm{fb}^{-1}$ for ATLAS and CMS, respectively. The combination is performed in the fully leptonic decay channels $\\mathrm{ZZ} \\to \\ell^+ \\ell^- \
Spatial dependence of 2MASS luminosity and mass functions in the old open cluster NGC 188
Bonatto, C; Santos, J F C
2005-01-01
Luminosity and mass functions in the old open cluster NGC 188 are analysed by means of J and H 2MASS photometry. Within the uncertainties, the observed projected radial density profile of NGC 188 departs from the two-parameter King model in two inner regions, which reflects the non-virialized dynamical state and possibly, some degree of non-sphericity in the spatial shape of this old open cluster. Fits with two and three-parameter King models to the radial distribution of stars resulted in a core radius of 1.3 pc and a tidal radius of 21 pc. The present 2MASS analysis resulted in significant slope variations with distance in the mass function $\\phi(m)\\propto m^{-(1+\\chi)}$, being flat in the central parts ($\\chi=0.6\\pm0.7$) and steep in the cluster outskirts ($\\chi=7.2\\pm0.6$). The overall mass function has a slope $\\chi=1.9\\pm0.7$, slightly steeper than a standard Salpeter mass function. Solar metallicity Padova isochrone fits to the near-infrared colour-magnitude diagram of NGC 188 resulted in an age of $7....
Generalized Harmonic Oscillator and the Schr(o)dinger Equation with Position-Dependent Mass
Institute of Scientific and Technical Information of China (English)
JU Guo-Xing; CAI Chang-Ying; REN Zhong-Zhou
2009-01-01
We study the generalized harmonic oscillator that has both the position-dependent mass and the potential depending on the form of mass function in a more general framework. The explicit expressions of the eigenvalue and eigenfunction for such a system are given, they have the same forms as those for the usual harmonic oscillator with constant mass. The coherent state and its properties for the system with PDM are also discussed. We give the corresponding effective potentials for several mass functions, the systems with such potentials are isospectral to the usual harmonic oscillator.
Semiclassical Method to Schr(o)dinger Equation with Position-Dependent Effective Mass
Institute of Scientific and Technical Information of China (English)
CHEN Gang; XUAN Pei-Cai; CHEN Zi-Dong
2006-01-01
In this paper, two novel semiclassical methods including the standard and supersymmetric WKB quantization conditions are suggested to discuss the Schrodinger equation with position-dependent effective mass. From a proper coordinate transformation, the formalism of the Schrodinger equation with position-dependent effective mass is mapped into isospectral one with constant mass and therefore for a given mass distribution and physical potential function the bound state energy spectrum can be determined easily by above method associated with a simple integral formula. It is shown that our method can give the analytical results for some exactly-solvable quantum systems.
Evolution of low-mass X-ray binaries: dependence on the mass of the compact object
Institute of Scientific and Technical Information of China (English)
Qian Xu; Tao Li; Xiang-Dong Li
2012-01-01
We perform numerical calculations to simulate the evolution of low-mass X-ray binary systems.For the accreting compact object we consider the initial mass of 1.4,10,20,100,200,500 and 1000 M☉,corresponding to neutron stars (NSs),stellarmass black holes (BHs) and intermediate-mass BHs.Mass transfer in these binaries is driven by nuclear evolution of the donors and/or orbital angular momentum loss due to magnetic braking and gravitational wave radiation.For the different systems,we determine their bifurcation periods Pbif that separate the formation of converging systems from the diverging ones,and show that Pbif changes from ～ 1 d to (≥)3 d for a 1 M☉ donor star,with increasing initial accretor mass from 1.4 to 1000 M☉.This means that the dominant mechanism of orbital angular momentum loss changes from magnetic braking to gravitational radiation.As an illustration we compare the evolution of binaries consisting of a secondary star of 1 M☉ at a fixed initial period of 2 d.In the case of the NS or stellar-mass BH accretor,the system evolves to a well-detached He white dwarf-neutron star/black hole pair,but it evolves to an ultracompact binary if the compact object is an intermediate-mass BH.Thus the binary evolution heavily depends upon the mass of the compact object.However,we show that the final orbital period-white dwarf mass relation found for NS low-mass X-ray binaries is fairly insensitive to the initial mass of the accreting star,even if it is an intermediate-mass BH.
Multidimensional Hamiltonian for tunneling with position-dependent mass.
Fernández-Ramos, Antonio; Smedarchina, Zorka; Siebrand, Willem
2014-09-01
A multidimensional Hamiltonian for tunneling is formulated, based on the mode with imaginary frequency of the transition state as a reaction coordinate. To prepare it for diagonalization, it is transformed into a lower-dimension Hamiltonian by incorporating modes that move faster than the tunneling into a coordinate-dependent kinetic energy operator, for which a Hermitian form is chosen and tested for stability of the eigenvalues. After transformation to a three-dimensional form, which includes two normal modes strongly coupled to the tunneling mode, this Hamiltonian is diagonalized in terms of a basis set of harmonic oscillator functions centered at the transition state. This involves a sparse matrix which is easily partially diagonalized to yield tunneling splittings for the zero-point level and the two fundamental levels of the coupled modes. The method is tested on the well-known benchmark molecule malonaldehyde and a deuterium isotopomer, for which these splittings have been measured. Satisfactory agreement with experiment results is obtained.
De Vito, M A
2012-01-01
We construct a set of binary evolutionary sequences for systems composed by a normal, solar composition, donor star together with a neutron star. We consider a variety of masses for each star as well as for the initial orbital period corresponding to systems that evolve to ultra-compact or millisecond pulsar-helium white dwarf pairs. Specifically, we select a set of donor star masses of 0.50, 0.65, 0.80, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 3.00, and 3.50 solar masses, whereas for the accreting neutron star we consider initial masses values of 0.8, 1.0, 1.2, and 1.4 solar masses. The considered initial orbital period interval ranges from 0.5 to 12 days. It is found that the evolution of systems, with fixed initial values for the orbital period and the mass of the normal donor star, heavily depends upon the mass of the neutron star. In some cases, varying the initial value of the neutron star mass, we obtain evolved configurations ranging from ultra-compact to widely separated objects. We also analyse the...
The dependence of the ETG mass-size relation on mass, morphology and environment from z~1 to present
Huertas-Company, Marc; Shankar, Francesco; Delaye, Lauriane; Raichoor, Anand; Covone, Giovanni; Finoguenov, Alexis; Kneib, Jean-Paul; Fèvre, Olivier Le; Povic, Mirjana
2012-01-01
[abridged] We study the dependence of the galaxy size evolution on morphology, stellar mass and large scale environment for a sample of 298 group and 384 field quiescent early-type galaxies from the COSMOS survey, selected from z~1 to the present, and with masses $log(M/M_\\odot)>10.5$. The galaxy size growth depends on galaxy mass and early-type galaxy morphology, e.g., elliptical galaxies evolve differently than lenticular galaxies. At the low mass end -$10.511.2$- approximately doubled their size. Interestingly, lenticular galaxies display different behavior: they appear more compact on average and they do show a size growth of \\sim60% since z=1 independent of stellar mass. We compare our results with state-of-the art semi-analytic models. While major and minor mergers can account for most of the galaxy size growth, we find that with present data and the theoretical uncertainties in the modeling we cannot state clear evidence favoring either merger or mass loss via quasar and/or stellar winds as the primary...
Hsu, Wen-Hsin; Hartmann, Lee; Allen, Lori; Hernández, Jesús; Megeath, S. T.; Mosby, Gregory; Tobin, John J.; Espaillat, Catherine
2012-06-01
We present results from an optical photometric and spectroscopic survey of the young stellar population in L1641, the low-density star-forming region of the Orion A cloud south of the Orion Nebula Cluster (ONC). Our goal is to determine whether L1641 has a large enough low-mass population to make the known lack of high-mass stars a statistically significant demonstration of environmental dependence of the upper mass stellar initial mass function (IMF). Our spectroscopic sample consists of IR-excess objects selected from the Spitzer/IRAC survey and non-excess objects selected from optical photometry. We have spectral confirmation of 864 members, with another 98 probable members; of the confirmed members, 406 have infrared excesses and 458 do not. Assuming the same ratio of stars with and without IR excesses in the highly extincted regions, L1641 may contain as many as ~1600 stars down to ~0.1 M ⊙, comparable within a factor of two to the ONC. Compared to the standard models of the IMF, L1641 is deficient in O and early B stars to a 3σ-4σ significance level, assuming that we know of all the massive stars in L1641. With a forthcoming survey of the intermediate-mass stars, we will be in a better position to make a direct comparison with the neighboring, dense ONC, which should yield a stronger test of the dependence of the high-mass end of the stellar IMF on environment.
Scattering states of Dirac particle equation with position dependent mass under the cusp potential
Chabab, M; Hassanabadi, H; Oulne, M; Zare, S
2016-01-01
We solved the one-dimensional position-dependent mass Dirac equation in the presence of the cusp potential and reported the solutions in terms of the Whittaker functions. We have derived the reflection and transmission coefficients by making use of the matching conditions on the wave functions. The effect of position dependent mass on the reflection and transmission coefficients of the system is duly investigated.
Scattering states of Dirac particle equation with position-dependent mass under the cusp potential
Chabab, M.; El Batoul, A.; Hassanabadi, H.; Oulne, M.; Zare, S.
2016-11-01
We solved the one-dimensional position-dependent mass Dirac equation in the presence of the cusp potential and reported the solutions in terms of the Whittaker functions. We have derived the reflection and transmission coefficients by making use of the matching conditions on the wave functions. The effect of the position-dependent mass on the reflection and transmission coefficients of the system is duly investigated.
Energy Technology Data Exchange (ETDEWEB)
Beane, S R; Detmold, W; Lin, H W; Luu, T C; Orginos, K; Parreno, A; Savage, M J; Torok, A; Walker-Loud, A
2011-07-01
The volume dependence of the octet baryon masses and relations among them are explored with Lattice QCD. Calculations are performed with nf = 2 + 1 clover fermion discretization in four lattice volumes, with spatial extent L ? 2.0, 2.5, 3.0 and 4.0 fm, with an anisotropic lattice spacing of b_s ? 0.123 fm in the spatial direction, and b_t = b_s/3.5 in the time direction, and at a pion mass of m_\\pi ? 390 MeV. The typical precision of the ground-state baryon mass determination is dependence of the masses, the Gell-Mann Okubo mass-relation, and of other mass combinations. A comparison with the predictions of heavy baryon chiral perturbation theory is performed in both the SU(2)L ? SU(2)R and SU(3)L ? SU(3)R expansions. Predictions of the three-flavor expansion for the hadron masses are found to describe the observed volume dependences reasonably well. Further, the ?N? axial coupling constant is extracted from the volume dependence of the nucleon mass in the two-flavor expansion, with only small modifications in the three-flavor expansion from the inclusion of kaons and eta's. At a given value of m?L, the finite-volume contributions to the nucleon mass are predicted to be significantly smaller at m_\\pi ? 140 MeV than at m_\\pi ? 390 MeV due to a coefficient that scales as ? m_\\pi^3. This is relevant for the design of future ensembles of lattice gauge-field configurations. Finally, the volume dependence of the pion and kaon masses are analyzed with two-flavor and three-flavor chiral perturbation theory.
Indian Academy of Sciences (India)
V K Gupta; Asha Gupta; S Singh; J D Anand
2003-10-01
We report on the study of the mass–radius (–) relation and the radial oscillations of magnetized proto strange stars. For the quark matter we have employed the very recent modiﬁcation, the temperature- and density-dependent quark mass model of the well-known density-dependent quark mass model. We ﬁnd that the effect of magnetic ﬁeld, both on the maximum mass and radial frequencies, is rather small. Also a proto strange star, whether magnetized or otherwise, is more likely to evolve into a strange star rather than transform into a black hole.
The Frequency Dependence of the Added Mass of Quartz Tuning Fork Immersed in He II
Gritsenko, I.; Klokol, K.; Sokolov, S.; Sheshin, G.
2016-11-01
We measured the dependences of the resonance frequency of tuning forks immersed in liquid helium at T = 0.365 K in the pressure interval from saturated vapor pressure to 24.8 atm. The quartz tuning forks have been studied with different resonance frequencies of 6.65, 8.46, 12.1, 25.0 and 33.6 kHz in vacuum. The measurements were taken in the laminar flow regime. The experimental data allow us to determine the added mass of a quartz tuning fork in He II. It was found that the added mass per unit length of the prong fork is frequency dependent. Some possible qualitative explanations for such dependence are proposed. In addition, we observed, at T = 0.365 K, the changes in added mass with pressure according to the pressure dependence of He II density.
Anomalous diffusion for inertial particles under gravity in parallel flows
Afonso, Marco Martins
2014-01-01
We investigate the bounds between normal or anomalous effective diffusion for inertial particles transported by parallel flows. The infrared behavior of the fluid kinetic-energy spectrum, i.e. the possible presence of long-range spatio-temporal correlations, is modeled as a power law by means of two parameters, and the problem is studied as a function of these latter. Our results, obtained in the limit of weak relative inertia, extend well-known results for tracers and apply to particles of any mass density, subject to gravity and Brownian diffusion. We consider both steady and time-dependent flows, and cases of both vanishing and finite particle sedimentation.
Energy Technology Data Exchange (ETDEWEB)
Hsu, Wen-Hsin; Hartmann, Lee [Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48109 (United States); Allen, Lori [National Optical Astronomy Observatory, 950 North Cherry Ave., Tucson, AZ 85719 (United States); Hernandez, Jesus [Centro de Investigaciones de Astronomia, Apdo. Postal 264, Merida 5101-A (Venezuela, Bolivarian Republic of); Megeath, S. T. [Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Mosby, Gregory [Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter Street, Madison, WI 53706 (United States); Tobin, John J. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Espaillat, Catherine [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-78, Cambridge, MA 02138 (United States)
2012-06-10
We present results from an optical photometric and spectroscopic survey of the young stellar population in L1641, the low-density star-forming region of the Orion A cloud south of the Orion Nebula Cluster (ONC). Our goal is to determine whether L1641 has a large enough low-mass population to make the known lack of high-mass stars a statistically significant demonstration of environmental dependence of the upper mass stellar initial mass function (IMF). Our spectroscopic sample consists of IR-excess objects selected from the Spitzer/IRAC survey and non-excess objects selected from optical photometry. We have spectral confirmation of 864 members, with another 98 probable members; of the confirmed members, 406 have infrared excesses and 458 do not. Assuming the same ratio of stars with and without IR excesses in the highly extincted regions, L1641 may contain as many as {approx}1600 stars down to {approx}0.1 M{sub Sun }, comparable within a factor of two to the ONC. Compared to the standard models of the IMF, L1641 is deficient in O and early B stars to a 3{sigma}-4{sigma} significance level, assuming that we know of all the massive stars in L1641. With a forthcoming survey of the intermediate-mass stars, we will be in a better position to make a direct comparison with the neighboring, dense ONC, which should yield a stronger test of the dependence of the high-mass end of the stellar IMF on environment.
A new methodology to test galaxy formation models using the dependence of clustering on stellar mass
Campbell, David J R; Mitchell, Peter D; Helly, John C; Gonzalez-Perez, Violeta; Lacey, Cedric G; Lagos, Claudia del P; Simha, Vimal; Farrow, Daniel J
2014-01-01
We present predictions for the two-point correlation function of galaxy clustering as a function of stellar mass, computed using two new versions of the GALFORM semi-analytic galaxy formation model. These models make use of a new high resolution, large volume N-body simulation, set in the WMAP7 cosmology. One model uses a universal stellar initial mass function (IMF), while the other assumes different IMFs for quiescent star formation and bursts. Particular consideration is given to how the assumptions required to estimate the stellar masses of observed galaxies (such as the choice of IMF, stellar population synthesis model and dust extinction) influence the perceived dependence of galaxy clustering on stellar mass. Broad-band spectral energy distribution fitting is carried out to estimate stellar masses for the model galaxies in the same manner as in observational studies. We show clear differences between the clustering signals computed using the true and estimated model stellar masses. As such, we highligh...
ATLAS and CMS Collaborations
2016-01-01
A procedure is presented to combine data from the ATLAS and CMS experiments on $ZZ$ production to obtain constraints on anomalous neutral triple gauge boson couplings. Statistical and systematic uncertainties and their correlations are taken into account. Data from $pp$ collisions at a center-of-mass energy of 7 TeV delivered by the LHC are used. The datasets correspond to integrated luminosities of 4.6 and 5.0 $\\rm{fb^{−1}}$ for ATLAS and CMS, respectively. The combination is performed in the fully leptonic decay channels ZZ → 2l2ν (ATLAS) and ZZ → 4l (ATLAS, CMS). Combined limits on the coupling parameters are −0.010 < f4γ < 0.011, −0.0087 < f4Z < 0.0091, −0.011 < f5γ < 0.010, and −0.0091 < f5Z < 0.0089 at 95% C.L., where all other parameters are fixed to the standard model values. These results represent the first combined limits of the ATLAS and CMS collaborations for anomalous gauge boson couplings.
Isotopic mass-dependence of metal cation diffusion coefficients in liquid water
Energy Technology Data Exchange (ETDEWEB)
Bourg, I.C.; Richter, F.M.; Christensen, J.N.; Sposito, G.
2009-01-11
Isotope distributions in natural systems can be highly sensitive to the mass (m) dependence of solute diffusion coefficients (D) in liquid water. Isotope geochemistry studies routinely have assumed that this mass dependence either is negligible (as predicted by hydrodynamic theories) or follows a kinetic-theory-like inverse square root relationship (D {proportional_to} m{sup -0.5}). However, our recent experimental results and molecular dynamics (MD) simulations showed that the mass dependence of D is intermediate between hydrodynamic and kinetic theory predictions (D {proportional_to} m{sup -{beta}} with 0 {<=} {beta} < 0.2 for Li{sup +}, Cl{sup -}, Mg{sup 2+}, and the noble gases). In this paper, we present new MD simulations and experimental results for Na{sup +}, K{sup +}, Cs{sup +}, and Ca{sup 2+} that confirm the generality of the inverse power-law relation D {proportional_to} m{sup -{beta}}. Our new findings allow us to develop a general description of the influence of solute valence and radius on the mass dependence of D for monatomic solutes in liquid water. This mass dependence decreases with solute radius and with the magnitude of solute valence. Molecular-scale analysis of our MD simulation results reveals that these trends derive from the exponent {beta} being smallest for those solutes whose motions are most strongly coupled to solvent hydrodynamic modes.
Hsu, Wen-Hsin; Allen, Lori; Hernandez, Jesus; Megeath, S T; Mosby, Gregory; Tobin, John J; Espaillat, Catherine
2012-01-01
We present results from an optical photometric and spectroscopic survey of the young stellar population in L1641, the low-density star-forming region of the Orion A cloud south of the Orion Nebula Cluster (ONC). Our goal is to determine whether L1641 has a large enough low-mass population to make the known lack of high-mass stars a statistically-significant demonstration of environmental dependence of the upper mass stellar initial mass function (IMF). Our spectroscopic sample consists of IR-excess objects selected from the Spitzer/IRAC survey and non-excess objects selected from optical photometry. We have spectral confirmation of 864 members, with another 98 probable members; of the confirmed members, 406 have infrared excesses and 458 do not. Assuming the same ratio of stars with and without IR excesses in the highly-extincted regions, L1641 may contain as many as ~1600 stars down to ~0.1 solar mass, comparable within a factor of two to the the ONC. Compared to the standard models of the IMF, L1641 is defi...
Singhal, R K; Dalela, S; Sekhar, B; Jain, D C; Garg, K B
2003-01-01
Some experiments have recently shown that in the YBCO detwinned system charge aggregation takes place in the Cu-O sub 2 plane along the b-axis at T>>T sub c followed by formation of Cooper pairs, again in the normal state. Polarised X-ray absorption measurements at the O K and Cu L sub 3 absorption edges in E parallel b orientation have been carried out on underdoped and overdoped single crystals of La sub 2 sub - sub x Sr sub x CuO sub 4 through a temperature range of 10-300 K to study the dependence of the itinerant hole density. Both the crystals do show an anomalous temperature dependence but there is a wide divergence in the earlier and our results. This paper discusses the results and possible causes for the difference.
The charmonium dissociation in an "anomalous wind"
Sadofyev, Andrey V
2016-01-01
We study the charmonium dissociation in a strongly coupled chiral plasma in the presence of magnetic field and axial charge imbalance. This type of plasma carries ``anomalous flow" induced by the chiral anomaly and exhibits novel transport phenomena such as chiral magnetic effect. We found that the ``anomalous flow" would modify the charmonium color screening length by using the gauge/gravity correspondence. We derive an analytical expression quantifying the ``anomalous flow" experienced by a charmonium for a large class of chiral plasma with a gravity dual. We elaborate on the similarity and {\\it qualitative} difference between anomalous effects on the charmonium color screening length which are {\\it model-dependent} and those on the heavy quark drag force which are fixed by the second law of thermodynamics. We speculate on the possible charmonium dissociation induced by chiral anomaly in heavy ion collisions.
Nomura, Masao; Kudo, Takashi; Adachi, Atsuhiko; Aida, Masao; Fujii, Yasuhiko
2013-11-01
Mass independent fractionation (MIF) has been a very interesting topic in the field of inorganic isotope chemistry, in particular, geo- and cosmo- chemistry. In the present work, we studied the isotope fractionation of Ni(II) and Pb(II) ions in complex formation with chelating reagent EDTA. To obtain clear results on the mass dependence of the isotope fractionation, we have conducted long-distance ion exchange chromatography of Ni(II) and Pb(II), using chelate complex reagent EDTA. The results apparently show that the isotope fractionation in Ni complex formation system is governed by the mass dependent rule. On the other hand the isotope fractionation in the Pb complex system is governed by the mass independent rule or the nuclear volume effect.
Higgs boson pair production in gluon fusion at NLO with full top-quark mass dependence
Borowka, S; Heinrich, G; Jones, S P; Kerner, M; Schlenk, J; Schubert, U; Zirke, T
2016-01-01
We present the calculation of the cross section and invariant mass distribution for Higgs boson pair production in gluon fusion at next-to-leading order (NLO) in QCD. Top-quark masses are fully taken into account throughout the calculation. The virtual two-loop amplitude has been generated using an extension of the program GoSam supplemented with an interface to Reduze for the integral reduction. The occurring integrals have been calculated numerically using the program SecDec. Our results, including the full top-quark mass dependence for the first time, allow us to assess the validity of various approximations proposed in the literature, which we also recalculate. We find substantial deviations between the NLO result and the different approximations, which emphasizes the importance of including the full top-quark mass dependence at NLO.
Energy Technology Data Exchange (ETDEWEB)
Nomura, Masao; Kudo, Takashi; Adachi, Atsuhiko; Aida, Masao; Fujii, Yasuhiko [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, O-okayama Meguroku, Tokyo, 152-8550 (Japan)
2013-11-13
Mass independent fractionation (MIF) has been a very interesting topic in the field of inorganic isotope chemistry, in particular, geo- and cosmo- chemistry. In the present work, we studied the isotope fractionation of Ni(II) and Pb(II) ions in complex formation with chelating reagent EDTA. To obtain clear results on the mass dependence of the isotope fractionation, we have conducted long-distance ion exchange chromatography of Ni(II) and Pb(II), using chelate complex reagent EDTA. The results apparently show that the isotope fractionation in Ni complex formation system is governed by the mass dependent rule. On the other hand the isotope fractionation in the Pb complex system is governed by the mass independent rule or the nuclear volume effect.
Study of Proto Strange Stars (PSS) in Temperature and Density Dependent Quark Mass Model
Gupta, V K; Singh, S; Anand, J D; Gupta, Asha
2003-01-01
We report on the study of the mass-radius (M-R) relation and the radial oscillations of proto strange stars. For the quark matter we have employed the well known density dependent quark mass model and its very recent modification, the temperature and density dependent quark mass model. We find that the maximum mass the star can support increases significantly with the temperature of the star in this model which implies that transition to a black hole at the early stage of formation of the star is inhibited. As for the neutrinos, we find, contrary to the expectation that the M-R and oscillation frequencies are almost independent of the neutrino chemical potentials.
Midya, Bikashkali; Roychoudhury, Rajkumar
2010-01-01
Here we have studied first and second-order intertwining approach to generate isospectral partner potentials of position-dependent (effective) mass Schroedinger equation. The second-order intertwiner is constructed directly by taking it as second order linear differential operator with position depndent coefficients and the system of equations arising from the intertwining relationship is solved for the coefficients by taking an ansatz. A complete scheme for obtaining general solution is obtained which is valid for any arbitrary potential and mass function. The proposed technique allows us to generate isospectral potentials with the following spectral modifications: (i) to add new bound state(s), (ii) to remove bound state(s) and (iii) to leave the spectrum unaffected. To explain our findings with the help of an illustration, we have used point canonical transformation (PCT) to obtain the general solution of the position dependent mass Schrodinger equation corresponding to a potential and mass function. It is...
Rudomin, Emily L.; Carr, Steven A.; Jaffe, Jacob D.
2009-01-01
The ability to perform thorough sampling is of critical importance when using mass spectrometry to characterize complex proteomic mixtures. A common approach is to re-interrogate a sample multiple times by LC-MS/MS. However, the conventional data-dependent acquisition methods that are typically used in proteomics studies will often redundantly sample high-intensity precursor ions while failing to sample low-intensity precursors entirely. We describe a method wherein the masses of successfully...
A mass-dependent density profile for dark matter haloes including the influence of galaxy formation
Di Cintio, Arianna; Dutton, Aaron A; Macciò, Andrea V; Stinson, Greg S; Knebe, Alexander
2014-01-01
We introduce a mass dependent density profile to describe the distribution of dark matter within galaxies, which takes into account the stellar-to-halo mass dependence of the response of dark matter to baryonic processes. The study is based on the analysis of hydrodynamically simulated galaxies from dwarf to Milky Way mass, drawn from the MaGICC project, which have been shown to match a wide range of disk scaling relationships. We find that the best fit parameters of a generic double power-law density profile vary in a systematic manner that depends on the stellar-to-halo mass ratio of each galaxy. Thus, the quantity Mstar/Mhalo constrains the inner ($\\gamma$) and outer ($\\beta$) slopes of dark matter density, and the sharpness of transition between the slopes($\\alpha$), reducing the number of free parameters of the model to two. Due to the tight relation between stellar mass and halo mass, either of these quantities is sufficient to describe the dark matter halo profile including the effects of baryons. The ...
The Dependence of the Mass Assembly History of Cold Dark Matter Halos on Environment
Maulbetsch, C; Colin, Pierre; Gottlöber, S; Khalatyan, A; Steinmetz, M
2006-01-01
We show by means of a high-resolution N-body simulation how the mass assembly histories of galaxy-size cold dark matter (CDM) halos depend on environment. Halos in high density environments form earlier and a higher fraction of their mass is assembled in major mergers,compared to low density environments. The distribution of the present--day specific mass aggregation rate is bimodal and strongly dependent on environment. While in low density environments only ~20% of the halos are not accreting mass at the present epoch, this fraction rises to ~80% at high densities. At z=1 the median of the specific aggregation rate is ~4 times larger than at z=0 and almost independent on environment. All the dependences on environment found here are critically enhanced by local processes associated to subhalos because the fraction of subhalos increases as the environment gets denser. The distribution of the halo specific mass aggregation rate as well as its dependence on environment resemble the relations for the specific s...
Ishii, Masahiro; Yahiro, Masanobu
2016-01-01
We propose a practical effective model by introducing temperature ($T$) dependence to the coupling strengths of four-quark and six-quark Kobayashi-Maskawa-'t Hooft interactions in the 2+1 flavor Polyakov-loop extended Nambu-Jona-Lasinio model. The $T$ dependence is determined from LQCD data on the renormalized chiral condensate around the pseudocritical temperature $T_c^{\\chi}$ of chiral crossover and the screening-mass difference between $\\pi$ and $a_0$ mesons in $T > 1.1T_c^\\chi$ where only the $U(1)_{\\rm A}$-symmetry breaking survives. The model well reproduces LQCD data on screening masses $M_{\\xi}^{\\rm scr}(T)$ for both scalar and pseudoscalar mesons, particularly in $T \\ge T_c^{\\chi}$. Using this effective model, we predict meson pole masses $M_{\\xi}^{\\rm pole}(T)$ for scalar and pseudoscalar mesons. For $\\eta'$ meson, the prediction is consistent with the experimental value at finite $T$ measured in heavy-ion collisions. We point out that the relation $M_{\\xi}^{\\rm scr}(T)-M_{\\xi}^{\\rm pole}(T) \\approx...
The Initial-Final Mass Relation and its Dependence with Metallicity
Romero, A. D.; Campos, F.; Kepler, S. O.
2015-06-01
We present a study of the low end of the initial-final mass relation and its dependence on metallicity. We computed a grid of full evolutionary models, from the Main Sequence, trough the Asymptotic Giant Branch phase, to low luminosity stages on the white dwarf cooling curve. We consider metallicity values from Z=0.0001 to Z=0.04 with initial masses between 0.8 and 3M⊙. We found that the spreading in the observations can be explained by means of different metallicities of the environment. We also found a strong dependence of the pre-white dwarf age with metallicity.
Barut—Girardello Coherent States for Nonlinear Oscillator with Position-Dependent Mass
Amir, Naila; Iqbal, Shahid
2016-07-01
Using ladder operators for the non-linear oscillator with position-dependent effective mass, realization of the dynamic group SU(1,1) is presented. Keeping in view the algebraic structure of the non-linear oscillator, coherent states are constructed using Barut—Girardello formalism and their basic properties are discussed. Furthermore, the statistical properties of these states are investigated by means of Mandel parameter and second order correlation function. Moreover, it is shown that in the harmonic limit, all the results obtained for the non-linear oscillator with spatially varying mass reduce to corresponding results of the linear oscillator with constant mass.
Remarks on the solution of the position-dependent mass Schroedinger equation
Energy Technology Data Exchange (ETDEWEB)
Koc, Ramazan; Sayin, Seda, E-mail: koc@gantep.edu.t, E-mail: ssayin@gantep.edu.t [Faculty of Engineering, Department of Physics, Gaziantep University, 27310 Gaziantep (Turkey)
2010-11-12
An approximate method is proposed to solve the position-dependent mass (PDM) Schroedinger equation. The procedure suggested here leads to the solution of the PDM Schroedinger equation without transforming the potential function to the mass space or vice versa. The method based on the asymptotic Taylor expansion of the function produces an approximate analytical expression for eigenfunction and numerical results for eigenvalues of the PDM Schroedinger equation. The results show that the PDM and constant mass Schroedinger equations are not isospectral. The calculations are carried out with the aid of a computer system of symbolic or numerical calculation by constructing a simple algorithm.
Effects of Environment Dependence of Neutrino Mass versus Solar and Reactor Neutrino Data
González-Garciá, M C; Zukanovich-Funchal, R
2006-01-01
In this work we study the phenomenological consequences of the environment dependence of neutrino mass on solar and reactor neutrino phenomenology. Such dependence can be induced, for example, by Yukawa interactions with a light scalar particle which couples to neutrinos and matter and it is expected, among others, in mass varying neutrino scenarios. Under the assumption of one mass scale dominance, we perform a global analysis of solar and KamLAND neutrino data which depends on 4 parameters: the two standard oscillation parameters, Delta m^2 and tan^2(theta), and two new coefficients, which parameterize the environment dependence of the neutrino mass. We find that, generically, the inclusion of the environment dependent terms does not lead to a very statistically significant improvement on the description of the data in the most favoured MSW LMA (or LMA-I) region. It does, however, substantially improve the fit in the high-Delta m^2 LMA (or LMA-II) region which can be allowed at 98.9% CL. Conversely the anal...
Mass dependence of pion-induced fission cross sections on the level density parameter
Institute of Scientific and Technical Information of China (English)
Zafar Yasin; Warda Iram; M.Ikram Shahzad
2012-01-01
Fission probabilities and fission cross sections strongly depend on the mass number of the target and energy of the projectile.In this research work,a cascade-exciton model (using CEM95 computer code) has been implemented to observe the dependence of pion-induced fission cross sections and fission probabilities on the target mass and ratio of the level density parameter in fission to neutron emission.The analysis has been performed for both the positive and negative pions as the projectile at 80,100 and 150 MeV energies.The computed cross sections satisfactorily reproduced the experimental findings when compared with the available experimental data in the literature.We observed a smooth dependence at 150 MeV,and a sharper dependence at 80 and 100 MeV pion energy,in the fissility region above 29.44.
Meier, Matthias M M; Marty, Bernard
2016-01-01
We have measured the concentration, isotopic composition and thermal release profiles of Mercury (Hg) in a suite of meteorites, including both chondrites and achondrites. We find large variations in Hg concentration between different meteorites (ca. 10 ppb to 14'000 ppb), with the highest concentration orders of magnitude above the expected bulk solar system silicates value. From the presence of several different Hg carrier phases in thermal release profiles (150 to 650 {\\deg}C), we argue that these variations are unlikely to be mainly due to terrestrial contamination. The Hg abundance of meteorites shows no correlation with petrographic type, or mass-dependent fractionation of Hg isotopes. Most carbonaceous chondrites show mass-independent enrichments in the odd-numbered isotopes 199Hg and 201Hg. We show that the enrichments are not nucleosynthetic, as we do not find corresponding nucleosynthetic deficits of 196Hg. Instead, they can partially be explained by Hg evaporation and redeposition during heating of ...
Three types of anomalous nickel-iron magnetic films characterized by hysteresigraph and torque-magnetometer measurements; bitter-pattern observations; reprint from ’ Journal of Applied Physics .’
2002-01-01
The proposal concerns an extension to higher energies of previous experiments which have provided evidence for anomalously short reaction mean free paths among projectile fragments from heavy ion interactions.\\\\ \\\\ It is intended to provide information on the interaction properties of projectile fragments, mainly 3He, P, D, T as well as of scattered 4He nuclei in passive detectors exposed to beams of energies exceeding those available in previous experim factor of about 7. \\\\ \\\\ Interaction mean free paths and event topologies will be measured in a nuclear emulsion stack (LBL) of 7.5~cm~x~5~cm~x~25~cm dimensions. Decay effects will be recorded by comparing the activity of spallation residues in dense and diluted copper target assemblies (Marburg). Target fragmentation will be studied in a stack of silverchloride crystal foils (Frankfurt) of about 7~cm~x~6~cm~x~1~cm dimensions. The \\alpha beam ejected at EJ~62 will be used to provide both exposures at high intensity of 10|1|2 alphas on th and at low intensity ...
Ortenzi, L.; Gretarsson, H.; Kasahara, S.; Matsuda, Y.; Shibauchi, T.; Finkelstein, K. D.; Wu, W.; Julian, S. R.; Kim, Young-June; Mazin, I. I.; Boeri, L.
2015-01-01
We report a combination of Fe K β x-ray emission spectroscopy and density functional reduced Stoner theory calculations to investigate the correlation between structural and magnetic degrees of freedom in CaFe2(As1-xPx) 2 . The puzzling temperature behavior of the local moment found in rare earth-doped CaFe2As2 [H. Gretarsson et al., Phys. Rev. Lett. 110, 047003 (2013)] is also observed in CaFe2(As1-xPx) 2 . We explain this phenomenon based on first-principles calculations with scaled magnetic interaction. One scaling parameter is sufficient to describe quantitatively the magnetic moments in both CaFe2(As1-xPx) 2 (x =0.055 ) and Ca0.78La0.22Fe2As2 at all temperatures. The anomalous growth of the local moments with increasing temperature can be understood from the observed large thermal expansion of the c -axis lattice parameter combined with strong magnetoelastic coupling. These effects originate from the strong tendency to form As-As dimers across the Ca layer in the CaFe2As2 family of materials. Our results emphasize the dual local-itinerant character of magnetism in Fe pnictides.
Environmental dependence of the H I mass function in the ALFALFA 70% catalogue
Jones, Michael G.; Papastergis, Emmanouil; Haynes, Martha P.; Giovanelli, Riccardo
2016-04-01
We search for environmental dependence of the H I mass function in the Arecibo Legacy Fast ALFA survey (ALFALFA) 70 per cent catalogue. The catalogue is split into quartiles of environment density based on the projected neighbour density of neighbours found in both Sloan Digital Sky Survey (SDSS) and 2MASS Redshift Survey (2MRS) volume-limited reference catalogues. We find the Schechter function `knee' mass to be dependent on environment, with the value of log (M*/M⊙) shifting from 9.81 ± 0.02 to 10.00 ± 0.03 between the lowest and highest density quartiles. However, this dependence was only observed when defining environment based on the SDSS reference catalogue, not 2MRS. We interpret these results as meaning that the local environment is the dominant cause of the shift in M*, and that the larger scales that 2MRS probes (compared to SDSS) are almost irrelevant. In addition, we also use a fixed aperture method to probe environment, and find tentative evidence that H I-deficiency depresses the value of M* in the highest density regions. We find no significant dependence of the low-mass slope on environment in any test, using either method. Tensions between these results and those from the literature, are discussed and alternative explanations are explored.
Institute of Scientific and Technical Information of China (English)
鞠国兴
2011-01-01
Using the coordinate transformation method, we study the polynomial solutions of the Schr6dinger equation with position-dependent mass （PDM）. The explicit expressions for the potentials, energy eigenvalues, and eigenfunctions of the systems are given. The issues related to normalization of the wavefunetions and Hermiticity of the Hamiltonian are also analyzed.
Flatland Position-Dependent-Mass: Polar Coordinates, Separability and Exact Solvability
Directory of Open Access Journals (Sweden)
Omar Mustafa
2010-10-01
Full Text Available The kinetic energy operator with position-dependent-mass in plane polar coordinates is obtained. The separability of the corresponding Schrödinger equation is discussed. A hypothetical toy model is reported and two exactly solvable examples are studied.
Santiago-Cruz, C.
2016-03-01
In this work a position dependent mass Hamiltonian with the same spectrum of the trigonometric Pöschl-Teller one was constructed by means of the underlying potential algebra. The corresponding wave functions are determined by using the factorization method. A new family of isospectral potentials are constructed by applying a Darboux transformation. An example is presented in order to illustrate the formalism.
A new methodology to test galaxy formation models using the dependence of clustering on stellar mass
Campbell, David J. R.; Baugh, Carlton M.; Mitchell, Peter D.; Helly, John C.; Gonzalez-Perez, Violeta; Lacey, Cedric G.; Lagos, Claudia del P.; Simha, Vimal; Farrow, Daniel J.
2015-09-01
We present predictions for the two-point correlation function of galaxy clustering as a function of stellar mass, computed using two new versions of the GALFORM semi-analytic galaxy formation model. These models make use of a high resolution, large volume N-body simulation, set in the 7-year Wilkinson Microwave Anisotropy Probe cosmology. One model uses a universal stellar initial mass function (IMF), while the other assumes different IMFs for quiescent star formation and bursts. Particular consideration is given to how the assumptions required to estimate the stellar masses of observed galaxies (such as the choice of IMF, stellar population synthesis model, and dust extinction) influence the perceived dependence of galaxy clustering on stellar mass. Broad-band spectral energy distribution fitting is carried out to estimate stellar masses for the model galaxies in the same manner as in observational studies. We show clear differences between the clustering signals computed using the true and estimated model stellar masses. As such, we highlight the importance of applying our methodology to compare theoretical models to observations. We introduce an alternative scheme for the calculation of the merger time-scales for satellite galaxies in GALFORM, which takes into account the dark matter subhalo information from the simulation. This reduces the amplitude of small-scale clustering. The new merger scheme offers improved or similar agreement with observational clustering measurements, over the redshift range 0 Public Extragalactic Redshift Survey, depending on the GALFORM model used.
Ikhdair, Sameer M
2012-01-01
We solve the parametric generalized effective Schr\\"odinger equation with a specific choice of posi-tion-dependent mass function and Morse oscillator potential by means of the Nikiforov-Uvarov (NU) method combined with the Pekeris approximation scheme. All bound-state energies are found explicitly and all corresponding radial wave functions are built analytically. We choose the Weyl or Li and Kuhn ordering for the ambiguity parameters in our numerical work to calculate the energy spectrum for a few and diatomic molecules with arbitrary vibration and rotation quantum numbers and different position-dependent mass functions. Two special cases including the constant mass and the vibration s-wave (l =0) are also investigated.
Hybrid stars Spin polarised nuclear matter and density dependent quark masses
Maheswari, V S U; Samaddar, S K
1998-01-01
The possibility of formation of a droplet phase (DP) inside a star and its consequences on the structural properties of the star are investigated. For nuclear matter (NM), an equation of state (EOS) based on finite range, momentum and density dependent interaction, and which predicts that neutron matter undergoes ferromagnetic transition at densities realisable inside the neutron star is employed. An EOS for quark matter (QM) with density dependent quark masses, the so-called effective mass model, is constructed by correctly treating the quark chemical potentials. It is then found that a droplet phase consisting of strange quark matter and unpolarised nuclear matter sandwiched between a core of polarised nuclear matter and a crust containing unpolarised nuclear matter exists. Moreover, we could explain the mass and surface magnetic field satisfactorily, and as well allow, due to the presence of a droplet phase, the direct URCA process to happen.
Testing the Environmental Dependence of the Stellar Initial Mass Function - the Case of L1641
Hsu, Wen-hsin; Hartmann, L.; Allen, L.; Hernandez, J.; Megeath, T.
2012-01-01
To test the proposition that the stellar initial mass function (IMF) depends on the environmental density, we conducted an optical spectroscopic and photometric survey of the young stellar population in L1641, a low-density, star-forming region of the Orion A cloud south of the dense Orion Nebula Cluster (ONC). We used low-resolution optical spectra and optical photometry, as well as the Spitzer IRAC photometry (Megeath et al. 2011) to identify members and obtain spectral types. As of now, we have confirmed and spectral-typed 648 members and project a total number of 780 members with moderate extinction. Our study suggests a comparison between L1641 and the ONC can yield a statistically-significant test of the dependence of the upper mass portion of the stellar initial mass function upon environment. Our preliminary results indicate that L1641 may well be deficient in O and early B stars.
Energy Technology Data Exchange (ETDEWEB)
Rañada, Manuel F., E-mail: mfran@unizar.es
2016-06-17
The superintegrability of two-dimensional Hamiltonians with a position dependent mass (pdm) is studied (the kinetic term contains a factor m that depends of the radial coordinate). First, the properties of Killing vectors are studied and the associated Noether momenta are obtained. Then the existence of several families of superintegrable Hamiltonians is proved and the quadratic integrals of motion are explicitly obtained. These families include, as particular cases, some systems previously obtained making use of different approaches. We also relate the superintegrability of some of these pdm systems with the existence of complex functions endowed with interesting Poisson bracket properties. Finally the relation of these pdm Hamiltonians with the Euclidean Kepler problem and with the Euclidean harmonic oscillator is analyzed. - Highlights: • Superintegrability of systems with a position dependent mass is studied. • Killing vectors and Noether momenta are analyzed. • New superintegrable systems are identified. • Relation with the Kepler problem and the harmonic oscillator is studied.
Vulcani, Benedetta; Oemler, August; Dressler, Alan; Aragon-Salamanca, Alfonso; De Lucia, Gabriella; Gladders, Mike; Abramson, Louis; Halliday, Claire
2011-01-01
We present the analysis of the galaxy stellar mass function in different environments at intermediate redshift (0.3 10^{10.5} M_sun, to study cluster, group, and field galaxies at z=0.3-0.45, and the ESO Distant Cluster Survey (EDisCS), at masses M_ast > 10^{10.2} M_sun, to investigate cluster and group galaxies at z=0.4-0.8. Therefore, in our analysis we include galaxies that are slightly less massive than the Milky Way. Having excluded the brightest cluster galaxies, we show that the mass distribution does not seem to depend on global environment. Our two main results are: (1) Galaxies in the virialized regions of clusters and in the field follow a similar mass distribution. (2) Comparing both ICBS and EDisCS mass functions to mass functions in the local Universe, we find evolution from z~0.4-0.6 to z~0.07. The population of low-mass galaxies has proportionally grown with time with respect to that of massive galaxies. This evolution is independent of environment -- the same for clusters and the field. Furth...
Halo Mass Dependence of HI and OVI Absorption: Evidence for Differential Kinematics
Mathes, Nigel L; Kacprzak, Glenn G; Nielsen, Nikole M; Trujillo-Gomez, Sebastian; Charlton, Jane; Muzahid, Sowgat
2014-01-01
We studied a sample of 14 galaxies (0.1 < z < 0.7) using HST/WFPC2 imaging and high-resolution HST/COS or HST/STIS quasar spectroscopy of Lya, Lyb, OVI1031, and OVI1037 absorption. The galaxies, having 10.8 < log(M/M_solar) < 12.2, lie within D = 300 kpc of quasar sightlines, probing out to D/R_vir = 3. When the full range of galaxy virial masses and D/R_vir of the sample are examined, 40% of the HI absorbing clouds can be inferred to be escaping their host halo. The fraction of bound clouds decreases as D/R_vir increases such that the escaping fraction is around 15% for D/R_vir < 1, around 45% for 1 < D/R_vir < 2, and around 90% for 2 < D/R_vir < 3. Adopting the median mass log(M/M_solar) = 11.5 to divide the sample into "higher" and "lower" mass galaxies, we find mass dependency for the hot CGM kinematics. To our survey limits, OVI absorption is found in only 40% of the HI clouds in and around lower mass halos as compared to 85% around higher mass halos. For D/R < 1, lower mass...
Evidence for non-analytic light quark mass dependence in the baryon spectrum
Walker-Loud, Andre
2011-01-01
Using precise lattice QCD computations of the baryon spectrum, we present the first direct evidence for the presence of contributions to the baryon masses which are non-analytic in the light quark masses; contributions which are often denoted "chiral logarithms". We isolate the poor convergence of SU(3) baryon chiral perturbation theory to the flavor-singlet mass combination. The flavor-octet baryon mass splittings, which are corrected by chiral logarithms at next to leading order in SU(3) chiral perturbation theory, yield baryon-pion axial coupling constants D, F, C and H consistent with QCD values; the first evidence of chiral logarithms in the baryon spectrum. The Gell-Mann--Okubo relation, a flavor-27 baryon mass splitting, which is dominated by chiral corrections from light quark masses, provides further evidence for the presence of non-analytic light quark mass dependence in the baryon spectrum; we simultaneously find the GMO relation to be inconsistent with the first few terms in a taylor expansion in ...
Pedretti, D.; Molinari, A.; Fallico, C.; Guzzi, S.
2016-10-01
A series of experimental tracer tests were performed to explore the implications of the change in the pressure status of a heterogeneous bimodal aquifer for scale-dependent dispersion and mass-transfer processes. The sandbox was filled with sands and gravel channels and patches to form an alluvial-like bimodal aquifer. We performed multiple injections of a conservative tracer from 26 different locations of the sandbox and interpreted the resulting depth-integrated breakthrough curves (BTCs) at the central pumping well to obtain a scale-dependent distribution of local and field-integrated apparent longitudinal dispersivity (respectively, αLloc and αLapp). We repeated the experiments under confined (CS) and unconfined (UNS) pressure status, keeping the same heterogeneous configuration. Results showed that αLloc(associated with transport through gravel zones) was poorly influenced by the change in aquifer pressure and the presence of channels. Instead, αLapp(i.e. macrodispersion) strongly increased when changing from CS to UNS. In specific, we found αLapp ≈ 0.03 r for the CS and αLapp ≈ 0.15 r for the UNS (being r the distance from the well). Second-to-fourth-order temporal moments showed strong spatial dependence in the UNS and no spatial dependence in the CS. These results seem consistent with a "vadose-zone-driven" kinetic mass-transfer process occurring in the UNS but not in the CS. The vadose zone enhances vertical flow due to the presence of free surface and large contrasts in hydraulic conductivity triggered by the desaturation of gravel channels nearby the pumping well. The vadose zone enhances vertical mixing between gravel and sands and generates BTC tailing. In the CS vertical mixing is negligible and anomalous transport is not observed.
Rudomin, Emily L; Carr, Steven A; Jaffe, Jacob D
2009-06-01
The ability to perform thorough sampling is of critical importance when using mass spectrometry to characterize complex proteomic mixtures. A common approach is to reinterrogate a sample multiple times by LC-MS/MS. However, the conventional data-dependent acquisition methods that are typically used in proteomics studies will often redundantly sample high-intensity precursor ions while failing to sample low-intensity precursors entirely. We describe a method wherein the masses of successfully identified peptides are used to generate an accurate mass exclusion list such that those precursors are not selected for sequencing during subsequent analyses. We performed multiple concatenated analytical runs to sample a complex cell lysate, using either accurate mass exclusion-based data-dependent acquisition (AMEx) or standard data-dependent acquisition, and found that utilization of AMEx on an ESI-Orbitrap instrument significantly increases the total number of validated peptide identifications relative to a standard DDA approach. The additional identified peptides represent precursor ions that exhibit low signal intensity in the sample. Increasing the total number of peptide identifications augmented the number of proteins identified, as well as improved the sequence coverage of those proteins. Together, these data indicate that using AMEx is an effective strategy to improve the characterization of complex proteomic mixtures.
Velocity and Mass Functions of Galactic Halos Evolution and Environmental Dependence
Sigad, Y; Bullock, J S; Kravtsov, A V; Klypin, A A; Primack, Joel R; Dekel, A; Sigad, Yair; Kolatt, Tsafrir S.; Bullock, James S.; Kravtsov, Andrey V.; Klypin, Anatoly A.; Primack, Joel R.; Dekel, Avishai
2000-01-01
We study the distribution functions of mass and circular velocity for dark matter halos in N-body simulations of the $\\Lambda$CDM cosmology, addressing redshift and environmental dependence. The dynamical range enables us to resolve subhalos and distinguish them from "distinct" halos. The mass function is compared to analytic models, and is used to derive the more observationally relevant circular velocity function. The distribution functions in the velocity range 100--500 km/s are well fit by a power-law with two parameters, slope and amplitude. We present the parameter dependence on redshift and provide useful fitting formulae. The amplitudes of the mass functions decrease with z, but, contrary to naive expectation, the comoving density of halos of a fixed velocity ~200 km/s actually increases out to z=5. This is because high-z halos are denser, so a fixed velocity corresponds to a smaller mass. The slope of the velocity function at z=0 is as steep as ~ -4, and the mass and velocity functions of distinct ha...
Anomalous diffraction in hyperbolic materials
Alberucci, Alessandro; Boardman, Allan D; Assanto, Gaetano
2016-01-01
We demonstrate that light is subject to anomalous (i.e., negative) diffraction when propagating in the presence of hyperbolic dispersion. We show that light propagation in hyperbolic media resembles the dynamics of a quantum particle of negative mass moving in a two-dimensional potential. The negative effective mass implies time reversal if the medium is homogeneous. Such property paves the way to diffraction compensation, spatial analogue of dispersion compensating fibers in the temporal domain. At variance with materials exhibiting standard elliptic dispersion, in inhomogeneous hyperbolic materials light waves are pulled towards regions with a lower refractive index. In the presence of a Kerr-like optical response, bright (dark) solitons are supported by a negative (positive) nonlinearity.
Anomalous diffraction in hyperbolic materials
Alberucci, Alessandro; Jisha, Chandroth P.; Boardman, Allan D.; Assanto, Gaetano
2016-09-01
We demonstrate that light is subject to anomalous (i.e., negative) diffraction when propagating in the presence of hyperbolic dispersion. We show that light propagation in hyperbolic media resembles the dynamics of a quantum particle of negative mass moving in a two-dimensional potential. The negative effective mass implies time reversal if the medium is homogeneous. Such property paves the way to diffraction compensation, i.e., spatial analog of dispersion compensating fibers in the temporal domain. At variance with materials exhibiting standard elliptic dispersion, in inhomogeneous hyperbolic materials light waves are pulled towards regions with a lower refractive index. In the presence of a Kerr-like optical response, bright (dark) solitons are supported by a negative (positive) nonlinearity.
Kutnink, Timothy; Santrach, Amelia; Hockett, Sarah; Barcus, Scott; Petridis, Athanasios
2016-09-01
The time-dependent electromagnetically self-coupled Dirac equation is solved numerically by means of the staggered-leap-frog algorithm with reflecting boundary conditions. The stability region of the method versus the interaction strength and the spatial-grid size over time-step ratio is established. The expectation values of several dynamic operators are then evaluated as functions of time. These include the fermion and electromagnetic energies and the fermion dynamic mass, as the self-interacting spinors are no longer mass-eigenfunctions. There is a characteristic, non-exponential, oscillatory dependence leading to asymptotic constants of these expectation values. In the case of the fermion mass this amounts to renormalization. The dependence of the expectation values on the spatial-grid size is evaluated in detail. Statistical regularization, employing a canonical ensemble whose temperature is the inverse of the grid size, is used to remove the grid-size dependence and produce a finite result in the continuum limit.
Time dependent quantum harmonic oscillator subject to a sudden change of mass: continuous solution
Energy Technology Data Exchange (ETDEWEB)
Moya C, H. [INAOE, Coordinacion de Optica, AP 51 y 216, 72000 Puebla (Mexico); Fernandez G, M. [Depto. de Fisica, CBI, Universidad Autonoma Metropolitana - Iztapalapa, 09340, Mexico, D.F. AP 55-534 (Mexico)
2007-07-01
We show that a harmonic oscillator subject to a sudden change of mass produces squeezed states. Our study is based on an approximate analytic solution to the time-dependent harmonic oscillator equation with a sub period function parameter. This continuous treatment differs from former studies that involve the matching of two time-independent solutions at the discontinuity. This formalism requires an ad hoc transformation of the original differential equation and is also applicable for rapid, although not necessarily instantaneous, mass variations. (Author)
Quark Mass Dependence of the QCD Critical End Point in the Strong Coupling Limit
Kim, Jangho
2016-01-01
Strong coupling lattice QCD in the dual representation allows to study the full $\\mu$-$T$ phase diagram, due to the mildness of the finite density sign problem. Such simulations have been performed in the chiral limit, both at finite $N_t$ and in the continuous time limit. Here we extend the phase diagram to finite quark masses, with an emphasis on the low temperature first order transition. We present our results on the quark mass dependence of the critical end point and the first order line obtained by Monte Carlo via the worm algorithm.
Bulk viscosity of strange quark matter in density dependent quark mass model
Indian Academy of Sciences (India)
J D Anand; N Chandrika Devi; V K Gupta; S Singh
2000-05-01
We have studied the bulk viscosity of strange quark matter in the density dependent quark mass model (DDQM) and compared results with calculations done earlier in the MIT bag model where , masses were neglected and ﬁrst order interactions were taken into account. We ﬁnd that at low temperatures and high relative perturbations, the bulk viscosity is higher by 2 to 3 orders of magnitude while at low perturbations the enhancement is by 1–2 order of magnitude as compared to earlier results. Also the damping time is 2–3 orders of magnitude lower implying that the star reaches stability much earlier than in MIT bag model calculations.
Improved angular momentum evolution model for solar-like stars II. Exploring the mass dependence
Gallet, Florian
2015-01-01
We developed angular momentum evolution models for 0.5 and 0.8 $M_{\\odot}$ stars. The parametric models include a new wind braking law based on recent numerical simulations of magnetised stellar winds, specific dynamo and mass-loss rate prescriptions, as well as core/envelope decoupling. We compare model predictions to the distributions of rotational periods measured for low mass stars belonging to star forming regions and young open clusters. Furthermore, we explore the mass dependence of model parameters by comparing these new models to the solar-mass models we developed earlier. Rotational evolution models are computed for slow, median, and fast rotators at each stellar mass. The models reproduce reasonably well the rotational behaviour of low-mass stars between 1~Myr and 8-10~Gyr, including pre-main sequence to zero-age main sequence spin up, prompt zero-age main sequence spin down, and early-main sequence convergence of the surface rotation rates. Fast rotators are found to have systematically shorter di...
Searching for the fourth family quarks through anomalous decays
Sahin, M.; Sultansoy, S.; Turkoz, S.
2010-09-01
The flavor democracy hypothesis predicts the existence of the fourth standard model family. Because of the high masses of the fourth family quarks, their anomalous decays could be dominant if certain criteria are met. This will drastically change the search strategy at hadron colliders. We show that the fourth standard model family down quarks with masses up to 400-450 GeV can be observed (or excluded) via anomalous decays by Tevatron.
Halo mass dependence of H I and O VI absorption: evidence for differential kinematics
Energy Technology Data Exchange (ETDEWEB)
Mathes, Nigel L.; Churchill, Christopher W.; Nielsen, Nikole M.; Trujillo-Gomez, Sebastian [New Mexico State University, Las Cruces, NM 88003 (United States); Kacprzak, Glenn G. [Swinburne University of Technology, Victoria 3122 (Australia); Charlton, Jane; Muzahid, Sowgat [The Pennsylvania State University, University Park, PA 16802 (United States)
2014-09-10
We studied a sample of 14 galaxies (0.1 < z < 0.7) using HST/WFPC2 imaging and high-resolution HST/COS or HST/STIS quasar spectroscopy of Lyα, Lyβ, and O VI λλ1031, 1037 absorption. The galaxies, having 10.8 ≤ log (M {sub h}/M {sub ☉}) ≤ 12.2, lie within D = 300 kpc of quasar sightlines, probing out to D/R {sub vir} = 3. When the full range of M {sub h} and D/R {sub vir} of the sample are examined, ∼40% of the H I absorbing clouds can be inferred to be escaping their host halo. The fraction of bound clouds decreases as D/R {sub vir} increases such that the escaping fraction is ∼15% for D/R {sub vir} < 1, ∼45% for 1 ≤ D/R {sub vir} < 2, and ∼90% for 2 ≤ D/R {sub vir} < 3. Adopting the median mass log M {sub h}/M {sub ☉} = 11.5 to divide the sample into 'higher' and 'lower' mass galaxies, we find a mass dependency for the hot circumgalactic medium kinematics. To our survey limits, O VI absorption is found in only ∼40% of the H I clouds in and around lower mass halos as compared to ∼85% around higher mass halos. For D/R {sub vir} < 1, lower mass halos have an escape fraction of ∼65%, whereas higher mass halos have an escape fraction of ∼5%. For 1 ≤ D/R {sub vir} < 2, the escape fractions are ∼55% and ∼35% for lower mass and higher mass halos, respectively. For 2 ≤ D/R {sub vir} < 3, the escape fraction for lower mass halos is ∼90%. We show that it is highly likely that the absorbing clouds reside within 4R {sub vir} of their host galaxies and that the kinematics are dominated by outflows. Our finding of 'differential kinematics' is consistent with the scenario of 'differential wind recycling' proposed by Oppenheimer et al. We discuss the implications for galaxy evolution, the stellar to halo mass function, and the mass-metallicity relationship of galaxies.
Institute of Scientific and Technical Information of China (English)
M.Eshghi; M.Hamzavi; S.M.Ikhdair
2013-01-01
The spatially-dependent mass Dirac equation is solved exactly for attractive scalar and repulsive vector Coulomb potentials,including a tensor interaction under the spin and pseudospin symmetric limits.Closed forms of the energy eigenvalue equation and wave functions are obtained for arbitrary spin-orbit quantum number κ.Some numerical results are also given,and the effect of tensor interaction on the bound states is presented.It is shown that tensor interaction removes the degeneracy between two states in the spin doublets.We also investigate the effects of the spatially-dependent mass on the bound states under spin symmetric limit conditions in the absence of tensor interaction.
Various aspects of the Deformation Dependent Mass model of nuclear structure
Petrellis, D; Minkov, N
2015-01-01
Recently, a variant of the Bohr Hamiltonian was proposed where the mass term is allowed to depend on the beta variable of nuclear deformation. Analytic solutions of this modified Hamiltonian have been obtained using the Davidson and the Kratzer potentials, by employing techniques from supersymmetric quantum mechanics. Apart from the new set of analytic solutions, the newly introduced Deformation-Dependent Mass (DDM) model offered a remedy to the problematic behaviour of the moment of inertia in the Bohr Hamiltonian, where it appears to increase proportionally to the square of beta. In the DDM model the moments of inertia increase at a much lower rate, in agreement with experimental data. The current work presents an application of the DDM-model suitable for the description of nuclei at the point of shape/phase transitions between vibrational and gamma-unstable or prolate deformed nuclei and is based on a method that was successfully applied before in the context of critical point symmetries.
Unquenched Effects and Quark Mass Dependence of Lattice Gluon Propagator in Infrared Region
Institute of Scientific and Technical Information of China (English)
ZHANG Yan-Bin; PING Jia-Lun; LU Xiao-Fu; ZONG Hong-Shi
2008-01-01
In this paper,the gluon propagator in Landau gauge has been studied on a lattice,including the quenched and the unquenehed one.The small geometry size of lattice we use is 163×32,and the big one is 203×64.For the quenched approximation,we fit the numerical results and give a little different fitting values.We also obtain unquenched effects by comparing the gluon propagator resulting from the quenched and unquenehed configurations,for both the two-flavor and three-flavor cases.For the unquenched configurations,an obvious quark mass dependence has not been found in the small quark mass case,but is found in the three-flavor case when the quark mass is big.
The dependence of AGN activity on stellar and halo mass in Semi-Analytic Models
Fontanot, Fabio; De Lucia, Gabriella; Bosch, Frank C van den; Somerville, Rachel S; Kang, Xi
2010-01-01
AGN feedback is believed to play an important role in shaping a variety of observed galaxy properties, as well as the evolution of their stellar masses and star formation rates. In particular, in the current theoretical paradigm of galaxy formation, AGN feedback is believed to play a crucial role in regulating the levels of activity in galaxies, in relatively massive halos at low redshift. Only in recent years, however, detailed statistical information on the dependence of galaxy activity on stellar mass, parent halo mass and hierarchy has become available. In this paper, we compare the fractions of galaxies belonging to different activity classes (star-forming, AGN and radio active) with predictions from four different and independently developed semi-analytical models. We adopt empirical relations to convert physical properties into observables (H_alpha emission lines, OIII line strength and radio power). We demonstrate that all models used in this study reproduce the overall distributions of galaxies belon...
Cosmological black holes and white holes with time-dependent mass
da Silva, Alan M; Molina, C
2015-01-01
We consider the causal structure of generalized uncharged McVittie spacetimes with increasing central mass $m (t)$ and positive Hubble factor $H (t)$. Under physically reasonable conditions, namely, a big bang singularity in the past, a positive cosmological constant and an upper limit to the central mass, we prove that the patch of the spacetime described by the cosmological time and areal radius coordinates is always geodesically incomplete, which implies the presence of event horizons in the spacetime. We also show that, depending on the asymptotic behavior of the $m$ and $H$ functions, the generalized McVittie spacetime can have a single black hole, a black-hole/white-hole pair or, differently from classic fixed-mass McVittie, a single white hole. A simple criterion is given to distinguish the different causal structures.
Anomalous chiral superfluidity
Energy Technology Data Exchange (ETDEWEB)
Lublinsky, Michael, E-mail: lublinsky@phys.uconn.ed [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Physics Department, Ben-Gurion University, Beer Sheva 84105 (Israel); Zahed, Ismail [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)
2010-02-08
We discuss both the anomalous Cartan currents and the energy-momentum tensor in a left chiral theory with flavor anomalies as an effective theory for flavored chiral phonons in a chiral superfluid with the gauged Wess-Zumino-Witten term. In the mean-field (leading tadpole) approximation the anomalous Cartan currents and the energy-momentum tensor take the form of constitutive currents in the chiral superfluid state. The pertinence of higher order corrections and the Adler-Bardeen theorem is briefly noted.
Quark-mass dependence of the H dibaryon in Λ Λ scattering
Yamaguchi, Yasuhiro; Hyodo, Tetsuo
2016-12-01
We study the quark mass dependence of the H dibaryon in the strangeness S =-2 baryon-baryon scattering. A low-energy effective field theory is used to describe the coupled-channel scattering, in which the quark mass dependence is incorporated so as to reproduce the lattice QCD data by the HAL QCD collaboration in the SU(3) limit. We point out the existence of the Castillejo-Dalitz-Dyson pole in the Λ Λ scattering amplitude below the threshold in the SU(3) limit, which may cause the Ramsauer-Townsend effect near the N Ξ threshold at the physical point. The H dibaryon is unbound at the physical point, and a resonance appears just below the N Ξ threshold. As a consequence of the coupled-channel dynamics, the pole associated with the resonance is not continuously connected to the bound state in the SU(3) limit. Through the extrapolation in quark masses, we show that the unitary limit of the Λ Λ scattering is achieved between the physical point and the SU(3) limit. We discuss the possible realization of the "H matter" in the unphysical quark mass region.
Anomalous pion decay revisited
Battistel, O A; Nemes, M C; Hiller, B
1999-01-01
An implicit four dimensional regularization is applied to calculate the axial-vector-vector anomalous amplitude. The present technique always complies with results of Dimensional Regularization and can be easily applied to processes involving odd numbers of $\\gamma_5$ matrices. This is illustrated explicitely in the example of this letter.
Soft-/rapidity- anomalous dimensions correspondence
Vladimirov, Alexey A
2016-01-01
We establish a correspondence between ultraviolet singularities of soft factors for multi-particle production and rapidity singularities of soft factors for multi-parton scattering. This correspondence is a consequence of a conformal mapping between scattering geometries. The correspondence is valid to all orders of perturbation theory and in this way provides a proof of rapidity renormalization procedure for multi-parton scattering soft factors (including the transverse momentum dependent (TMD) soft factor as a special case). As a by-product we obtain an exact relation between the rapidity anomalous dimension and the well-known soft anomalous dimension. The three-loop rapidity anomalous dimensions for TMD and a general multi-parton scattering are derived.
The empirical metallicity dependence of the mass-loss rate of O- and early B-type stars
Mokiem, M.R.; de Koter, A.; Vink, J.S.; Puls, J.; Evans, C.J.; Smartt, S.J.; Crowther, P.A.; Herrero, A.; Langer, N.; Lennon, D.J.; Najarro, F.; Villamariz, M.R.
2007-01-01
Abridged] We present a comprehensive study of the metallicity dependence of the mass-loss rates in stationary stellar winds of hot massive stars. Assuming a power-law dependence of mass loss on metallicity, Mdot \\propto Z^{m}, and adopting a theoretical relation between the terminal velocity and met
Energy Technology Data Exchange (ETDEWEB)
Cobian, Hector [Facultad de Ciencias, Universidad de Colima, Bernal DIaz del Castillo 340, 28045 Colima, Colima (Mexico); Schulze-Halberg, Axel, E-mail: horus.cobian@gmail.com, E-mail: xbataxel@gmail.com, E-mail: axgeschu@iun.edu [Department of Mathematics and Actuarial Science, Indiana University Northwest, 3400 Broadway, Gary, IN 46408 (United States)
2011-07-15
We construct Darboux transformations for time-dependent Schroedinger equations with position-dependent mass in (2 + 1) dimensions. Several examples illustrate our results, which complement and generalize former findings for the constant mass case in two spatial variables (Schulze-Halberg 2010 J. Math. Phys. 51 033521).
Yasushi, Yokoya; Yoshiko, Oi Nakamura
1996-02-01
Within the framework of the Eliashberg theory including the energy-dependent Lorentzian electronic density of states (EDOS), the behavior of the quasiparticle density of states (QDOS) is studied for strong-coupling superconductors. Our numerical calculation shows that when the EDOS has structure it can give an additional structure to the QDOS besides the usual fine structures due to the strong electron-phonon coupling when the carrier concentration has appropriate values. It is also found that the inclusion of the energy-varying EDOS leads to unusual band-filling dependence of the gap ratio 2 Δ0/ kBTc: The calculation with the band-filling n being varied, reveals that the gap ratio does not necessarily take its maximum value of half-filling, but at a value of n far away from half-filling. This may occur as the electron-phonon coupling becomes very strong.
Meier, Matthias M. M.; Cloquet, Christophe; Marty, Bernard
2016-06-01
We have measured the concentration, isotopic composition and thermal release profiles of Mercury (Hg) in a suite of meteorites, including both chondrites and achondrites. We find large variations in Hg concentration between different meteorites (ca. 10 ppb to 14,000 ppb), with the highest concentration orders of magnitude above the expected bulk solar system silicates value. From the presence of several different Hg carrier phases in thermal release profiles (150-650 °C), we argue that these variations are unlikely to be mainly due to terrestrial contamination. The Hg abundance of meteorites shows no correlation with petrographic type, or mass-dependent fractionation of Hg isotopes. Most carbonaceous chondrites show mass-independent enrichments in the odd-numbered isotopes 199Hg and 201Hg. We show that the enrichments are not nucleosynthetic, as we do not find corresponding nucleosynthetic deficits of 196Hg. Instead, they can partially be explained by Hg evaporation and redeposition during heating of asteroids from primordial radionuclides and late-stage impact heating. Non-carbonaceous chondrites, most achondrites and the Earth do not show these enrichments in vapor-phase Hg. All meteorites studied here have however isotopically light Hg (δ202Hg = ∼-7 to -1) relative to the Earth's average crustal values, which could suggest that the Earth has lost a significant fraction of its primordial Hg. However, the late accretion of carbonaceous chondritic material on the order of ∼2%, which has been suggested to account for the water, carbon, nitrogen and noble gas inventories of the Earth, can also contribute most or all of the Earth's current Hg budget. In this case, the isotopically heavy Hg of the Earth's crust would have to be the result of isotopic fractionation between surface and deep-Earth reservoirs.
Quark mass dependence of H-dibaryon in $\\Lambda\\Lambda$ scattering
Yamaguchi, Yasuhiro
2016-01-01
We study the quark mass dependence of the H-dibaryon in the strangeness $S=-2$ baryon-baryon scattering. A low-energy effective field theory is used to describe the coupled-channel scattering, in which the quark mass dependence is incorporated so as to reproduce the lattice QCD data in the SU(3) limit. We point out the existence of the Castillejo-Dalitz-Dyson (CDD) pole in the $\\Lambda\\Lambda$ scattering amplitude below the threshold in the SU(3) limit, which may cause the Ramsauer-Townsend effect near the $N\\Xi$ threshold at the physical point. The H-dibaryon is unbound at the physical point, and a resonance appears just below the $N\\Xi$ threshold. As a consequence of the coupled-channel dynamics, the pole associated with the resonance is not continuously connected to the bound state in the SU(3) limit. Through the extrapolation in quark masses, we show that the unitary limit of the $\\Lambda\\Lambda$ scattering is achieved between the physical point and the SU(3) limit. We discuss the possible realization of ...
The Mass Dependance of Satellite Quenching in Milky Way-like Halos
Phillips, John I; Cooper, Michael C; Boylan-Kolchin, Michael; Bullock, James S; Tollerud, Erik
2014-01-01
Using the Sloan Digital Sky Survey, we examine the quenching of satellite galaxies around isolated Milky Way-like hosts in the local Universe. We find that the efficiency of satellite quenching around isolated galaxies is low and roughly constant over two orders of magnitude in satellite stellar mass ($M_{*}$ = $10^{8.5}-10^{10.5} \\, M_{\\odot}$), with only $\\sim~20\\%$ of systems quenched as a result of environmental processes. While largely independent of satellite stellar mass, satellite quenching does exhibit clear dependence on the properties of the host. We show that satellites of passive hosts are substantially more likely to be quenched than those of star-forming hosts, and we present evidence that more massive halos quench their satellites more efficiently. These results extend trends seen previously in more massive host halos and for higher satellite masses. Taken together, it appears that galaxies with stellar masses larger than about $10^{8}~M_{\\odot}$ are uniformly resistant to environmental quench...
Cervantes-Sodi, B; Park, Changbom; Kim, Juhan
2008-01-01
We use a sample of galaxies from the Sloan Digital Sky Survey (SDSS) to search for correlations between the $\\lambda$ spin parameter and the environment and mass of galaxies. In order to calculate the total value of $\\lambda$ for each observed galaxy, we employed a simple model of the dynamical structure of the galaxies which allows a rough estimate of the value of $\\lambda$ using only readily obtainable observables from the luminous galaxies. Use of a large volume limited sample (upwards of 11,000) allows reliable inferences of mean values and dispersions of $\\lambda$ distributions. We find, in agreement with some N-body cosmological simulations, no significant dependence of $\\lambda$ on the environmental density of the galaxies. For the case of mass, our results show a marked correlation with $\\lambda$, in the sense that low mass galaxies present both higher mean values of $\\lambda$ and associated dispersions, than high mass galaxies. This last direct empirical result, at odds with expectations from N-body ...
The Absence of an Environmental Dependence in the Mass-Metallicity Relation at z=2
Kacprzak, Glenn G; Nanayakkara, Themiya; Kobayashi, Chiaki; Tran, Kim-Vy H; Kewley, Lisa J; Glazebrook, Karl; Spitler, Lee; Taylor, Philip; Cowley, Michael; Labbé, Ivo; Straatman, Caroline; Tomczak, Adam
2015-01-01
We investigate the environmental dependence of the mass-metallicity relation at z=2 with MOSFIRE/Keck as part of the ZFIRE survey. Here, we present the chemical abundance of a Virgo-like progenitor at z=2.095 that has an established red sequence. We identified 43 cluster ($=2.095\\pm0.004$) and 74 field galaxies ($=2.195\\pm0.083$) for which we can measure metallicities. For the first time, we show that there is no discernible difference between the mass-metallicity relation of field and cluster galaxies to within 0.02dex. Both our field and cluster galaxy mass-metallicity relations are consistent with recent field galaxy studies at z~2. We present hydrodynamical simulations for which we derive mass-metallicity relations for field and cluster galaxies. We find at most a 0.1dex offset towards more metal-rich simulated cluster galaxies. Our results from both simulations and observations are suggestive that environmental effects, if present, are small and are secondary to the ongoing inflow and outflow processes t...
Environmental dependence of the HI mass function in the ALFALFA 70% catalogue
Jones, Michael G; Haynes, Martha P; Giovanelli, Riccardo
2015-01-01
We search for environmental dependence of the HI mass function in the ALFALFA 70% catalogue. The catalogue is split into quartiles of environment density based on the projected neighbour density of neighbours found in both SDSS and 2MRS volume limited reference catalogues. We find the Schechter function 'knee' mass to be dependent on environment, with the value of $\\log ({M_{*}/\\mathrm{M_{\\odot}}})$ shifting from $9.81 \\pm 0.02$ to $10.00 \\pm 0.03$ between the lowest and highest density quartiles. However, this dependence was only observed when defining environment based on the SDSS reference catalogue, not 2MRS. We interpret these results as meaning that the local environment is the dominant cause of the shift in $M_{*}$, and that the larger scales that 2MRS probes (compared to SDSS) are almost irrelevant. In addition, we also use a fixed aperture method to probe environment, and find tentative evidence that HI-deficiency depresses the value of $M_{*}$ in the highest density regions. We find no significant d...
System size dependence of intermediate mass fragments in heavy-ion collisions
Kaur, Sukhjit
2011-01-01
We simulate the central reactions of $^{20}$Ne+$^{20}$Ne, $^{40}$Ar+$^{45}$Sc, $^{58}$Ni+$^{58}$Ni, $^{86}$Kr+$^{93}$Nb, $^{129}$Xe+$^{118}$Sn, $^{86}$Kr+$^{197}$Au and $^{197}$Au+$^{197}$Au at different incident energies for different equations of state (EOS), binary cross sections and different widths of Gaussians. A rise and fall behaviour of the multiplicity of intermediate mass fragments (IMFs) is observed. The system size dependence of peak center-of-mass energy E$_{c.m.} ^{max}$ and peak IMF multiplicity $^{max}$ is also studied, where it is observed that E$_{c.m.}^{max}$ follows a linear behaviour and $^{max}$ shows a power law dependence. A comparison between two clusterization methods, the minimum spanning tree and the minimum spanning tree method with binding energy check (MSTB) is also made. We find that MSTB method reduces the $^{max}$ especially in heavy systems. The power law dependence is also observed for fragments of different sizes at E$_{c.m.} ^{max}$ and power law parameter $\\tau$ is foun...
Radiation Feedback, Fragmentation, and the Environmental Dependence of the Initial Mass Function
Krumholz, Mark R; Klein, Richard I; McKee, Christopher F
2010-01-01
The fragmentation of star-forming interstellar clouds, and the resulting stellar initial mass function (IMF), is determined largely by the temperature structure of the collapsing gas. Since radiation feedback from embedded stars can modify this as collapse proceeds, feedback plays an important role in determining the IMF. However, the effects and importance of radiative heating are likely to depend strongly on the surface density of the collapsing clouds, which determines both their effectiveness at trapping radiation and the accretion luminosities of the stars forming within them. In this paper we report a suite of adaptive mesh refinement radiation-hydrodynamic simulations using the ORION code in which we isolate the effect of column density on fragmentation by following the collapse of clouds of varying column density while holding the mass, initial density and velocity structure, and initial virial ratio fixed. We find that radiation does not significantly modify the overall star formation rate or efficie...
Effects of temperature and electron effective mass on bias-dependent tunnelling magnetoresistance
Institute of Scientific and Technical Information of China (English)
Li Fei-Fei; Li Zheng-Zhong; Xiao Ming-Wen
2005-01-01
In this paper, we study the effects of temperature and electron effective mass within the barrier on the bias dependence and sign-change behaviour of the tunnelling magnetoresistance (TMR) in ferromagnetic junctions. A significant decrease of the tunnelling magnetoresistance with increasing temperature is obtained, in accordance with the experiments. In addition to the height of barrier potential (φ) discussed in our previous papers, the electron effective mass (mB) within the barrier region is found to be another important factor that physically controls the sign-change behaviour of the TMR. The critical voltage (Vc) at which TMR changes sign will increase with φ and decrease with mB. Furthermore, both the zero-bias TMR and Vc will decrease if the temperature rises. These results would be of practical use for experimental investigations.
Large Blue Spectral Isocurvature Spectral Index Signals Time-Dependent Mass
Chung, Daniel J H
2015-01-01
We show that if a spectator linear isocurvature dark matter field degree of freedom has a constant mass through its entire evolution history, the maximum measurable isocurvature spectral index that is consistent with the current tensor-to-scalar ratio bound is about 2.4, even if experiments can be sensitive to a $10^{-6}$ contamination of the predominantly adiabatic power spectrum with an isocurvature power spectrum at the shortest observable length scales. Hence, any foreseeable future measurement of a blue isocurvature spectral index larger than about 2.4 may provide nontrivial evidence for dynamical degrees of freedom with time-dependent masses during inflation. The bound is not sensitive to the details of the reheating scenario and can be made mildly smaller if the tensor-to-scalar ratio is better constrained in the future.
Inoue, Takashi; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji
2013-09-13
Quark mass dependence of the equation of state (EOS) for nucleonic matter is investigated, on the basis of the Brueckner-Hartree-Fock method with the nucleon-nucleon interaction extracted from lattice QCD simulations. We observe saturation of nuclear matter at the lightest available quark mass corresponding to the pseudoscalar meson mass ≃469 MeV. Mass-radius relation of the neutron stars is also studied with the EOS for neutron-star matter from the same nuclear force in lattice QCD. We observe that the EOS becomes stiffer and thus the maximum mass of neutron star increases as the quark mass decreases toward the physical point.
Quark matter at high density based on an extended confined isospin-density-dependent mass model
Qauli, A. I.; Sulaksono, A.
2016-01-01
We investigate the effect of the inclusion of relativistic Coulomb terms in a confined-isospin-density-dependent-mass (CIDDM) model of strange quark matter (SQM). We found that if we include the Coulomb term in scalar density form, the SQM equation of state (EOS) at high densities is stiffer but if we include the Coulomb term in vector density form it is softer than that of the standard CIDDM model. We also investigate systematically the role of each term of the extended CIDDM model. Compared with what was reported by Chu and Chen [Astrophys. J. 780, 135 (2014)], we found the stiffness of SQM EOS is controlled by the interplay among the oscillator harmonic, isospin asymmetry and Coulomb contributions depending on the parameter's range of these terms. We have found that the absolute stable condition of SQM and the mass of 2 M⊙ pulsars can constrain the parameter of oscillator harmonic κ1≈0.53 in the case the Coulomb term is excluded. If the Coulomb term is included, for the models with their parameters are consistent with SQM absolute stability condition, the 2.0 M⊙ constraint more prefers the maximum mass prediction of the model with the scalar Coulomb term than that of the model with the vector Coulomb term. On the contrary, the high densities EOS predicted by the model with the vector Coulomb is more compatible with the recent perturbative quantum chromodynamics result [1] than that predicted by the model with the scalar Coulomb. Furthermore, we also observed the quark composition in a very high density region depends quite sensitively on the kind of Coulomb term used.
Target mass corrections for spin-dependent structure functions in collinear factorization
Accardi, A
2008-01-01
We derive target mass corrections (TMC) for the spin-dependent nucleon structure function g1 and polarization asymmetry A1 in collinear factorization at leading twist. The TMCs are found to be significant for g1 at large xB, even at relatively high Q^2 values, but largely cancel in A1. A comparison of TMCs obtained from collinear factorization and from the operator product expansion shows that at low Q^2 the corrections drive the proton A1 in opposite directions.
Full top quark mass dependence in Higgs boson pair production at NLO
Borowka, S; Heinrich, G; Jones, S P; Kerner, M; Schlenk, J; Zirke, T
2016-01-01
We study the effects of the exact top-quark mass dependent two-loop corrections to Higgs boson pair production by gluon fusion at the LHC and at a 100 TeV hadron collider. We perform a detailed comparison of the full next-to-leading order result to various approximations at the level of differential distributions and also analyse non-standard Higgs self-coupling scenarios. We find that the different next-to-leading order approximations differ from the full result by up to 50 percent in relevant differential distributions. This clearly stresses the importance of the full NLO result.
Position-dependent mass approach and quantization for a torus Lagrangian
Yeşiltaş, Özlem
2016-09-01
We have shown that a Lagrangian for a torus surface can yield second-order nonlinear differential equations using the Euler-Lagrange formulation. It is seen that these second-order nonlinear differential equations can be transformed into the nonlinear quadratic and Mathews-Lakshmanan equations using the position-dependent mass approach developed by Mustafa (J. Phys. A: Math. Theor. 48, 225206 (2015)) for the classical systems. Then, we have applied the quantization procedure to the nonlinear quadratic and Mathews-Lakshmanan equations and found their exact solutions.
Phase Structure in a Quark Mass Density-and-Temperature-Dependent Model
Institute of Scientific and Technical Information of China (English)
WEN Xin-Jian; PENG Guang-Xiong; SHEN Peng-Nian
2007-01-01
The phase diagram of bulk quark matter in equilibrium with a finite hadronic gas is studied. Different from previous investigations, we treat the quark phase with the quark rnass density-and-temperature-dependent model to take the strong quark interaction into account, while the hadron phase is treated by hard core repulsion factor. It is found that the phase diagram in this model is, in several aspects, different from those in the conventional MIT bag model, especially at high temperature. The new phase diagram also has strong effects on the mass-radius relation of compact hybrid stars.
Alignments of dark matter halos with large-scale tidal fields: mass and redshift dependence
Chen, Sijie; Mo, H J; Shi, Jingjing
2016-01-01
Large scale tidal field estimated directly from the distribution of dark matter halos is used to investigate how halo shapes and spin vectors are aligned with the cosmic web. The major, intermediate and minor axes of halos are aligned with the corresponding tidal axes, and halo spin axes tend to be parallel with the intermediate axes and perpendicular to the major axes of tidal field. The strengths of these alignments generally increase with halo mass and redshift, but the dependencies are only through the peak height, {\
Institute of Scientific and Technical Information of China (English)
Liu Yu-Min; Yu Zhong-Yuan
2009-01-01
Calculations of electronic structures about the semiconductor quantum dot and the semiconductor quantum ring are presented in this paper. To reduce the calculation costs, for the quantum dot and the quantum ring, their simplified axially symmetric shapes are utilized in our analysis. The energy dependent effective mass is taken into account in solving the Schrodinger equations in the single band effective mass approximation. The calculated results show that the energy dependent effective mass should be considered only for relatively small volume quantum dots or small quantum rings. For large size quantum materials, both the energy dependent effective mass and the parabolic effective mass can give the same results. The energy states and the effective masses of the quantum dot and the quantum ring as a function of geometric parameters are also discussed in detail.
Etherington, J.; Thomas, D.; Maraston, C.; Sevilla-Noarbe, I.; Bechtol, K.; Pforr, J.; Pellegrini, P.; Gschwend, J.; Carnero Rosell, A.; Maia, M. A. G.; da Costa, L. N.; Benoit-Lévy, A.; Swanson, M. E. C.; Hartley, W. G.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Bernstein, R. A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Crocce, M.; Cunha, C. E.; Desai, S.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Fausti Neto, A.; Finley, D. A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Martini, P.; Melchior, P.; Miquel, R.; Mohr, J. J.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Tarle, G.; Vikram, V.; Walker, A. R.; Zhang, Y.
2017-04-01
Measurements of the galaxy stellar mass function are crucial to understand the formation of galaxies in the Universe. In a hierarchical clustering paradigm, it is plausible that there is a connection between the properties of galaxies and their environments. Evidence for environmental trends has been established in the local Universe. The Dark Energy Survey (DES) provides large photometric data sets that enable further investigation of the assembly of mass. In this study, we use ∼3.2 million galaxies from the (South Pole Telescope) SPT-East field in the DES science verification (SV) data set. From grizY photometry, we derive galaxy stellar masses and absolute magnitudes, and determine the errors on these properties using Monte Carlo simulations using the full photometric redshift probability distributions. We compute galaxy environments using a fixed conical aperture for a range of scales. We construct galaxy environment probability distribution functions and investigate the dependence of the environment errors on the aperture parameters. We compute the environment components of the galaxy stellar mass function for the redshift range 0.15 < z < 1.05. For z < 0.75, we find that the fraction of massive galaxies is larger in high-density environment than in low-density environments. We show that the low-density and high-density components converge with increasing redshift up to z ∼ 1.0 where the shapes of the mass function components are indistinguishable. Our study shows how high-density structures build up around massive galaxies through cosmic time.
Anomalous interactions at a linear collider
Indian Academy of Sciences (India)
Sudhansu S Biswal; Debajyoti Choudhury; Rohini M Godbole; Ritesh K Singh
2007-11-01
We examine, in a model independent way, the sensitivity of a linear collider to the couplings of a light Higgs boson to a pair of gauge bosons, including the possibility of CP violation. We construct several observables that probe the various possible anomalous couplings. For an intermediate mass Higgs, a collider operating at a center of mass energy of 500 GeV and with an integrated luminosity of 500 fb-1 is shown to be able to constrain the vertex at the few per cent level, with even higher sensitivity for some of the couplings. However, lack of sufficient number of observables as well as contamination from the vertex limits the precision to which anomalous part of the coupling can be probed.
Ablikim, M.; Achasov, M. N.; Ahmed, S.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Ferroli, R. Baldini; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fedorov, O.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, Y. P.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Y.; Huang, Z. L.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Kuehn, W.; Lange, J. S.; Lara, M.; Larin, P.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. B.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Y. Y.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales, C. Morales; Muchnoi, N. Yu.; Muramatsu, H.; Musiol, P.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, C. H.; Ruan, X. D.; Sarantsev, A.; Savrie, M.; Schnier, C.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shi, M.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, S. G.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.
2016-01-01
Using 1.09 x 10(9) J/psi events collected by the BESIII experiment in 2012, we study the J / psi -> gamma eta'pi(+)pi(-) process and observe a significant abrupt change in the slope of the eta'pi(+)pi(-) invariant mass distribution at the proton-antiproton (p (p) over bar) mass threshold. We use two
Rañada, Manuel F.
2016-06-01
The superintegrability of two-dimensional Hamiltonians with a position dependent mass (pdm) is studied (the kinetic term contains a factor m that depends of the radial coordinate). First, the properties of Killing vectors are studied and the associated Noether momenta are obtained. Then the existence of several families of superintegrable Hamiltonians is proved and the quadratic integrals of motion are explicitly obtained. These families include, as particular cases, some systems previously obtained making use of different approaches. We also relate the superintegrability of some of these pdm systems with the existence of complex functions endowed with interesting Poisson bracket properties. Finally the relation of these pdm Hamiltonians with the Euclidean Kepler problem and with the Euclidean harmonic oscillator is analyzed.
Anomalous diffusion of epicentres
Sotolongo-Costa, Oscar; Posadas, A; Luzon, F
2007-01-01
The classification of earthquakes in main shocks and aftershocks by a method recently proposed by M. Baiesi and M. Paczuski allows to the generation of a complex network composed of clusters that group the most correlated events. The spatial distribution of epicentres inside these structures corresponding to the catalogue of earthquakes in the eastern region of Cuba shows anomalous anti-diffusive behaviour evidencing the attractive nature of the main shock and the possible description in terms of fractional kinetics.
Hegetschweiler, Kaspar; Kuppert, Dirk; Huppert, Jochen; Straka, Michal; Kaupp, Martin
2004-06-02
The pH-dependent (1)H NMR characteristics of a series of Co(III)-(polyamin)-aqua and Co(III)-(polyamin)-(polyalcohol) complexes, [Co(tach)(ino-kappa(3)-O(1,3,5))](3+) (1(3+)), [Co(tach)(ino-kappa(3)-Omicron(1,2,6))](3+) (2(3+)), [Co(tach)(taci-kappa-Nu(1)-kappa(2)-O(2,6))](3+) (3(3+)), [Co(ditame)(H(2)O)](3+) (4(3+)), and [Co(tren)(H(2)O)(2)](3+) (5(3+)), were studied in D(2)O by means of titration experiments (tach = all-cis-cyclohexane-1,3,5-triamine, ino = cis-inositol, taci = 1,3,5-triamino-1,3,5-trideoxy-cis-inositol, tren = tris(2-aminoethyl)amine, ditame = 2,2,6,6-tetrakis-(aminomethyl)-4-aza-heptane). A characteristic shift was observed for H(-C) hydrogen atoms in the alpha-position of a coordinated amino group upon deprotonation of a coordinated oxygen donor. For a cis-H-C-N-Co-O-H arrangement, deprotonation of the oxygen donor resulted in an additional shielding (shift to lower frequency) of the H(-C) proton, whereas for a trans-H-C-N-Co-O-H arrangement, deprotonation resulted in a deshielding (shift to higher frequency). The effect appears to be of rather general nature: it is observed for primary (1(3+)-5(3+)), secondary (4(3+)), and tertiary (5(3+)) amino groups, and for the deprotonation of an alcohol (1(3+)-3(3+)) or a water (4(3+), 5(3+)) ligand. Spin-orbit-corrected density functional calculations show that the high-frequency deprotonation shift for the trans-position is largely caused by a differential cobalt-centered spin-orbit effect on the hydrogen nuclear shielding. This effect is conformation dependent due to a Karplus-type behavior of the spin-orbit-induced Fermi-contact shift and thus only significant for an approximately antiperiplanar H-C-N-Co arrangement. The differential spin-orbit contribution to the deprotonation shift in the trans-position arises from the much larger spin-orbit shift for the protonated than for the deprotonated state. This is in turn due to a trans-effect of the deprotonated (hydroxo or alkoxo) ligand, which weakens
Search for Anomalous Couplings in the Higgs Sector at LEP
Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, F; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosemann, C; Rosenbleck, C; Rosier-Lees, S; Roth, S; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, Q; Wang, X L; Wang, Z M; Weber, M; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M
2004-01-01
Anomalous couplings of the Higgs boson are searched for through the processes e^+ e^- -> H gamma, e^+ e^- -> e^+ e^- H and e^+ e^- -> HZ. The mass range 70 GeV ffbar, H -> gamma gamma, H -> Z\\gamma and H -> WW^(*) are considered and no evidence is found for anomalous Higgs production or decay. Limits on the anomalous couplings d, db, Delta(g1z), Delta(kappa_gamma) and xi^2 are derived as well as limits on the H -> gamma gamma and H -> Z gamma decay rates.
Ueda, Hiroshi; Wakabayashi, Shinobu; Kikuchi, Junko; Ida, Yasuo; Kadota, Kazunori; Tozuka, Yuichi
2015-04-01
Eudragit E (EGE) is a basic polymer incorporating tertiary amino and ester groups. The role of the functional groups of EGE in the formation of solid dispersion (SD) with Naproxen (NAP) was investigated. The glass transition temperature (Tg) of EGE decreased with the plasticizing effect of NAP up to 20% weight ratio. Addition of NAP at over 30% induced a rise in Tg, with the maximum value being reached at 60% NAP. Further addition of NAP led to a rapid drop of the Tg. A dramatic difference of physical stability between the SDs including 60 and 70% NAP was confirmed. The SD including 70% NAP rapidly crystallized at 40 °C with 75% relative humidity, while the amorphous state could be maintained over 6 months in the SD with 60% NAP. The infrared and (13)C solid state-NMR spectra of the SDs suggested a formation of ionic interaction between the carboxylic acid of NAP and the amino group of EGE. The SD with 20% NAP raised the (13)C spin-lattice relaxation (T1) of the amino group, but it decreased with over 30% NAP. The change in the (13)C-T1 disappeared with 70% NAP. The (13)C-T1 of the ester group rose depending on the amount of NAP. From these findings, we concluded that the role as hydrogen acceptor shifted from the amine to the ester group with an increase in amount of NAP. Furthermore, the amino group of EGE did not contribute to the interaction at over 70% NAP. These phenomena could be strongly correlated with Tg and stability.
Institute of Scientific and Technical Information of China (English)
JU Guo-Xing; CAI Chang-Ying; XIANG Yang; REN Zhong-Zhou
2007-01-01
Using the coordinate transformation method, we solve the one-dimensional Schr(o)dinger equation with position-dependent mass. The explicit expressions for the potentials, energy eigenvalues, and eigcnfunctions of the systems are given. The eigenfunctions can be expressed in terms of the Jacobi, Hermite, and generalized Laguerre polynomials. All potentials for these solvable systems have an extra term Vm, which is produced from the dependence of mass on the position, compared with those for the systems of constant mass. The properties of Vm for several mass functions are discussed.
Mátyus, Edit; Szidarovszky, Tamás; Császár, Attila G.
2014-10-01
Introducing different rotational and vibrational masses in the nuclear-motion Hamiltonian is a simple phenomenological way to model rovibrational non-adiabaticity. It is shown on the example of the molecular ion H_3^+, for which a global adiabatic potential energy surface accurate to better than 0.1 cm-1 exists [M. Pavanello, L. Adamowicz, A. Alijah, N. F. Zobov, I. I. Mizus, O. L. Polyansky, J. Tennyson, T. Szidarovszky, A. G. Császár, M. Berg et al., Phys. Rev. Lett. 108, 023002 (2012)], that the motion-dependent mass concept yields much more accurate rovibrational energy levels but, unusually, the results are dependent upon the choice of the embedding of the molecule-fixed frame. Correct degeneracies and an improved agreement with experimental data are obtained if an Eckart embedding corresponding to a reference structure of D3h point-group symmetry is employed. The vibrational mass of the proton in H_3^+ is optimized by minimizing the root-mean-square (rms) deviation between the computed and recent high-accuracy experimental transitions. The best vibrational mass obtained is larger than the nuclear mass of the proton by approximately one third of an electron mass, m^(v)_opt,p=m_nuc,p+0.31224 m_e. This optimized vibrational mass, along with a nuclear rotational mass, reduces the rms deviation of the experimental and computed rovibrational transitions by an order of magnitude. Finally, it is shown that an extension of the algorithm allowing the use of motion-dependent masses can deal with coordinate-dependent mass surfaces in the rovibrational Hamiltonian, as well.
Quark Matter at High Density based on Extended Confined-isospin-density-dependent-mass Model
Qauli, A I
2016-01-01
We investigate the effect of the inclusion of relativistic Coulomb terms in a confined-isospin-density-dependent-mass (CIDDM) model of strange quark matter (SQM). We found that if we include Coulomb term in scalar density form, SQM equation of state (EOS) at high densities is stiffer but if we include Coulomb term in vector density form is softer than that of standard CIDDM model. We also investigate systematically the role of each term of the extended CIDDM model. Compared with what was reported in Ref.~\\cite {ref:isospin}, we found the stiffness of SQM EOS is controlled by the interplay among the the oscillator harmonic, isospin asymmetry and Coulomb contributions depending on the parameter's range of these terms. We have found that the absolute stable condition of SQM and the mass of 2 $M_\\odot$ pulsars can constrain the parameter of oscillator harmonic $\\kappa_1$ $\\approx 0.53$ in the case Coulomb term excluded. If the Coulomb term is included, for the models with their parameters are consistent with SQM ...
Viscoelastic hydrodynamic interactions and anomalous CM diffusion in polymer melts
Meyer, Hendrik
We have recently discovered that anomalous center-of-mass (CM) diffusion occurring on intermediate time scales in polymer melts can be explained by the interplay of viscoelastic and hydrodynamic interactions (VHI). The theory has been solved for unentangled melts in 3D and 2D and excellent agreement between theory and simulation is found, also for alkanes with a force field optimized from neutron scattering. The physical mechanism considers that hydrodynamic interactions are not screened: they are time dependent because of increasing viscosity before the terminal relaxation time. The VHI are generally active in melts of any topology. They are most important at early times well before the terminal relaxation time and thus affect the nanosecond time range typically observable in dynamic neutron scattering experiments. We illustrate the effects with recent molecular dynamics simulations of linear, ring and star polymers. Work performed with A.N. Semenov and J. Farago.
Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration
Stevens, Daniel A.; Lee, Yunjong; Kang, Ho Chul; Lee, Byoung Dae; Lee, Yun-Il; Bower, Aaron; Jiang, Haisong; Kang, Sung-Ung; Andrabi, Shaida A.; Dawson, Valina L.; Shin, Joo-Ho; Dawson, Ted M.
2015-01-01
Mutations in parkin lead to early-onset autosomal recessive Parkinson’s disease (PD) and inactivation of parkin is thought to contribute to sporadic PD. Adult knockout of parkin in the ventral midbrain of mice leads to an age-dependent loss of dopamine neurons that is dependent on the accumulation of parkin interacting substrate (PARIS), zinc finger protein 746 (ZNF746), and its transcriptional repression of PGC-1α. Here we show that adult knockout of parkin in mouse ventral midbrain leads to decreases in mitochondrial size, number, and protein markers consistent with a defect in mitochondrial biogenesis. This decrease in mitochondrial mass is prevented by short hairpin RNA knockdown of PARIS. PARIS overexpression in mouse ventral midbrain leads to decreases in mitochondrial number and protein markers and PGC-1α–dependent deficits in mitochondrial respiration. Taken together, these results suggest that parkin loss impairs mitochondrial biogenesis, leading to declining function of the mitochondrial pool and cell death. PMID:26324925
Indian Academy of Sciences (India)
M K Bahar; F Yasuk
2013-02-01
Approximate solutions of the Dirac equation with position-dependent mass are presented for the inversely quadratic Yukawa potential and Coulomb-like tensor interaction by using the asymptotic iteration method. The energy eigenvalues and the corresponding normalized eigenfunctions are obtained in the case of position-dependent mass and arbitrary spin-orbit quantum number k state and approximation on the spin-orbit coupling term.
Anomalous radiative transitions
Ishikawa, Kenzo; Tobita, Yutaka
2014-01-01
Anomalous transitions involving photons derived by many-body interaction of the form, $\\partial_{\\mu} G^{\\mu}$, in the standard model are studied. This does not affect the equation of motion in the bulk, but makes wave functions modified, and causes the unusual transition characterized by the time-independent probability. In the transition probability at a time-interval T expressed generally in the form $P=T \\Gamma_0 +P^{(d)}$, now with $\\Gamma_0=0, P^{(d)} \
Computation and analysis of time-dependent sensitivities in Generalized Mass Action systems.
Schwacke, John H; Voit, Eberhard O
2005-09-07
Understanding biochemical system dynamics is becoming increasingly important for insights into the functioning of organisms and for biotechnological manipulations, and additional techniques and methods are needed to facilitate investigations of dynamical properties of systems. Extensions to the method of Ingalls and Sauro, addressing time-dependent sensitivity analysis, provide a new tool for executing such investigations. We present here the results of sample analyses using time-dependent sensitivities for three model systems taken from the literature, namely an anaerobic fermentation pathway in yeast, a negative feedback oscillator modeling cell-cycle phenomena, and the Mitogen Activated Protein (MAP) kinase cascade. The power of time-dependent sensitivities is particularly evident in the case of the MAPK cascade. In this example it is possible to identify the emergence of a concentration of MAPKK that provides the best response with respect to rapid and efficient activation of the cascade, while over- and under-expression of MAPKK relative to this concentration have qualitatively different effects on the transient response of the cascade. Also of interest is the quite general observation that phase-plane representations of sensitivities in oscillating systems provide insights into the manner with which perturbations in the envelope of the oscillation result from small changes in initial concentrations of components of the oscillator. In addition to these applied analyses, we present an algorithm for the efficient computation of time-dependent sensitivities for Generalized Mass Action (GMA) systems, the most general of the canonical system representations of Biochemical Systems Theory (BST). The algorithm is shown to be comparable to, or better than, other methods of solution, as exemplified with three biochemical systems taken from the literature.
Polarons with Spatially Dependent Mass in a Finite Parabolic Quantum Well
Institute of Scientific and Technical Information of China (English)
赵凤岐; 梁希侠
2002-01-01
We study the energy levels of an electron (or hole) polaron in a parabolic quantum well structure, includingthe spatial dependence of the effective mass. We also consider the two-mode behaviour of longitudinal opticalphonon modes of the ternary mixed crystals in the structure, in the calculation of the effect of the electron-phonon interaction. We calculate the ground state, the first excited state and the transition energy ofan electron(or hole) in the GaAs/Alx Ga1-xAs parabolic quantum well structure. The numerical results show that theelectron-phonon interaction obviously affects the energy levels of the electron (or hole), which are in agreementwith experimental results.
On Hamiltonians with position-dependent mass from Kaluza-Klein compactifications
Ballesteros, Ángel; Naranjo, Pedro
2016-01-01
In a recent paper [1], an inhomogeneous compactification of the extra dimension of a five dimensional Kaluza-Klein metric has been shown to generate a position-dependent mass in the corresponding four dimensional system. As an application of this dimensional reduction mechanism, a specific static dilatonic scalar field has been connected with a PDM Lagrangian describing a well-known nonlinear PDM oscillator. Here we present two more instances of this construction that lead to two distinguished superintegrable PDM systems: the so-called Darboux III and Taub-NUT Hamiltonians, and the properties of the inhomogeneous extra dimensions connected with them are compared with the ones in the nonlinear oscillator model. It is worth stressing that the Darboux III and Taub-NUT define exactly solvable quantum models, whose spectrum and eigenfuctions are explicitly known. Finally, it is shown that the compactification introduced in [1] can be alternatively interpreted as a mechanism for the dynamical generation of curvatur...
Dirac Particle for the Position Dependent Mass in the Generalized Asymmetric Woods-Saxon Potential
Directory of Open Access Journals (Sweden)
Soner Alpdoğan
2014-01-01
Full Text Available The one-dimensional Dirac equation with position dependent mass in the generalized asymmetric Woods-Saxon potential is solved in terms of the hypergeometric functions. The transmission and reflection coefficients are obtained by considering the one-dimensional electric current density for the Dirac particle and the equation describing the bound states is found by utilizing the continuity conditions of the obtained wave function. Also, by using the generalized asymmetric Woods-Saxon potential solutions, the scattering states are found out without making calculation for the Woods-Saxon, Hulthen, cusp potentials, and so forth, which are derived from the generalized asymmetric Woods-Saxon potential and the conditions describing transmission resonances and supercriticality are achieved. At the same time, the data obtained in this work are compared with the results achieved in earlier studies and are observed to be consistent.
Institute of Scientific and Technical Information of China (English)
SONG Li-Hua; LIU Na; DUAN Chun-Gui
2013-01-01
Hadron production in lepton-nucleus deep inelastic scattering is studied in a quark energy loss model.The leading-order computations for hadron multiplicity ratios are presented and compared with the selected HERMES pions production data with the quark hadronization occurring outside the nucleus by means of the hadron formation time.It is found that the obtained energy loss per unit length is 0.440±0.013 GeV/fm for an outgoing quark by the global fit.It is confirmed that the atomic mass number dependence of hadron attenuation is theoretically and experimentally in good agreement with the A2/3 power law for quark hadronization occurring outside the nucleus.
On Hamiltonians with position-dependent mass from Kaluza-Klein compactifications
Ballesteros, Ángel; Gutiérrez-Sagredo, Iván; Naranjo, Pedro
2017-02-01
In a recent paper (Morris (2015) [1]), an inhomogeneous compactification of the extra dimension of a five-dimensional Kaluza-Klein metric has been shown to generate a position-dependent mass (PDM) in the corresponding four-dimensional system. As an application of this dimensional reduction mechanism, a specific static dilatonic scalar field has been connected with a PDM Lagrangian describing a well-known nonlinear PDM oscillator. Here we present more instances of this construction that lead to PDM systems with radial symmetry, and the properties of their corresponding inhomogeneous extra dimensions are compared with the ones in the nonlinear oscillator model. Moreover, it is also shown how the compactification introduced in this type of models can alternatively be interpreted as a novel mechanism for the dynamical generation of curvature.
Ablikim, M; Ahmed, S; Ai, X C; Albayrak, O; Albrecht, M; Ambrose, D J; Amoroso, A; An, F F; An, Q; Bai, J Z; Ferroli, R Baldini; Ban, Y; Bennett, D W; Bennett, J V; Berger, N; Bertani, M; Bettoni, D; Bian, J M; Bianchi, F; Boger, E; Boyko, I; Briere, R A; Cai, H; Cai, X; Cakir, O; Calcaterra, A; Cao, G F; Cetin, S A; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, H Y; Chen, J C; Chen, M L; Chen, S; Chen, S J; Chen, X; Chen, X R; Chen, Y B; Cheng, H P; Chu, X K; Cibinetto, G; Dai, H L; Dai, J P; Dbeyssi, A; Dedovich, D; Deng, Z Y; Denig, A; Denysenko, I; Destefanis, M; De Mori, F; Ding, Y; Dong, C; Dong, J; Dong, L Y; Dong, M Y; Dou, Z L; Du, S X; Duan, P F; Fan, J Z; Fang, J; Fang, S S; Fang, X; Fang, Y; Farinelli, R; Fava, L; Fedorov, O; Feldbauer, F; Felici, G; Feng, C Q; Fioravanti, E; Fritsch, M; Fu, C D; Gao, Q; Gao, X L; Gao, X Y; Gao, Y; Gao, Z; Garzia, I; Goetzen, K; Gong, L; Gong, W X; Gradl, W; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, R P; Guo, Y; Guo, Y P; Haddadi, Z; Hafner, A; Han, S; Hao, X Q; Harris, F A; He, K L; Heinsius, F H; Held, T; Heng, Y K; Holtmann, T; Hou, Z L; Hu, C; Hu, H M; Hu, J F; Hu, T; Hu, Y; Huang, G S; Huang, Y P; Huang, J S; Huang, X T; Huang, X Z; Huang, Y; Huang, Z L; Hussain, T; Ji, Q; Ji, Q P; Ji, X B; Ji, X L; Jiang, L W; Jiang, X S; Jiang, X Y; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Johansson, T; Julin, A; Kalantar-Nayestanaki, N; Kang, X L; Kang, X S; Kavatsyuk, M; Ke, B C; Kiese, P; Kliemt, R; Kloss, B; Kolcu, O B; Kopf, B; Kornicer, M; Kupsc, A; Kühn, W; Lange, J S; Lara, M; Larin, P; Leithoff, H; Leng, C; Li, C; Li, Cheng; Li, D M; Li, F; Li, F Y; Li, G; Li, H B; Li, H J; Li, J C; Li, Jin; Li, K; Li, K; Li, Lei; Li, P R; Li, Q Y; Li, T; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Li, Y B; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Lin, D X; Liu, B; Liu, B J; Liu, C X; Liu, D; Liu, F H; Liu, Fang; Liu, Feng; Liu, H B; Liu, H H; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Liu, J Y; Liu, K; Liu, K Y; Liu, L D; Liu, P L; Liu, Q; Liu, S B; Liu, X; Liu, Y B; Liu, Y Y; Liu, Z A; Liu, Zhiqing; Loehner, H; Lou, X C; Lu, H J; Lu, J G; Lu, Y; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lyu, X R; Ma, F C; Ma, H L; Ma, L L; Ma, M M; Ma, Q M; Ma, T; Ma, X N; Ma, X Y; Ma, Y M; Maas, F E; Maggiora, M; Malik, Q A; Mao, Y J; Mao, Z P; Marcello, S; Messchendorp, J G; Mezzadri, G; Min, J; Mitchell, R E; Mo, X H; Mo, Y J; Morales, C Morales; Muchnoi, N Yu; Muramatsu, H; Musiol, P; Nefedov, Y; Nerling, F; Nikolaev, I B; Ning, Z; Nisar, S; Niu, S L; Niu, X Y; Olsen, S L; Ouyang, Q; Pacetti, S; Pan, Y; Patteri, P; Pelizaeus, M; Peng, H P; Peters, K; Pettersson, J; Ping, J L; Ping, R G; Poling, R; Prasad, V; Qi, H R; Qi, M; Qian, S; Qiao, C F; Qin, L Q; Qin, N; Qin, X S; Qin, Z H; Qiu, J F; Rashid, K H; Redmer, C F; Ripka, M; Rong, G; Rosner, Ch; Ruan, X D; Sarantsev, A; Savrié, M; Schnier, C; Schoenning, K; Schumann, S; Shan, W; Shao, M; Shen, C P; Shen, P X; Shen, X Y; Sheng, H Y; Shi, M; Song, W M; Song, X Y; Sosio, S; Spataro, S; Sun, G X; Sun, J F; Sun, S S; Sun, X H; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Tapan, I; Thorndike, E H; Tiemens, M; Uman, I; Varner, G S; Wang, B; Wang, B L; Wang, D; Wang, D Y; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, S G; Wang, W; Wang, W P; Wang, X F; Wang, Y; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z H; Wang, Z Y; Wang, Z Y; Weber, T; Wei, D H; Wei, J B; Weidenkaff, P; Wen, S P; Wiedner, U; Wolke, M; Wu, L H; Wu, L J; Wu, Z; Xia, L; Xia, L G; Xia, Y; Xiao, D; Xiao, H; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, J J; Xu, L; Xu, Q J; Xu, Q N; Xu, X P; Yan, L; Yan, W B; Yan, W C; Yan, Y H; Yang, H J; Yang, H X; Yang, L; Yang, Y X; Ye, M; Ye, M H; Yin, J H; Yu, B X; Yu, C X; Yu, J S; Yuan, C Z; Yuan, W L; Yuan, Y; Yuncu, A; Zafar, A A; Zallo, A; Zeng, Y; Zeng, Z; Zhang, B X; Zhang, B Y; Zhang, C; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J; Zhang, J J; Zhang, J L; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, K; Zhang, L; Zhang, S Q; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Y N; Zhang, Y T; Zhang, Yu; Zhang, Z H; Zhang, Z P; Zhang, Z Y; Zhao, G; Zhao, J W; Zhao, J Y; Zhao, J Z; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, Q W; Zhao, S J; Zhao, T C; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, W J; Zheng, Y H; Zhong, B; Zhou, L; Zhou, X; Zhou, X K; Zhou, X R; Zhou, X Y; Zhu, K; Zhu, K J; Zhu, S; Zhu, S H; Zhu, X L; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, J; Zotti, L; Zou, B S; Zou, J H
2016-01-01
Using $1.09\\times10^{9}$ $J/\\psi$ events collected by the BESIII experiment in 2012, we study the $J/\\psi\\rightarrow\\gamma\\eta^{\\prime}\\pi^{+}\\pi^{-}$ process and observe a significant abrupt change in the slope of the $\\eta^{\\prime}\\pi^{+}\\pi^{-}$ invariant mass distribution at the proton-antiproton ($p\\bar{p}$) mass threshold. We use two models to characterize the $\\eta^{\\prime}\\pi^{+}\\pi^{-}$ line shape around $1.85~\\text{GeV}/c^{2}$: one which explicitly incorporates the opening of a decay threshold in the mass spectrum (Flatt\\'{e} formula), and another which is the coherent sum of two resonant amplitudes. Both fits show almost equally good agreement with data, and suggest the existence of either a broad state around $1.85~\\text{GeV}/c^{2}$ with strong couplings to $p\\bar{p}$ final states or a narrow state just below the $p\\bar{p}$ mass threshold. Although we cannot distinguish between the fits, either one supports the existence of a $p\\bar{p}$ molecule-like state or bound state with greater than $7\\sigma...
Ablikim, M.; Achasov, M. N.; Ahmed, S.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Ferroli, R. Baldini; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; Mori, F. De; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fedorov, O.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, Y. P.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Y.; Huang, Z. L.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. B.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Y. Y.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J.G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales, C. Morales; Muchnoi, N. Yu; Muramatsu, H.; Musiol, P.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shi, M.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, S. G.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.
2016-01-01
Using $1.09\\times10^{9}$ $J/\\psi$ events collected by the BESIII experiment in 2012, we study the $J/\\psi\\rightarrow\\gamma\\eta^{\\prime}\\pi^{+}\\pi^{-}$ process and observe a significant abrupt change in the slope of the $\\eta^{\\prime}\\pi^{+}\\pi^{-}$ invariant mass distribution at the proton-antiproto
Full mass dependence in Higgs boson production in association with jets at the LHC and FCC
Greiner, Nicolas; Luisoni, Gionata; Schönherr, Marek; Winter, Jan-Christopher
2017-01-01
The first computation of Higgs production in association with three jets at NLO in QCD has recently been performed using the effective theory, where the top quark is treated as an infinitely heavy particle and integrated out. This approach is restricted to the regions in phase space where the typical scales are not larger than the top quark mass. Here we investigate this statement at a quantitative level by calculating the leading-order contributions to the production of a Standard Model Higgs boson in association with up to three jets taking full top-quark and bottom-quark mass dependence into account. We find that the transverse momentum of the hardest particle or jet plays a key role in the breakdown of the effective theory predictions, and that discrepancies can easily reach an order of magnitude for transverse momenta of about 1 TeV. The impact of bottom-quark loops are found to be visible in the small transverse momentum region, leading to corrections of up to 5 percent. We further study the impact of m...
The dependence of oxygen and nitrogen abundances on stellar mass from the CALIFA survey
Pérez-Montero, E; Vílchez, J M; Sánchez, S F; Kehrig, C; Husemann, B; Puertas, S Duarte; Iglesias-Pármao, J; Galbany, L; Mollá, M; Walcher, C J; Ascasíbar, Y; Delgado, R M González; Marino, R A; Masegosa, J; Pérez, E; Rosales-Ortega, F F; Sánchez-Blázquez, P; Bland-hawthorn, J; Bomans, D; López-Sánchez, A R; Ziegler, B
2016-01-01
We analysed the optical spectra of HII regions extracted from a sample of 350 galaxies of the CALIFA survey. We calculated total O/H abundances and, for the first time, N/O ratios using the semi-empirical routine HII-CHI-mistry, which, according to P\\'erez-Montero (2014), is consistent with the direct method and reduces the uncertainty in the O/H derivation using [NII] lines owing to the dispersion in the O/H-N/O relation. Then we performed linear fittings to the abundances as a function of the de-projected galactocentric distances. The analysis of the radial distribution both for O/H and N/O in the non-interacting galaxies reveals that both average slopes are negative, but a non-negligible fraction of objects have a flat or even a positive gradient (at least 10\\% for O/H and 4\\% for N/O). The slopes normalised to the effective radius appear to have a slight dependence on the total stellar mass and the morphological type, as late low-mass objects tend to have flatter slopes. No clear relation is found, howeve...
Strange matter equation of state in the quark mass-density-dependent model
Energy Technology Data Exchange (ETDEWEB)
Benvenuto, O.G. (Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, 1900 La Plata (Argentina)); Lugones, G. (Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata (Argentina))
1995-02-15
We study the properties and stability of strange matter at [ital T]=0 in the quark mass-density-dependent model for noninteracting quarks. We found a wide stability window'' for the values of the parameters ([ital C],[ital M][sub [ital s]0]) and the resulting equation of state at low densities is stiffer than that of the MIT bag model. At high densities it tends to the ultrarelativistic behavior expected because of the asymptotic freedom of quarks. The density of zero pressure is near the one predicted by the bag model and [ital not] shifted away as stated before; nevertheless, at these densities the velocity of sound is [approx]50% larger in this model than in the bag model. We have integrated the equations of stellar structure for strange stars with the present equation of state. We found that the mass-radius relation is very much the same as in the bag model, although it extends to more massive objects, due to the stiffening of the equation of state at low densities.
Quesne, C
2008-01-01
On using the known equivalence between the presence of a position-dependent mass (PDM) in the Schr\\"odinger equation and a deformation of the canonical commutation relations, a method based on deformed shape invariance has recently been devised for generating pairs of potential and PDM for which the Schr\\"odinger equation is exactly solvable. This approach has provided the bound-state energy spectrum, as well as the ground-state and the first few excited-state wavefunctions. The general wavefunctions have however remained unknown in explicit form because for their determination one would need the solutions of a rather tricky differential-difference equation. Here we show that solving this equation may be avoided by combining the deformed shape invariance technique with the point canonical transformation method in a novel way. It consists in employing our previous knowledge of the PDM problem energy spectrum to construct a constant-mass Schr\\"odinger equation with similar characteristics and in deducing the PD...
From outside-in to inside-out: galaxy assembly mode depends on stellar mass
Pan, Zhizheng; Lin, Weipeng; Wang, Jing; Fan, Lulu; Kong, Xu
2015-01-01
In this Letter, we investigate how galaxy mass assembly mode depends on stellar mass $M_{\\ast}$, using a large sample of $\\sim$10, 000 low redshift galaxies. Our galaxy sample is selected to have SDSS $R_{90}>5\\arcsec.0$, which allows the measures of both the integrated and the central NUV$-r$ color indices. We find that: in the $M_{\\ast}-($ NUV$-r$) green valley, the $M_{\\ast}10^{10.5}~M_{\\sun}$ galaxies have negative color gradients. When their central $D_{n}4000$ index values exceed 1.6, the $M_{\\ast}10^{10.5}~M_{\\sun}$ galaxies still lie on the UV blue cloud or the green valley region. We conclude that the main galaxy assembly mode is transiting from "the outside-in" mode to "the inside-out" mode at $M_{\\ast} 10^{10.5}~M_{\\sun}$. We argue that the physical origin of this is the compromise between the internal and the external process that driving the star formation quenching in galaxies. These results can be checked with the upcoming large data produced by the on-going IFS survey projects, such as CALIFA,...
The Dependence of Star Formation Rates on Stellar Mass and Environment at z~0.8
Patel, Shannon G; Kelson, Daniel D; Illingworth, Garth D; Franx, Marijn
2009-01-01
We examine the star formation rates (SFRs) of galaxies in a redshift slice encompassing the z=0.834 cluster RX J0152.7-1357. We used a low-dispersion prism in the Inamori Magellan Areal Camera and Spectrograph (IMACS) to identify galaxies with z2x10^{10} M_sun) of 330 galaxies that were imaged by Spitzer MIPS at 24 micron to derive SFRs and study the dependence of specific SFR (SSFR) on stellar mass and environment. We find that the SFR and SSFR show a strong decrease with increasing local density, similar to the relation at z~0. Our result contrasts with other work at z~1 that find the SFR-density trend to reverse for luminosity-limited samples. These other results appear to be driven by star-formation in lower mass systems (M~10^{10} M_sun). Our results imply that the processes that shut down star-formation are present in groups and other dense regions in the field. Our data also suggest that the lower SFRs of galaxies in higher density environments may reflect a change in the ratio of star-forming to non-s...
Full mass dependence in Higgs boson production in association with jets at the LHC and FCC
Greiner, Nicolas; Luisoni, Gionata; Schonherr, Marek; Winter, Jan-Christopher
2016-01-01
The first computation of Higgs production in association with three jets at NLO in QCD has recently been performed using the effective theory, where the top quark is treated as an infinitely heavy particle and integrated out. This approach is restricted to the regions in phase space where the typical scales are not larger than the top quark mass. Here we investigate this statement at a quantitative level by calculating the leading-order contributions to the production of a Standard Model Higgs boson in association with up to three jets taking full top-quark and bottom-quark mass dependence into account. We find that the transverse momentum of the hardest particle or jet plays a key role in the breakdown of the effective theory predictions, and that discrepancies can easily reach an order of magnitude for transverse momenta of about 1 TeV. The impact of bottom-quark loops are found to be visible in the small transverse momentum region, leading to corrections of up to 5 percent. We further study the impact of m...
Blow up Analysis for Anomalous Granular Gases
Rey, Thomas
2012-01-01
20 p.; International audience; We investigate in this article the long-time behaviour of the solutions to the energy-dependant, spatially-homogeneous, inelastic Boltzmann equation for hard spheres. This model describes a diluted gas composed of hard spheres under statistical description, that dissipates energy during collisions. We assume that the gas is ''anomalous'', in the sense that energy dissipation increases when temperature decreases. This allows the gas to cool down in finite time. W...
Identification of POMC exonic variants associated with substance dependence and body mass index.
Directory of Open Access Journals (Sweden)
Fan Wang
Full Text Available BACKGROUND: Risk of substance dependence (SD and obesity has been linked to the function of melanocortin peptides encoded by the proopiomelanocortin gene (POMC. METHODS AND RESULTS: POMC exons were Sanger sequenced in 280 African Americans (AAs and 308 European Americans (EAs. Among them, 311 (167 AAs and 114 EAs were affected with substance (alcohol, cocaine, opioid and/or marijuana dependence and 277 (113 AAs and164 EAs were screened controls. We identified 23 variants, including two common polymorphisms (rs10654394 and rs1042571 and 21 rare variants; 12 of which were novel. We used logistic regression to analyze the association between the two common variants and SD or body mass index (BMI, with sex, age, and ancestry proportion as covariates. The common variant rs1042571 in the 3'UTR was significantly associated with BMI in EAs (Overweight: P(adj = 0.005; Obese: P(adj = 0.018; Overweight+Obese: P(adj = 0.002 but not in AAs. The common variant, rs10654394, was not associated with BMI and neither common variant was associated with SD in either population. To evaluate the association between the rare variants and SD or BMI, we collapsed rare variants and tested their prevalence using Fisher's exact test. In AAs, rare variants were nominally associated with SD overall and with specific SD traits (SD: P(FET,1df = 0.026; alcohol dependence: P(FET,1df = 0.027; cocaine dependence: P(FET,1df = 0.007; marijuana dependence: P(FET,1df = 0.050 (the P-value from cocaine dependence analysis survived Bonferroni correction. There was no such effect in EAs. Although the frequency of the rare variants did not differ significantly between the normal-weight group and the overweight or obese group in either population, certain rare exonic variants occurred only in overweight or obese subjects without SD. CONCLUSION: These findings suggest that POMC exonic variants may influence risk for both SD and elevated BMI, in a population-specific manner. However, common
Kumar, Yogesh; Singh, S. Somorendro
2016-07-01
We extend the previous study of dilepton production using [S. Somorendro Singh and Y. Kumar, Can. J. Phys. 92 (2014) 31] based on a simple quasiparticle model of quark-gluon plasma (QGP). In this model, finite value of quark mass uses temperature dependent chemical potential the so-called Temperature Dependent Chemical Potential Quark Mass (TDCPQM). We calculate dilepton production in the relevant range of mass region. It is observed that the production rate is marginally enhanced from the earlier work. This is due to the effect of TDCPQM and its effect is highly significant in the production of dilepton.
Kogut, A J
1999-01-01
Improved knowledge of diffuse Galactic emission is important to maximize the scientific return from scheduled CMB anisotropy missions. Cross-correlation of microwave maps with maps of the far-IR dust continuum show a ubiquitous microwave emission component whose spatial distribution is traced by far-IR dust emission. The spectral index of this emission, beta_{radio} = -2.2 (+0.5 -0.7) is suggestive of free-free emission but does not preclude other candidates. Comparison of H-alpha and microwave results show that both data sets have positive correlations with the far-IR dust emission. Microwave data, however, are consistently brighter than can be explained solely from free-free emission traced by H-alpha. This ``anomalous'' microwave emission can be explained as electric dipole radiation from small spinning dust grains. The anomalous component at 53 GHz is 2.5 times as bright as the free-free emission traced by H-alpha, providing an approximate normalization for models with significant spinning dust emission.
Fickian dispersion is anomalous
Cushman, John H.; O'Malley, Dan
2015-12-01
The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.
Directory of Open Access Journals (Sweden)
Xin-Fa Deng
2013-01-01
Full Text Available Using four volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 8 (SDSS DR8, we have investigated the environmental dependences of the SFR, SSFR and stellar mass at fixed luminosity. At fixed luminosity, we still observe strong environmental dependences of the SFR, SSFR and stellar mass of galaxies: galaxies in the lowest density regime preferentially have a higher SFR or SSFR and lower stellar mass than galaxies in the densest regime. This result suggests that the limitation or fixation of luminosity does not exert substantial influence on the environmental dependences of the SFR, SSFR and stellar mass of galaxies, which further shows that luminosity is not a fundamental parameter in correlations between galaxy properties and the environment.
Eshghi, Mahdi; Ikhdair, Sameer M
2016-01-01
We solve the Schr\\"odinger equation with a position-dependent mass (PDM) charged particle interacted via the superposition of the Morse and Coulomb potentials and exposed to external magnetic and Aharonov-Bohm (AB) flux fields. The non-relativistic bound state energies together with their wave functions are calculated for two spatially-dependent mass distribution functions. We also study the thermal quantities of such a system. Further, the canonical formalism is used to compute various thermodynamic variables for second choosing mass by using the Gibbs formalism. We give plots for energy as a function of various physical parameters. The behavior of the internal energy, specific heat and entropy as functions of temperature and mass density parameter in the inverse-square mass case for different values of magnetic field are shown.
The Charge-to-Mass Dependence of SEP Fluences Over Wide Longitudes
Cohen, C. M. S.; Mewaldt, R. A.; Mason, G. M.
2014-05-01
Accurate characterization of the transport of energetic particles throughout the inner heliosphere is important for the planning of space missions and the development and testing of space weather forecasting tools. How particles are distributed in both radius and longitude during a solar energetic particle (SEP) event has been the subject of a number of studies. Initially these studies were performed through statistical analysis of single-spacecraft measurements of many different SEP events. Later multi-spacecraft observations of individual events were examined, most notably using data from Helios and, very recently, MESSENGER. Currently by combining measurements from near-Earth spacecraft and the twin STEREO spacecraft, particle distributions can be examined as a function of longitude separately from radial dependences. Additionally, while previous studies concentrated on protons and electrons, the SEP sensors on STEREO and ACE allow heavy ions to be examined as well. We have analyzed 5 large SEP events in 2011 and 2012 that were clearly observed by both STEREOs and ACE and determined the longitudinal distribution of the event-integrated fluences for H, He, O at 3.6-5 MeV/nuc and for H, He, O, and Fe at 0.32-0.45 MeV/nuc. We find no consistent charge-to-mass dependence in the longitudinal distributions at either energy suggesting rigidity is not a controlling factor in the particle spread in longitude. We find that typically lower energy ions have a wider longitudinal spread than higher energy ions suggesting a velocity dependence. Both of these results are consistent with the possibility that magnetic field line meandering and/or co-rotation is a primary means of longitudinally transporting particles.
Anomalous Dimensions of Conformal Baryons
DEFF Research Database (Denmark)
Pica, Claudio; Sannino, Francesco
2016-01-01
We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within...
Anomalous Dimensions of Conformal Baryons
DEFF Research Database (Denmark)
Pica, Claudio; Sannino, Francesco
2016-01-01
We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within the $...
Beta Function and Anomalous Dimensions
DEFF Research Database (Denmark)
Pica, Claudio; Sannino, Francesco
2011-01-01
We demonstrate that it is possible to determine the coefficients of an all-order beta function linear in the anomalous dimensions using as data the two-loop coefficients together with the first one of the anomalous dimensions which are universal. The beta function allows to determine the anomalou...
Energy Technology Data Exchange (ETDEWEB)
Ganguly, A., E-mail: gangulyasish@rediffmail.com, E-mail: aganguly@maths.iitkgp.ernet.in; Das, A., E-mail: amiya620@gmail.com [Department of Mathematics, IIT Kharagpur, Kharagpur, 721302 West Bengal (India)
2014-11-15
We consider one-dimensional stationary position-dependent effective mass quantum model and derive a generalized Korteweg-de Vries (KdV) equation in (1+1) dimension through Lax pair formulation, one being the effective mass Schrödinger operator and the other being the time-evolution of wave functions. We obtain an infinite number of conserved quantities for the generated nonlinear equation and explicitly show that the new generalized KdV equation is an integrable system. Inverse scattering transform method is applied to obtain general solution of the nonlinear equation, and then N-soliton solution is derived for reflectionless potentials. Finally, a special choice has been made for the variable mass function to get mass-deformed soliton solution. The influence of position and time-dependence of mass and also of the different representations of kinetic energy operator on the nature of such solitons is investigated in detail. The remarkable features of such solitons are demonstrated in several interesting figures and are contrasted with the conventional KdV-soliton associated with constant-mass quantum model.
Kritee, K.; Barkay, Tamar; Blum, Joel D.
2009-03-01
Controlling bioaccumulation of toxic monomethylmercury (MMHg) in aquatic food chains requires differentiation between biotic and abiotic pathways that lead to its production and degradation. Recent mercury (Hg) stable isotope measurements of natural samples suggest that Hg isotope ratios can be a powerful proxy for tracing dominant Hg transforming pathways in aquatic ecosystems. Specifically, it has been shown that photo-degradation of MMHg causes both mass dependent (MDF) and mass independent fractionation (MIF) of Hg isotopes. Because the extent of MDF and MIF observed in natural samples (e.g., fish, soil and sediments) can potentially be used to determine the relative importance of pathways leading to MMHg accumulation, it is important to determine the potential role of microbial pathways in contributing to the fractionation, especially MIF, observed in these samples. This study reports the extent of fractionation of Hg stable isotopes during degradation of MMHg to volatile elemental Hg and methane via the microbial Hg resistance ( mer) pathway in Escherichia coli carrying a mercury resistance ( mer) genetic system on a multi-copy plasmid. During experimental microbial degradation of MMHg, MMHg remaining in reactors became progressively heavier (increasing δ202Hg) with time and underwent mass dependent Rayleigh fractionation with a fractionation factor α202/198 = 1.0004 ± 0.0002 (2SD). However, MIF was not observed in any of the microbial MMHg degradation experiments indicating that the isotopic signature left by mer mediated MMHg degradation is significantly different from fractionation observed during DOC mediated photo-degradation of MMHg. Additionally, a clear suppression of Hg isotope fractionation, both during reduction of Hg(II) and degradation of MMHg, was observed when the cell densities increased, possibly due to a reduction in substrate bioavailability. We propose a multi-step framework for understanding the extent of fractionation seen in our MMHg
Variations in the magnitude of non mass dependent sulfur fractionation in the Archean atmosphere
Claire, M.; Kasting, J. F.
2010-12-01
Recent experimental data have enabled quantitatively meaningful computations of the non-mass dependent fractionation of sulfur’s isotopes (Δ33S) that exemplify the Archean rock record. The Δ33S signal originates as a result of fine structure in the absorption cross-section of SO2 isotopologues [1], which only undergo significant photolysis in reducing atmospheres [2]. The Δ33S signal produced by SO2 photolysis varies significantly between 190 and 220 nm, and thus is strongly dependent on any other atmospheric gases which absorb photons in this range [3], as well as the height at which photolysis occurs. A model that is capable of resolving the altitude-dependent radiative transfer through a realistic self-consistent reducing atmosphere is therefore essential when making direct comparisons between atmospheric Δ33S production and the rock record. In this work, we investigate how the magnitude of Δ33S might vary as function of atmospheric composition, which in turn allows the rock record to constrain the Archean atmosphere. Other recent work on this topic using simplied atmospheric models has implicated large concentrations of SO2 [5], OCS [3], and CO2 [6] as being responsible for the variations in Archean Δ33S. We present results from an altitude-dependent photochemical model of Archean photochemistry [4] of necessary complexity to resolve the complicated redox structure of the Archean atmosphere. We show that while increased concentrations of these gases all affect Δ33S in an unconstrained model, the atmospheric conditions required for OCS or SO2 shielding are unlikely to occur in an Archean atmosphere constrained by reasonable expectations of volcanic and biogenic fluxes. Within the context of plausible Archean atmospheres, we investigate how shielding due to changing amounts of CO2, biogenic sulfur gases, and fractal organic haze [7] affect the magnitude of Δ33S produced by the Archean atmosphere, and show why simplified atmospheric modeling may lead to
Anomalous dimension, chiral phase transition and inverse magnetic catalysis in soft-wall AdS/QCD
Energy Technology Data Exchange (ETDEWEB)
Fang, Zhen, E-mail: fangzhen@itp.ac.cn [Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing (China)
2016-07-10
A modified soft-wall AdS/QCD model with a z-dependent bulk scalar mass is proposed. We argue for the necessity of a modified bulk scalar mass from the quark mass anomalous dimension and carefully constrain the form of bulk mass by the corresponding UV and IR asymptotics. After fixing the form of bulk scalar mass, we calculate the mass spectra of (axial-)vector and pseudoscalar mesons, which have a good agreement with the experimental data. The behavior of chiral phase transition is also investigated, and the results are consistent with the standard scenario and lattice simulations. Finally, the issue of chiral magnetic effects is addressed. We find that the inverse magnetic catalysis emerges naturally from the modified soft-wall model, which is consistent with the recent lattice simulations.
Energy Technology Data Exchange (ETDEWEB)
Ferragut, Erik M.; Laska, Jason A.; Bridges, Robert A.
2016-06-07
A system is described for receiving a stream of events and scoring the events based on anomalousness and maliciousness (or other classification). The system can include a plurality of anomaly detectors that together implement an algorithm to identify low-probability events and detect atypical traffic patterns. The anomaly detector provides for comparability of disparate sources of data (e.g., network flow data and firewall logs.) Additionally, the anomaly detector allows for regulatability, meaning that the algorithm can be user configurable to adjust a number of false alerts. The anomaly detector can be used for a variety of probability density functions, including normal Gaussian distributions, irregular distributions, as well as functions associated with continuous or discrete variables.
Shtukenberg, Alexander; Kahr, Bart
2007-01-01
Optical anomalies in crystals are puzzles that collectively constituted the greatest unsolved problems in crystallography in the 19th Century. The most common anomaly is a discrepancy between a crystal’s symmetry as determined by its shape or by X-ray analysis, and that determined by monitoring the polarization state of traversing light. These discrepancies were perceived as a great impediment to the development of the sciences of crystals on the basis of Curie’s Symmetry Principle, the grand organizing idea in the physical sciences to emerge in the latter half of the 19th Century. Optically Anomalous Crystals begins with an historical introduction covering the contributions of Brewster, Biot, Mallard, Brauns, Tamman, and many other distinguished crystallographers. From this follows a tutorial in crystal optics. Further chapters discuss the two main mechanisms of optical dissymmetry: 1. the piezo-optic effect, and 2. the kinetic ordering of atoms. The text then tackles complex, inhomogeneous crystals, and...
Jimmy,; Saintonge, Amélie; Accurso, Gioacchino; Brough, Sarah; Oliva-Altamirano, Paola
2015-01-01
Using a sample of dwarf galaxies observed using the VIMOS IFU on the VLT, we investigate the mass-metallicity relation (MZR) as a function of star formation rate (FMR$_{\\text{SFR}}$) as well as HI-gas mass (FMR$_{\\text{HI}}$). We combine our IFU data with a subsample of galaxies from the ALFALFA HI survey crossmatched to the Sloan Digital Sky Survey to study the FMR$_{\\text{SFR}}$ and FMR$_{\\text{HI}}$ across the stellar mass range 10$^{6.6}$ to 10$^{8.8}$ M$_\\odot$, with metallicities as low as 12+log(O/H) = 7.67. We find the 1$\\sigma$ mean scatter in the MZR to be 0.05 dex. The 1$\\sigma$ mean scatter in the FMR$_{\\text{SFR}}$ (0.02 dex) is significantly lower than that of the MZR. The FMR$_{\\text{SFR}}$ is not consistent between the IFU observed galaxies and the ALFALFA/SDSS galaxies for SFRs lower than 10$^{-2.4}$ M$_\\odot$ yr$^{-1}$, however this could be the result of limitations of our measurements in that regime. The lowest mean scatter (0.01 dex) is found in the FMR$_{\\text{HI}}$. We also find that th...
Concentration Dependent Speciation and Mass Transport Properties of Switchable Polarity Solvents
Energy Technology Data Exchange (ETDEWEB)
Aaron D. Wilson; Christopher J. Orme
2014-12-01
Tertiary amine switchable polarity solvents (SPS) consisting of predominantly water, tertiary amine, and tertiary ammonium and bicarbonate ions were produced at various concentrations for three different amines: N,N-dimethylcyclohexylamine, N,N-dimethyloctylamine, and 1 cyclohexylpiperidine. For all concentrations, physical properties were measured including viscosity, molecular diffusion coefficients, freezing point depression, and density. Based on these measurements a variation on the Mark Houwink equation was developed to predict the viscosity of any tertiary amine SPS as a function of concentration using the amine’s molecular mass. The observed physical properties allowed the identification of solution state speciation of non-osmotic SPS, where the amine to carbonic acid ratio is significantly greater than one. These results indicate that at most concentrations the stoichiometric excess amine is involved in solvating a proton with two amines. The physical properties of osmotic SPS have consistent concentration dependence behavior over a wide range of concentrations; this consistence suggests osmotic pressures based on low concentrations freezing point studies can be reliably extrapolated to higher concentrations.
Alignments of Dark Matter Halos with Large-scale Tidal Fields: Mass and Redshift Dependence
Chen, Sijie; Wang, Huiyuan; Mo, H. J.; Shi, Jingjing
2016-07-01
Large-scale tidal fields estimated directly from the distribution of dark matter halos are used to investigate how halo shapes and spin vectors are aligned with the cosmic web. The major, intermediate, and minor axes of halos are aligned with the corresponding tidal axes, and halo spin axes tend to be parallel with the intermediate axes and perpendicular to the major axes of the tidal field. The strengths of these alignments generally increase with halo mass and redshift, but the dependence is only on the peak height, ν \\equiv {δ }{{c}}/σ ({M}{{h}},z). The scaling relations of the alignment strengths with the value of ν indicate that the alignment strengths remain roughly constant when the structures within which the halos reside are still in a quasi-linear regime, but decreases as nonlinear evolution becomes more important. We also calculate the alignments in projection so that our results can be compared directly with observations. Finally, we investigate the alignments of tidal tensors on large scales, and use the results to understand alignments of halo pairs separated at various distances. Our results suggest that the coherent structure of the tidal field is the underlying reason for the alignments of halos and galaxies seen in numerical simulations and in observations.
Borowka, S; Greiner, N; Heinrich, G; Jones, S P; Kerner, M; Schlenk, J; Schubert, U; Zirke, T
2016-07-01
We present the calculation of the cross section and invariant mass distribution for Higgs boson pair production in gluon fusion at next-to-leading order (NLO) in QCD. Top-quark masses are fully taken into account throughout the calculation. The virtual two-loop amplitude has been generated using an extension of the program GoSam supplemented with an interface to Reduze for the integral reduction. The occurring integrals have been calculated numerically using the program SecDec. Our results, including the full top-quark mass dependence for the first time, allow us to assess the validity of various approximations proposed in the literature, which we also recalculate. We find substantial deviations between the NLO result and the different approximations, which emphasizes the importance of including the full top-quark mass dependence at NLO.
Klok, E.J.; Oerlemans, J.
2004-01-01
This paper presents a study of the climate sensitivity of the mass balance of Morteratschgletscher in Switzerland, estimated from a two-dimensional mass balance model. Since the albedo scheme chosen is often the largest error source in mass balance models, we investigated the impact of using differe
Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Atkinson, Markus; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bittner, Bernhard
2012-01-01
An inclusive search for anomalous production of two prompt, isolated leptons with the same electric charge is presented. The search is performed in a data sample corresponding to 4.7 fb-1 of integrated luminosity collected in 2011 at $\\sqrt{s}$ = 7 TeV with the ATLAS detector at the LHC. Pairs of leptons (ee, emu, and mumu) with large transverse momentum are selected, and the dilepton invariant mass distribution is examined for any deviation from the Standard Model expectation. No excess is found, and upper limits on the production cross section of like-sign lepton pairs from physics processes beyond the Standard Model are placed as a function of the dilepton invariant mass within a fiducial region close to the experimental selection criteria. The 95% confidence level upper limits on the cross section of anomalous ee, emu, or mumu production range between 1.7 fb and 64 fb depending on the dilepton mass and flavour combination.
Energy Technology Data Exchange (ETDEWEB)
Jimmy; Tran, Kim-Vy [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Saintonge, Amélie; Accurso, Gioacchino [Department of Physics and Astronomy, University College London, Gower Place, London WC1E 6BT (United Kingdom); Brough, Sarah; Oliva-Altamirano, Paola [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia)
2015-10-20
Using a sample of dwarf galaxies observed using the VIMOS IFU on the Very Large Telescope, we investigate the mass–metallicity relation (MZR) as a function of star formation rate (FMR{sub SFR}) as well as HI-gas mass (FMR{sub HI}). We combine our IFU data with a subsample of galaxies from the ALFALFA HI survey crossmatched to the Sloan Digital Sky Survey (SDSS) to study the FMR{sub SFR} and FMR{sub HI} across the stellar mass range 10{sup 6.6}–10{sup 8.8} M{sub ⊙}, with metallicities as low as 12 + log(O/H) = 7.67. We find the 1σ mean scatter in the MZR to be 0.05 dex. The 1σ mean scatter in the FMR{sub SFR} (0.02 dex) is significantly lower than that of the MZR. The FMR{sub SFR} is not consistent between the IFU observed galaxies and the ALFALFA/SDSS galaxies for SFRs lower than 10{sup −2.4} M{sub ⊙} yr{sup −1}, however, this could be the result of limitations of our measurements in that regime. The lowest mean scatter (0.01 dex) is found in the FMR{sub HI}. We also find that the FMR{sub HI} is consistent between the IFU observed dwarf galaxies and the ALFALFA/SDSS crossmatched sample. We introduce the fundamental metallicity luminosity counterpart to the FMR, again characterized in terms of SFR (FML{sub SFR}) and HI-gas mass (FML{sub HI}). We find that the FML{sub HI} relation is consistent between the IFU observed dwarf galaxy sample and the larger ALFALFA/SDSS sample. However, the 1σ scatter for the FML{sub HI} relation is not improved over the FMR{sub HI} scenario. This leads us to conclude that the FMR{sub HI} is the best candidate for a physically motivated fundamental metallicity relation.
Gender-Dependent Association of FTO Polymorphisms with Body Mass Index in Mexicans
Saldaña-Alvarez, Yolanda; Salas-Martínez, María Guadalupe; García-Ortiz, Humberto; Luckie-Duque, Angélica; García-Cárdenas, Gustavo; Vicenteño-Ayala, Hermenegildo; Cordova, Emilio J.; Esparza-Aguilar, Marcelino; Contreras-Cubas, Cecilia; Carnevale, Alessandra; Chávez-Saldaña, Margarita; Orozco, Lorena
2016-01-01
To evaluate the associations between six single-nucleotide polymorphisms (SNPs) in intron 1 of FTO and body mass index (BMI), a case-control association study of 2314 unrelated Mexican-Mestizo adult subjects was performed. The association between each SNP and BMI was tested using logistic and linear regression adjusted for age, gender, and ancestry and assuming additive, recessive, and dominant effects of the minor allele. Association analysis after BMI stratification showed that all five FTO SNPs (rs1121980, rs17817449, rs3751812, rs9930506, and rs17817449), were significantly associated with obesity class II/III under an additive model (P<0.05). Interestingly, we also documented a genetic model-dependent influence of gender on the effect of FTO variants on increased BMI. Two SNPs were specifically associated in males under a dominant model, while the remainder were associated with females under additive and recessive models (P<0.05). The SNP rs9930506 showed the highest increased in obesity risk in females (odds ratio = 4.4). Linear regression using BMI as a continuous trait also revealed differential FTO SNP contributions. Homozygous individuals for the risk alleles of rs17817449, rs3751812, and rs9930506 were on average 2.18 kg/m2 heavier than homozygous for the wild-type alleles; rs1121980 and rs8044769 showed significant but less-strong effects on BMI (1.54 kg/m2 and 0.9 kg/m2, respectively). Remarkably, rs9930506 also exhibited positive interactions with age and BMI in a gender-dependent manner. Women carrying the minor allele of this variant have a significant increase in BMI by year (0.42 kg/m2, P = 1.17 x 10−10). Linear regression haplotype analysis under an additive model, confirmed that the TGTGC haplotype harboring all five minor alleles, increased the BMI of carriers by 2.36 kg/m2 (P = 1.15 x 10−5). Our data suggest that FTO SNPs make differential contributions to obesity risk and support the hypothesis that gender differences in the mechanisms
On the non-evolution of the dependence of black hole masses on bolometric luminosities for QSOs
Institute of Scientific and Technical Information of China (English)
Martín López-Corredoira; Carlos M. Gutiérrez
2012-01-01
There are extremely luminous quasi stellar objects (QSOs) at high redshift which are absent at low redshift.The lower luminosities at low redshifts can be understood as the external manifestation of either a lower Eddington ratio or a lower mass.To distinguish between both effects,we determine the possible dependence of masses and Eddington ratios of QSOs with a fixed luminosity as a function of redshifts; this avoids the Malmquist bias or any other selection effect.For the masses and Eddington ratios derived for a sample of QSOs in the Sloan Digital Sky Survey,we model their evolution by a double linear fit separating the dependence on redshifts and luminosities.The validity of the fits and possible systematic effects were tested by the use of different estimators of masses or bolometric luminosities,and possible intergalactic extinction effects.The results do not show any significant evolution of black hole masses or Eddington ratios for equal luminosity QSOs.The black hole mass only depends on the bolometric luminosity without significant dependence on the redshift as (MBH/109M☉)≈ 3.4 (Lbol/(1047ergs-1)0.65on average for z ≤ 5.This must not be confused with the possible evolution in the formation of black holes in QSOs.The variations of the environment might influence the formation of the black holes but not their subsequent accretion.It also leaves a question to be solved:Why are there not QSOs with very high mass at low redshift? A brief discussion of the possible reasons for this is tentatively pointed out.
Mass dependence of the activation enthalpy and entropy of unentangled linear alkane chains
Energy Technology Data Exchange (ETDEWEB)
Jeong, Cheol; Douglas, Jack F. [Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)
2015-10-14
The mass scaling of the self-diffusion coefficient D of polymers in the liquid state, D ∼ M{sup β}, is one of the most basic characteristics of these complex fluids. Although traditional theories such as the Rouse and reptation models of unentangled and entangled polymer melts, respectively, predict that β is constant, this exponent for alkanes has been estimated experimentally to vary from −1.8 to −2.7 upon cooling. Significantly, β changes with temperature T under conditions where the chains are not entangled and at temperatures far above the glass transition temperature T{sub g} where dynamic heterogeneity does not complicate the description of the liquid dynamics. Based on atomistic molecular dynamics simulations on unentangled linear alkanes in the melt, we find that the variation of β with T can be directly attributed to the dependence of the enthalpy ΔH{sub a} and entropy ΔS{sub a} of activation on the number of alkane backbone carbon atoms, n. In addition, we find a sharp change in the melt dynamics near a “critical” chain length, n ≈ 17. A close examination of this phenomenon indicates that a “buckling transition” from rod-like to coiled chain configurations occurs at this characteristic chain length and distinct entropy-enthalpy compensation relations, ΔS{sub a} ∝ ΔH{sub a}, hold on either side of this polymer conformational transition. We conclude that the activation free energy parameters exert a significant influence on the dynamics of polymer melts that is not anticipated by either the Rouse and reptation models. In addition to changes of ΔH{sub a} and ΔS{sub a} with M, we expect changes in these free energy parameters to be crucial for understanding the dynamics of polymer blends, nanocomposites, and confined polymers because of changes of the fluid free energy by interfacial interactions and geometrical confinement.
Anomalous carrier dynamics in bilayer graphene in presence of mechanical strain: A theoretical study
Enamullah
2016-05-01
One of the optical response of charge carriers in bilayer graphene, anomalous Rabi oscillation is investigated theoretically in presence of mechanical strain. Rabi oscillation in extreme non-resonance regime is known as anomalous Rabi oscillation, has been predicted theoretically in single layer graphene by new technique known as asymptotic rotating wave approximation. In this article, we have shown a strong dependence of anomalous Rabi oscillations of charge carriers on the mechanical strain near the vanishing point of conduction and valance band.
Pflamm-Altenburg, Jan; Kroupa, Pavel
2013-01-01
It is widely accepted that the distribution function of the masses of young star clusters is universal and can be purely interpreted as a probability density distribution function with a constant upper mass limit. As a result of this picture the masses of the most-massive objects are exclusively determined by the size of the sample. Here we show, with very high confidence, that the masses of the most-massive young star clusters in M33 decrease with increasing galactocentric radius in contradiction to the expectations from a model of a randomly sampled constant cluster mass function with a constant upper mass limit. Pure stochastic star formation is thereby ruled out. We use this example to elucidate how naive analysis of data can lead to unphysical conclusions.
Willis, J. B.
2010-12-01
The current stress field of upper Cook Inlet basin is unusual in that the maximum horizontal stress is oriented ~45° counterclockwise from, rather than parallel to, the motion vector of the subducting Pacific Plate. A 3-dimensional, elastic dislocation model of the 1964, Mw 9.2, great Alaska earthquake demonstrates that sharp changes in geometry of the subduction interface may strongly influence the stress field in the upper plate and may account for the anomalous orientation of the principal stresses. The model accurately represents the current view of the 170,000 km2 event as rupturing across a subducted transform boundary that is characterized by complex, rapid changes in slab geometry. Static stress transfer from the 1964 event into the overlying North American plate altered Coulomb stresses on the Lake Clark-Castle Mountain fault system and on several blind, oblique thrust faults that core anticlines of the upper Cook Inlet petroleum province. Each of these faults presents a significant seismic hazard to the greater Anchorage area and to regional petroleum infrastructure and production. Modeled, static Coulomb stress changes caused by the 1964 event suggest a localized decrease in fault stability of the Castle Mountain fault and decreased stability of most east-dipping, upper Cook Inlet thrust faults. Notably, the local region of decreased fault stability along the Castle Mountain fault coincides with rapid changes in the geometry of the underlying subducting slab; models that do not account for changes in slab geometry tend to show increased stability along the length of the fault. The zone of decreased stability correlates with the western segment of the Castle Mountain fault, the only known upper plate fault in the greater Anchorage with unequivocal Holocene surface rupture. A time-dependent rheological, visco-elastic model of the 1964 event suggests that in regions where the subduction interface has not relocked, the regional stress field will evolve for
Indian Academy of Sciences (India)
Ş Şentürk; F Demiray; O Özsoy
2007-09-01
Energy resolution of the time-of-ﬂight mass spectrometer was considered. The estimations indicate that the time-lag energy focusing method provides better resolution for the parallel case while the turnaround time is more convenient for the perpendicular position. Hence the applicability of the methods used for the energy resolution depends on beam source arrangement.
Energy Technology Data Exchange (ETDEWEB)
Vubangsi, M.; Tchoffo, M.; Fai, L. C. [Mesoscopic and Multilayer Structures Laboratory, Physics Department, University of Dschang, P.O. Box 417 Dschang (Cameroon); Pisma’k, Yu. M. [Department of Theoretical Physics, Saint Petersburg State University, Saint Petersburg (Russian Federation)
2015-12-15
The problem of a particle with position and time-dependent effective mass in a one-dimensional infinite square well is treated by means of a quantum canonical formalism. The dynamics of a launched wave packet of the system reveals a peculiar revival pattern that is discussed. .
Godunov, S. I.; Vysotsky, M. I.
2013-06-01
The influence of the finiteness of the proton radius and mass on the energies of a hydrogen atom and hydrogenlike ions in a superstrong magnetic field is studied. The finiteness of the nucleus size pushes the ground energy level up leading to a nontrivial dependence of the value of the critical nucleus charge on the external magnetic field.
The zCOSMOS survey : The dependence of clustering on luminosity and stellar mass at z=0.2-1
Meneux, B.; Guzzo, L.; de la Torre, S.; Porciani, C.; Zamorani, G.; Abbas, U.; Bolzonella, M.; Garilli, B.; Iovino, A.; Pozzetti, L.; Zucca, E.; Lilly, S. J.; Le Fevre, O.; Kneib, J. -P.; Carollo, C. M.; Contini, T.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Bardelli, S.; Bongiorno, A.; Caputi, K.; Coppa, G.; Cucciati, O.; de Ravel, L.; Franzetti, P.; Kampczyk, P.; Knobel, C.; Kovac, K.; Lamareille, F.; Le Borgne, J. -F.; Le Brun, V.; Maier, C.; Pello, R.; Peng, Y.; Montero, E. Perez; Ricciardelli, E.; Silverman, J. D.; Tanaka, M.; Tasca, L.; Tresse, L.; Vergani, D.; Bottini, D.; Cappi, A.; Cimatti, A.; Cassata, P.; Fumana, M.; Koekemoer, A. M.; Leauthaud, A.; Maccagni, D.; Marinoni, C.; McCracken, H. J.; Memeo, P.; Oesch, P.; Scaramella, R.
2009-01-01
Aims. We study the dependence of galaxy clustering on luminosity and stellar mass at redshifts z similar to [0.2-1], using the first 10K redshifts from the zCOSMOS spectroscopic survey of the COSMOS field. Methods. We measured the redshift-space correlation functions xi(r(p), pi) and xi(s) and the p
Institute of Scientific and Technical Information of China (English)
CAI Chang-Ying; REN Zhong-Zhou; JU Guo-Xing
2005-01-01
For an exponentially position-dependent mass, we obtain the exact solutions of the three-dimensional Schrodinger equation by using coordinate transformation method for the reference problems with Coulomb potential,Kratzer potential, and spherically square potential well of infinite depth, respectively. The explicit expressions for the energy eigenvalues and the corresponding eigenfunctions of the three systems are presented.
Indian Academy of Sciences (India)
Karan Singh Vinayak; Suneel Kumar
2014-03-01
Within the framework of isospin-dependent quantum molecular dynamics (IQMD) model, we demonstrate the evolution of intermediate mass fragments in heavy-ion collisions. In this paper, we study the time evolution, impact parameter, and excitation energy dependence of IMF production for the different forms of density-dependent symmetry energy. The IMF production and charge distribution show a minor but considerable sensitivity towards various forms of densitydependent symmetry energy. The Coulomb interactions affect the IMF production significantly at peripheral collisions. The IMF production increases with the stiffness of symmetry energy.
Production and Resource Scheduling in Mass Customization with Dependent Setup Consideration
DEFF Research Database (Denmark)
Nielsen, Izabela Ewa; Bocewicz, G.; Do, Ngoc Anh Dung
2014-01-01
Mass customization has been implemented in services and manufactures to increase the competitiveness of companies. In a manufacturing company, the procedure for production and resource scheduling has to be changed to adapt to mass customization. A good production and resource scheduling will cont...
Fluctuation-stabilized marginal networks and anomalous entropic elasticity.
Dennison, M; Sheinman, M; Storm, C; MacKintosh, F C
2013-08-30
We study the elastic properties of thermal networks of Hookean springs. In the purely mechanical limit, such systems are known to have a vanishing rigidity when their connectivity falls below a critical, isostatic value. In this work, we show that thermal networks exhibit a nonzero shear modulus G well below the isostatic point and that this modulus exhibits an anomalous, sublinear dependence on temperature T. At the isostatic point, G increases as the square root of T, while we find G∝Tα below the isostatic point, where α≃0.8. We show that this anomalous T dependence is entropic in origin.
Petrology of Anomalous Eucrites
Mittlefehldt, D. W.; Peng, Z. X.; Ross, D. K.
2015-01-01
Most mafic achondrites can be broadly categorized as being "eucritic", that is, they are composed of a ferroan low-Ca clinopyroxene, high-Ca plagioclase and a silica phase. They are petrologically distinct from angritic basalts, which are composed of high-Ca, Al-Ti-rich clinopyroxene, Carich olivine, nearly pure anorthite and kirschsteinite, or from what might be called brachinitic basalts, which are composed of ferroan orthopyroxene and high-Ca clinopyroxene, intermediate-Ca plagioclase and ferroan olivine. Because of their similar mineralogy and composition, eucrite-like mafic achondrites formed on compositionally similar asteroids under similar conditions of temperature, pressure and oxygen fugacity. Some of them have distinctive isotopic compositions and petrologic characteristics that demonstrate formation on asteroids different from the parent of the HED clan (e.g., Ibitira, Northwest Africa (NWA) 011). Others show smaller oxygen isotopic distinctions but are otherwise petrologically and compositionally indistinguishable from basaltic eucrites (e.g., Pasamonte, Pecora Escarpment (PCA) 91007). The degree of uniformity in delta O-17 of eucrites and diogenites is one piece of evidence considered to favor of a magma-ocean scenario for their petrogenesis. Given that the O isotopic differences separating Pasamonte and PCA 91007 from other eucrites are small, and that there is an absence of other distinguishing characteristics, a legitimate question is: Did the HED parent asteroid fail to homogenize via a magma-ocean stage, thus explaining outliers like Pasamonte? We are initiating a program of study of anomalous eucrite-like achondrites as one part of our effort to seek a resolution of this issue. Here we present preliminary petrologic information on Asuka (A-) 881394, Elephant Moraine (EET) 87520 and EET 87542. We will have studied several more by conference time.
Zandivarez, Ariel
2010-01-01
We perform an analysis of the luminosities of galaxies in groups in the SDSS DR7. We analyse the luminosity function (LF) as a function of group mass for different photometric bands, galaxy populations, galaxy positions within the groups, and the group surrounding large scale density. We find that M* brightens and alpha becomes steeper as a function of mass in all SDSS photometric bands, in agreement with previous results. From the analysis of different galaxy populations, we observe that different methods to split galaxy populations, based on the concentration index or the colour-magnitude diagram, produce quite different behaviours in the luminosity trends, mainly for alpha. These discrepancies and the trends with mass mentioned above are explained when analysing the LF of galaxies classified simultaneously according to their concentrations and colours. We find that only the red spheroids have a LF that strongly depends on group mass. Late type galaxies, whether blue or red, have luminosity functions that d...
Institute of Scientific and Technical Information of China (English)
JU Guo-Xing; XIANG Yang; REN Zhong-Zhou
2006-01-01
The properties of the s-wave for a quasi-free particle with position-dependent mass (PDM) have been discussed in details. Differed from the system with constant mass in which the localization of the s-wave for the free quantum particle around the origin only occurs in two dimensions, the quasi-free particle with PDM can experience attractive forces in D dimensions except D=1 when its mass function satisfies some conditions. The effective mass of a particle varying with its position can induce effective interaction, which may be attractive in some cases. The analytical expressions of the eigenfunctions and the corresponding probability densities for the s-waves of the two- and three-dimensional systems with a special PDM are given, and the existences of localization around the origin for these systems are shown.
Quarks with unit charge: a search for anomalous hydrogen.
Muller, R A; Alvarez, L W; Holley, W R; Stephenson, E J
1977-04-29
Quarks of charge +1 and other anomalous hydrogen have been sought by using the 88-inch cyclotron at Berkeley as a high-energy mass spectrometer, with natural hydrogen and deuterium as the sources of ions. No quarks were observed, and limits were placed on their ratio to protons on the earth that vary from < 2 x 10(-19)for high masses (3 to 8.2 atomic mass units) to 10(-13) for the lowest masses (< (1/3) atomic mass unit).
Fumagalli, Mattia; Franx, Marijn; Brammer, Gabriel; van Dokkum, Pieter; da Cunha, Elisabete; Kriek, Mariska; Lundgren, Britt; Momcheva, Ivelina; Rix, Hans-Walter; Schmidt, Kasper B; Skelton, Rosalind E; Whitaker, Katherine E; Labbe, Ivo; Nelson, Erica
2012-01-01
We investigate the evolution of the Halpha equivalent width, EW(Halpha), with redshift and its dependence on stellar mass, taking advantage of the first data from the 3D-HST survey, a large spectroscopic Treasury program with the Hubble Space Telescope WFC3. Combining our Halpha measurements of 854 galaxies at 0.8
A variable-order fractal derivative model for anomalous diffusion
Directory of Open Access Journals (Sweden)
Liu Xiaoting
2017-01-01
Full Text Available This paper pays attention to develop a variable-order fractal derivative model for anomalous diffusion. Previous investigations have indicated that the medium structure, fractal dimension or porosity may change with time or space during solute transport processes, results in time or spatial dependent anomalous diffusion phenomena. Hereby, this study makes an attempt to introduce a variable-order fractal derivative diffusion model, in which the index of fractal derivative depends on temporal moment or spatial position, to characterize the above mentioned anomalous diffusion (or transport processes. Compared with other models, the main advantages in description and the physical explanation of new model are explored by numerical simulation. Further discussions on the dissimilitude such as computational efficiency, diffusion behavior and heavy tail phenomena of the new model and variable-order fractional derivative model are also offered.
Anomalous single top quark production at the LHC
Energy Technology Data Exchange (ETDEWEB)
Mohammadi Najafabadi, M [School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of); Pooya, G, E-mail: mojtaba@ipm.i [Physics Department, Sharif University of Technology (SUT), PO Box 11365-9161, Tehran (Iran, Islamic Republic of)
2010-09-15
The anomalous top quark interactions with gluon (tug, tcg) allow the production of single top quarks at the Large Hadron Collider (LHC). Using the angular distribution of the charged lepton from the W boson in the top decay, we show that with the data of 10 fb{sup -1} of integrated luminosity and in the collisions with the center of mass energy of 14 TeV, the anomalous up and charm quarks coupling parameters {kappa}{sub u,c}/{Lambda} can be measured down to 0.005 and 0.007 TeV{sup -1}, respectively.
Energy Technology Data Exchange (ETDEWEB)
Krolewski, Alex G.; Eisenstein, Daniel J., E-mail: akrolewski@college.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
2015-04-10
We study the dependence of quasar clustering on quasar luminosity and black hole mass by measuring the angular overdensity of photometrically selected galaxies imaged by the Wide-field Infrared Survey Explorer (WISE) about z ∼ 0.8 quasars from SDSS. By measuring the quasar–galaxy cross-correlation function and using photometrically selected galaxies, we achieve a higher density of tracer objects and a more sensitive detection of clustering than measurements of the quasar autocorrelation function. We test models of quasar formation and evolution by measuring the luminosity dependence of clustering amplitude. We find a significant overdensity of WISE galaxies about z ∼ 0.8 quasars at 0.2–6.4 h{sup −1} Mpc in projected comoving separation. We find no appreciable increase in clustering amplitude with quasar luminosity across a decade in luminosity, and a power-law fit between luminosity and clustering amplitude gives an exponent of −0.01 ± 0.06 (1 σ error). We also fail to find a significant relationship between clustering amplitude and black hole mass, although our dynamic range in true mass is suppressed due to the large uncertainties in virial black hole mass estimates. Our results indicate that a small range in host dark matter halo mass maps to a large range in quasar luminosity.
Moresco, M; Cimatti, A; Zamorani, G; Mignoli, M; Di Cesare, S; Bolzonella, M; Zucca, E; Lilly, S; Kovac, K; Scodeggio, M; Cassata, P; Tasca, L; Vergani, D; Halliday, C; Carollo, M; Contini, T; Kneib, J -P; Le Fèvre, O; Mainieri, V; Renzini, A; Bardelli, S; Bongiorno, A; Caputi, K; Coppa, G; Cucciati, O; de la Torre, S; de Ravel, L; Franzetti, P; Garilli, B; Iovino, A; Kampczyk, P; Knobel, C; Lamareille, F; Le Borgne, J F; Le Brun, V; Maier, C; Pello, R; Peng, Y; Montero, E Perez; Ricciardelli, E; Silverman, J D; Tanaka, M; Tresse, L; Abbas, U; Bottini, D; Cappi, A; Guzzo, L; Koekemoer, A M; Leauthaud, A; Maccagni, D; Marinoni, C; McCracken, H J; Memeo, P; Meneux, B; Nair, P; Oesch, P; Porciani, C; Scaramella, R; Scarlata, C; Scoville, N
2010-01-01
We present the analysis of the U-V rest-frame color distribution and some spectral features as a function of mass and environment for two sample of early-type galaxies up to z=1 extracted from the zCOSMOS spectroscopic survey. The first sample ("red galaxies") is defined with a photometric classification, while the second ("ETGs") by combining morphological, photometric, and spectroscopic properties to obtain a more reliable sample. We find that the color distribution of red galaxies is not strongly dependent on environment for all mass bins, with galaxies in overdense regions redder than galaxies in underdense regions with a difference of 0.027\\pm0.008 mag. The dependence on mass is far more significant, with average colors of massive galaxies redder by 0.093\\pm0.007 mag than low-mass galaxies throughout the entire redshift range. We study the color-mass relation, finding a mean slope 0.12\\pm0.005, while the color-environment relation is flatter, with a slope always smaller than 0.04. The spectral analysis t...
THE DEPENDENCE OF PRESTELLAR CORE MASS DISTRIBUTIONS ON THE STRUCTURE OF THE PARENTAL CLOUD
Energy Technology Data Exchange (ETDEWEB)
Parravano, Antonio [Centro De Fisica Fundamental, Universidad de Los Andes, Merida (Venezuela, Bolivarian Republic of); Sanchez, Nestor [S. D. Astronomia y Geodesia, Fac. CC. Matematicas, Universidad Complutense de Madrid (Spain); Alfaro, Emilio J. [Instituto de Astrofisica de Andalucia (CSIC), Granada (Spain)
2012-08-01
The mass distribution of prestellar cores is obtained for clouds with arbitrary internal mass distributions using a selection criterion based on the thermal and turbulent Jeans mass and applied hierarchically from small to large scales. We have checked this methodology by comparing our results for a log-normal density probability distribution function with the theoretical core mass function (CMF) derived by Hennebelle and Chabrier, namely a power law at large scales and a log-normal cutoff at low scales, but our method can be applied to any mass distributions representing a star-forming cloud. This methodology enables us to connect the parental cloud structure with the mass distribution of the cores and their spatial distribution, providing an efficient tool for investigating the physical properties of the molecular clouds that give rise to the prestellar core distributions observed. Simulated fractional Brownian motion (fBm) clouds with the Hurst exponent close to the value H = 1/3 give the best agreement with the theoretical CMF derived by Hennebelle and Chabrier and Chabrier's system initial mass function. Likewise, the spatial distribution of the cores derived from our methodology shows a surface density of companions compatible with those observed in Trapezium and Ophiucus star-forming regions. This method also allows us to analyze the properties of the mass distribution of cores for different realizations. We found that the variations in the number of cores formed in different realizations of fBm clouds (with the same Hurst exponent) are much larger than the expected root N statistical fluctuations, increasing with H.
The Mass Dependence of Star Formation Histories in Barred Spiral Galaxies
Carles, Christian; Ellison, Sara L; Kawata, Daisuke
2016-01-01
We performed a series of 29 gasdynamical simulations of disc galaxies, barred and unbarred, with various stellar masses, to study the impact of the bar on star formation history. Unbarred galaxies evolve very smoothly, with a star formation rate (SFR) that varies by at most a factor of three over a period of 2 Gyr. The evolution of barred galaxies is much more irregular, especially at high stellar masses. In these galaxies, the bar drives a substantial amount of gas toward the centre, resulting in a high SFR, and producing a starburst in the most massive galaxies. Most of the gas is converted into stars, and gas exhaustion leads to a rapid drop of star formation after the starburst. In massive barred galaxies (stellar mass M* > 2x10^10 Msun) the large amount of gas funnelled toward the centre is completely consumed by the starburst, while in lower-mass barred galaxies it is only partially consumed. Gas concentration is thus higher in lower-mass barred galaxies than it is in higher-mass ones. Even though unbar...
Mandal, Swapan
2017-03-01
The classical harmonic oscillator with time dependent mass and frequency is investigated to obtain a closed form exact analytical solution. It is found that the closed form analytical solutions are indeed possible if the time dependent mass of the oscillator is inversely proportional to the time dependent frequency. The scaled wronskian obtained from the linearly independent solutions of the equation of motion of the classical oscillator is used to obtain the solution corresponding to its quantum mechanical counterpart. The analytical solution of the present oscillator is used to obtain the squeezing effects of the input coherent light. In addition to the possibilities of getting the squeezed states, the present solution will be of use for investigating various quantum statistical properties of the radiation fields. As an example, we investigate the antibunching of the input thermal (chaotic) light coupled to the oscillator. Therefore, the appearance of the photon antibunching does not warrant the squeezing and vice-versa. The exact solution is obtained at the cost of the stringent condition where the product of time dependent mass and frequency of the oscillator is time invariant.
Glucagon Couples Hepatic Amino Acid Catabolism to mTOR-Dependent Regulation of α-Cell Mass
Directory of Open Access Journals (Sweden)
Mark J. Solloway
2015-07-01
Full Text Available Understanding the regulation of islet cell mass has important implications for the discovery of regenerative therapies for diabetes. The liver plays a central role in metabolism and the regulation of endocrine cell number, but liver-derived factors that regulate α-cell and β-cell mass remain unidentified. We propose a nutrient-sensing circuit between liver and pancreas in which glucagon-dependent control of hepatic amino acid metabolism regulates α-cell mass. We found that glucagon receptor inhibition reduced hepatic amino acid catabolism, increased serum amino acids, and induced α-cell proliferation in an mTOR-dependent manner. In addition, mTOR inhibition blocked amino-acid-dependent α-cell replication ex vivo and enabled conversion of α-cells into β-like cells in vivo. Serum amino acids and α-cell proliferation were increased in neonatal mice but fell throughout postnatal development in a glucagon-dependent manner. These data reveal that amino acids act as sensors of glucagon signaling and can function as growth factors that increase α-cell proliferation.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Dependence of yields of OH (hydroxyl) radicals on the mass and specific energy of heavy ions and elapsed time after irradiation was investigated, to understand chemical reactions of aqueous solutions. The yields of irradiation products of phenol, super-linearly increased with the incident energy of He, C, and Ne ions ranging from 2 to 18 MeV/u. The yields of the OH radicals were estimated by analyzing the yields of the irradiation products of phenol.The yields of the OH radicals increased with the specific energy for each ion, but decreased both with the mass of each ion at the same specific energy and elapsed time after irradiation.
Anomalous Abelian symmetry in the standard model
Energy Technology Data Exchange (ETDEWEB)
Ramond, P.
1995-12-31
The observed hierarchy of quark and lepton masses can be parametrized by nonrenormalizable operators with dimensions determined by an anomalous Abelian family symmetry, a gauge extension to the minimal supersymmetric standard model. Such an Abelian symmetry is generic to compactified superstring theories, with its anomalies compensated by the Green-Schwarz mechanism. If we assume these two symmetries to be the same, we find the electroweak mixing angle to be sin {sup 2}{theta}{sub {omega}} = 3/8 at the string scale, just by setting the ratio of the product of down quark to charged lepton masses equal to one at the string scale. This assumes no GUT structure. The generality of the result suggests a superstring origin for the standard model. We generalize our analysis to massive neutrinos, and mixings in the lepton sector.
Marston, Philip L
2014-03-01
The phase and group velocities of elastic guided waves are important in the physical interpretation of high frequency scattering by fluid-loaded elastic shells. Outside the context of scattering, those properties are also important for understanding the energy flow in acoustic metamaterials. In a recent investigation of acoustic metamaterials exhibiting anomalous wave propagation [J. Acoust. Soc. Am. 132, 2887-2895 (2012)] criticism of negative group velocity terminology was generalized to elastic waves guided on ordinary materials. Some context and justification for retaining the identification of negative group velocities associated with a type of backscattering enhancement for shells are explained here. The phase evolution direction is determined by the boundary conditions.
Indian Academy of Sciences (India)
Swapnil S Jawkar; Sudhanshu S Jha
2005-01-01
Using the general formulation for obtaining chemical potential of an ideal Fermi gas of particles at temperature , with particle rest mass $m_{0}$ and average density $\\langle N \\rangle/V$ , the dependence of the mean square number fluctuation $\\langle N^{2} \\rangle/V$ on the particle mass $m_{0}$ has been calculated explicitly. The numerical calculations are exact in all cases whether rest mass energy $m_{0}c^{2}$ is very large (non-relativistic case), very small (ultrarelativistic case) or of the same order as the thermal energy $k_{B}T$ . Application of our results to the detection of the universal very low energy cosmic neutrino background (CNB), from any of the three species of neutrinos, shows that it is possible to estimate the neutrino mass of these species if from approximate experimental measurements of their momentum distribution one can extract, someday, not only the density $\\langle N_{} \\rangle/V$ but also the mean square fluctuation $\\langle N_{}^{2} \\rangle/V$. If at the present epoch, the universe is expanding much faster than thermalization rate for CNB, it is shown that our analysis leads to a scaled neutrino mass $m_{}$ instead of the actual mass $m_{0}.
Critical mass and the dependency of research quality on group size
Kenna, Ralph
2010-01-01
Academic research groups are treated as complex systems and their cooperative behaviour is analysed from a mathematical and statistical viewpoint. Contrary to the naive expectation that the quality of a research group is simply given by the mean calibre of its individual scientists, we show that intra-group interactions play a dominant role. Our model manifests phenomena akin to phase transitions which are brought about by these interactions, and which facilitate the quantification of the notion of critical mass for research groups. We present these critical masses for many academic areas. A consequence of our analysis is that overall research performance of a given discipline is improved by supporting medium-sized groups over large ones, while small groups must strive to achieve critical mass.
Tortora, C; Napolitano, N R; Antonuccio-Delogu, V; Meza, A; Sommer-Larsen, J; Capaccioli, M
2010-01-01
The age and metallicity gradients for a sample of group and cluster galaxies from N-body+hydrodynamical simulation are analyzed in terms of galaxy stellar mass. Dwarf galaxies show null age gradient with a tail of high and positive values for systems in groups and cluster outskirts. Massive systems have generally zero age gradients which turn to positive for the most massive ones. Metallicity gradients are distributed around zero in dwarf galaxies and become more negative with mass; massive galaxies have steeper negative metallicity gradients, but the trend flatten with mass. In particular, fossil groups are characterized by a tighter distribution of both age and metallicity gradients. We find a good agreement with both local observations and independent simulations. The results are also discussed in terms of the central age and metallicity, as well as the total colour, specific star formation and velocity dispersion.
Dependence of hadronic properties on quark masses and constraints on their cosmological variation
Flambaum, V. V.; Shuryak, E. V.
2003-04-01
We follow our previous paper on the possible cosmological variation of the weak scale (quark masses) and the strong scale, inspired by data on the cosmological variation of the electromagnetic fine structure constant from distant quasar absorption spectra. In this work we identify the strange quark mass ms as the most important quantity, and the sigma meson mass as the ingredient of the nuclear forces most sensitive to it. As a result, we claim significantly stronger limits on the ratio of weak/strong scale (W=ms/ΛQCD) variation following from our previous discussion on primordial big-bang nucleosynthesis (|δW/W|Oklo natural nuclear reactor [|δW/W|<1.2×10-10; there is also a nonzero solution δW/W=(-0.56±0.05)×10-9].
Dependence of hadronic properties on Quark Masses and Constraints on their Cosmological Variation
Flambaum, V V
2003-01-01
We follow our previous paper on possible cosmological variation of weak scale (quark masses) and strong scale, inspired by data on cosmological variation of the electromagnetic fine structure constant from distant quasar (QSO) absorption spectra. In this work we identify the {\\em strange quark mass} $m_s$ as the most important quantity, and the {\\em sigma meson mass} as the ingredient of the nuclear forces most sensitive to it. As a result, we claim significantly stronger limits on ratio of weak/strong scale ($W=m_s/\\Lambda_{QCD}$) variation following from our previous discussion of primordial Big-Bang Nucleosynthesis ($|\\delta W/W|<0.006$) and Oklo natural nuclear reactor ($|\\delta W/W|<1.2 \\cdot 10^{-10}$; there is also a non-zero solution $\\delta W/W=(-0.56 \\pm 0.05) \\cdot 10^{-9}$) .
Orientation of X Lines in Asymmetric Magnetic Reconnection-Mass Ratio Dependency
Liu, Yi-Hsin; Hesse, M.; Kuznetsova, M.
2015-01-01
Using fully kinetic simulations, we study the X line orientation of magnetic reconnection in an asymmetric configuration. A spatially localized perturbation is employed to induce a single X line, which has sufficient freedom to choose its orientation in three-dimensional systems. The effect of ion to electron mass ratio is investigated, and the X line appears to bisect the magnetic shear angle across the current sheet in the large mass ratio limit. The orientation can generally be deduced by scanning through the corresponding 2-D simulations to find the reconnection plane that maximizes the peak reconnection electric field. The deviation from the bisection angle in the lower mass ratio limit is consistent with the orientation shift of the most unstable linear tearing mode in an electron-scale current sheet.
The Nc dependencies of baryon masses: Analysis with Lattice QCD and Effective Theory
Energy Technology Data Exchange (ETDEWEB)
Calle Cordon, Alvaro C. [JLAB; DeGrand, Thomas A. [University of Colorado; Goity, Jose L. [JLAB
2014-07-01
Baryon masses at varying values of Nc and light quark masses are studied with Lattice QCD and the results are analyzed in a low energy effective theory based on a combined framework of the 1/Nc and Heavy Baryon Chiral Perturbation Theory expansions. Lattice QCD results for Nc=3, 5 and 7 obtained in quenched calculations, as well as results for unquenched calculations for Nc=3, are used for the analysis. The results are consistent with a previous analysis of Nc=3 LQCD results, and in addition permit the determination of sub-leading in 1/Nc effects in the spin-flavor singlet component of the baryon masses as well as in the hyperfine splittings.
The mass dependence of star formation histories in barred spiral galaxies
Carles, Christian; Martel, Hugo; Ellison, Sara L.; Kawata, Daisuke
2016-11-01
We performed a series of 29 gas dynamical simulations of disc galaxies, barred and unbarred, with various stellar masses, to study the impact of the bar on star formation history. Unbarred galaxies evolve very smoothly, with a star formation rate (SFR) that varies by at most a factor of 3 over a period of 2 Gyr. The evolution of barred galaxies is much more irregular, especially at high stellar masses. In these galaxies, the bar drives a substantial amount of gas towards the centre, resulting in a high SFR, and producing a starburst in the most massive galaxies. Most of the gas is converted into stars, and gas exhaustion leads to a rapid drop of star formation after the starburst. In massive barred galaxies (stellar mass M_{ast }>2{×} 10^{10} {M_{⊙}}) the large amount of gas funnelled towards the centre is completely consumed by the starburst, while in lower mass barred galaxies it is only partially consumed. Gas concentration is thus higher in lower mass barred galaxies than it is in higher mass ones. Even though unbarred galaxies funnelled less gas towards their centre, the lower SFR allows this gas to accumulate. At late times, the star formation efficiency is higher in barred galaxies than unbarred ones, enabling these galaxies to maintain a higher SFR with a smaller gas supply. Several properties, such as the global SFR, central SFR, or central gas concentration, vary monotonically with time for unbarred galaxies, but not for barred galaxies. Therefore one must be careful when comparing barred and unbarred galaxies that share one observational property, since these galaxies might be at very different stages of their respective evolution.
Directory of Open Access Journals (Sweden)
E. Kang
2011-02-01
Full Text Available The oxidation of secondary organic aerosol (SOA is studied with mass spectra analysis of SOA formed in a Potential Aerosol Mass (PAM chamber, a small flow-through photo-oxidation chamber with extremely high OH and ozone levels. The OH exposure from a few minutes in the PAM chamber is similar to that from days to weeks in the atmosphere. The mass spectra were measured with a Quadrupole Aerosol Mass Spectrometer (Q-AMS for SOA formed from oxidation of α-pinene, m-xylene, p-xylene, and a mixture of the three. The organic mass fractions of m/z 44 (CO_{2}^{+} and m/z 43 (mainly C_{2}H_{3}O^{+}, named f_{44} and f_{43} respectively, are used as indicators of the degree of organic aerosol (OA oxidation that occurs as the OA mass concentration or the OH exposure are varied. The degree of oxidation is sensitive to both. For a fixed OH exposure, the degree of oxidation initially decreases rapidly and then more slowly as the OA mass concentration increases. For fixed initial precursor VOC amounts, the degree of oxidation increases linearly with OH exposure, with f_{44} increasing and f_{43} decreasing. In this study, the degree of SOA oxidation spans much of the range observed in the atmosphere. These results, while sensitive to the determination of f_{44} and f_{43}, provide evidence that some characteristics of atmospheric OA oxidation can be generated in a PAM chamber. For all measurements in this study, the sum of f_{44} and f_{43} is 0.25 ± 0.03, so that the slope of a linear regression is approximately −1 on an f_{44} vs. f_{43} plot. This constancy of the sum suggests that these ions are complete proxies for organic mass in the OA studied.
Grauer, Jared A.; Morelli, Eugene A.
2013-01-01
A nonlinear simulation of the NASA Generic Transport Model was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of dynamic models identified from flight data. Measurements from a typical system identification maneuver were systematically and progressively deteriorated and then used to estimate stability and control derivatives within a Monte Carlo analysis. Based on the results, recommendations were provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using other flight conditions, parameter estimation methods, and a full-scale F-16 nonlinear aircraft simulation were compared with these recommendations.
Vekhov, Ye; Mullin, W J; Hallock, R B
2014-07-18
The mass flux, F, carried by as-grown solid (4)He in the range 25.6-26.3 bar rises with falling temperature, and at a concentration-dependent temperature, T(d), the flux decreases sharply within a few mK. We study F as a function of (3)He impurity concentration, χ. We find that T(d) is an increasing function of increasing χ. At temperatures above T(d) the flux has a universal temperature dependence and the flux terminates in a narrow window near a characteristic temperature T(h) ≈ 625 mK, which is independent of χ.
Search for anomalous Z → γγγ events at LEP
Acciarri, M.; Adam, A.; Adriani, O.; Aguilar-Benitez, M.; Ahlen, S.; Alcaraz, J.; Aloisio, A.; Alverson, G.; Alviggi, M. G.; Ambrosi, G.; An, Q.; Anderhub, H.; Anderson, A. L.; Andreev, V. P.; Angelescu, T.; Antonov, L.; Antreasyan, D.; Alkhazov, G.; Arce, P.; Arefiev, A.; Azemoon, T.; Aziz, T.; Baba, P. V. K. S.; Bagnaia, P.; Bakken, J. A.; Baksay, L.; Ball, R. C.; Banerjee, S.; Banicz, K.; Barillère, R.; Barone, L.; Baschirotto, A.; Basile, M.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bencze, Gy. L.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B. L.; Biasini, M.; Biland, A.; Bilei, G. M.; Bizzarri, R.; Blaising, J. J.; Bobbink, G. J.; Bock, R.; Böhm, A.; Borgia, B.; Boucham, A.; Bourilkov, D.; Bourquin, M.; Boutigny, D.; Bouwens, B.; Brambilla, E.; Branson, J. G.; Brigljevic, V.; Brock, I. C.; Brooks, M.; Bujak, A.; Burger, J. D.; Burger, W. J.; Burgos, C.; Busenitz, J.; Buytenhuijs, A.; Bykov, A.; Cai, X. D.; Capell, M.; Cara Romeo, G.; Caria, M.; Carlino, G.; Cartacci, A. M.; Casaus, J.; Castello, R.; Cavallo, N.; Cerrada, M.; Cesaroni, F.; Chamizo, M.; Chang, Y. H.; Chaturvedi, U. K.; Chemarin, M.; Chen, A.; Chen, C.; Chen, G.; Chen, G. M.; Chen, H. F.; Chen, H. S.; Chen, M.; Chiefari, G.; Chien, C. Y.; Choi, M. T.; Chung, S.; Cifarelli, L.; Cindolo, F.; Civinini, C.; Clare, I.; Clare, R.; Coan, T. E.; Cohn, H. O.; Coignet, G.; Colino, N.; Commichau, V.; Costantini, S.; Cotorobai, F.; de la Cruz, B.; Cui, X. T.; Cui, X. Y.; Dai, T. S.; D'Alessandro, R.; de Asmundis, R.; Degré, A.; Deiters, K.; Dénes, E.; Denes, P.; DeNotaristefani, F.; DiBitonto, D.; Diemoz, M.; Dimitrov, H. R.; Dionisi, C.; Dittmar, M.; Dorne, I.; Dova, M. T.; Drago, E.; Duchesneau, D.; Duhem, F.; Duinker, P.; Duran, I.; Dutta, S.; Easo, S.; El Mamouni, H.; Engler, A.; Eppling, F. J.; Erné, F. C.; Extermann, P.; Fabbretti, R.; Fabre, M.; Falciano, S.; Favara, A.; Fay, J.; Felcini, M.; Ferguson, T.; Fernandez, D.; Fernandez, G.; Ferroni, F.; Fesefeldt, H.; Fiandrini, E.; Field, J. H.; Filthaut, F.; Fisher, P. H.; Forconi, G.; Fredj, L.; Freudenreich, K.; Gailloud, M.; Galaktionov, Yu.; Gallo, E.; Ganguli, S. N.; Garcia-Abia, P.; Gau, S. S.; Gentile, S.; Gerald, J.; Gheordanescu, N.; Giagu, S.; Goldfarb, S.; Goldstein, J.; Gong, Z. F.; Gonzalez, E.; Gougas, A.; Goujon, D.; Gratta, G.; Gruenewald, M. W.; Gu, C.; Guanziroli, M.; Gupta, V. K.; Gurtu, A.; Gustafson, H. R.; Gutay, L. J.; Hartmann, B.; Hasan, A.; hauschildt, D.; He, J. T.; Hebbeker, T.; Hebert, M.; Hervé, A.; Hilgers, K.; Hofer, H.; Hoorani, H.; Hou, S. R.; Hu, G.; Ille, B.; Ilyas, M. M.; Innocente, V.; Janssen, H.; Jin, B. N.; Jones, L. W.; de Jong, P.; Josa-Mutuberria, I.; Kasser, A.; Khan, R. A.; Kamyshkov, Yu.; Kapinos, P.; Kapustinsky, J. S.; Karyotakis, Y.; Kaur, M.; Khokhar, S.; Kienzle-Focacci, M. N.; Kim, D.; Kim Do, J. K.; Kim, S. C.; Kim, Y. G.; Kinnison, W. W.; Kirkby, A.; Kirkby, D.; Kirkby, J.; Krsch, S.; Kittel, W.; Klimentov, A.; König, A. C.; Koffeman, E.; Kornadt, O.; Koutsenko, V.; Koulbardis, A.; Kraemer, R. W.; Kramer, T.; Krastev, V. R.; Krenz, W.; Kuijten, H.; Kunin, A.; Ladron de Guevara, P.; Landi, G.; Lanzano, S.; Laurikainen, P.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, D. M.; Lee, J. S.; Lee, K. Y.; Leedom, I.; Leggett, C.; LeGoff, J. M.; Leiste, R.; Lenti, M.; Leonardi, E.; Levtchenko, P.; Li, C.; Lieb, E.; Lin, W. T.; Linde, EL.; Lindemann, B.; Lista, L.; Liu, Y.; Lohmann, W.; Longo, E.; Lu, W.; Lu, Y. S.; Lubbers, J. M.; Liibelsmeyer, K.; Luci, C.; Luckey, D.; Ludovici, L.; Luminari, L.; Lustermann, W.; Ma, W. G.; MacDermott, M.; Maity, M.; Malgeri, L.; Malik, R.; Malinin, A.; Maña, C.; Mangla, S.; Maolinbay, M.; Marchesini, P.; Marin, A.; Martin, J. P.; Marzano, F.; Massaro, G. G. G.; Mazumdar, K.; McMahon, T.; McNally, D.; Mele, S.; Merkah, M.; Merola, L.; Meschini, M.; Metzger, W. J.; Mi, Y.; Mihu, A.; Mills, G. B.; Mir, Y.; Mirabelli, G.; Mnich, J.; Möller, M.; Monaco, V.; Monteleoni, B.; Morand, R.; Morganti, S.; Moulai, N. E.; Mount, R.; Müller, S.; Nagy, E.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niaz, M. A.; Nippe, A.; Nowak, H.; Organtini, G.; Ostonen, R.; Pandoulas, D.; Paoletti, S.; Paolucci, P.; Pascalei, G.; Passaleva, G.; Patricelli, S.; Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Pei, Y. J.; Pensotti, S.; Perret-Gallix, D.; Pevsner, A.; Piccolo, D.; Pieri, M.; Pinto, J. C.; Piroué, P. A.; Pistolesi, E.; Plasil, F.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Produit, N.; Qian, J. M.; Qureshi, K. N.; Raghavan, R.; Rahal-Callot, G.; Rancoita, PG.; Rattaggi, M.; Raven, G.; Razis, P.; Read, K.; Redaelli, M.; Ren, D.; Ren, Z.; Rescigno, M.; Reucroft, S.; Ricker, A.; Riemanna, S.; Riemers, B. C.; Riles, K.; Rind, O.; Rizvi, H. A.; Ro, S.; Robohm, A.; Rodriguez, F. J.; Roe, B. P.; Röhner, M.; Röhner, S.; Romero, L.; Rosier-Lees, S.; Rosmalen, R.; Rosselet, Ph.; van Rossum, W.; Roth, S.; Rubbia, A.; Rubio, J. A.; Rykaczewski, H.; Salicio, J.; Salicio, J. M.; Sanchez, E.; Sanders, G. S.; Santocchia, A.; Sarakinos, M. E.; Sarkar, S.; Sartorelli, G.; Sassowsky, M.; Sauvage, G.; Schäfer, C.; Schegelsky, V.; Schmitz, D.; Schmitz, P.; Schneegans, M.; Scholz, N.; Schopper, H.; Schotanus, D. J.; Shotkin, S.; Schreiber, H. J.; Shukla, J.; Schulte, R.; Schultze, K.; Schwenke, J.; Schwering, G.; Sciacca, C.; Sehgal, R.; Seile, P. G.; Sens, J. C.; Servoli, L.; Sheer, I.; Shevchenko, S.; Shi, X. R.; Shumilov, E.; Shoutkoa, V.; Son, D.; Sopczak, A.; Soulimov, V.; Spartiotis, C.; Spickermann, T.; Spillantini, P.; Steuer, M.; Stickland, D. P.; Sticozzi, F.; Stone, H.; Strauch, K.; Sudhakar, K.; Sultanov, G.; Sun, L. Z.; Susinno, G. F.; Suter, H.; Swain, J. D.; Syed, A. A.; Tang, X. W.; Taylor, L.; Timellini, R.; C. C. Ting, Samuel; Ting, S. M.; Toker, O.; Tonutti, M.; Tonwar, S. C.; Tóth, J.; Trowitzsch, G.; Tsaregorodtsev, A.; Tsipolitis, G.; Tully, C.; Ulbricht, J.; Urbún, L.; Uwer, U.; Valente, E.; Van de Walle, R. T.; Vetlitsky, I.; Viertel, G.; Vikas, P.; Vikas, U.; Vivargent, M.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A. A.; Vorobyov, An. A.; Vuilleumier, L.; Wadhwa, M.; Wallraff, W.; Wang, J. C.; Wang, X. L.; Wang, Y. F.; Wang, Z. M.; Weber, A.; Weill, R.; Willmott, C.; Wittgenstein, F.; Wright, D.; Wu, S. X.; Wynhoff, S.; Xu, Z. Z.; Yang, B. Z.; Yang, C. G.; Yang, G.; Yao, X. Y.; Ye, C. H.; Ye, J. B.; Ye, Q.; Yeh, S. C.; You, J. M.; Yunus, N.; Yzerman, M.; Zaccardelli, C.; Zemp, P.; Zeng, M.; Zeng, Y.; Zhang, D. H.; Zhang, Z. P.; Zhou, B.; Zhou, G. J.; Zhou, J. F.; Zhu, R. Y.; Zichichi, A.; van der Zwaan, B. C. C.; L3 Collaboration
1995-02-01
We have searched for anomalous Z → γγγ events with the L3 detector at LEP. No significant deviations from the expected QED e +e - → γγγ events are observed. The branching ratio upper limit for a compoite Z decaying directly into three photons is found to be 1.0 × 10 -5 at 95% C.L. The branching ratio upper limits for the process Z → γX, X → γγ are in the range of 0.4 to 1.3 × 10 -5, depending on the mass and width of the scalar particle X. In the context of a model with magnetic monopoles coupling to the Z, we find BR(Z → γγγ) < 0.8 × 10 -5 at 95% C.L.; this results in a lower mass limit of 510 GeV for a magnetic monopole.
Effective power-law dependence of Lyapunov exponents on the central mass in galaxies
Delis, N; Kalapotharakos, C
2015-01-01
Using both numerical and analytical approaches, we demonstrate the existence of an effective power-law relation $L\\propto m^p$ between the mean Lyapunov exponent $L$ of stellar orbits chaotically scattered by a supermassive black hole in the center of a galaxy and the mass parameter $m$, i.e. ratio of the mass of the black hole over the mass of the galaxy. The exponent $p$ is found numerically to obtain values in the range $p \\approx 0.3$--$0.5$. We propose a theoretical interpretation of these exponents, based on estimates of local `stretching numbers', i.e. local Lyapunov exponents at successive transits of the orbits through the black hole's sphere of influence. We thus predict $p=2/3-q$ with $q\\approx 0.1$--$0.2$. Our basic model refers to elliptical galaxy models with a central core. However, we find numerically that an effective power law scaling of $L$ with $m$ holds also in models with central cusp, beyond a mass scale up to which chaos is dominated by the influence of the cusp itself. We finally show...
Implementation of depth-dependent soil concentrations in multimedia mass balance models.
Hollander, A.; Hessels, L.; Voogt, P De; Meent, D. van de
2004-01-01
In standard multimedia mass balance models, the soil compartment is modeled as a box with uniform concentrations, which often does not correspond with actual field situations. Therefore, the theoretically expected decrease of soil concentrations with depth was implemented in the multimedia model Sim
Implementation of depth-dependent soil concentrations in multimedia mass balance models
Hollander, A.; Hessels, L.; de Voogt, P.; van de Meent, D.
2004-01-01
In standard multimedia mass balance models, the soil compartment is modeled as a box with uniform concentrations, which often does not correspond with actual field situations. Therefore, the theoretically expected decrease of soil concentrations with depth was implemented in the multimedia model Sim
Walker, D. I.; Cápiro, N. L.; Granbery, E. K.; Pennell, K. D.
2010-12-01
In order to accurately predict the efficacy of subsurface remediation for sites contaminated with multicomponent dense non-aqueous phase liquids (DNAPLs), it is necessary to link changes in aqueous phase contaminant discharge with source composition and distribution. Dissolution from a binary 1:1 (molar) mixture of trichloroethene- (TCE) and tetrachloroethene- (PCE) DNAPL was measured in three separate 2-dimensional aquifer cells (100 x 48 x 1.4 cm) that were packed with different background media (1:1 mixture 20:30 and 40:50 mesh; 20:30 mesh and 40:50 mesh Accusand) and low permeability zones. Initial DNAPL source zone architectures were varied to yield ganglia to pool (GTP) ratios of 0.44, 1.56, and 1.72. Down-gradient plume evolution and DNAPL spatial distribution were measured every 5 pore volumes (PV) from side port samples and a light transmission system that allowed non-invasive measurement of volumetric DNAPL saturation and source descriptive metrics at a resolution of 0.03 to 0.08 mm2. Flux-averaged PCE and TCE effluent concentrations were measured every 0.7 PVs from a fully screened effluent chamber. To accelerate changes in source zone architecture and overall mass removal, two surfactant floods (4% w/w Tween 80) were completed after mass discharge from the source zone reached a steady state. Mass flux reductions for a given amount of DNAPL mass removed were found to correspond strongly to the molar composition of DNAPL in the source zone and the initial DNAPL saturation distribution metric (e.g., GTP). Percent reductions in mass flux from the aquifer cells with ganglia dominated architectures were 98 and 72% for TCE and PCE respectively, with a final overall NAPL source zone molar ratio of 0.49:0.51 TCE: PCE ; and 97 and 79% for TCE and PCE with molar ratios of 0.19:0.81 TCE:PCE. Reductions in mass flux from the pool dominated source zone were 90 and 53% for TCE and PCE with a final overall DNAPL source zone mole fraction of 0.26:0.74 TCE:PCE. These
Graefener, G
2008-01-01
The mass loss from Wolf-Rayet (WR) stars is of fundamental importance for the final fate of massive stars and their chemical yields. Its Z-dependence is discussed in relation to the formation of long-duration Gamma Ray Bursts (GRBs) and the yields from early stellar generations. However, the mechanism of formation of WR-type stellar winds is still under debate. We present the first fully self-consistent atmosphere/wind models for late-type WN stars. We investigate the mechanisms leading to their strong mass loss, and examine the dependence on stellar parameters, in particular on the metallicity Z. We identify WNL stars as very massive stars close to the Eddington limit, potentially still in the phase of central H-burning. Due to their high L/M ratios, these stars develop optically thick, radiatively driven winds. These winds show qualitatively different properties than the thin winds of OB stars. The resultant mass loss depends strongly on Z, but also on the Eddington factor, and the stellar temperature. We c...
The Color and Stellar Mass Dependence of Small-scale Galaxy Clustering in SDSS-III BOSS
Law-Smith, Jamie; Eisenstein, Daniel J.
2017-02-01
We measure the color and stellar mass dependence of clustering in spectroscopic galaxies at 0.6 noise ratio. We find the ratio of the clustering amplitudes of red and blue massive galaxies to be {w}{red}/{w}{blue}=1.92+/- 0.11 in our smallest annulus of 75–125 kpc. At our largest radii (2–4 Mpc), we find {w}{red}/{w}{blue}=1.24+/- 0.05. Red galaxies therefore have denser environments than their blue counterparts at z ∼ 0.625, and this effect increases with decreasing radius. Irrespective of color, we find that w(R) does not obey a simple power-law relation with radius, showing a dip around 1 Mpc. Holding stellar mass fixed, we find a clear differentiation between clustering in red and blue galaxies, showing that clustering is not solely determined by stellar mass. Holding color fixed, we find that clustering increases with stellar mass, especially for red galaxies at small scales (more than a factor of 2 effect over 0.75 dex in stellar mass).
Grab, Heather; Blitzer, Eleanor J.; Danforth, Bryan; Loeb, Greg; Poveda, Katja
2017-01-01
One of the greatest challenges in sustainable agricultural production is managing ecosystem services, such as pollination, in ways that maximize crop yields. Most efforts to increase services by wild pollinators focus on management of natural habitats surrounding farms or non-crop habitats within farms. However, mass flowering crops create resource pulses that may be important determinants of pollinator dynamics. Mass bloom attracts pollinators and it is unclear how this affects the pollination and yields of other co-blooming crops. We investigated the effects of mass flowering apple on the pollinator community and yield of co-blooming strawberry on farms spanning a gradient in cover of apple orchards in the landscape. The effect of mass flowering apple on strawberry was dependent on the stage of apple bloom. During early and peak apple bloom, pollinator abundance and yield were reduced in landscapes with high cover of apple orchards. Following peak apple bloom, pollinator abundance was greater on farms with high apple cover and corresponded with increased yields on these farms. Spatial and temporal overlap between mass flowering and co-blooming crops alters the strength and direction of these dynamics and suggests that yields can be optimized by designing agricultural systems that avoid competition while maximizing facilitation. PMID:28345653
Anomalous Positive Refraction in an Anisotropic Left-Handed Medium
Institute of Scientific and Technical Information of China (English)
HU Wei; LUO Hai-Lu; CAO Jing-Xiao
2005-01-01
@@ We investigate the refraction phenomena of extraordinary light at a planar interface associated with a uniaxial left-handed medium. It is found that the anomalous positive refraction can occur at the interface from anisotropic right-handed medium to a uniaxially anisotropic left-handed medium. When the optical axis of a uniaxial left-handed medium is not normal or parallel to the interface, the refraction of the Poynting vector for the extraordinary waves can be either positive or negative depending on the incident angles, while the refraction of the wave vector is always negative. The physical essential of the anomalous positive refraction results from the anisotropy of uniaxial crystals.
Charge-to-mass-ratio-dependent ion heating during magnetic reconnection in the MST RFP
Energy Technology Data Exchange (ETDEWEB)
Kumar, S. T. A.; Almagri, A. F.; Den Hartog, D. J.; Nornberg, M. D.; Sarff, J. S.; Terry, P. W. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Craig, D. [Wheaton College, Wheaton, Illinois 60187 (United States)
2013-05-15
Temperature evolution during magnetic reconnection has been spectroscopically measured for various ion species in a toroidal magnetized plasma. Measurements are made predominantly in the direction parallel to the equilibrium magnetic field. It is found that the increase in parallel ion temperature during magnetic reconnection events increases with the charge-to-mass ratio of the ion species. This trend can be understood if the heating mechanism is anisotropic, favoring heating in the perpendicular degree of freedom, with collisional relaxation of multiple ion species. The charge-to-mass ratio trend for the parallel temperature derives from collisional isotropization. This result emphasizes that collisional isotropization and energy transfer must be carefully modeled when analyzing ion heating measurements and comparing to theoretical predictions.
Murine inner cell mass-derived lineages depend on Sall4 function
Elling, Ulrich; Klasen, Christian; Eisenberger, Tobias; Anlag, Katrin; Treier, Mathias
2006-01-01
Sall4 is a mammalian Spalt transcription factor expressed by cells of the early embryo and germ cells, an expression pattern similar to that of both Oct4 and Sox2, which play essential roles during early murine development. We show that the activity of Sall4 is cell-autonomously required for the development of the epiblast and primitive endoderm from the inner cell mass. Furthermore, no embryonic or extraembryonic endoderm stem cell lines could be established from Sall4-deficient blastocysts. In contrast, neither the development of the trophoblast lineage nor the ability to generate trophoblast cell lines from murine blastocysts was impaired in the absence of Sall4. These data establish Sall4 as an essential transcription factor required for the early development of inner cell mass-derived cell lineages. PMID:17060609
Centre of mass decoherence due to time dilation: paradoxical frame-dependence
Diósi, Lajos
2015-01-01
The recently proposed centre of mass decoherence of composite objects due to gravitational time-dilation [Pikovski et al., Nat.Phys. 15. June (2015); arXive:1311.1095] is confronted with the principle of equivalence between gravity and observer's acceleration. In the laboratory frame, a positional superposition $\\vert x_1\\rangle+\\vert x_2\\rangle$ can quickly decohere whereas in the free-falling frame, as I argue, the superposition can survive for almost arbitrary long times. The paradoxical result is explained by the so far unappreciated feature of the proposed model: the centre of mass canonical subsystem is ambiguous, it is different in the laboratory and the free-falling frames, respectively.
Grauer, Jared A.; Morelli, Eugene A.
2013-01-01
The NASA Generic Transport Model (GTM) nonlinear simulation was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of identified parameters in mathematical models describing the flight dynamics and determined from flight data. Measurements from a typical flight condition and system identification maneuver were systematically and progressively deteriorated by introducing noise, resolution errors, and bias errors. The data were then used to estimate nondimensional stability and control derivatives within a Monte Carlo simulation. Based on these results, recommendations are provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using additional flight conditions and parameter estimation methods, as well as a nonlinear flight simulation of the General Dynamics F-16 aircraft, were compared with these recommendations
Dependence of the outer density profiles of halos on their mass accretion rate
Energy Technology Data Exchange (ETDEWEB)
Diemer, Benedikt; Kravtsov, Andrey V., E-mail: bdiemer@oddjob.uchicago.edu [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States)
2014-07-01
We present a systematic study of the density profiles of ΛCDM halos, focusing on the outer regions, 0.1 < r/R {sub vir} < 9. We show that the median and mean profiles of halo samples of a given peak height exhibit significant deviations from the universal analytic profiles discussed previously in the literature, such as the Navarro-Frenk-White and Einasto profiles, at radii r ≳ 0.5R {sub 200m}. In particular, at these radii the logarithmic slope of the median density profiles of massive or rapidly accreting halos steepens more sharply than predicted. The steepest slope of the profiles occurs at r ≈ R {sub 200m}, and its absolute value increases with increasing peak height or mass accretion rate, reaching slopes of –4 and steeper. Importantly, we find that the outermost density profiles at r ≳ R {sub 200m} are remarkably self-similar when radii are rescaled by R {sub 200m}. This self-similarity indicates that radii defined with respect to the mean density are preferred for describing the structure and evolution of the outer profiles. However, the inner density profiles are most self-similar when radii are rescaled by R {sub 200c}. We propose a new fitting formula that describes the median and mean profiles of halo samples selected by their peak height or mass accretion rate with accuracy ≲ 10% at all radii, redshifts, and masses we studied, r ≲ 9R {sub vir}, 0 < z < 6, and M {sub vir} > 1.7 × 10{sup 10} h {sup –1} M {sub ☉}. We discuss observational signatures of the profile features described above and show that the steepening of the outer profile should be detectable in future weak-lensing analyses of massive clusters. Such observations could be used to estimate the mass accretion rate of cluster halos.
Effective Power-Law Dependence of Lyapunov Exponents on the Central Mass in Galaxies
Delis, N.; Efthymiopoulos, C.; Kalapotharakos, C.
2015-01-01
Using both numerical and analytical approaches, we demonstrate the existence of an effective power-law relation L alpha m(sup p) between themean Lyapunov exponent L of stellar orbits chaotically scattered by a supermassive black hole (BH) in the centre of a galaxy and the mass parameter m, i.e. ratio of the mass of the BH over the mass of the galaxy. The exponent p is found numerically to obtain values in the range p approximately equals 0.3-0.5. We propose a theoretical interpretation of these exponents, based on estimates of local 'stretching numbers', i.e. local Lyapunov exponents at successive transits of the orbits through the BH's sphere of influence. We thus predict p = 2/3 - q with q approximately equaling 0.1-0.2. Our basic model refers to elliptical galaxy models with a central core. However, we find numerically that an effective power-law scaling of L with m holds also in models with central cusp, beyond a mass scale up to which chaos is dominated by the influence of the cusp itself. We finally show numerically that an analogous law exists also in disc galaxies with rotating bars. In the latter case, chaotic scattering by the BH affects mainly populations of thick tube-like orbits surrounding some low-order branches of the x(sub 1) family of periodic orbits, as well as its bifurcations at low-order resonances, mainly the inner Lindblad resonance and the 4/1 resonance. Implications of the correlations between L and m to determining the rate of secular evolution of galaxies are discussed.
Habitable Zones Around Main-Sequence Stars: Dependence on Planetary Mass
Kopparapu, Ravi kumar; SchottelKotte, James; Kasting, James F; Domagal-Goldman, Shawn; Eymet, Vincent
2014-01-01
The ongoing discoveries of extrasolar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K - 7200 K, for planetary masses between 0.1 ME and 5 ME. Assuming H2O (inner HZ) and CO2 (outer HZ) dominated atmospheres, and scaling the background N2 atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (~10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H2O column depth. For larger planets, the H2O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing longwave radiation. Hence the inner edge moves inward (...
Kennedy, Rebecca; Baldry, Ivan; Holwerda, Boris Häußler Benne W; Hopkins, Andrew M; Kelvin, Lee S; Lange, Rebecca; Moffett, Amanda J; Popescu, Cristina C; Taylor, Edward N; Tuffs, Richard J; Vika, Marina; Vulcani, Benedetta
2015-01-01
We study how the sizes and radial profiles of galaxies vary with wavelength, by fitting S\\'ersic functions simultaneously to imaging in nine optical and near-infrared bands. To quantify the wavelength dependence of effective radius we use the ratio, $\\mathcal{R}$, of measurements in two restframe bands. The dependence of S\\'ersic index on wavelength, $\\mathcal{N}$, is computed correspondingly. Vulcani et al. (2014) have demonstrated that different galaxy populations present sharply contrasting behaviour in terms of $\\mathcal{R}$ and $\\mathcal{N}$. Here we study the luminosity dependence of this result. We find that at higher luminosities, early-type galaxies display a more substantial decrease in effective radius with wavelength, whereas late-types present a more pronounced increase in S\\'ersic index. The structural contrast between types thus increases with luminosity. By considering samples at different redshifts, we demonstrate that lower data quality reduces the apparent difference between the main galaxy...
Anomalous magnetic moment of anyons
Gat, G; Gat, Gil; Ray, Rashmi
1994-01-01
The anomalous magnetic moment of anyons is calculated to leading order in a 1/N expansion. It is shown that the gyromagnetic ratio g remains 2 to the leading order in 1/N. This result strongly supports that obtained in \\cite{poly}, namely that g=2 is in fact exact.
Directory of Open Access Journals (Sweden)
Morderer D. Ye.
2015-10-01
Full Text Available ITSN1 is a scaffold protein involved in endocytosis, signal transduction and cytoskeleton regulation. It has been previously shown that ITSN1 undergoes Ca2+/calmodulin-dependent phosphorylation in vitro. Aim. We intend to identify these phosphorylation sites. Methods. In vitro kinase reaction; liquid chromatography-tandem mass spectrometry (LC/MS/MS. Results. We identified five sites of Ca2+/calmodulin-dependent phosphorylation in the recombinant fragments of ITSN1. Conclusions. We have shown that the ITSN1 coiled-coil region (CCR and the interdomain linkers between EH2 and CCR, SH3A and SH3B, SH3B and SH3C domains were phosphorylated in a Ca2+/calmodulin-dependent manner in vitro.
Liu, Beibei; Zhang, Xiaojia; Lin, Douglas N. C.
2016-06-01
Radial velocity and transit surveys have found that the fraction of FGKM stars with close-in super-Earth(s) (η ⊕) is around 30%-50%, independent of the stellar mass M * and metallicity Z *. In contrast, the fraction of solar-type stars harboring one or more gas giants (η J) with masses M p > 100 M ⊕ is nearly 10%-15%, and it appears to increase with both M * and Z *. Regardless of the properties of their host stars, the total mass of some multiple super-Earths systems exceeds the core mass of Jupiter and Saturn. We suggest that both super-Earths and supercritical cores of gas giants were assembled from a population of embryos that underwent convergent type I migration from their birthplaces to a transition location between viscously heated and irradiation-heated disk regions. We attribute the cause for the η ⊕-η J dichotomy to conditions required for embryos to merge and to acquire supercritical core mass ({M}{{c}}˜ 10 {M}\\oplus ) for the onset of efficient gaseous envelope accretion. We translate this condition into a critical disk accretion rate, and our analysis and simulation results show that it weakly depends on M * and decreases with metallicity of disk gas Z d. We find that embryos are more likely to merge into supercritical cores around relatively massive and metal-rich stars. This dependence accounts for the observed η J-M *. We also consider the {Z}{{d}}{--}{Z}* dispersed relationship and reproduce the observed η J-Z * correlation.
Directory of Open Access Journals (Sweden)
Metzger Wesley J.
2015-01-01
Full Text Available Bose-Einstein correlations of pairs of identical charged pions produced in hadronic Z decays are analyzed for both two- and three-jet events. A parametrization suggested by the τ-model is used to investigate the dependence of the Bose-Einstein correlation function on track multiplicity, number of jets, and transverse momentum.
Influence of anomalous VVH and VVHH on determination of Higgs self couplings at ILC
Kumar, Satendra
2014-01-01
The recent discovery of a Higgs boson at LHC, while establishing the Higgs mechanism as the way of electroweak symmetry breaking, started an era of precision measurements involving the Higgs boson. In an effective Lagrangian framework, we consider the e+e- --> ZHH process, at an ILC running at a centre of mass energy of 800 GeV to investigate the effect of the ZZH and ZZHH couplings on the sensitivity of HHH coupling on this process. Our results show that the sensitivity of the trilinear Higgs self couplings on this process has somewhat strong dependence on the Higgs-gauge boson couplings. Single and two parameter reach of ILC with integrated luminosity of 1000 /fb are obtained on the effective couplings, c6 and cH, which are related to the HHH couplings, indicating how these limits are affected by the presence of anomalous ZZH and ZZHH couplings. The kinematic distributions studied to understand the effect of the anomalous couplings, again, show strong influence of Z-H couplings on the dependence of these di...
Habitable Zones Around Main-Sequence Stars: Dependence on Planetary Mass
Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kotte, James Schottel; Kasting, James F.; Domagal-Goldman, Shawn; Eymet, Vincent
2014-01-01
The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1M and 5M. Assuming H2O-(inner HZ) and CO2-(outer HZ) dominated atmospheres, and scaling the background N2 atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (approx.10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H2O column depth. For larger planets, the H2O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing long-wave radiation. Hence the inner edge moves inward (approx.7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.
HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: DEPENDENCE ON PLANETARY MASS
Energy Technology Data Exchange (ETDEWEB)
Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kasting, James F. [Department of Geosciences, Penn State University, 443 Deike Building, University Park, PA 16802 (United States); SchottelKotte, James [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Domagal-Goldman, Shawn [NASA Astrobiology Institute' s Virtual Planetary Laboratory, P.O. Box 351580, Seattle, WA 98195 (United States); Eymet, Vincent, E-mail: ruk15@psu.edu [Laboratoire d' Astrophysique de Bordeaux, Universite de Bordeaux 1, UMR 5804, F-33270 Floirac (France)
2014-06-01
The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1 M {sub ⊕} and 5 M {sub ⊕}. Assuming H{sub 2}O-(inner HZ) and CO{sub 2}-(outer HZ) dominated atmospheres, and scaling the background N{sub 2} atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (∼10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H{sub 2}O column depth. For larger planets, the H{sub 2}O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing longwave radiation. Hence the inner edge moves inward (∼7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.
Galaxy Zoo: the dependence of the star formation-stellar mass relation on spiral disk morphology
Willett, Kyle W; Simmons, Brooke D; Masters, Karen L; Skibba, Ramin A; Kaviraj, Sugata; Melvin, Thomas; Wong, O Ivy; Nichol, Robert C; Cheung, Edmond; Lintott, Chris J; Fortson, Lucy
2015-01-01
We measure the stellar mass-star formation rate relation in star-forming disk galaxies at z1. Of the galaxies lying significantly above the M-SFR relation in the local Universe, more than 50% are mergers. We interpret this as evidence that the spiral arms, which are imperfect reflections of the galaxy's current gravitational potential, are either fully independent of the various quenching mechanisms or are completely overwhelmed by the combination of outflows and feedback. The arrangement of the star formation can be changed, but the system as a whole regulates itself even in the presence of strong dynamical forcing.
Energy Technology Data Exchange (ETDEWEB)
Borowka, S. [University of Zurich, Institute for Physics, Zurich (Switzerland); Hahn, T.; Heinrich, G.; Hollik, W. [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Muenchen (Germany); Heinemeyer, S. [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain)
2015-09-15
Reaching a theoretical accuracy in the prediction of the lightest MSSM Higgs-boson mass, M{sub h}, at the level of the current experimental precision requires the inclusion of momentum-dependent contributions at the two-loop level. Recently two groups presented the two-loop QCD momentum-dependent corrections to M{sub h} (Borowka et al., Eur Phys J C 74(8):2994, 2014; Degrassi et al., Eur Phys J C 75(2):61, 2015), using a hybrid on-shell-DR scheme, with apparently different results. We show that the differences can be traced back to a different renormalization of the top-quark mass, and that the claim in Ref. Degrassi et al. (Eur Phys J C 75(2):61, 2015) of an inconsistency in Ref. Borowka et al. (Eur Phys J C 74(8):2994, 2014) is incorrect. We furthermore compare consistently the results for M{sub h} obtained with the top-quark mass renormalized on-shell and DR. The latter calculation has been added to the FeynHiggs package and can be used to estimate missing higher-order corrections beyond the two-loop level. (orig.)
Momentum-dependent two-loop QCD corrections to the neutral Higgs-boson masses in the MSSM
Energy Technology Data Exchange (ETDEWEB)
Borowka, S.; Hahn, T.; Heinrich, G.; Hollik, W. [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Munich (Germany); Heinemeyer, S. [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain)
2014-08-15
Results are presented for the momentum-dependent two-loop contributions of O(α{sub t}α{sub s}) to the masses and mixing effects in the Higgs sector of the MSSM. They are obtained in the Feynman-diagrammatic approach using a mixed on-shell/DR renormalization that can directly be matched onto the higher-order corrections included in the code FeynHiggs. The new two-loop diagrams are evaluated with the program SecDec. The combination of the new momentum-dependent two-loop contribution with the existing one- and two-loop corrections in the on-shell/DR scheme leads to an improved prediction of the light MSSM Higgs boson mass and a correspondingly reduced theoretical uncertainty. We find that the corresponding shifts in the lightest Higgs-boson mass M{sub h} are below 1 GeV in all scenarios considered, but they can extend up to the level of the current experimental uncertainty. The results are included in the code FeynHiggs. (orig.)
CFHTLenS: The Environmental Dependence of Galaxy Halo Masses from Weak Lensing
Gillis, Bryan R; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Hoekstra, Henk; Kitching, Thomas D; Mellier, Yannick; Miller, Lance; van Waerbeke, Ludovic; Bonnett, Christopher; Coupon, Jean; Fu, Liping; Hilbert, Stefan; Rowe, Barnaby T P; Schrabback, Tim; Semboloni, Elisabetta; van Uitert, Edo; Velander, Malin
2013-01-01
We use weak gravitational lensing to analyse the dark matter halos around satellite galaxies in galaxy groups in the CFHTLenS dataset. This dataset is derived from the CFHTLS-Wide survey, and encompasses 154 sq. deg of high-quality shape data. Using the photometric redshifts, we divide the sample of lens galaxies with stellar masses in the range 10^9 Msun to 10^10.5 Msun into those likely to lie in high-density environments (HDE) and those likely to lie in low-density environments (LDE). Through comparison with galaxy catalogues extracted from the Millennium Simulation, we show that the sample of HDE galaxies should primarily (~61%) consist of satellite galaxies in groups, while the sample of LDE galaxies should consist of mostly (~87%) non-satellite (field and central) galaxies. Comparing the lensing signals around samples of HDE and LDE galaxies matched in stellar mass, the lensing signal around HDE galaxies clearly shows a positive contribution from their host groups on their lensing signals at radii of ~5...
Galaxy Zoo: the dependence of the star formation-stellar mass relation on spiral disc morphology
Willett, Kyle W.; Schawinski, Kevin; Simmons, Brooke D.; Masters, Karen L.; Skibba, Ramin A.; Kaviraj, Sugata; Melvin, Thomas; Wong, O. Ivy; Nichol, Robert C.; Cheung, Edmond; Lintott, Chris J.; Fortson, Lucy
2015-05-01
We measure the stellar mass-star formation rate (SFR) relation in star-forming disc galaxies at z ≤ 0.085, using Galaxy Zoo morphologies to examine different populations of spirals as classified by their kiloparsec-scale structure. We examine the number of spiral arms, their relative pitch angle, and the presence of a galactic bar in the disc, and show that both the slope and dispersion of the M⋆-SFR relation is constant when varying all the above parameters. We also show that mergers (both major and minor), which represent the strongest conditions for increases in star formation at a constant mass, only boost the SFR above the main relation by ˜0.3 dex; this is significantly smaller than the increase seen in merging systems at z > 1. Of the galaxies lying significantly above the M⋆-SFR relation in the local Universe, more than 50 per cent are mergers. We interpret this as evidence that the spiral arms, which are imperfect reflections of the galaxy's current gravitational potential, are either fully independent of the various quenching mechanisms or are completely overwhelmed by the combination of outflows and feedback. The arrangement of the star formation can be changed, but the system as a whole regulates itself even in the presence of strong dynamical forcing.
Mass counts: ERP correlates of non-adjacent dependency learning under different exposure conditions.
Citron, Francesca M M; Oberecker, Regine; Friederici, Angela D; Mueller, Jutta L
2011-01-10
Miniature language learning can serve to model real language learning as high proficiency can be reached after very little exposure. In a previous study by Mueller et al. [18] German participants acquired non-adjacent syntactic dependencies by mere exposure to correct Italian sentences, but their ERP pattern differed from the one shown by native speakers. The present study follows up on that experiment using a similar design and material and is focused on two important issues: the influence of acoustic cues in the material and the impact of the learning procedure. With respect to the latter we compared alternating learning and test phases to a continuous learning and test phase. In addition, a splicing procedure eliminated prosodic cues in order to ensure that non-adjacent dependencies were learned instead of adjacent ones. Results for the continuous phase design showed a native-like biphasic ERP pattern, an N400 followed by a left-focused positivity. In the alternating design behavioural accuracy was lower and only an N400 was found. The results suggest an advantage of continuous learning phases for adult learners, possibly due to the absence of ungrammatical items present in the test phases in the alternating learning procedure. Furthermore, the replication of the earlier study with prosodically controlled material adds evidence to the general finding that syntactic non-adjacent dependencies can be learned from mere exposure to correct examples.
Liu, Gaochao; Xie, Lizhi; Chen, Xuelei; Zhao, Yongheng
2016-01-01
Massive luminous red galaxies (LRGs) are believed to be evolving passively and can be used as cosmic chronometers to estimate the Hubble constant. However, different LRGs may locate in different environments. The environmental effects may limit the use of the LRGs as cosmic chronometers. We aim to investigate the environmental and mass dependence of the formation of "quiescent" LRGs selected from the Sloan Digital Sky Survey Date Release 8 and to pave the way for using the LRGs as cosmic chronometers. Using the population synthesis software STARLIGHT, we derive the stellar populations in each LRG through the full spectrum fitting and obtain the mean age distribution and the mean star formation history (SFH) of those LRGs. We find that there is no apparent dependence of the mean age and the SFH of quiescent LRGs on their environment, while the ages of those quiescent LRGs weakly depend on their mass. We compare the SFHs of the SDSS LRGs with those obtained from a semi-analytical galaxy formation model, and fin...
Telugu, Bhanu Prakash V L; Ezashi, Toshihiko; Sinha, Sunilima; Alexenko, Andrei P; Spate, Lee; Prather, Randall S; Roberts, R Michael
2011-08-19
The pig is important for agriculture and as an animal model in human and veterinary medicine, yet despite over 20 years of effort, there has been a failure to generate pluripotent stem cells analogous to those derived from mouse embryos. Here we report the production of leukemia inhibitory factor-dependent, so-called naive type, pluripotent stem cells from the inner cell mass of porcine blastocysts by up-regulating expression of KLF4 and POU5F1. The alkaline phosphatase-positive colonies resulting from reprogramming resemble mouse embryonic stem cells in colony morphology, cell cycle interval, transcriptome profile, and expression of pluripotent markers, such as POU5F1, SOX2, and surface marker SSEA1. They are dependent on leukemia inhibitory factor signaling for maintenance of pluripotency, can be cultured over extended passage, and have the ability to form teratomas. These cells derived from the inner cell mass of pig blastocysts are clearly distinct from the FGF2-dependent "primed" induced pluripotent stem cells described recently from porcine mesenchymal cells. The data are consistent with the hypothesis that the up-regulation of KLF4, as well as POU5F1, is required to create and stabilize the naive pluripotent state and may explain why the derivation of embryonic stem cells from pigs and other ungulates has proved so difficult.
Hydrodynamic Waves in an Anomalous Charged Fluid
Abbasi, Navid; Rezaei, Zahra
2015-01-01
We study the collective excitations in a relativistic fluid with an anomalous conserved charge. In $3+1$ dimensions, in addition to two ordinary sound modes we find two propagating modes in presence of an external magnetic field: one with a velocity proportional to the coefficient of gauge-gravitational anomaly coefficient and the other with a velocity which depends on both chiral anomaly and the gauge gravitational anomaly coefficients. While the former is the Chiral Alfv\\'en wave recently found in arXiv:1505.05444, the latter is a new type of collective excitations originated from the density fluctuations. We refer to these modes as the Type-M and Type-D chiral Alfv\\'en waves respectively. We show that the Type-M Chiral Alfv\\'en mode is split into two chiral Alfv\\'en modes when taking into account the effect of dissipation processes in the fluid. In 1+1 dimensions we find only one propagating mode associated with the anomalous effects. We explicitly compute the velocity of this wave and show that in contras...
Effects of Density-Dependent Quark Mass on Phase Diagram of Color-Flavor-Locked Quark Matter
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Considering the density dependence of quark mass, we investigate the phase transition between the (unpaired) strange quark matter and the color-flavor-locked matter, which are supposed to be two candidates for the ground state of strongly interacting matter. We find that if the current mass of strange quark ms is small, the strange quark matter remains stable unless the baryon density is very high. If ms is large, the phase transition from the strange quark matter to the color-flavor-locked matter in particular to its gapless phase is found to be different from the results predicted by previous works. A complicated phase diagram of three-flavor quark matter is presented, in which the color-flavor-locked phase region is suppressed for moderate densities.
Kattelans, Thorsten; Heinrichs, Wilhelm
2009-09-01
For Stokes problems least-squares schemes have the big advantage that they require no stabilization and equal order interpolation can be used. The disadvantage of Least-Squares Finite Element Method (LSFEM) and of Least-Squares Spectral Element Method (LSSEM) is that they perform poorly with respect to conservation of mass for internal flow problems, where the LSSEM compensates this by a superior conservation of momentum. In the literature it has been shown that Least-Squares Spectral Collocation Method (LSSCM) leads to superior conservation of mass and momentum for the steady Stokes. Here, we extend the study to the time-dependent Stokes equations for an internal flow problem, where the domain is decomposed into different elements using the transfinite mapping of Gordon and Hall. Minimizing the influence of round-off errors we use QR decomposition for solving the resulting overdetermined algebraic systems instead of forming normal equations.
Szanto de Toledo, A; Beck, C; Thoennessen, M
1996-01-01
The entrance-channel mass-asymmetry dependence of the compound nucleus formation time in light heavy-ion reactions has been investigated within the framework of semiclassical dissipative collision models. the model calculations have been succesfully applied to the formation of the $^{38}$Ar compound nucleus as populated via the $^{9}$Be+$^{29}$Si, $^{11}$B+$^{27}$Al, $^{12}$C+$^{26}$Mg and $^{19}$F+$^{19}$F entrance channels. The shape evolution of several other light composite systems appears to be consistent with the so-called "Fusion Inhibition Factor" which has been experimentally observed. As found previously in more massive systems for the fusion-evaporation process, the entrance-channel mass-asymmetry degree of freedom appears to determine the competition between the different mechanisms as well as the time scales involved.
Mass dependence of nuclear short- range correlations and the EMC effect
Cosyn, Wim; Ryckebusch, Jan
2014-01-01
We sketch an approximate method to quantify the number of correlated pairs in any nucleus $A$. It is based on counting independent-particle model (IPM) nucleon-nucleon pairs in a relative $S$-state with no radial excitation. We show that IPM pairs with those quantum numbers are most prone to short-range correlations and are at the origin of the high-momentum tail of the nuclear momentum distributions. Our method allows to compute the $a_2$ ratios extracted from inclusive electron scattering. Furthermore, our results reproduce the observed linear correlation between the number of correlated pairs and the magnitude of the EMC effect. We show that the width of the pair center-of-mass distribution in exclusive two-nucleon knockout yields information on the quantum numbers of the pairs.
Chung, Kyu-Rhim; Nelson, Gerald; Kim, Seong-Hun; Kook, Yoon-Ah
2007-07-01
This article describes the orthodontic treatment of a 14.5-year-old girl with severe bidentoalveolar protrusion. Specially designed sandblasted, large-grit, acid-etched (SLA) orthodontic microimplants (C-implants, Cimplant Co, Seoul, Korea) were placed in the alveolar bone in all 4 quadrants to provide anchorage for en-masse retraction without the help of banded or bonded molars. Successful retraction was achieved. The mandibular dentition was detailed by using conventional orthodontic appliances during the finishing stage. The osseointegration potential of these microimplants allows them to resist rotational force moments and control 3-dimensional movements of the anterior teeth during retraction. Facial esthetics improved for the patient, fullness of the upper and lower lips was reduced, and the interdental relationship was corrected. Biomechanical considerations, efficacy, and potential complications of the treatment technique are discussed.
Dmitriev, Alexander L
2011-01-01
Results of measurements of free falling acceleration of a closed container with a rotor of a mechanical gyroscope placed inside it on the frequency of the rotor rotation are briefly described. Time of separate accelerations measurements is 40 ms, the period of sampling is from 0.5 up to 1.0 minute. In rotation's frequencies range of 20-400 Hz, the negative changes of free falling container acceleration prevail. On individual frequencies the "resonant" maxima and minima of acceleration are observed. The obtained data apparently contradict the equivalence principle of inertial and gravitating masses. The expediency of development of ballistic gravimetry of high time resolution with use of rotating or oscillating test bodies is noted.
Investigation of mass-dependent prompt fission γ-ray emission
Energy Technology Data Exchange (ETDEWEB)
Oberstedt, Stephan; Gatera, Angelique [European Commission, DG Joint Research Centre, IRMM (Belgium); Lebois, Matthieu; Wilson, Jonathan [Institut de Physique Nucleaire Orsay, F-91406 Orsay (France); Oberstedt, Andreas [Fundamental Fysik, Chalmers Tekniska Hoegskola, S-41296 Goeteborg (Sweden)
2015-07-01
In recent years we conducted a systematic investigation of fission-fragment de-excitation through prompt neutron and γ-ray emission. For the latter we were able to obtain spectral data for thermal-neutron induced fission on {sup 235}U and {sup 241}Pu with unprecedented accuracy. The recently installed neutron source LICORNE, where neutrons are produced in inverse kinematics, enables us to explore prompt de-excitation also for fast-neutron induced fission and on non-fissile targets. In a next step we started studying the spectral changes as a function of mass and total kinetic energy using the spontaneous fission of {sup 252}Cf. By tagging on isomeric γ-decay we are exploring the possibility to identify very neutron-rich isotopes. First results and the new hybrid array, GLANDIS, consisting of CeBr{sub 3} and HPGe detectors, is being presented.
Mass-dependent and -independent signature of Fe isotopes in magnetotactic bacteria.
Amor, Matthieu; Busigny, Vincent; Louvat, Pascale; Gélabert, Alexandre; Cartigny, Pierre; Durand-Dubief, Mickaël; Ona-Nguema, Georges; Alphandéry, Edouard; Chebbi, Imène; Guyot, François
2016-05-06
Magnetotactic bacteria perform biomineralization of intracellular magnetite (Fe3O4) nanoparticles. Although they may be among the earliest microorganisms capable of biomineralization on Earth, identifying their activity in ancient sedimentary rocks remains challenging because of the lack of a reliable biosignature. We determined Fe isotope fractionations by the magnetotactic bacterium Magnetospirillum magneticum AMB-1. The AMB-1 strain produced magnetite strongly depleted in heavy Fe isotopes, by 1.5 to 2.5 per mil relative to the initial growth medium. Moreover, we observed mass-independent isotope fractionations in (57)Fe during magnetite biomineralization but not in even Fe isotopes ((54)Fe, (56)Fe, and (58)Fe), highlighting a magnetic isotope effect. This Fe isotope anomaly provides a potential biosignature for the identification of magnetite produced by magnetotactic bacteria in the geological record.
Energy Technology Data Exchange (ETDEWEB)
Wiegman, H.L.N. [General Electric Corporate Research and Development, Schenectady, NY (United States)
2000-07-01
Some recent advances in battery modeling were discussed with reference to on-line impedance estimates and power performance predictions for aqueous solution, porous electrode cell structures. The objective was to determine which methods accurately estimate a battery's internal state and power capability while operating a charge and sustaining a hybrid electric vehicle (HEV) over a wide range of driving conditions. The enhancements to the Randles-Ershler equivalent electrical model of common cells with lead-acid, nickel-cadmium and nickel-metal hydride chemistries were described. This study also investigated which impedances are sensitive to boundary layer charge concentrations and mass transport limitations. Non-linear impedances were shown to significantly affect the battery's ability to process power. The main advantage of on-line estimating a battery's impedance state and power capability is that the battery can be optimally sized for any application. refs., tabs., figs., append.
Dominguez, Gerardo; Christensen, Elizabeth; Boyer, Charisa; Park, Manesseh; Benitez, Ezra; Nunn, Morgan; Thiemens, Mark H.; Jackson, Terri
2016-06-01
Decades of careful laboratory analysis of primitive meteorites have revealed an intriguing and unexplained pattern in the distribution of oxygen isotopes in the solar system. With the recent analysis of solar wind oxygen by NASA’s Genesis mission, it appears that the Sun has a distinct oxygen isotopic composition from the terrestrial planets, asteroids, and comets. These differences cannot be explained by mass-dependent diffusion and require a physical-chemical mechanism or mechanisms that separate oxygen isotopes in a non-mass dependent manner.Several hypothesis have been proposed to explain the anomalous distribution. Photochemical self-shielding of CO may explain the anomalous distribution, however, this mechanism has key weaknesses including the requirement of a very fine tuned timescale to explain the isotopic differences between the Sun and bulk of the terrestrial planets. Recently, attention has been directed at understanding specific chemical reactions that occur on interstellar dust grains due to their similarities with non-equilibrium photochemical reactions believed to be responsible for the mass-independent isotopic fractionation patterns observed in Earth’s atmosphere. A specific focus has been directed towards understanding the formation of H2O because some of its precursor (HO2, and O3) are well-known to acquire mass-independent isotopic signatures when formed in the gas-phase.In this presentation, I describe a series of laboratory astrophysical experiments whose goal is to understand the distribution of oxygen isotopes in the solar system and perhaps, by extension, the distribution in other planetary systems. Preliminary results for the isotopic composition of O3 formed at 5K will be presented as well as the first, to our knowledge, measurements of the isotopic composition of H2O (18O/16O, 17O/16O, D/H) formed at 32K. We find that H2O formed in the astrophysical conditions we simulated acquired an anomalous isotopic composition with a triple
Anomalous Brownian refrigerator
Rana, Shubhashis; Pal, P. S.; Saha, Arnab; Jayannavar, A. M.
2016-02-01
We present a detailed study of a Brownian particle driven by Carnot-type refrigerating protocol operating between two thermal baths. Both the underdamped as well as the overdamped limits are investigated. The particle is in a harmonic potential with time-periodic strength that drives the system cyclically between the baths. Each cycle consists of two isothermal steps at different temperatures and two adiabatic steps connecting them. Besides working as a stochastic refrigerator, it is shown analytically that in the quasistatic regime the system can also act as stochastic heater, depending on the bath temperatures. Interestingly, in non-quasistatic regime, our system can even work as a stochastic heat engine for certain range of cycle time and bath temperatures. We show that the operation of this engine is not reliable. The fluctuations of stochastic efficiency/coefficient of performance (COP) dominate their mean values. Their distributions show power law tails, however the exponents are not universal. Our study reveals that microscopic machines are not the microscopic equivalent of the macroscopic machines that we come across in our daily life. We find that there is no one to one correspondence between the performance of our system under engine protocol and its reverse.
Ozonolysis of beta-pinene: temperature dependence of secondary organic aerosol mass fraction.
Pathak, Ravikant; Donahue, Neil M; Pandis, Spyros N
2008-07-15
The SOA formation from beta-pinene ozonolysis at modest precursor concentrations (2-40 ppb) was investigated in the temperature range of 0-40 degrees C. The presence of inert seeds and high ozone concentrations is necessary to minimize losses of semivolatile vapors to the walls of the smog chamber. beta-pinene secondary organic aerosol production increases significantly with decreasing temperature. An increase by a factor of 2-3, depending on the reacted beta-pinene concentration, was observed as the temperature decreased from 40 to 0 degrees C. This increase appearsto be due mainly to the shifting of partitioning of the semivolatile SOA componentstoward the particulate phase and not to a change of the beta-pinene product distribution with temperature. The measurements are used to develop a new temperature-dependent parametrization for the four-component basis-set. The parametrization predicts much higher SOA production for beta-pinene ozonolysis for typical atmospheric conditions than the values that have been suggested by previous studies.
Anomalous Thermalization in Ergodic Systems
Luitz, David J.; Bar Lev, Yevgeny
2016-10-01
It is commonly believed that quantum isolated systems satisfying the eigenstate thermalization hypothesis (ETH) are diffusive. We show that this assumption is too restrictive since there are systems that are asymptotically in a thermal state yet exhibit anomalous, subdiffusive thermalization. We show that such systems satisfy a modified version of the ETH ansatz and derive a general connection between the scaling of the variance of the off-diagonal matrix elements of local operators, written in the eigenbasis of the Hamiltonian, and the dynamical exponent. We find that for subdiffusively thermalizing systems the variance scales more slowly with system size than expected for diffusive systems. We corroborate our findings by numerically studying the distribution of the coefficients of the eigenfunctions and the off-diagonal matrix elements of local operators of the random field Heisenberg chain, which has anomalous transport in its thermal phase. Surprisingly, this system also has non-Gaussian distributions of the eigenfunctions, thus, directly violating Berry's conjecture.
Faraday anomalous dispersion optical tuners
Wanninger, P.; Valdez, E. C.; Shay, T. M.
1992-01-01
Common methods for frequency stabilizing diode lasers systems employ gratings, etalons, optical electric double feedback, atomic resonance, and a Faraday cell with low magnetic field. Our method, the Faraday Anomalous Dispersion Optical Transmitter (FADOT) laser locking, is much simpler than other schemes. The FADOT uses commercial laser diodes with no antireflection coatings, an atomic Faraday cell with a single polarizer, and an output coupler to form a compound cavity. This method is vibration insensitive, thermal expansion effects are minimal, and the system has a frequency pull in range of 443.2 GHz (9A). Our technique is based on the Faraday anomalous dispersion optical filter. This method has potential applications in optical communication, remote sensing, and pumping laser excited optical filters. We present the first theoretical model for the FADOT and compare the calculations to our experimental results.
Regulation of bone mass and osteoclast function depend on the F-actin modulator SWAP-70.
Garbe, Annette I; Roscher, Anne; Schüler, Christiane; Lutter, Anne-Helen; Glösmann, Martin; Bernhardt, Ricardo; Chopin, Michael; Hempel, Ute; Hofbauer, Lorenz C; Rammelt, Stefan; Egerbacher, Monika; Erben, Reinhold G; Jessberger, Rolf
2012-10-01
Bone remodeling involves tightly regulated bone-resorbing osteoclasts and bone-forming osteoblasts. Determining osteoclast function is central to understanding bone diseases such as osteoporosis and osteopetrosis. Here, we report a novel function of the F-actin binding and regulatory protein SWAP-70 in osteoclast biology. F-actin ring formation, cell morphology, and bone resorption are impaired in Swap-70(-/-) osteoclasts, whereas the expression of osteoclast differentiation markers induced in vitro by macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL) remains unaffected. Swap-70(-/-) mice develop osteopetrosis with increased bone mass, abnormally dense bone, and impaired osteoclast function. Ectopic expression of SWAP-70 in Swap-70(-/-) osteoclasts in vitro rescues their deficiencies in bone resorption and F-actin ring formation. Rescue requires a functional pleckstrin homology (PH) domain, known to support membrane localization of SWAP-70, and the F-actin binding domain. Transplantation of SWAP-70-proficient bone marrow into Swap-70(-/-) mice restores osteoclast resorption capacity in vivo. The identification of the role of SWAP-70 in promoting osteoclast function through modulating membrane-proximal F-actin rearrangements reveals a new pathway to control osteoclasts and bone homeostasis.
Directory of Open Access Journals (Sweden)
Christian Renz
Full Text Available The septins are a conserved family of GTP-binding proteins that, in the baker's yeast, assemble into a highly ordered array of filaments at the mother bud neck. These filaments undergo significant structural rearrangements during the cell cycle. We aimed at identifying key components that are involved in or regulate the transitions of the septins. By combining cell synchronization and quantitative affinity-purification mass-spectrometry, we performed a screen for specific interaction partners of the septins at three distinct stages of the cell cycle. A total of 83 interaction partners of the septins were assigned. Surprisingly, we detected DNA-interacting/nuclear proteins and proteins involved in ribosome biogenesis and protein synthesis predominantly present in alpha-factor arrested that do not display an assembled septin structure. Furthermore, two distinct sets of regulatory proteins that are specific for cells at S-phase with a stable septin collar or at mitosis with split septin rings were identified. Complementary methods like SPLIFF and immunoprecipitation allowed us to more exactly define the spatial and temporal characteristics of selected hits of the AP-MS screen.
Identification of CRM1-dependent Nuclear Export Cargos Using Quantitative Mass Spectrometry.
Thakar, Ketan; Karaca, Samir; Port, Sarah A; Urlaub, Henning; Kehlenbach, Ralph H
2013-03-01
Chromosome region maintenance 1/exportin1/Exp1/Xpo1 (CRM1) is the major transport receptor for the export of proteins from the nucleus. It binds to nuclear export signals (NESs) that are rich in leucines and other hydrophobic amino acids. The prediction of NESs is difficult because of the extreme recognition flexibility of CRM1. Furthermore, proteins can be exported upon binding to an NES-containing adaptor protein. Here we present an approach for identifying targets of the CRM1-export pathway via quantitative mass spectrometry using stable isotope labeling with amino acids in cell culture. With this approach, we identified >100 proteins from HeLa cells that were depleted from cytosolic fractions and/or enriched in nuclear fractions in the presence of the selective CRM1-inhibitor leptomycin B. Novel and validated substrates are the polyubiquitin-binding protein sequestosome 1, the cancerous inhibitor of protein phosphatase 2A (PP2A), the guanine nucleotide-binding protein-like 3-like protein, the programmed cell death protein 2-like protein, and the cytosolic carboxypeptidase 1 (CCP1). We identified a functional NES in CCP1 that mediates direct binding to the export receptor CRM1. The method will be applicable to other nucleocytoplasmic transport pathways, as well as to the analysis of nucleocytoplasmic shuttling proteins under different growth conditions.
Christodoulou, L; Loveday, J; Norberg, P; Baldry, I K; Hurley, P D; Driver, S P; Bamford, S P; Hopkins, A M; Liske, J; Peacock, J A; Bland-Hawthorn, J; Brough, S; Cameron, E; Conselice, C J; Croom, S M; Frenk, C S; Gunawardhana, M; Jones, D H; Kelvin, L S; Kuijken, K; Nichol, R C; Parkinson, H; Pimbblet, K A; Popescu, C C; Prescott, M; Robotham, A S G; Sharp, R G; Sutherland, W J; Taylor, E N; Thomas, D; Tuffs, R J; van Kampen, E; Wijesinghe, D
2012-01-01
We measure the two-point angular correlation function of a sample of 4,289,223 galaxies with r < 19.4 mag from the Sloan Digital Sky Survey as a function of photometric redshift, absolute magnitude and colour down to M_r - 5log h = -14 mag. Photometric redshifts are estimated from ugriz model magnitudes and two Petrosian radii using the artificial neural network package ANNz, taking advantage of the Galaxy and Mass Assembly (GAMA) spectroscopic sample as our training set. The photometric redshifts are then used to determine absolute magnitudes and colours. For all our samples, we estimate the underlying redshift and absolute magnitude distributions using Monte-Carlo resampling. These redshift distributions are used in Limber's equation to obtain spatial correlation function parameters from power law fits to the angular correlation function. We confirm an increase in clustering strength for sub-L* red galaxies compared with ~L* red galaxies at small scales in all redshift bins, whereas for the blue populati...
Gauge Trimming of Neutrino Masses
Energy Technology Data Exchange (ETDEWEB)
Chen, Mu-Chun; /Fermilab /UC, Irvine; de Gouvea, Andre; /Northwestern U. /Fermilab; Dobrescu, Bogdan A.; /Fermilab
2006-12-01
We show that under a new U(1) gauge symmetry, which is non-anomalous in the presence of one ''right-handed neutrino'' per generation and consistent with the standard model Yukawa couplings, the most general fermion charges are determined in terms of four rational parameters. This generalization of the B-L symmetry with generation-dependent lepton charges leads to neutrino masses induced by operators of high dimensionality. Neutrino masses are thus naturally small without invoking physics at energies above the TeV scale, whether neutrinos are Majorana or Dirac fermions. This ''Leptocratic'' Model predicts the existence of light quasi-sterile neutrinos with consequences for cosmology, and implies that collider experiments may reveal the origin of neutrino masses.
Faraday anomalous dispersion optical filters
Shay, T. M.; Yin, B.; Alvarez, L. S.
1993-01-01
The effect of Faraday anomalous dispersion optical filters on infrared and blue transitions of some alkali atoms is calculated. A composite system is designed to further increase the background noise rejection. The measured results of the solar background rejection and image quality through the filter are presented. The results show that the filter may provide high transmission and high background noise rejection with excellent image quality.
Energy dependence of fission-fragment mass distributions from strongly damped shape evolution
Randrup, J.; Möller, P.
2013-12-01
The recently developed treatment of Brownian shape evolution is refined to take account of the gradual decrease in microscopic effects as the nuclear excitation energy is raised. We construct effective potential-energy surfaces by multiplying the shell-plus-pairing correction term by a suppression factor that depends on the local excitation energy. While this approach is equivalent to the modification of the Fermi-gas level density parameter suggested by Ignatyuk [Sov. J. Nucl. Phys. 29, 450 (1979)], we adopt a more general functional form for the suppression factor, which is adjusted to measured charge yields for 234U(E*≈11MeV). The resulting model is benchmarked by comparison with 70 measured yields.
Universality of anomalous conductivities in theories with higher-derivative holographic duals
Grozdanov, Sašo
2016-01-01
Anomalous chiral conductivities in theories with global anomalies are independent of whether they are computed in a weakly coupled quantum (or thermal) field theory, hydrodynamics, or at infinite coupling from holography. While the presence of dynamical gauge fields and mixed, gauge-global anomalies can destroy this universality, in their absence, the non-renormalisation of anomalous Ward identities is expected to be obeyed at all intermediate coupling strengths. In holography, bulk theories with higher-derivative corrections incorporate coupling constant corrections to the boundary theory observables in an expansion around infinite coupling. In this work, we investigate the coupling constant dependence and universality of anomalous conductivities (and thus of the anomalous Ward identities) in general, four-dimensional systems that possess asymptotically anti-de Sitter holographic duals with a non-extremal black brane in five dimensions, and anomalous transport introduced into the boundary theory via the bulk...
Effects of surface and interface scattering on anomalous Hall effect in Co/Pd multilayers
Guo, Z. B.
2012-09-27
In this paper, we report the results of surface and interface scattering on anomalous Hall effect in Co/Pd multilayers with perpendicular magnetic anisotropy. The surface scattering effect has been extracted from the total anomalous Hall effect. By scaling surface scattering contribution with ρAHs∼ργss, the exponent γ has been found to decrease with the increase of surface scattering resistivity, which could account for the thickness-dependent anomalous Hall effect. Interface diffusion induced by rapid thermal annealing modifies not only the magnetization and longitudinal resistivity but also the anomalous Hall effect; a large exponent γ ∼ 5.7 has been attributed to interface scattering-dominated anomalous Hall effect.
Directory of Open Access Journals (Sweden)
You-Peng Chen
Full Text Available BACKGROUND: Environmental alternations leading to fetal programming of cardiovascular diseases in later life have been attributed to maternal factors. However, animal studies showed that paternal obesity may program cardio-metabolic diseases in the offspring. In the current study we tested the hypothesis that paternal BMI may be associated with fetal growth. METHODS AND RESULTS: We analyzed the relationship between paternal body mass index (BMI and birth weight, ultrasound parameters describing the newborn's body shape as well as parameters describing the newborns endocrine system such as cortisol, aldosterone, renin activity and fetal glycated serum protein in a birth cohort of 899 father/mother/child triplets. Since fetal programming is an offspring sex specific process, male and female offspring were analyzed separately. Multivariable regression analyses considering maternal BMI, paternal and maternal age, hypertension during pregnancy, maternal total glycated serum protein, parity and either gestational age (for birth weight or time of ultrasound investigation (for ultrasound parameters as confounding showed that paternal BMI is associated with growth of the male but not female offspring. Paternal BMI correlated with birth parameters of male offspring only: birth weight; biparietal diameter, head circumference; abdominal diameter, abdominal circumference; and pectoral diameter. Cortisol was likewise significantly correlated with paternal BMI in male newborns only. CONCLUSIONS: Paternal BMI affects growth of the male but not female offspring. Paternal BMI may thus represent a risk factor for cardiovascular diseases of male offspring in later life. It remains to be demonstrated whether this is linked to an offspring sex specific paternal programming of cortisol secretion.
Cuzzi, J. N.; Hartlep, T.; Estrada, P.
2016-01-01
The initial accretion of primitive bodies from freely-floating nebula particles remains problematic. Traditional growth-by-sticking models in turbulent nebulae encounter a "meter-size barrier" due to both drift and destruction, or even a millimeter-to-centimeter-size "bouncing" barrier. Recent suggestions have been made that some "lucky" particles might be able to outgrow the collision and/or drift barriers, and lead to so-called "streaming instabilities" or SI. However, new full models of growth by sticking in the presence of radial drift show that lucky particles (the largest particles, at the tail of the size distribution, that grow beyond the nominal fragmentation and drift barriers) are far too rare to lead to any collective effects such as streaming or gravitational instabilities. Thus we need to focus on typical radii gamma(sub M) which contain most of the mass. Our models of disks with weak-to-moderate turbulence, which include all the most recent experimental constraints on collisional growth, erosion, bouncing, and fragmentation, as well as radial drift, find that growth stalls quite generally at sizes gamma(sub M) which are too small to settle into layers which are dense enough for any collective effects (streaming or gravitational instabilities) to arise. Even if growth by sticking could somehow breach the nominal barriers (perhaps if the actual sticking or strength is larger than current estimates for pure ice or pure silicate, with specific grain sizes), turbulent nebulae present subsequent formidable obstacles to incremental growth through the 1-10km size range. On the other hand, non-turbulent nebulae alpha is less than 10(Sup -4).
Evidence for a mass dependent step-change in the scaling of efficiency in terrestrial locomotion.
Directory of Open Access Journals (Sweden)
Robert L Nudds
Full Text Available A reanalysis of existing data suggests that the established tenet of increasing efficiency of transport with body size in terrestrial locomotion requires re-evaluation. Here, the statistical model that described the data best indicated a dichotomy between the data for small (1 kg. Within and between these two size groups there was no detectable difference in the scaling exponents (slopes relating metabolic (E(met and mechanical costs (E(mech, CM of locomotion to body mass (M(b. Therefore, no scaling of efficiency (E(mech, CM/E(met with M(b was evident within each size group. Small animals, however, appeared to be generally less efficient than larger animals (7% and 26% respectively. Consequently, it is possible that the relationship between efficiency and M(b is not continuous, but, rather, involves a step-change. This step-change in the efficiency of locomotion mirrors previous findings suggesting a postural cause for an apparent size dichotomy in the relationship between E(met and M(b. Currently data for E(mech, CM is lacking, but the relationship between efficiency in terrestrial locomotion and M(b is likely to be determined by posture and kinematics rather than body size alone. Hence, scaling of efficiency is likely to be more complex than a simple linear relationship across body sizes. A homogenous study of the mechanical cost of terrestrial locomotion across a broad range of species, body sizes, and importantly locomotor postures is a priority for future research.
McDonald, Iain
2015-01-01
The impact of metallicity on the mass-loss rate from red giant branch (RGB) stars is studied through its effect on the parameters of horizontal branch (HB) stars. The scaling factors from Reimers (1975) and Schroder & Cuntz (2005) are determined for 56 well-studied Galactic globular clusters (GCs). The median values among clusters are, respectively, {\\eta}_R = 0.477 +/- 0.070 (+0.050/-0.062) and {\\eta}_SC = 0.172 +/- 0.024 (+0.018/-0.023) (standard deviation and systematic uncertainties, respectively). Mass-loss mechanisms on the RGB have very little metallicity dependence: over a factor of 200 in iron abundance, {\\eta} varies by <~30 per cent, within the current systematic uncertainties on cluster ages and evolution models. Since {\\eta} incorporates cluster age, the low standard deviation of {\\eta} among clusters (~14 per cent) suggests that age can almost entirely account for the "second parameter problem". The remaining spread in {\\eta} correlates with cluster mass and density, suggesting helium enr...
Communication: Probing anomalous diffusion in frequency space
Energy Technology Data Exchange (ETDEWEB)
Stachura, Sławomir [Centre de Biophys. Moléculaire, CNRS, Rue Charles Sadron, 45071 Orléans (France); Synchrotron Soleil, L’Orme de Merisiers, 91192 Gif-sur-Yvette (France); Kneller, Gerald R., E-mail: gerald.kneller@cnrs-orleans.fr [Centre de Biophys. Moléculaire, CNRS, Rue Charles Sadron, 45071 Orléans (France); Synchrotron Soleil, L’Orme de Merisiers, 91192 Gif-sur-Yvette (France); Université d’Orléans, Chateau de la Source-Av. du Parc Floral, 45067 Orléans (France)
2015-11-21
Anomalous diffusion processes are usually detected by analyzing the time-dependent mean square displacement of the diffusing particles. The latter evolves asymptotically as W(t) ∼ 2D{sub α}t{sup α}, where D{sub α} is the fractional diffusion constant and 0 < α < 2. In this article we show that both D{sub α} and α can also be extracted from the low-frequency Fourier spectrum of the corresponding velocity autocorrelation function. This offers a simple method for the interpretation of quasielastic neutron scattering spectra from complex (bio)molecular systems, in which subdiffusive transport is frequently encountered. The approach is illustrated and validated by analyzing molecular dynamics simulations of molecular diffusion in a lipid POPC bilayer.
Chiral magnetic plasmons in anomalous relativistic matter
Gorbar, E V; Shovkovy, I A; Sukhachov, P O
2016-01-01
The chiral plasmon modes of relativistic matter in background magnetic and strain-induced pseudomagnetic fields are studied in detail using the consistent chiral kinetic theory. The results reveal a number of anomalous features of these chiral magnetic and pseudomagnetic plasmons that could be used to identify them in experiment. In a system with nonzero electric (chiral) chemical potential, the background magnetic (pseudomagnetic) fields not only modify the values of the plasmon frequencies in the long wavelength limit, but also affect the qualitative dependence on the wave-vector. Similar modifications can be also induced by the chiral shift parameter in Weyl materials. Interestingly, even in the absence of the chiral shift and external fields, the chiral chemical potential alone leads to a splitting of plasmon energies at linear order in the wave vector.
Anomalous transport from holography: Part I
Bu, Yanyan; Sharon, Amir
2016-01-01
We revisit the transport properties induced by the chiral anomaly in a charged plasma holographically dual to anomalous $U(1)_V\\times U(1)_A$ Maxwell theory in Schwarzschild-$AdS_5$. Off-shell constitutive relations for vector and axial currents are derived using various approximations generalising most of known in the literature anomaly-induced phenomena and revealing some new ones. In a weak external field approximation, the constitutive relations have all-order derivatives resummed into six momenta-dependent transport coefficient functions: the diffusion, the electric/magnetic conductivity, and three anomaly induced functions. The latter generalise the chiral magnetic and chiral separation effects. Nonlinear transport is studied assuming presence of constant background external fields. The chiral magnetic effect, including all order nonlinearity in magnetic field, is proven to be exact when the magnetic field is the only external field that is turned on. Non-linear corrections to the constitutive relations...
Heterogeneous anomalous diffusion in view of superstatistics
Itto, Yuichi
2014-01-01
It is experimentally known that virus exhibits stochastic motion in cytoplasm of a living cell in the free form as well as the form being contained in the endosome and the exponent of anomalous diffusion of the virus fluctuates depending on localized areas of the cytoplasm. Here, a theory is developed for establishing a generalized fractional kinetics for the infection pathway of the virus in the cytoplasm in view of superstatistics, which offers a general framework for describing nonequilibrium complex systems with two largely separated time scales. In the present theory, the existence of a large time-scale separation in the infection pathway is explicitly taken into account. A comment is also made on scaling nature of the motion of the virus that is suggested by the theory.
Blow up Analysis for Anomalous Granular Gases
Rey, Thomas
2011-01-01
We investigate in this article the long-time behaviour of the solutions to the energy-dependent, spatially-homogeneous, inelastic Boltzmann equation for hard spheres. This model describes a diluted gas composed of hard spheres under statistical description, that dissipates energy during collisions. We assume that the gas is "anomalous", in the sense that the energy dissipation increases when the temperature decreases. This allows the gas to cool down in finite time. We study the existence, uniqueness and attractiveness of blow up profiles for this model and the cooling law associated, generalizing the classical Haff's Law for granular gases. To this end, we give some new estimates about the third order moment of the inelastic Boltzmann equation with drift term and we introduce new strongly "non-linear" self-similar variables
Effective pion mass term and the trace anomaly
Golterman, Maarten
2016-01-01
Recently, we developed an effective theory of pions and a light dilatonic meson for gauge theories with spontaneously broken chiral symmetry that are close to the conformal window. The pion mass term in this effective theory depends on an exponent $y$. We derive the transformation properties under dilatations of the renormalized fermion mass, and use this to rederive $y=3-\\gamma_m^*$, where $\\gamma_m^*$ is fixed-point value of the mass anomalous dimension at the sill of the conformal window. This value for $y$ is consistent with the trace anomaly of the underlying near-conformal gauge theory.
Search for anomalous couplings in the Higgs sector at LEP
Acciarri, M; Adriani, O; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, L; Balandras, A; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Cucciarelli, S; Dai, T S; van Dalen, J A; D'Alessandro, R; De Asmundis, R; Déglon, P L; Degré, A; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Van Dierendonck, D N; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Dufournaud, D; Duinker, P; Durán, I; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Extermann, Pierre; Fabre, M; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Hofer, H; Holzner, G; Hoorani, H; Hou, S R; Hu, Y; Iashvili, I; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Khan, R A; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, J K; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Le Goff, J M; Leiste, R; Levchenko, P M; Li Chuan; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Lugnier, L; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Marian, G; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Moulik, T; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Oulianov, A; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Paramatti, R; Park, H K; Park, I H; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Raven, G; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Rodin, J; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Rubio, Juan Antonio; Ruggiero, G; Rykaczewski, H; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Seganti, A; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Suter, H; Swain, J D; Szillási, Z; Sztaricskai, T; Tang, X W; Tauscher, Ludwig; Taylor, L; Tellili, B; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Valente, E; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, M; Wang, X L; Wang, Z M; Weber, A; Weber, M; Wienemann, P; Wilkens, H; Wu, S X; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Ye, J B; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhu, G Y; Zhu, R Y; Zichichi, A; Zilizi, G; Zimmermann, B; Zöller, M
2000-01-01
We search for a Higgs particle with anomalous couplings in the $\\mathrm{e}^+\\mathrm{e}^-\\rightarrow\\mathrm{H}\\gamma$, $\\mathrm{e}^+\\mathrm{e}^-\\rightarrow\\mathrm{H}\\mathrm{Z}$ and $\\mathrm{e}^+\\mathrm{e}^-\\rightarrow\\mathrm{H}\\mathrm{e}^+\\mathrm{e }^-$ processes with the L3 detector at LEP. We explore the mass range $70~{\\rm GeV} < m_\\mathrm{H} < 170~{\\rm GeV}$ using $176~{\\rm pb}^{-1}$ of integrated luminosity at a center-of-mass energy of $\\sqrt{s} = 189~{\\rm GeV}$. The Higgs decays $\\mathrm{H}\\rightarrow\\mathrm{b}\\mathrm{\\overline{b}}$, $\\mathrm{H}\\rightarrow\\gamma\\gamma$ and $\\mathrm{H}\\rightarrow\\mathrm{ Z}\\gamma$ are considered in the analysis. No evidence for anomalous Higgs production is found. This is interpreted in terms of limits on the anomalous couplings $d$, $d_B$, $\\Delta g_1^\\mathrm{Z}$ and $\\Delta \\kappa_\\gamma$. Limits on the $\\Gamma(\\mathrm{H}\\rightarrow\\gamma\\gamma)$ and $\\Gamma(\\mathrm{H}\\rightarrow\\mathrm{Z}\\gamma)$ partial widths in the explored Higgs mass range are also obtained.
Ion Bernstein instability dependence on the proton-to-electron mass ratio: Linear dispersion theory
Min, Kyungguk; Liu, Kaijun
2016-07-01
Fast magnetosonic waves, which have as their source ion Bernstein instabilities driven by tenuous ring-like proton velocity distributions, are frequently observed in the inner magnetosphere. One major difficulty in the simulation of these waves is that they are excited in a wide frequency range with discrete harmonic nature and require time-consuming computations. To overcome this difficulty, recent simulation studies assumed a reduced proton-to-electron mass ratio, mp/me, and a reduced light-to-Alfvén speed ratio, c/vA, to reduce the number of unstable modes and, therefore, computational costs. Although these studies argued that the physics of wave-particle interactions would essentially remain the same, detailed investigation of the effect of this reduced system on the excited waves has not been done. In this study, we investigate how the complex frequency, ω = ωr+iγ, of the ion Bernstein modes varies with mp/me for a sufficiently large c/vA (such that ωpe2/Ωe2≡(me/mp)(c/vA)2≫1) using linear dispersion theory assuming two different types of energetic proton velocity distributions, namely, ring and shell. The results show that low- and high-frequency harmonic modes respond differently to the change of mp/me. For the low harmonic modes (i.e., ωr˜Ωp), both ωr/Ωp and γ/Ωp are roughly independent of mp/me, where Ωp is the proton cyclotron frequency. For the high harmonic modes (i.e., Ωp≪ωr≲ωlh, where ωlh is the lower hybrid frequency), γ/ωlh (at fixed ωr/ωlh) stays independent of mp/me when the parallel wave number, k∥, is sufficiently large and becomes inversely proportional to (mp/me)1/4 when k∥ goes to zero. On the other hand, the frequency range of the unstable modes normalized to ωlh remains independent of mp/me, regardless of k∥.
Bessette, Erin E; Goodenough, Angela K; Langouët, Sophie; Yasa, Isil; Kozekov, Ivan D; Spivack, Simon D; Turesky, Robert J
2009-01-15
A two-dimensional linear quadrupole ion trap mass spectrometer (LIT/MS) was employed to simultaneously screen for DNA adducts of environmental, dietary, and endogenous genotoxicants, by data-dependent constant neutral loss scanning followed by triple-stage mass spectrometry (CNL-MS3). The loss of the deoxyribose (dR) from the protonated DNA adducts ([M + H - 116]+) in the MS/MS scan mode triggered the acquisition of MS3 product ion spectra of the aglycone adducts [BH2]+. Five DNA adducts of the tobacco carcinogen 4-aminobiphenyl (4-ABP) were detected in human hepatocytes treated with 4-ABP, and three DNA adducts of the cooked-meat carcinogen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) were identified in the livers of rats exposed to MeIQx, by the CNL-MS3 scan mode. Buccal cell DNA from tobacco smokers was screened for DNA adducts of various classes of carcinogens in tobacco smoke including 4-ABP, 2-amino-9H-pyrido[2,3-b]indole (AalphaC), and benzo[a]pyrene (BaP); the cooked-meat carcinogens MeIQx, AalphaC, and 2-amino-1-methyl-6-phenylmidazo[4,5-b]pyridine (PhIP); and the lipid peroxidation products acrolein (AC) and trans-4-hydroxynonenal (HNE). The CNL-MS3 scanning technique can be used to simultaneously screen for multiple DNA adducts derived from different classes of carcinogens, at levels of adduct modification approaching 1 adduct per 108 unmodified DNA bases, when 10 microg of DNA is employed for the assay.
Quark ACM with topologically generated gluon mass
Choudhury, Ishita Dutta; Lahiri, Amitabha
2016-03-01
We investigate the effect of a small, gauge-invariant mass of the gluon on the anomalous chromomagnetic moment (ACM) of quarks by perturbative calculations at one-loop level. The mass of the gluon is taken to have been generated via a topological mass generation mechanism, in which the gluon acquires a mass through its interaction with an antisymmetric tensor field Bμν. For a small gluon mass ( ACM at momentum transfer q2 = -M Z2. We compare those with the ACM calculated for the gluon mass arising from a Proca mass term. We find that the ACM of up, down, strange and charm quarks vary significantly with the gluon mass, while the ACM of top and bottom quarks show negligible gluon mass dependence. The mechanism of gluon mass generation is most important for the strange quarks ACM, but not so much for the other quarks. We also show the results at q2 = -m t2. We find that the dependence on gluon mass at q2 = -m t2 is much less than at q2 = -M Z2 for all quarks.
Reconnaissance Estimates of Recharge Based on an Elevation-dependent Chloride Mass-balance Approach
Energy Technology Data Exchange (ETDEWEB)
Charles E. Russell; Tim Minor
2002-08-31
Significant uncertainty is associated with efforts to quantity recharge in arid regions such as southern Nevada. However, accurate estimates of groundwater recharge are necessary to understanding the long-term sustainability of groundwater resources and predictions of groundwater flow rates and directions. Currently, the most widely accepted method for estimating recharge in southern Nevada is the Maxey and Eakin method. This method has been applied to most basins within Nevada and has been independently verified as a reconnaissance-level estimate of recharge through several studies. Recharge estimates derived from the Maxey and Eakin and other recharge methodologies ultimately based upon measures or estimates of groundwater discharge (outflow methods) should be augmented by a tracer-based aquifer-response method. The objective of this study was to improve an existing aquifer-response method that was based on the chloride mass-balance approach. Improvements were designed to incorporate spatial variability within recharge areas (rather than recharge as a lumped parameter), develop a more defendable lower limit of recharge, and differentiate local recharge from recharge emanating as interbasin flux. Seventeen springs, located in the Sheep Range, Spring Mountains, and on the Nevada Test Site were sampled during the course of this study and their discharge was measured. The chloride and bromide concentrations of the springs were determined. Discharge and chloride concentrations from these springs were compared to estimates provided by previously published reports. A literature search yielded previously published estimates of chloride flux to the land surface. {sup 36}Cl/Cl ratios and discharge rates of the three largest springs in the Amargosa Springs discharge area were compiled from various sources. This information was utilized to determine an effective chloride concentration for recharging precipitation and its associated uncertainty via Monte Carlo simulations
Effect of entropy on anomalous transport in ITG-modes of magneto-plasma
Yaqub Khan, M.; Qaiser Manzoor, M.; Haq, A. ul; Iqbal, J.
2017-04-01
The ideal gas equation and S={{c}v}log ≤ft(P/ρ \\right) (where S is entropy, P is pressure and ρ is the mass density) define the interconnection of entropy with the temperature and density of plasma. Therefore, different phenomena relating to plasma and entropy need to be investigated. By employing the Braginskii transport equations for a nonuniform electron–ion magnetoplasma, two new parameters—the entropy distribution function and the entropy gradient drift—are defined, a new dispersion relation is obtained, and the dependence of anomalous transport on entropy is also proved. Some results, like monotonicity, the entropy principle and the second law of thermodynamics, are proved with a new definition of entropy. This work will open new horizons in fusion processes, not only by controlling entropy in tokamak plasmas—particularly in the pedestal regions of the H-mode and space plasmas—but also in engineering sciences.
Institute of Scientific and Technical Information of China (English)
LIU Yu-Xin; CHAO Jing-Yi; CHANG Lei; YUAN Wei
2005-01-01
@@ With the Dyson-Schwinger equation formalism at finite chemical potential, we study the density dependence of the mass and decay constant of pion in nuclear matter. The calculated results indicate that both the mass and the decay constant remain almost constant at small chemical potential. As the chemical potential gets quite large, the decay constant increases and the mass decreases with the increasing of the chemical potential, and both of them vanish suddenly as a critical value is reached.
Song, Yan; Lysak, Robert L.
1992-01-01
A quasi open MHD (Magnetohydrodynamic) scale anomalous transport controlled boundary layer model is proposed, where the MHD collective behavior of magnetofluids (direct dynamo effect, anomalous viscous interaction and anomalous diffusion of the mass and the magnetic field) plays the main role in the conversion of the Solar Wind (SW) kinetic and magnetic energy into electromagnetic energy in the Magnetosphere (MSp). The so called direct and indirect dynamo effects are based on inductive and purely dissipative energy conversion, respectively. The self organization ability of vector fields in turbulent magnetofluids implies an inductive response of the plasma, which leads to the direct dynamo effect. The direct dynamo effect describes the direct formation of localized field aligned currents and the transverse Alfven waves and provides a source for MHD scale anomalous diffusivity and viscosity. The SW/MSp coupling depends on the dynamo efficiency.
Anomalous Transport Foundations and Applications
Klages, Rainer; Sokolov, Igor M
2008-01-01
This multi-author reference work provides a unique introduction to the currently emerging, highly interdisciplinary field of those transport processes that cannot be described by using standard methods of statistical mechanics. It comprehensively summarizes topics ranging from mathematical foundations of anomalous dynamics to the most recent experiments in this field. In so doing, this monograph extracts and emphasizes common principles and methods from many different disciplines while providing up-to-date coverage of this new field of research, considering such diverse applications as plasma
Titius-Bode law in the Solar System. Dependence of the regularity parameter on the central body mass
Georgiev, Tsvetan B.
2016-07-01
Near-commensurability of the orbital sizes or periods exists in the Solar system for the massive planets and the massive satellites of Jupiter, Saturn and Uranus. It is well revealed by the Titius-Bode law (TBL) long ago by Dermott (1968), but is not been explained convincingly yet. Independently on this fact, the question about the dependence of the scale constant of the TBL on the mass of the central body is open. In this paper we show such a dependence. Due to the dynamic evolution the orbits of the massive planets and satellites may be in a transient stage when a primary TBL is well pronounced. Simultaneously a secondary TBL, a trail from the past as a hint for the future, may be less pronounced. The TBL is fitted after the numeration of the objects. For this reason we derive a special "curve" and we use 2 its minimums to introduce a primary and a secondary numeration for the objects. Thus we derive constants of 2 TBLs and build the searched dependence by twice as many points. In this paper we show and use pairs of TBLs for the satellite systems of Jupiter, Saturn, Uranus, Neptune and Pluto, as well as for the solar system in two cases - with 4 massive planets and with 8 massive planets. In fig. 10 we show the statistically significant dependences where the coefficient of the near-commensurability for the orbital sizes varies from about 1.3 for the satellites of Pluto to about 1.7 for the planets of the Sun.
Heinrich, G.; Kerner, M.; Luisoni, G.; Vryonidou, E.
We present the first combination of NLO QCD matrix elements for di-Higgs production, retaining the full top quark mass dependence, with a parton shower. Results are provided within both the POWHEG-BOX and MadGraph5_aMC@NLO Monte Carlo frameworks. We assess in detail the theoretical uncertainties and provide differential results. We find that, as expected, the shower effects are relatively large for observables like the transverse momentum of the Higgs boson pair, which are sensitive to extra radiation. However, these shower effects are still much smaller than the differences between the Born-improved HEFT approximation and the full NLO calculation in the tails of the distributions.
Arroja, Frederico; Sasaki, Misao
2011-01-01
We study an inflationary model driven by a single minimally coupled standard kinetic term scalar field with a step in its mass modeled by an Heaviside step function. We present an analytical approximation for the mode function of the curvature perturbation, obtain the power spectrum analytically and compare it with the numerical result. We show that, after the scale set by the step, the spectrum contains damped oscillations that are well described by our analytical approximation. We also compute the dominant contribution to the bispectrum in the equilateral and the squeezed limits and find new shapes. In the equilateral and squeezed limits the bispectrum oscillates and it has a linear growth envelope towards smaller scales. The bispectrum size can be large depending on the model parameters.
Two-loop planar master integrals for Higgs$\\to 3$ partons with full heavy-quark mass dependence
Bonciani, Roberto; Frellesvig, Hjalte; Henn, Johannes M; Moriello, Francesco; Smirnov, Vladimir A
2016-01-01
We present the analytic computation of all the planar master integrals which contribute to the two-loop scattering amplitudes for Higgs$\\to 3$ partons, with full heavy-quark mass dependence. These are relevant for the NNLO corrections to fully inclusive Higgs production and to the NLO corrections to Higgs production in association with a jet, in the full theory. The computation is performed using the differential equations method. Whenever possible, a basis of master integrals that are pure functions of uniform weight is used. The result is expressed in terms of one-fold integrals of polylogarithms and elementary functions up to transcendental weight four. Two integral sectors are expressed in terms of elliptic functions. We show that by introducing a one-dimensional parametrization of the integrals the relevant second order differential equation can be readily solved, and the solution can be expressed to all orders of the dimensional regularization parameter in terms of iterated integrals over elliptic kerne...
Bassett, Robert; Lotz, Jennifer M; Bell, Eric F; Finkelstein, Steven L; Newman, Jeffrey A; Tran, Kim-Vy; Almaini, Omar; Lani, Caterina; Cooper, Michael; Croton, Darren; Dekel, Avishai; Ferguson, Henry C; Kocevski, Dale D; Koekemoer, Anton M; Koo, David C; McGrath, Elizabeth J; McIntosh, Daniel H; Wechsler, Risa H
2013-01-01
We study the environmental dependence of color, stellar mass, and morphology by comparing galaxies in a forming cluster to those in the field at z = 1:6 with Hubble Space Telescope near-infrared imaging in the CANDELS/UDS field. We quantify the morphology of the galaxies using the effective radius, reff, and S\\'ersic index, n. In both the cluster and field, approximately half of the bulge-dominated galaxies (n > 2) reside on the red sequence of the color-magnitude diagram, and most disk-dominated galaxies (n < 2) have colors expected for star-forming galaxies. There is weak evidence that cluster galaxies have redder rest-frame U - B colors and higher stellar masses compared to the field. Star-forming galaxies in both the cluster and field show no significant differences in their morphologies. In contrast, there is evidence that quiescent galaxies in the cluster have larger median effective radii and smaller S\\'ersic indices compared to the field with a significance of 2?. These differences are most pronoun...
Papastergis, Emmanouil; Haynes, Martha P; Rodríguez-Puebla, Aldo; Jones, Michael G
2013-01-01
We use a sample of ~6000 galaxies detected by the Arecibo Legacy Fast ALFA (ALFALFA) 21cm survey, to measure the clustering properties of HI-selected galaxies. We find no convincing evidence for a dependence of clustering on the galactic atomic hydrogen (HI) mass, over the range M_HI ~ 10^{8.5} - 10^{10.5} M_sun. We show that previously reported results of weaker clustering for low-HI mass galaxies are probably due to finite-volume effects. In addition, we compare the clustering of ALFALFA galaxies with optically selected samples drawn from the Sloan Digital Sky Survey (SDSS). We find that HI-selected galaxies cluster more weakly than even relatively optically faint galaxies, when no color selection is applied. Conversely, when SDSS galaxies are split based on their color, we find that the correlation function of blue optical galaxies is practically indistinguishable from that of HI-selected galaxies. At the same time, SDSS galaxies with red colors are found to cluster significantly more than HI-selected gala...
McNaught-Roberts, Tamsyn; Baugh, Carlton; Lacey, Cedric; Loveday, J; Peacock, J; Baldry, I; Bland-Hawthorn, J; Brough, S; Driver, Simon P; Robotham, A S G; Vazquez-Mata, J A
2014-01-01
We use 80922 galaxies in the Galaxy And Mass Assembly (GAMA) survey to measure the galaxy luminosity function (LF) in different environments over the redshift range 0.04
Bagdonaite, Julija; Preval, Simon P; Barstow, Martin A; Barrow, John D; Murphy, Michael T; Ubachs, Wim
2014-01-01
Spectra of molecular hydrogen (H$_2$) are employed to search for a possible proton-to-electron mass ratio ($\\mu$) dependence on gravity. The Lyman transitions of H$_2$, observed with the Hubble Space Telescope towards white dwarf stars that underwent a gravitational collapse, are compared to accurate laboratory spectra taking into account the high temperature conditions ($T \\sim 13\\,000$ K) of their photospheres. We derive sensitivity coefficients $K_i$ which define how the individual H$_2$ transitions shift due to $\\mu$-dependence. The spectrum of white dwarf star GD133 yields a $\\Delta\\mu/\\mu$ constraint of $(-2.7\\pm4.7_{\\rm stat}\\pm 0.2_{\\rm sys})\\times10^{-5}$ for a local environment of a gravitational potential $\\phi\\sim10^4\\ \\phi_\\textrm{Earth}$, while that of G29$-$38 yields $\\Delta\\mu/\\mu=(-5.8\\pm3.8_{\\rm stat}\\pm 0.3_{\\rm sys})\\times10^{-5}$ for a potential of $2 \\times 10^4$ $\\phi_\\textrm{Earth}$.
Energy Technology Data Exchange (ETDEWEB)
Chithiika Ruby, V.; Senthilvelan, M.; Lakshmanan, M. [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirapalli 620 024 (India); Chandrasekar, V. K. [Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401 (India)
2015-01-15
We consider the problem of removal of ordering ambiguity in position dependent mass quantum systems characterized by a generalized position dependent mass Hamiltonian which generalizes a number of Hermitian as well as non-Hermitian ordered forms of the Hamiltonian. We implement point canonical transformation method to map one-dimensional time-independent position dependent mass Schrödinger equation endowed with potentials onto constant mass counterparts which are considered to be exactly solvable. We observe that a class of mass functions and the corresponding potentials give rise to solutions that do not depend on any particular ordering, leading to the removal of ambiguity in it. In this case, it is imperative that the ordering is Hermitian. For non-Hermitian ordering, we show that the class of systems can also be exactly solvable and is also shown to be iso-spectral using suitable similarity transformations. We also discuss the normalization of the eigenfunctions obtained from both Hermitian and non-Hermitian orderings. We illustrate the technique with the quadratic Liénard type nonlinear oscillators, which admit position dependent mass Hamiltonians.
Schneider, Fabian R N; de Mink, Selma E; Langer, Norbert; Stolte, Andrea; de Koter, Alex; Gvaramadze, Vasilii V; Hußmann, Benjamin; Liermann, Adriane; Sana, Hugues
2013-01-01
Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters which can be used to infer their ages and to identify products of binary evolution. We model the observed present day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages to 3.5$\\pm$0.7 Myr and 4.8$\\pm$1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e. the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte ...
Energy Technology Data Exchange (ETDEWEB)
Papastergis, Emmanouil; Giovanelli, Riccardo; Haynes, Martha P.; Jones, Michael G. [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Rodríguez-Puebla, Aldo, E-mail: papastergis@astro.cornell.edu, E-mail: riccardo@astro.cornell.edu, E-mail: haynes@astro.cornell.edu, E-mail: jonesmg@astro.cornell.edu, E-mail: apuebla@astro.unam.mx [Instituto de Astronomía, Universidad Nacional Autónoma de México, A. P. 70-264, 04510 México, D.F. (Mexico)
2013-10-10
We use a sample of ≈6000 galaxies detected by the Arecibo Legacy Fast ALFA (ALFALFA) 21 cm survey to measure the clustering properties of H I-selected galaxies. We find no convincing evidence for a dependence of clustering on galactic atomic hydrogen (H I) mass, over the range M{sub H{sub I}} ≈ 10{sup 8.5}-10{sup 10.5} M{sub ☉}. We show that previously reported results of weaker clustering for low H I mass galaxies are probably due to finite-volume effects. In addition, we compare the clustering of ALFALFA galaxies with optically selected samples drawn from the Sloan Digital Sky Survey (SDSS). We find that H I-selected galaxies cluster more weakly than even relatively optically faint galaxies, when no color selection is applied. Conversely, when SDSS galaxies are split based on their color, we find that the correlation function of blue optical galaxies is practically indistinguishable from that of H I-selected galaxies. At the same time, SDSS galaxies with red colors are found to cluster significantly more than H I-selected galaxies, a fact that is evident in both the projected as well as the full two-dimensional correlation function. A cross-correlation analysis further reveals that gas-rich galaxies 'avoid' being located within ≈3 Mpc of optical galaxies with red colors. Next, we consider the clustering properties of halo samples selected from the Bolshoi ΛCDM simulation. A comparison with the clustering of ALFALFA galaxies suggests that galactic H I mass is not tightly related to host halo mass and that a sizable fraction of subhalos do not host H I galaxies. Lastly, we find that we can recover fairly well the correlation function of H I galaxies by just excluding halos with low spin parameter. This finding lends support to the hypothesis that halo spin plays a key role in determining the gas content of galaxies.
Anomalous sound propagation due to the horizontal variation of seabed acoustic properties
Institute of Scientific and Technical Information of China (English)
LI Zhenglin; ZHANG Renhe; PENG Zhaohui; LI Xilu
2004-01-01
The sound propagation in shallow water is greatly influenced by the acoustic properties of seabed. An anomalous transmission loss was observed in an experiment, and a range dependent bottom model with horizontal variation of seabed acoustic property is proposed and could be well used to explain the anomalous phenomena. It is shown that the horizontal variation of bottom properties has a great effect on underwater sound propagation, and it should be given much attention in sound propagation and geoacoustic inversion problems.
The n{sub f} terms of the three-loop cusp anomalous dimension in QCD
Energy Technology Data Exchange (ETDEWEB)
Grozin, Andrey [Russian Academy of Sciences, Novosibirsk (Russian Federation). Budker Inst. of Nuclear Physics; Novosibirsk State Univ. (Russian Federation); Henn, Johannes M. [Institute for Advanced Study, Princeton, NJ (United States); Korchemsky, Gregory P. [CEA Saclay, Gif-sur-Yvette (France). Inst. de Physique Theorique; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2014-07-15
In this talk we present the result for the n{sub f} dependent piece of the three-loop cusp anomalous dimension in QCD. Remarkably, it is parametrized by the same simple functions appearing in analogous anomalous dimensions in N=4 SYM at one and two loops. We also compute all required master integrals using a recently proposed refinement of the differential equation method. The analytic results are expressed in terms of harmonic polylogarithms of uniform weight.
Directory of Open Access Journals (Sweden)
M. Baasandorj
2014-10-01
Full Text Available We present a detailed investigation of the factors governing the quantification of formic acid (FA, acetic acid (AA and their relevant mass analogues by proton transfer reaction-mass spectrometry (PTR-MS, assess the underlying fragmentation pathways and humidity dependencies, and present a new method for separating FA and AA from their main isobaric interferences. PTR-MS sensitivities towards glycolaldehyde, ethyl acetate and peroxyacetic acid at m/z 61 are comparable to that for AA; when present, these species will interfere with ambient AA measurements by PTR-MS. Likewise, when it is present, dimethyl ether can interfere with FA measurements. On the other hand, for E/N = 125 Townsend (Td, the PTR-MS sensitivity towards ethanol at m/z 47 is 5–20× lower than for FA; ethanol will then only be an important interference when present in much higher abundance than FA. Sensitivity towards 2-propanol is m/z 79, which is also commonly used to measure benzene. However, the resulting interference for benzene is only significant when E/N is low (E/N, but decreases with humidity at high E/N due to water-driven fragmentation. Sensitivity towards FA decreases with humidity throughout the full range of E/N. For glycoaldehyde and the alcohols, the sensitivity increases with humidity due to ligand switching reactions (at low E/N and reduced fragmentation in the presence of water (at high E/N. Their role as interferences will typically be greatest at high humidity. For compounds such as AA where the humidity effect depends strongly on the collisional energy in the drift tube, simple humidity correction factors (XR will only be relevant for a specific instrumental configuration. We recommend E/N∼125 Td as an effective condition for AA and FA measurements by PTR-MS, as it optimizes between the competing E/N-dependent mechanisms controlling their sensitivities and those of the interfering species. Finally, we present the design and evaluation of an online acid
Baasandorj, M.; Millet, D. B.; Hu, L.; Mitroo, D.; Williams, B. J.
2014-10-01
We present a detailed investigation of the factors governing the quantification of formic acid (FA), acetic acid (AA) and their relevant mass analogues by proton transfer reaction-mass spectrometry (PTR-MS), assess the underlying fragmentation pathways and humidity dependencies, and present a new method for separating FA and AA from their main isobaric interferences. PTR-MS sensitivities towards glycolaldehyde, ethyl acetate and peroxyacetic acid at m/z 61 are comparable to that for AA; when present, these species will interfere with ambient AA measurements by PTR-MS. Likewise, when it is present, dimethyl ether can interfere with FA measurements. On the other hand, for E/N = 125 Townsend (Td), the PTR-MS sensitivity towards ethanol at m/z 47 is 5-20× lower than for FA; ethanol will then only be an important interference when present in much higher abundance than FA. Sensitivity towards 2-propanol is product ions of AA, glycoaldehyde, and propanols occur at m/z 79, which is also commonly used to measure benzene. However, the resulting interference for benzene is only significant when E/N is low (<∼100 Td). Addition of water vapor affects the PTR-MS response to a given compound by (i) changing the yield for fragmentation reactions, and (ii) increasing the importance of ligand switching reactions. In the case of AA, sensitivity to the molecular ion increases with humidity at low E/N, but decreases with humidity at high E/N due to water-driven fragmentation. Sensitivity towards FA decreases with humidity throughout the full range of E/N. For glycoaldehyde and the alcohols, the sensitivity increases with humidity due to ligand switching reactions (at low E/N) and reduced fragmentation in the presence of water (at high E/N). Their role as interferences will typically be greatest at high humidity. For compounds such as AA where the humidity effect depends strongly on the collisional energy in the drift tube, simple humidity correction factors (XR) will only be
Baasandorj, M.; Millet, D. B.; Hu, L.; Mitroo, D.; Williams, B. J.
2015-03-01
We present a detailed investigation of the factors governing the quantification of formic acid (FA), acetic acid (AA), and their relevant mass analogues by proton-transfer-reaction mass spectrometry (PTR-MS), assess the underlying fragmentation pathways and humidity dependencies, and present a new method for separating FA and AA from their main isobaric interferences. PTR-MS sensitivities towards glycolaldehyde, ethyl acetate, and peroxyacetic acid at m/z 61 are comparable to that for AA; when present, these species will interfere with ambient AA measurements by PTR-MS. Likewise, when it is present, dimethyl ether can interfere with FA measurements. For a reduced electric field (E/N) of 125 Townsend (Td), the PTR-MS sensitivity towards ethanol at m/z 47 is 5-20 times lower than for FA; ethanol will then only be an important interference when present in much higher abundance than FA. Sensitivity towards 2-propanol is product ions of AA, glycolaldehyde, and propanols occur at m/z 79, which is also commonly used to measure benzene. However, the resulting interference for benzene is only significant when E/N is low (≲100 Td). Addition of water vapor affects the PTR-MS response to a given compound by (i) changing the yield for fragmentation reactions and (ii) increasing the importance of ligand switching reactions. In the case of AA, sensitivity to the molecular ion increases with humidity at low E/N but decreases with humidity at high E/N due to water-driven fragmentation. Sensitivity towards FA decreases with humidity throughout the full range of E/N. For glycolaldehyde and the alcohols, the sensitivity increases with humidity due to ligand switching reactions (at low E/N) and reduced fragmentation in the presence of water (at high E/N). Their role as interferences will typically be greatest at high humidity. For compounds such as AA where the humidity effect depends strongly on the collisional energy in the drift tube, simple humidity correction factors (XR
Studies of WW and WZ production and limits on anomalous WWγ and WWZ couplings
Abbott, B.; Abolins, M.; Abramov, V.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Akimov, V.; Alves, G. A.; Amos, N.; Anderson, E. W.; Baarmand, M. M.; Babintsev, V. V.; Babukhadia, L.; Baden, A.; Baldin, B.; Banerjee, S.; Bantly, J.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Belyaev, A.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Boswell, C.; Brandt, A.; Breedon, R.; Briskin, G.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chekulaev, S. V.; Chen, W.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Coney, L.; Cooper, W. E.; Coppage, D.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Dyshkant, A.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evans, H.; Evdokimov, V. N.; Fahland, T.; Fatyga, M. K.; Feher, S.; Fein, D.; Ferbel, T.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Gavrilov, V.; Geld, T. L.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gibbard, B.; Gobbi, B.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, D. R.; Green, J. A.; Greenlee, H.; Grinstein, S.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hays, C.; Hebert, C.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Tong; Ito, A. S.; Jerger, S. A.; Jesik, R.; Joffe-Minor, T.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kim, S. K.; Klima, B.; Klopfenstein, C.; Ko, W.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kubantsev, M.; Kuleshov, S.; Kulik, Y.; Kunori, S.; Landry, F.; Landsberg, G.; Leflat, A.; Li, J.; Li, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Lucotte, A.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Magaña-Mendoza, L.; Manankov, V.; Mani, S.; Mao, H. S.; Markeloff, R.; Marshall, T.; Martin, M. I.; Martin, R. D.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miao, C.; Miettinen, H.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; Mostafa, M.; da Motta, H.; Murphy, C.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Nemethy, P.; Norman, D.; Oesch, L.; Oguri, V.; Oshima, N.; Owen, D.; Padley, P.; Para, A.; Parashar, N.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Pawlik, B.; Perkins, J.; Peters, M.; Piegaia, R.; Piekarz, H.; Pischalnikov, Y.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Reay, N. W.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roco, M.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sánchez-Hernández, A.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shpakov, D.; Shupe, M.; Sidwell, R. A.; Singh, H.; Singh, J. B.; Sirotenko, V.; Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sosebee, M.; Sotnikova, N.; Souza, M.; Stanton, N. R.; Steinbrück, G.; Stephens, R. W.; Stevenson, M. L.; Stichelbaut, F.; Stoker, D.; Stolin, V.; Stoyanova, D. A.; Strauss, M.; Streets, K.; Strovink, M.; Sznajder, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Thomas, T. L.; Thompson, J.; Toback, D.; Trippe, T. G.; Tuts, P. M.; Vaniev, V.; Varelas, N.; Varnes, E. W.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Wood, D. R.; Yamada, R.; Yamin, P.; Yasuda, T.
1999-10-01
Evidence of anomalous WW and WZ production was sought in pp¯ collisions at a center-of-mass energy of s=1.8 TeV. The final states WW(WZ)-->μν jet jet+X, WZ-->μνee+X and WZ-->eνee+X were studied using a data sample corresponding to an integrated luminosity of approximately 90 pb-1. No evidence of anomalous diboson production was found. Limits were set on anomalous WWγ and WWZ couplings and were combined with our previous results. The combined 95% confidence level anomalous coupling limits for Λ=2 TeV are -0.25<=Δκ<=0.39 (λ=0) and -0.18<=λ<=0.19 (Δκ=0), assuming the WWγ couplings are equal to the WWZ couplings.
Studies of WW and WZ Production and Limits on Anomalous WW$\\gamma$ and WWZ Couplings
Abbott, B; Abramov, V; Acharya, B S; Adam, I; Adams, D L; Adams, M; Ahn, S; Akimov, V; Alves, G A; Amos, N; Anderson, E W; Baarmand, M M; Babintsev, V V; Babukhadia, L; Baden, A; Baldin, B Yu; Banerjee, S; Bantly, J; Barberis, E; Baringer, P; Bartlett, J F; Belyaev, A; Beri, S B; Bertram, I; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Bhattacharjee, M; Biswas, N; Blazey, G; Blessing, S; Bloom, P; Böhnlein, A; Bozhko, N; Borcherding, F; Boswell, C; Brandt, A; Breedon, R; Briskin, G; Brock, R; Bross, A; Buchholz, D; Burtovoi, V S; Butler, J M; Carvalho, W; Casey, D; Casilum, Z; Castilla-Valdez, H; Chakraborty, D; Chekulaev, S V; Chen, W; Choi, S; Chopra, S; Choudhary, B C; Christenson, J H; Chung, M; Claes, D; Clark, A R; Cobau, W G; Cochran, J; Coney, L; Cooper, W E; Coppage, D; Cretsinger, C; Cullen-Vidal, D E; Cummings, M A C; Cutts, D; Dahl, O I; Davis, K; De, K; Del Signore, K; Demarteau, M; Denisov, D; Denisov, S P; Diehl, H T; Diesburg, M; DiLoreto, G; Draper, P; Ducros, Y; Dudko, L V; Dugad, S R; Dyshkant, A; Edmunds, D; Ellison, J; Elvira, V D; Engelmann, R; Eno, S; Eppley, G; Ermolov, P; Eroshin, O V; Evans, H; Evdokimov, V N; Fahland, T; Fatyga, M K; Fehér, S; Fein, D; Ferbel, T; Fisk, H E; Fisyak, Yu; Flattum, E; Forden, G E; Fortner, M; Frame, K C; Fuess, S; Gallas, E; Galjaev, A N; Gartung, P; Gavrilov, V; Geld, T L; Genik, R J; Genser, K; Gerber, C E; Gershtein, Yu; Gibbard, B; Gobbi, B; Gómez, B; Gómez, G; Goncharov, P I; González-Solis, J L; Gordon, H; Goss, L T; Gounder, K; Goussiou, A; Graf, N; Grannis, P D; Green, D R; Green, J A; Greenlee, H; Grinstein, S; Grudberg, P; Grünendahl, S; Guglielmo, G; Guida, J A; Guida, J M; Sen-Gupta, A; Gurzhev, S N; Gutíerrez, G; Gutíerrez, P; Hadley, N J; Haggerty, H; Hagopian, S; Hagopian, V; Hahn, K S; Hall, R E; Hanlet, P; Hansen, S; Hauptman, J M; Hays, C; Hebert, C; Hedin, D; Heinson, A P; Heintz, U; Hernández-Montoya, R; Heuring, T C; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoftun, J S; Hsieh, F; Hu, Tong; Ito, A S; Jerger, S A; Jesik, R; Joffe-Minor, T M; Johns, K; Johnson, M; Jonckheere, A; Jones, M; Jöstlein, H; Jun, S Y; Jung, C K; Kahn, S; Karmanov, D; Karmgard, D; Kehoe, R; Kim, S K; Klima, B; Klopfenstein, C; Ko, W; Kohli, J M; Koltick, D; Kostritskii, A V; Kotcher, J; Kotwal, A V; Kozelov, A V; Kozlovskii, E A; Krane, J; Krishnaswamy, M R; Krzywdzinski, S; Kubantsev, M A; Kuleshov, S; Kulik, Y; Kunori, S; Landry, F; Landsberg, G L; Leflat, A; Li, J; Li, Q Z; Lima, J G R; Lincoln, D; Linn, S L; Linnemann, J; Lipton, R; Lucotte, A; Lueking, L; Lyon, A L; Maciel, A K A; Madaras, R J; Madden, R; Magana-Mendoza, L; Manankov, V; Mani, S; Mao, H S; Markeloff, R; Marshall, T; Martin, M I; Martin, R D; Mauritz, K M; May, B; Mayorov, A A; McCarthy, R; McDonald, J; McKibben, T; McKinley, J; McMahon, T; Melanson, H L; Merkin, M; Merritt, K W; Miao, C; Miettinen, H; Mincer, A; Mishra, C S; Mokhov, N V; Mondal, N K; Montgomery, H E; Mooney, P; Mostafa, M; Da Motta, H; Murphy, C; Nang, F; Narain, M; Narasimham, V S; Narayanan, A; Neal, H A; Negret, J P; Némethy, P; Norman, D; Oesch, L; Oguri, V; Oshima, N; Owen, D; Padley, P; Para, A; Parashar, N; Park, Y M; Partridge, R; Parua, N; Paterno, M; Pawlik, B; Perkins, J; Peters, M; Piegaia, R; Piekarz, H; Pishchalnikov, Yu M; Pope, B G; Prosper, H B; Protopopescu, S D; Qian, J; Quintas, P Z; Raja, R; Rajagopalan, S; Ramírez, O; Reay, N W; Reucroft, S; Rijssenbeek, M; Rockwell, T; Roco, M T; Rubinov, P; Ruchti, R; Rutherfoord, J; Sánchez-Hernández, A; Santoro, A F S; Sawyer, L; Schamberger, R D; Schellman, H; Sculli, J; Shabalina, E; Shaffer, C; Shankar, H C; Shivpuri, R K; Shpakov, D; Shupe, M; Sidwell, R A; Singh, H; Singh, J B; Sirotenko, V I; Smith, E; Smith, R P; Snihur, R; Snow, G R; Snow, J; Snyder, S; Solomon, J; Sosebee, M; Sotnikova, N; Souza, M; Stanton, N R; Steinbruck, G; Stephens, R W; Stevenson, M L; Stichelbaut, F; Stoker, D; Stolin, V; Stoyanova, D A; Strauss, M; Streets, K; Strovink, M; Sznajder, A; Tamburello, P; Tarazi, J; Tartaglia, M; Thomas, T L T; Thompson, J; Toback, D; Trippe, T G; Tuts, P M; Vaniev, V; Varelas, N; Varnes, E W; Volkov, A A; Vorobev, A P; Wahl, H D; Wang, G; Warchol, J; Watts, G; Wayne, M; Weerts, H; White, A; White, J T; Wightman, J A; Willis, S; Wimpenny, S J; Wirjawan, J V D; Womersley, J; Wood, D R; Yamada, R; Yamin, P; Yasuda, T; Yepes, P; Yip, K; Yoshikawa, C; Youssef, S; Yu, J; Yu, Y; Zhang, B; Zhou, Z; Zhu, Z H; Zielinski, M; Zieminska, D; Zieminski, A; Zutshi, V; Zverev, E G; Zylberstejn, A
1999-01-01
Evidence of anomalous WW and WZ production was sought in pbar{p} collisions at a center-of-mass energy of sqrt(s) = 1.8 TeV. The final states $WW (WZ) to mu-nu-jet-jet + X, WZ to mu-nu-e-e + X and WZ to e-nu-e-e + X were studied using a data sample corresponding to an integrated luminosity of approximately 90 pb-1. No evidence of anomalous diboson production was found. Limits were set on anomalous WWgamma and WWZ couplings and were combined with our previous results. The combined 95% confidence level anomalous coupling limits for Lambda=2 TeV are -0.25 LE Delta-kappa LE 0.39 (lambda=0) and -0.18 LE lambda LE 0.19 (Delta \\kappa = 0), assuming the WWgamma couplings are equal to the WWZ couplings.
Anomalous mechanical behavior and crack growth of oxide glasses
Seaman, Jared Hilliard
This thesis is concerned with analytically describing anomalous mechanical behaviors of glass. A new slow crack growth model is presented that considers a semi-elliptical crack in a cylindrical glass rod subjected to 4-point bending that is both loaded statically and under a time-dependent load. This model is used to explain a suppression of the loading-rate dependency of ion-exchanged strengthened glass. The stress relaxation behavior of an ion-exchanged strengthened glass is then analyzed in view of a newly observed water-assisted surface stress relaxation mechanism. By making refinements to a time-dependent Maxwell material model for stress buildup and relaxation, the anomalous subsurface compressive stress peak in ion-exchanged strengthened glass is explained. The notion of water-assisted stress relaxation is extended to the crack tip, where high tensile stresses exist. A toughening effect has historically been observed for cracks aged at subcritical stress intensity factors, where crack tip stress relaxation is hypothesized. A simple fracture mechanics model is developed that estimates a shielding stress intensity factor that is then superimposed with the far-field stress intensity factor. The model is used to estimate anomalous "restart" times for aged cracks. The same model predicts a non-linear crack growth rate for cracks loaded near the static fatigue limit. Double cantilever beam slow crack growth experiments were performed and new slow crack growth data for soda-lime silicate glass was collected. Interpretation of this new experimental slow crack growth data suggests that the origin of the static fatigue limit in glass is due to water-assisted stress relaxation. This thesis combines a number of studies that offer a new unified understanding of historical anomalous mechanical behaviors of glass. These anomalies are interpreted as simply the consequence of slow crack growth and water-assisted surface stress relaxation.
Anomalous osmosis resulting from preferential absorption
Staverman, A.J.; Kruissink, C.A.; Pals, D.T.F.
1965-01-01
An explanation of the anomalous osmosis described in the preceding paper is given in terms of friction coefficients in the glass membrane. It is shown that anomalous osmosis may be expected when the friction coefficients are constant and positive provided that the membrane absorbs solute strongly an
Energy Technology Data Exchange (ETDEWEB)
Faraggi, A.E. [Univ. of Florida, Gainesville, FL (United States). Dept. of Physics; Pati, J.C. [Univ. of Maryland, College Park, MD (United States). Dept. of Physics
1997-12-01
Recently a promising mechanism for supersymmetry breaking that utilizes both an anomalous U(1) gauge symmetry and an effective mass term m {approx} 1TeV of certain relevant fields has been proposed. In this paper we examine whether such a mechanism can emerge in superstring derived free fermionic models. We observe that certain three generation string solutions, though not all, lead to an anomalous U(1) which couples universally to all three families. The advantages of this three-family universality of U(1){sub A}, compared to the two-family case, proposed in earlier works, in yielding squark degeneracy, while avoiding radiative breaking of color and charge, are noted. The root cause of the flavor universality of U(1){sub A} is the cyclic permutation symmetry that characterizes the Z{sub 2} x Z{sub 2} orbifold compactification with standard embedding, realized in the free fermionic models by the NAHE set. It is shown that nonrenormalizable terms which contain hidden-sector condensates, generate the required suppression of the relevant mass term m, compared to the Planck scale. While the D-term of the family universal U(1){sub A} leads to squark degeneracy, those of the family dependent U(1)`s, remarkably enough, are found to vanish for the solutions considered, owing to minimization of the potential.
Hydrodynamic waves in an anomalous charged fluid
Abbasi, Navid; Davody, Ali; Hejazi, Kasra; Rezaei, Zahra
2016-11-01
We study the collective excitations in a relativistic fluid with an anomalous U (1) current. In 3 + 1 dimensions at zero chemical potential, in addition to ordinary sound modes we find two propagating modes in presence of an external magnetic field. The first one which is a transverse degenerate mode, propagates with a velocity proportional to the coefficient of gravitational anomaly; this is in fact the Chiral Alfvén wave recently found in [1]. Another one is a wave of density perturbation, namely a chiral magnetic wave (CMW). The velocity dependence of CMW on the chiral anomaly coefficient is well known. We compute the dependence of CMW's velocity on the coefficient of gravitational anomaly as well. We also show that the dissipation splits the degeneracy of CAW. At finite chiral charge density we show that in general there may exist five chiral hydrodynamic waves. Of these five waves, one is the CMW while the other four are mixed Modified Sound-Alfvén waves. It turns out that in propagation transverse to the magnetic field no anomaly effect appears while in parallel to the magnetic field we find sound waves become dispersive due to anomaly.
Mandelbaum, R; Kauffmann, G; Hirata, C M; Brinkmann, J; Mandelbaum, Rachel; Seljak, Uros; Kauffmann, Guinevere; Hirata, Christopher M.; Brinkmann, Jonathan
2006-01-01
The relationship between galaxies and dark matter can be characterized by the halo mass of the central galaxy and the fraction of galaxies that are satellites. Here we present observational constraints from the SDSS on these quantities as a function of r-band luminosity and stellar mass using galaxy-galaxy weak lensing, with a total of 351,507 lenses. We use stellar masses derived from spectroscopy and virial halo masses derived from weak gravitational lensing to determine the efficiency with which baryons in the halo of the central galaxy have been converted into stars. We find that an L* galaxy with a stellar mass of 6x10^{10} M_{sun} is hosted by a halo with mass of 1.4x10^{12} M_{sun}/h, independent of morphology, yielding baryon conversion efficiencies of 17_{-5}^{+10} (early types) and 16_{-6}^{+15} (late types) per cent at the 95 per cent CL (statistical, not including systematic uncertainty due to assumption of a universal initial mass function, or IMF). We find that for a given stellar mass, the halo...
Energy Technology Data Exchange (ETDEWEB)
Bassett, Robert; Papovich, Casey; Tran, Kim-Vy [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, College Station, TX 77843-4242 (United States); Lotz, Jennifer M.; Ferguson, Henry C.; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Bell, Eric F. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Finkelstein, Steven L. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States); Newman, Jeffrey A. [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Almaini, Omar; Lani, Caterina [School of Physics and Astronomy, University of Nottingham, Nottingham (United Kingdom); Cooper, Michael [Center for Galaxy Evolution, Department of Physics and Astronomy, University of California, Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697 (United States); Croton, Darren [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn (Australia); Dekel, Avishai [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Kocevski, Dale D.; Koo, David C.; McGrath, Elizabeth J. [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); McIntosh, Daniel H. [Department of Physics, University of Missouri-Kansas City, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Wechsler, Risa [Kavli Institute for Particle Astrophysics and Cosmology, Physics Department, and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States)
2013-06-10
We study the environmental dependence of color, stellar mass, and morphology by comparing galaxies in a forming cluster to those in the field at z = 1.6 with Hubble Space Telescope near-infrared imaging in the CANDELS/UDS field. We quantify the morphology of the galaxies using the effective radius, r{sub eff}, and Sersic index, n. In both the cluster and field, approximately half of the bulge-dominated galaxies (n > 2) reside on the red sequence of the color-magnitude diagram, and most disk-dominated galaxies (n < 2) have colors expected for star-forming galaxies. There is weak evidence that cluster galaxies have redder rest-frame U - B colors and higher stellar masses compared to the field. Star-forming galaxies in both the cluster and field show no significant differences in their morphologies. In contrast, there is evidence that quiescent galaxies in the cluster have larger median effective radii and smaller Sersic indices compared to the field with a significance of 2{sigma}. These differences are most pronounced for galaxies at clustercentric distances 1 Mpc
Ohno, Takeshi; Hirata, Takafumi
2013-01-01
We have developed a new analytical method to determine the mass-dependent isotopic fractionations on Ce and Nd in geochemical samples. Mass discrimination effects on Ce and Nd were externally corrected by normalizing (149)Sm/(147)Sm and (153)Eu/(151)Eu, being 0.92124 and 1.0916, respectively based on an exponential law. The reproducibility of the isotopic ratio measurements on (142)Ce/(140)Ce, (146)Nd/(144)Nd and (148)Nd/(144)Nd were 0.08‰ (2SD, n = 25), 0.06‰ (2SD, n = 39) and 0.12‰ (2SD, n = 39), respectively. The present technique was applied to determine the variations of the Ce and Nd isotopic ratios for five geochemical reference materials (igneous rocks, JB-1a and JA-2; sedimentary rocks, JMn-1, JCh-1 and JDo-1). The resulting ratios for two igneous rocks (JB-1a and JA-2) and two sedimentary rocks (JMn-1 and JCh-1) did not vary significantly among the samples, whereas the Ce and Nd isotope ratios for the carbonate samples (JDo-1) were significantly higher than those for igneous and sedimentary rock samples. The 1:1 simple correlation between δ(142)Ce and δ(146)Nd indicates that there were no significant difference in the degree of isotopic fractionation between the Ce and Nd. This suggests that the isotopic fractionation for Ce found in the JDo-1 could be induced by geochemical or physicochemical processes without changing the oxidation status of Ce, since the redox-reaction can produce larger isotopic fractionation than the reactions without changing the oxidation state. The variations in the Ce and Nd isotope ratios for geochemical samples could provide new information concerning the physico-chemical processes of the sample formation.
Pellegrini, Gretel Gisela; Cregor, Meloney; McAndrews, Kevin; Morales, Cynthya Carolina; McCabe, Linda Doyle; McCabe, George P.; Peacock, Munro; Burr, David; Weaver, Connie; Bellido, Teresita
2017-01-01
Accumulation of reactive oxygen species (ROS) is an important pathogenic mechanism underling the loss of bone mass and strength with aging and other conditions leading to osteoporosis. The transcription factor erythroid 2-related factor2 (Nrf2) plays a central role in activating the cellular response to ROS. Here, we examined the endogenous response of bone regulated by Nrf2, and its relationship with bone mass and architecture in the male and female murine skeleton. Young (3 month-old) and old (15 month-old) Nrf2 knockout (KO) mice of either sex exhibited the expected reduction in Nrf2 mRNA expression compared to wild type (WT) littermates. Nrf2 deletion did not lead to compensatory increase in Nrf1 or Nrf3, other members of this transcription factor family; and instead, Nrf1 expression was lower in KO mice. Compared to the respective WT littermate controls, female KO mice, young and old, exhibited lower expression of both detoxifying and antioxidant enzymes; young male KO mice, displayed lower expression of detoxifying enzymes but not antioxidant enzymes; and old male KO mice showed no differences in either detoxifying or antioxidant enzymes. Moreover, old male WT mice exhibited lower Nrf2 levels, and consequently lower expression of both detoxifying and antioxidant enzymes, compared to old female WT mice. These endogenous antioxidant responses lead to delayed rate of bone acquisition in female KO mice and higher bone acquisition in male KO mice as quantified by DXA and μCT, demonstrating that Nrf2 is required for full bone accrual in the female skeleton but unnecessary and even detrimental in the male skeleton. Therefore, Nrf2 regulates the antioxidant endogenous response and bone accrual differently depending on sex and age. These findings suggest that therapeutic interventions that target Nrf2 could be developed to enhance the endogenous antioxidant response in a sex- and age-selective manner. PMID:28152064
Svozil, J; Baerenfaller, K
2017-01-01
Mass spectrometry-based proteomics allows in principle the identification of unknown target proteins of posttranslational modifications and the sites of attachment. Including a variety of posttranslational modifications in database-dependent searches of high-throughput mass spectrometry data holds the promise to gain spectrum assignments to modified peptides, thereby increasing the number of assigned spectra, and to identify potentially interesting modification events. However, these potential benefits come for the price of an increased search space, which can lead to reduced scores, increased score thresholds, and erroneous peptide spectrum matches. We have assessed here the advantages and disadvantages of including the variable posttranslational modifications methionine oxidation, protein N-terminal acetylation, cysteine carbamidomethylation, transformation of N-terminal glutamine to pyroglutamic acid (Gln→pyro-Glu), and deamidation of asparagine and glutamine. Based on calculations of local false discovery rates and comparisons to known features of the respective modifications, we recommend for searches of samples that were not enriched for specific posttranslational modifications to only include methionine oxidation, protein N-terminal acetylation, and peptide N-terminal Gln→pyro-Glu as variable modifications. The principle of the validation strategy adopted here can also be applied for assessing the inclusion of posttranslational modifications for differently prepared samples, or for additional modifications. In addition, we have reassessed the special properties of the ubiquitin footprint, which is the remainder of ubiquitin moieties attached to lysines after tryptic digest. We show here that the ubiquitin footprint often breaks off as neutral loss and that it can be distinguished from dicarbamidomethylation events.
Zhang, Chaoli; Li, Chengyuan; de Grijs, Richard; Bekki, Kenji; Deng, Licai; Zaggia, Simone; Rubele, Stefano; Piatti, Andrés E.; Cioni, Maria-Rosa L.; Emerson, Jim; For, Bi-Qing; Ripepi, Vincenzo; Marconi, Marcella; Ivanov, Valentin D.; Chen, Li
2015-12-01
We use near-infrared observations obtained as part of the Visible and Infrared Survey Telescope for Astronomy (VISTA) Survey of the Magellanic Clouds (VMC), as well as two complementary Hubble Space Telescope (HST) data sets, to study the luminosity and mass functions (MFs) as a function of clustercentric radius of the main-sequence stars in the Galactic globular cluster 47 Tucanae. The HST observations indicate a relative deficit in the numbers of faint stars in the central region of the cluster compared with its periphery, for 18.75 ≤ mF606W ≤ 20.9 mag (corresponding to a stellar mass range of 0.55 mass segregation. The VMC-based stellar MFs exhibit power-law shapes for masses in the range 0.55 mass segregation and tidal stripping, for both the first- and second-generation stars in 47 Tuc.
Anomalous Hall effect in Fe/Gd bilayers
Xu, W. J.
2010-04-01
Non-monotonic dependence of anomalous Hall resistivity on temperature and magnetization, including a sign change, was observed in Fe/Gd bilayers. To understand the intriguing observations, we fabricated the Fe/Gd bilayers and single layers of Fe and Gd simultaneously. The temperature and field dependences of longitudinal resistivity, Hall resistivity and magnetization in these films have also been carefully measured. The analysis of these data reveals that these intriguing features are due to the opposite signs of Hall resistivity/or spin polarization and different Curie temperatures of Fe and Gd single-layer films. Copyright (C) EPLA, 2010
Analysis on anomalous degradation in silicon solar cell designed for space use
Energy Technology Data Exchange (ETDEWEB)
Ohshima, Takeshi; Morita, Yousuke; Nashiyama, Isamu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Kawasaki, Osamu; Hisamatsu, Tadashi; Yamamoto, Yasunari; Matsuda, Sumio; Nakao, Tetsuya; Wakow, Yoshihito
1997-03-01
Recently, we have found the anomalous degradation of electrical performance in silicon solar cells irradiated with charged particles in a high-fluence region. This anomalous phenomenon has two typical features, which are sudden-drop-down of electrical performances in a high-fluence region and slight recovery of the short circuit current I{sub SC} just before the sudden-drop-down. These features cannot be understood by a conventional model coming from the decrease of minority-carriers life-time. We introduce this anomalous degradation of the electrical performance in Si solar cells irradiated with electrons or protons. We also report the result of simulation for the fluence dependence of the I{sub SC}, and discuss the mechanism of this anomalous phenomenon. (author)
Lu, Y. M.
2013-03-05
Scaling of the anomalous Hall conductivity to longitudinal conductivity σAH∝σ2xx has been observed in the dirty regime of two-dimensional weak and strong localization regions in ultrathin, polycrystalline, chemically disordered, ferromagnetic FePt films. The relationship between electron transport and temperature reveals a quantitatively insignificant Coulomb interaction in these films, while the temperature dependent anomalous Hall conductivity experiences quantum correction from electron localization. At the onset of this correction, the low-temperature anomalous Hall resistivity begins to be saturated when the thickness of the FePt film is reduced, and the corresponding Hall conductivity scaling exponent becomes 2, which is above the recent unified theory of 1.6 (σAH∝σ1.6xx). Our results strongly suggest that the correction of the electron localization modulates the scaling exponent of the anomalous Hall effect.
Chabab, M; Lahbas, A; Oulne, M
2016-01-01
In this paper, we present a theoretical study of a conjonction of $\\gamma$-rigid and $\\gamma$-stable collective motions in critical point symmetries of the phase transitions from spherical to deformed shapes of nuclei using exactly separable version of the Bohr Hamiltonian with deformation-dependent mass term. The deformation-dependent mass is applied simultaneously to $\\gamma$-rigid and $\\gamma$-stable parts of this famous collective Hamiltonian. Moreover, the $\\beta$ part of the problem is described by means of Davidson potential, while the $\\gamma$-angular part corresponding to axially symmetric shapes is treated by a Harmonic Osillator potential. The energy eigenvalues and normalized eigenfunctions of the problem are obtained in compact forms by making use of the asymptotic iteration method. The combined effect of the deformation-dependent mass and rigidity as well as harmonic oscillator stiffness parameters on the energy spectrum and wave functions is duly investigated. Also, the electric quadrupole tran...
Heidenreich, J. E., III; Thiemens, M. H.
1985-01-01
A non-mass dependent (NoMaD) oxygen isotope effect is demonstrated in the dissociation of CO2 similar to that observed in the electrosynthesis of ozone. The molecular oxygen produced carries the signature of two separate isotopic fractionation processes; a mass-dependent fractionation probably due to CO2 + O isotopic exchange, and a secondary NoMaD fractionation (delta O-17 = 0.97 + or - 0.09 delta O-18, with the O2 depleted in O-17 and O-18). It is suggested that the effect is due to either the formation or relaxation of ozone in an excited electronic state. This represents the latest advance in the understanding of chemical NoMaD effects which may be essential to the explanation of non-mass-dependent fractionations observed in meteorites.
Stueckelberg Axions and Anomalous Abelian Extensions of the Standard Model
Morelli, Simone
2009-01-01
This thesis work analyzes basic field theoretical aspects of a class of models motivated by orientifold vacua of string theory and some of their phenomenological applications at the Large Hadron Collider. They extend the gauge structure of the Standard Model by anomalous extra U(1) symmetries, which involve Stuckelberg axions for anomaly cancellation and are accompanied by Chern-Simons interactions. In particular, these effective actions are characterized by a physical pseudoscalar (the axi-Higgs) in the CP-odd spectrum, which has the properties of a generalized Peccei-Quinn axion, with independent mass and couplings to the gauge fields. Amplitudes mediated by anomalous gauge interactions are studied at the new collider in some specific channels such as Drell-Yan and double prompt-photon and shown to be small. Finally, we address the problem of the relation between the Green-Schwarz and the Wess-Zumino mechanism(s) for anomaly cancellations in effective lagrangeans involving anomalous gauge interactions, with...
Constraints on Anomalous Quartic Gauge Boson Couplings from $\
Abbiendi, G; Åkesson, P F; Alexander, G; Allison, J; Amaral, P; Anagnostou, G; Anderson, K J; Asai, S; Axen, D A; Azuelos, Georges; Bailey, I; Barberio, E; Barillari, T; Barlow, R J; Batley, J Richard; Bechtle, P; Behnke, T; Bell, K W; Bell, P J; Bella, G; Bellerive, A; Benelli, G; Bethke, Siegfried; Biebel, O; Boeriu, O; Bock, P; Boutemeur, M; Braibant, S; Brigliadori, L; Brown, R M; Büsser, K; Burckhart, H J; Campana, S; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Ciocca, C; Csilling, Akos; Cuffiani, M; Dado, S; de Roeck, A; De Wolf, E A; Desch, Klaus; Dienes, B; Donkers, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Etzion, E; Fabbri, Franco Luigi; Feld, L; Ferrari, P; Fiedler, F; Fleck, I; Ford, M; Frey, A; Gagnon, P; Gary, J W; Gaycken, G; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Giunta, M; Goldberg, J; Gross, E; Grunhaus, Jacob; Gruwé, M; Günther, P O; Sen-Gupta, A; Hajdu, C; Hamann, M; Hanson, G G; Harel, A; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herten, G; Heuer, R D; Hill, J C; Hoffman, K; Horváth, D; Igo-Kemenes, P; Ishii, K; Jeremie, H; Jovanovic, P; Junk, T R; Kanaya, N; Kanzaki, J; Karlen, Dean A; Kawagoe, K; Kawamoto, T; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kluth, S; Kobayashi, T; Kobel, M; Komamiya, S; Kramer, T; Krieger, P; Von Krogh, J; Krüger, K; Kühl, T; Kupper, M; Lafferty, G D; Landsman, Hagar Yaël; Lanske, D; Layter, J G; Lellouch, D; Letts, J; Levinson, L; Lillich, J; Lloyd, S L; Loebinger, F K; Lü, J; Ludwig, A; Ludwig, J; Mader, W; Marcellini, S; Martin, A J; Masetti, G; Mashimo, T; Mättig, P; McKenna, J A; McPherson, R A; Meijers, F; Menges, W; Merritt, F S; Mes, H; Meyer, N; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Moed, S; Mohr, W; Mori, T; Mutter, A; Nagai, K; Nakamura, I; Nanjo, H; Neal, H A; Nisius, R; O'Neale, S W; Oh, A; Oreglia, M J; Orito, S; Pahl, C; Pásztor, G; Pater, J R; Pilcher, J E; Pinfold, J L; Plane, D E; Poli, B; Pooth, O; Przybycien, M B; Quadt, A; Rabbertz, K; Rembser, C; Renkel, P; Roney, J M; Rozen, Y; Runge, K; Sachs, K; Saeki, T; Sarkisyan-Grinbaum, E; Schaile, A D; Schaile, O; Scharff-Hansen, P; Schieck, J; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Sherwood, P; Skuja, A; Smith, A M; Sobie, R J; Söldner-Rembold, S; Spanó, F; Stahl, A; Strom, D; Ströhmer, R; Tarem, S; Tasevsky, M; Teuscher, R; Thomson, M A; Torrence, E; Toya, D; Tran, P; Trigger, I; Trócsányi, Z L; Tsur, E; Turner-Watson, M F; Ueda, I; Ujvári, B; Vollmer, C F; Vannerem, P; Vertesi, R; Verzocchi, M; Voss, H; Vossebeld, Joost Herman; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wengler, T; Wermes, N; Wilson, G W; Wilson, J A; Wolf, G; Wyatt, T R; Yamashita, S; Zer-Zion, D; Zivkovic, L
2004-01-01
Anomalous quartic couplings between the electroweak gauge bosons may contribute to the vv gamma gamma and qq gamma gamma final states produced in e+e- collisions. This analysis uses the LEP2 OPAL data sample at centre-of-mass energies up to 209 GeV. Event selections identify vv gamma gamma and qq gamma gamma events in which the two photons are reconstructed within the detector acceptance. The cross-section for the process e+e- -> qq gamma gamma is measured. Averaging over all energies, the ratio of the observed e+e- -> qq gamma gamma cross-section to the Standard Model expectation is R(data/SM) = 0.92 +- 0.07 +- 0.04 where the errors represent the statistical and systematic uncertainties respectively. The vv gamma gamma and qq gamma gamma data are used to constrain possible anomalous W+W- gamma gamma and ZZ gamma gamma couplings. Combining with previous OPAL results from the W+W- gamma final state, the 95% confidence level limits on the anomalous coupling parameters aoz, acz, aow and acw are found to be: -0.0...
Search for anomalous weak dipole moments of the $\\tau$ lepton
Heister, A; Barate, R; De Bonis, I; Décamp, D; Goy, C; Lees, J P; Merle, E; Minard, M N; Pietrzyk, B; Bravo, S; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Martínez, M; Pacheco, A; Ruiz, H; Colaleo, A; Creanza, D; De Palma, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Azzurri, P; Buchmüller, O L; Cattaneo, M; Cerutti, F; Clerbaux, B; Drevermann, H; Forty, R W; Frank, M; Gianotti, F; Hansen, J B; Harvey, J; Hutchcroft, D E; Janot, P; Jost, B; Kado, M; Mato, P; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Schneider, O; Sguazzoni, G; Tejessy, W; Teubert, F; Valassi, Andrea; Videau, I; Ward, J; Badaud, F; Falvard, A; Gay, P; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Rougé, A; Rumpf, M; Swynghedauw, M; Verderi, M; Videau, H L; Ciulli, V; Focardi, E; Parrini, G; Antonelli, A; Antonelli, M; Bencivenni, G; Bossi, F; Capon, G; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Lynch, J G; Negus, P; O'Shea, V; Raine, C; Thompson, A S; Wasserbaech, S R; Cavanaugh, R J; Geweniger, C; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Stenzel, H; Tittel, K; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, P J; Girone, M; Marinelli, N; Sedgbeer, J K; Thompson, J C; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bouhova-Thacker, E; Bowdery, C K; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Pearson, M R; Robertson, N A; Jakobs, K; Kleinknecht, K; Renk, B; Sander, H G; Wachsmuth, H W; Zeitnitz, C; Bonissent, A; Coyle, P; Leroy, O; Payre, P; Rousseau, D; Talby, M; Ragusa, F; David, A; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Männer, W; Moser, H G; Settles, Ronald; Wolf, G; Boucrot, J; Callot, O; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Lefrançois, J; Veillet, J J; Yuan, C; Bagliesi, G; Boccali, T; Foà, L; Giammanco, A; Giassi, A; Ligabue, F; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Tenchini, Roberto; Venturi, A; Verdini, P G; Blair, G A; Cowan, G; Green, M G; Medcalf, T; Misiejuk, A; Strong, J A; Teixeira-Dias, P; Clifft, R W; Edgecock, T R; Norton, P R; Tomalin, I R; Bloch-Devaux, B; Colas, P; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Schuller, J P; Vallage, B; Konstantinidis, N P; Litke, A M; Taylor, G; Booth, C N; Cartwright, S L; Combley, F; Lehto, M H; Thompson, L F; Böhrer, A; Brandt, S; Grupen, Claus; Ngac, A; Prange, G; Giannini, G; Rothberg, J E; Armstrong, S R; Berkelman, K; Cranmer, K; Ferguson, D P S; Gao, Y; Gonzáles, S; Hayes, O J; Hu, H; Jin, S; Kile, J; McNamara, P A; Nielsen, J; Pan, Y B; Von Wimmersperg-Töller, J H; Wiedenmann, W; Wu, J; Wu Sau Lan; Wu, X; Zobernig, G; Dissertori, G
2003-01-01
The anomalous weak dipole moments of the $\\tau$ lepton are measured in a data sample collected by ALEPH from 1990 to 1995 corresponding to an integrated luminosity of 155~pb$^{-1}$. Tau leptons produced in the reaction $e^+ e^- \\rightarrow \\tau^+ \\tau^-$ at energies close to the ${\\rm Z}$ mass are studied using their semileptonic decays to $\\pi$, $\\rho$, $a_1 \\rightarrow \\pi 2\\pi^0$ or $a_1 \\rightarrow 3 \\pi$. The real and imaginary components of both the anomalous weak magnetic dipole moment and the CP-violating anomalous weak electric dipole moment, $ {\\rm Re}\\,\\mu_{\\tau}$, ${\\rm Im}\\,\\mu_{\\tau}$, ${\\rm Re}\\,d_{\\tau}$ and ${\\rm Im}\\,d_{\\tau}$, are measured simultaneously by means of a likelihood fit built from the full differential cross section. No evidence of new physics is found. The following bounds are obtained (95\\% CL): $|{\\rm Re}\\, \\mu_{\\tau} | < 1.14 \\times 10^{-3}$, $|{\\rm Im}\\, \\mu_{\\tau} | < 2.65 \\times 10^{-3}$, $|{\\rm Re}\\, d_{\\tau} | < 0.91 \\times 10^{-3}$, and $|{\\rm Im}\\, d_{\\tau} ...
Institute of Scientific and Technical Information of China (English)
Zhen WANG; Hui ZHANG
2014-01-01
In this work, we obtain the global existence and uniqueness of classical solu-tions to a viscous liquid-gas two-phase model with mass-dependent viscosity and vacuum in one dimension, where the initial vacuum is allowed. We get the upper and lower bounds of gas and liquid masses n and m by the continuity methods which we use to study the compressible Navier-Stokes equations.
An, Tae-Ho; Lim, Young Soo; Park, Mi Jin; Tak, Jang-Yeul; Lee, Soonil; Cho, Hyung Koun; Cho, Jun-Young; Park, Chan; Seo, Won-Seon
2016-10-01
Composition-dependent charge transport and temperature-dependent density of state effective mass-dependent Seebeck coefficient were investigated in Bi2-xSbxTe3 (x = 1.56-1.68) compounds. The compounds were prepared by the spark plasma sintering of high-energy ball-milled powder. High-temperature Hall measurements revealed that the charge transport in the compounds was governed dominantly by phonon scattering and influenced additionally by alloy scattering depending on the amount of Sb. Contrary effects of Sb content on the Seebeck coefficient were discussed in terms of carrier concentration and density of state effective mass, and it was elucidated by temperature-normalized Pisarenko plot for the first time.
Anomalous transport from holography: Part II
Bu, Yanyan; Sharon, Amir
2016-01-01
This is a second study of chiral anomaly induced transport within a holographic model consisting of anomalous $U(1)_V\\times U(1)_A$ Maxwell theory in Schwarzschild-$AdS_5$ spacetime. In the first part, chiral magnetic/separation effects (CME/CSE) are considered in presence of a static spatially-inhomogeneous external magnetic field. Gradient corrections to CME/CSE are analytically evaluated up to third order in the derivative expansion. Some of the third order gradient corrections lead to an anomaly-induced negative $B^2$-correction to the diffusion constant. We also find non-linear modifications to the chiral magnetic wave (CMW). In the second part, we focus on the experimentally interesting case of the axial chemical potential being induced dynamically by a constant magnetic and time-dependent electric fields. Constitutive relations for the vector/axial currents are computed employing two different approximations: (a) derivative expansion (up to third order) but fully nonlinear in the external fields, and (...
Mass-dependent dynamics of the luminescent exchange reactions C+(2P), P+(3P) + H2, D2, HD
Glenewinkel-Meyer, Th; Hoppe, U.; Kowalski, A.; Ottinger, Ch; Rabenda, D.
1995-06-01
Chemiluminescent ion/molecule reactions of ground state C+ and P+ ions with H2, D2 and HD have been studied in an ion beam/target gas cell arrangement. Emission spectra of CH+, CD+ (A 1II) and of PH+, PD+ (A 2[Delta]) were observed with up to 1 Å FWHM resolution and at collision energies from threshold ([approximate] 3 eV) to 8 eVc.m. (centre-of-mass) and 15eVc.m., respectively. Very detailed computer simulations of the spectral contours were done, including ab initio transition moments and, in the case of PH+/PD+, the effects of predissociation. In simulating the spectra obtained with HD, the overlapped hydride and deuteride product ion spectra could be isolated by varying the respective weighting factors to achieve an optimum overall fit. In the case of C+ + HD, the two components were found to have very similar rovibrational distributions as with the products from C+ + H2 and C+ + D2. In the P+ case, however, the rotational, although not the vibrational, distributions were found to be significantly different for the isotopically mixed and the pure reactions. The cross-sections showed an intermolecular isotope effect only for C+ + H2 vs. C+ + D2 at high energies. However, both with C+ + HD and P+ + HD, a very strong intramolecular isotope effect, i.e. an energy-dependent branching ratio, was observed: at low energies deuteride formation prevails, at high energies hydride. This behaviour is discussed in terms of an impulsive collision model, assuming the "pairwise" relative kinetic energy between the reacting atoms to be the determining factor. On the basis of the measured cross-section curves for the H2 and D2 reactions, the energy-dependent hydride/deuteride ratio in the HD reaction can then be predicted. The agreement with the experimental results is excellent in the P+ case, but only moderate for the C+ reactions. Even the P+ reaction, however, does not occur via the spectator stripping mechanisms. The spectra show an energy-independent vibrational excitation
Probing anomalous Wtb couplings in top pair decays
Energy Technology Data Exchange (ETDEWEB)
Aguilar-Saavedra, J.A. [Universidad de Granada, Departamento de Fisica Teorica y del Cosmos and CAFPE, Granada (Spain); Carvalho, J.; Castro, N.; Veloso, F. [Universidade de Coimbra, LIP - Departamento de Fisica, Coimbra (Portugal); Onofre, A. [Universidade de Coimbra, LIP - Departamento de Fisica, Coimbra (Portugal); UCP, Figueira da Foz (Portugal)
2007-04-15
We investigate several quantities, defined in the decays of top quark pairs, which can be used to explore non-standard Wtb interactions. Two new angular asymmetries are introduced in the leptonic decay of top (anti)quarks. Both are very sensitive to anomalous Wtb couplings, and their measurement allows for a precise determination of the W helicity fractions. We also examine other angular and energy asymmetries, the W helicity fractions and their ratios, as well as spin correlation asymmetries, analysing their dependence on anomalous Wtb couplings and identifying the quantities which are most sensitive to them. It is explicitly shown that spin correlation asymmetries are less sensitive to new interactions in the decay of the top quark; therefore, when combined with the measurement of other observables, they can be used to determine the t anti t spin correlation even in the presence of anomalous Wtb couplings. We finally discuss some asymmetries which can be used to test CP violation in t anti t production and complex phases in the effective Wtb vertex. (orig.)
A violation of universality in anomalous Fourier’s law
Hurtado, Pablo I.; Garrido, Pedro L.
2016-12-01
Since the discovery of long-time tails, it has been clear that Fourier’s law in low dimensions is typically anomalous, with a size-dependent heat conductivity, though the nature of the anomaly remains puzzling. The conventional wisdom, supported by renormalization-group arguments and mode-coupling approximations within fluctuating hydrodynamics, is that the anomaly is universal in 1d momentum-conserving systems and belongs in the Lévy/Kardar-Parisi-Zhang universality class. Here we challenge this picture by using a novel scaling method to show unambiguously that universality breaks down in the paradigmatic 1d diatomic hard-point fluid. Hydrodynamic profiles for a broad set of gradients, densities and sizes all collapse onto an universal master curve, showing that (anomalous) Fourier’s law holds even deep into the nonlinear regime. This allows to solve the macroscopic transport problem for this model, a solution which compares flawlessly with data and, interestingly, implies the existence of a bound on the heat current in terms of pressure. These results question the renormalization-group and mode-coupling universality predictions for anomalous Fourier’s law in 1d, offering a new perspective on transport in low dimensions.
Anomalous magnetic moment with heavy virtual leptons
Energy Technology Data Exchange (ETDEWEB)
Kurz, Alexander [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Liu, Tao; Steinhauser, Matthias [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2013-11-15
We compute the contributions to the electron and muon anomalous magnetic moment induced by heavy leptons up to four-loop order. Asymptotic expansion is applied to obtain three analytic expansion terms which show rapid convergence.
Anomalous Fractional Diffusion Equation for Transport Phenomena
Institute of Scientific and Technical Information of China (English)
QiuhuaZENG; HouqiangLI; 等
1999-01-01
We derive the standard diffusion equation from the continuity equation and by discussing the defectiveness of earlier proposed equations,we get the generalized fractional diffusion equation for anomalous diffusion.
Anomalous magnetic moment with heavy virtual leptons
Energy Technology Data Exchange (ETDEWEB)
Kurz, Alexander [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Deutsches Elektronen Synchrotron (DESY), 15738 Zeuthen (Germany); Liu, Tao [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Marquard, Peter [Deutsches Elektronen Synchrotron (DESY), 15738 Zeuthen (Germany); Steinhauser, Matthias [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany)
2014-02-15
We compute the contributions to the electron and muon anomalous magnetic moment induced by heavy leptons up to four-loop order. Asymptotic expansion is applied to obtain three analytic expansion terms which show rapid convergence.
Anomalous magnetic moment with heavy virtual leptons
Kurz, Alexander; Marquard, Peter; Steinhauser, Matthias
2013-01-01
We compute the contributions to the electron and muon anomalous magnetic moment induced by heavy leptons up to four-loop order. Asymptotic expansion is applied to obtain three analytic expansion terms which show rapid convergence.
Bernardi, M.; Meert, A.; Sheth, R. K.; Fischer, J.-L.; Huertas-Company, M.; Maraston, C.; Shankar, F.; Vikram, V.
2017-01-01
We quantify the systematic effects on the stellar mass function which arise from assumptions about the stellar population, as well as how one fits the light profiles of the most luminous galaxies at z ˜ 0.1. When comparing results from the literature, we are careful to separate out these effects. Our analysis shows that while systematics in the estimated comoving number density which arise from different treatments of the stellar population remain of order ≤0.5 dex, systematics in photometry are now about 0.1 dex, in contrast to some recent claims in the literature. Compared to these more recent analyses, previous work based on Sloan Digital Sky Survey (SDSS) pipeline photometry leads to underestimates of ρ★( ≥ M★) by factors of 3 - 10 in the mass range 1011 - 1011.6M⊙, but up to a factor of 100 at higher stellar masses. This impacts studies which match massive galaxies to dark matter halos. Although systematics which arise from different treatments of the stellar population remain of order ≤0.5 dex, our finding that systematics in photometry now amount to only about 0.1 dex in the stellar mass density is a significant improvement with respect to a decade ago. Our results highlight the importance of using the same stellar population and photometric models whenever low and high redshift samples are compared.
On polarization parameters of spin-1 particles and anomalous couplings in e^+e^-→ ZZ/Zγ
Rahaman, Rafiqul; Singh, Ritesh K.
2016-10-01
We study the anomalous trilinear gauge couplings of Z and γ using a complete set of polarization asymmetries for the Z boson in e^+e^-→ ZZ/Zγ processes with unpolarized initial beams. We use these polarization asymmetries, along with the cross section, to obtain a simultaneous limit on all the anomalous couplings using the Markov Chain Monte Carlo (MCMC) method. For an e^+e^- collider running at 500 GeV center-of-mass energy and 100 fb^{-1} of integrated luminosity the simultaneous limits on the anomalous couplings are 1-3× 10^{-3}.
Signal velocity for anomalous dispersive waves
Energy Technology Data Exchange (ETDEWEB)
Mainardi, F. (Bologna Univ. (Italy))
1983-03-11
The concept of signal velocity for dispersive waves is usually identified with that of group velocity. When the dispersion is anomalous, this interpretation is not correct since the group velocity can assume nonphysical values. In this note, by using the steepest descent method first introduced by Brillouin, the phase velocity is shown to be the signal velocity when the dispersion is anomalous in the full range of frequencies.
Anomalous transport due to scale anomaly
Chernodub, M N
2016-01-01
We show that the scale anomaly in field theories leads to new anomalous transport effects that emerge in external electromagnetic field in inhomogeneous gravitational background. In inflating geometry the QED scale anomaly generates electric current which flows in opposite direction with respect to background electric field. In static spatially inhomogeneous gravitational background the dissipationless electric current flows transversely both to the magnetic field axis and to the gradient of the inhomogeneity. The anomalous currents are proportional to the beta function of the theory.
Anomalous transport in the crowded world of biological cells.
Höfling, Felix; Franosch, Thomas
2013-04-01
A ubiquitous observation in cell biology is that the diffusive motion of macromolecules and organelles is anomalous, and a description simply based on the conventional diffusion equation with diffusion constants measured in dilute solution fails. This is commonly attributed to macromolecular crowding in the interior of cells and in cellular membranes, summarizing their densely packed and heterogeneous structures. The most familiar phenomenon is a sublinear, power-law increase of the mean-square displacement (MSD) as a function of the lag time, but there are other manifestations like strongly reduced and time-dependent diffusion coefficients, persistent correlations in time, non-Gaussian distributions of spatial displacements, heterogeneous diffusion and a fraction of immobile particles. After a general introduction to the statistical description of slow, anomalous transport, we summarize some widely used theoretical models: Gaussian models like fractional Brownian motion and Langevin equations for visco-elastic media, the continuous-time random walk model, and the Lorentz model describing obstructed transport in a heterogeneous environment. Particular emphasis is put on the spatio-temporal properties of the transport in terms of two-point correlation functions, dynamic scaling behaviour, and how the models are distinguished by their propagators even if the MSDs are identical. Then, we review the theory underlying commonly applied experimental techniques in the presence of anomalous transport like single-particle tracking, fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP). We report on the large body of recent experimental evidence for anomalous transport in crowded biological media: in cyto- and nucleoplasm as well as in cellular membranes, complemented by in vitro experiments where a variety of model systems mimic physiological crowding conditions. Finally, computer simulations are discussed which play an important
Godunov, S I
2013-01-01
The influence of the finiteness of the proton radius and mass on the energies of a hydrogen atom and hydrogen-like ions in a superstrong magnetic field is studied. The finiteness of the nucleus size pushes the ground energy level up leading to a nontrivial dependence of the value of critical nucleus charge on the external magnetic field.
Directory of Open Access Journals (Sweden)
M. K. Bahar
2013-01-01
Full Text Available Using the asymptotic iteration and wave function ansatz method, we present exact solutions of the Klein-Gordon equation for the quark-antiquark interaction and harmonic oscillator potential in the case of the position-dependent mass.
Brouwer, Margot M.; Cacciato, Marcello; Dvornik, Andrej; Eardley, Lizzie; Heymans, Catherine; Hoekstra, Henk; Kuijken, Konrad; McNaught-Roberts, Tamsyn; Sifón, Cristóbal; Viola, Massimo; Alpaslan, Mehmet; Bilicki, Maciej; Bland-Hawthorn, Joss; Brough, Sarah; Choi, Ami; Driver, Simon P.; Erben, Thomas; Grado, Aniello; Hildebrandt, Hendrik; Holwerda, Benne W.; Hopkins, Andrew M.; de Jong, Jelte T. A.; Liske, Jochen; McFarland, John; Nakajima, Reiko; Napolitano, Nicola R.; Norberg, Peder; Peacock, John A.; Radovich, Mario; Robotham, Aaron S. G.; Schneider, Peter; Sikkema, Gert; van Uitert, Edo; Verdoes Kleijn, Gijs; Valentijn, Edwin A.
2016-11-01
Galaxies and their dark matter haloes are part of a complex network of mass structures, collectively called the cosmic web. Using the tidal tensor prescription these structures can be classified into four cosmic environments: voids, sheets, filaments and knots. As the cosmic web may influence the formation and evolution of dark matter haloes and the galaxies they host, we aim to study the effect of these cosmic environments on the average mass of galactic haloes. To this end we measure the galaxy-galaxy lensing profile of 91 195 galaxies, within 0.039 < z < 0.263, from the spectroscopic Galaxy And Mass Assembly survey, using {˜ }100 ° ^2 of overlapping data from the Kilo-Degree Survey. In each of the four cosmic environments we model the contributions from group centrals, satellites and neighbouring groups to the stacked galaxy-galaxy lensing profiles. After correcting the lens samples for differences in the stellar mass distribution, we find no dependence of the average halo mass of central galaxies on their cosmic environment. We do find a significant increase in the average contribution of neighbouring groups to the lensing profile in increasingly dense cosmic environments. We show, however, that the observed effect can be entirely attributed to the galaxy density at much smaller scales (within 4 h-1 Mpc), which is correlated with the density of the cosmic environments. Within our current uncertainties we find no direct dependence of galaxy halo mass on their cosmic environment.
Institute of Scientific and Technical Information of China (English)
LI De-Min; YU Hong; SHEN Qi-Xing
2001-01-01
By incorporating the flavour-dependent quark-antiquark annihilation amplitude into the mass-squared matrix describing the mixing of the isoscalar states of a meson nonet, the new version of Schwinger's nonet mass formula,N which holds with a high accuracy for the 0-+, 1--, 2++, 2-+ and 3-- nonets, is derived and the mixing angle of theisoscalar octet-singlet for these honets is obtained. In particular, the mixing angle of the isoscalar octet singlet for the pseudoscalar nonet is determined to take the value of-12.92°, which is in agreement with the value range fiom -13° to -17° deduced fiom a rather exhaustive and up-to-date analysis of data. It is also pointed out that the omission of the flavour-dependent qq annihilation effect might be a factor resulting in the invalidity of Schwinger's original honet mass formula for the pseudoscalar nonet.
Energy Technology Data Exchange (ETDEWEB)
Schulze-Halberg, Axel, E-mail: xbataxel@gmail.com [Department of Mathematics and Actuarial Science, Indiana University Northwest, 3400 Broadway, Gary IN 46408 (United States); García-Ravelo, Jesús; Pacheco-García, Christian [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, 07738 México D.F. (Mexico); Juan Peña Gil, José [Universidad Autónoma Metropolitana - Azcapotzalco, CBI - Area de Física Atómica Molecular Aplicada, Av. San Pablo 180, Reynosa Azcapotzalco, 02200 México D.F. (Mexico)
2013-06-15
We consider the Schrödinger equation in the Thomas–Fermi field, a model that has been used for describing electron systems in δ-doped semiconductors. It is shown that the problem becomes exactly-solvable if a particular effective (position-dependent) mass distribution is incorporated. Orthogonal sets of normalizable bound state solutions are constructed in explicit form, and the associated energies are determined. We compare our results with the corresponding findings on the constant-mass problem discussed by Ioriatti (1990) [13]. -- Highlights: ► We introduce an exactly solvable, position-dependent mass model for the Thomas–Fermi potential. ► Orthogonal sets of solutions to our model are constructed in closed form. ► Relation to delta-doped semiconductors is discussed. ► Explicit subband bottom energies are calculated and compared to results obtained in a previous study.
Anomalous transport in the H-mode pedestal of Alcator C-Mod discharges
Pankin, A. Y.; Hughes, J. W.; Greenwald, M. J.; Kritz, A. H.; Rafiq, T.
2017-02-01
Anomalous transport in the H-mode pedestal region of five Alcator C-Mod discharges, representing a collisionality scan is analyzed. The understanding of anomalous transport in the pedestal region is important for the development of a comprehensive model for the H-mode pedestal slope. In this research, a possible role of the drift resistive inertial ballooning modes (Rafiq et al 2010 Phys. Plasmas 17 082511) in the edge of Alcator C-Mod discharges is analyzed. The stability analysis, carried out using the TRANSP code, indicates that the DRIBM modes are strongly unstable in Alcator C-Mod discharges with large electron collisionality. An improved interpretive analysis of H-mode pedestal experimental data is carried out utilizing the additive flux minimization technique (Pankin et al 2013 Phys. Plasmas 20 102501) together with the guiding-center neoclassical kinetic XGC0 code. The neoclassical and neutral physics are simulated in the XGC0 code and the anomalous fluxes are computed using the additive flux minimization technique. The anomalous fluxes are reconstructed and compared with each other for the collisionality scan Alcator C-Mod discharges. It is found that the electron thermal anomalous diffusivities at the pedestal top increase with the electron collisionality. This dependence can also point to the drift resistive inertial ballooning modes as the modes that drive the anomalous transport in the plasma edge of highly collisional discharges.
Institute of Scientific and Technical Information of China (English)
Altu(g) Arda; Ramazan Sever
2011-01-01
The effective mass one-dimensional Schr(o)dinger equation for the generalized Morse potential is solved by using Nikiforov-Uvarov method. Energy eigenvalues and corresponding eigenfunctions axe computed analytically. The results are also reduced to the constant mass case. Energy eigenvalues are computed numerically for some diatomic molecules. They are in agreement with the ones obtained before.
Kim, Jihn E
2012-01-01
I will talk on my recent works. Axino, related to the SUSY transformation of axion, can mix with Goldstino in principle. In this short talk, I would like to explain what is the axino mass and its plausible mass range. The axino mass is known to have a hierarchical mass structure depending on accidental symmetries. With only one axino, if G_A=0 where G=K+ 2ln|W|, we obtain axino mass= gravitino mass. For G_A nonzero, the axino mass depends on the details of the Kaehler potential. I also comment on the usefulness of a new parametrization of the CKM matrix.
Anomalous transport in low-dimensional systems with correlated disorder
Energy Technology Data Exchange (ETDEWEB)
Izrailev, F M [Instituto de Fisica, Universidad Autonoma de Puebla, Apartado Postal J-48, Puebla, Pue., 72570 (Mexico); Makarov, N M [Instituto de Ciencias, Universidad Autonoma de Puebla, Priv. 17 Norte No 3417, Col. San Miguel Hueyotlipan, Puebla, Pue., 72050 (Mexico)
2005-12-09
We review recent results on the anomalous transport in one-dimensional and quasi-one-dimensional systems with bulk and surface disorder. Principal attention is paid to the role of long-range correlations in random potentials for the bulk scattering and in corrugated profiles for the surface scattering. It is shown that with the proper type of correlations one can construct such a disorder that results in a selective transport with given properties. Of particular interest is the possibility to arrange windows of a complete transparency (or reflection) with dependence on the wave number of incoming classical waves or electrons.
Violation of Fourier's Law and Anomalous Heat Diffusion in Silicon
2010-01-01
We study heat conduction and diffusion in silicon nanowires (SiNWs) systematically by using non-equilibrium molecular dynamics. It is found that the thermal conductivity of SiNWs diverges with the length, even when the length is up to 1,100 nm which is much longer than the phonon mean free path. Moreover, an anomalous heat diffusion is observed which is believed to be responsible for the length dependent thermal conductivity. Our results provide strong evidence that Fourier's law of heat cond...
Perpendicular magnetic anisotropy in Co2MnGa and its anomalous Hall effect
Ludbrook, B. M.; Ruck, B. J.; Granville, S.
2017-02-01
We report perpendicular magnetic anisotropy in the ferromagnetic Heusler alloy Co2MnGa in a MgO/Co2MnGa/Pd trilayer stack for Co2MnGa thicknesses up to 3.5 nm. There is a thickness- and temperature-dependent spin reorientation transition from perpendicular to in-plane magnetic anisotropy, which we study through the anomalous Hall effect. From the temperature dependence of the anomalous Hall effect, we observe the expected scaling of ρx y A H E with ρxx, suggesting that the intrinsic and side-jump mechanisms are largely responsible for the anomalous Hall effect in this material.
Bernardi, M; Sheth, R K; Vikram, V; Huertas-Company, M; Mei, S; Shankar, F
2013-01-01
In addition to the large systematic differences arising from assumptions about the stellar mass-to-light ratio, the massive end of the stellar mass function is rather sensitive to how one fits the light profiles of the most luminous galaxies. We quantify this by comparing the luminosity and stellar mass functions based on SDSS cmodel magnitudes, and PyMorph single-Sersic and Sersic-Exponential fits to the surface brightness profiles of galaxies in the SDSS. The PyMorph fits return more light, so that the predicted masses are larger than when cmodel magnitudes are used. As a result, the total stellar mass density at z~0.1 is about 1.2x larger than in our previous analysis of the SDSS. The differences are most pronounced at the massive end, where the measured number density of objects having M* > 6 x 10^{11} Msun is ~5x larger. Alternatively, at number densities of 10^{-6} Mpc^{-3}, the limiting stellar mass is 2x larger. The differences with respect to fits by other authors, typically based on Petrosian-like m...
Ghatak, J; Umananda Bhatta, M; Sundaravel, B; Nair, K G M; Liou, Sz-Chian; Chen, Cheng-Hsuan; Wang, Yuh-Lin; Satyam, P V
2008-08-13
We report a direct observation of dramatic mass transport due to 1.5 MeV Au(2+) ion impact on isolated Au nanostructures of average size ≈7.6 nm and height ≈6.9 nm that are deposited on Si(111) substrate under high flux (3.2 × 10(10)-6.3 × 10(12) ions cm(-2) s(-1)) conditions. The mass transport from nanostructures was found to extend up to a distance of about 60 nm into the substrate, much beyond their size. This forward mass transport is compared with the recoil implantation profiles using SRIM simulation. The observed anomalies with theory and simulations are discussed. At a given energy, the incident flux plays a major role in mass transport and its redistribution. The mass transport is explained on the basis of thermal effects and the creation of rapid diffusion paths in the nanoscale regime during the course of ion irradiation. The unusual mass transport is found to be associated with the formation of gold silicide nano-alloys at subsurfaces. The complexity of the ion-nanostructure interaction process is discussed with a direct observation of melting (in the form of spherical fragments on the surface) phenomena. Transmission electron microscopy, scanning transmission electron microscopy, and Rutherford backscattering spectroscopy methods have been used.
Search for anomalous $W \\;tb$ couplings in single top quark production at D0
Indian Academy of Sciences (India)
Jyoti Joshi; Suman Beri; for the D0 Collaboration
2012-11-01
The large mass of the top quark, close to the electroweak symmetry-breaking scale, makes it a good candidate for probing physics beyond the Standard Model, including possible anomalous couplings. D0 has made measurements of single top quark production using 5.4 fb-1 of integrated luminosity. The data are examined to study the Lorentz structure of the $W tb$ coupling. It is found that the data prefer the left-handed vector coupling and set upper limits on the anomalous couplings.
Dynamical corrections to the anomalous holographic soft-wall model: the pomeron and the odderon
Energy Technology Data Exchange (ETDEWEB)
Capossoli, Eduardo Folco [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Colegio Pedro II, Departamento de Fisica, Rio de Janeiro, RJ (Brazil); Li, Danning [Institute of Theoretical Physics, Chinese Academy of Science (ITP, CAS), Beijing (China); Boschi-Filho, Henrique [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil)
2016-06-15
In this work we use the holographic soft-wall AdS/QCD model with anomalous dimension contributions coming from two different QCD beta functions to calculate the masses of higher spin glueball states for both even and odd spins and their Regge trajectories, related to the pomeron and the odderon, respectively. We further investigate this model taking into account dynamical corrections due to a dilaton potential consistent with the Einstein equations in five dimensions. The results found in this work for the Regge trajectories within the anomalous soft-wall model with dynamical corrections are consistent with those present in the literature. (orig.)
Anomalous diffusion and scaling in coupled stochastic processes
Energy Technology Data Exchange (ETDEWEB)
Bel, Golan [Los Alamos National Laboratory; Nemenman, Ilya [Los Alamos National Laboratory
2009-01-01
Inspired by problems in biochemical kinetics, we study statistical properties of an overdamped Langevin processes with the friction coefficient depending on the state of a similar, unobserved, process. Integrating out the latter, we derive the Pocker-Planck the friction coefficient of the first depends on the state of the second. Integrating out the latter, we derive the Focker-Planck equation for the probability distribution of the former. This has the fonn of diffusion equation with time-dependent diffusion coefficient, resulting in an anomalous diffusion. The diffusion exponent can not be predicted using a simple scaling argument, and anomalous scaling appears as well. The diffusion exponent of the Weiss-Havlin comb model is derived as a special case, and the same exponent holds even for weakly coupled processes. We compare our theoretical predictions with numerical simulations and find an excellent agreement. The findings caution against treating biochemical systems with unobserved dynamical degrees of freedom by means of standandard, diffusive Langevin descritpion.
Quark ACM with topologically generated gluon mass
Choudhury, Ishita Dutta
2016-01-01
We investigate the effect of a small, gauge-invariant mass of the gluon on the anomalous chromomagnetic moment of quarks (ACM) by perturbative calculations at one loop level. The mass of the gluon is taken to have been generated via a topological mass generation mechanism, in which the gluon acquires a mass through its interaction with an antisymmetric tensor field $B_{\\mu \
Anomalous temperature dependence of the electrical resistivity of molten Sb
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Using the d.c. four-probe method, the electrical resistivity of high-purity liquid Sb has been accurately measured as functions of temperature. It is observed that the resistivity of liquid Sb changes abnormally with increasing temperature, which is very different from that of simple liquid metals. Based on the reported structure factor at several temperatures, the results obtained in this work have been discussed and interpreted qualitatively according to Ziman theory. The analysis suggests that the existence of shortrange order structure near the melting point can account for the abnormal phenomenon observed in the resistivity of liquid Sb, in which semimetal-metal transaction takes place in the melting process. At the same time, the progress of the structure change of liquid Sb with temperature has also been pointed out.``
ON THE SOURCE OF ASTROMETRIC ANOMALOUS REFRACTION
Energy Technology Data Exchange (ETDEWEB)
Taylor, M. Suzanne [Department of Natural and Environmental Sciences, Western State Colorado University, 128 Hurst Hall, Gunnison, CO 81230 (United States); McGraw, John T.; Zimmer, Peter C. [Department of Physics and Astronomy, University of New Mexico, MSC07 4220, Albuquerque, NM 87131 (United States); Pier, Jeffrey R., E-mail: mstaylor@western.edu [Division of Astronomical Sciences, NSF 4201 Wilson Blvd, Arlington, VA 22230 (United States)
2013-03-15
More than a century ago, astronomers using transit telescopes to determine precise stellar positions were hampered by an unexplained periodic shifting of the stars they were observing. With the advent of CCD transit telescopes in the past three decades, this unexplained motion, termed 'anomalous refraction' by these early astronomers, is again being observed. Anomalous refraction is described as a low-frequency, large angular scale ({approx}2 Degree-Sign ) motion of the entire image plane with respect to the celestial coordinate system as observed and defined by astrometric catalogs. These motions, of typically several tenths of an arcsecond amplitude with timescales on the order of 10 minutes, are ubiquitous to ground-based drift-scan astrometric measurements regardless of location or telescopes used and have been attributed to the effect of tilting of equal-density layers of the atmosphere. The cause of this tilting has often been attributed to atmospheric gravity waves, but this cause has never been confirmed. Although theoretical models of atmospheric refraction show that atmospheric gravity waves are a plausible cause of anomalous refraction, an observational campaign specifically directed at defining this relationship provides clear evidence that anomalous refraction is not consistent with the passage of atmospheric gravity waves. The source of anomalous refraction is found to be meter-scale, slowly evolving quasi-coherent dynamical structures in the boundary layer below 60 m above ground level.
On the Source of Astrometric Anomalous Refraction
Taylor, M. Suzanne; McGraw, John T.; Zimmer, Peter C.; Pier, Jeffrey R.
2013-03-01
More than a century ago, astronomers using transit telescopes to determine precise stellar positions were hampered by an unexplained periodic shifting of the stars they were observing. With the advent of CCD transit telescopes in the past three decades, this unexplained motion, termed "anomalous refraction" by these early astronomers, is again being observed. Anomalous refraction is described as a low-frequency, large angular scale (~2°) motion of the entire image plane with respect to the celestial coordinate system as observed and defined by astrometric catalogs. These motions, of typically several tenths of an arcsecond amplitude with timescales on the order of 10 minutes, are ubiquitous to ground-based drift-scan astrometric measurements regardless of location or telescopes used and have been attributed to the effect of tilting of equal-density layers of the atmosphere. The cause of this tilting has often been attributed to atmospheric gravity waves, but this cause has never been confirmed. Although theoretical models of atmospheric refraction show that atmospheric gravity waves are a plausible cause of anomalous refraction, an observational campaign specifically directed at defining this relationship provides clear evidence that anomalous refraction is not consistent with the passage of atmospheric gravity waves. The source of anomalous refraction is found to be meter-scale, slowly evolving quasi-coherent dynamical structures in the boundary layer below 60 m above ground level.
Anomalous inverse bremsstrahlung heating of laser-driven plasmas
Kundu, Mrityunjay
2016-05-01
Absorption of laser light in plasma via electron-ion collision (inverse bremsstrahlung) is known to decrease with the laser intensity as I 0 -3/2 or with the electron temperature as T e -3/2 where Coulomb logarithm ln Λ = 0.5ln(1 + k 2 min/k 2 max) in the expression of electron-ion collision frequency v ei is assumed to be independent of ponderomotive velocity v 0 = E0/ω which is unjustified. Here k -1 min = v th/max(ω, ω p), and k -1 max = Z/v 2 th are maximum and minimum cut-off distances of the colliding electron from the ion, v th = √T e is its thermal velocity, ω, ω p are laser and plasma frequency. Earlier with a total velocity v = (v 2 0 + v 2 th)1/2 dependent ln Λ(v) it was reported that v ei and corresponding fractional laser absorption (α) initially increases with increasing intensity, reaches a maximum value, and then fall according to the conventional I 0 -3/2 scaling. This anomalous increase in v ei and α may be objected due to an artifact introduced in ln Λ(v) through k-1 min ∝ v. Here we show similar anomalous increase of v ei and α versus I 0 (in the low temperature and under-dense density regime) with quantum and classical kinetic models of v ei without using ln Λ, but a proper choice of the total velocity dependent inverse cut-off length kmax -1 ∝ v 2 (in classical case) or kmax ∝ v (in quantum case). For a given I 0 15 eV, anomalous growth of vei and a disappear. The total velocity dependent k max in kinetic models, as proposed here, may explain anomalous increase of a with I 0 measured in some earlier laser-plasma experiments. This work may be important to understand collisional absorption in the under-dense pre-plasma region due to low intensity pre-pulses and amplified spontaneous emission (ASE) pedestal in the context of laser induced inertial confinement fusion.
Graur, Or; Modjaz, Maryam
2014-01-01
Using a method to discover and classify supernovae (SNe) in galaxy spectra, we detect 91 Type Ia SNe (SNe Ia) and 16 Type II SNe (SNe II) among ~740,000 galaxies of all types and ~215,000 star-forming galaxies without active galactic nuclei, respectively, in Data Release 9 of the Sloan Digital Sky Survey. Of these SNe, 22 SNe Ia and 8 SNe II are new discoveries reported here for the first time. We use our SN samples to measure SN rates per unit mass as a function of galaxy stellar mass, star-formation rate (SFR), and specific SFR (sSFR), as derived by the MPA-JHU Galspec pipeline. We confirm the rate-mass correlations, first discovered by the Lick Observatory Supernova Search, for both SNe Ia and SNe II at median redshifts of ~0.1 and ~0.075, respectively. The mass-normalized SN Ia and SN II rates, averaged over all masses and redshifts in their respective galaxy samples, are 0.10 +/- 0.01 (stat) +/- 0.01 (sys) X 10^-12 Msol^-1 yr^-1 and 0.52 +0.16 -0.13 (stat) +0.02 -0.05 (sys) X 10^-12 Msol^-1 yr^-1, respec...
Liu, Beibei; Lin, Doug
2016-01-01
Radial velocity and transit surveys have found that the fraction of FGKM stars with close-in super-Earth(s) ($\\eta_\\oplus$) is around $30 \\%- 50\\%$, independent of the stellar mass $M_\\ast$ and metallicity $Z_\\ast$. In contrast, the fraction of solar-type stars harboring one or more gas giants ($\\eta_J $) with masses $M_{\\rm p} > 100 \\ M_\\oplus $ is nearly $ 10\\%-15\\%$, and it appears to increase with both $M_\\ast$ and $Z_\\ast$. Regardless of the properties of their host stars, the total mass of some multiple super-Earth systems exceeds the core mass of Jupiter and Saturn. We suggest that both super-Earths and supercritical cores of gas giants were assembled from a population of embryos that underwent convergent type I migration from their birthplaces to a transition location between viscously heated and irradiation heated disk regions. We attribute the cause for the $\\eta_\\oplus$-$\\eta_{\\rm J}$ dichotomy to conditions required for embryos to merge and to acquire supercritical core mass ($M_c \\sim 10 \\ M_\\opl...
Indian Academy of Sciences (India)
Saurabh D Rindani
2000-06-01
We obtain analytic expressions for the energy and polar-angle double differential distributions of a secondary lepton +(-) arising from the decay of ($\\overline{t}$) in + - → $t\\overline{t}$ with an anomalous decay vertex. We also obtain analytic expressions for the various differential cross-sections with the lepton energy integrat ed over. In this case, we ﬁnd that the angular distributions of the secondary lepton do not depend on the anomalous coupling in the decay, regardless of possible anomalous couplings occurring in the production amplitude for + - → $t\\overline{t}$. Our study includes the effect of longitudinal - and + beam polarization. We also study the lepton energy and beam polarization dependence of certain CP-violating lepton angular asymmetries arising from an anomalous decay vertex and compare them with the asymmetries arising due to CP-violation in the production process due to the top electric or weak dipole moment.
Minimal flavour violation and anomalous top decays
Energy Technology Data Exchange (ETDEWEB)
Faller, Sven; Mannel, Thomas [Theoretische Physik 1, Department Physik, Universitaet Siegen, D-57068 Siegen (Germany); Gadatsch, Stefan [Nikhef, National Institute for Subatomatic Physics, P.O. Box 41882, 1009 Amsterdam (Netherlands)
2013-07-01
Any experimental evidence of anomalous top-quark couplings will open a window to study physics beyond the standard model (SM). However, all current flavour data indicate that nature is close to ''minimal flavour violation'', i.e. the pattern of flavour violation is given by the CKM matrix, including the hierarchy of parameters. In this talk we present results of the conceptual test of minimal flavour violation for the anomalous charged as well as flavour changing top-quark couplings. Our analysis is embedded in two-Higgs doublet model of type II (2HDM-II). Including renormalization effects, we calculate the top decay rates taking into account anomalous couplings constrained by minimal flavour violation.
Neoclassical Viscosities and Anomalous Flows in Stellarators
Ware, A. S.; Spong, D. A.; Breyfogle, M.; Marine, T.
2009-05-01
We present initial work to use neoclassical viscosities calculated with the PENTA code [1] in a transport model that includes Reynolds stress generation of flows [2]. The PENTA code uses a drift kinetic equation solver to calculate neoclassical viscosities and flows in general three-dimensional geometries over a range of collisionalities. The predicted neoclassical viscosities predicted by PENTA can be flux-surfaced average and applied in a 1-D transport model that includes anomalous flow generation. This combination of codes can be used to test the impact of stellarator geometry on anomalous flow generation. As a test case, we apply the code to modeling flows in the HSX stellarator. Due to variations in the neoclassical viscosities, HSX can have strong neoclassical flows in the core region. In turn, these neoclassical flows can provide a seed for anomalous flow generation. [1] D. A. Spong, Phys. Plasmas 12, 056114 (2005). [2] D. E. Newman, et al., Phys. Plasmas 5, 938 (1998).
Theory of the Muon Anomalous Magnetic Moment
Melnikov, Kirill
2006-01-01
The theory of the muon anomalous magnetic moment is "particle physics in a nutshell" and as such is interesting, exciting and difficult. The current precision of the experimental value for this quantity, improved significantly in the past several years due to experiment E821 at Brookhaven National Laboratory, is so high that a large number of subtle effects not relevant previously, become important for the interpretation of the experimental result. The theory of the muon anomalous magnetic moment is at the cutting edge of current research in particle physics and includes multiloop calculations in both QED and electroweak theory, precision low-energy hadron physics, isospin violations and scattering of light by light. Any deviation between the theoretical prediction and the experimental value might be interpreted as a signal of an as-yet-unknown new physics. This book provides a comprehensive review of the theory of the muon anomalous magnetic moment.
Anomalous magnetohydrodynamics in the extreme relativistic domain
Giovannini, Massimo
2016-01-01
The evolution equations of anomalous magnetohydrodynamics are derived in the extreme relativistic regime and contrasted with the treatment of hydromagnetic nonlinearities pioneered by Lichnerowicz in the absence of anomalous currents. In particular we explore the situation where the conventional vector currents are complemented by the axial-vector currents arising either from the pseudo Nambu-Goldstone bosons of a spontaneously broken symmetry or because of finite fermionic density effects. After expanding the generally covariant equations in inverse powers of the conductivity, the relativistic analog of the magnetic diffusivity equation is derived in the presence of vortical and magnetic currents. While the anomalous contributions are generally suppressed by the diffusivity, they are shown to disappear in the perfectly conducting limit. When the flow is irrotational, boost-invariant and with vanishing four-acceleration the corresponding evolution equations are explicitly integrated so that the various physic...
Electroweak Baryogenesis with Anomalous Higgs Couplings
Kobakhidze, Archil; Yue, Jason
2015-01-01
We investigate feasibility of efficient baryogenesis at the electroweak scale within the effective field theory framework based on a non-linear realisation of the electroweak gauge symmetry. In this framework the LHC Higgs boson is described by a singlet scalar field, which, therefore, admits new interactions. Assuming that Higgs couplings with the eletroweak gauge bosons are as in the Standard Model, we demonstrate that the Higgs cubic coupling and the CP-violating Higgs-top quark anomalous couplings alone may drive the a strongly first-order phase transition. The distinguished feature of this transition is that the anomalous Higgs vacuum expectation value is generally non-zero in both phases. We identify a range of anomalous couplings, consistent with current experimental data, where sphaleron rates are sufficiently fast in the 'symmetric' phase and are suppressed in the 'broken' phase and demonstrate that the desired baryon asymmetry can indeed be generated in this framework. This range of the Higgs anomal...
Iliadis, Dimitrios; The ATLAS collaboration
2016-01-01
The WZ boson pair production at 13 TeV is measured using the ATLAS detector. Leptonic decays of the W and Z bosons to electrons and muons are considered using 2015 and 2016 data. The differential cross-section as a function of jet multiplicity, the Z-boson pT and the transverse mass of the WZ system are also measured along with the charge-dependent W+Z and W-Z cross-sections and their ratio. Finally, the integrated fiducial cross-sections ratio, measured at center-of-mass energies of 13 TeV and 8 TeV, is calculated and limits on anomalous triple gauge couplings are set.
Hamdouni, Yamen
2011-01-01
The object of this paper is to investigate, classically and quantum mechanically, the relation existing between the position-dependent mass and damping-antidamping dynamics. The quantization of the equations of motion is carried out using the geometric interpretation of the motion. Furthermore, we apply the obtained results to a Fermi gas of damped-antidamped particles, and we solve the Schr\\"odinger equation in the presence of the Morse potential.
Kim, Tae-Young; Schwartz, Jae C; Reilly, James P
2009-11-01
A hybrid linear ion trap/orthogonal time-of-flight (TOF) mass spectrometer has been developed to observe time-dependent vacuum ultraviolet photodissociation product ions. In this apparatus, a reflectron TOF mass analyzer is orthogonally interfaced to an LTQ using rf-only octopole and dc quadrupole ion guides. Precursor ions are generated by electrospray ionization and isolated in the ion trap. Subsequently they are directed to the TOF source where photodissociation occurs and product ions are extracted for mass analysis. To detect photodissociation product ions having axially divergent trajectories, a large rectangular detector is utilized. With variation of the time between photodissociation and orthogonal extraction in the TOF source, product ions formed over a range of times after photoexcitation can be sampled. Time-dependent observation of product ions following 157 nm photodissociation of a singly charged tryptic peptide ion (NWDAGFGR) showed that prompt photofragment ions (x- and v-type ions) dominate the tandem mass spectrum up to 1 micros after the laser shot, but the intensities of low energy thermal fragment ions (y-type ions) become comparable several microseconds later. Different proton mobilization time scales were observed for arginine- and lysine-terminated tryptic peptides.
Anomalous Feeding of the Left Upper Lobe.
Hazzard, Christopher; Itagaki, Shinobu; Lajam, Fouad; Flores, Raja M
2016-09-01
We report the case of a 53-year-old woman who presented with massive hemoptysis. Computed tomographic angiography revealed an anomalous vessel arising from the abdominal aorta, coursing anteriorly and through the diaphragm, and feeding the left upper lobe. At operation the vessel was found to anastomose to the left upper lobe lingula, which contained multiple vascular abnormalities and arteriovenous fistulas. The vessel was ligated, and the affected portion of the left upper lobe was resected. Anomalous systemic arterial supply of an upper lobe is an especially rare form of a Pryce type 1 abnormality. Recognition of these unusual anatomic variants is crucial to successful treatment and avoidance of adverse events.
A potassium Faraday anomalous dispersion optical filter
Yin, B.; Shay, T. M.
1992-01-01
The characteristics of a potassium Faraday anomalous dispersion optical filter operating on the blue and near infrared transitions are calculated. The results show that the filter can be designed to provide high transmission, very narrow pass bandwidth, and low equivalent noise bandwidth. The Faraday anomalous dispersion optical filter (FADOF) provides a narrow pass bandwidth (about GHz) optical filter for laser communications, remote sensing, and lidar. The general theoretical model for the FADOF has been established in our previous paper. In this paper, we have identified the optimum operational conditions for a potassium FADOF operating on the blue and infrared transitions. The signal transmission, bandwidth, and equivalent noise bandwidth (ENBW) are also calculated.
Disentangling sources of anomalous diffusion
Thiel, Felix; Sokolov, Igor M
2013-01-01
We show that some important properties of subbdiffusion of unknown origin (including those of mixed origin) can be easily assessed when findeng the "fundamental moment" of the corresponding process, i.e., the one which is additive in time. In subordinated processes, the index of the fundamental moment is inherited from the parent process and its time-dependence from the leading one. In models of particle's motion in disordered potentials, the index is governed by the structural part of the disorder while the time dependence is given by its energetic part.
Cakir, O; Senol, A; Tasci, A T
2012-01-01
From the present limits on the masses and mixings of fourth family quarks, they are expected to have mass larger than the top quark and allow a large range of mixing of the third family. They could also have different dynamics than the quarks of three families of the Standard Model. The single production of the fourth family up type quark t' has been studied via anomalous production process pp-> t'VX (where V=g,Z,\\gamma) at the LHC with the center of mass energy of 7 and 14 TeV. The signatures of such process are discussed within both the SM decay modes and anomalous decay modes of t' quarks. The sensitivity to anomalous coupling kappa/Lambda=0.004 TeV^(-1) can be reached at sqrt(s)=14 TeV and L_(int)=100 pb^(-1).
Brouwer, Margot M; Dvornik, Andrej; Eardley, Lizzie; Heymans, Catherine; Hoekstra, Henk; Kuijken, Konrad; McNaught-Roberts, Tamsyn; Sifón, Cristóbal; Viola, Massimo; Alpaslan, Mehmet; Bilicki, Maciej; Bland-Hawthorn, Joss; Brough, Sarah; Choi, Ami; Driver, Simon P; Erben, Thomas; Grado, Aniello; Hildebrandt, Hendrik; Holwerda, Benne W; Hopkins, Andrew M; de Jong, Jelte T A; Liske, Jochen; McFarland, John; Nakajima, Reiko; Napolitano, Nicola R; Norberg, Peder; Peacock, John A; Radovich, Mario; Robotham, Aaron S G; Schneider, Peter; Sikkema, Gert; van Uitert, Edo; Kleijn, Gijs Verdoes
2016-01-01
Galaxies and their dark matter haloes are part of a complex network of mass structures, collectively called the cosmic web. Using the tidal tensor prescription these structures can be classified into four cosmic environments: voids, sheets, filaments and knots. As the cosmic web may influence the formation and evolution of dark matter haloes and the galaxies they host, we aim to study the effect of these cosmic environments on the average mass of galactic haloes. To this end we measure the galaxy-galaxy lensing profile of 91,195 galaxies, within 0.039 < z < 0.263, from the spectroscopic Galaxy And Mass Assembly (GAMA) survey, using ~100 square degrees of overlapping data from the Kilo-Degree Survey (KiDS). In each of the four cosmic environments we model the contributions from group centrals, satellites and neighbouring groups to the stacked galaxy-galaxy lensing profiles. After correcting the lens samples for differences in the stellar mass distribution, we find no dependence of the average halo mass o...
Coil, Alison L; Eisenstein, Daniel J; Moustakas, John
2016-01-01
We present results on the clustering properties of galaxies as a function of both stellar mass and specific star formation rate (sSFR) using data from the PRIMUS and DEEP2 galaxy redshift surveys spanning 0.2 < z < 1.2. We use spectroscopic redshifts of over 100,000 galaxies covering an area of 7.2 deg^2 over five separate fields on the sky, from which we calculate cosmic variance errors. We find that the galaxy clustering amplitude is a stronger function of sSFR than of stellar mass, and that at a given sSFR, it does not depend on stellar mass, within the range probed here. We further find that within the star-forming population and at a given stellar mass, galaxies above the main sequence of star formation with higher sSFR are more clustered than galaxies below the main sequence with lower sSFR. We also find that within the quiescent population, galaxies with higher sSFR are less clustered than galaxies with lower sSFR, at a given stellar mass. We show that the galaxy clustering amplitude smoothly inc...
Ab initio investigation of the anomalous phonon softening in FeSi
Stern, Robin; Madsen, Georg K. H.
2016-10-01
The anomalous softening of the acoustic phonon peak in FeSi has recently received considerable experimental attention. In our work, we investigate the effect of thermal disorder on the lattice dynamics and the filling of the narrow band gap of FeSi using density functional theory. We show, by comparing the phonon density of states from temperature-independent and temperature-dependent force constants, that thermal structural disorder together with thermal expansion explains the anomalously strong renormalization of the acoustic phonons. Furthermore, we find an intricate interplay between thermal disorder and volume in gap closure.
Local orbitals approach to the anomalous Hall and Nernst effects in itinerant ferromagnets
Directory of Open Access Journals (Sweden)
Středa Pavel
2014-07-01
Full Text Available Linear response of the orbital momentum to the gradient of the chemical potential is used to obtain anomalous Hall conductivity. Transition from the ideal Bloch system for which the conductivity is determined by the Berry phase curvatures to the case of strong disorder for which the conductivity becomes dependent on the relaxation time is analysed. Presented tight-binding model reproduces experimentally observed qualitative features of the anomalous Hall conductivity and the transverse Peltier coefficient in the so called bad-metal and scattering-independent regimes.
Sub 100-ps dynamics of the anomalous Hall effect at THz frequencies
Huisman, T J; Tsukamoto, A; Ma, L; Fan, W J; Zhou, S M; Rasing, Th; Kimel, A V
2016-01-01
We report about the anomalous Hall effect in 4f 3d metallic alloys measured using terahertz time-domain spectroscopy. The strength of the observed terahertz spin-dependent transport phenomenon is in good agreement with expectations based on electronic transport measurements. Employing this effect, we succeeded to reveal ultrafast dynamics of the anomalous Hall effect which accompanies the sub-100 picosecond optically induced magnetization reversal in a GdFeCo alloy. The experiments demonstrate the ability to control currents at terahertz frequencies in spintronic devices magnetically and ultrafast.
GNET detected an anomalous "spike" in ice loss in Greenland during the 2010 melting season
DEFF Research Database (Denmark)
Bevis, Michael G; Wahr, John M; Khan, Shfaqat Abbas;
’s instantaneous elastic response to contemporary losses in ice mass. Superimposed on longer term trends, an anomalous ‘pulse’ of uplift accumulated at many GNET stations during a ~5 month period in 2010, and we will show that this anomalous uplift is spatially correlated with the 2010 melting day anomaly (Tedesco......The Greenland GPS Network (GNET) uses GPS geodesy to measure the displacement of bedrock exposed near the margins of the Greenland Ice Sheet. The amplitudes of the observed vertical velocities indicate that over most of coastal Greenland these displacements are dominated by the solid earth...... et al., 2011). This result confirms the ability of GPS networks in Greenland, Antarctica and elsewhere to directly sense ice mass changes at sub-annual as well as longer timescales. GNET and similar GPS networks can therefore mitigate the loss of ice mass measurements following the anticipated...
Sanchez, S F; Jungwiert, B; Iglesias-Paramo1, J; Vilchez, J M; Marino, R A; Walcher, C J; Husemann, B; Mast, D; Monreal-Ibero, A; Fernandes, R Cid; Perez, E; Delgado, R Gonzalez; Garcia-Benito, R; Galbany, L; van de Ven, G; Jahnke, K; Flores, H; Bland-Hawthorn, J; Lopez-Sánchez, A R; Stanishev, V; Miralles-Caballero, D; Diaz, A I; Sanchez-Blazquez, P; Molla, M; Gallazzi1, A; Papaderos, P; Gomes, J M; Gruel, N; Pérez, I; Ruiz-Lara, T; Florido, E; de Lorenzo-Cáceres, A; Mendez-Abreu, J; Kehrig, C; Roth, M M; Ziegler, B; Alves, J; Wisotzki, L; Kupko, D; Quirrenbach, A; Bomans, D
2013-01-01
We present the results on the study of the global and local M-Z relation based on the first data available from the CALIFA survey (150 galaxies). This survey provides integral field spectroscopy of the complete optical extent of each galaxy (up to 2-3 effective radii), with enough resolution to separate individual HII regions and/or aggregations. Nearly $\\sim$3000 individual HII regions have been detected. The spectra cover the wavelength range between [OII]3727 and [SII]6731, with a sufficient signal-to-noise to derive the oxygen abundance and star-formation rate associated with each region. In addition, we have computed the integrated and spatially resolved stellar masses (and surface densities), based on SDSS photometric data. We explore the relations between the stellar mass, oxygen abundance and star-formation rate using this dataset. We derive a tight relation between the integrated stellar mass and the gas-phase abundance, with a dispersion smaller than the one already reported in the literature ($\\sig...
Energy Technology Data Exchange (ETDEWEB)
Hansen, Jakob [KISTI,Daejeon 305-806 (Korea, Republic of); Yeom, Dong-han [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University,Taipei 10617, Taiwan (China)
2015-09-07
We investigate the relation between the existence of mass inflation and model parameters of string-inspired gravity models. In order to cover various models, we investigate a Brans-Dicke theory that is coupled to a U(1) gauge field. By tuning a model parameter that decides the coupling between the Brans-Dicke field and the electromagnetic field, we can make both of models such that the Brans-Dicke field is biased toward strong or weak coupling directions after gravitational collapses. We observe that as long as the Brans-Dicke field is biased toward any (strong or weak) directions, there is no Cauchy horizon and no mass inflation. Therefore, we conclude that to induce a Cauchy horizon and mass inflation inside a charged black hole, either there is no bias of the Brans-Dicke field as well as no Brans-Dicke hair outside the horizon or such a biased Brans-Dicke field should be well trapped and controlled by a potential.
Zamora-Avilés, Manuel
2013-01-01
In a previous study, we presented a semi-analytical model for the regulation of the star formation rate (SFR) and efficiency (SFE) in which the molecular clouds (MCs) were assumed to be in gravitational collapse, and the SFR was instantaneously controlled by evaporation of the cloud material by massive-star ionization feedback. In this model, the main parameter controlling the evolution of the clouds was found to be the gas mass involved in the process and here we discuss various properties of the SFR and SFE as a function of the cloud masses, that can be compared with observations and implemented in numerical models of galactic evolution. Because the model neglects magnetic fields, supernova explosions, and radiation pressure, the results presented are upper limits. We find that $\\SFRavg$ and $\\SFEavg$ are well represented as functions of the maximum cloud mass by the fits $\\SFRavg \\approx 100 (1+\\Mmax/2 \\times 10^5 ~ \\Msun)^{2} ~ \\Msun \\Myr^{-1}$ and $\\SFEavg \\approx 0.024 (\\Mmax/10^5 ~ \\Msun)^{0.28}$, resp...
Barik, N.; Mishra, R. N.; Mohanty, D. K.; Panda, P. K.; Frederico, T.
2013-07-01
We have calculated the properties of nuclear matter in a self-consistent manner with a quark-meson coupling mechanism incorporating the structure of nucleons in vacuum through a relativistic potential model; where the dominant confining interaction for the free independent quarks inside a nucleon is represented by a phenomenologically average potential in equally mixed scalar-vector harmonic form. Corrections due to spurious center of mass motion as well as those due to other residual interactions, such as the one gluon exchange at short distances and quark-pion coupling arising out of chiral symmetry restoration, have been considered in a perturbative manner to obtain the nucleon mass in vacuum. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to σ and ω mesons through mean field approximations. The relevant parameters of the interaction are obtained self-consistently while realizing the saturation properties such as the binding energy, pressure, and compressibility of the nuclear matter. We also discuss some implications of chiral symmetry in nuclear matter along with the nucleon and nuclear σ term and the sensitivity of nuclear matter binding energy with variations in the light quark mass.
Muon Anomalous Magnetic Moment in a Supersymmetric U(1)' Model
Barger, V; Langacker, P; Lee, H S; Barger, Vernon; Kao, Chung; Langacker, Paul; Lee, Hye-Sung
2005-01-01
We study the muon anomalous magnetic moment a_\\mu = (g_\\mu - 2)/2 in a supersymmetric U(1)' model. The neutralino sector has extra components from the superpartners of the U(1)' gauge boson and the extra Higgs singlets that break the U(1)' symmetry. The theoretical maximum bound on the lightest neutralino mass is much smaller than that of the Minimal Supersymmetric Standard Model (MSSM) because of the mixing pattern of the extra components. In a U(1)' model where the U(1)' symmetry is broken by a secluded sector (the S-model), tan\\beta is required to be < 3 to have realistic electroweak symmetry breaking. These facts suggest that the a_\\mu prediction may be meaningfully different from that of the MSSM. We evaluate and compare the muon anomalous magnetic moment in this model and the MSSM and discuss the constraints on tan\\beta and relevant soft breaking terms. There are regions of the parameter space that can explain the experimental deviation of a_\\mu from the Standard Model calculation and yield an accept...
Holographic quenches and anomalous transport
Ammon, Martin; Jimenez-Alba, Amadeo; Macedo, Rodrigo P; Melgar, Luis
2016-01-01
We study the response of the chiral magnetic effect due to continuous quenches induced by time dependent electric fields within holography. Concretely, we consider a holographic model with dual chiral anomaly and compute the electric current parallel to a constant, homogeneous magnetic field and a time dependent electric field in the probe approximation. We explicitly solve the PDEs by means of pseudospectral methods in spatial and time directions and study the transition to an universal "fast" quench response. Moreover, we compute the amplitudes, i.e.,~residues of the quasi normal modes, by solving the (ODE) Laplace transformed equations. We investigate the possibility of considering the asymptotic growth rate of the amplitudes as a well defined notion of initial time scale for linearized systems. Finally, we highlight the existence of Landau level resonances in the electrical conductivity parallel to a magnetic field at finite frequency and show explicitly that these only appear in presence of the anomaly. ...
Ultrasensitive Anomalous Hall Effect in Ta/CoFe/Oxide/Ta Multilayers
Directory of Open Access Journals (Sweden)
Guang Yang
2016-01-01
Full Text Available Ultrahigh anomalous Hall sensitivity has been demonstrated in Ta/CoFe/Oxide/Ta multilayers. By changing oxides (MgO and HfO2 and annealing temperature, different annealing dependence of sensitivity was found in MgO-sample and HfO2-sample. For the MgO-sample, the anomalous Hall sensitivity reaches 18792 Ω/T in the as-deposited state and significantly reduces as annealing temperature increases. On the contrary, the sensitivity of the as-deposited HfO2-sample is only 765 Ω/T, while it remarkably increases with annealing temperature increasing, finally reaching 14741 Ω/T at 240°C. The opposite variation of anomalous sensitivity in two samples originates from the different change of magnetic anisotropy and anomalous Hall resistance during the annealing process. Our study provides a new perspective that both the choice of oxide material and the optimization of annealing treatment are important to the anomalous Hall sensitivity.
Anomalous human behavior detection: An Adaptive approach
Leeuwen, C. van; Halma, A.; Schutte, K.
2013-01-01
Detection of anomalies (outliers or abnormal instances) is an important element in a range of applications such as fault, fraud, suspicious behavior detection and knowledge discovery. In this article we propose a new method for anomaly detection and performed tested its ability to detect anomalous b
Anomalous pulmonary venous return: A case report
Energy Technology Data Exchange (ETDEWEB)
Park, Gyeong Min; Kang, MinJin; Lee, Han Bee; Bae, Kyung Eun; Lee, Jaehe; Kim, Jae Hyung; Jeong, Myeong Ja; Kang, Tae Kyung [Sanggye Paik Hospital, Inje University College of Medicine, Seoul (Korea, Republic of)
2013-10-15
Partial anomalous pulmonary venous return is a type of congenital pulmonary venous anomaly. We present a rare type of partial pulmonary venous return, subaortic vertical vein drains left lung to superior vena cava, accompanying hypoplasia of the ipsilateral lung and pulmonary artery. We also review the previous report and relationship of these structures.
Anomalous Hall Effect for chiral fermions
Zhang, P -M
2014-01-01
Semiclassical chiral fermions manifest the anomalous spin-Hall effect: when put into a pure electric field, they suffer a side jump, analogous to what happens to their massive counterparts in non-commutative mechanics. The transverse shift is consistent with the conservation of the angular momentum. In a pure magnetic field a cork-screw-like, spiraling motion is found.
ACS SBC Recovery from Anomalous Shutdown
Wheeler, Thomas
2013-10-01
This proposal is designed to permit a safe and orderly recovery of the SBC {FUV MAMA} detector after an anomalous shutdown. This is accomplished by using slower-than-normal MCP high-voltage ramp-ups and diagnostics. Anomalous shutdowns can occur because of bright object violations, which trigger the Global Hardware Monitor or the Global Software Monitor. Anomalous shutdowns can also occur because of MAMA hardware anomalies or failures. The cause of the shutdown should be thoroughly investigated and understood prior to recovery. Twenty-four hour wait intervals are required after each test for MCP gas desorption and data analysis. Event flag 2 is used to prevent inadvertent MAMA usage. The recovery procedure consists of four separate tests {i.e. visits} to check the MAMA's health after an anomalous shutdown: 1} signal processing electronics check, 2} slow, high-voltage ramp-up to an intermediate voltage, 3} a slow high-voltage ramp-up to the nominal operating HV, and 4} fold analysis test. Each must be completed successfully before proceeding onto the next. During the two high-voltage ramp-ups, dark ACCUM exposures are taken. At high voltage, dark ACCUM exposures and diagnostics are taken. This proposal is based on Proposal 13163 from Cycle 20. For additional MAMA recovery information, see STIS ISR 98-02R.
Total least squares for anomalous change detection
Energy Technology Data Exchange (ETDEWEB)
Theiler, James P [Los Alamos National Laboratory; Matsekh, Anna M [Los Alamos National Laboratory
2010-01-01
A family of difference-based anomalous change detection algorithms is derived from a total least squares (TLSQ) framework. This provides an alternative to the well-known chronochrome algorithm, which is derived from ordinary least squares. In both cases, the most anomalous changes are identified with the pixels that exhibit the largest residuals with respect to the regression of the two images against each other. The family of TLSQ-based anomalous change detectors is shown to be equivalent to the subspace RX formulation for straight anomaly detection, but applied to the stacked space. However, this family is not invariant to linear coordinate transforms. On the other hand, whitened TLSQ is coordinate invariant, and furthermore it is shown to be equivalent to the optimized covariance equalization algorithm. What whitened TLSQ offers, in addition to connecting with a common language the derivations of two of the most popular anomalous change detection algorithms - chronochrome and covariance equalization - is a generalization of these algorithms with the potential for better performance.
Anomalous atomic volume of alpha-Pu
DEFF Research Database (Denmark)
Kollar, J.; Vitos, Levente; Skriver, Hans Lomholt
1997-01-01
.3%. The comparison between the LDA and GGA results show that the anomalously large atomic volume of alpha-Pu relative to alpha-Np can be ascribed to exchange-correlation effects connected with the presence of low coordinated sites in the structure where the f electrons are close to the onset of localization...