WorldWideScience

Sample records for anomalous magnetic properties

  1. ANOMALOUS MAGNETIC FILMS,

    Science.gov (United States)

    Three types of anomalous nickel-iron magnetic films characterized by hysteresigraph and torque-magnetometer measurements; bitter-pattern observations; reprint from ’ Journal of Applied Physics .’

  2. ANOMALOUS ELECTRODEPOSITION OF Fe-Ni ALLOY COATING FROM SIMPLE AND COMPLEX BATHS AND ITS MAGNETIC PROPERTY

    Directory of Open Access Journals (Sweden)

    M A Islam

    2010-03-01

    Full Text Available Electrodeposition of Fe-Ni thin films has been carried on copper substrate under various electrodeposition conditions from two simple and six complex baths. Sulfate baths composing of NiSO4. 7H2O, FeSO4.7H2O, H3BO3 and Na2SO4KEYWORDS: Anomalous Electrodeposition, Fe-Ni Coating, Complexing agent, Current Density, Magnetic Property. 1. INTRODUCTION Alloy electrodeposition technologies can extend tremendously the potential of electrochemical deposition processes to provide coatings that require unique mechanical, chemical and physical properties [1]. There has been a great research interest in the development and characterization of iron-nickel (Fe-Ni thin films due to their operational capacity, economic interest, magnetic and other properties [2]. Due to their unique low coefficient of thermal expansion (CTE and soft magnetic properties, Fe-Ni alloys have been used in industrial applications for over 100 years [3]. Typical examples of applications that are based on the low CTE of Fe-Ni alloys include: thermostatic bimetals, glass sealing, integrated circuit packaging, cathode ray tube, shadow masks, membranes for liquid natural gas tankers; applications based on the soft magnetic properties include: read-write heads for magnetic storage, magnetic actuators, magnetic shielding, high performance transformer cores. comprise the simple baths whereas complex baths were prepared by adding ascorbic acid, saccharin and citric acid in simple baths. The effect of bath composition, pH and applied current density on coating appearance, composition, morphology and magnetic property were studied. Wet chemical analysis technique was used to analyze the coating composition whereas SEM and VSM were used to study the deposit morphology and magnetic property respectively. Addition of complexing agents in plating baths suppressed the anomalous nature of Fe-Ni alloy electrodeposition. Coatings obtained from simple baths were characterized by coarse grained non

  3. Magnetic and anomalous electronic transport properties of the quaternary Heusler alloys Co2Ti1-xFexGe

    Science.gov (United States)

    Venkateswarlu, B.; Midhunlal, P. V.; Babu, P. D.; Kumar, N. Harish

    2016-06-01

    The half-metallic Heusler alloy Co2TiGe has a ferromagnetic ground state with a low magnetic moment (2 μB). It is free of atomic antisite disorder but has low Curie temperature (~390 K). In contrast the other cobalt based Heusler alloy Co2FeGe has high Curie temperature (~980 K) and high magnetic moment (5.6 μB) while exhibiting antisite disorder and lack of half-metallicity. Hence it is of interest to investigate the magnetic and transport properties of solid solutions of these two materials with contrasting characteristics. We report the structural, magnetic and electronic transport properties of quaternary Co2Ti1-x FexGe (x=0.2, 0.4, 0.6, 0.8) Heusler alloys. The alloys crystallize in L21 structure but with antisite disorder. The magnetization measurements revealed that the alloys were of soft ferromagnetic type with high Curie temperatures. Deviation from Slater-Pauling behavior and drastic change in electronic transport properties with some anomalous features were observed.The complex electronic transport properties have been explained using different scattering mechanisms.

  4. Anomalous magnetic moment of anyons

    CERN Document Server

    Gat, G; Gat, Gil; Ray, Rashmi

    1994-01-01

    The anomalous magnetic moment of anyons is calculated to leading order in a 1/N expansion. It is shown that the gyromagnetic ratio g remains 2 to the leading order in 1/N. This result strongly supports that obtained in \\cite{poly}, namely that g=2 is in fact exact.

  5. Anomalous properties of a large magnetic moment in a fourfold potential

    CERN Document Server

    Vernier, N

    2003-01-01

    An experimental study of magnetic moments placed in a fourfold potential is presented here. The system used is a monocrystal of LiY sub 0 sub . sub 9 sub 9 Dy sub 0 sub . sub 0 sub 1 F sub 4 , where the only magnetic ions are the Dy sup 3 sup + ions. From static magnetic susceptibility measurements, it is shown that the Dy sup 3 sup + ion has an easy magnetization plane, with an additional anisotropy in the easy plane. Low frequency electron paramagnetic resonance experiments are presented here and up to nine resonance lines have been found. Some of them are in agreement with known properties of the Dy sup 3 sup + ion in LiY sub 0 sub . sub 9 sub 9 Dy sub 0 sub . sub 0 sub 1 F sub 4 , but others cannot be explained within the framework of the commonly used effective Hamiltonian. The behaviour of these new lines is consistent with a magnetic tunnelling effect. Finally, spin echoes have been observed, allowing the determination of the relaxation time T sub 2 and the coupling coefficient for several orientations...

  6. Anomalous magnetic Properties of an iron film System deposited on fracture surfaces of α-Al2O3 ceramics

    Institute of Scientific and Technical Information of China (English)

    Jiao Zhi-Wei; Chen Miao-Gen; Jiang Wei-Di; Feng Chun-Mu; Ye Gao-Xiang

    2008-01-01

    An iron film percolation system is fabricated by vapour-phase deposition on fracture surfaces of α-Al2O3 ceramics.The zero-field-cooled(ZFC)and field-cooled(FC)magnetization measurement reveals that the magnetic phase of the film samples evolve from a high-temperature ferromagnetic state to a low-temperature spin-glass-fike state.which is also demonstrated by the temperature-dependent ac susceptibility of the iron films.The temperature dependence of the exchange bias field He of the iron film exhibits a minimum peak around the temperature T=5 K,which is independent of the magnitude of the cooling field Hcf.However,for T>10 K,(1)He is always negative when Hcf=2 kOe and(2) for Hcf=20kOe(1Oe≈80A/m),He changes from negative to positive values as T increases.Our experimental results show that the anomalous hysteresis properties mainly result from the oxide surfaces of the films with spin-glass-like phase.

  7. A Mössbauer effect study, as the main key to the investigation of anomalous magnetic properties of MnZn nanoferrite

    Directory of Open Access Journals (Sweden)

    V Sepelak

    2012-12-01

    Full Text Available   In this research, a low temperature in-field 57Fe Mössbauer spectroscopy is used for investigation of anomalous magnetic properties of MnZn nanoferrite. Based on Mössbauer spectroscopy results, the reduced saturation magnetization of MnZn nanoferrite in respect to that of bulk sample is due to nonequilibrium cation distribution and spin disorder. The enhanced Curie temperature of MnZn nanoferrite in respect to that of bulk sample can be attributed to the strengthening of the (A-O-[B] superexchange interactions due to an increase of the magnetic ion concentration in the (A site.

  8. Anomalous magnetic moment with heavy virtual leptons

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Alexander [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Liu, Tao; Steinhauser, Matthias [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2013-11-15

    We compute the contributions to the electron and muon anomalous magnetic moment induced by heavy leptons up to four-loop order. Asymptotic expansion is applied to obtain three analytic expansion terms which show rapid convergence.

  9. Anomalous magnetic moment with heavy virtual leptons

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Alexander [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Deutsches Elektronen Synchrotron (DESY), 15738 Zeuthen (Germany); Liu, Tao [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Marquard, Peter [Deutsches Elektronen Synchrotron (DESY), 15738 Zeuthen (Germany); Steinhauser, Matthias [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany)

    2014-02-15

    We compute the contributions to the electron and muon anomalous magnetic moment induced by heavy leptons up to four-loop order. Asymptotic expansion is applied to obtain three analytic expansion terms which show rapid convergence.

  10. Anomalous magnetic moment with heavy virtual leptons

    CERN Document Server

    Kurz, Alexander; Marquard, Peter; Steinhauser, Matthias

    2013-01-01

    We compute the contributions to the electron and muon anomalous magnetic moment induced by heavy leptons up to four-loop order. Asymptotic expansion is applied to obtain three analytic expansion terms which show rapid convergence.

  11. Nanodomain induced anomalous magnetic and electronic transport properties of LaBaCo2O5.5+δ highly epitaxial thin films.

    Science.gov (United States)

    Ruiz-Zepeda, F; Ma, C; Bahena Uribe, D; Cantu-Valle, J; Wang, H; Xu, Xing; Yacaman, M J; Chen, C; Lorenz, B; Jacobson, A J; Chu, P C W; Ponce, A

    2014-01-14

    A giant magnetoresistance effect (∼46% at 20 K under 7 T) and anomalous magnetic properties were found in a highly epitaxial double perovskite LaBaCo2O5.5+δ (LBCO) thin film on (001) MgO. Aberration-corrected Electron Microscopy and related analytical techniques were employed to understand the nature of these unusual physical properties. The as-grown film is epitaxial with the c-axis of the LBCO structure lying in the film plane and with an interface relationship given by (100)LBCO || (001)MgO and [001]LBCO || [100]MgO or [010]MgO. Orderly oxygen vacancies were observed by line profile electron energy loss spectroscopy and by atomic resolution imaging. Especially, oxygen vacancy and nanodomain structures were found to have a crucial effect on the electronic transport and magnetic properties.

  12. Theory of the Muon Anomalous Magnetic Moment

    CERN Document Server

    Melnikov, Kirill

    2006-01-01

    The theory of the muon anomalous magnetic moment is "particle physics in a nutshell" and as such is interesting, exciting and difficult. The current precision of the experimental value for this quantity, improved significantly in the past several years due to experiment E821 at Brookhaven National Laboratory, is so high that a large number of subtle effects not relevant previously, become important for the interpretation of the experimental result. The theory of the muon anomalous magnetic moment is at the cutting edge of current research in particle physics and includes multiloop calculations in both QED and electroweak theory, precision low-energy hadron physics, isospin violations and scattering of light by light. Any deviation between the theoretical prediction and the experimental value might be interpreted as a signal of an as-yet-unknown new physics. This book provides a comprehensive review of the theory of the muon anomalous magnetic moment.

  13. The Anomalous Magnetic Moment of the Muon

    CERN Document Server

    Jegerlehner, Friedrich

    2008-01-01

    This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. The muon anomalous magnetic moment amy is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations. Recent experiments at the Brookhaven National Laboratory now reach the unbelievable precision of 0.5 parts per million, improving the accuracy of previous g-2 experiments at CERN by a factor of 14. A major part of the book is devoted to the theory of the anomalous magnetic moment and to estimates of the theoretical uncertainties. Quantum electrodynamics and electroweak and hadronic effects are reviewed. Since non-perturbative hadronic effects play a key role for the precision test, their evaluation is described in detail. After the overview of theory, the exper...

  14. Anomalous magnetoresistance in magnetized topological insulator cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Siu, Zhuo Bin, E-mail: a0018876@nus.edu.sg [NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456 (Singapore); Data Storage Institute, Agency for Science, Technology and Research, Singapore 117608 (Singapore); Jalil, Mansoor B. A. [NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456 (Singapore)

    2015-05-07

    The close coupling between the spin and momentum degrees of freedom in topological insulators (TIs) presents the opportunity for the control of one to manipulate the other. The momentum can, for example, be confined on a curved surface and the spin influenced by applying a magnetic field. In this work, we study the surface states of a cylindrical TI magnetized in the x direction perpendicular to the cylindrical axis lying along the z direction. We show that a large magnetization leads to an upwards bending of the energy bands at small |k{sub z}|. The bending leads to an anomalous magnetoresistance where the transmission between two cylinders magnetized in opposite directions is higher than when the cylinders are magnetized at intermediate angles with respect to each other.

  15. Chiral magnetic plasmons in anomalous relativistic matter

    CERN Document Server

    Gorbar, E V; Shovkovy, I A; Sukhachov, P O

    2016-01-01

    The chiral plasmon modes of relativistic matter in background magnetic and strain-induced pseudomagnetic fields are studied in detail using the consistent chiral kinetic theory. The results reveal a number of anomalous features of these chiral magnetic and pseudomagnetic plasmons that could be used to identify them in experiment. In a system with nonzero electric (chiral) chemical potential, the background magnetic (pseudomagnetic) fields not only modify the values of the plasmon frequencies in the long wavelength limit, but also affect the qualitative dependence on the wave-vector. Similar modifications can be also induced by the chiral shift parameter in Weyl materials. Interestingly, even in the absence of the chiral shift and external fields, the chiral chemical potential alone leads to a splitting of plasmon energies at linear order in the wave vector.

  16. In-plane magnetization-induced quantum anomalous Hall effect.

    Science.gov (United States)

    Liu, Xin; Hsu, Hsiu-Chuan; Liu, Chao-Xing

    2013-08-23

    The quantum Hall effect can only be induced by an out-of-plane magnetic field for two-dimensional electron gases, and similarly, the quantum anomalous Hall effect has also usually been considered for systems with only out-of-plane magnetization. In the present work, we predict that the quantum anomalous Hall effect can be induced by in-plane magnetization that is not accompanied by any out-of-plane magnetic field. Two realistic two-dimensional systems, Bi2Te3 thin film with magnetic doping and HgMnTe quantum wells with shear strains, are presented and the general condition for the in-plane magnetization-induced quantum anomalous Hall effect is discussed based on the symmetry analysis. Nonetheless, an experimental setup is proposed to confirm this effect, the observation of which will pave the way to search for the quantum anomalous Hall effect in a wider range of materials.

  17. Magnetic Topological Insulators and Quantum Anomalous Hall Effect

    Science.gov (United States)

    Kou, Xufeng

    The engineering of topological surface states is a key to realize applicable devices based on topological insulators (TIs). Among various proposals, introducing magnetic impurities into TIs has been proven to be an effective way to open a surface gap and integrate additional ferromagnetism with the original topological order. In this Dissertation, we study both the intrinsic electrical and magnetic properties of the magnetic TI thin films grown by molecular beam epitaxy. By doping transition element Cr into the host tetradymite-type V-VI semiconductors, we achieve robust ferromagnetic order with a strong perpendicular magnetic anisotropy. With additional top-gating capability, we realize the electric-field-controlled ferromagnetism in the magnetic TI systems, and demonstrate such magneto-electric effects can be effectively manipulated, depending on the interplays between the band topology, magnetic exchange coupling, and structural engineering. Most significantly, we report the observation of quantum anomalous Hall effect (QAHE) in the Cr-doped (BiSb)2Te3 samples where dissipationless chiral edge conduction is realized in the macroscopic millimeter-size devices without the presence of any external magnetic field, and the stability of the quantized Hall conductance of e2/h is well-maintained as the film thickness varies across the 2D hybridization limit. With additional quantum confinement, we discover the metal-to-insulator switching between two opposite QAHE states, and reveal the universal QAHE phase diagram in the thin magnetic TI samples. In addition to the uniform magnetic TIs, we further investigate the TI/Cr-doped TI bilayer structures prepared by the modulation-doped growth method. By controlling the magnetic interaction profile, we observe the Dirac hole-mediated ferromagnetism and develop an effective way to manipulate its strength. Besides, the giant spin-orbit torque in such magnetic TI-based heterostructures enables us to demonstrate the current

  18. Observation of anomalous dielectric properties in low-dimensional spin 1/2 α-Cu2V2O7 magnetic system

    Science.gov (United States)

    Chen, Yu-Jen; Chandrasekhar, Kakarla-Devi; Fan, Ko-Jung; Lin, Jiunn-Yuan; Lee, Jenn-Min; Chen, Jin-Ming; Yang, Hung-Duen

    Recently, low-dimensional magnetic systems have received much attention from both theoretical and experimental physics point of view due to their fascinating physical properties. In general, Cu2V2O7 can stabilize at least two sibling polymorphs named as α and β phases. In α phase, Cu2V2O7 crystallized in orthorhombic with Fdd2 space groups. The complex magnetic exchange interaction between the Cu-O-Cu ion within the intra and interchain creates the Dzyaloshinskii-Moriya interaction that leads to weak ferromagnetism below the magnetic transition temperature TN = 34 K. In this study, we present the results of multiple dielectric anomalies observed in the low dimensional spin 1/2 α-Cu2V2O7 magnetic system. The observed dielectric signatures can be ascribed to the complex magnetic interaction α-Cu2V2O7 system. Further, the chemical doping effect on the magnetic and multiferroic properties of α-Cu2V2O7 is underway.

  19. The anomalous magnetic moment of the muon

    CERN Document Server

    Hughes, V W; Earle, W; Efstathiadis, E F; Hare, M; Hazen, E S; Krienen, F; Miller, J P; Rind, O; Roberts, B L; Sulak, Lawrence R; Trofimov, A V; Brown, H N; Bunce, G M; Danby, G T; Larsen, R; Lee, Y Y; Meng, W; Mi, J L; Morse, W M; Pai, C; Prigl, R; Sanders, R; Semertzidis, Y K; Tanaka, M; Warburton, D; Orlov, Yu F; Winn, D; Grossmann, A; Jungmann, Klaus; zu Putlitz, Gisbert; Debevec, P T; Deninger, W; Hertzog, D W; Polly, C; Sedykh, S; Urner, D; Haeberlen, U; Cushman, P B; Duong, L; Giron, S; Kindem, J; McNabb, R; Miller, D; Timmermans, C; Zimmerman, D; Druzhinin, V P; Fedotovich, G V; Khazin, B I; Logashenko, I B; Ryskulov, N M; Serednyakov, S I; Shatunov, Yu M; Solodov, E P; Yamamoto, A; Iwasaki, M; Kawamura, M; Deng, H; Dhawan, S K; Farley, Francis J M; Grosse-Perdekamp, M; Hughes, V W; Kawall, D; Redin, S I; Steinmetz, A

    1998-01-01

    A new experiment is underway at Brookhaven National Laboratory to measure the g-2 value of the muon to a precision of 0.35 ppm, which would improve our present knowledge by a factor of 20. In its initial run the muon anomalous g-value was found to be a/sub mu //sup + /=1165925(15)*10/sup -9/ [13 ppm], in good agreement with the previous CERN measurements and with approximately the same uncertainty. The current scientific motivations for this experiment are discussed, and the experiment is described. (30 refs).

  20. The muon anomalous magnetic moment and the standard model

    NARCIS (Netherlands)

    Hertzog, David W.; Carey, R. M.; Efstathiadis, E.; Hare, M. F.; Huang, X.; Krienen, F.; Lam, A.; Logashenko, I.; Miller, J. P.; Paley, J.; Peng, Q.; Rind, O.; Roberts, B. L.; Sulak, L. R.; Trofimov, A.; Bennett, G. W.; Brown, H. N.; Bunce, G.; Danby, G. T.; Larsen, R.; Lee, Y. Y.; Meng, W.; Mi, J.; Morse, W. M.; Nikas, D.; Özben, C.; Prigl, R.; Semertzidis, Y. K.; Warburton, D.; Orlov, Y.; Grossmann, A.; zu Putlitz, G.; von Walter, P.; Debevec, P. T.; Deninger, W.; Gray, F. E.; Onderwater, C. J G; Polly, C.; Sossong, M.; Urner, D.; Yamamoto, A.; Jungmann, K.; Bousquet, B.; Cushman, P.; Duong, L.; Giron, S.; Kindem, J.; Kronkvist, I.; McNabb, R.; Qian, T.; Shagin, P.; Druzhinin, V. P.; Fedotovich, G. V.; Grigoriev, D.; Khazin, B. I.; Ryskulov, N. M.; Shatunov, Yu M.; Solodov, E.; Iwasaki, I.; Deng, H.; Deile, M.; Dhawan, S. K.; Farley, F. J M; Hughes, V. W.; Kawall, D.; Perdekamp, M. Grosse; Pretz, J.; Redin, S. I.; Sichtermann, E.; Steinmetz, A.

    2003-01-01

    The muon anomalous magnetic moment measurement, when compared with theory, can be used to test many extensions to the standard model. The most recent measurement made by the Brookhaven E821 Collaboration reduces the uncertainty on the world average of aμ to 0.7 ppm, comparable in precision to theory

  1. Muon anomalous magnetic moment in string inspired extended family models

    CERN Document Server

    Kephart, T W

    2002-01-01

    We propose a standard model minimal extension with two lepton weak SU(2) doublets and a scalar singlet to explain the deviation of the measured anomalous magnetic moment of the muon from the standard model expectation. This scheme can be naturally motivated in string inspired models such as E_6 and AdS/CFT.

  2. Quantum anomalous Hall effect in magnetic insulator heterostructure.

    Science.gov (United States)

    Xu, Gang; Wang, Jing; Felser, Claudia; Qi, Xiao-Liang; Zhang, Shou-Cheng

    2015-03-11

    On the basis of ab initio calculations, we predict that a monolayer of Cr-doped (Bi,Sb)2Te3 and GdI2 heterostructure is a quantum anomalous Hall insulator with a nontrivial band gap up to 38 meV. The principle behind our prediction is that the band inversion between two topologically trivial ferromagnetic insulators can result in a nonzero Chern number, which offers a better way to realize the quantum anomalous Hall state without random magnetic doping. In addition, a simple effective model is presented to describe the basic mechanism of spin polarized band inversion in this system. Moreover, we predict that 3D quantum anomalous Hall insulator could be realized in (Bi2/3Cr1/3)2Te3 /GdI2 superlattice.

  3. Anomalous Hall Effect in Geometrically Frustrated Magnets

    Directory of Open Access Journals (Sweden)

    D. Boldrin

    2012-01-01

    space mechanism based on spin chirality that was originally applied to the pyrochlore Nd2Mo2O7 appears unsatisfactory. Recently, an orbital description based on the Aharonov-Bohm effect has been proposed and applied to both the ferromagnetic pyrochlores Nd2Mo2O7 and Pr2Ir2O7; the first of which features long-ranged magnetic order while the latter is a chiral spin liquid. Two further examples of geometrically frustrated conducting magnets are presented in this paper—the kagome-like Fe3Sn2 and the triangular PdCrO2. These possess very different electronic structures to the 3-dimensional heavy-metal pyrochlores and provide new opportunities to explore the different origins of the AHE. This paper summarises the experimental findings in these materials in an attempt to unite the conflicting theoretical arguments.

  4. Quantifying Chiral Magnetic Effect from Anomalous-Viscous Fluid Dynamics

    CERN Document Server

    Jiang, Yin; Yin, Yi; Liao, Jinfeng

    2016-01-01

    Chiral Magnetic Effect (CME) is the macroscopic manifestation of the fundamental chiral anomaly in a many-body system of chiral fermions, and emerges as anomalous transport current in the fluid dynamics framework. Experimental observation of CME is of great interest and has been reported in Dirac and Weyl semimetals. Significant efforts have also been made to search for CME in heavy ion collisions. Encouraging evidence of CME-induced charge separation in those collisions has been reported, albeit with ambiguity due to background contamination. Crucial for addressing such issue, is the need of quantitative predictions for CME signal with sophisticated modelings. In this paper we develop such a tool, the Anomalous Viscous Fluid Dynamics (AVFD) framework, which simulates the evolution of fermion currents in QGP on top of the data-validated VISHNU bulk hydrodynamic flow. With realistic initial conditions and magnetic field lifetime, the AVFD-predicted CME signal could be quantitatively consistent with measured ch...

  5. The Theoretical Prediction for the Muon Anomalous Magnetic Moment

    Science.gov (United States)

    Davier, Michel; Marciano, William J.

    2004-12-01

    This article reviews the standard-model prediction for the anomalous magnetic moment of the muon and describes recent updates of QED, electroweak, and hadronic contributions. Comparison of theory and experiment suggests a 2.4 difference if e+e hadrons data are used to evaluate the main hadronic effects, but a smaller discrepancy if hadronic decay data are employed. Implications of a deviation for "new physics" contributions, along with an outlook for future improvements in theory and experiment, are briefly discussed.

  6. Searches for Magnetic Monopoles and Anomalously Charged Objects with ATLAS

    CERN Document Server

    Katre, Akshay; The ATLAS collaboration

    2016-01-01

    Results of searches for highly ionising particles and particles with anomalously high electric charge produced in proton-proton collisions in the ATLAS detector are presented. Such signatures, encompassing particles with charges from 10 to 60 times the electron charge, involve high levels of ionization in the ATLAS detector and can arise from magnetic monopoles or models involving technicolor, doubly charged Higgs bosons or composite dark matter models.

  7. Anomalous current pinch of a toroidal axisymmetric plasma with stochastic magnetic field perturbations

    Science.gov (United States)

    Wang, Shaojie

    2016-07-01

    Anomalous current pinch, in addition to the anomalous diffusion due to stochastic magnetic perturbations, is theoretically found, which may qualitatively explain the recent DIII-D experiment on resonant magnetic field perturbation. The anomalous current pinch, which may resolve the long-standing issue of seed current in a fully bootstrapped tokamak, is also discussed for the electrostatic turbulence.

  8. Quantized Anomalous Hall Effect in Magnetic Topological Insulators

    Institute of Scientific and Technical Information of China (English)

    YU Rui

    2011-01-01

    The Hall effect, the anomalous Hall effect (AHE) and the spin Hall effect are thndamental transport processes in solids arising from the Lorentz force and the spin-orbit coupling respectively. The AHE, in which a voltage transverse to the electric current appears even in the absence of an external magnetic field, was first detected in ferromagnetic (FM) metals in 1881 and later found to arise from the spin-orbit coupling (SOC) between the current and magnetic moments.

  9. Muon anomalous magnetic moment due to the brane stretching effect

    CERN Document Server

    Sawa, K

    2006-01-01

    We investigate the contribution of extra dimensions to muon anomalous magnetic moment using a 6-dimensional model. The approach analyzes the extent to which small brane fluctuations influence the magnetic moment. In particular, we assume that the fluctuations are static in time, which add the new potential terms to the schr{\\"o}dinger equation through the induced vierbein. This paper shows that the fluctuations result in the brane stretching effect due to the negative tension. The effect would be a capable of reproducing the appropriate order for the recent BNL measurements of the muon (g-2) deviation.

  10. Quantized Anomalous Hall Effect in Magnetic Topological Insulators

    Institute of Scientific and Technical Information of China (English)

    YU Rui

    2011-01-01

    @@ The Hall effect, the anomalous Hall effect (AHE) and the spin Hall effect are fundamental transport processes in solids arising from the Lorentz force and the spin-orbit coupling respectively.The AHE, in which a voltage transverse to the electric current appears even in the absence of an external magnetic field, was first detected in ferromagnetic (FM) metals in 1881 and later found to arise from the spin-orbit coupling (SOC) between the current and magnetic moments.Recent progress on the mechanism of AHE has established a link between the AHE and the topological nature of the Hall current by adopting the Berry-phase concepts in close analogy to the intrinsic spin Hall effect.Given the experimental discovery of the quantum Hall and the quantum spin Hall effects, it is natural to ask whether the AHE can also be quantized.In a quantized anomalous Hall (QAH) insulator, spontaneous magnetic moments and spin-orbit coupling combine to give rise to a topologically non-trivial electronic structure, leading to the quantized Hall effect without any external magnetic field.

  11. Fermion-Antifermion Condensate Contribution to the Anomalous Magnetic Moment of a Fundamental Dirac Fermion

    CERN Document Server

    Elias, V; Elias, Victor; Sprague, Kevin

    1998-01-01

    We consider the contribution of fermion-antifermion condensates to the anomalous magnetic moment of a fermion in a vacuum in which such condensates exist. The real part of the condensate contribution to the anomalous magnetic moment is shown to be zero. A nonzero imaginary part is obtained below the kinematic threshold for intermediate fermion-antifermion pairs. The calculation is shown to be gauge-parameter independent provided a single fermion mass characterizes both the fermion propagator and condensate-sensitive contributions, suggestive of a dynamically-generated fermion mass. The nonzero imaginary part is then argued to correspond to the kinematic production of the intermediate-state Goldstone bosons anticipated from a chiral-noninvariant vacuum. Finally, speculations are presented concerning the applicability of these results to quark electromagnetic properties.

  12. Anomalous resistivity and the evolution of magnetic field topology

    Science.gov (United States)

    Parker, E. N.

    1993-01-01

    This paper explores the topological restructuring of a force-free magnetic field caused by the hypothetical sudden onset of a localized region of strong anomalous resistivity. It is shown that the topological complexity increases, with the primitive planar force-free field with straight field lines developing field lines that wrap half a turn around each other, evidently providing a surface of tangential discontinuity in the wraparound region. It is suggested that the topological restructuring contributes to the complexity of the geomagnetic substorm, the aurora, and perhaps some of the flare activity on the sun, or other star, and the Galactic halo.

  13. Muon Anomalous Magnetic Moment in a Supersymmetric U(1)' Model

    CERN Document Server

    Barger, V; Langacker, P; Lee, H S; Barger, Vernon; Kao, Chung; Langacker, Paul; Lee, Hye-Sung

    2005-01-01

    We study the muon anomalous magnetic moment a_\\mu = (g_\\mu - 2)/2 in a supersymmetric U(1)' model. The neutralino sector has extra components from the superpartners of the U(1)' gauge boson and the extra Higgs singlets that break the U(1)' symmetry. The theoretical maximum bound on the lightest neutralino mass is much smaller than that of the Minimal Supersymmetric Standard Model (MSSM) because of the mixing pattern of the extra components. In a U(1)' model where the U(1)' symmetry is broken by a secluded sector (the S-model), tan\\beta is required to be < 3 to have realistic electroweak symmetry breaking. These facts suggest that the a_\\mu prediction may be meaningfully different from that of the MSSM. We evaluate and compare the muon anomalous magnetic moment in this model and the MSSM and discuss the constraints on tan\\beta and relevant soft breaking terms. There are regions of the parameter space that can explain the experimental deviation of a_\\mu from the Standard Model calculation and yield an accept...

  14. Precise quantization of anomalous Hall effect near zero magnetic field

    Science.gov (United States)

    Bestwick, Andrew; Fox, Eli; Kou, Xufeng; Pan, Lei; Wang, Kang; Goldhaber-Gordon, David

    2015-03-01

    The quantum anomalous Hall effect (QAHE) has recently been of great interest due to its recent experimental realization in thin films of Cr-doped (Bi, Sb)2Te3, a ferromagnetic 3D topological insulator. The presence of ferromagnetic exchange breaks time-reversal symmetry, opening a gap in the surface states, but gives rise to dissipationless chiral conduction at the edge of a magnetized film. Ideally, this leads to vanishing longitudinal resistance and Hall resistance quantized to h /e2 , where h is Planck's constant and e is the electron charge, but perfect quantization has so far proved elusive. Here, we study the QAHE in the limit of zero applied magnetic field, and measure Hall resistance quantized to within one part per 10,000. Deviation from quantization is due primarily to thermally activated carriers, which can be nearly eliminated through adiabatic demagnetization cooling. This result demonstrates an important step toward dissipationless electron transport in technologically relevant conditions.

  15. Anomalous wave structure in magnetized materials described by non-convex equations of state

    Energy Technology Data Exchange (ETDEWEB)

    Serna, Susana, E-mail: serna@mat.uab.es [Departament de Matematiques, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Marquina, Antonio, E-mail: marquina@uv.es [Departamento de Matematicas, Universidad de Valencia, 46100 Burjassot, Valencia (Spain)

    2014-01-15

    We analyze the anomalous wave structure appearing in flow dynamics under the influence of magnetic field in materials described by non-ideal equations of state. We consider the system of magnetohydrodynamics equations closed by a general equation of state (EOS) and propose a complete spectral decomposition of the fluxes that allows us to derive an expression of the nonlinearity factor as the mathematical tool to determine the nature of the wave phenomena. We prove that the possible formation of non-classical wave structure is determined by both the thermodynamic properties of the material and the magnetic field as well as its possible rotation. We demonstrate that phase transitions induced by material properties do not necessarily imply the loss of genuine nonlinearity of the wavefields as is the case in classical hydrodynamics. The analytical expression of the nonlinearity factor allows us to determine the specific amount of magnetic field necessary to prevent formation of complex structure induced by phase transition in the material. We illustrate our analytical approach by considering two non-convex EOS that exhibit phase transitions and anomalous behavior in the evolution. We present numerical experiments validating the analysis performed through a set of one-dimensional Riemann problems. In the examples we show how to determine the appropriate amount of magnetic field in the initial conditions of the Riemann problem to transform a thermodynamic composite wave into a simple nonlinear wave.

  16. Precise quantization of anomalous Hall effect near zero magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Bestwick, A. J. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Fox, E. J. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Kou, Xufeng [Univ. of California, Los Angeles, CA (United States); Pan, Lei [Univ. of California, Los Angeles, CA (United States); Wang, Kang L. [Univ. of California, Los Angeles, CA (United States); Goldhaber-Gordon, D. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-05-04

    In this study, we report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization in the Hall resistance to within a part per 10,000 and a longitudinal resistivity under 1 Ω per square, with chiral edge transport explicitly confirmed by nonlocal measurements. Deviations from this behavior are found to be caused by thermally activated carriers, as indicated by an Arrhenius law temperature dependence. Using the deviations as a thermometer, we demonstrate an unexpected magnetocaloric effect and use it to reach near-perfect quantization by cooling the sample below the dilution refrigerator base temperature in a process approximating adiabatic demagnetization refrigeration.

  17. Improved Measurement of the Positive Muon Anomalous Magnetic Moment

    CERN Document Server

    Brown, H N; Carey, R M; Cushman, P B; Danby, G T; Debevec, P T; Deng, H; Deninger, W J; Dhawan, S K; Druzhinin, V P; Duong, L; Earle, W; Efstathiadis, E F; Fedotovich, G V; Farley, Francis J M; Giron, S; Gray, F; Grosse-Perdekamp, M; Grossmann, A; Haeberlen, U; Hare, M; Hazen, E S; Hertzog, D W; Hughes, V W; Iwasaki, M; Jungmann, Klaus; Kawall, D; Kawamura, M; Khazin, B I; Kindem, J; Krienen, F; Kronkvist, I J; Larsen, R; Lee, Y Y; Logashenko, I B; McNabb, R; Meng, W; Mi, J; Miller, J P; Morse, W M; Onderwater, Gerco; Orlov, Yu F; Ozben, C; Polly, C; Pai, C; Paley, J M; Pretz, J; Prigl, R; zu Putlitz, Gisbert; Redin, S I; Rind, O; Roberts, B L; Ryskulov, N M; Sedykh, S N; Semertzidis, Y K; Shatunov, Yu M; Solodov, E P; Sossong, M; Steinmetz, A; Sulak, Lawrence R; Timmermans, C; Trofimov, A V; Urner, D; Von Walter, P; Warburton, D; Winn, D; Yamamoto, A; Zimmerman, D

    2000-01-01

    A new measurement of the positive muon's anomalous magnetic moment has been made at the Brookhaven Alternating Gradient Synchrotron using the direct injection of polarized muons into the superferric storage ring. The angular frequency difference omega_{a} between the angular spin precession frequency omega_{s} and the angular orbital frequency omega_{c} is measured as well as the free proton NMR frequency omega_{p}. These determine R = omega_{a} / omega_{p} = 3.707~201(19) times 10^{-3}. With mu_{mu} / mu_{p} = 3.183~345~39(10) this gives a_{mu^+} = 11~659~191(59) times 10^{-10} (pm 5 ppm), in good agreement with the previous CERN and BNL measurements for mu^+ and mu^-, and with the standard model prediction.

  18. Evolving magnetic equilibria in anomalous turbulent transport simulations

    Science.gov (United States)

    Lee, Jungpyo; Cerfon, Antoine; Highcock, Edmund; Barnes, Michael

    2014-10-01

    The evolution of poloidal and toroidal magnetic fluxes in a tokamak are determined by Faraday's law in which electric field needs to be consistent with 1-D radial transports of density, temperature, and toroidal angular momentum. Consistency is required because the transport of the thermodynamic variables depends on the 2-D magnetic equilibrium that changes depending on the radial pressure profile. For neoclassical transport, consistency is achieved through a proper treatment of the parallel electric field and Ohm's law [Hinton and Hazeltine (1976), Hirshman and Jardin (1979)]. Recently, consistency for the anomalous turbulent transport has been studied analytically using a Lagrangian formulation of gyrokinetics [Sugama et al. (2014)]. In this poster, we propose a simple numerical model to evolve both the magnetic equilibrium and the radial profile of density, temperature, and toroidal angular frequency due to turbulent transport with a fixed q (safety factor) profile. The constraint of fixed q profile makes the evolution self-consistent only if the transport time scale is much smaller than the resistive current diffusion time scale. In this model, we use the transport code TRINITY coupled with the local gyrokinetic code GS2 and the q-solver version of the Grad-Shafranov code ECOM.

  19. Anomalous electrodynamics of neutral pion matter in strong magnetic fields

    Science.gov (United States)

    Brauner, Tomáš; Kadam, Saurabh V.

    2017-03-01

    The ground state of quantum chromodynamics in sufficiently strong external magnetic fields and at moderate baryon chemical potential is a chiral soliton lattice (CSL) of neutral pions [1]. We investigate the interplay between the CSL structure and dynamical electromagnetic fields. Our main result is that in presence of the CSL background, the two physical photon polarizations and the neutral pion mix, giving rise to two gapped excitations and one gapless mode with a nonrelativistic dispersion relation. The nature of this mode depends on the direction of its propagation, interpolating between a circularly polarized electromagnetic wave [2] and a neutral pion surface wave, which in turn arises from the spontaneously broken translation invariance. Quite remarkably, there is a neutral-pion-like mode that remains gapped even in the chiral limit, in seeming contradiction to the Goldstone theorem. Finally, we have a first look at the effect of thermal fluctuations of the CSL, showing that even the soft nonrelativistic excitation does not lead to the Landau-Peierls instability. However, it leads to an anomalous contribution to pressure that scales with temperature and magnetic field as T 5/2( B/f π )3/2.

  20. Thickness Dependence of the Quantum Anomalous Hall Effect in Magnetic Topological Insulator Films.

    Science.gov (United States)

    Feng, Xiao; Feng, Yang; Wang, Jing; Ou, Yunbo; Hao, Zhenqi; Liu, Chang; Zhang, Zuocheng; Zhang, Liguo; Lin, Chaojing; Liao, Jian; Li, Yongqing; Wang, Li-Li; Ji, Shuai-Hua; Chen, Xi; Ma, Xucun; Zhang, Shou-Cheng; Wang, Yayu; He, Ke; Xue, Qi-Kun

    2016-08-01

    The evolution of the quantum anomalous Hall effect with the thickness of Cr-doped (Bi,Sb)2 Te3 magnetic topological insulator films is studied, revealing how the effect is caused by the interplay of the surface states, band-bending, and ferromagnetic exchange energy. Homogeneity in ferromagnetism is found to be the key to high-temperature quantum anomalous Hall material.

  1. Chemically manipulated anomalous Hall effect and perpendicular magnetic anisotropy in Co/Pt multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shao-Long; Chen, Xi; Zhang, Jing-Yan; Yang, Guang; Teng, Jiao; Li, Xu-Jing; Cao, Yi; Zhao, Zhi-Duo; Yang, Kang; Liu, Yang; Yu, Guang-Hua, E-mail: ghyu@mater.ustb.edu.cn

    2014-11-30

    Highlights: • We studied magnetic and electric transport properties of MgO/[Co/Pt]{sub 3}/Mg/MgO films • The chemical states at Co/MgO and Co/Mg interfaces were investigated by XPS. • Interface chemical states have strong influence on AHE and PMA in Co/Pt multilayers. - Abstract: Chemically manipulated anomalous Hall effect (AHE) and perpendicular magnetic anisotropy (PMA) have been studied in MgO/[Co/Pt]{sub 3}/MgO multilayers by introducing a Mg metal layer between the Co layer and the top MgO layer. It is shown that the saturation anomalous Hall resistivity (ρ{sub AH}) and effective magnetic anisotropy (K{sub eff}) are 125% and 26% larger than those in the multilayers without Mg insertion, respectively. The X-ray photoelectron spectroscopy (XPS) analysis shows that the enhancement of AHE and PMA is primarily ascribed to effective control of chemical states at the Co/MgO interface.

  2. Soft gamma-ray repeaters and anomalous X-ray pulsars as highly magnetized white dwarfs

    Science.gov (United States)

    Mukhopadhyay, Banibrata; Rao, A. R.

    2016-05-01

    We explore the possibility that soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are powered by highly magnetized white dwarfs (B-WDs). We take a sample of SGRs and AXPs and provide the possible parameter space in mass, radius, and surface magnetic field based on their observed properties (period and its derivative) and the assumption that these sources obey the mass-radius relation derived for the B-WDs. The radius and magnetic field of B-WDs are adequate to explain energies in SGRs/AXPs as the rotationally powered energy. In addition, B-WDs also adequately explain the perplexing radio transient GCRT J1745-3009 as a white dwarf pulsar. Note that the radius and magnetic fields of B-WDs are neither extreme (unlike of highly magnetized neutron stars) nor ordinary (unlike of magnetized white dwarfs, yet following the Chandrasekhar's mass-radius relation (C-WDs)). In order to explain SGRs/AXPs, while the highly magnetized neutron stars require an extra, observationally not well established yet, source of energy, the C-WDs predict large ultra-violet luminosity which is observationally constrained from a strict upper limit. Finally, we provide a set of basic differences between the magnetar and B-WD hypotheses for SGRs/AXPs.

  3. Soft gamma-ray repeaters and anomalous X-ray pulsars as highly magnetized white dwarfs

    CERN Document Server

    Mukhopadhyay, Banibrata

    2016-01-01

    We explore the possibility that soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are powered by highly magnetized white dwarfs (B-WDs). We take a sample of SGRs and AXPs and provide the possible parameter space in mass, radius, and surface magnetic field based on their observed properties (period and its derivative) and the assumption that these sources obey the mass-radius relation derived for the B-WDs. The radius and magnetic field of B-WDs are adequate to explain energies in SGRs/AXPs as the rotationally powered energy. In addition, B-WDs also adequately explain the perplexing radio transient GCRT J1745-3009 as a white dwarf pulsar. Note that the radius and magnetic fields of B-WDs are neither extreme (unlike of highly magnetized neutron stars) nor ordinary (unlike of magnetized white dwarfs, yet following the Chandrasekhar's mass-radius relation (C-WDs)). In order to explain SGRs/AXPs, while the highly magnetized neutron stars require an extra, observationally not well established yet, ...

  4. Anomalous delta-type electric and magnetic two-nucleon interactions

    CERN Document Server

    Mandache, Nicolae Bogdan

    2009-01-01

    Anomalous delta-type interactions, of both electric and magnetic nature, are introduced between the overlapping peripheral structures of the nucleons, which may explain the spin-triplet deuteron state and the absence of other nucleon-nucleon bound states.

  5. Influence of External Magnetic Field on Anomalous Skin Effects in Inductively Coupled Plasmas

    Institute of Scientific and Technical Information of China (English)

    MAO Ming; WANG You-Nian

    2004-01-01

    @@ Using a one-dimensional slab model, we study the influence of the external static magnetic field on the anomalous skin effects in the inductively coupled plasma. The rf electromagnetic field in the plasma is determined by solving the linearized Boltzmann equation incorporating with the Maxwell equations. The numerical results show that,due to the existence of the external magnetic field, the anomalous skin effects are greatly enhanced and the number of regions with negative absorption is decreased.

  6. Particle with spin 2 and anomalous magnetic moment in external electromagnetic and gravitational fields

    CERN Document Server

    Kisel, V V; Red'kov, V M

    2011-01-01

    Tensor 50-component form of the first order relativistic wave equation for a particle with spin 2 and anomalous magnetic moment is extended to the case of an arbitrary curved space-time geometry. An additional parameter considered in the presence of only electromagnetic field as related to anomalous magnetic moment, turns to determine additional interaction terms with external geometrical background through Ricci R_{kl} and Riemann R_{klmn} tensors.

  7. Anomalous properties of spin-extended chiral fermions

    CERN Document Server

    Elbistan, M

    2015-01-01

    The spin-extended semiclassical chiral fermion (we call the S-model), which had been used to derive the twisted Lorentz symmetry of the "spin-enslaved" chiral chiral fermion (we call the c-model) is equivalent to the latter in the free case, however coupling to an external electromagnetic field yields inequivalent systems. The difference is highlighted by the inconsistency of spin enslavement within the spin-extended framework. The S-model exhibits nevertheless similar though slightly different anomalous properties as the usual c-model does.

  8. Quantum anomalous Hall effect in magnetically modulated topological insulator/normal insulator heterostructures

    Science.gov (United States)

    Men'shov, V. N.; Tugushev, V. V.; Chulkov, E. V.

    2016-10-01

    We theoretically study how magnetic modulation can be used to manipulate the transport properties of heterostructures formed by a thin film of a three-dimensional topological insulator sandwiched between slabs of a normal insulator. Employing the k • p scheme, in the framework of a continual approach, we argue that electron states of the system are spin-polarized when ultrathin magnetic insertions are incorporated into the film. We demonstrate that (i) the spin-polarization magnitude depends strongly on the magnetic insertion position in the film and (ii) there is the optimal insertion position to realize quantum anomalous Hall effect, which is a function of the material parameters, the film thickness and the topological insulator/normal insulator interface potential. For the heterostructure with a pair of symmetrically placed magnetic insertions, we calculate a phase diagram that shows a series of transitions between distinct quantum regimes of transverse conductivity. We provide consistent interpretation of recent experimental findings in the context of our results.

  9. Precise measurement of the positive muon anomalous magnetic moment

    NARCIS (Netherlands)

    Brown, HN; Bunce, G; Carey, RM; Cushman, P; Danby, GT; Debevec, PT; Deile, M; Deng, H; Deninger, W; Dhawan, SK; Druzhinin, VP; Duong, L; Efstathiadis, E; Farley, FJM; Fedotovich, GV; Giron, S; Gray, F; Grigoriev, D; Grosse-Perdekamp, M; Grossmann, A; Hare, MF; Hertzog, DW; Hughes, VW; Iwasaki, M; Jungmann, K; Kawall, D; Kawamura, M; Khazin, BI; Kindem, J; Krienen, F; Kronkvist, I.; Larsen, R; Lee, YY; Logashenko, I.; McNabb, R; Meng, W; Mi, J; Miller, JP; Morse, WM; Nikas, D; Onderwater, CJG; Orlov, Y; Ozben, CS; Paley, JM; Polly, C; Pretz, J; Prigl, R; Putlitz, GZ; Redin, SI; Rind, O; Roberts, BL; Ryskulov, N; Sedykh, S; Semertzidis, YK; Shatunov, YM; Sichtermann, EP; Solodov, E; Sossong, M; Steinmetz, A; Sulak, LR; Timmermans, C; Trofimov, A; Urner, D; von Walter, P; Warburton, D; Winn, D; Yamamoto, A; Zimmerman, D

    2001-01-01

    A precise measurement of the anomalous g value, a(mu) = (g - 2)/2, for the positive muon has been made at the Brookhaven Alternating Gradient Synchrotron. The result a(mu+) = 11 659 202(14) (6) X 10(-10) (1.3 ppm) is in good agreement with previous measurements and has an error one third that of the

  10. `Anomalous' magnetic fabrics of dikes in the stable single domain/superparamagnetic threshold

    Science.gov (United States)

    Soriano, Carles; Beamud, Elisabet; Garcés, Miguel; Ort, Michael H.

    2016-02-01

    `Anomalous' magnetic fabrics in dikes that appear to indicate flow into the wall confound many workers. Here, we present extensive magnetic data on five dikes from Tenerife, Canary Islands, and use these to interpret the causes of the anomalous fabrics. Comparison of the anisotropy of magnetic susceptibility (AMS) and anhysteretic magnetization (AARM) results show that, in some cases, the anomalous fabrics are caused by single-domain grains, which produce AMS fabrics perpendicular to the grain elongation, whereas AARM fabrics are parallel. To check this, hysteresis experiments were used to characterize the domain state. These show most are mixtures of pseudo-single-domain or single-domain plus multi-domain particles, but many have wasp-waisted hysteresis loops, likely indicating mixed populations of stable single-domain and superparamagnetic grains. First-order reversal curves were used to better characterize this and show mixtures of stable single-domain and superparamagnetic grains dominate the magnetic signal. Magnetic particles at the stable single-domain/superparamagnetic threshold are unstable at timespans relevant to the analytical techniques, so they produce complicated results. This suggests that anomalous AMS fabrics in dikes cannot simply be attributed to elongated stable single-domain particles and that mixtures of the different grain types can produce hybrid fabrics, in which the fabrics are neither perpendicular or parallel to the dike plane, that are difficult to interpret without extensive magnetic analysis.

  11. Vacuum effects in magnetic field with with account for fermion anomalous magnetic moment and axial-vector interaction

    Science.gov (United States)

    Bubnov, Andrey; Gubina, Nadezda; Zhukovsky, Vladimir

    2016-05-01

    We study vacuum polarization effects in the model of Dirac fermions with additional interaction of an anomalous magnetic moment with an external magnetic field and fermion interaction with an axial-vector condensate. The proper time method is used to calculate the one-loop vacuum corrections with consideration for different configurations of the characteristic parameters of these interactions.

  12. Anomalous magnetism of CeRh3B2 under pressure

    Science.gov (United States)

    Shaheen, S. A.; Schilling, J. S.; Klavins, P.; Vining, C. B.; Shelton, R. N.

    Whereas CeRh3B2 possesses the highest magnetic ordering temperature (T sub c approx. = 115K) of any Ce-compound with nonmagnetic constituents, LaRh3B2 becomes superconducting below 2.5K. Recent magnetization measurements under pressure as well as lattice parameter and specific heat studies shed light on the nature of the anomalous magnetic state in CeRh3B2.

  13. Anomalous behavior of a confined two-dimensional electron within an external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rosas, R; Riera R; Marin, J. L. [Universidad de Sonora, Hermosillo, Sonora (Mexico); Leon, H. [Instituto Superior Jose Antonio Echeverria, La Habana (Cuba)

    2001-10-01

    An anomalous diamagnetic behavior of a confined two-dimensional electron within an external magnetic field (perpendicular to the confining plane) is discussed in this letter. Although this finding is consistent with the pioneering work of Robnik, it has not been previously reported. When this effect occurs, the ratio between the typical length of spatial and magnetic confinement is an integer number. This property leads also to a quantization of the magnetic flux across the confining circle. The possible consequences of the peculiar behavior of the electron within such a structure are discussed. [Spanish] Se estudia una posible anomalia en las propiedades diamagneticas de un electron bidimensional confinado en presencia de un campo magnetico externo perpendicular al plano de confinamiento. Aunque los resultados obtenidos son consistentes con el trabajo pionero de Robnik, no han sido reportados anteriormente, a pesar de sus posibles aplicaciones, ya que cuando ocurre, el cociente entre la longitud magnetica y el tamano de la region de confinamiento es un numero entero, propiedad que establece una cuantizacion del flujo magnetico que atraviesa el circulo confinante. Se discuten las posibles consecuencias del comportamiento peculiar del electron en este tipo de estructura.

  14. Anomalous Magnetic Excitations of Cooperative Tetrahedral Spin Clusters

    DEFF Research Database (Denmark)

    Prsa, K.; Rønnow, H.M.; Zaharko, O.;

    2009-01-01

    An inelastic neutron scattering study of Cu2Te2O5X2 (X=Cl, Br) shows strong dispersive modes with large energy gaps persisting far above T-N, notably in Cu2Te2O5Br2. The anomalous features: a coexisting unusually weak Goldstone-like mode observed in Cu2Te2O5Cl2 and the size of the energy gaps can...

  15. Prediction of the anomalous magnetic moment of nucleon from the nucleon anomaly

    CERN Document Server

    Lin, Y C

    1995-01-01

    We construct the effective anomaly lagrangian involving nucleons and photons by using current-current coupling method. The contribution of this lagrangian to the anomalous magnetic moment of nucleon is purely isovector. The anomalous magnetic moment of proton, \\kappa_P, can be calculated from the this lagrangian and it is found to be \\kappa_P^{Theor.} = 1.77, which is in excellent agreement with the experimental value \\kappa_P^{Exp.} = 1.79. While the case of neutron, \\kappa_N^{Theor.} = -2.58 as compared to \\kappa_N^{Exp.} =-1.91, is less satisfactory, but the sign is correct.

  16. Large anomalous magnetic moment in three-dimensional Dirac and Weyl semimetals

    Science.gov (United States)

    van der Wurff, E. C. I.; Stoof, H. T. C.

    2016-10-01

    We investigate the effect of Coulomb interactions on the electromagnetic response of three-dimensional Dirac and Weyl semimetals. In a calculation reminiscent of Schwinger's seminal work on quantum electrodynamics, we find three physically distinct effects for the anomalous magnetic moment of the relativisticlike quasiparticles in the semimetal. In the case of nonzero doping, the anomalous magnetic moment is finite at long wavelengths and typically orders of magnitude larger than Schwinger's result. We also find interesting effects of one of the three new Hamiltonian terms on the topological surface states at the interface between vacuum and a Weyl semimetal. We conclude that observation of these effects should be within experimental reach.

  17. Quantum anomalous Hall effect in magnetically doped InAs/GaSb quantum wells.

    Science.gov (United States)

    Wang, Qing-Ze; Liu, Xin; Zhang, Hai-Jun; Samarth, Nitin; Zhang, Shou-Cheng; Liu, Chao-Xing

    2014-10-03

    The quantum anomalous Hall effect has recently been observed experimentally in thin films of Cr-doped (Bi,Sb)(2)Te(3) at a low temperature (∼ 30 mK). In this work, we propose realizing the quantum anomalous Hall effect in more conventional diluted magnetic semiconductors with magnetically doped InAs/GaSb type-II quantum wells. Based on a four-band model, we find an enhancement of the Curie temperature of ferromagnetism due to band edge singularities in the inverted regime of InAs/GaSb quantum wells. Below the Curie temperature, the quantum anomalous Hall effect is confirmed by the direct calculation of Hall conductance. The parameter regime for the quantum anomalous Hall phase is identified based on the eight-band Kane model. The high sample quality and strong exchange coupling make magnetically doped InAs/GaSb quantum wells good candidates for realizing the quantum anomalous Hall insulator at a high temperature.

  18. Effects of Anomalous Electron Cross-Field Transport in a Low Temperature Magnetized Plasma

    Science.gov (United States)

    Raitses, Yevgeny

    2014-10-01

    The application of the magnetic field in a low pressure plasma can cause a spatial separation of low and high energy electrons. This so-called magnetic filter effect is used for many plasma applications, including ion and neutral beam sources, plasma processing of semiconductors and nanomaterials, and plasma thrusters. In spite of successful practical applications, the magnetic filter effect is not well understood. In this work, we explore this effect by characterizing the electron and ion energy distribution functions in a plasma column with crossed electric and magnetic fields. Experimental results revealed a strong dependence of spatial variations of plasma properties on the gas pressure. For xenon and argon gases, below ~ 1 mtorr, the increase of the magnetic field leads to a more uniform profile of the electron temperature. This surprising result is due to anomalously high electron cross-field transport that causes mixing of hot and cold electrons. High-speed imaging and probe measurements revealed a coherent structure rotating in E cross B direction with frequency of a few kHz. Theory and simulations describing this rotating structure has been developed and points to ionization and electrostatic instabilities as their possible cause. Similar to spoke oscillations reported for Hall thrusters, this rotating structure conducts the large fraction of the cross-field current. The use of segmented electrodes with an electrical feedback control is shown to mitigate these oscillations. Finally, a new feature of the spoke phenomenon that has been discovered, namely a sensitive dependence of the rotating oscillations on the gas pressure, can be important for many applications. This work was supported by DOE Contract DE-AC02-09CH11466.

  19. Plasma transport in the interplanetary space: Percolation and anomalous diffusion of magnetic-field lines

    Energy Technology Data Exchange (ETDEWEB)

    Zimbardo, G.; Veltri, P. [Arcavacata di Rende, Cosenza, Univ. della Calabria (Italy). Dipt. di Fisica

    1997-11-01

    The magnetic fluctuations due to, e.g., magnetohydrodynamic turbulence cause a magnetic-field line random walk that influences many cosmic plasma phenomena. The results of a three-dimensional numerical simulation of a turbulent magnetic field in plane geometry are presented here. Magnetic percolation, Levy flights, and non-Gaussian random walk of the magnetic-field lines are found for moderate perturbation levels. In such a case plasma transport can be anomalous, i.e., either super diffusive or sub diffusive. Increasing the perturbation level a Gaussian diffusion regime is attained. The implications on the structure of the electron fore shock and of planetary magneto pauses are discussed.

  20. Perpendicular magnetic anisotropy in Co2MnGa and its anomalous Hall effect

    Science.gov (United States)

    Ludbrook, B. M.; Ruck, B. J.; Granville, S.

    2017-02-01

    We report perpendicular magnetic anisotropy in the ferromagnetic Heusler alloy Co2MnGa in a MgO/Co2MnGa/Pd trilayer stack for Co2MnGa thicknesses up to 3.5 nm. There is a thickness- and temperature-dependent spin reorientation transition from perpendicular to in-plane magnetic anisotropy, which we study through the anomalous Hall effect. From the temperature dependence of the anomalous Hall effect, we observe the expected scaling of ρx y A H E with ρxx, suggesting that the intrinsic and side-jump mechanisms are largely responsible for the anomalous Hall effect in this material.

  1. Muon Anomalous Magnetic Moment in the Supersymmetric Models with and Without Right-Handed Neutrinos

    Institute of Scientific and Technical Information of China (English)

    FENG Tai-Fu; HUANG Tao; LI Xue-Qian; LIU Xiang; ZHANG Xin-Min

    2002-01-01

    We discuss the anomalous magnetic moment of muon in the minimal supersynmetric Inodel with andmeasured g - 2 value of muon in the E821 experiment and other experimental constraints on the lepton-flavor-violationprocesses, we carry out numerical analysis on the concerned observables in the minimal supergravity scenario.

  2. The Measurement of the Anomalous Magnetic Moment of the Muon at Fermilab

    NARCIS (Netherlands)

    Logashenko, I.; Grange, J.; Winter, P.; Carey, R. M.; Hazen, E.; Kinnaird, N.; Miller, J. P.; Mott, J.; Roberts, B. L.; Crnkovic, J.; Morse, W. M.; Sayed, H. Kamal; Tishchenko, V.; Druzhinin, V. P.; Shatunov, Y. M.; Bjorkquist, R.; Chapelain, A.; Eggert, N.; Frankenthal, A.; Gibbons, L.; Kim, S.; Mikhailichenko, A.; Orlov, Y.; Rider, N.; Rubin, D.; Sweigart, D.; Allspach, D.; Barzi, E.; Casey, B.; Convery, M. E.; Drendel, B.; Freidsam, H.; Johnstone, C.; Johnstone, J.; Kiburg, B.; Kourbanis, I.; Lyon, A. L.; Merritt, K. W.; Morgan, J. P.; Nguyen, H.; Ostiguy, J. -F.; Para, A.; Polly, C. C.; Popovic, M.; Ramberg, E.; Rominsky, M.; Soha, A. K.; Still, D.; Walton, T.; Yoshikawa, C.; Jungmann, K.; Onderwater, C. J. G.; Debevec, P.; Leo, S.; Pitts, K.; Schlesier, C.; Anastasi, A.; Babusci, D.; Corradi, G.; Hampai, D.; Palladino, A.; Venanzoni, G.; Dabagov, S.; Ferrari, C.; Fioretti, A.; Gabbanini, C.; Di Stefano, R.; Marignetti, S.; Iacovacci, M.; Mastroianni, S.; Di Sciascio, G.; Moricciani, D.; Cantatore, G.; Karuza, M.; Giovanetti, K.; Baranov, V.; Duginov, V.; Khomutov, N.; Krylov, V.; Kuchinskiy, N.; Volnykh, V.; Gaisser, M.; Haciomeroglu, S.; Kim, Y.; Lee, S.; Lee, M.; Semertzidis, Y. K.; Won, E.; Fatemi, R.; Gohn, W.; Gorringe, T.; Bowcock, T.; Carroll, J.; King, B.; Maxfield, S.; Smith, A.; Teubner, T.; Whitley, M.; Wormald, M.; Wolski, A.; Al-Kilani, S.; Chislett, R.; Lancaster, M.; Motuk, E.; Stuttard, T.; Warren, M.; Flay, D.; Kawall, D.; Meadows, Z.; Syphers, M.; Tarazona, D.; Chupp, T.; Tewlsey-Booth, A.; Quinn, B.; Eads, M.; Epps, A.; Luo, G.; McEvoy, M.; Pohlman, N.; Shenk, M.; de Gouvea, A.; Welty-Rieger, L.; Schellman, H.; Abi, B.; Azfar, F.; Henry, S.; Gray, F.; Fu, C.; Ji, X.; Li, L; Yang, H; Stockinger, D.; Cauz, D.; Pauletta, G.; Santi, L.; Baessler, S.; Frlez, E.; Pocanic, D.; Alonzi, L. P.; Fertl, M.; Fienberg, A.; Froemming, N.; Garcia, A; Hertzog, D. W.; Kammel, P.; Kaspar, J.; Osofsky, R.; Smith, M.; Swanson, E.; Lynch, K.

    2015-01-01

    The anomalous magnetic moment of the muon is one of the most precisely measured quantities in experimental particle physics. Its latest measurement at Brookhaven National Laboratory deviates from the Standard Model expectation by approximately 3.5 standard deviations. The goal of the new experiment,

  3. Final report of the E821 muon anomalous magnetic moment measurement at BNL

    NARCIS (Netherlands)

    Bennett, GW; Bousquet, B; Brown, HN; Bunce, G; Carey, RM; Cushman, P; Danby, GT; Debevec, PT; Deile, M; Deng, H; Deninger, W; Dhawan, SK; Druzhinin, VP; Duong, L; Efstathiadis, E; Farley, FJM; Fedotovich, GV; Giron, S; Gray, FE; Grigoriev, D; Grosse-Perdekamp, M; Grossmann, A; Hare, MF; Hertzog, DW; Huang, [No Value; Hughes, VW; Iwasaki, M; Jungmann, Klaus-Peter; Kawall, D; Kawamura, M; Khazin, BI; Kindem, J; Krienen, F; Kronkvist, [No Value; Lam, A; Larsen, R.; Lee, YY; Logashenko, [No Value; McNabb, R; Meng, W; Mi, J; Miller, JP; Mizumachi, Y; Morse, WM; Nikas, D; Onderwater, Gerco; Orlov, Y; Ozben, CS; Paley, JM; Peng, Q; Polly, CC; Pretz, J; Prigl, R; Putlitz, GZ; Qian, T; Redin, SI; Rind, O; Roberts, BL; Ryskulov, N; Sedykh, S; Semertzidis, YK; Shagin, P; Shatunov, YM; Sichtermann, EP; Solodov, E; Sossong, M; Steinmetz, A; Sulak, LR; Timmermans, C; Trofimov, A; Urner, D; von Walter, P; Warburton, D; Winn, D; Yamamoto, A; Zimmerman, D

    2006-01-01

    We present the final report from a series of precision measurements of the muon anomalous magnetic moment, a(mu)=(g-2)/2. The details of the experimental method, apparatus, data taking, and analysis are summarized. Data obtained at Brookhaven National Laboratory, using nearly equal samples of positi

  4. Anomalous sound propagation due to the horizontal variation of seabed acoustic properties

    Institute of Scientific and Technical Information of China (English)

    LI Zhenglin; ZHANG Renhe; PENG Zhaohui; LI Xilu

    2004-01-01

    The sound propagation in shallow water is greatly influenced by the acoustic properties of seabed. An anomalous transmission loss was observed in an experiment, and a range dependent bottom model with horizontal variation of seabed acoustic property is proposed and could be well used to explain the anomalous phenomena. It is shown that the horizontal variation of bottom properties has a great effect on underwater sound propagation, and it should be given much attention in sound propagation and geoacoustic inversion problems.

  5. The effect of interfacial intermixing on magnetization and anomalous Hall effect in Co/Pd multilayers

    KAUST Repository

    Guo, Zaibing

    2015-05-01

    The effect of interfacial intermixing on magnetization and anomalous Hall effect (AHE) in Co/Pd multilayers is studied by using rapid thermal annealing to enhance the interfacial diffusion. The dependence of saturation magnetization and coercivity on the temperature of rapid thermal annealing at 5 K is discussed. It is found that AHE is closely related to the relative thickness of the Co and Pd layers. Localized paramagnetism has been observed which destroys AHE, while AHE can be enhanced by annealing.

  6. Soft gamma-ray repeaters and anomalous X-ray pulsars as highly magnetized white dwarfs

    CERN Document Server

    Mukhopadhyay, Banibrata

    2016-01-01

    We show that the soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) can be explained as recently proposed highly magnetized white dwarfs (B-WDs). The radius and magnetic field of B-WDs are perfectly adequate to explain energies in SGRs/AXPs as the rotationally powered energy. While the highly magnetized neutron stars require an extra, observationally not well established yet, source of energy, the magnetized white dwarfs, yet following Chandrasekhar's theory (C-WDs), exhibit large ultra-violet luminosity which is observationally constrained from a strict upper limit.

  7. Anomalous metamagnetic-like transition in a FeRh/Fe3Pt interface occurring at T ≈ 120 K in the field-cooled-cooling curves for low magnetic fields

    Directory of Open Access Journals (Sweden)

    S. Salem-Sugui Jr.

    2012-09-01

    Full Text Available We report on the magnetic properties of a special configuration of a FeRh thin film. An anomalous behavior on the magnetisation vs. temperature was observed when low magnetic fields are applied in the plane of a thin layer of FeRh deposited on ordered Fe3Pt. The anomalous effect resembles a metamagnetic transition and occur only in the field-cooled-cooling magnetisation curve at temperatures near 120 K in samples without any heat treatment.

  8. MAGNETIC WOVEN FABRICS - PHYSICAL AND MAGNETIC PROPERTIES

    Directory of Open Access Journals (Sweden)

    GROSU Marian C

    2015-05-01

    Full Text Available A coated material is a composite structure that consists of at least two components: base material and coating layer. The purpose of coating is to provide special properties to base material, with potential to be applied in EMI shielding and diverse smart technical fields. This paper reports the results of a study about some physical and magnetic properties of coated woven fabrics made from cotton yarns with fineness of 17 metric count. For this aim, a plain woven fabric was coated with a solution hard magnetic polymer based. As hard magnetic powder, barium hexaferrite (BaFe12O19 was selected. The plain woven fabric used as base has been coated with five solutions having different amounts of hard magnetic powder (15% - 45% in order to obtain five different magnetic woven fabrics. A comparison of physical properties regarding weight (g/m2, thickness (mm, degree of charging (% and magnetic properties of magnetic woven samples were presented. Saturation magnetizing (emu/g, residual magnetizing (emu/g and coercive force (kA/m of pure hard magnetic powder and woven fabrics have been studied as hysteresis characteristics. The magnetic properties of the woven fabrics depend on the mass percentage of magnetic powder from coating solution. Also, the residual magnetism and coercive field of woven fabrics represents only a part of bulk barium hexafferite residual magnetism and coercive field.

  9. Anomalous state of a 2DEG in vicinal Si MOSFET in high magnetic fields

    OpenAIRE

    Kvon, Z. D.; Proskuryakov, Y. Y.; Savchenko, A. K.

    2003-01-01

    We report the observation of an anomalous state of a 2D electron gas near a vicinal surface of a silicon MOSFET in high magnetic fields. It is characterised by unusual behaviour of the conductivities $\\sigma_{xx}$ and $\\sigma_{xy}$, which can be described as a collapse of the Zeeman spin splitting accompanied by a large peak in $\\sigma_{xx}$ and an anomalous peak in $ \\sigma_{xy}$. It occurs at densities corresponding to the position of the Fermi level above the onset of the superlattice mini...

  10. Enhancing the magnetic properties of magnetic nanoparticles

    DEFF Research Database (Denmark)

    Ahlburg, Jakob; Saura-Múzquiz, Matilde; Stingaciu, Marian

    ways of enhancing magnetic properties of 3d magnetic compounds. This includes, size control, core-shell particles or mixing hard and soft magnetic materials together to achieve an exchange coupling between the compounds and enhancing the magnetic energy product. In order to control the particle size......Enhancing the magnetic properties of magnetic nanoparticles J. V. Ahlburg, M. S. Músquiz, C. Zeuthen, S. Kjeldgaard, M. Stingaciu, M. Christensen Center for Materials Crystallography, Departement of Chemistry & iNano, Aarhus University, Denmark Strong magnets with a high energy product are vital...... when optimizing the efficiency in the electric industry. But since the rare earth metals, normally used for making strong permanent magnets, are both expensive and difficult to mine, a great demand has come to cheaper types of magnets with a similar magnetic performance. There are several different...

  11. Origin of anomalous magnetic breakdown frequencies in quasi-two-dimensional organic conductors

    Science.gov (United States)

    Sandhu, P. S.; Kim, Ju H.; Brooks, J. S.

    1997-11-01

    We investigate the origin of anomalous magnetic breakdown frequencies in the de Haas-van Alphen (dHvA) effect in quasi-two-dimensional organic conductors such as α-(BEDT-TTF)2KHg(SCN)4 and κ-(BEDT-TTF)2Cu(NCS)2. A tight-binding model based on their realistic band structure is constructed and solved numerically to compute the field dependence of the magnetization. The present model provides a natural description for the phenomenon of magnetic breakdown between coexisting closed and open Fermi surfaces and accounts for the experimentally observed frequencies that are forbidden in the semiclassical picture. We find that the appearance of these anomalous frequencies in the dHvA signal is a quantum-mechanical effect which arises from differences in field dependence of the states in the two partially occupied bands near the Fermi level.

  12. Chiral Magnetic Effect and Anomalous Hall Effect in Antiferromagnetic Insulators with Spin-Orbit Coupling.

    Science.gov (United States)

    Sekine, Akihiko; Nomura, Kentaro

    2016-03-04

    We search for dynamical magnetoelectric phenomena in three-dimensional correlated systems with spin-orbit coupling. We focus on the antiferromagnetic insulator phases where the dynamical axion field is realized by the fluctuation of the antiferromagnetic order parameter. It is shown that the dynamical chiral magnetic effect, an alternating current generation by magnetic fields, emerges due to such time dependences of the order parameter as antiferromagnetic resonance. It is also shown that the anomalous Hall effect arises due to such spatial variations of the order parameter as antiferromagnetic domain walls. Our study indicates that spin excitations in antiferromagnetic insulators with spin-orbit coupling can result in nontrivial charge responses. Moreover, observing the chiral magnetic effect and anomalous Hall effect in our system is equivalent to detecting the dynamical axion field in condensed matter.

  13. Anomalous transport model study of chiral magnetic effects in heavy ion collisions

    CERN Document Server

    Sun, Yifeng; Li, Feng

    2016-01-01

    Using an anomalous transport model for massless quarks, we study the effect of magnetic field on the elliptic flows of quarks and antiquarks in relativistic heavy ion collisions. With initial conditions from a blast wave model and assuming that the strong magnetic field produced in non-central heavy ion collisions can last for a sufficiently long time, we obtain an appreciable electric quadrupole moment in the transverse plane of a heavy ion collision, which subsequently leads to a splitting between the elliptic flows of quarks and antiquarks as expected from the chiral magnetic wave formed in the produced QGP and observed in experiments at the Relativistic Heavy Ion Collider (RHIC).

  14. On the Physical Origin of the Anomalous Magnetic Moment of Electron

    CERN Document Server

    Mandache, N B

    2013-01-01

    A simple physical insight into the origin of the magnetic moment anomaly of electron is presented. This approach is based on the assumption that the electromagnetic mass of the electron due to the electric field generated by electron charge in the exterior of the sphere of radius half of the Compton wavelength of the electron, does not contribute to the magnetic moment of the electron. This explanation is compatible with the well-known quantum electrodynamics approach. A formula is derived, which is similar to that obtained by quantum electrodynamics calculus of one loop contribution to anomalous part of the magnetic moment.

  15. Exploration of Anomalous Gravity Effects by rf-Pumped Magnetized High-T(c) Superconducting Oxides

    Science.gov (United States)

    Robertson, Tony; Litchford, Ron; Peters, Randall; Thompson, Byran; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    A number of anomalous gravitational effects have been reported in the scientific literature during recent years, but there has been no independent confirmation with regard to any of these claims. Therefore, the NASA Marshall Space Flight Center, in response to the propulsion challenges specified by NASA's Breakthrough Propulsion Physics (BPP) program, proposed to explore the possibility of observing anomalous gravitation behavior through the manipulation of Josephson junction effects in magnetized high-Tc superconducting oxides. The technical goal was to critically test this revolutionary physical claim and provide a rigorous, independent, empirical confirmation (or refutation) of anomalous effects related to the manipulation of gravity by radio frequency (rf)-pumped magnetized type-2 superconductors. Because the current empirical evidence for gravity modification is anecdotal, our objective was to design, construct, and meticulously implement a discriminating experiment, which would put these observations on a more firm footing within the scientific community. Our approach is unique in that we advocate the construction of an extremely sensitive torsion balance with which to measure gravity modification effects by rf-pumped type-2 superconductor test masses. This paper reviews the anecdotal evidence for anomalous gravity effects, describes the design and development of a simplified torsion balance experiment for empirically investigating these claims, and presents the results of preliminary experiments.

  16. The hadronic light-by-light contribution to the muon anomalous magnetic moment and renormalization group for EFT

    Directory of Open Access Journals (Sweden)

    Abyaneh Mehran Zahiri

    2012-12-01

    Full Text Available We give a short overview of the theory of the muon anomalous magnetic moment with emphasis on the hadronic light-by-light and the pion loop contribution. We explain the difference between the hidden local symmetry and full VMD pion loop and discuss leading logarithms in the anomalous sector of 2-flavour chiral perturbation theory.

  17. The hadronic light-by-light contribution to the muon anomalous magnetic moment and renormalization group for EFT

    CERN Document Server

    Bijnens, Johan

    2012-01-01

    We give a short overview of the theory of the muon anomalous magnetic moment with emphasis on the hadronic light-by-light and the pion loop contribution. We explain the difference between the hidden local symmetry and full VMD pion loop and discuss leading logarithms in the anomalous sector of 2-flavour chiral perturbation theory.

  18. Anomalous enhancement in interfacial perpendicular magnetic anisotropy through uphill diffusion.

    Science.gov (United States)

    Das, Tanmay; Kulkarni, Prabhanjan D; Purandare, S C; Barshilia, Harish C; Bhattacharyya, Somnath; Chowdhury, Prasanta

    2014-06-17

    We observed interfacial chemical sharpening due to uphill diffusion in post annealed ultrathin multilayer stack of Co and Pt, which leads to enhanced interfacial perpendicular magnetic anisotropy (PMA). This is surprising as these elements are considered as perfectly miscible. This chemical sharpening was confirmed through quantitative energy dispersive x-ray (EDX) spectroscopy and intensity distribution of images taken on high angle annular dark field (HAADF) detector in Scanning Transmission Electron Microscopic (STEM) mode. This observation demonstrates an evidence of miscibility gap in ultrathin coherent Co/Pt multilayer stacks.

  19. Leading-order hadronic contributions to the electron and tau anomalous magnetic moments

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Florian; Pientka, Grit [Humboldt-Universitaet zu Berlin, Institut fuer Physik, Berlin (Germany); Jansen, Karl [NIC, DESY, Zeuthen (Germany); Petschlies, Marcus [The Cyprus Institute, P.O.Box 27456, Nicosia (Cyprus); Rheinische Friedrich-Wilhelms-Universitaet Bonn, Institut fuer Strahlen- und Kernphysik, Bonn (Germany)

    2016-08-15

    The leading hadronic contributions to the anomalous magnetic moments of the electron and the τ-lepton are determined by a four-flavour lattice QCD computation with twisted mass fermions. The results presented are based on the quark-connected contribution to the hadronic vacuum polarisation function. The continuum limit is taken and systematic uncertainties are quantified. Full agreement with results obtained by phenomenological analyses is found. (orig.)

  20. N=2-Maxwell-Chern-Simons Model with Anomalous Magnetic Moment Coupling via Dimensional Reduction

    CERN Document Server

    Christiansen, H R; Helayël-Neto, José A; Mansur, L R; Nogueira, A L M A

    1999-01-01

    An N=1--supersymmetric version of the Cremmer-Scherk-Kalb-Ramond model with non-minimal coupling to matter is built up both in terms of superfields and in a component-field formalism. By adopting a dimensional reduction procedure, the N=2--D=3 counterpart of the model comes out, with two main features: a genuine (diagonal) Chern-Simons term and an anomalous magnetic moment coupling between matter and the gauge potential.

  1. Enhancing the magnetic properties of magnetic nanoparticles

    DEFF Research Database (Denmark)

    Ahlburg, Jakob; Saura-Múzquiz, Matilde; Stingaciu, Marian

    with a similar magnetic performance. There are several different ways of enhancing magnetic properties of 3d magnetic compounds. This includes, size control, core-shell particles or mixing hard and soft magnetic materials together to achieve an exchange coupling between the compounds and enhancing the magnetic......Strong magnets with a high energy product are vital when optimizing the efficiency in the electric industry. But since the rare earth metals, normally used for making strong permanent magnets, are both expensive and difficult to mine, a great demand has come to cheaper types of magnets...... energy product. In order to control the particle size, a hydrothermal synthesis is preferred. This followed by reduction or the oxides into either core shell particles, or a mixture of magnetic oxides and a metallic phase....

  2. Leading-order hadronic contributions to the lepton anomalous magnetic moments from the lattice

    Directory of Open Access Journals (Sweden)

    Burger Florian

    2016-01-01

    Full Text Available The hadronic leading-order (hlo contribution to the lepton anomalous magnetic moments alhlo of the Standard Model leptons still accounts for the dominant source of the uncertainty of the Standard Model estimates. We present the results of an investigation of the hadronic leading order anomalous magnetic moments of the electron, muon and tau lepton from first principles in twisted mass lattice QCD. With lattice data for multiple pion masses in the range 230MeV ≲ mPS ≲ 490 MeV, multiple lattice volumes and three lattice spacings we perform the extrapolation to the continuum and to the physical pion mass and check for all systematic uncertainties in the lattice calculation. As a result we calculate alhlo for the three Standard Model leptons with controlled statistical and systematic error in agreement with phenomenological determinations using dispersion relations and experimental data. In addition, we also give a first estimate of the hadronic leading order anomalous magnetic moments from simulations directly at the physical value of the pion mass.

  3. Leading-order hadronic contributions to the lepton anomalous magnetic moments from the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Florian [OakLabs GmbH, Hennigsdorf (Germany); Feng, Xu [Columbia University, New York, NY (United States). Dept. of Physics; Jansen, Karl [DESY Zeuthen (Germany). NIC; Petschlies, Marcus [Bonn Univ. (Germany). Inst. fuer Strahlen- und Kernphysik; Pientka, Grit [Humboldt-Univ. Berlin (Germany). Inst. fuer Physik; Renner, Dru B. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-11-15

    The hadronic leading-order (hlo) contribution to the lepton anomalous magnetic moments a{sup hlo}{sub l} of the Standard Model leptons still accounts for the dominant source of the uncertainty of the Standard Model estimates. We present the results of an investigation of the hadronic leading order anomalous magnetic moments of the electron, muon and tau lepton from first principles in twisted mass lattice QCD. With lattice data for multiple pion masses in the range 230 MeVanomalous magnetic moments from simulations directly at the physical value of the pion mass.

  4. Period Clustering of the Anomalous X-Ray Pulsars and Magnetic Field Decay in Magnetars.

    Science.gov (United States)

    Colpi; Geppert; Page

    2000-01-20

    We confront theoretical models for the rotational, magnetic, and thermal evolution of an ultramagnetized neutron star, or magnetar, with available data on the anomalous X-ray pulsars (AXPs). We argue that, if the AXPs are interpreted as magnetars, their clustering of spin periods between 6 and 12 s (observed at present in this class of objects), their period derivatives, their thermal X-ray luminosities, and the association of two of them with young supernova remnants can only be understood globally if the magnetic field in magnetars decays significantly on a timescale of the order of 104 yr.

  5. Higgs mechanism in three-dimensional topological superconductors and anomalous Hall effect in zero magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Flavio; Eremin, Ilya [Theoretische Physik III, Ruhr-Universitaet Bochum (Germany)

    2015-07-01

    We discuss the peculiar nature of Higgs mechanism in an effective field theory for three-dimensional topological superconductors. The effective theory features two order parameters associated to the two chiral fermion species in the system. The resulting electrodynamics of such a topological superconductor exhibits a topological magnetoelectric effect with an axion field given by the phase difference of the order parameters. As consequence, the London regime is highly non-linear and anomalous Hall effect in the absence of an external magnetic field occurs. In this anomalous Hall effect the generated current transverse to an applied electric field changes sign with the temperature. We also discuss the scaling behavior of the penetration depth near the transition temperature, which is also shown to exhibit a scaling exponent that is crucially influenced by the axion term, varying continuously as function of the average phase difference.

  6. An upper limit on the anomalous magnetic moment of the $\\tau$ lepton

    CERN Document Server

    Ackerstaff, K.; Allison, John; Altekamp, N.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Bartoldus, R.; Batley, J.R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Bird, S.D.; Blobel, V.; Bloodworth, I.J.; Bobinski, M.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Burgard, C.; Burgin, R.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Clarke, P.E.L.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallapiccola, C.; Dallavalle, G.Marco; Davis, R.; De Jong, S.; del Pozo, L.A.; de Roeck, A.; Desch, K.; Dienes, B.; Dixit, M.S.; Doucet, M.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Eatough, D.; Estabrooks, P.G.; Etzion, E.; Evans, H.G.; Evans, M.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A.A.; Feld, L.; Fiedler, F.; Fierro, M.; Fischer, H.M.; Fleck, I.; Folman, R.; Fong, D.G.; Foucher, M.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon, J.; Gascon-Shotkin, S.M.; Geddes, N.I.; Geich-Gimbel, C.; Geralis, T.; Giacomelli, G.; Giacomelli, P.; Giacomelli, R.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Goodrick, M.J.; Gorn, W.; Grandi, C.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hajdu, C.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Hargrove, C.K.; Hart, P.A.; Hartmann, C.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herndon, M.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hillier, S.J.; Hobson, P.R.; Hocker, James Andrew; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Hutchcroft, D.E.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jawahery, A.; Jeffreys, P.W.; Jeremie, H.; Jimack, M.; Joly, A.; Jones, C.R.; Jones, M.; Jost, U.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kirk, J.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Koetke, D.S.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kyberd, P.; Lafferty, G.D.; Lahmann, R.; Lai, W.P.; Lanske, D.; Lauber, J.; Lautenschlager, S.R.; Lawson, I.; Layter, J.G.; Lazic, D.; Lee, A.M.; Lefebvre, E.; Lellouch, D.; Letts, J.; Levinson, L.; List, B.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Ludwig, J.; Lui, D.; Macchiolo, A.; Macpherson, A.; Mannelli, M.; Marcellini, S.; Markopoulos, C.; Markus, C.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menke, S.; Merritt, F.S.; Mes, H.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mincer, A.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nellen, B.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oh, A.; Oldershaw, N.J.; Oreglia, M.J.; Orito, S.; Palinkas, J.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poffenberger, P.; Poli, B.; Posthaus, A.; Rembser, C.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rooke, A.; Rossi, A.M.; Routenburg, P.; Rozen, Y.; Runge, K.; Runolfsson, O.; Ruppel, U.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharf, F.; Scharff-Hansen, P.; Schieck, J.; Schleper, P.; Schmitt, B.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skillman, A.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Springer, Robert Wayne; Sproston, M.; Stephens, K.; Steuerer, J.; Stockhausen, B.; Stoll, K.; Strom, David M.; Strohmer, R.; Szymanski, P.; Tafirout, R.; Talbot, S.D.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomson, M.A.; von Torne, E.; Torrence, E.; Towers, S.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turcot, A.S.; Turner-Watson, M.F.; Ueda, I.; Utzat, P.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Vikas, P.; Vokurka, E.H.; Voss, H.; Wackerle, F.; Wagner, A.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wermes, N.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.

    1998-01-01

    Using radiative Z^0 -> \\tau^+ \\tau^- \\gamma events collected with the OPAL detector at LEP at \\sqrt{s}=M_Z during 1990-95, a direct study of the electromagnetic current at the \\tau\\gamma vertex has been performed in terms of the anomalous magnetic form factor F_2 of the \\tau lepton. The analysis is based on a data sample of 1429 e^+ e^- -> \\tau^+ \\tau^- \\gamma events which are examined for a deviation from the expectation with F_2 = 0. From the non-observation of anomalous \\tau^+ \\tau^- \\gamma production a limit of -0.068 < F_2 < 0.065 is obtained. This can also be interpreted as a limit on the electric dipole form factor F_3 as -3.8 x 10^-16 e-cm < eF_3 < 3.6 x 10^-16 e-cm. The above ranges are valid at the 95% confidence level.

  7. Enhancement of perpendicular magnetic anisotropy and anomalous hall effect in Co/Ni multilayers

    Science.gov (United States)

    Liu, Yiwei; Zhang, Jingyan; Jiang, Shaolong; Liu, Qianqian; Li, Xujing; Yu, Guanghua

    2016-12-01

    The perpendicular magnetic anisotropy (PMA) and the anomalous Hall effect (AHE) in Co/Ni multilayer were optimized by manipulating its interface structure (inducing HfO2 capping layer and Pt insertion) and post-annealing treatment. A strong PMA can be obtained in Co/Ni multilayers with HfO2 capping layer even after annealing at 400 °C. The heavy metal Hf may improve the interfacial spin-orbit coupling, which responsible for the enhanced PMA and high annealing stability. Moreover, the multilayer containing HfO2 capping layer also exhibited high saturation anomalous Hall resistivity through post-annealing, which is 0.85 μΩ cm after annealing at 375 °C, 211% larger than in the sample at deposited state which is only 0.27 μΩ cm. The enhancement of AHE is mainly attributed to the interface scattering through post-annealing treatment.

  8. Anomalous magnetic behavior for Mn-site doped La{sub 0.7}Ca{sub 0.3}MnO{sub 3}: internal magnetic interactions and extrinsic inhomogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hong-guang, E-mail: hgzhang_njupt@hotmail.com [College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210046 (China); Li, Yong-tao [College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210046 (China); Xie, Liang [Department of Physical and Chemical Sciences, North China University of Technology, Beijing 100144 (China); Shi, Jiang-jian; Dong, Xue-guang; Ge, Xiao-peng; Liu, Hao [Physics Department, Southeast University, Nanjing 211189 (China); Li, Qi, E-mail: qli@seu.edu.cn [Physics Department, Southeast University, Nanjing 211189 (China)

    2015-11-01

    Magnetic properties of Mn-site doped La{sub 0.7}Ca{sub 0.3}Mn{sub 0.94}TM{sub 0.06}O{sub 3+Δ} (TM=Cu, Zn) were experimentally and theoretically studied. The low-temperature magnetization and magnetic phase transition temperature T{sub C} of the samples combining with simulations of 2D doped Ising model suggest that Cu{sup 2+} ions have an antiferromagnetic interaction with their nearest neighboring Mn ions. Interestingly, an anomalous magnetic behavior, a “step-like” magnetic phase transition, is observed. The existence and magnitude of this step vary with different doping ions and oxygen ratio, which is experimentally suggested to be relevant to the interaction between magnetic ions and oxygen content. A superposition between two independent magnetic systems with different values of an exchange integral J well explains the anomalous magnetic phase transition, which suggests that this step-like behavior results from extrinsic inhomogeneity and negligible coupling between grains in polycrystalline. - Highlights: • A “step-like” magnetic phase transition is observed in La{sub 0.7}Ca{sub 0.3}Mn{sub 0.94}TM{sub 0.06}O{sub 3}. • An anomalous magnetic property is experimentally and theoretically studied. • The evolution of T{sub C} and low T magnetization opposite to conventional behavior. • An antiferromagnetic interaction between Cu{sup 2+} and Mn ion is investigated by Ising model. • A linear superposition between magnetic behaviors explain the phase transition.

  9. From magnetically doped topological insulator to the quantum anomalous Hall effect

    Institute of Scientific and Technical Information of China (English)

    He Ke; Ma Xu-Cun; Chen Xi; Lü Li; Wang Ya-Yu; Xue Qi-Kun

    2013-01-01

    Quantum Hall effect (QHE),as a class of quantum phenomena that occur in macroscopic scale,is one of the most important topics in condensed matter physics.It has long been expected that QHE may occur without Landau levels so that neither extemal magnetic field nor high sample mobility is required for its study and application.Such a QHE free of Landau levels,can appear in topological insulators (TIs) with ferromagnetism as the quantized version of the anomalous Hall effect,i.e.,quantum anomalous Hall (QAH) effect.Here we review our recent work on experimental realization of the QAH effect in magnetically doped TIs.With molecular beam epitaxy,we prepare thin films of Cr-doped (Bi,Sb)2Te3 TIs with wellcontrolled chemical potential and long-range ferromagnetic order that can survive the insulating phase.In such thin films,we eventually observed the quantization of the Hall resistance at h/e2 at zero field,accompanied by a considerable drop in the longitudinal resistance.Under a strong magnetic field,the longitudinal resistance vanishes,whereas the Hall resistance remains at the quantized value.The realization of the QAH effect provides a foundation for many other novel quantum phenomena predicted in TIs,and opens a route to practical applications of quantum Hall physics in low-power-consumption electronics.

  10. An Anomalous Composition in Slow Solar Wind as a Signature of Magnetic Reconnection in its Source Region

    Science.gov (United States)

    Zhao, L.; Landi, E.; Lepri, S. T.; Kocher, M.; Zurbuchen, T. H.; Fisk, L. A.; Raines, J. M.

    2017-01-01

    In this paper, we study a subset of slow solar winds characterized by an anomalous charge state composition and ion temperatures compared to average solar wind distributions, and thus referred to as an “Outlier” wind. We find that although this wind is slower and denser than normal slow wind, it is accelerated from the same source regions (active regions and quiet-Sun regions) as the latter and its occurrence rate depends on the solar cycle. The defining property of the Outlier wind is that its charge state composition is the same as that of normal slow wind, with the only exception being a very large decrease in the abundance of fully charged species (He2+, C6+, N7+, O8+, Mg12+), resulting in a significant depletion of the He and C element abundances. Based on these observations, we suggest three possible scenarios for the origin of this wind: (1) local magnetic waves preferentially accelerating non-fully stripped ions over fully stripped ions from a loop opened by reconnection; (2) depleted fully stripped ions already contained in the corona magnetic loops before they are opened up by reconnection; or (3) fully stripped ions depleted by Coulomb collision after magnetic reconnection in the solar corona. If any one of these three scenarios is confirmed, the Outlier wind represents a direct signature of slow wind release through magnetic reconnection.

  11. Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Alexander [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Deutsches Elektronen Synchrotron (DESY), 15738 Zeuthen (Germany); Liu, Tao [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Marquard, Peter [Deutsches Elektronen Synchrotron (DESY), 15738 Zeuthen (Germany); Steinhauser, Matthias [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany)

    2014-06-27

    We compute the next-to-next-to-leading order hadronic contribution to the muon anomalous magnetic moment originating from the photon vacuum polarization. The corresponding three-loop kernel functions are calculated using asymptotic expansion techniques which lead to analytic expressions. Our final result, a{sub μ}{sup had,NNLO}=1.24±0.01×10{sup −10}, has the same order of magnitude as the current uncertainty of the leading order hadronic contribution and should thus be included in future analyses.

  12. Higher-order hadronic and heavy-lepton contributions to the anomalous magnetic moment

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Alexander [Karlsruher Institut fuer Technologie, Karlsruhe (Germany). Inst. fuer Theoretische Teilchenphysik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Liu, Tao; Steinhauser, Matthias [Karlsruher Institut fuer Technologie, Karlsruhe (Germany). Inst. fuer Theoretische Teilchenphysik; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2014-07-15

    We report about recent results obtained for the muon anomalous magnetic moment. Three-loop kernel functions have been computed to obtain the next-to-next-to-leading-order hadronic vacuum polarization contributions. The numerical result, a{sub μ}{sup had,NNLO} = 1.24 ± 0.01 x 10{sup -10}, is of the same order of magnitude as the current uncertainty from the hadronic contributions. For heavy-lepton corrections, analytical results are obtained at four-loop order and compared with the known results.

  13. Higher-order hadronic and heavy-lepton contributions to the anomalous magnetic moment

    CERN Document Server

    Kurz, Alexander; Marquard, Peter; Steinhauser, Matthias

    2014-01-01

    We report about recent results obtained for the muon anomalous magnetic moment. Three-loop kernel functions have been computed to obtain the next-to-next-to-leading-order hadronic vacuum polarization contributions. The numerical result, $a_\\mu^{\\rm{had,NNLO}}=1.24\\pm 0.01 \\times 10^{-10}$, is of the same order of magnitude as the current uncertainty from the hadronic contributions. For heavy-lepton corrections, analytical results are obtained at four-loop order and compared with the known results.

  14. Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order

    CERN Document Server

    Kurz, Alexander; Marquard, Peter; Steinhauser, Matthias

    2014-01-01

    We compute the next-to-next-to-leading order hadronic contribution to the muon anomalous magnetic moment originating from the photon vacuum polarization. The corresponding three-loop kernel functions are calculated using asymptotic expansion techniques which lead to analytic expressions. Our final result, $a_\\mu^{\\rm had,NNLO} = 1.24 \\pm 0.01 \\times 10^{-10}$, has the same order of magnitude as the current uncertainty of the leading order hadronic contribution and should thus be included in future analyses.

  15. Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Alexander [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Theoretische Teilchenphysik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Liu, Tao; Steinhauser, Matthias [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Theoretische Teilchenphysik; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2014-03-15

    We compute the next-to-next-to-leading order hadronic contribution to the muon anomalous magnetic moment originating from the photon vacuum polarization. The corresponding three-loop kernel functions are calculated using asymptotic expansion techniques which lead to analytic expressions. Our final result, a{sup had,NNLO}{sub μ} = 1.24 ± 0.01 x 10{sup -10}, has the same order of magnitude as the current uncertainty of the leading order hadronic contribution and should thus be included in future analyses.

  16. Anomalous origin of left coronary artery diagnosed by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Falcao, Ricardo Oliveira [Plani Diagnosticos Medicos, Sao Jose dos Campos, SP (Brazil); Nacif, Marcelo Souto; Marchiori, Edson, E-mail: msnacif@yahoo.com.b [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Liu, Songtao; Bluemke, David A. [National Institutes of Health Clinical Center, Bethesda, MD (United States). Dept. of Radiology and Imaging Sciences; Rochitte, Carlos Eduardo [Instituto do Coracao (InCor-HC/USP), Sao Paulo, SP (Brazil). Dept. of Cardiovascular MRI and CT

    2010-07-01

    Coronary arteries normally arise from the sinuses of Valsalva on the ascending aorta. The incidence of anomalous origin of the left coronary artery from the trunk of the pulmonary artery is about 1 in 300,000 live births. The clinical course of patients with this anomaly, which includes heart failure early in life, depends on either the development of coronary collaterals after birth or invasive correction. Here, we report a case of a five-year-old female with exertional dyspnea and changes in her electrocardiographic examination who was referred for magnetic resonance imaging (MRI). (author)

  17. Magnetic modulation doping in topological insulators toward higher-temperature quantum anomalous Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Mogi, M., E-mail: mogi@cmr.t.u-tokyo.ac.jp; Yoshimi, R.; Yasuda, K.; Kozuka, Y. [Department of Applied Physics and Quantum Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656 (Japan); Tsukazaki, A. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); PRESTO, Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0075 (Japan); Takahashi, K. S. [RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan); Kawasaki, M.; Tokura, Y. [Department of Applied Physics and Quantum Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656 (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan)

    2015-11-02

    Quantum anomalous Hall effect (QAHE), which generates dissipation-less edge current without external magnetic field, is observed in magnetic-ion doped topological insulators (TIs) such as Cr- and V-doped (Bi,Sb){sub 2}Te{sub 3}. The QAHE emerges when the Fermi level is inside the magnetically induced gap around the original Dirac point of the TI surface state. Although the size of gap is reported to be about 50 meV, the observable temperature of QAHE has been limited below 300 mK. We attempt magnetic-Cr modulation doping into topological insulator (Bi,Sb){sub 2}Te{sub 3} films to increase the observable temperature of QAHE. By introducing the rich-Cr-doped thin (1 nm) layers at the vicinity of both the surfaces based on non-Cr-doped (Bi,Sb){sub 2}Te{sub 3} films, we have succeeded in observing the QAHE up to 2 K. The improvement in the observable temperature achieved by this modulation-doping appears to be originating from the suppression of the disorder in the surface state interacting with the rich magnetic moments. Such a superlattice designing of the stabilized QAHE may pave a way to dissipation-less electronics based on the higher-temperature and zero magnetic-field quantum conduction.

  18. Anomalous magnetic orientations of magnetosome chains in a magnetotactic bacterium: Magnetovibrio blakemorei strain MV-1.

    Directory of Open Access Journals (Sweden)

    Samanbir S Kalirai

    Full Text Available There is a good deal of published evidence that indicates that all magnetosomes within a single cell of a magnetotactic bacterium are magnetically oriented in the same direction so that they form a single magnetic dipole believed to assist navigation of the cell to optimal environments for their growth and survival. Some cells of the cultured magnetotactic bacterium Magnetovibrio blakemorei strain MV-1 are known to have relatively wide gaps between groups of magnetosomes that do not seem to interfere with the larger, overall linear arrangement of the magnetosomes along the long axis of the cell. We determined the magnetic orientation of the magnetosomes in individual cells of this bacterium using Fe 2p X-ray magnetic circular dichroism (XMCD spectra measured with scanning transmission X-ray microscopy (STXM. We observed a significant number of cases in which there are sub-chains in a single cell, with spatial gaps between them, in which one or more sub-chains are magnetically polarized opposite to other sub-chains in the same cell. These occur with an estimated frequency of 4.0±0.2%, based on a sample size of 150 cells. We propose possible explanations for these anomalous cases which shed insight into the mechanisms of chain formation and magnetic alignment.

  19. Electron contribution to the muon anomalous magnetic moment at four loops

    CERN Document Server

    Kurz, Alexander; Marquard, Peter; Smirnov, Alexander; Smirnov, Vladimir; Steinhauser, Matthias

    2016-01-01

    We present results for the QED contributions to the anomalous magnetic moment of the muon containing closed electron loops. The main focus is on perturbative corrections at four-loop order where the external photon couples to the external muon. Furthermore, all four-loop contributions involving simultaneously a closed electron and tau loop are computed. In combination with our recent results on the light-by-light-type corrections (see Ref. \\cite{Kurz:2015bia}) the complete four-loop electron-loop contribution to the anomalous magnetic moment of the muon has been obtained with an independent calculation. Our calculation is based on an asymptotic expansion in the ratio of the electron and the muon mass and shows the importance of higher order terms in this ratio. We perform a detailed comparison with results available in the literature and find good numerical agreement. As a by-product we present analytic results for the on-shell muon mass and wave function renormalization constants at three-loop order includin...

  20. Electron contribution to the muon anomalous magnetic moment at four loops

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Alexander [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Liu, Tao [Alberta Univ., Edmonton, AB (Canada). Dept. of Physics; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Smirnov, Alexander V. [Moscow State Univ. (Russian Federation). Scientific Research Computing Center; Smirnov, Vladimir A. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Mathematik; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Steinhauser, Matthias [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik

    2016-02-15

    We present results for the QED contributions to the anomalous magnetic moment of the muon containing closed electron loops. The main focus is on perturbative corrections at four-loop order where the external photon couples to the external muon. Furthermore, all four-loop contributions involving simultaneously a closed electron and tau loop are computed. In combination with our recent results on the light-by-light-type corrections the complete four-loop electron-loop contribution to the anomalous magnetic moment of the muon has been obtained with an independent calculation. Our calculation is based on an asymptotic expansion in the ratio of the electron and the muon mass and shows the importance of higher order terms in this ratio. We perform a detailed comparison with results available in the literature and find good numerical agreement. As a by-product we present analytic results for the on-shell muon mass and wave function renormalization constants at three-loop order including massive closed electron and tau loops, which we also calculated using the method of asymptotic expansion.

  1. Electron contribution to the muon anomalous magnetic moment at four loops

    Science.gov (United States)

    Kurz, Alexander; Liu, Tao; Marquard, Peter; Smirnov, Alexander V.; Smirnov, Vladimir A.; Steinhauser, Matthias

    2016-03-01

    We present results for the QED contributions to the anomalous magnetic moment of the muon containing closed electron loops. The main focus is on perturbative corrections at four-loop order where the external photon couples to the external muon. Furthermore, all four-loop contributions involving simultaneously a closed electron and tau loop are computed. In combination with our recent results on the light-by-light-type corrections (see Ref. [1]), the complete four-loop electron-loop contribution to the anomalous magnetic moment of the muon has been obtained with an independent calculation. Our calculation is based on an asymptotic expansion in the ratio of the electron and the muon mass and shows the importance of higher-order terms in this ratio. We perform a detailed comparison with results available in the literature and find good numerical agreement. As a byproduct, we present analytic results for the on-shell muon mass and wave function renormalization constants at three-loop order including massive closed electron and tau loops, which we also calculated using the method of asymptotic expansion.

  2. Leading-order hadronic contributions to the lepton anomalous magnetic moments from the lattice

    CERN Document Server

    Burger, Florian; Jansen, Karl; Petschlies, Marcus; Pientka, Grit; Renner, Dru B

    2015-01-01

    The hadronic leading-order (hlo) contribution to the lepton anomalous magnetic moments $a_l^\\mathrm{hlo}$ of the Standard Model leptons still accounts for the dominant source of the uncertainty of the Standard Model estimates. We present the results of an investigation of the hadronic leading order anomalous magnetic moments of the electron, muon and tau lepton from first principles in twisted mass lattice QCD. With lattice data for multiple pion masses in the range $230 \\mathrm{~MeV} \\lesssim m_{PS} \\lesssim 490 \\mathrm{~MeV}$, multiple lattice volumes and three lattice spacings we perform the extrapolation to the continuum and to the physical pion mass and check for all systematic uncertainties in the lattice calculation. As a result we calculate $a_{l}^\\mathrm{hlo}$ for the three Standard Model leptons with controlled statistical and systematic error in agreement with phenomenological determinations using dispersion relations and experimental data. In addition, we also give a first estimate of the hadronic...

  3. Magnetic excitations and anomalous spin-wave broadening in multiferroic FeV2O4

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qiang [Ames Laboratory; Ramazanoglu, Mehmet [Ames Laboratory; Chi, Songxue [Oak Ridge National Laboratory; Liu, Yong [Ames Laboratory; Lograsso, Thomas A. [Ames Laboratory; Vaknin, David [Ames Laboratory

    2014-06-01

    We report on the different roles of two orbital-active Fe2+ at the A site and V3+ at the B site in the magnetic excitations and on the anomalous spin-wave broadening in FeV2O4. FeV2O4 exhibits three structural transitions and successive paramagnetic (PM)–collinear ferrimagnetic (CFI)–noncollinear ferrimagnetic (NCFI)/ferroelectric transitions. The high-temperature tetragonal/PM–orthorhombic/CFI transition is accompanied by the appearance of a large energy gap in the magnetic excitations due to strong spin-orbit-coupling-induced anisotropy at the Fe2+ site. While there is no measurable increase in the energy gap from the orbital ordering of V3+ at the orthorhombic/CFI–tetragonal/NCFI transition, anomalous spin-wave broadening is observed in the orthorhombic/CFI state due to V3+ spin fluctuations at the B site. The spin-wave broadening is also observed at the zone boundary without softening in the NCFI/ferroelectric phase, which is discussed in terms of magnon-phonon coupling. Our study also indicates that the Fe2+ spins without the frustration at the A site may not play an important role in inducing ferroelectricity in the tetragonal/NCFI phase of FeV2O4.

  4. Series expansion of the photon self-energy in QED and the photon anomalous magnetic moment

    CERN Document Server

    Rojas, H Perez; Chavez, S Villalba

    2008-01-01

    We start from the analytical expression of the eigenvalues $\\kappa^{(i)}$ of the photon self-energy tensor in an external constant magnetic field $B$ calculated by Batalin Shabad in the Furry representation, and in the one-loop approximation. We expand in power series of the external field and in terms of the squared photon transverse momentum $z_2$ and (minus) transverse energy $z_1=k^2-z_2$, in terms of which are expressed $\\kappa^{(i)}$. A general expression is given for the photon anomalous magnetic moment $\\mu_{\\gamma}>0$ in the region of transparency, below the first threshold for pair creation, and it is shown that it is positive, i.e. paramagnetic. The results of the numerical calculation for $\\mu_{\\gamma}>0$ are displayed in a region close to the threshold.

  5. Heavy lepton contribution to the anomalous magnetic moment of the muon and the electron at four loops in QED

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Alexander; Liu, Tao; Marquard, Peter; Steinhauser, Matthias [Institut fuer Theoretische Teilchenphysik, Karlsruhe (Germany)

    2013-07-01

    We present results for the QED contribution from a heavy lepton loop to the anomalous magnetic moment of the muon and the electron. Exploiting the strong hierarchy between the tau, muon and electron masses (m{sub τ} >>m{sub μ} >>m{sub e}), we use the method of asymptotic expansion which leads to on-shell and vacuum integrals up to three and four loops, respectively. Analytic results are presented up to four loops for the muon anomalous moment involving virtual τ-lepton loops and for the electron magnetic moment involving τ- and μ-lepton loops.

  6. Anomalous metamagnetic-like transition in a FeRh/Fe3Pt interface occurring at T approximate to 120 K in the field-cooled-cooling curves for low magnetic fields

    OpenAIRE

    Salem-Sugui Jr., S.; Alvarenga, A. D.; R. D. Noce; R. B. Guimarães; C. Salazar Mejia; Salim, H; Gandra, F. G.

    2012-01-01

    We report on the magnetic properties of a special configuration of a FeRh thin film. An anomalous behavior on the magnetisation vs. temperature was observed when low magnetic fields are applied in the plane of a thin layer of FeRh deposited on ordered Fe3Pt. The anomalous effect resembles a metamagnetic transition and occur only in the field-cooled-cooling magnetisation curve at temperatures near 120 K in samples without any heat treatment. Copyright 2012 Author(s). This article is distribute...

  7. Anomalous diffusion and Levy random walk of magnetic field lines in three dimensional turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Zimbardo, G.; Veltri, P.; Basile, G.; Principato, S. [Dipartimento di Fisica, Universita della Calabria, I-87030 Arcavacata di Rende (Italy)

    1995-07-01

    The transport of magnetic field lines is studied numerically where three dimensional (3-D) magnetic fluctuations, with a power law spectrum, and periodic over the simulation box are superimposed on an average uniform magnetic field. The weak and the strong turbulence regime, {delta}{ital B}{similar_to}{ital B}{sub 0}, are investigated. In the weak turbulence case, magnetic flux tubes are separated from each other by percolating layers in which field lines undergo a chaotic motion. In this regime the field lines may exhibit Levy, rather than Gaussian, random walk, changing from Levy flights to trapped motion. The anomalous diffusion laws {l_angle}{Delta}{ital x}{sup 2}{sub {ital i}}{r_angle}{proportional_to}{ital s}{sup {alpha}} with {alpha}{gt}1 and {alpha}{lt}1, are obtained for a number of cases, and the non-Gaussian character of the field line random walk is pointed out by computing the kurtosis. Increasing the fluctuation level, and, therefore stochasticity, normal diffusion ({alpha}{congruent}1) is recovered and the kurtoses reach their Gaussian value. However, the numerical results show that neither the quasi-linear theory nor the two dimensional percolation theory can be safely extrapolated to the considered 3-D strong turbulence regime. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  8. Anomalous Particle Size Dependence of Magnetic Relaxation Phenomena in Goethite Nanoparticles

    DEFF Research Database (Denmark)

    Frandsen, Cathrine; Madsen, Daniel Esmarch; Boothroyd, Chris B.

    2015-01-01

    By use of Mossbauer spectroscopy we have studied the magnetic properties of samples of goethite nanoparticles with different particle size. The spectra are influenced by fluctuations of the magnetization directions, but the size dependence is not in accordance with the Neel-Brown expression for s...

  9. Three-loop QED vacuum polarization and the four-loop muon anomalous magnetic moment

    CERN Document Server

    Baikov, P A

    1995-01-01

    Three--loop contributions to massive QED vacuum polarization are evaluated by a combination of analytical and numerical techniques. The first three Taylor coefficients, at small q^2, are obtained analytically, using d\\/--dimensional recurrence relations. Combining these with analytical input at threshold, and at large q^2, an accurate Pad\\'e approximation is obtained, for all q^2. Inserting this in the one--loop diagram for the muon anomalous magnetic moment, we find reasonable agreement with four--loop, single--electron--loop, muon--anomaly contributions, recently re--evaluated by Kinoshita, using 8--dimensional Monte--Carlo integration. We believe that our new method is at least two orders of magnitude more accurate than the Monte--Carlo approach, whose uncertainties appear to have been underestimated, by a factor of 6.

  10. Four-flavour leading hadronic contribution to the muon anomalous magnetic moment

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Florian; Hotzel, Grit [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Feng, Xu [KEK National High Energy Physics, Tsukuba (Japan); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Cyprus Univ. Nicosia (Cyprus). Dept. of Physics; Petschlies, Marcus [The Cyprus Institute, Nicosia (Cyprus); Renner, Dru B. [Jefferson Lab, Newport News, VA (United States)

    2013-11-15

    We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, a{sup hvp}{sub {mu}}, arising from quark-connected Feynman graphs. It is based on ensembles featuring N{sub f}=2+1+1 dynamical twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC). Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass. We employ three lattice spacings to examine lattice artefacts and several different volumes to check for finite-size effects. Including the complete first two generations of quarks allows for a direct comparison with phenomenological determinations of a{sup hvp}{sub {mu}}. Our final result involving an estimate of the systematic uncertainty a{sup hvp}{sub {mu}}=6.74(21)(18) x 10{sup -8} shows a good overall agreement with these computations.

  11. Precise Quantization of the Anomalous Hall Effect near Zero Magnetic Field

    Science.gov (United States)

    Bestwick, A. J.; Fox, E. J.; Kou, Xufeng; Pan, Lei; Wang, Kang L.; Goldhaber-Gordon, D.

    2015-05-01

    We report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization in the Hall resistance to within a part per 10 000 and a longitudinal resistivity under 1 Ω per square, with chiral edge transport explicitly confirmed by nonlocal measurements. Deviations from this behavior are found to be caused by thermally activated carriers, as indicated by an Arrhenius law temperature dependence. Using the deviations as a thermometer, we demonstrate an unexpected magnetocaloric effect and use it to reach near-perfect quantization by cooling the sample below the dilution refrigerator base temperature in a process approximating adiabatic demagnetization refrigeration.

  12. Hadronic contributions to the muon anomalous magnetic moment Workshop. $(g-2)_{\\mu}$: Quo vadis? Workshop. Mini proceedings

    CERN Document Server

    Benayoun, Maurice; Blum, Tom; Caprini, Irenel; Colangelo, Gilberto; Czyż, Henryk; Denig, Achim; Dominguez, Cesareo A; Eidelman, Simon; Fischer, Christian S; Gauzzi, Paolo; Guo, Yuping; Hafner, Andreas; Hayakawa, Masashi; Herdoiza, Gregorio; Hoferichter, Martin; Huang, Guangshun; Jansen, Karl; Jegerlehner, Fred; Kloss, Benedikt; Kubis, Bastian; Liu, Zhiqing; Marciano, William; Masjuan, Pere; Meyer, Harvey B; Mibe, Tsutomu; Nyffeler, Andreas; Pascalutsa, Vladimir; Pauk, Vladyslav; Pennington, Michael R; Peris, Santiago; Redmer, Christoph F; Sanchez-Puertas, Pablo; Shwartz, Boris; Solodov, Evgeny; Stoeckinger, Dominik; Teubner, Thomas; Unverzagt, Marc; Vanderhaeghen, Marc; Wolke, Magnus

    2014-01-01

    We present the mini-proceedings of the workshops Hadronic contributions to the muon anomalous magnetic moment: strategies for improvements of the accuracy of the theoretical prediction and $(g-2)_{\\mu}$: Quo vadis?, both held in Mainz from April 1$^{\\rm rst}$ to 5$^{\\rm th}$ and from April 7$^{\\rm th}$ to 10$^{\\rm th}$, 2014, respectively.

  13. Anomalous transport model study of chiral magnetic effects in heavy ion collisions

    Science.gov (United States)

    Sun, Yifeng; Ko, Che Ming; Li, Feng

    2016-10-01

    Using an anomalous transport model for massless quarks and antiquarks, we study the effect of a magnetic field on the elliptic flows of quarks and antiquarks in relativistic heavy ion collisions. With initial conditions from a blast wave model and assuming that the strong magnetic field produced in noncentral heavy ion collisions can last for a sufficiently long time, we obtain an appreciable electric quadrupole moment in the transverse plane of a heavy ion collision. The electric quadrupole moment subsequently leads to a splitting between the elliptic flows of quarks and antiquarks. The slope of the charge asymmetry dependence of the elliptic flow difference between positively and negatively charged particles is positive, which is expected from the chiral magnetic wave formed in the produced QGP and observed in experiments at the BNL Relativistic Heavy Ion Collider, only if the Lorentz force acting on the charged particles is neglected and the quark-antiquark scattering is assumed to be dominated by the chirality changing channel.

  14. Anomalous magnetic behaviour of NdCu 2 in high magnetic fields

    Science.gov (United States)

    Doerr, M.; Kramp, S.; Loewenhaupt, M.; Rotter, M.; Kratz, R.; Krug, H.; Eckert, D.; Siegel, H.; Verges, P.

    2001-01-01

    Some of the RCu 2 compounds (R=Ce,Pr,Tb,Dy) with easy a-axis show an irreversible change of the easy axis into the c-direction in high magnetic fields. This metamagnetic “axis conversion” is caused by a strong magneto-elastic coupling in the ac-plane. With NdCu 2 a similar magnetic behaviour was found for the first time in a system with an easy axis perpendicular to the ac-plane. We present results of magnetization in static magnetic fields up to 14 T. The minimum conversion field is μ0Hcrit=12.5 T which is higher than in the other compounds. At low temperatures the magnetic axis conversion coincides with the transition into the induced ferromagnetic state. Magnetization measurements were also carried out in pulsed fields up to 50 T. They show an almost linear increase of the conversion fields with temperature which gives a strong evidence that the conversion is caused by an effective quadrupolar coupling. In addition, comparing the results of static and pulsed field experiments, an influence of field duration on the conversion process was found. The high-precision pulsed field magnetization experiments were done in the Dresden high magnetic field facility (HLD).

  15. Avian magnetic compass can be tuned to anomalously low magnetic intensities.

    Science.gov (United States)

    Winklhofer, Michael; Dylda, Evelyn; Thalau, Peter; Wiltschko, Wolfgang; Wiltschko, Roswitha

    2013-07-22

    The avian magnetic compass works in a fairly narrow functional window around the intensity of the local geomagnetic field, but adjusts to intensities outside this range when birds experience these new intensities for a certain time. In the past, the geomagnetic field has often been much weaker than at present. To find out whether birds can obtain directional information from a weak magnetic field, we studied spontaneous orientation preferences of migratory robins in a 4 µT field (i.e. a field of less than 10 per cent of the local intensity of 47 µT). Birds can adjust to this low intensity: they turned out to be disoriented under 4 µT after a pre-exposure time of 8 h to 4 µT, but were able to orient in this field after a total exposure time of 17 h. This demonstrates a considerable plasticity of the avian magnetic compass. Orientation in the 4 µT field was not affected by local anaesthesia of the upper beak, but was disrupted by a radiofrequency magnetic field of 1.315 MHz, 480 nT, suggesting that a radical-pair mechanism still provides the directional information in the low magnetic field. This is in agreement with the idea that the avian magnetic compass may have developed already in the Mesozoic in the common ancestor of modern birds.

  16. Magnetic properties of hematite nanoparticles

    DEFF Research Database (Denmark)

    Bødker, Franz; Hansen, Mikkel Fougt; Bender Koch, Christian

    2000-01-01

    The magnetic properties of hematite (alpha-Fe2O3) particles with sizes of about 16 nm have been studied by use of Mossbauer spectroscopy, magnetization measurements, and neutron diffraction. The nanoparticles are weakly ferromagnetic at temperatures at least down to 5 K with a spontaneous...... magnetization that is only slightly higher than that of weakly ferromagnetic bulk hematite. At T greater than or similar to 100 K the Mossbauer spectra contain a doublet, which is asymmetric due to magnetic relaxation in the presence of an electric field gradient in accordance with the Blume-Tjon model......, Simultaneous fitting of series of Mossbauer spectra obtained at temperatures from 5 K to well above the superparamagnetic blocking temperature allowed the estimation of the pre-exponential factor in Neel's expression for the superparamagnetic relaxation time, tau(0) = (6 +/- 4) X 10(-11) s and the magnetic...

  17. Experimental Demonstration of Anomalous Field Enhancement in All-Dielectric Transition Magnetic Metamaterials

    Science.gov (United States)

    Sun, Jingbo; Liu, Xiaoming; Zhou, Ji; Kudyshev, Zhaxylyk; Litchinitser, Natalia M.

    2015-11-01

    Anomalous field enhancement accompanied by resonant absorption phenomenon was originally discussed in the context of plasma physics and in applications related to radio-communications between the ground and spacecraft returning to Earth. Indeed, there is a critical period of time when all communications are lost due to the reflection/absorption of electromagnetic waves by the sheath of plasma created by a high speed vehicle re-entering the atmosphere. While detailed experimental studies of these phenomena in space are challenging, the emergence of electromagnetic metamaterials enables researchers exceptional flexibility to study them in the laboratory environment. Here, we experimentally demonstrated the strong localized field enhancement of magnetic field for an electromagnetic wave propagating in Mie-resonance-based inhomogeneous metamaterials with magnetic permeability gradually changing from positive to negative values. Although these experiments were performed in the microwave frequency range, the proposed all-dielectric approach to transition metamaterials can be extended to terahertz, infrared, and visible frequencies. We anticipate that these results, besides most basic science aspects, hold the potential for numerous applications, including low-intensity nonlinear transformation optics, topological photonics, and the broader area of surface and interface science.

  18. Experimental Demonstration of Anomalous Field Enhancement in All-Dielectric Transition Magnetic Metamaterials.

    Science.gov (United States)

    Sun, Jingbo; Liu, Xiaoming; Zhou, Ji; Kudyshev, Zhaxylyk; Litchinitser, Natalia M

    2015-11-04

    Anomalous field enhancement accompanied by resonant absorption phenomenon was originally discussed in the context of plasma physics and in applications related to radio-communications between the ground and spacecraft returning to Earth. Indeed, there is a critical period of time when all communications are lost due to the reflection/absorption of electromagnetic waves by the sheath of plasma created by a high speed vehicle re-entering the atmosphere. While detailed experimental studies of these phenomena in space are challenging, the emergence of electromagnetic metamaterials enables researchers exceptional flexibility to study them in the laboratory environment. Here, we experimentally demonstrated the strong localized field enhancement of magnetic field for an electromagnetic wave propagating in Mie-resonance-based inhomogeneous metamaterials with magnetic permeability gradually changing from positive to negative values. Although these experiments were performed in the microwave frequency range, the proposed all-dielectric approach to transition metamaterials can be extended to terahertz, infrared, and visible frequencies. We anticipate that these results, besides most basic science aspects, hold the potential for numerous applications, including low-intensity nonlinear transformation optics, topological photonics, and the broader area of surface and interface science.

  19. Anomalous Hall effect sensors based on magnetic element doped topological insulator thin films

    Science.gov (United States)

    Ni, Yan; Zhang, Zhen; Nlebedim, Ikenna; Jiles, David

    Anomalous Hall effect (AHE) is recently discovered in magnetic element doped topological insulators (TIs), which promises low power consumption highly efficient spintronics and electronics. This discovery broaden the family of Hall effect (HE) sensors. In this work, both HE and AHE sensor based on Mn and Cr doped Bi2Te3 TI thin films will be systematically studied. The influence of Mn concentration on sensitivity of MnxBi2-xTe3 HE sensors will be discussed. The Hall sensitivity increase 8 times caused by quantum AHE will be reported. AHE senor based on Cr-doped Bi2Te3 TI thin films will also be studied and compared with Mn doped Bi2Te3 AHE sensor. The influence of thickness on sensitivity of CrxBi2-xTe3 AHE sensors will be discussed. Ultrahigh Hall sensitivity is obtained in Cr doped Bi2Te3. The largest Hall sensitivity can reach 2620 Ω/T in sensor which is almost twice higher than that of the normal semiconductor HE sensor. Our work indicates that magnetic element doped topological insulator with AHE are good candidates for ultra-sensitive Hall effect sensors.

  20. A fractal derivative model for the characterization of anomalous diffusion in magnetic resonance imaging

    Science.gov (United States)

    Liang, Yingjie; Ye, Allen Q.; Chen, Wen; Gatto, Rodolfo G.; Colon-Perez, Luis; Mareci, Thomas H.; Magin, Richard L.

    2016-10-01

    Non-Gaussian (anomalous) diffusion is wide spread in biological tissues where its effects modulate chemical reactions and membrane transport. When viewed using magnetic resonance imaging (MRI), anomalous diffusion is characterized by a persistent or 'long tail' behavior in the decay of the diffusion signal. Recent MRI studies have used the fractional derivative to describe diffusion dynamics in normal and post-mortem tissue by connecting the order of the derivative with changes in tissue composition, structure and complexity. In this study we consider an alternative approach by introducing fractal time and space derivatives into Fick's second law of diffusion. This provides a more natural way to link sub-voxel tissue composition with the observed MRI diffusion signal decay following the application of a diffusion-sensitive pulse sequence. Unlike previous studies using fractional order derivatives, here the fractal derivative order is directly connected to the Hausdorff fractal dimension of the diffusion trajectory. The result is a simpler, computationally faster, and more direct way to incorporate tissue complexity and microstructure into the diffusional dynamics. Furthermore, the results are readily expressed in terms of spectral entropy, which provides a quantitative measure of the overall complexity of the heterogeneous and multi-scale structure of biological tissues. As an example, we apply this new model for the characterization of diffusion in fixed samples of the mouse brain. These results are compared with those obtained using the mono-exponential, the stretched exponential, the fractional derivative, and the diffusion kurtosis models. Overall, we find that the order of the fractal time derivative, the diffusion coefficient, and the spectral entropy are potential biomarkers to differentiate between the microstructure of white and gray matter. In addition, we note that the fractal derivative model has practical advantages over the existing models from the

  1. Nonlocal Anomalous Hall Effect.

    Science.gov (United States)

    Zhang, Steven S-L; Vignale, Giovanni

    2016-04-01

    The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect-the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt/YIG structures.

  2. Nonlocal Anomalous Hall Effect

    Science.gov (United States)

    Zhang, Steven S.-L.; Vignale, Giovanni

    2016-04-01

    The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect—the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt /YIG structures.

  3. A Study of Neutron Star Structure in Strong Magnetic Fields that includes Anomalous Magnetic Moments

    Institute of Scientific and Technical Information of China (English)

    Guang-Jun Mao; Akira Iwamoto; Zhu-Xia Li

    2003-01-01

    We study the effect of strong magnetic fields on the structure of neutronstar. We find that if the interior field is on the same order as the surface fieldcurrently observed, then the influences of the field on the star's mass and radius arenegligible; if the field is as large as that estimated from the scalar virial theorem,then considerable effects will be induced. The maximum mass of the star will beincreased substantially while the central density is greatly reduced. The radius ofa magnetic star can be larger by about 10% ~ 20% than a nonmagnetic star of thesame mass.

  4. Emerging magnetism and anomalous Hall effect in iridate-manganite heterostructures

    Science.gov (United States)

    Nichols, John; Gao, Xiang; Lee, Shinbuhm; Meyer, Tricia L.; Freeland, John W.; Lauter, Valeria; Yi, Di; Liu, Jian; Haskel, Daniel; Petrie, Jonathan R.; Guo, Er-Jia; Herklotz, Andreas; Lee, Dongkyu; Ward, Thomas Z.; Eres, Gyula; Fitzsimmons, Michael R.; Lee, Ho Nyung

    2016-09-01

    Strong Coulomb repulsion and spin-orbit coupling are known to give rise to exotic physical phenomena in transition metal oxides. Initial attempts to investigate systems, where both of these fundamental interactions are comparably strong, such as 3d and 5d complex oxide superlattices, have revealed properties that only slightly differ from the bulk ones of the constituent materials. Here we observe that the interfacial coupling between the 3d antiferromagnetic insulator SrMnO3 and the 5d paramagnetic metal SrIrO3 is enormously strong, yielding an anomalous Hall response as the result of charge transfer driven interfacial ferromagnetism. These findings show that low dimensional spin-orbit entangled 3d-5d interfaces provide an avenue to uncover technologically relevant physical phenomena unattainable in bulk materials.

  5. Magnetic properties in the inhomogeneous chiral phase

    CERN Document Server

    Yoshiike, Ryo; Tatsumi, Toshitaka

    2016-01-01

    We investigate the magnetic properties of quark matter in the inhomogeneous chiral phase, where both scalar and pseudoscalar condensates spatially modulate. The energy spectrum of the lowest Landau level becomes asymmetric about zero in the external magnetic field, and gives rise to the remarkably magnetic properties: quark matter has a spontaneous magnetization, while the magnetic susceptibility does not diverge on the critical point.

  6. Magnetic Properties and Intergranular Action in Bonded Hybrid Magnets

    Institute of Scientific and Technical Information of China (English)

    Hua Zhenghe; Li Shandong; Han Zhida; Wang Dunhui; Zhong Wei; Gu Benxi; Lu Mu; Zhang Jianrong; Du Youwei

    2007-01-01

    Magnetic properties and intergranular action in bonded hybrid magnets, based on NdFeB and strontium ferrite powders were investigated. The long-range magnetostatic interaction and short-range exchange coupling interaction existed simultaneously in bonded hybrid magnets, and neither of them could be neglected. Some magnetic property parameters of hybrid magnets could be approximately obtained by adding the hysteresis loops of two magnets pro rata.

  7. A to Z of the Muon Anomalous Magnetic Moment in the MSSM with Pati-Salam at the GUT scale

    CERN Document Server

    Belyaev, Alexander S; King, Steve F; Miller, David J; Morais, António P; Schaefers, Patrick B

    2016-01-01

    We analyse the low energy predictions of the minimal supersymmetric standard model (MSSM) arising from a GUT scale Pati-Salam gauge group further constrained by an $A_4 \\times Z_5$ family symmetry, resulting in four soft scalar masses at the GUT scale: one left-handed soft mass $m_0$ and three right-handed soft masses $m_1,m_2,m_3$, one for each generation. We demonstrate that this model, which was initially developed to describe the neutrino sector, can explain collider and non-collider measurements such as the dark matter relic density, the Higgs boson mass and, in particular, the anomalous magnetic moment of the muon $(g-2)_\\mu$. Since about two decades, $(g-2)_\\mu$ suffers a puzzling about 3$\\,\\sigma$ excess of the experimentally measured value over the theoretical prediction, which our model is able to fully resolve. As the consequence of this resolution, our model predicts specific regions of the parameter space with the specific properties including light smuons and neutralinos, which could also potent...

  8. A to Z of the muon anomalous magnetic moment in the MSSM with Pati-Salam at the GUT scale

    Science.gov (United States)

    Belyaev, Alexander S.; Camargo-Molina, José E.; King, Steve F.; Miller, David J.; Morais, António P.; Schaefers, Patrick B.

    2016-06-01

    We analyse the low energy predictions of the minimal supersymmetric standard model (MSSM) arising from a GUT scale Pati-Salam gauge group further constrained by an A 4 × Z 5 family symmetry, resulting in four soft scalar masses at the GUT scale: one left-handed soft mass m 0 and three right-handed soft masses m 1 , m 2 , m 3, one for each generation. We demonstrate that this model, which was initially developed to describe the neutrino sector, can explain collider and non-collider measurements such as the dark matter relic density, the Higgs boson mass and, in particular, the anomalous magnetic moment of the muon ( g - 2) μ . Since about two decades, ( g - 2) μ suffers a puzzling about 3 σ excessoftheexperimentallymeasuredvalueoverthetheoreticalprediction,whichour model is able to fully resolve. As the consequence of this resolution, our model predicts specific regions of the parameter space with the specific properties including light smuons and neutralinos, which could also potentially explain di-lepton excesses observed by CMS and ATLAS.

  9. Anomalous results observed in magnetization of bulk high temperature superconductors—A windfall for applications

    Science.gov (United States)

    Weinstein, Roy; Parks, Drew; Sawh, Ravi-Persad; Carpenter, Keith; Davey, Kent

    2016-04-01

    Recent experiments on pulsed-zero field cool magnetization of bulk high Jc YBCO (YBa2Cu3O7-δ) have shown unexpected results. For example, reproducible, non-destructive, rapid, giant field leaps (GFLs) to higher penetrated field are observed. The observations are inconsistent with the critical state model (CSM), in several aspects. Additional experiments have been pursued in an attempt to clarify the physics involved in the observed anomalies. Here, we present experimental results for the Jc dependence of the anomalous features. It is found that the sudden field increase in the GFL is a monotonically increasing function of Jc. The ratio of required pulsed field amplitude, BA,max, to obtain maximum trappable field, BT,max, which CSM predicts to be ≥2.0, gradually approaches 1.0 at high Jc. Tests using values of pulsed, applied field BA,max just below the GFL exhibit two additional anomalies: (i) At high Jc, the highest trapped field is up to ˜6 times lower than predicted by CSM, and (ii) the measured Lorentz force as a function of Jc deviates sharply from CSM predictions. The data rule out heating effects and pinning center geometry as possible physical causes of these anomalies. A speculative cause is considered.

  10. Tenth-Order Electron Anomalous Magnetic Moment --- Contribution of Diagrams without Closed Lepton Loops

    CERN Document Server

    Aoyama, T; Kinoshita, T; Nio, M

    2014-01-01

    This paper presents a detailed account of evaluation of the electron anomalous magnetic moment a_e which arises from the gauge-invariant set, called Set V, consisting of 6354 tenth-order Feynman diagrams without closed lepton loops. The latest value of the sum of Set V diagrams evaluated by the Monte-Carlo integration routine VEGAS is 8.726(336)(\\alpha/\\pi)^5, which replaces the very preliminary value reported in 2012. Combining it with other 6318 tenth-order diagrams published previously we obtain 7.795(336)(\\alpha/\\pi)^5 as the complete mass-independent tenth-order term. Together with the improved value of the eighth-order term this leads to a_e(theory)=1 159 652 181.643 (25)(23)(16)(763) \\times 10^{-12}, where first three uncertainties are from the eighth-order term, tenth-order term, and hadronic and elecroweak terms. The fourth and largest uncertainty is from \\alpha^{-1}=137.035 999 049(90), the fine-structure constant derived from the rubidium recoil measurement. a_e(theory) and a_e(experiment) agree wi...

  11. A Call for New Physics : The Muon Anomalous Magnetic Moment and Lepton Flavor Violation

    CERN Document Server

    Lindner, Manfred; Queiroz, Farinaldo S

    2016-01-01

    We review how the muon anomalous magnetic moment ($g-2$) and the quest for lepton flavor violation are intimately correlated. Indeed the decay $\\mu \\to e \\gamma$ is induced by the same amplitude for different choices of in- and outgoing leptons. In this work, we try to address some intriguing questions such as: Which hierarchy in the charged lepton sector one should have in order to reconcile possible signals coming simultaneously from $g-2$ and LFV? What can we learn if the $g-2$ anomaly is confirmed by the upcoming flagship experiments at FERMILAB and J-PARC, and no signal is seen in the decay $\\mu \\rightarrow e\\gamma$ in the foreseeable future? On the other hand, if the $\\mu \\rightarrow e\\gamma$ decay is seen in the upcoming years, do we need to necessarily observe a signal also in $g-2$? In this attempt, we generally study the correlation between the two phenomena in a detailed analysis of simplified models. We derive master integrals and fully analytical and exact expressions for both phenomena. We inves...

  12. Hadronic contributions to the anomalous magnetic moment of the electron and the hyperfine splitting of muonium

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Daisuke, E-mail: dnomura@tuhep.phys.tohoku.ac.jp [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Teubner, Thomas [Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX (United Kingdom)

    2013-02-11

    Motivated by recent progress of theory and experiment on the anomalous magnetic moment of the electron, a{sub e}, we update the hadronic contributions to a{sub e}. Using our up-to-date compilation of e{sup +}e{sup -}{yields}hadrons data, we find the leading order hadronic contribution a{sub e}{sup had,LO,VP}=(1.866{+-}0.010{sub exp}{+-}0.005{sub rad}) Dot-Operator 10{sup -12} and the next-to-leading order hadronic contribution a{sub e}{sup had,NLO,VP}=(-0.2234{+-}0.0012{sub exp}{+-}0.0007{sub rad}) Dot-Operator 10{sup -12}, where the first and second errors are from the error of the experimental data and the uncertainty in the treatment of radiative corrections, respectively. These values are compatible with earlier evaluations by other groups, but have significantly improved uncertainties due to the more precise input data used. We also update the leading order hadronic contribution to the ground state hyperfine splitting of muonium, obtaining {Delta}{nu}{sub Mu}{sup had,VP}=(232.68{+-}1.25{sub exp}{+-}0.72{sub rad}) Hz. This value is consistent with the most precise evaluation in the literature and reduces its error by a factor of two.

  13. Smearing of the quantum anomalous Hall effect due to statistical fluctuations of magnetic dopants

    Science.gov (United States)

    Yue, Z.; Raikh, M. E.

    2016-10-01

    The quantum anomalous Hall effect is induced by substitution of a certain portion x of Bi atoms in a BiTe-based insulating parent compound by magnetic ions (Cr or V). We find the density of in-gap states N (E ) emerging as a result of statistical fluctuations of the composition x in the vicinity of the transition point where the average gap E¯g passes through zero. A local gap follows the fluctuations of x . Using the instanton approach, we show that, near the gap edges, the tails are exponential lnN (E ) ∝-(E¯g-|E |) and the tail states are due to small local gap reduction. Our main finding is that, even when the smearing magnitude exceeds the gap width, there exists a semihard gap around zero energy, where lnN (E ) ∝-E/¯g|E | ln(E/¯g|E | ) . The states responsible for N (E ) originate from local gap reversals within narrow rings. The consequence of the semihard gap is the Arrhenius, rather than variable-range hopping, temperature dependence of the diagonal conductivity at low temperatures.

  14. Tests of hadronic vacuum polarization fits for the muon anomalous magnetic moment

    CERN Document Server

    Golterman, Maarten; Peris, Santiago

    2013-01-01

    We construct a physically motivated model for the isospin-one non-strange vacuum polarization function Pi(Q^2) based on a spectral function given by vector-channel OPAL data from hadronic tau decays for energies below the tau mass and a successful parametrization, employing perturbation theory and a model for quark-hadron duality violations, for higher energies. Using a covariance matrix and Q^2 values from a recent lattice simulation, we then generate fake data for Pi(Q^2) and use it to test fitting methods currently employed on the lattice for extracting the hadronic vacuum polarization contribution to the muon anomalous magnetic moment. This comparison reveals a systematic error much larger than the few-percent total error sometimes claimed for such extractions in the literature. In particular, we find that errors deduced from fits using a Vector Meson Dominance ansatz are misleading, typically turning out to be much smaller than the actual discrepancy between the fit and exact model results. The use of a ...

  15. Tests of hadronic vacuum polarization fits for the muon anomalous magnetic moment

    CERN Document Server

    Golterman, Maarten; Peris, Santiago

    2013-01-01

    Using experimental spectral data for hadronic tau decays from the OPAL experiment, supplemented by a phenomenologically successful parameterization for the high-s region not covered by the data, we construct a physically constrained model of the isospin-one vector-channel polarization function. Having such a model as a function of Euclidean momentum Q^2 allows us to explore the systematic error associated with fits to the Q^2 dependence of lattice data for the hadronic electromagnetic current polarization function which have been used in attempts to compute the leading order hadronic contribution, a_\\mu^HLO, to the muon anomalous magnetic moment. In contrast to recent claims made in the literature, we find that a final error in this quantity of the order of a few percent does not appear possible with current lattice data, given the present lack of precision in the determination of the vacuum polarization at low Q^2. We also find that fits to the vacuum polarization using fit functions based on Vector Meson Do...

  16. Magnetic Properties of Erbium Gallium Gallate under High Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    Zhang Xijuan; Cheng Haiying; Yang Cuihong; Wang Wei

    2004-01-01

    A theoretical investigation on the magnetic properties of rare-earth Er3+ in Er3 Ga5 O12 was reported. The average magnetic moments(M) for applied magnetic field H parallel to the [001 ], [ 100], [ 110], [ 111 ] direction was studied based on the quantum theory. Temperature dependence of the magnetic properties is analyzed for H applied parallel to the [ 100] and [ 111 ] crystallographic directions. The magnetization decreases with increasing temperature,showing good agreement with thermal effect. A strong anisotropy of the magnetization is found under high magnetic field, but when the magnetic field is small, M and H are proportional.

  17. Low-Temperature Magnetic Properties of Co Antidot Array

    Institute of Scientific and Technical Information of China (English)

    LIU Qing-Fang; JIANG Chang-Jun; FAN Xiao-Long; WANG Jian-Bo; XUE De-Sheng

    2006-01-01

    Cobalt antidot arrays with different thicknesses are fabricated by rf magnetron sputtering onto porous alumina substrates. Scanning electron microscopy and grazing incidence x-ray diffraction are employed to characterize the morphology and crystal structure of the antidot array, respectively. The temperature dependence of magnetic properties shows that in the temperature range 5K-300K, coercivity and squareness increase firstly, reach their maximum values, then decrease. The anomalous temperature dependences of coercivity and squareness are discussed by considering the pinning effect of the antidot and the magnetocrystalline anisotropy.

  18. Tenth-order electron anomalous magnetic moment: Contribution of diagrams without closed lepton loops

    Science.gov (United States)

    Aoyama, Tatsumi; Hayakawa, Masashi; Kinoshita, Toichiro; Nio, Makiko

    2015-02-01

    This paper presents a detailed account of the evaluation of the electron anomalous magnetic moment ae which arises from a gauge-invariant set, called Set V, consisting of 6354 tenth-order Feynman diagrams without closed lepton loops. The latest value of the sum of Set V diagrams evaluated by the Monte Carlo integration routine VEGAS is 8.726 (336 )(α /π )5 , which replaces the very preliminary value reported in 2012. Combining it with 6318 previously published tenth-order diagrams, we obtain 7.795 (336 )(α /π )5 as the complete mass-independent tenth-order term. Together with the improved value of the eighth-order term this leads to ae(theory)=1 159 652 181.643 (25 )(23 )(16 )(763 )×1 0-12 , where the first three uncertainties are from the eighth-order, tenth-order, and hadronic and elecroweak terms. The fourth and largest uncertainty is from α-1=137.035 999 049 (90 ) , the fine-structure constant derived from the rubidium recoil measurement. Thus, ae(experiment)-ae(theory)=-0.91 (0.82 )×1 0-12 . Assuming the validity of the standard model, we obtain the fine-structure constant α-1(ae)=137.035 999 1570 (29 )(27 )(18 )(331 ) , where uncertainties are from the eighth-order, tenth-order, and hadronic and electroweak terms, and the measurement of ae. This is the most precise value of α available at present and provides a stringent constraint on possible theories beyond the standard model.

  19. The magnetic properties of the hollow cylindrical ideal remanence magnet

    CERN Document Server

    Bjørk, R

    2016-01-01

    We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived and the generated field is compared to that of a Halbach cylinder of equal dimensions. The ideal remanence magnet is shown in most cases to generate a significantly lower field than the equivalent Halbach cylinder, although the field is generated with higher efficiency. The most efficient Halbach cylinder is shown to generate a field exactly twice as large as the equivalent ideal remanence magnet.

  20. The magnetic properties of the hollow cylindrical ideal remanence magnet

    DEFF Research Database (Denmark)

    Bjørk, Rasmus

    2016-01-01

    We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived...... and the generated field is compared to that of a Halbach cylinder of equal dimensions. The ideal remanence magnet is shown in most cases to generate a significantly lower field than the equivalent Halbach cylinder, although the field is generated with higher efficiency. The most efficient Halbach cylinder is shown...... to generate a field exactly twice as large as the equivalent ideal remanence magnet....

  1. Anomalous properties and the liquid-liquid phase transition in gallium

    Science.gov (United States)

    Li, Renzhong; Sun, Gang; Xu, Limei

    2016-08-01

    A group of materials including water and silicon exhibit many anomalous behaviors, e.g., density anomaly and diffusivity anomaly (increase upon compression). These materials are hypothesized to have a liquid-liquid phase transition (LLPT) and the critical fluctuation in the vicinity of the liquid-liquid critical point is considered as the origin of different anomalies. Liquid gallium was also reported to have a LLPT, yet whether it shows similar water-like anomalies is not yet studied. Using molecular dynamics simulations on a modified embedded-atom model, we study the thermodynamic, dynamic, and structural properties of liquid gallium as well as its LLPT. We find that, similar to water-like materials predicted to have the LLPT, gallium also shows different anomalous behaviors (e.g., density anomaly, diffusivity anomaly, and structural anomaly). We also find that its thermodynamic and structural response functions are continuous and show maxima in the supercritical region, the loci of which asymptotically approach to the other and merge to the Widom line. These phenomena are consistent with the supercritical phenomenon in a category of materials with a liquid-liquid critical point, which could be common features in most materials with a LLPT.

  2. Room-temperature anomalous Hall effect and magnetroresistance in (Ga, Co)-codoped ZnO diluted magnetic semiconductor films

    Institute of Scientific and Technical Information of China (English)

    Liu Xue-Chao; Chen Zhi-Zhan; Shi Er-Wei; Liao Da-Qian; Zhou Ke-Jin

    2011-01-01

    This paper reports that the (Ga, Co)-codoped ZnO thin films have been grown by inductively coupled plasma enhanced physical vapour deposition. Room-temperature ferromagnetism is observed for the as-grown thin films. The x-ray absorption fine structure characterization reveals that Co2+ and Ga3+ ions substitute for Zn2+ ions in the ZnO lattice and exclude the possibility of extrinsic ferromagnetism origin. The ferromagnetic (Ga, Co)-codoped ZnO thin films exhibit carrier concentration dependent anomalous Hall effect and positive magnetoresistance at room temperature. The mechanism of anomalous Hall effect and magneto-transport in ferromagnetic ZnO-based diluted magnetic semiconductors is discussed.

  3. Effects of magnetic field on fluidization properties of magnetic pearls

    Institute of Scientific and Technical Information of China (English)

    Maoming Fan; Zhenfu Luo; Yuemin Zhao; Qingru Chen; Daniel Tao; Xiuxiang Tao; Zhenqiang Chen

    2007-01-01

    An experimental study of the influence of external magnetic field on the fluidization behavior of magnetic pearls was carried out. Magnetic pearls are a magnetic form of iron oxide that mainly consists of Fe2O3 which are recovered from a high-volume power plant fly ash from pulverized coal combustion. Due to its abundance, low price and particular physical and chemical properties, magnetic pearls can be used as a heavy medium for minerals or solid waste dry separation based on density difference. This paper introduces the properties of magnetic pearls and compares the performance of magnetic pearls fluidised bed operation with or without an external magnetic field. Experimental results show that an external magnetic field significantly improves the fluidization performance of magnetic pearls such as uniformity and stability.

  4. Magnetic materials fundamentals, products, properties, applications

    CERN Document Server

    Hilzinger, Rainer

    2013-01-01

    At a practical level, this compendium reviews the basics of soft and hard magnetic materials, discusses the advantages of the different processing routes for the exploitation of the magnetic properties and hence assists in proper, fail-safe and economic application of magnetic materials. Essential guidelines and formulas for the calculation of the magnetic and electrical properties, temperature and long-term stability of permanent magnets, of inductive components and magnetic shielding are compiled. Selected fields of application and case studies illustrate the large diversity of technical applications. Application engineers will appreciate the comprehensive compilation of the properties and detailed characteristic curves of modern soft and hard magnetic materials. Materials scientists will enjoy the presentation of the different processing routes and their impact on the magnetic properties and students will profit from the survey from the basics of magnetism down to the applications in inductive components, ...

  5. Spinel ferrite nanocrystals embedded inside ZnO: magnetic, electronic andmagneto-transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengqiang; Potzger, K.; Xu, Qingyu; Kuepper, K.; Talut, G.; Marko, D.; Mucklich, A.; Helm, M.; Fassbender, J.; Arenholz, E.; Schmidt, H.

    2009-08-21

    In this paper we show that spinel ferrite nanocrystals (NiFe{sub 2}O{sub 4}, and CoFe{sub 2}O{sub 4}) can be texturally embedded inside a ZnO matrix by ion implantation and post-annealing. The two kinds of ferrites show different magnetic properties, e.g. coercivity and magnetization. Anomalous Hall effect and positive magnetoresistance have been observed. Our study suggests a ferrimagnet/semiconductor hybrid system for potential applications in magneto-electronics. This hybrid system can be tuned by selecting different transition metal ions (from Mn to Zn) to obtain various magnetic and electronic properties.

  6. Lattice Calculation of the Connected Hadronic Light-by-Light Contribution to the Muon Anomalous Magnetic Moment

    CERN Document Server

    Jin, Luchang; Christ, Norman; Hayakawa, Masashi; Izubuchi, Taku; Lehner, Christoph

    2015-01-01

    The anomalous magnetic moment of muon, $g-2$, is a very precisely measured quantity. However, the current measurement disagrees with standard model by about 3 standard deviations. Hadronic vacuum polarization and hadronic light by light are the two types of processes that contribute most to the theoretical uncertainty. I will describe how lattice methods are well-suited to provide a first-principle's result for the hadronic light by light contribution, the various numerical strategies that are presently being used to evaluate it, our current results and the important remaining challenges which must be overcome.

  7. Light-by-light-type corrections to the muon anomalous magnetic moment at four-loop order

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Alexander [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. fuer Theoretische Teilchenphysik; Liu, Tao; Steinhauser, Matthias [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. fuer Theoretische Teilchenphysik; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Smirnov, Alexander V. [Moscow State Univ. (Russian Federation). Scientific Research Computing Center; Smirnov, Vladimir A. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics

    2015-08-15

    The numerically dominant QED contributions to the anomalous magnetic moment of the muon stem from Feynman diagrams with internal electron loops. We consider such corrections and present a calculation of the four-loop light-by-light-type corrections where the external photon couples to a closed electron or muon loop. We perform an asymptotic expansion in the ratio of electron and muon mass and reduce the resulting integrals to master integrals which we evaluate using analytical and numerical methods. We confirm the results present in the literature which are based on different computational methods.

  8. Light-by-light-type corrections to the muon anomalous magnetic moment at four-loop order

    CERN Document Server

    Kurz, Alexander; Marquard, Peter; Smirnov, Alexander V; Smirnov, Vladimir A; Steinhauser, Matthias

    2015-01-01

    The numerically dominant QED contributions to the anomalous magnetic moment of the muon stem from Feynman diagrams with internal electron loops. We consider such corrections and present a calculation of the four-loop light-by-light-type corrections where the external photon couples to a closed electron or muon loop. We perform an asymptotic expansion in the ratio of electron and muon mass and reduce the resulting integrals to master integrals which we evaluate using analytical and numerical methods. We confirm the results present in the literature which are based on different computational methods.

  9. Anomalous transport properties of a two-phase system of HTSC + NiTiO sub 3 paramagnetics, forming the net of random Josephson junctions

    CERN Document Server

    Petrov, M I; Shajkhutdinov, K A; Popkov, S I

    2002-01-01

    The magnetoresistive properties of the 92.5 at % Y sub 3 sub / sub 4 Lu sub 1 sub / sub 4 Ba sub 2 Cu sub 3 O sub 7 + 7.5 at % NiTiO sub 3 composites, representing the net of random tunnel transitions of the Josephson type, are synthesized and studied. The area, whereon R does not depend on the j-current and slightly depends on the H magnetic field is identified on the temperature dependences of the electric resistance R(T) of the composites with the NiTiO sub 3 paramagnetic compound below the temperature of the HTSC T sub c transition. The anomalous behavior of the HTSC + NiTiO sub 3 composites is explained by the effect of the Ni atoms magnetic moments in the dielectric barriers on the current transport

  10. Magnetic Properties of Magnetic Nanoparticles for Efficient Hyperthermia

    Directory of Open Access Journals (Sweden)

    Ihab M. Obaidat

    2015-01-01

    Full Text Available Localized magnetic hyperthermia using magnetic nanoparticles (MNPs under the application of small magnetic fields is a promising tool for treating small or deep-seated tumors. For this method to be applicable, the amount of MNPs used should be minimized. Hence, it is essential to enhance the power dissipation or heating efficiency of MNPs. Several factors influence the heating efficiency of MNPs, such as the amplitude and frequency of the applied magnetic field and the structural and magnetic properties of MNPs. We discuss some of the physics principles for effective heating of MNPs focusing on the role of surface anisotropy, interface exchange anisotropy and dipolar interactions. Basic magnetic properties of MNPs such as their superparamagnetic behavior, are briefly reviewed. The influence of temperature on anisotropy and magnetization of MNPs is discussed. Recent development in self-regulated hyperthermia is briefly discussed. Some physical and practical limitations of using MNPs in magnetic hyperthermia are also briefly discussed.

  11. Possible Kondo-Lattice-Enhanced Magnetic Ordering at Anomalously High Temperature in Nd Metal under Extreme Compression

    Science.gov (United States)

    Schilling, James S.; Song, Jing; Soni, Vikas; Lim, Jinhyuk

    Most elemental lanthanides order magnetically at temperatures To well below ambient, the highest being 292 K for Gd. Sufficiently high pressure is expected to destabilize the well localized magnetic 4 f state of the heavy lanthanides, leading to increasing influence of Kondo physics on the RKKY interaction. For pressures above 80 GPa, To for Dy and Tb begins to increase dramatically, extrapolating for Dy to a record-high value near 400 K at 160 GPa. This anomalous increase may be an heretofore unrecognized feature of the Kondo lattice state; if so, one would expect To to pass through a maximum and fall rapidly at even higher pressures. A parallel is suggested to the ferromagnet CeRh3B2 where To = 115 K at ambient pressure, a temperature more than 100-times higher than anticipated from simple de Gennes scaling. Here we discuss recent experiments on Nd where anomalous behavior in To (P) is found to occur at lower pressures, perhaps reflecting the fact that Nd's 4 f wave function is less localized. Work at Washington University is supported by NSF Grant DMR-1104742 and CDAC through NNSA/DOE Grant DE-FC52-08NA28554.

  12. Competing effects of magnetic impurities in the anomalous Hall effect on the surface of a topological insulator

    Science.gov (United States)

    Deng, Ming-Xun; Luo, Wei; Deng, W. Y.; Chen, M. N.; Sheng, L.; Xing, D. Y.

    2016-12-01

    We investigate the anomalous Hall effect (AHE) on the surface of a topological insulator induced by a finite concentration of magnetic impurities, and find topologically nontrivial and trivial mechanisms simultaneously contributing to the Hall conductivity. In the topologically nontrivial mechanism, the impurities gap the surface spectrum and result in a half-integer quantized intrinsic Hall conductivity in units e2/h , while in the topologically trivial mechanism, the half-integer quantized plateau is modified by impurity-induced localized states via a gap-filling process. The nonmagnetic charge potential itself, though participating in the gap-filling process, cannot induce the AHE. In the presence of a finite magnetic potential, the charge potential would destroy the symmetric distribution of the Hall conductivity by redistributing the localized levels. More interestingly, the sign of the Hall conductivity is tunable by changing the strength of the charge potential.

  13. Anomalous dimension, chiral phase transition and inverse magnetic catalysis in soft-wall AdS/QCD

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhen, E-mail: fangzhen@itp.ac.cn [Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing (China)

    2016-07-10

    A modified soft-wall AdS/QCD model with a z-dependent bulk scalar mass is proposed. We argue for the necessity of a modified bulk scalar mass from the quark mass anomalous dimension and carefully constrain the form of bulk mass by the corresponding UV and IR asymptotics. After fixing the form of bulk scalar mass, we calculate the mass spectra of (axial-)vector and pseudoscalar mesons, which have a good agreement with the experimental data. The behavior of chiral phase transition is also investigated, and the results are consistent with the standard scenario and lattice simulations. Finally, the issue of chiral magnetic effects is addressed. We find that the inverse magnetic catalysis emerges naturally from the modified soft-wall model, which is consistent with the recent lattice simulations.

  14. Anomalous Hall Effect in a Kagome Ferromagnet

    Science.gov (United States)

    Ye, Linda; Wicker, Christina; Suzuki, Takehito; Checkelsky, Joseph; Joseph Checkelsky Team

    The ferromagnetic kagome lattice is theoretically known to possess topological band structures. We have synthesized large single crystals of a kagome ferromagnet Fe3Sn2 which orders ferromagnetically well above room temperature. We have studied the electrical and magnetic properties of these crystals over a broad temperature and magnetic field range. Both the scaling relation of anomalous Hall effect and anisotropic magnetic susceptibility show that the ferromagnetism of Fe3Sn2 is unconventional. We discuss these results in the context of magnetism in kagome systems and relevance to the predicted topological properties in this class of compounds. This research is supported by DMR-1231319.

  15. Magnetic and structural properties of thin films and nanoparticles studied by scattering methods

    OpenAIRE

    Feygenson, M.

    2007-01-01

    The present work concerns the magnetic and structural proprieties of magnetic thin films and magnetic nanoparticles studied by scattering methods.The structural properties of epitaxially grown Fe/Cr/Fe trilayer were studied with anomalous x-ray scattering. Two different x-ray energies have been used; (i) one E$_1$=5985eV to match the maximum contrast of the Fe/Cr interface close to the Cr absorption K-edge and (ii) a second one E$_2$=6940eV where the Fe/Cr interface displays the lowest contra...

  16. First-principles determination of magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Wu Ruqian; Yang Zongxian; Hong Jisang [Department of Physics, University of California, Irvine, CA (United States)

    2003-02-12

    First-principles density functional theory calculations have achieved great success in the exciting field of low-dimension magnetism, in explaining new phenomena observed in experiments as well as in predicting novel properties and materials. As known, spin-orbit coupling (SOC) plays an extremely important role in various magnetic properties such as magnetic anisotropy, magnetostriction, magneto-optical effects and spin-dynamics. Using the full potential linearized augmented plane wave approach, we have carried out extensive investigations for the effects of SOC in various materials. Results of selected examples, such as structure and magnetic properties of Ni/Cu(001), magnetism and magnetic anisotropy in magnetic Co/Cu(001) thin films, wires and clusters, magnetostriction in FeGa alloys and magneto-optical effects in Fe/Cr superlattices, are discussed.

  17. Anomalous particle diffusion and Levy random walk of magnetic field lines in three dimensional solar wind turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Zimbardo, G.

    2005-07-01

    Plasma transport in the presence of turbulence depends on a variety of parameters like the fluctuation level ? B/B0, the ratio between the particle Larmor radius and the turbulence correlation lengths, and the turbulence anisotropy. In this presentation, we review the results of numerical simulations of plasma and magnetic field line transport in the case of anisotropic magnetic turbulence, for parameter values close to those of the solar wind. We assume a uniform background magnetic field B0 = B0ez and a Fourier representation for magnetic fluctuations, with wavectors forming any angle with respect to B0. The energy density spectrum is a power law, and in k space the constant amplitude surfaces are ellipsoids, described by the correlation lengths lx, ly, lz, which quantify the anisotropy of turbulence. For magnetic field lines, we find that transport perpendicular to the background field depends on the Kubo number R = ? B B0 lz lx . For small Kubo numbers, R ? 1, we find anomalous, non Gaussian transport regimes (both sub and superdiffusive) which can be described as a Levy random walk. Increasing the Kubo number, i.e., the fluctuation level ? B/B0 and/or the ratio lz/lx, we find first a quasilinear and then a percolative regime, both corresponding to Gaussian diffusion. For particles, we find that transport parallel and perpendicular to the background magnetic field heavily depends on the turbulence anisotropy and on the particle Larmor radius. For turbulence levels typical of the solar wind, ? B/B0 ? 0.5 ?1, when the ratio between the particle Larmor radius and the turbulence correlation lengths is small, anomalous regimes are found in the case lz/lx ? 1, with Levy random walk (superdiffusion) along the magnetic field and subdiffusion in the perpendicular directions. Conversely, for lz/lx > 1 normal, Gaussian diffusion is found. Increasing the ratio between the particle Larmor radius and the turbulence correlation lengths, the parallel superdiffusion is

  18. Anomalous particle diffusion and Levy random walk of magnetic field lines in three-dimensional solar wind turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Zimbardo, Gaetano [Dipartimento di Fisica, Universita della Calabria, Ponte P. Bucci, Cubo 31C, I-87036 Arcavacata di Rende (Italy)

    2005-12-15

    Plasma transport in the presence of turbulence depends on a variety of parameters such as the fluctuation level, {delta}B/B{sub 0}, the ratio between the particle Larmor radius and the turbulence correlation length, and the turbulence anisotropy. In this paper, we present the results of numerical simulations of plasma and magnetic field line transport in the case of anisotropic magnetic turbulence, for parameter values close to those of the solar wind. We assume a uniform background magnetic field B{sub 0} = B{sub 0} e{sub z} and a Fourier representation for magnetic fluctuations, which includes wavectors oblique with respect to B{sub 0}. The energy density spectrum is a power law, and in k space it is described by the correlation lengths l{sub x}, l{sub y}, l{sub z}, which quantify the anisotropy of turbulence. For magnetic field lines, transport perpendicular to the background field depends on the Kubo number R ({delta}B/B{sub 0}) (l{sub z}/l{sub x}). For small Kubo numbers, R << 1, anomalous, non-Gaussian transport regimes (both sub- and superdiffusive) are found, which can be described as a Levy random walk. Increasing the Kubo number, i.e. the fluctuation level, {delta}B/B{sub 0}, or the ratio l{sub z}/l{sub x}, we find first a quasilinear regime and then a percolative regime, both corresponding to Gaussian diffusion. For particles, we find that transport parallel and perpendicular to the background magnetic field depends heavily on the turbulence anisotropy and on the particle Larmor radius. For turbulence levels typical of the solar wind, {delta}B/B{sub 0}{approx_equal} 0.5-1, when the ratio between the particle Larmor radius and the turbulence correlation lengths is small, anomalous regimes are found in the case l{sub z}/l{sub x} {<=} 1, with a Levy random walk (superdiffusion) along the magnetic field and subdiffusion in the perpendicular directions. Conversely, for l{sub z}/l{sub x} > 1 normal Gaussian diffusion is found. A possible expression for

  19. Electromechanical properties of radial active magnetic bearings

    OpenAIRE

    Antila, Matti

    1998-01-01

    Nonideal properties of the electromagnetic actuators in radial active magnetic bearings are studied. The two dimensional nonlinear stationary finite element method is used to determine the linearised parameters of a radial active magnetic bearing. The method is verified on two test machines. The accuracy is 10-15 % in the magnetic saturation region. The effect of magnetic saturation on the bearing dynamics is studied based on the root locus diagrams of the closed loop system. These diagrams s...

  20. Magnetic Properties of Tcnq Complexes

    Science.gov (United States)

    Qureshi, Saleem

    Available from UMI in association with The British Library. Requires signed TDF. This work can be divided up into three complementary steps. The first part of the work involved synthesis of a large number of TCNQ complexes, in particular complex salts, which are known to have promising electrical properties due to reduction in the on-site Coloumbic repulsion between the electrons. The cations used for the complexes are C12BPE (dodecyl bi pyridyl ethelenium), C10BPE, C8BPE, C6BPE, GTPP (geronyl triphenyl phosphonium), BI (butyl imidazolium), DMI (dimethyl imidazolium) and TB (toluidine blue). The second part of the project was to characterize these materials using different techniques to try to build up a knowledge of the materials. Particular interest was involved in the study of magnetic behaviour and in the later parts of the work some electrical measurements were made to try to determine the band gap, mobility and temperature dependence of conductivity. Considering the quasi-one-dimensional nature of the TCNQ salts, a theoretical model was devised based on the solution of one dimensional Heisenberg spin Hamiltonian. A computer program was developed that allowed for a numerical solution of a chain of spins in which number of spins could be varied. The Hamiltonian could be solved for up to 12 spins, the maximum allowable by the ICL 2900 computer at Crips computer centre of the University of Nottingham. The program allowed the user to input the coupling energy and alternation parameter between adjacent spins. The results from this program were used to explain magnetic behaviour of the TCNQ complexes prepared during this work.

  1. Properties and alignment of interstellar dust grains toward Type Ia Supernovae with anomalous polarization curves

    CERN Document Server

    Hoang, Thiem

    2015-01-01

    Recent photometric and polarimetric observations of type Ia supernovae (SNe Ia) show unusually low total-to-selective extinction ratio ($R_{V}<2$) and wavelength of maximum polarization ($\\lambda_{max}<0.4\\mu m$) for several SNe Ia, which indicates peculiar properties of interstellar (IS) dust in the SN hosted galaxies and/or the presence of circumstellar (CS) dust. In this paper, we use inversion technique to infer best-fit grain size distribution and alignment function of interstellar grains along the lines of sight toward four SNe Ia with anomalous extinction and polarization data (SNe 1986G, 2006X, 2008fp, and 2014J). We find that to reproduce low values of $R_{V}$, a significant enhancement in the mass of small grains of radius $a< 0.1\\mu m$ is required. For SN 2014J, a simultaneous fit to observed extinction and polarization data is unsuccessful if the entire data is attributed to IS dust (model 1), but a good fit is obtained when accounting for the contribution of CS dust (model 2). For SN 200...

  2. Anomalous Optical and Electronic Properties of CaTiO3 Perovskites

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    With the help of the first-principles full potential linearized augmented plane wave method, absorption coefficients, reflectivity, dielectric behavior and electronic properties, including electronic energy bands, density of states and charge density distributions, are studied for the tetragonal and cubic CaTiO3. By considering the thermal expansion effects, an approximate method is proposed for the study of the stability of ground state and a tendency of phase transition, based on the minimum free energy principle. Subsequently, numerical calculations are carried out by using the first-principles perturbation method. We demonstrate that the high-temperature phase is cubic. It is shown that optical spectra in tetragonal phase exhibit single-peak feature and differ from multi-peak character in cubic. We find that strong orbital hybridization results in the co-valent bonds between Ti 3d and O 2p electrons and forms two-type dipoles (Ti-O1 and Ti-O2) in tetragonal, while the Ti-O dipoles are identical in cubic. It is argued that crystal structure determines the dipole distributions and leads to some electron states among which the dipole-dipole transition forbidden is a key, causing such anomalous optical phenomena with the insulator characteristics. The predicted charge density distribution and the tendency of phase transition from tetragonal to cubic are in good agreement with experimental observations.

  3. Anomalous magnetic fluctuations in superconducting Sr2RuO4 revealed by 101Ru nuclear spin-spin relaxation

    Science.gov (United States)

    Manago, Masahiro; Yamanaka, Takayoshi; Ishida, Kenji; Mao, Zhiqiang; Maeno, Yoshiteru

    2016-10-01

    We carried out 101Ru nuclear quadrupole resonance (NQR) measurement on superconducting (SC) Sr2RuO4 under zero magnetic field (H =0 ) and found that the nuclear spin-spin relaxation rate 1 /T2 is enhanced in the SC state. The 1 /T2 measurement in the SC state under H =0 is effective for detecting slow magnetic fluctuations parallel to the quantized axis of the nuclear spin. Our results indicate that low-energy magnetic fluctuations perpendicular to the RuO2 plane emerge when the superconductivity sets in, which is consistent with the previous 17O-NQR result that the nuclear spin-lattice relaxation rate 1 /T1 of the in-plane O site exhibits anomalous behavior in the SC state. The enhancement of the magnetic fluctuations in the SC state is unusual and suggests that the fluctuations are related to the unconventional SC pairing. We suggest that this phenomenon is a consequence of the spin degrees of freedom of the spin-triplet pairing.

  4. Simulation of position sensitivity of the anomalous Hall effect on a single magnetic dot

    NARCIS (Netherlands)

    Vries, de Jeroen; Delalande, Michael; Abelmann, Leon; Alexandrou, Marios; Schedin, Fred; Nutter, Paul; Hill, Ernie; Thomson, Thomas

    2010-01-01

    To overcome the superparamagnetic effect caused by scaling bit and grain sizes in magnetic storage media different approaches are investigated. One alternative is bit patterned magnetic media (BPM) where each bit is represented by a single domain magnetic dot. A key problem with BPM is the large dif

  5. The Characterization of the Magnetic Properties of Soft Magnetic Materials

    DEFF Research Database (Denmark)

    Larsen, Raino Michael

    1996-01-01

    The hysteresis curve and magnetic properties such as permeability, saturation induction, residual induction, coercive force and hysteresis losses are presented. The design and construction of equipment making it possible to measure true DC-values as well as AC-properties of toroid rings and cylin......The hysteresis curve and magnetic properties such as permeability, saturation induction, residual induction, coercive force and hysteresis losses are presented. The design and construction of equipment making it possible to measure true DC-values as well as AC-properties of toroid rings...

  6. Anomalous Spin Response and Virtual-Carrier-Mediated Magnetism in a Topological Insulator

    Science.gov (United States)

    Kernreiter, T.; Governale, M.; Zülicke, U.; Hankiewicz, E. M.

    2016-04-01

    We present a comprehensive theoretical study of the static spin response in HgTe quantum wells, revealing distinctive behavior for the topologically nontrivial inverted structure. Most strikingly, the q =0 (long-wavelength) spin susceptibility of the undoped topological-insulator system is constant and equal to the value found for the gapless Dirac-like structure, whereas the same quantity shows the typical decrease with increasing band gap in the normal-insulator regime. We discuss ramifications for the ordering of localized magnetic moments present in the quantum well, both in the insulating and electron-doped situations. The spin response of edge states is also considered, and we extract effective Landé g factors for the bulk and edge electrons. The variety of counterintuitive spin-response properties revealed in our study arises from the system's versatility in accessing situations where the charge-carrier dynamics can be governed by ordinary Schrödinger-type physics; it mimics the behavior of chiral Dirac fermions or reflects the material's symmetry-protected topological order.

  7. Magnetic Properties of NdAl2

    DEFF Research Database (Denmark)

    Bak, P.

    1974-01-01

    The magnetic properties of NdAl2 are calculated using a Hamiltonian including crystal-field and isotropic exchange interaction terms. A two-dimensional mean-field theory is evaluated to calculate single-crystal magnetization curves. It is shown that the magnetic properties can be understood using...... the crystal-field parameters derived from the magnetic exciton spectrum measured by Houmann et al. by means of inelastic neutron scattering. The combined lambda -Schottky anomaly in the heat capacity is explained. No additional parameters are introduced....

  8. Connected and leading disconnected hadronic light-by-light contribution to the muon anomalous magnetic moment with physical pion mass

    CERN Document Server

    Blum, Thomas; Hayakawa, Masashi; Izubuchi, Taku; Jin, Luchang; Jung, Chulwoo; Lehner, Christoph

    2016-01-01

    We report a lattice QCD calculation of the hadronic light-by-light contribution to the muon anomalous magnetic moment at physical pion mass. The calculation includes the connected diagrams and the leading, quark-line-disconnected diagrams. We incorporate algorithmic improvements developed in our previous work. The calculation was performed on the $48^3 \\times 96$ ensemble generated with a physical-pion-mass and a 5.5 fm spatial extent by the RBC and UKQCD collaborations using the chiral, domain wall fermion (DWF) formulation. We find $a_\\mu^{\\text{HLbL}} = 5.35 (1.35) \\times 10^{- 10}$, where the error is statistical only. The finite-volume and finite lattice-spacing errors could be quite large and are the subject of on-going research. The omitted disconnected graphs, while expected to give a correction of order 10\\%, also need to be computed.

  9. Anomalous behavior of magnetostriction and magnetic ac-suseptibility of Gd1-xPrxCo5 polycrystals

    Directory of Open Access Journals (Sweden)

    A. Amirabadizadeh

    2003-12-01

    Full Text Available Magnetostriction and low field ac-susceptibility of polycrystalline Gd1-xPrxCo5 (x = 0, 0.1 and 0.5 alloys are measured in temperature region of 77-300 K. XRD patterns show that our samples are single phase. For x = 0 (GdCo5 there are no anomaly in temperature dependence of magnetostriction and ac-susceptibility curves. For x = 0.1 and 0.5 temperature dependence of ac-susceptibilities show easy-axes phase transitions. In the case of x = 0.1 sample, the easy-axes of magnetization changes from canted to axial (practically, hexagonal c-axis direction as temperature increases, and ac-susceptibility of x = 0.5 sample shows two iterative transitions, first from basal to canted then canted to axial. Magnetostriction of Pr contained samples anomalously decreases at spin reorientation regions.

  10. Electron's anomalous magnetic moment effects on electron-hydrogen elastic collisions in the presence of a circularly polarized laser field

    CERN Document Server

    Elhandi, S; attaourti, Y; Manaut, B; Oufni, L

    2010-01-01

    The effect of the electron's anomalous magnetic moment on the relativistic electronic dressing for the process of electron-hydrogen atom elastic collisions is investigated. We consider a laser field with circular polarization and various electric field strengths. The Dirac-Volkov states taking into account this anomaly are used to describe the process in the first order of perturbation theory. The correlation between the terms coming from this anomaly and the electric field strength gives rise to new results, namely the strong dependence of the spinor part of the differential cross section (DCS) with respect to these terms. A detailed study has been devoted to the non relativistic regime as well as the moderate relativistic regime. Some aspects of this dependence as well as the dynamical behavior of the DCS in the relativistic regime have been addressed.

  11. Anomalous Hall hysteresis in T m3F e5O12/Pt with strain-induced perpendicular magnetic anisotropy

    Science.gov (United States)

    Tang, Chi; Sellappan, Pathikumar; Liu, Yawen; Xu, Yadong; Garay, Javier E.; Shi, Jing

    2016-10-01

    We demonstrate robust interface strain-induced perpendicular magnetic anisotropy in atomically flat ferrimagnetic insulator T m3F e5O12 (TIG) films grown with pulsed laser deposition on a substituted G d3G a5O12 substrate which maximizes the tensile strain at the interface. In bilayers consisting of Pt and TIG, we observe large squared Hall hysteresis loops over a wide range of thicknesses of Pt at room temperature. When a thin Cu layer is inserted between Pt and TIG, the Hall hysteresis magnitude decays but stays finite as the thickness of Cu increases up to 5 nm. However, if the Cu layer is placed atop Pt instead, the Hall hysteresis magnitude is consistently larger than when the Cu layer with the same thickness is inserted in between for all Cu thicknesses. These results suggest that both the proximity-induced ferromagnetism and spin current contribute to the anomalous Hall effect.

  12. Anomalous physical properties of Heusler-type Co2Cr (Ga,Si) alloys and thermodynamic study on reentrant martensitic transformation

    Science.gov (United States)

    Xu, Xiao; Nagasako, Makoto; Kataoka, Mitsuo; Umetsu, Rie Y.; Omori, Toshihiro; Kanomata, Takeshi; Kainuma, Ryosuke

    2015-03-01

    Electronic, magnetic, and thermodynamic properties of Co2Cr(Ga,Si) -based shape-memory alloys, which exhibit reentrant martensitic transformation (RMT) behavior, were studied experimentally. For electric resistivity (ER), an inverse (semiconductor-like) temperature dependence in the parent phase was found, along with anomalous behavior below its Curie temperature. A pseudobinary phase diagram was determined, which gives a "martensite loop" clearly showing the reentrant behavior. Differential scanning calorimetry and specific-heat measurements were used to derive the entropy change Δ S between martensite and parent phases. The temperature dependence of the derived Δ S was analyzed thermodynamically to confirm the appearances of both the RMT and normal martensitic transformation. Detailed studies on the specific heat in martensite and parent phases at low temperatures were also conducted.

  13. Properties of Simulated Magnetized Galaxy Clusters

    CERN Document Server

    Dolag, K

    2000-01-01

    We study the evolution of magnetized clusters in a cosmological environment using magneto-hydro dynamical simulations. Large scale flows and merging of subclumps generate shear flows leading to Kelvin-Helmholtz instabilities, which, in addition to the compression of the gas where the magnetic field is frozen in, further amplify the magnetic field during the evolution of the cluster. Therefore, well-motivated initial magnetic fields of $^{1/2}=10^{-9} {\\rm G}$ reach the observed $\\sim\\mu{\\rm G}$ field strengths in the cluster cores at $z=0$. These magnetized clusters can be used to study the final magnetic field structure, the dynamical importance of magnetic fields for the interpretation of observed X-Ray properties, and help to constrain further processes in galaxy clusters like the population of relativistic particles giving rise to the observed radio halos or the behavior of magnetized cooling flows.

  14. MAGNETIC NANOFLUID WITH ANTITUMORAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Alexandru Mihai Grumezescu

    2012-09-01

    Full Text Available The present study deals with the synthesis and characterization of magnetic nanofluid and it’s in vitro anti-cancer activity against HEp2 cells. The magnetic nanofluid with an average size of 10 nm was synthesized via a modified precipitation technique and characterized by FT-IR, XRD, DTA-TG and TEM. After 24 h incubation of HEp2 with the magnetic nanofluid, significant changes in the cell morphology were discernible in fluorescent microscopy. Cytotoxicity assay shows that the magnetic nanofluid exhibits significant cytotoxicity against HEp2, 50% of thee cells being killed after 24 hours incubation with magnetic nanofluid without any external alternating magnetic field.

  15. f-f Magnetic polaron Wigner glass and anomalous superconductivity in U sub 1 sub - sub x Th sub x Be sub 1 sub 3

    CERN Document Server

    Kasuya, T

    2000-01-01

    Mechanisms of the anomalous properties in the heavy fermion superconductor UBe sub 1 sub 3 and its alloys, in particular for the Th dopings, are studied in detail based on the fundamental electronic states to be consistent with all the crucial experimental results. As the reference systems for the magnetic polaron formation, Ce monopnictides, as well as USb and UTe, are mentioned. From detailed systematic studies of the dilute alloy systems, it is postulated that the 5f states in UBe sub 1 sub 3 split into the well-localized core 5f GAMMA sup 2 sub 7 singlet state and other delocalized 5f states situated around the Fermi energy forming the f-f magnetic polarons through the strong intra-atomic ferromagnetic f-f exchange interaction. The accompanied lattice polarons are also shown to play important roles. In the p-d band states, the f-f exchange interaction and the intersite p-f mixing interactions for the p-f Kondo state are of nearly equal strengths causing a rich variety of delicately balanced states. For th...

  16. Anomalous-plasmoid-ejection-induced secondary magnetic reconnection: modeling solar flares and coronal mass ejections by laser–plasma experiments

    Institute of Scientific and Technical Information of China (English)

    Quanli; Dong; Dawei; Yuan; Shoujun; Wang; Xun; Liu; Yutong; Li; Xiaoxuan; Lin; Huigang; Wei; Jiayong; Zhong; Shaoen; Jiang; Yongkun; Ding; Bobin; Jiang; Kai; Du; Yongjian; Tang; Mingyang; Yu; Xiantu; He; Neng; Hua; Zhanfeng; Qiao; Kuixi; Huang; Ming; Chen; Jianqiang; Zhu; Gang; Zhao; Zhengming; Sheng; Jie; Zhang

    2013-01-01

    The driving mechanism of solar flares and coronal mass ejections is a topic of ongoing debate, apart from the consensus that magnetic reconnection plays a key role during the impulsive process. While present solar research mostly depends on observations and theoretical models, laboratory experiments based on high-energy density facilities provide the third method for quantitatively comparing astrophysical observations and models with data achieved in experimental settings.In this article, we show laboratory modeling of solar flares and coronal mass ejections by constructing the magnetic reconnection system with two mutually approaching laser-produced plasmas circumfused of self-generated megagauss magnetic fields. Due to the Euler similarity between the laboratory and solar plasma systems, the present experiments demonstrate the morphological reproduction of flares and coronal mass ejections in solar observations in a scaled sense,and confirm the theory and model predictions about the current-sheet-born anomalous plasmoid as the initial stage of coronal mass ejections, and the behavior of moving-away plasmoid stretching the primary reconnected field lines into a secondary current sheet conjoined with two bright ridges identified as solar flares.

  17. Anomalous thickness-dependent strain states and strain-tunable magnetization in Zn-doped ferrite epitaxial films

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y. J.; Bao, J.; Gao, C., E-mail: zlluo@ustc.edu.cn, E-mail: cgao@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026 (China); CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Yang, M. M.; Luo, Z. L., E-mail: zlluo@ustc.edu.cn, E-mail: cgao@ustc.edu.cn; Hu, C. S.; Chen, X. C.; Pan, G. Q. [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026 (China); Huang, H. L. [CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, S.; Wang, J. W.; Li, P. S.; Liu, Y.; Zhao, Y. G. [Department of Physics and State Key Laboratory of New Ceramics, Fine Processing, Tsinghua University, Beijing 100084 (China); Jiang, T.; Liu, Y. K.; Li, X. G. [Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science, Technology of China, Hefei, Anhui 230026 (China)

    2014-05-07

    A series of Zn{sub x}Fe{sub 3−x}O{sub 4} (ZFO, x = 0.4) thin films were epitaxially deposited on single-crystal (001)-SrTiO{sub 3} (STO) substrates by radio frequency magnetron sputtering. The anomalous thickness-dependent strain states of ZFO films were found, i.e., a tensile in-plane strain exists in the thinner ZFO film and which monotonously turns into compressive in the thicker films. Considering the lattice constant of bulk ZFO is bigger than that of STO, this strain state cannot be explained in the conventional framework of lattice-mismatch-induced strain in the hetero-epitaxial system. This unusual phenomenon is proposed to be closely related to the Volmer-Weber film growth mode in the thinner films and incorporation of the interstitial atoms into the island's boundaries during subsequent epitaxial growth of the thicker films. The ZFO/STO epitaxial film is found in the nature of magnetic semiconductor by transport measurements. The in-plane magnetization of the ZFO/STO films is found to increase as the in-plane compressive strain develops, which is further proved in the (001)-ZFO/PMN-PT film where the film strain state can be in situ controlled with applied electric field. This compressive-strain-enhanced magnetization can be attributed to the strain-mediated electric-field-induced in-plane magnetic anisotropy field enhancement. The above results indicate that strain engineering on magnetic oxide semiconductor ZFO films is promising for novel oxide-electronic devices.

  18. Magnetic properties of ground-state mesons

    CERN Document Server

    Simonis, Vytautas

    2016-01-01

    Starting with the bag model a method for the study of the magnetic properties (magnetic moments, magnetic dipole transition widths) of ground-state mesons is developed. We calculate the M1 transition moments and use them subsequently to estimate the corresponding decay widths. These are compared with experimental data, where available, and with the results obtained in other approaches. Finally, we give the predictions for the static magnetic moments of all ground-state vector mesons including those containing heavy quarks. We have a good agreement with experimental data for the M1 decay rates of light as well as heavy mesons. Therefore, we expect our predictions for the static magnetic properties (usual magnetic moments) to be of sufficiently high quality, too.

  19. Magnetic properties of ground-state mesons

    Energy Technology Data Exchange (ETDEWEB)

    Simonis, V. [Vilnius University Institute of Theoretical Physics and Astronomy, Vilnius (Lithuania)

    2016-04-15

    Starting with the bag model a method for the study of the magnetic properties (magnetic moments, magnetic dipole transition widths) of ground-state mesons is developed. We calculate the M1 transition moments and use them subsequently to estimate the corresponding decay widths. These are compared with experimental data, where available, and with the results obtained in other approaches. Finally, we give the predictions for the static magnetic moments of all ground-state vector mesons including those containing heavy quarks. We have a good agreement with experimental data for the M1 decay rates of light as well as heavy mesons. Therefore, we expect our predictions for the static magnetic properties (i.e., usual magnetic moments) to be of sufficiently high quality, too. (orig.)

  20. Anomalous Tunnel Magnetoresistance and Spin Transfer Torque in Magnetic Tunnel Junctions with Embedded Nanoparticles

    Science.gov (United States)

    Useinov, Arthur; Ye, Lin-Xiu; Useinov, Niazbeck; Wu, Te-Ho; Lai, Chih-Huang

    2015-12-01

    The tunnel magnetoresistance (TMR) in the magnetic tunnel junction (MTJ) with embedded nanoparticles (NPs) was calculated in range of the quantum-ballistic model. The simulation was performed for electron tunneling through the insulating layer with embedded magnetic and non-magnetic NPs within the approach of the double barrier subsystem connected in parallel to the single barrier one. This model can be applied for both MTJs with in-plane magnetization and perpendicular one. We also calculated the in-plane component of the spin transfer torque (STT) versus the applied voltage in MTJs with magnetic NPs and determined that its value can be much larger than in single barrier system (SBS) for the same tunneling thickness. The reported simulation reproduces experimental data of the TMR suppression and peak-like TMR anomalies at low voltages available in leterature.

  1. Magnetic trapping of silver and copper, and anomalous spin relaxation in the ag-he system.

    Science.gov (United States)

    Brahms, Nathan; Newman, Bonna; Johnson, Cort; Greytak, Tom; Kleppner, Daniel; Doyle, John

    2008-09-01

    We have trapped large numbers of copper (Cu) and silver (Ag) atoms using buffer-gas cooling. Up to 3 x 10{12} Cu atoms and 4 x 10{13} Ag atoms are trapped. Lifetimes are as long as 5 s, limited by collisions with the buffer gas. Ratios of elastic to inelastic collision rates with He are >or=10{6}, suggesting Cu and Ag are favorable for use in ultracold applications. The temperature dependence of the Ag-3He collision rate varies as T;{5.8+/-0.4}. We find that this temperature dependence is inconsistent with the behavior predicted for relaxation arising from the spin-rotation interaction, and conclude that the Ag-3He system displays anomalous collisional behavior in the multiple-partial wave regime. Gold (Au) was ablated into 3He buffer gas, however, atomic Au lifetimes were observed to be too short to permit trapping.

  2. Magnetic, transport and thermal properties of single crystal Co{sub 2}FeGa

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P. [South West University, Department of Physics, Chongqing (China); Hong Kong University of Science and Technology, Department of Physics, Kowloon, Hong Kong (China)], E-mail: pchen@swu.edu.cn; Wu, G.H. [Beijing National Laboratory for Condensed Matter, Institute of Physics, CAS, Beijing 100080 (China); Zhang, X.X. [Hong Kong University of Science and Technology, Department of Physics, Kowloon, Hong Kong (China)

    2008-04-24

    The magnetic, transport and thermal properties of single crystal Co{sub 2}FeGa have been investigated. The small coercivity 20 Oe and saturation field 4000 Oe of Co{sub 2}FeGa sample at temperature 5 K indicates that the single crystal is magnetically soft. The resistivity ({rho}) behaves according to {rho} {approx} T{sup 1/2} power law below temperature T = 40 K, which is due to electron-electron interaction effects in the presence of disorder. The thermal conductivity of Co{sub 2}FeGa single exhibits anomalous temperature dependence above 50 K, i.e., the conductivity increases with the temperature, or d{kappa}/dT > 0. We conclude that this anomalous thermal conductivity is due to the strong atomic disorder between the Fe and Co atoms.

  3. Magnetic and Electrical Properties of Leachate

    Directory of Open Access Journals (Sweden)

    Kartika Kirana

    2011-11-01

    Full Text Available Heavy metals content as well as magnetic and electrical properties of leachate from Sarimukti, West Java were studied in an attempt to seek correlation between heavy metals content and magnetic/electrical properties. Such correlation is expected to open the way for the use of magnetic/electrical properties as proxy indicators for the concentration of heavy metals in the leachate. The number of leachate samples studied is 21; 15 were taken spatially at depth of 1 m while the remaining 6 samples were taken vertically at a particular point. Measurement results showed that the heavy metals content in the leachate has a smaller concentration, except for Fe. The correlation between magnetic susceptibility and heavy metals content was found to be not so significant. The best correlation coefficient between magnetic susceptibility with heavy metals in leachate was found in Zn. Correlation between electrical conductivity and heavy metal is also not so significant, except for Zn and Cd. The use of magnetic properties as proxy indicator for heavy metals content in leachate is plausible provided that the magnetic susceptibility exceeds certain threshold value. Correlation between magnetic susceptibility, electrical conductivity and heavy metal content would be good if each quantity has a large value.

  4. Defect induced modification of structural, topographical and magnetic properties of zinc ferrite thin films by swift heavy ion irradiation

    Science.gov (United States)

    Raghavan, Lisha; Joy, P. A.; Vijaykumar, B. Varma; Ramanujan, R. V.; Anantharaman, M. R.

    2017-04-01

    Swift heavy ion irradiation provides unique ways to modify physical and chemical properties of materials. In ferrites, the magnetic properties can change significantly as a result of swift heavy ion irradiation. Zinc ferrite is an antiferromagnet with a Neel temperature of 10 K and exhibits anomalous magnetic properties in the nano regime. Ion irradiation can cause amorphisation of zinc ferrite thin films; thus the role of crystallinity on magnetic properties can be examined. The influence of surface topography in these thin films can also be studied. Zinc ferrite thin films, of thickness 320 nm, prepared by RF sputtering were irradiated with 100 MeV Ag ions. Structural characterization showed amorphisation and subsequent reduction in particle size. The change in magnetic properties due to irradiation was correlated with structural and topographical effects of ion irradiation. A rough estimation of ion track radius is done from the magnetic studies.

  5. Using LSTM recurrent neural networks for detecting anomalous behavior of LHC superconducting magnets

    CERN Document Server

    Wielgosz, Maciej; Mertik, Matej

    2016-01-01

    The superconducting LHC magnets are coupled with an electronic monitoring system which records and analyses voltage time series reflecting their performance. A currently used system is based on a range of preprogrammed triggers which launches protection procedures when a misbehavior of the magnets is detected. All the procedures used in the protection equipment were designed and implemented according to known working scenarios of the system and are updated and monitored by human operators. This paper proposes a novel approach to monitoring and fault protection of the Large Hadron Collider (LHC) superconducting magnets which employs state-of-the-art Deep Learning algorithms. Consequently, the authors of the paper decided to examine the performance of LSTM recurrent neural networks for anomaly detection in voltage time series of the magnets. In order to address this challenging task different network architectures and hyper-parameters were used to achieve the best possible performance of the solution. The regre...

  6. Dynamical properties of unconventional magnetic systems

    Energy Technology Data Exchange (ETDEWEB)

    Helgesen, G. [ed.

    1997-05-01

    The Advanced Study Institute addressed the current experimental and theoretical knowledge of the dynamical properties of unconventional magnetic systems including low-dimensional and mesoscopic magnetism, unconventional ground state, quantum magnets and soft matter. The main approach in this Advanced Study Institute was to obtain basic understanding of co-operative phenomena, fluctuations and excitations in the wide range unconventional magnetic systems now being fabricated or envisioned. The report contains abstracts for lectures, invited seminars and posters, together with a list of the 95 participants from 24 countries with e-mail addresses

  7. On magnetic monopoles, the anomalous g-factor of the electron and the spin-orbit coupling in the Dirac theory

    CERN Document Server

    Coddens, Gerrit

    2016-01-01

    We discuss the algebra and the interpretation of the anomalous Zeeman effect and the spin-orbit coupling within the Dirac theory. Whereas the algebra for the anomalous Zeeman effect is impeccable and therefore in excellent agreement with experiment, the physical interpretation of that algebra uses images that are based on macroscopic intuition but do not correspond to the meaning of this algebra. The interpretation violates the Lorentz symmetry. We give an alternative intuitive description of the meaning of this effect, which respects the symmetry and is exact. It can be summarized by stating that a magnetic field makes any charged particle spin. We show also that the traditional discussion about magnetic monopoles confuses two issues, viz. the symmetry of the Maxwell equations and the quantization of charge. These two issues define each a different concept of magnetic monopole. They cannot be merged together into a unique all-encompassing issue. We also generalize the minimal substitution for a charged parti...

  8. Ultrathin magnetic structures II measurement techniques and novel magnetic properties

    CERN Document Server

    Heinrich, Bretislav

    2006-01-01

    The ability to understand and control the unique properties of interfaces has created an entirely new field of magnetism, with profound impact in technology and serving as the basis for a revolution in electronics. Our understanding of the physics of magnetic nanostructures has also advanced significantly. This rapid development has generated a need for a comprehensive treatment that can serve as an introduction to the field for those entering it from diverse fields, but which will also serve as a timely overview for those already working in this area. The four-volume work Ultra-Thin Magnetic

  9. Anomalous magnetism of superconducting Mg-doped InN film

    Directory of Open Access Journals (Sweden)

    P. H. Chang

    2016-02-01

    Full Text Available We report on the Meissner effect of Mg-doped InN film with superconducting transition onset temperature Tc,onset of 5 K. Mg-doped InN is magnetically ordered and exhibits a simultaneous first-order magnetic and electric transition near 50 K. Its behavior is similar to that of iron-based superconductors. A strong correlation is proposed to exist between structural distortion and superconductivity when Mg is doped into InN. The suppression of magnetic ordering close to Tc by doping is further demonstrated by anisotropic magnetoresistance and M-H measurements. The findings suggest that the superconducting mechanism in the system may not be conventional BCS.

  10. Non-anomalous magnetization density distribution in CeB6

    Science.gov (United States)

    Givord, F.; Boucherle, J.-X.; Burlet, P.; Gillon, B.; Kunii, S.

    2003-05-01

    Results of polarized neutron diffraction on the compound CeB6 are used to obtain its magnetization density distribution. The measurements are performed at two different points of the magnetic phase diagram (phase I and II). The data are analysed in direct space using the maximum entropy method, as well as in reciprocal space using the cerium form factor expansion and anisotropy. The conclusion is that, in both phases, the magnetization is localized on the cerium sites only. This result is in contradiction to a recent paper by Saitoh et al (2002 J. Phys. Soc. Japan 71 2369), claiming that, in phase II, a localized spin moment was observed at non-atomic sites.

  11. Chiral magnetic effect and anomalous transport from real-time lattice simulations

    CERN Document Server

    Mueller, Niklas; Sharma, Sayantan

    2016-01-01

    We present a first-principle study of anomaly induced transport phenomena by performing real-time lattice simulations with dynamical fermions coupled simultaneously to non-Abelian $SU(N_c)$ and Abelian $U(1)$ gauge fields. Investigating the behavior of vector and axial currents during a sphaleron transition in the presence of an external magnetic field, we demonstrate how the interplay of the Chiral magnetic (CME) and Chiral separation effect (CSE) lead to the formation of a propagating wave. We further analyze the dependence of the magnitude of the induced vector current and the propagation of the wave on the amount of explicit chiral symmetry breaking due to finite quark mass.

  12. Tailoring Magnetic Properties in Bulk Nanostructured Solids

    Science.gov (United States)

    Morales, Jason Rolando

    Important magnetic properties and behaviors such as coercivity, remanence, susceptibility, energy product, and exchange coupling can be tailored by controlling the grain size, composition, and density of bulk magnetic materials. At nanometric length scales the grain size plays an increasingly important role since magnetic domain behavior and grain boundary concentration determine bulk magnetic behavior. This has spurred a significant amount of work devoted to developing magnetic materials with nanometric features (thickness, grain/crystallite size, inclusions or shells) in 0D (powder), 1D (wires), and 2D (thin films) materials. Large 3D nanocrystalline materials are more suitable for many applications such as permanent magnets, magneto-optical Faraday isolators etc. Yet there are relatively few successful demonstrations of 3D magnetic materials with nanoscale influenced properties available in the literature. Making dense 3D bulk materials with magnetic nanocrystalline microstructures is a challenge because many traditional densification techniques (HIP, pressureless sintering, etc.) move the microstructure out of the "nano" regime during densification. This dissertation shows that the Current Activated Pressure Assisted Densification (CAPAD) method, also known as spark plasma sintering, can be used to create dense, bulk, magnetic, nanocrystalline solids with varied compositions suited to fit many applications. The results of my research will first show important implications for the use of CAPAD for the production of exchange-coupled nanocomposite magnets. Decreases in grain size were shown to have a significant role in increasing the magnitude of exchange bias. Second, preferentially ordered bulk magnetic materials were produced with highly anisotropic material properties. The ordered microstructure resulted in changing magnetic property magnitudes (ex. change in coercivity by almost 10x) depending on the relative orientation (0° vs. 90°) of an externally

  13. Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO4

    DEFF Research Database (Denmark)

    Toft-Petersen, Rasmus; Reehuis, Manfred; Jensen, Thomas Bagger Stibius

    2015-01-01

    We report significant details of the magnetic structure and spin dynamics of LiFePO4 obtained by single-crystal neutron scattering. Our results confirm a previously reported collinear rotation of the spins away from the principal b axis, and they determine that the rotation is toward the a axis...

  14. Site Specific X-ray Anomalous Dispersion of the Geometrically Frustrated Kagome´ Magnet Herbertsmithite ZnCu3(OH)6Cl2

    Energy Technology Data Exchange (ETDEWEB)

    A Freedman; T Han; A Prodi; P Muller; Q Huang; Y Chen; S Webb; Y Lee; T McQueen; D Nocera

    2011-12-31

    Structural characterization, exploiting X-ray scattering differences at elemental absorption edges, is developed to quantitatively determine crystallographic site-specific metal disorder. We apply this technique to the problem of Zn-Cu chemical disorder in ZnCu{sub 3}(OH){sub 6}Cl{sub 2}. This geometrically frustrated kagome antiferromagnet is one of the best candidates for a spin-liquid ground state, but chemical disorder has been suggested as a mundane explanation for its magnetic properties. Using anomalous scattering at the Zn and Cu edges, we determine that there is no Zn occupation of the intralayer Cu sites within the kagome layer; however there is Cu present on the Zn intersite, leading to a structural formula of (Zn{sub 0.85}Cu{sub 0.15})Cu{sub 3}(OH){sub 6}Cl{sub 2}. The lack of Zn mixing onto the kagome lattice sites lends support to the idea that the electronic ground state in ZnCu{sub 3}(OH){sub 6}Cl{sub 2} and its relatives is nontrivial.

  15. Site specific X-ray anomalous dispersion of the geometrically frustrated kagomé magnet, herbertsmithite, ZnCu(3)(OH)(6)Cl(2).

    Science.gov (United States)

    Freedman, Danna E; Han, Tianheng H; Prodi, Andrea; Müller, Peter; Huang, Qing-Zhen; Chen, Yu-Sheng; Webb, Samuel M; Lee, Young S; McQueen, Tyrel M; Nocera, Daniel G

    2010-11-17

    Structural characterization, exploiting X-ray scattering differences at elemental absorption edges, is developed to quantitatively determine crystallographic site-specific metal disorder. We apply this technique to the problem of Zn-Cu chemical disorder in ZnCu(3)(OH)(6)Cl(2). This geometrically frustrated kagomé antiferromagnet is one of the best candidates for a spin-liquid ground state, but chemical disorder has been suggested as a mundane explanation for its magnetic properties. Using anomalous scattering at the Zn and Cu edges, we determine that there is no Zn occupation of the intralayer Cu sites within the kagomé layer; however there is Cu present on the Zn intersite, leading to a structural formula of (Zn(0.85)Cu(0.15))Cu(3)(OH)(6)Cl(2). The lack of Zn mixing onto the kagomé lattice sites lends support to the idea that the electronic ground state in ZnCu(3)(OH)(6)Cl(2) and its relatives is nontrivial.

  16. Anomalous Heating and Plasmoid Formation in a Driven Magnetic Reconnection Experiment

    CERN Document Server

    Hare, J D; Lebedev, S V; Loureiro, N F; Ciardi, A; Burdiak, G C; Chittenden, J P; Clayson, T; Garcia, C; Niasse, N; Robinson, T; Smith, R A; Stuart, N; Suzuki-Vidal, F; Swadling, G F; Ma, J; Wu, J; Yang, Q

    2016-01-01

    We present a detailed study of magnetic reconnection in a quasi-two-dimensional pulsed-power driven laboratory experiment. Oppositely directed magnetic fields $(B=3$ T), advected by supersonic, sub-Alfv\\'enic carbon plasma flows $(V_{in}=50$ km/s), are brought together and mutually annihilate inside a thin current layer ($\\delta=0.6$ mm). Temporally and spatially resolved optical diagnostics, including interferometry, Faraday rotation imaging and Thomson scattering, allow us to determine the structure and dynamics of this layer, the nature of the inflows and outflows and the detailed energy partition during the reconnection process. We measure high electron and ion temperatures $(T_e=100$ eV, $T_i=600$ eV), far in excess of what can be attributed to classical (Spitzer) resistive and viscous dissipation. We observe the repeated formation and ejection of plasmoids, which we interpret as evidence of two-fluid effects in our experiment.

  17. Properties of magnetic nano-particles

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1997-01-01

    The intrinsic thermodynamic magnetic properties of clusters are discussed using spin wave theory for a Heisenberg model, with a fixed magnitude of the spins S-i = S and site independent nearest neighbor exchange interaction. The consequences of the more realistic Hubbard model is considered...... in which we allow for a magnetization profile at T = 0 and a structural relaxation, which in turn will give rise to a site dependent exchange interaction. Et is concluded that correlation effects among the electrons play a very important role in small clusters, albeit not modifying the thermodynamic...... properties drastically. The finite cluster size gives foremost rise to a discrete excitation spectrum with a large energy gap to the ground state. The relaxation of the magnetization during the reversal of the external magnetic field is discussed. A first step towards a quantitative understanding...

  18. Anomalous plasma transport and induced electric field in a stochastic magnetic field structure

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Tetsuyuki; Itoh, Sanae-I.; Toda, Shinichiro; Yamaguchi, Hiroki [Kyushu Univ., Fukuoka (Japan); Fukuyama, Atsushi [Okayama Univ. (Japan)

    1995-04-01

    The plasma transport matrix is formulated using the kinetic equation for the particles in the stochastic magnetic field. The radial electric field generation is analyzed using this transport matrix. This thermoelectric field is dictated by the difference between the electron heat flux and the ion heat flux. We calculate the spatial structures of the radial electric field and the temperature in the stochastic field region. 7 refs., 3 figs.

  19. Anomalous spin excitation spectrum of the Heisenberg model in a magnetic field.

    Science.gov (United States)

    Syljuåsen, Olav F; Lee, Patrick A

    2002-05-20

    Making the assumption that high-energy fermions exist in the two dimensional spin- 1/2 Heisenberg antiferromagnet, we present predictions based on the pi-flux ansatz for the dynamic structure factor when the antiferromagnet is subject to a uniform magnetic field. The main result is the presence of gapped excitations in a momentum region near (pi,pi) with energy lower than that at (pi,pi). This is qualitatively different from spin-wave theory predictions and may be tested by experiments or by quantum Monte Carlo.

  20. Measurement of anomalous resistance induced by chaotic motion of electrons in a magnetic null point

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Keita; Yoshida, Zensho; Himura, Haruhiko; Morikawa, Junji; Nakashima, Chihiro; Saitoh, Haruhiko; Tahara, Shigeru; Fukao, Masayuki [Tokyo Univ., Graduate School of Frontier Sciences, Tokyo (Japan); Uchida, Taijiro [ULVAC Japan, Ltd. Hagisono, Chigasaki, Kanagawa (Japan)

    2001-07-01

    Chaotic motion of particle in magnetic null regions can produce a large collisionless resistivity. In order to measure the macroscopic resistivity, a new instrument using a Pockels crystal has been developed. This measurement can detect a high frequency electric field in plasmas. The Pockels probe satisfies the frequency response with 13.56 MHz and the sensitivity as low as 3x10{sup 2} V/m, which proves the capability of measuring the local electric fields in a plasma discharged by a radio-frequency method. (author)

  1. Weakened magnetic braking as the origin of anomalously rapid rotation in old field stars.

    Science.gov (United States)

    van Saders, Jennifer L; Ceillier, Tugdual; Metcalfe, Travis S; Aguirre, Victor Silva; Pinsonneault, Marc H; García, Rafael A; Mathur, Savita; Davies, Guy R

    2016-01-14

    A knowledge of stellar ages is crucial for our understanding of many astrophysical phenomena, and yet ages can be difficult to determine. As they become older, stars lose mass and angular momentum, resulting in an observed slowdown in surface rotation. The technique of 'gyrochronology' uses the rotation period of a star to calculate its age. However, stars of known age must be used for calibration, and, until recently, the approach was untested for old stars (older than 1 gigayear, Gyr). Rotation periods are now known for stars in an open cluster of intermediate age (NGC 6819; 2.5 Gyr old), and for old field stars whose ages have been determined with asteroseismology. The data for the cluster agree with previous period-age relations, but these relations fail to describe the asteroseismic sample. Here we report stellar evolutionary modelling, and confirm the presence of unexpectedly rapid rotation in stars that are more evolved than the Sun. We demonstrate that models that incorporate dramatically weakened magnetic braking for old stars can--unlike existing models--reproduce both the asteroseismic and the cluster data. Our findings might suggest a fundamental change in the nature of ageing stellar dynamos, with the Sun being close to the critical transition to much weaker magnetized winds. This weakened braking limits the diagnostic power of gyrochronology for those stars that are more than halfway through their main-sequence lifetimes.

  2. Saturation properties of nuclear matter in the presence of strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, Z. [Shiraz University, Department of Physics and Biruni Observatory, Shiraz (Iran, Islamic Republic of); Bordbar, G.H. [Shiraz University, Department of Physics and Biruni Observatory, Shiraz (Iran, Islamic Republic of); Center for Excellence in Astronomy and Astrophysics (CEAA-RIAAM)-Maragha, P.O. Box 55134-441, Maragha (Iran, Islamic Republic of)

    2016-05-15

    Different saturation properties of cold symmetric nuclear matter in strong magnetic field have been considered. We have seen that for magnetic fields about B>3 x 10{sup 17} G, for both cases with and without nucleon anomalous magnetic moments, the saturation density and saturation energy grow by increasing the magnetic field. It is indicated that the magnetic susceptibility of symmetric nuclear matter becomes negative showing the diamagnetic response especially at B<3 x 10{sup 17} G. We have found that for the nuclear matter, the magnitude of orbital magnetization reaches higher values comparing to the spin magnetization. Our results for the incompressibility show that at high enough magnetic fields, i.e. B>3 x 10{sup 17} G, the softening of the equation of state caused by Landau quantization is overwhelmed by stiffening due to the magnetization of nuclear matter. We have shown that the effects of strong magnetic field on nuclear matter may affect the constraints on the equation of state of symmetric nuclear matter obtained by applying the experimental observables. (orig.)

  3. Magnetic properties of polymerized diphenyloctatetrayne

    Energy Technology Data Exchange (ETDEWEB)

    Beristain, Miriam F.; Jimenez-Solomon, Maria F.; Ortega, Alejandra; Escudero, Roberto [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-360, Ciudad Universitaria, Mexico DF 04510 (Mexico); Munoz, Eduardo [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, Ciudad Universitaria, Mexico DF 01000 (Mexico); Maekawa, Yasunari; Koshikawa, Hiroshi [High Performance Polymer Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Ogawa, Takeshi, E-mail: ogawa@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-360, Ciudad Universitaria, Mexico DF 04510 (Mexico)

    2012-10-15

    A new type of metal-free ferromagnetic carbon material was obtained by thermal polymerization and electron beam irradiation of diphenyloctatetrayne (DPOT). The isothermal magnetic measurements showed hysteresis loops indicating weak but intrinsic ferromagnetism with Curie temperatures of around 600 K. Electron spin resonance spectroscopy showed that the material contained stable free radicals in the range of 10{sup 17}-10{sup 20} radicals g{sup -1} depending on the polymerization process. The ferromagnetism should be due to high radical concentration although no correlation was observed between them. It was shown that an amorphous ferromagnetic carbon could be obtained from a simple crystalline solid by heating at moderate temperatures. Highlights: Black-Right-Pointing-Pointer Diphenyloctatetrayne as a precursor for carbon with high radical concentration. Black-Right-Pointing-Pointer The carbon material consists of sp{sup 2} configuration. Black-Right-Pointing-Pointer A weak intrinsic metal-free ferromagnetism was observed for the carbon products.

  4. Magnetic topological insulator and quantum anomalous Hall effect%磁性拓扑绝缘体与量子反常霍尔效应

    Institute of Scientific and Technical Information of China (English)

    翁红明; 戴希; 方忠

    2014-01-01

    量子反常霍尔绝缘体,有时也被称为陈数绝缘体,是不同于普通绝缘体和拓扑绝缘体的一类新的二维绝缘体,该体系具有可被实验观测的特殊物理性质-量子反常霍尔效应。该体系的物态不能用朗道对称性破缺理论来描写,而要用到拓扑物态的概念。它的发现也经历了从反常霍尔效应的内秉物性阐释,到量子自旋霍尔效应与拓扑绝缘体的发现,再到磁性拓扑绝缘体的理论预测与实现,并最终成功实验观测的漫长过程。由于量子反常霍尔效应的实现不需要外加磁场,而此时样品的边缘态可以被看成一根无能耗的理想导线,因此人们对于其将来可能的应用充满了期待。本文将从理论的角度简单综述该领域的发展历程、基本概念、以及相关的材料系统。%Quantum anomalous Hall insulator, also called as Chern insulator, is a new two-dimensional insulator distinguished from normal insulator and topological insulator by possess-ing a special and experimentally observable physical property-quantum anomalous Hall effect (QAHE). This is a novel quantum state can not be described by the Landau symmetry breaking theory but by the concept of topology of band structure. Its discovery experienced a long his-tory: from the explanation of intrinsic contribution to anomalous Hall effect, to the discovery of quantum spin Hall effect and topological insulator, to the prediction and realization of magnetic topological insulator, and finally to the experimental observation of it. Since QAHE does not require external magnetic field and has dissipationless (without lost of kinetic energy that being transferred to thermal energy) conducting edge states which can be used as an ideal conducting wire, it is expected to have various potential applications in future. This paper gives a review of this field on its history, basic concepts and related materials from the theoretical point of view.

  5. Anomalous properties of flavonoids in reversed phase high performance liquid chromatography

    Science.gov (United States)

    Zenkevich, I. G.; Gushchina, S. V.

    2011-09-01

    It is shown through reversed phase high performance liquid chromatography that a characteristic feature of such abundant natural flavonoids as flavon-3-ols is an anomalously strong antibate dependence of their retention indices ( RI) on the organic solvent concentration ( C) in the eluent, dRI/ dC < 0. In order to interpret this anomaly, the specific optical rotation values [α]{D/20} of natural (+)-(2 R,3 R)-dihydroquercetin in different solvents are compared, confirming the reverse formation of hydrated flavonoids in aqueous solutions.

  6. Trapping, anomalous transport and quasi-coherent structures in magnetically confined plasmas

    CERN Document Server

    Vlad, Madalina

    2009-01-01

    Strong electrostatic turbulence in magnetically confined plasmas is characterized by trapping or eddying of particle trajectories produced by the $E\\times B$ stochastic drift. Trapping is shown to produce strong effects on test particles and on test modes. It determines non-standard statistics of trajectories: non-Gaussian distribution, memory effects and coherence. Trapped trajectories form quasi-coherent structure. Trajectory trapping has strong nonlinear effects on the test modes on turbulent plasmas. We determine the growth rate of drift modes as function of the statistical characteristics of the background turbulence. We show that trapping provides the physical mechanism for the inverse cascade observed in drift turbulence and for the zonal flow generation.

  7. Magnetic Properties of 3D Printed Toroids

    Science.gov (United States)

    Bollig, Lindsey; Otto, Austin; Hilpisch, Peter; Mowry, Greg; Nelson-Cheeseman, Brittany; Renewable Energy; Alternatives Lab (REAL) Team

    Transformers are ubiquitous in electronics today. Although toroidal geometries perform most efficiently, transformers are traditionally made with rectangular cross-sections due to the lower manufacturing costs. Additive manufacturing techniques (3D printing) can easily achieve toroidal geometries by building up a part through a series of 2D layers. To get strong magnetic properties in a 3D printed transformer, a composite filament is used containing Fe dispersed in a polymer matrix. How the resulting 3D printed toroid responds to a magnetic field depends on two structural factors of the printed 2D layers: fill factor (planar density) and fill pattern. In this work, we investigate how the fill factor and fill pattern affect the magnetic properties of 3D printed toroids. The magnetic properties of the printed toroids are measured by a custom circuit that produces a hysteresis loop for each toroid. Toroids with various fill factors and fill patterns are compared to determine how these two factors can affect the magnetic field the toroid can produce. These 3D printed toroids can be used for numerous applications in order to increase the efficiency of transformers by making it possible for manufacturers to make a toroidal geometry.

  8. Properties of magnetically attractive experimental resin composites.

    Science.gov (United States)

    Hirano, S; Yasukawa, H; Nomoto, R; Moriyama, K; Hirasawa, T

    1996-12-01

    SUS444 stainless steel filled chemically cured resin composites that can attract magnet were fabricated. The filler was treated with various concentrations of silane. The experimental composite was easy to handle and showed a good shelf life. The maximal properties obtained are as follows; The attraction force to a magnetic attachment was 1/3-1/4 lower than the commercially available magnet-keeper system for dental magnetic attachment. Flexural strength and Knoop hardness of the composite were 76MPa (7.7 kgf/mm2) and 64 KHN. These values were lower than the commercially available chemically cured composite used as a reference. Eluted metal from the composite in 1% lactic acid solution for 7 days showed 0.7 mg/cm2, but in 0.9% NaCl solution for 7 days, it could not be detected.

  9. Magnetic susceptibility properties of polluted soils

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An investigation of magnetic properties using magnetic susceptibility (X) and frequency-dependent susceptibility (Xfd) was conducted on representative modern pollutants, which include smelted slag dust, automobile exhaust dust and coal ash. Their magnetic susceptibility values are more than 500×10-8 m3/kg, and frequency-dependent susceptibility values less than 3%, indicating that ample ferrimagnetic and scanty superparamagnetic grains occurred in the studied pollutants. Similar to the artificially synthetic polluted soils, the industrially-polluted soils display a negative relationship between magnetic susceptibility and frequency-dependent susceptibility. However, the unpolluted soils, e.g. the Quaternary loess in the Chinese Loess Plateau, show a positive relationship between them. In this note, we propose a convenient and effective approach for identifying the polluted soils.

  10. Anomalous magnetic reordering in magnetodielectric terbium iron garnet at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lahoubi, Mahieddine, E-mail: mlahoubi@hotmail.fr [Department of Physics, Laboratory L.P.S., Faculty of Sciences, Badji Mokhtar-Annaba University, PO Box -12, 23000 Annaba (Algeria); Ouladdiaf, Bachir [Institut Laue Langevin, BP 156, F-38042 Grenoble Cedex 9 (France)

    2015-01-01

    The paper deals with five topics: i) the single three-dimensional irreductible representation (Γ{sub 4g}=T{sub 1g}) of the paramagnetic space group Ia3{sup ¯}d No. 230 is chosen according to the representation analysis of Bertaut for the interpretation of the neutron powder diffraction experiments performed on terbium iron garnet (Tb{sub 3}Fe{sub 5}O{sub 12}); ii) the use of the method of the “symmetry lowering device” of Bertaut in order to select the appropriate rhombohedral subgroup of Ia3{sup ¯}d which allows to deal with the case where the cubic description provides an incomplete answer to the changes observed below 160 K in the ferrimagnetic structure around the [1 1 1] axis from the Néel model toward the “double umbrella” observed at 13 K; iii) the magnetic modes belonging to the one-dimensional irreductible representation A{sub 2g} of the highest rhombohedral subgroup R3{sup ¯}c No. 167 are able to describe the occurrence of its anisotropic character which steeply increases below 160 K due to the concomitant anisotropic effects; iv) the broad anomaly observed near 54 K in the temperature dependences of the components of both sublattices of the Tb{sup 3+} ions in the Wyckoff positions (6e) and (6e′) is explained partially on the basis of the concept of Belov of the strong paraprocess which has been termed “exchange-enhanced paramagnetism” at the so-called “low-temperature point” (T{sub B}); v) the results are related to the magnetodielectric effect in low magnetic field and to the significant coupling between exchange magnons and ligand-field excitations reported recently in this compound. - Highlights: • We examine the changes of the “double umbrella” in TbIG using neutron diffraction. • Symmetry arguments of Bertaut clarify suitable rhombohedral space group at 13 K. • Its opening leads to an increasing of anisotropy of the Tb components below 160 K. • The “low-temperature point” of Belov explains partly its intricate

  11. A study of magnetic fluctuations and their anomalous scaling in the solar wind: the Ulysses fast-latitude scan

    Directory of Open Access Journals (Sweden)

    c. Pagel

    2001-01-01

    Full Text Available The solar wind is a highly turbulent and intermittent medium at frequencies between 10-4 and 10-1 Hz. Power spectra are used to look at fluctuations in the components of the magnetic field at high frequencies over a wide range of latitudes. Results show steady turbulence in the polar regions of the Sun and a more varied environment in the equatorial region. The magnetic field fluctuations exhibit anomalous scaling at high frequencies. Various models have been proposed in an attempt to better understand the scaling nature of such fluctuations in neutral fluid turbulence. We have used the Ulysses fast latitude scan data to perform a wide ranging comparison of three such models on the solar wind magnetic field data: the well-known P model, in both its Kolmogorov and Kraichnan forms, the lognormal cascade model and a model adapted from atmospheric physics, the G infinity model. They were tested by using fits to graphs of the structure function exponents g(q, by making a comparison with a non-linear measure of the deviation of g(q from the non-intermittent straight line, and by using extended self similarity technique, over a large range of helio-latitudes. Tests of all three models indicated a high level of intermittency in the fast solar wind, and showed a varied structure in the slow wind, with regions of apparently little intermittency next to regions of high intermittency, implying that the slow wind has no uniform origin. All but one of the models performed well, with the lognormal and Kolmogorov P model performing the best over all the tests, indicating that inhomogeneous energy transfer in the cascade is a good description. The Kraichnan model performed relatively poorly, and the overall results show that the Kraichnan model of turbulence is not well supported over the frequency and distance ranges of our data set. The G infinity model fitted the results surprisingly well and showed that there may very well be important universal geometrical

  12. Tenth-Order Lepton Anomalous Magnetic Moment -- Sixth-Order Vertices Containing Vacuum-Polarization Subdiagrams

    CERN Document Server

    Aoyama, Tatsumi; Kinoshita, Toichiro; Nio, Makiko

    2011-01-01

    This paper reports the values of contributions to the electron g-2 from 300 Feynman diagrams of the gauge-invariant Set III(a) and 450 Feynman diagrams of the gauge-invariant Set III(b). The evaluation is carried out in two versions. Version A is to start from the sixth-order magnetic anomaly M_6 obtained in the previous work. The mass-independent contributions of Set III(a) and Set III(b) are 2.1275 (2) and 3.3271 (6) in units of (alpha/pi)^5, respectively. Version B is based on the recently-developed automatic code generation scheme. This method yields 2.1271 (3) and 3.3271 (8) in units of (alpha/pi)^5, respectively. They are in excellent agreement with the results of the first method within the uncertainties of numerical integration. Combining these results as statistically independent we obtain the best values, 2.1273 (2), and 3.3271 (5) times (alpha/pi)^5, for the mass-independent contributions of the Set III(a) and Set III(b), respectively. We have also evaluated mass-dependent contributions of diagrams...

  13. Anomalous dynamics of the extremely compressed magnetosphere during 21 January 2005 magnetic storm

    CERN Document Server

    Dmitriev, A V; Chao, J -K; Wang, C B; Rastaetter, L; Panasyuk, M I; Lazutin, L L; Kovtyukh, A S; Veselovsky, I S; Myagkova, I N

    2014-01-01

    Dynamics of the dayside magnetosphere and proton radiation belt was analyzed during unusual magnetic storm on 21 January 2005. We have found that during the storm from 1712 to 2400 UT, the subsolar magnetopause was continuously located inside geosynchronous orbit due to strong compression. The compression was found to be extremely strong from 1846 to 2035 UT when the dense plasma of fast erupting filament produced the solar wind dynamic pressure Pd peaked up to >100 nPa and, in the first time, the upstream solar wind was observed at geosynchronous orbit during almost 2 hours. Under the extreme compression, the outer magnetosphere at L > 5 was pushed inward and the outer radiation belt particles with energies of several tens of keV moved earthward, became adiabatically accelerated and accumulated in the inner magnetosphere at L 20%, which is well appropriate for erupting filaments and which is in agreement with the upper 27% threshold for the He/H ratio obtained from Cluster measurements.

  14. Functional behavior of the anomalous magnetic relaxation observed in melt-textured YBa2Cu3O7-δ samples showing the paramagnetic Meissner effect

    Science.gov (United States)

    Dias, F. T.; Vieira, V. N.; Garcia, E. L.; Wolff-Fabris, F.; Kampert, E.; Gouvêa, C. P.; Schaf, J.; Obradors, X.; Puig, T.; Roa, J. J.

    2016-10-01

    We have studied the functional behavior of the field-cooled (FC) magnetic relaxation observed in melt-textured YBa2Cu3O7-δ (Y123) samples with 30 wt% of Y2Ba1Cu1O5 (Y211) phase, in order to investigate anomalous paramagnetic moments observed during the experiments. FC magnetic relaxation experiments were performed under controlled conditions, such as cooling rate and temperature. Magnetic fields up to 5T were applied parallel to the ab plane and along the c-axis. Our results are associated with the paramagnetic Meissner effect (PME), characterized by positive moments during FC experiments, and related to the magnetic flux compression into the samples. After different attempts our experimental data could be adequately fitted by an exponential decay function with different relaxation times. We discuss our results suggesting the existence of different and preferential flux dynamics governing the anomalous FC paramagnetic relaxation in different time intervals. This work is one of the first attempts to interpret this controversial effect in a simple analysis of the pinning mechanisms and flux dynamics acting during the time evolution of the magnetic moment. However, the results may be useful to develop models to explain this interesting and still misunderstood feature of the paramagnetic Meissner effect.

  15. Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking.

    Science.gov (United States)

    Metzler, Ralf; Jeon, Jae-Hyung; Cherstvy, Andrey G; Barkai, Eli

    2014-11-28

    Modern microscopic techniques following the stochastic motion of labelled tracer particles have uncovered significant deviations from the laws of Brownian motion in a variety of animate and inanimate systems. Such anomalous diffusion can have different physical origins, which can be identified from careful data analysis. In particular, single particle tracking provides the entire trajectory of the traced particle, which allows one to evaluate different observables to quantify the dynamics of the system under observation. We here provide an extensive overview over different popular anomalous diffusion models and their properties. We pay special attention to their ergodic properties, highlighting the fact that in several of these models the long time averaged mean squared displacement shows a distinct disparity to the regular, ensemble averaged mean squared displacement. In these cases, data obtained from time averages cannot be interpreted by the standard theoretical results for the ensemble averages. Here we therefore provide a comparison of the main properties of the time averaged mean squared displacement and its statistical behaviour in terms of the scatter of the amplitudes between the time averages obtained from different trajectories. We especially demonstrate how anomalous dynamics may be identified for systems, which, on first sight, appear to be Brownian. Moreover, we discuss the ergodicity breaking parameters for the different anomalous stochastic processes and showcase the physical origins for the various behaviours. This Perspective is intended as a guidebook for both experimentalists and theorists working on systems, which exhibit anomalous diffusion.

  16. Magnetic properties of friction stir processed composite

    Energy Technology Data Exchange (ETDEWEB)

    Das, Shamiparna; Martinez, Nelson Y.; Das, Santanu; Mishra, Rajiv S.; Grant, Glenn J.; Jana, Saumyadeep; Polikarpov, Evgueni

    2016-03-29

    There are many existing inspection systems each with their own advantages and drawbacks. These usually comprise of semi-remote sensors which frequently causes difficulty in reaching complex areas of a component. This study proposes to overcome that difficulty by developing embedded functional composites. Through this route, embedding can be achieved in virtually any component part and can be periodically interrogated by a reading device. The “reinforcement rich” processed areas can then be utilized to record properties like strain, temperature, stress state etc. depending on the reinforcement material. In this work, friction stir processing (FSP) was utilized to fabricate a magnetostrictive composite by embedding galfenol particles into a nonmagnetic aluminum (Al) matrix. It targets to develop a composite that produces strain in a varying magnetic field. Reinforcements were observed to be distributed uniformly in the matrix. Magnetization curves were studied using a vibrating sample magnetometer (VSM). A simple and cheap setup was developed to measure the magnetostrictive strain of the composites. Important factors affecting the magnetic properties were identified and ways to improve the magnetic properties discussed.

  17. Structure and Magnetic Properties of Lanthanide Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Dickerson, James Henry [Vanderbilt Univ., Nashville, TN (United States)

    2014-06-01

    We have had considerable success on this project, particularly in the understanding of the relationship between nanostructure and magnetic properties in lanthanide nanocrystals. We also have successfully facilitated the doctoral degrees of Dr. Suseela Somarajan, in the Department of Physics and Astronomy, and Dr. Melissa Harrison, in the Materials Science Program. The following passages summarize the various accomplishments that were featured in 9 publications that were generated based on support from this grant. We thank the Department of Energy for their generous support of our research efforts in this area of materials science, magnetism, and electron microscopy.

  18. Late presentation of an anomalous left coronary artery from the pulmonary artery treated with conservative surgical management with long-term cardiac magnetic resonance imaging follow-up

    Science.gov (United States)

    Gouda, Pishoy; Gouda, John; Butler, Craig; Welsh, Robert C

    2017-01-01

    Anomalous origin of the left coronary artery from the pulmonary artery is rare congenital abnormality that most commonly presents in childhood and is associated with a high mortality. In the elderly, patients may present acutely with arrhythmias or signs of ischemia or with vague chronic presentations of shortness of breath and fatigue. In the high-risk elderly population, it is unclear as to whether conservative surgical management by means of suture ligation of the left coronary artery is associated with positive long-term outcomes. We present a case of a 69-year-old patient diagnosed with anomalous origin of the left coronary artery from the pulmonary artery, which was treated with conservative surgical management and followed up for 15 years with cardiovascular magnetic resonance imaging, with positive outcomes.

  19. Electronic Structure and Magnetic Properties of Rh13 Cluster with Three Possible Symmetries

    Institute of Scientific and Technical Information of China (English)

    KUANG Xiang-Jun

    2006-01-01

    Electronic and magnetic properties of 13-atom Rh clusters with three possible high symmetry geometries have been studied by using the first-principles DV-LSD method. An anoma- lous symmetry dependence of the cluster magnetism was found that the total magnetic moment of the icosahedral Rh13 cluster is smaller than that of the other two lower-symmetry clusters in a wide range of interatomic spacings. An energy difference is identified to explain this anomalous relationship, which has been found to be also useful for judging whether the broadening technique is correctly used and whether multiple input potentials must be used to reach the actual ground state in the LSD calculations. The calculated results are compared and discussed with those of previous theory and recent experiment. The actual geometry of the Rh13 cluster is suggested to be a distorted icosahedron.

  20. Microwave absorbing properties and magnetic properties of different carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    GUI XuChun; WANG KunLin; WEI JinQuan; L(U) RuiTao; SHU QinKe; JIA Yi; WANG Chen; ZHU HongWei; WU DeHai

    2009-01-01

    The microwave absorbing properties and magnetic properties of as-grown Fe-filled carbon nanotubes (CNTs), annealed Fe-filled CNTs, and multi-walled CNTs were studied. Vibrating sample magnetometer results showed that the annealed Fe-filled CNTs have the weakest coercivity and strongest saturation magnetization among the three types CNTs, due to the presence of more ferromagnetic α-Fe nanowires.After annealing, the values increased to 291.00e and 28.0 emu/g and the samples showed excellent microwave absorbing properties. The reflection loss was over 5 dB between 11.6 GHz and 18 GHz with a maximum value of 10.8 dB for annealed Fe-filled CNTs (1.1 wt%)/epoxy composite.

  1. Microwave absorbing properties and magnetic properties of different carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The microwave absorbing properties and magnetic properties of as-grown Fe-filled carbon nanotubes (CNTs), annealed Fe-filled CNTs, and multi-walled CNTs were studied. Vibrating sample magnetometer results showed that the annealed Fe-filled CNTs have the weakest coercivity and strongest saturation magnetization among the three types CNTs, due to the presence of more ferromagnetic α-Fe nanowires. After annealing, the values increased to 291.0 Oe and 28.0 emu/g and the samples showed excellent microwave absorbing properties. The reflection loss was over 5 dB between 11.6 GHz and 18 GHz with a maximum value of 10.8 dB for annealed Fe-filled CNTs (1.1 wt%)/epoxy composite.

  2. Synthesis and Properties of Magnetic Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Sixin LI; Jiancheng ZHANG; Yue SHEN; Bo NI; Jingang ZHANG

    2006-01-01

    The uniform mesoporous SBA-15 consisting of SiO2 with long-range channels offers an excellent host material to synthesize or assemble the magnetic nanocomposites, such as Fe, Ni.In this paper, highly dispersed and uniform iron nanoparticles were incorporated into the pore channels of SBA-15 through a newly developed strategy in which some kinds of coupling agents were used to entrap the nanoparticles into the silica framework.The X-ray diffraction(XRD), fourier transmission infrared spectroscopy(FTIR), high-resolution transmission electronic microscopy(HRTEM)and energy dispersive X-ray spectroscopy(EDX)were performed to further identify the successful incorporation and grafting of iron. Compared with other ordinary non-assembled magnetic nanoparticles, the assembled Fe nanoparticles with the diameter even in the size range of 5~6 nm still have better magnetic properties.

  3. Magnetic properties of artificially synthesized ferritins

    Science.gov (United States)

    Kim, B. J.; Lee, H. I.; Cho, S.-B.; Yoon, S.; Suh, B. J.; Jang, Z. H.; St. Pierre, T. G.; Kim, S.-W.; Kim, K.-S.

    2005-05-01

    Human ferritin homopolymers with H or L subunits (rHF and rLF) were genetically engineered in E coli. Apoferritins were then reconstituted with 2000 Fe atoms. A big difference was observed in the rates of iron uptake, whereas the mean core size was similar in rHF and rLF. Magnetization of the recombinant human ferritins were measured as functions of temperature and field. The blocking temperature TB(H) at low fields is considerably higher in rLF than in rHF. From the fit of M(H ) data to a modified Langevin function: M(H )=M0L(μpH/kBT)+χaH, the effective magnetic moment μp is found to be much larger in rLF than in rHF. Experimental data demonstrate that the magnetic properties, in particular, the uncompensated spins of ferritin core are related to the biomineralization process in ferritins.

  4. Magnetic Properties of Nanoparticles of Antiferromagnetic Materials

    DEFF Research Database (Denmark)

    Mørup, Steen; Frandsen, Cathrine; Bødker, Franz

    2003-01-01

    The magnetic properties of antiferromagnetic nanoparticles have been studied by Mossbauer spectroscopy and neutron scattering. Temperature series of Mossbauer spectra of non-interacting, superparamagnetic hematite nanoparticles were fitted by use of the Blume-Tjon relaxation model. It has been...... found that the magnetic anisotropy energy constant increases significantly with decreasing particle size. Neutron scattering experiments on similar samples give new information on both superparamagnetic relaxation and collective magnetic excitations. There is good agreement between the values...... of the parameters obtained from Mossbauer spectroscopy and neutron scattering. In samples of interacting hematite nanoparticles, the relaxation was significantly suppressed. The Mossbauer data for these samples are in accordance with a mean field model for an ordered state of strongly interacting particles. Mixing...

  5. Magnetic Properties of Friction Stir Processed Composite

    Science.gov (United States)

    Das, Shamiparna; Martinez, Nelson Y.; Das, Santanu; Mishra, Rajiv S.; Grant, Glenn J.; Jana, Saumyadeep; Polikarpov, Evgueni

    2016-07-01

    Of the many existing inspection or monitoring systems, each has its own advantages and drawbacks. These systems are usually comprised of semi-remote sensors that frequently cause difficulty in reaching complex areas of a component. This study proposes to overcome that difficulty by developing embedded functional composites, so that embedding can be achieved in virtually any component part and periodically can be interrogated by a reading device. The "reinforcement rich" processed areas can then be used to record properties such as strain, temperature, and stress state, to name a few, depending on the reinforcement material. Friction stir processing was used to fabricate a magnetostrictive composite by embedding galfenol particles into a nonmagnetic aluminum matrix. The aim was to develop a composite that produces strain in response to a varying magnetic field. Reinforcements were distributed uniformly in the matrix. Magnetization curves were studied using a vibrating sample magnetometer. A simple and cost-effective setup was developed to measure the magnetostrictive strain of the composites. Important factors affecting the magnetic properties were identified and the processing route was modified to improve the magnetic response.

  6. Magnetic properties of colloidal cobalt nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Torchio, R; Meneghini, C; Mobilio, S; Capellini, G [Dipartimento di Fisica ' E. Amaldi' , Universita di Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy); Prieto, A Garcia; Alonso, J; Fdez-Gubieda, M L [Departamento de Electricidad y Electronica y Fisica Aplicada I, Universidad del PaIs Vasco (Spain); Liveri, V Turco; Ruggirello, A M [Dipartimento di Chimica Fisica ' F. Accascina' , Universita di Palermo, Viale delle Scienze, Parco d' Orleans II, Edificio 17, 90128 Palermo (Italy); Longo, A [ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, CNR, Via U. La Malfa 153, 90146 Palermo (Italy); Neisius, T, E-mail: torchio@fis.uniroma3.i [Universite Paul CEZANNE, Faculte des Sciences et Techniques, Marseille (France)

    2010-01-01

    Co nanoclusters were synthesized by an inverse-micelle chemical route. The magnetic and microstructural properties of the nanoparticles have been analyzed as a function of the surfactant (AOT and DEHP) and the drying method. Microstructural analysis has been performed by TEM and XANES; magnetic properties have been studied by hysteresis loops and zero-field cooling - field cooling (ZFC-FC) curves. TEM images show 2 to 4 nm sized particles spherical in shape. XANES measurements point out a significant presence of Co{sub 3}O{sub 4}with metallic Co and some Co{sup 2+} bound to the surfactant. The presence of antiferromagnetic Co{sub 3}O{sub 4} explains the magnetic transition observed at low T in both ZFC-FC measurements and hysteresis loops. Finally, the presence of magnetic interactions explains the bigger effective cluster size obtained from hysteresis loops fits (6-10 nm) compared to the sizes observed by TEM (2-4 nm).

  7. Anomalous temperature dependent photoluminescence properties of CdSxSe1-x quantum dots

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    CdSxSe1-x quantum dots were fabricated by a simple spin-coating heat volatilization method on InP wafer.Temperature dependent photoluminescence of CdSxSe1-x quantum dots was carried out in a range of 10-300 K.The integrated photoluminescence intensity revealed an anomalous behavior with increasing temperature in the range of 180-200 K.The band gap energy showed a redshift of 61.34 meV when the temperature increased from 10 to 300 K.The component ratio of S to Se in the CdSxSe1-x quantum dots was valued by both the X-ray diffraction data and photoluminescence peak energy at room temperature according to Vegard Law.Moreover,the parameters of the Varshni relation for CdS0.9Se0.1 materials were also obtained using photoluminescence peak energy as a function of temperature and the best-fit curve:α=(3.5 ± 0.1)10-4 eV/K,and β=210 ± 10 K (close to the Debye temperature θD of the material).

  8. Optical properties of metals: Infrared emissivity in the anomalous skin effect spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Echániz, T. [Departamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, Leioa 48940 (Spain); Pérez-Sáez, R. B., E-mail: raul.perez@ehu.es; Tello, M. J. [Departamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, Leioa 48940 (Spain); Instituto de Síntesis y Estudio de Materiales, Universidad del País Vasco, Apdo. 644, Bilbao 48080 (Spain)

    2014-09-07

    When the penetration depth of an electromagnetic wave in a metal is similar to the mean free path of the conduction electrons, the Drude classical theory is no longer satisfied and the skin effect becomes anomalous. Physical parameters of this theory for twelve metals were calculated and analyzed. The theory predicts an emissivity peak ε{sub peak} at room temperature in the mid-infrared for smooth surface metals that moves towards larger wavelengths as temperature decreases. Furthermore, the theory states that ε{sub peak} increases with the emission angle but its position, λ{sub peak}, is constant. Copper directional emissivity measurements as well as emissivity obtained using optical constants data confirm the predictions of the theory. Considering the relationship between the specularity parameter p and the sample roughness, it is concluded that p is not the simple parameter it is usually assumed to be. Quantitative comparison between experimental data and theoretical predictions shows that the specularity parameter can be equal to one for roughness values larger than those predicted. An exhaustive analysis of the experimental optical parameters shows signs of a reflectance broad peak in Cu, Al, Au, and Mo around the wavelength predicted by the theory for p = 1.

  9. Anomalous transport from holography: Part I

    CERN Document Server

    Bu, Yanyan; Sharon, Amir

    2016-01-01

    We revisit the transport properties induced by the chiral anomaly in a charged plasma holographically dual to anomalous $U(1)_V\\times U(1)_A$ Maxwell theory in Schwarzschild-$AdS_5$. Off-shell constitutive relations for vector and axial currents are derived using various approximations generalising most of known in the literature anomaly-induced phenomena and revealing some new ones. In a weak external field approximation, the constitutive relations have all-order derivatives resummed into six momenta-dependent transport coefficient functions: the diffusion, the electric/magnetic conductivity, and three anomaly induced functions. The latter generalise the chiral magnetic and chiral separation effects. Nonlinear transport is studied assuming presence of constant background external fields. The chiral magnetic effect, including all order nonlinearity in magnetic field, is proven to be exact when the magnetic field is the only external field that is turned on. Non-linear corrections to the constitutive relations...

  10. Crystallographic parameters of magnetic Pr2Fe14-xCoxB-type alloys determined using anomalous x-ray diffraction with synchrotron radiation

    Science.gov (United States)

    Galego, E.; Serna, M. M.; Ramanathan, L. V.; Faria, R. N.

    2017-02-01

    Anomalous x-ray synchrotron diffraction was used to determine the crystallographic parameters of PrFeCoB-based magnetic alloys. The effect of cobalt concentration on the crystallographic parameters of the magnetically hard Pr2Fe14-xCoxB phase was studied. The results indicate that addition of cobalt has a marked effect on crystal structure. Variation of the c parameter decreased twice as much as the a parameter with increase in Co content. The positions of inequivalent atoms of the magnetically hard matrix phase ϕ in the Pr-based alloys were determined using Rietveld refinement. This permitted determination of the relative distance of each inequivalent atom from its nearest neighbors. Cobalt occupied the 16k2 site and Fe had a tendency to occupy the 8j2 sites located between the Kagomé layers.

  11. The New (g-2) Experiment: A proposal to measure the muon anomalous magnetic moment to +-0.14 ppm precision

    Energy Technology Data Exchange (ETDEWEB)

    Carey, R.M.; Lynch, K.R.; Miller, J.P.; Roberts, B.L.; Morse, W.M.; Semertzides, Y.K.; Druzhinin, V.P.; Khazin, B.I.; Koop, I.A.; Logashenko, I.; Redin, S.I.; /Boston U. /Brookhaven /Novosibirsk, IYF /Cornell U., CIHEP /Fermilab /Frascati /Illinois U., Urbana /James Madison U. /Groningen, KVI /KEK, Tsukuba /Kentucky U.

    2009-02-01

    We propose to measure the muon anomalous magnetic moment, a{sub {mu}}, to 0.14 ppm-a fourfold improvement over the 0.54 ppm precision obtained in the BNL experiment E821. The muon anomaly is a fundamental quantity and its precise determination will have lasting value. The current measurement was statistics limited, suggesting that greater precision can be obtained in a higher-rate, next-generation experiment. We outline a plan to use the unique FNAL complex of proton accelerators and rings to produce high-intensity bunches of muons, which will be directed into the relocated BNL muon storage ring. The physics goal of our experiment is a precision on the muon anomaly of 16 x 10{sup -11}, which will require 21 times the statistics of the BNL measurement, as well a factor of 3 reduction in the overall systematic error. Our goal is well matched to anticipated advances in the worldwide effort to determine the standard model (SM) value of the anomaly. The present comparison, {Delta}a{sub {mu}} (Expt: -SM) = (295 {+-} 81) x 10{sup -11}, is already suggestive of possible new physics contributions to the muon anomaly. Assuming that the current theory error of 51 x 10{sup -11} is reduced to 30 x 10{sup -11} on the time scale of the completion of our experiment, a future {Delta}a{sub {mu}} comparison would have a combined uncertainty of {approx} 34 x 10{sup -11}, which will be a sensitive and complementary benchmark for proposed standard model extensions. The experimental data will also be used to improve the muon EDM limit by up to a factor of 100 and make a higher-precision test of Lorentz and CPT violation. We describe in this Proposal why the FNAL complex provides a uniquely ideal facility for a next-generation (g-2) experiment. The experiment is compatible with the fixed-target neutrino program; indeed, it requires only the unused Booster batch cycles and can acquire the desired statistics in less than two years of running. The proton beam preparations are largely aligned

  12. Production of W-+ with an anomalous magnetic moment via the collision of an ultrahigh-energy (anti)neutrino on a target nucleon

    CERN Document Server

    Rosado, A

    2003-01-01

    We discuss the production of W-+ bosons in deep inelastic processes (anti-nu)nu + nucleon --> l+- + W-+ + X, in the context of an electroweak model in which the vector boson self interactions may be different from those prescribed by the electroweak standard model. We present results which show the strong dependence of the cross section on the anomalous magnetic dipole moment kappa of the W+-. We show that even small deviations from the standard model value of kappa (kappa=1) could imply observable deviations in the cross section rates of W-+ production through the collision of an ultrahigh energy (anti)neutrino on a target nucleon.

  13. Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N_f=2+1+1 twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Florian [Humboldt U. Berlin; Feng, Xu [KEK; Hotzel, Grit [Humboldt U. Berlin; Jansen, Karl [DESY; Petschlies, Marcus [The Cyprus Institute; Renner, Dru B. [JLAB

    2013-11-01

    We present results for the leading order QCD correction to the anomalous magnetic moment of the muon including the first two generations of quarks as dynamical degrees of freedom. Several light quark masses are examined in order to yield a controlled extrapolation to the physical pion mass. We analyse ensembles for three different lattice spacings and several volumes in order to investigate lattice artefacts and finite-size effects, respectively. We also provide preliminary results for this quantity for two flavours of mass-degenerate quarks at the physical value of the pion mass.

  14. Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N{sub f}=2+1+1 twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Florian; Hotzel, Grit [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Feng, Xu [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Petschlies, Marcus [The Cyprus Institute, Nicosia (Cyprus); Renner, Dru B. [Jefferson Lab, Newport News, VA (United States)

    2013-12-15

    We present results for the leading order QCD correction to the anomalous magnetic moment of the muon including the first two generations of quarks as dynamical degrees of freedom. Several light quark masses are examined in order to yield a controlled extrapolation to the physical pion mass. We analyse ensembles for three different lattice spacings and several volumes in order to investigate lattice artefacts and finite-size effects, respectively. We also provide preliminary results for this quantity for two flavours of mass-degenerate quarks at the physical value of the pion mass.

  15. Subtractive procedure for calculating the anomalous electron magnetic moment in QED and its application for numerical calculation at the three-loop level

    Science.gov (United States)

    Volkov, S. A.

    2016-06-01

    A new subtractive procedure for canceling ultraviolet and infrared divergences in the Feynman integrals described here is developed for calculating QED corrections to the electron anomalous magnetic moment. The procedure formulated in the form of a forest expression with linear operators applied to Feynman amplitudes of UV-diverging subgraphs makes it possible to represent the contribution of each Feynman graph containing only electron and photon propagators in the form of a converging integral with respect to Feynman parameters. The application of the developed method for numerical calculation of two- and threeloop contributions is described.

  16. Structural, magnetic, and transport properties of Fe-doped CoTiSb epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sun, N. Y.; Zhang, Y. Q.; Che, W. R.; Shan, R. [Shanghai Key Laboratory of Special Artificial Microstructure and Pohl Institute of Solid State Physics and School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Qin, J., E-mail: juan-qin@staff.shu.edu.cn [School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China)

    2015-11-07

    Epitaxial intrinsic and Fe-doped CoTiSb thin films with C1{sub b} structure were grown on MgO(100) substrates by magnetron sputtering. The semiconducting-like behavior in both intrinsic and Fe-doped thin films was demonstrated by temperature dependence of longitudinal resistivity. The Fe-doped CoTiSb films with a wide range of doping concentrations can maintain semiconducting-like and magnetic properties simultaneously, while the semiconducting behavior is weakening with the increasing Fe concentration. For 21 at. % Fe-doped film, low lattice magnetic moment (around 0.65 μ{sub B}) and high resistivity (larger than 800 μΩ cm) are beneficial to its application as a magnetic electrode in spintronic devices. Anomalous Hall effect of 21 at. % Fe-doped film was also investigated and its behaviors can be treated well by recent-reported anomalous Hall scaling including the contribution of spin-phonon skew scattering.

  17. Magnetic properties of CeRh3B2 investigated by muon spin rotation spectroscopy

    Science.gov (United States)

    Gygax, F. N.; Schenck, A.; Ōnuki, Y.; Reichl, Ch.; Wiesinger, G.

    2006-04-01

    We report on positive muon spin rotation (μ+SR) measurements on hexagonal CeRh3B2 single crystals. This ferromagnetic material, with the high Curie temperature of TC≈120K , shows anomalous magnetic properties. In the magnetically ordered state, two spontaneous μ+ -precession frequencies are observed in zero applied magnetic field. The peculiar temperature dependence of these frequencies shows that a magnetization is found on Ce and, over a wide temperature range, on the Rh atoms. There is a strong indication that a significant negative fraction of the magnetization connected to the Ce atoms is delocalized on the c -axis Ce-Ce chains. The analysis renders it necessary to allow for an unusual temperature dependence of the Rh-sublattice magnetization, deviating significantly from the Ce-sublattice magnetization. This points to a temperature dependent exchange coupling between the Ce and Rh 4f and 4d states. Transverse-field measurements above TC allow one to specify the interstitial sites occupied by the muons and indicate the presence of long-range μ+ diffusion for T>125K .

  18. Effect of surfactant for magnetic properties of iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Haracz, S. [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614 Poznań (Poland); Hilgendorff, M. [Freie Universität Berlin, Fachbereich Physik, Arnimalle 14, 14195 Berlin (Germany); Rybka, J.D. [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614 Poznań (Poland); Giersig, M. [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614 Poznań (Poland); Freie Universität Berlin, Fachbereich Physik, Arnimalle 14, 14195 Berlin (Germany)

    2015-12-01

    Highlights: • Dynamic behavior of magnetic nanoparticles. • Synthesis of iron oxide nanoparticles. • Effect of surfactant for magnetic properties. - Abstract: For different medical applications nanoparticles (NPs) with well-defined magnetic properties have to be used. Coating ligand can change the magnetic moment on the surface of nanostructures and therefore the magnetic behavior of the system. Here we investigated magnetic NPs in a size of 13 nm conjugated with four different kinds of surfactants. The surface anisotropy and the magnetic moment of the system were changed due to the presence of the surfactant on the surface of iron oxide NPs.

  19. Hygroscopic properties of magnetic recording tape

    Science.gov (United States)

    Cuddihy, E. F.

    1976-01-01

    Relative humidity has been recognized as an important environmental factor in many head-tape interface phenomena such as headwear, friction, staining, and tape shed. Accordingly, the relative humidity is usually specified in many applications of tape use, especially when tape recorders are enclosed in hermetically sealed cases. Normally, the relative humidity is believed regulated by humidification of the fill gas to the specification relative humidity. This study demonstrates that the internal relative humidity in a sealed case is completely controlled by the time-dpendence of the hygroscopic properties of the pack of magnetic recording tape. Differences are found in the hygroscopic properties of the same brand of tape, which apparently result from aging, and which may have an effect on the long-term humidity-regulating behavior in a sealed case, and on the occurrence of head-tape interface phenomena from the long-term use of the tape. Results are presented on the basic hygroscopic properties of magnetic tape, its humidity-regulating behavior in a sealed case, and a theoretical commentary on the relative humidity dependence of head-wear by tape, is included.

  20. Structural, Electronic, Magnetic, and Vibrational Properties of Graphene and Silicene: A First-Principles Perspective

    KAUST Repository

    Kaloni, Thaneshwor P.

    2013-11-01

    This thesis covers the structural, electronic, magnetic, and vibrational properties of graphene and silicene. In Chapter I, we will start with an introduction to graphene and silicene. In Chapter II, we will briefly discuss about the methodology (i. e. density functional theory)In Chapter III, we will introduce band gap opening in graphene either by introducing defects/doping or by creating superlattices with h-BN substrate. In Chapter IV, we will focus on the structural and electronic properties of K and Ge-intercalated graphene on SiC(0001). In addition, the enhancement of the superconducting transition temperature in Li-decorated graphene supported by h-BN substrate will be discussed. In Chapter V, we will discuss the vibrational properties of free-standing silicene. In addition, superlattices of silicene with h-BN as well as the phase transition in silicene by applying an external electric field will be discussed. The electronic and magnetic properties transition metal decorated silicene will be discussed, in particular the realization of the quantum anomalous Hall effect will be addressed. Furthermore, the structural, electronic, and magnetic properties of Mn decorated silicene supported by h-BN substrate will be discussed. The conclusion is included in Chapters VI. Finally, we will end with references and a list of publications for this thesis.

  1. Nanoscale magnetism and novel electronic properties of a bilayer bismuth(111) film with vacancies and chemical doping.

    Science.gov (United States)

    Sahoo, M P K; Zhang, Yajun; Wang, Jie

    2016-07-27

    Magnetically doped topological insulators (TIs) exhibit several exotic phenomena including the magnetoelectric effect and quantum anomalous Hall effect. However, from an experimental perspective, incorporation of spin moment into 3D TIs is still challenging. Thus, instead of 3D TIs, the 2D form of TIs may open up new opportunities to induce magnetism. Based on first principles calculations, we demonstrate a novel strategy to realize robust magnetism and exotic electronic properties in a 2D TI [bilayer Bi(111) film: abbreviated as Bi(111)]. We examine the magnetic and electronic properties of Bi(111) with defects such as bismuth monovacancies (MVs) and divacancies (DVs), and these defects decorated with 3d transition metals (TMs). It has been observed that the MV in Bi(111) can induce novel half metallicity with a net magnetic moment of 1 μB. The origin of half metallicity and magnetism in MV/Bi(111) is further explained by the passivation of the σ-dangling bonds near the defect site. Furthermore, in spite of the nonmagnetic nature of DVs, the TMs (V, Cr, Mn, and Fe) trapped at the 5/8/5 defect structure of DVs can not only yield a much higher spin moment than those trapped at the MVs but also display intriguing electronic properties such as metallic, semiconducting and spin gapless semiconducting properties. The predicted magnetic and electronic properties of TM/DV/Bi(111) systems are explained through density of states, spin density distribution and Bader charge analysis.

  2. Hard-to-recover oils with anomalous physical and chemical properties

    Science.gov (United States)

    Yashchenko, I. G.; Polishchuk, Y. M.

    2016-11-01

    Using the global database on physical and chemical properties of oils, the analysis of distribution of viscous, heavy, waxy and highly resinous oils in terms of volumes of their reserves was carried out. It is known that heavy and viscous oils account for slightly more than 33% of the total sample. Resinous and paraffin oils account for less than 30% of the total sample. The criteria necessary to classify oils as hard-to-recover oil reserves are determined. Features of physicochemical properties of these oils are studied under various conditions. The results obtained could be used to solve practical issues in the oil sector.

  3. Modelling dielectric and magnetic properties of ferroconcrete

    Directory of Open Access Journals (Sweden)

    T. Frenzel

    2008-05-01

    Full Text Available This contribution discusses the modelling and parameterization of dielectric and magnetic properties of ferroconcrete by using numerical electromagnetic field analysis software. The software is based on the Method of Moments (MoM. The shielding effectiveness (SE of the ferroconcrete DUT was already measured in a study by order of the government. According to these results, the ferroconcrete DUT is modelled and calculated. Therefore the DUT is subdivided into two parts. The first part represents the reinforcement mesh; the second part represents the lossy concrete with complex permittivity. Afterwards, the reflection and transmission properties of numerical analysed building materials are validated and compared with the measurement results in a frequency range of 30–1000 MHz.

  4. Structural and Magnetic Properties of Trigonal Iron

    CERN Document Server

    Fox, S

    1995-01-01

    First principles calculations of the electronic structure of trigonal iron were performed using density function theory. The results are used to predict lattice spacings, magnetic moments and elastic properties; these are in good agreement with experiment for both the bcc and fcc structures. We find however, that in extracting these quantities great care must be taken in interpreting numerical fits to the calculated total energies. In addition, the results for bulk iron give insight into the properties of thin iron films. Thin films grown on substrates with mismatched lattice constants often have non-cubic symmetry. If they are thicker than a few monolayers their electronic structure is similar to a bulk material with an appropriately distorted geometry, as in our trigonal calculations. We recast our bulk results in terms of an iron film grown on the (111) surface of an fcc substrate, and find the predicted strain energies and moments accurately reflect the trends for iron growth on a variety of substrates.

  5. Effect of anomalous electron cross-field transport on electron energy distribution function in a DC-RF magnetized plasma discharge

    Science.gov (United States)

    Raitses, Yevgeny; Donnelly, Vincent M.; Kaganovich, Igor D.; Godyak, Valery

    2013-10-01

    The application of the magnetic field in a low pressure plasma can cause a spatial separation of cold and hot electron groups. This so-called magnetic filter effect is not well understood and is the subject of our studies. In this work, we investigate electron energy distribution function in a DC-RF plasma discharge with crossed electric and magnetic field operating at sub-mtorr pressure range of xenon gas. Experimental studies showed that the increase of the magnetic field leads to a more uniform profile of the electron temperature across the magnetic field. This surprising result indicates the importance of anomalous electron transport that causes mixing of hot and cold electrons. High-speed imaging and probe measurements revealed a coherent structure rotating in E cross B direction with frequency of a few kHz. Similar to spoke oscillations reported for Hall thrusters, this rotating structure conducts the largest fraction of the cross-field current. This work was supported by DOE contract DE-AC02-09CH11466.

  6. Magnetic colloid by PLA: Optical, magnetic and thermal transport properties

    Science.gov (United States)

    Pandey, B. K.; Shahi, A. K.; Gopal, Ram

    2015-08-01

    Ferrofluids of cobalt and cobalt oxide nanoparticles (NPs) have been successfully synthesized using liquid phase-pulse laser ablation (LP-PLA) in ethanol and double distilled water, respectively. The mechanism of laser ablation in liquid media and formation process for Co target in double distilled water (DDW) and ethanol are speculated based on the reactions between laser generated highly nascent cobalt species and vaporized solvent media in a confined high temperature and pressure at the plume-surrounding liquid interface region. Optical absorption, emission, vibrational and rotational properties have been investigated using UV-vis absorption, photoluminescence (PL) and Fourier transform-infra red (FT-IR) spectroscopy, respectively. In this study optical band gap of cobalt oxide ferrofluids has been engineered using different pulse energy of Nd:YAG laser in the range of (2.80-3.60 eV). Vibrating sample magnetometer (VSM) is employed to determine the magnetic properties of ferrofluids of cobalt and cobalt oxide NPs while their thermal conductivities are examined using rotating disc method. Ferrofluids have gained enormous curiosity due to many technological applications, i.e. drug delivery, coolant and heating purposes.

  7. Magnetic Properties of Ni Nanoparticles and Ni(C) Nanocapsules

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Structure and magnetic properties of Ni nanoparticles and Ni(C) nanocapsules were studied. The carbon atoms hardly affect the lattice of Ni to form Ni-C solid solution or nickel carbides. The large thermal irreversibility in zerofield-cooled and zero-field magnetization curves indicates magnetic blocking with a wide energy barrier. Saturation magnetization, remanent magnetization and coercivity of Ni(C) nanocapsules decrease with increasing temperature.

  8. Magnetic nanoparticles and concentrated magnetic nanofluids: Synthesis, properties and some applications

    Institute of Scientific and Technical Information of China (English)

    Ladislau Vékás; Doina Bica; Mikhail V. Avdeev

    2007-01-01

    This paper reviews some recent results concerning chemical synthesis of magnetic nanoparticles and preparation of various types of magnetic nanofluids. Structural properties and behaviour in external magnetic field of magnetic nanofluids will be emphasized with relation to their use in leakage-free rotating seals and in biomedical applications.

  9. Dust properties along anomalous extinction sightlines. II. Studying extinction curves with dust models

    CERN Document Server

    Mazzei, Paola

    2010-01-01

    The large majority of extinction sight lines in our Galaxy obey a simple relation depending on one parameter, the total-to-selective extinction coefficient, Rv. Different values of Rv are able to match the whole extinction curve through different environments so characterizing normal extinction curves. In this paper more than sixty curves with large ultraviolet deviations from their best-fit one parameter curve are analyzed. These curves are fitted with dust models to shed light into the properties of the grains, the processes affecting them, and their relations with the environmental characteristics. The extinction curve models are reckoned by following recent prescriptions on grain size distributions able to describe one parameter curves for Rv values from 3.1 to 5.5. Such models, here extended down to Rv=2.0, allow us to compare the resulting properties of our deviating curves with the same as normal curves in a self-consistent framework, and thus to recover the relative trends overcoming the modeling unce...

  10. Optimization of the magnetic properties of nanostructured Y-Co-Fe alloys for permanent magnets

    Directory of Open Access Journals (Sweden)

    P. Tozman

    2016-05-01

    Full Text Available The structural and magnetic properties of ball-milled Fe-doped Y Co5−xFex(0 ≤ x ≤ 0.5 were investigated. The magnetization increases with Fe-doping up to the solid solubility limit, x = 0.3 without destroying the crystal structure or degrading the coercivity. A special magnet array is designed using ring magnets for pressing the powders under magnetic field in order to achieve magnetic alignment. A dramatic increase in magnetization is observed for magnetically aligned Y Co4.8Fe0.2 pressed ingots.

  11. Kagome network compounds and their novel magnetic properties.

    Science.gov (United States)

    Pati, Swapan K; Rao, C N R

    2008-10-21

    Compounds possessing the Kagome network are truly interesting because of their unusual low-energy properties. They exhibit magnetic frustration because of the triangular lattice inherent to the hexagonal bronze structure they possess, as indeed demonstrated by some of the Fe(3+) jarosites, but this is not the general case. Kagome compounds formed by transition metal ions with varying spins exhibit novel magnetic properties, some even showing evidence for magnetic order and absence of frustration. We describe the structure and magnetic properties of this interesting class of materials and attempt to provide an explanation for the variety of properties on the basis of theoretical considerations.

  12. Magnetic properties of ultra-small goethite nanoparticles

    DEFF Research Database (Denmark)

    Brok, Erik; Frandsen, Cathrine; Madsen, Daniel Esmarch

    2014-01-01

    Goethite (α-FeOOH) is a common nanocrystalline antiferromagnetic mineral. However, it is typically difficult to study the properties of isolated single-crystalline goethite nanoparticles, because goethite has a strong tendency to form particles of aggregated nanograins often with low-angle grain...... boundaries. This nanocrystallinity leads to complex magnetic properties that are dominated by magnetic fluctuations in interacting grains. Here we present a study of the magnetic properties of 5.7 nm particles of goethite by use of magnetization measurements, inelastic neutron scattering and Mo......¨ssbauer spectroscopy. The `ultra-small' size of these particles (i.e. that the particles consist of one or only a few grains) allows for more direct elucidation of the particles' intrinsic magnetic properties. We find from ac and dc magnetization measurements a significant upturn of the magnetization at very low...

  13. Structural Origin of the Anomalous Temperature Dependence of the Local Magnetic Moments in the CaFe2As2 Family of Materials

    Science.gov (United States)

    Ortenzi, L.; Gretarsson, H.; Kasahara, S.; Matsuda, Y.; Shibauchi, T.; Finkelstein, K. D.; Wu, W.; Julian, S. R.; Kim, Young-June; Mazin, I. I.; Boeri, L.

    2015-01-01

    We report a combination of Fe K β x-ray emission spectroscopy and density functional reduced Stoner theory calculations to investigate the correlation between structural and magnetic degrees of freedom in CaFe2(As1-xPx) 2 . The puzzling temperature behavior of the local moment found in rare earth-doped CaFe2As2 [H. Gretarsson et al., Phys. Rev. Lett. 110, 047003 (2013)] is also observed in CaFe2(As1-xPx) 2 . We explain this phenomenon based on first-principles calculations with scaled magnetic interaction. One scaling parameter is sufficient to describe quantitatively the magnetic moments in both CaFe2(As1-xPx) 2 (x =0.055 ) and Ca0.78La0.22Fe2As2 at all temperatures. The anomalous growth of the local moments with increasing temperature can be understood from the observed large thermal expansion of the c -axis lattice parameter combined with strong magnetoelastic coupling. These effects originate from the strong tendency to form As-As dimers across the Ca layer in the CaFe2As2 family of materials. Our results emphasize the dual local-itinerant character of magnetism in Fe pnictides.

  14. Determination of magnetic properties of multilayer metallic thin films

    CERN Document Server

    Birlikseven, C

    2000-01-01

    and magnetization measurements were taken. In recent year, Giant Magnetoresistance Effect has been attracting an increasingly high interest. High sensitivity magnetic field detectors and high sensitivity read heads of magnetic media can be named as important applications of these films. In this work, magnetic and electrical properties of single layer and thin films were investigated. Multilayer thin films were supplied by Prof. Dr. A. Riza Koeymen from Texas University. Multilayer magnetic thin films are used especially for magnetic reading and magnetic writing. storing of large amount of information into small areas become possible with this technology. Single layer films were prepared using the electron beam evaporation technique. For the exact determination of film thicknesses, a careful calibration of the thicknesses was made. Magnetic properties of the multilayer films were studied using the magnetization, magnetoresistance measurements and ferromagnetic resonance technique. Besides, by fitting the exper...

  15. Anomalous dielectric and thermal properties of Ba-doped PbZrO3 ceramics

    Science.gov (United States)

    Pirc, R.; Rožič, B.; Koruza, J.; Cordoyiannis, G.; Malič, B.; Kutnjak, Z.

    2015-11-01

    The dielectric and thermal properties of an antiferroelectric (AFE) material characterised by an intermediate ferroelectric (FE) phase between the AFE and paraelectric phase in zero field are studied by means of a generalised Landau-Kittel model of AFEs. A temperature-dependent coupling of the two sublattices is introduced in accordance with the Rae-Dove (RD) model of re-entrant phase transitions. The sublattice polarisation components are calculated as functions of temperature and the applied electric field by minimising numerically the free energy. The calculated dielectric susceptibility shows anomalies at the boundaries of the intermediate FE phase, characteristic for first-order phase transitions. It is shown that this behaviour is in qualitative agreement with the measured dielectric constant in Ba-doped PbZrO3 ceramics. The model also predicts a negative adiabatic electrocaloric temperature change Δ T in a broad temperature range in the AFE phase, in qualitative agreement with experiments. The dipolar heat capacity is also predicted to be negative in the intermediate phase in zero field, in analogy with the results of the RD model.

  16. Magnetic and magnetoresistive properties of half-metallic ferromagnetic and charge ordered modified ferromagnetic manganite nanoparticles

    Science.gov (United States)

    Das, Kalipada; Das, I.

    2017-03-01

    In our present study, we address in detail magnetic and magneto-transport properties of well known half metallic La0.67Sr0.33MnO3 (LSMO) and charge order suppressed ferromagnetic La0.48Ca0.52MnO3 (LCMO) nanoparticles. The average particle size for LSMO and LCMO is ˜20 nm and ˜25 nm, respectively. With respect to their magnetic properties, both compounds exhibit ferromagnetic behavior, whereas they markedly differ in their magneto-transport characteristics. The magnetoresistive properties of LSMO nanoparticles indicate low field magnetoresistance and tendency for saturation at higher field values. In addition to the sharp low field magnetoresistance, we have achieved significantly large magnetoresistance at higher values of external magnetic field for the ferromagnetic LCMO nanoparticles. To address such anomalous behavior in these two different classes of ferromagnetic materials, we introduce the re-entrant core-shell type structure formation in charge ordered nanoparticles (LCMO) when charge ordering is completely suppressed.

  17. Numerical calculations of magnetic properties of nanostructures

    CERN Document Server

    Kapitan, Vitalii; Nefedev, Konstantin

    2015-01-01

    Magnetic force microscopy and scanning tunneling microscopy data could be used to test computer numerical models of magnetism. The elaborated numerical model of a face-centered lattice Ising spins is based on pixel distribution in the image of magnetic nanostructures obtained by using scanning microscope. Monte Carlo simulation of the magnetic structure model allowed defining the temperature dependence of magnetization; calculating magnetic hysteresis curves and distribution of magnetization on the surface of submonolayer and monolayer nanofilms of cobalt, depending on the experimental conditions. Our developed package of supercomputer parallel software destined for a numerical simulation of the magnetic-force experiments and allows obtaining the distribution of magnetization in one-dimensional arrays of nanodots and on their basis. There has been determined interpretation of magneto-force microscopy images of magnetic nanodots states. The results of supercomputer simulations and numerical calculations are in...

  18. Fractal model of anomalous diffusion.

    Science.gov (United States)

    Gmachowski, Lech

    2015-12-01

    An equation of motion is derived from fractal analysis of the Brownian particle trajectory in which the asymptotic fractal dimension of the trajectory has a required value. The formula makes it possible to calculate the time dependence of the mean square displacement for both short and long periods when the molecule diffuses anomalously. The anomalous diffusion which occurs after long periods is characterized by two variables, the transport coefficient and the anomalous diffusion exponent. An explicit formula is derived for the transport coefficient, which is related to the diffusion constant, as dependent on the Brownian step time, and the anomalous diffusion exponent. The model makes it possible to deduce anomalous diffusion properties from experimental data obtained even for short time periods and to estimate the transport coefficient in systems for which the diffusion behavior has been investigated. The results were confirmed for both sub and super-diffusion.

  19. Magnetic Properties of AIIBIVCV2 Compounds Doped with Mn

    Directory of Open Access Journals (Sweden)

    A.V. Kochura

    2013-12-01

    Full Text Available Mn-doped AIIBIVCV2 semiconductors bulk crystals were grown by direct melting of base components with fast cooling. Structural and magnetic properties of samples were investigated. Analysis of the temperature dependence of the magnetization reveals three types of magnetic species: the substitutional Mn ions making Mn complexes (especially dimers, the MnAs micro- and nanosize precepitates.

  20. Observation of Anomalous Properties associated with the Low Temperature Structural Distortion in β-FeSe and Related Superconductorsa

    Directory of Open Access Journals (Sweden)

    Wu M. K.

    2012-03-01

    Full Text Available The discovery of Superconductivity in the tetragonal phase FeSe provides a unique platform for the detailed investigation of the correlation between the physical properties and crystal structure to better understand the possible origin of superconductivity in the new iron-based superconductors. We have carried out a series of properties characterizations by measuring magnetic susceptibility, Raman, NMR and femtosecond spectroscopy on single crystals and epitaxial thin films of the FeSe and Te-doped Fe(SeTe samples. Our results show clearly the presence of anomalies in all the characterized properties at the temperature where a structural distortion from tetragonal to orthorhombic (or monoclinic appears for all superconducting samples, but not in the non-superconducting ones. This structural distortion was observed not accompanied by a magnetic ordering as commonly occurs in the parent compounds of FeAs-based superconductors. All the observations suggest that the low temperature structural distortion is essential for the occurrence of superconductivity in the FeSe and related compounds. Details of the experimental results will be presented and discussed.

  1. Manipulation of the magnetic properties in Er{sub 1−x}Co{sub 2} compounds by atomic vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Jun-Ding, E-mail: zoujd@zju.edu.cn [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Key Laboratory of Novel Materials for Information Technology of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Yan, Mi, E-mail: mse_yanmi@zju.edu.cn [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Key Laboratory of Novel Materials for Information Technology of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Yao, Jin-Lei [Research Center for Solid State Physics and Materials, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009 (China)

    2015-05-25

    Highlights: • The nonstoichiometric Er{sub 1−x}Co{sub 2} compounds are identified. • Er atomic vacancies lead to the volume contracting by 0.37% and enhance T{sub C} by 44%. • The anomalous susceptibility behavior is not exact the same with the Griffiths phase. • The refrigerant capacity of Er{sub 0.97}Co{sub 2} increases from 152 J/kg to 158 J/kg. - Abstract: ErCo{sub 2} compound is a well-known magnetocaloric material which shows giant magnetocaloric effect in the vicinity of first-order phase transition. We demonstrate a new way of fine tuning its crystal structure and magnetic properties. Er atomic vacancies are introduced in order to manipulate the local atomic environment, the phase transition characteristics, and the magnetocaloric effect as well. Er{sub 1−x}Co{sub 2} can be stable over a narrow homogenous range, and maintain the cubic structure. The Bragg peaks shift upward to higher angles, and the unit cell volume contracts with reduction of the Er content. The Curie temperatures in low magnetic field increase from 32 K (ErCo{sub 2}) to 46 K (Er{sub 0.97}Co{sub 2}), and linearly change with the magnetic field in nearly same slope. Er{sub 1−x}Co{sub 2} compounds exhibit anomalous susceptibility behaviors in the paramagnetic state, and deviate from the Curie–Weiss law at around 100 K. The temperature range of anomalous susceptibility behaviors also move upward to higher temperature with reduction of Er content. Er{sub 1−x}Co{sub 2} compounds also show anomalous coercivity behavior in the vicinity of phase transition. Er{sub 1−x}Co{sub 2} compounds exhibit large magnetocaloric effect and good refrigerant capacity in the vicinity of ferrimagnetic–paramagnetic phase transition.

  2. $W^{+-}$-production in $e^{-}$ p-collisions at CERN LEP/LHC energies with a non-standard $W^{+-}$ anomalous magnetic moment

    CERN Document Server

    Gutiérrez-Rodríguez, A

    2000-01-01

    We discuss the production of charged bosons in deep inelastic e-p- scattering, in the context of an electroweak model, in which the vector boson self interactions may be different from those prescribed by the electroweak standard model. We present results which show the strong dependence of the cross section on the anomalous magnetic dipole moment kappa of the W/sup +or-/. We show that even small deviations from the standard model value of kappa ( kappa =1) implies an observable deviation in the W/sup +or-/-production rates at CERN LEP/LHC energies. We also show that for the analysis of the charged boson production via e/sup -/p collisions at LEP/LHC energies will be very important to include the contribution from heavy boson exchange diagrams to the cross section rates. (25 refs).

  3. Hadron production in e+e- annihilation at BABAR, and implication for the muon anomalous magnetic moment

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Frank C. [Caltech, Pasadena, CA (United States). Physics Dept.

    2015-04-29

    The BABAR collaboration has an extensive program of studying hadronic cross sections in low-energy e+e- collisions, accessible via initial-state radiation. Our measurements allow significant improvements in the precision of the predicted value of the muon anomalous magnetic moment. These improvements are necessary for illuminating the current 3.6 sigma difference between the predicted and the experimental values. We have published results on a number of processes with two to six hadrons in the final state. We report here the results of recent studies with final states that constitute the main contribution to the hadronic cross section in the energy region between 1 and 3 GeV, as e+e- → K+K-, π+π-, and e+e- → 4 hadrons

  4. Connected and Leading Disconnected Hadronic Light-by-Light Contribution to the Muon Anomalous Magnetic Moment with a Physical Pion Mass

    Science.gov (United States)

    Blum, Thomas; Christ, Norman; Hayakawa, Masashi; Izubuchi, Taku; Jin, Luchang; Jung, Chulwoo; Lehner, Christoph

    2017-01-01

    We report a lattice QCD calculation of the hadronic light-by-light contribution to the muon anomalous magnetic moment at a physical pion mass. The calculation includes the connected diagrams and the leading, quark-line-disconnected diagrams. We incorporate algorithmic improvements developed in our previous work. The calculation was performed on the 4 83×96 ensemble generated with a physical pion mass and a 5.5 fm spatial extent by the RBC and UKQCD Collaborations using the chiral, domain wall fermion formulation. We find aμHLbL=5.35 (1.35 )×10-10 , where the error is statistical only. The finite-volume and finite lattice-spacing errors could be quite large and are the subject of ongoing research. The omitted disconnected graphs, while expected to give a correction of order 10%, also need to be computed.

  5. Neutrino mass, dark matter and anomalous magnetic moment of muon in a U{(1)}_L{{}{_{μ}}}-{{}_L}{_{τ }} model

    Science.gov (United States)

    Biswas, Anirban; Choubey, Sandhya; Khan, Sarif

    2016-09-01

    The observation of neutrino masses, mixing and the existence of dark matter are amongst the most important signatures of physics beyond the Standard Model (SM). In this paper, we propose to extend the SM by a local L μ - L τ gauge symmetry, two additional complex scalars and three right-handed neutrinos. The L μ - L τ gauge symmetry is broken spontaneously when one of the scalars acquires a vacuum expectation value. The L μ - L τ gauge symmetry is known to be anomaly free and can explain the beyond SM measurement of the anomalous muon ( g - 2) through additional contribution arising from the extra Z μτ mediated diagram. Small neutrino masses are explained naturally through the Type-I seesaw mechanism, while the mixing angles are predicted to be in their observed ranges due to the broken L μ - L τ symmetry. The second complex scalar is shown to be stable and becomes the dark matter candidate in our model. We show that while the Z μτ portal is ineffective for the parameters needed to explain the anomalous muon ( g - 2) data, the correct dark matter relic abundance can easily be obtained from annihilation through the Higgs portal. Annihilation of the scalar dark matter in our model can also explain the Galactic Centre gamma ray excess observed by Fermi-LAT. We show the predictions of our model for future direct detection experiments and neutrino oscillation experiments.

  6. Magnetic twist: a source and property of space weather

    Directory of Open Access Journals (Sweden)

    Mitra Dhrubaditya

    2012-08-01

    Full Text Available Aim: We present evidence for finite magnetic helicity density in the heliosphere and numerical models thereof, and relate it to the magnetic field properties of the dynamo in the solar convection zone. Methods: We use simulations and solar wind data to compute magnetic helicity either directly from the simulations or indirectly using time series of the skew-symmetric components of the magnetic correlation tensor. Results: We find that the solar dynamo produces negative magnetic helicity at small scales and positive at large scales. However, in the heliosphere these properties are reversed and the magnetic helicity is now positive at small scales and negative at large scales. We explain this by the fact that a negative diffusive magnetic helicity flux corresponds to a positive gradient of magnetic helicity, which leads to a change of sign from negative to positive values at some radius in the northern hemisphere.

  7. Transport and magnetic properties of Fe3Si epitaxial films

    Science.gov (United States)

    Vinzelberg, H.; Schumann, J.; Elefant, D.; Arushanov, E.; Schmidt, O. G.

    2008-11-01

    The paper presents resistivity and magnetization measurements on nearly stoichiometric Fe3Si films epitaxially grown on GaAs substrates by electron-beam evaporation in an ultrahigh vacuum chamber. In the low-temperature resistivity a T3 term was found in all samples. A term like that is known to describe the anomalous single-magnon scattering processes in half-metallic materials and confirms so for our samples the hypothesis of half-metallic ferromagnetism in Fe3Si. The films show an anisotropic magnetoresistance in low magnetic fields. In high magnetic fields a negative longitudinal and transverse magnetoresistance (MR) has been observed linearly depending on the field strength. In the vicinity of 200 K the MR shows maximum absolute values up to 1.5% at magnetic fields of about 8 T. From the magnetization measurements a magnetic moment of 0.86μB/atom was obtained, which is close to that of bulk Fe3Si.

  8. Overview of Planar Magnetic Technology — Fundamental Properties

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Andersen, Michael A. E.

    2014-01-01

    The momentum towards high efficiency, high frequency, and high power density in power supplies limits wide use of conventional wire-wound magnetic components. This article gives an overview of planar magnetic technologies with respect to the development of modern power electronics. The major...... advantages and disadvantages in the use of planar magnetics for high frequency power converters are covered, and publications on planar magnetics are reviewed. A detailed survey of winding conduction loss, leakage inductance and winding capacitance for planar magnetics is presented so power electronics...... engineers and researchers can have a clear understanding of the intrinsic properties of planar magnetics....

  9. Magnetic Properties of Heisenberg Thin Films in an External Field

    Institute of Scientific and Technical Information of China (English)

    CHEN Hong; ZHANG Jing

    2004-01-01

    The magnetic properties of Heisenberg ferromagnetic films in an external magnetic field are investigated by means of the variational cumulant expansion (VCE). The magnetization can be in principle calculated analytically as the function of the temperature and the number of atomic layers in the film to an arbitrary order of accuracy in the VCE. We calculate the spontaneous magnetization and coercivity to the third order for spin-1/2 Heisenberg films with simple cubic lattices by using a graphic technique.

  10. Soft-x-ray linear-dichroism and magnetic-circular-dichroism studies of CeRh3B2: Large crystal-field splitting and anomalous ferromagnetism

    Science.gov (United States)

    Yamaguchi, K.; Namatame, H.; Fujimori, A.; Koide, T.; Shidara, T.; Nakamura, M.; Misu, A.; Fukutani, H.; Yuri, M.; Kasaya, M.; Suzuki, H.; Kasuya, T.

    1995-05-01

    CeRh3B2 shows an anomalously high Curie temperature (Tc=115 K) for a Ce compound with nonmagnetic constituents, strong anisotropy in the magnetic susceptibility, and ferromagnetic ordering. We have studied its electronic structure by measuring linear dichroism (LD) and magnetic circular dichroism (MCD) in the Ce 4d core-level x-ray-absorption spectra. The result for LD indicates a highly anisotropic distribution of Ce 4f electrons along the hexagonal c axis, while the MCD result shows that the magnetic moment of the Ce 4f electron is dominated by the orbital moment as in the case of a small crystal field. Using the Anderson-impurity model including the axial crystal field, the strong interatomic Ce 4f-Ce 5d hybridization and the Ce 4f-Rh 4d hybridization, we show that there is a range of parameter sets for the axial crystal field and the Ce 4f-valence-band transfer integral which explains the results of the LD and MCD experiments. Using the same parameter set, we have also attempted to explain the Kondo temperature and the unusually high Curie temperature.

  11. Introducing artificial length scales to tailor magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Fassbender, J; Strache, T; Liedke, M O; Marko, D; Wintz, S; Lenz, K; Keller, A; Facsko, S [Institute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, PO Box 51 01 19, D-01314 Dresden (Germany); Moench, I; McCord, J [Leibniz Institute for Solid State and Materials Research IFW Dresden, PO Box 27 01 16, D-01171 Dresden (Germany)], E-mail: J.Fassbender@fzd.de

    2009-12-15

    Magnetism is a collective phenomenon. Hence, a local variation on the nanoscale of material properties, which act on the magnetic properties, affects the overall magnetism in an intriguing way. Of particular importance are the length scales on which a material property changes. These might be related to the exchange length, the domain wall width, a typical roughness correlation length, or a length scale introduced by patterning of the material. Here we report on the influence of two artificially created length scales: (i) ion erosion templates that serve as a source of a predefined surface morphology (ripple structure) and hence allow for the investigation of roughness phenomena. It is demonstrated that the ripple wave length can be easily tuned over a wide range (25-175 nm) by varying the primary ion erosion energy. The effect of this ripple morphology on the induced uniaxial magnetic anisotropy in soft magnetic Permalloy films is studied. Only below a ripple wavelength threshold ({approx}60 nm) is a significant induced magnetic anisotropy found. Above this threshold the corrugated Permalloy film acts as a flat film. This cross-over is discussed in the frame of dipolar interactions giving rise to the induced anisotropies. (ii) Ion implantation through a lithographically defined mask, which is used for a magnetic property patterning on various length scales. The resulting magnetic properties are neither present in non-implanted nor in homogeneously implanted films. Here new insight is gained by the comparison of different stripe patterning widths ranging from 1 to 10 {mu}m. In addition, the appearance of more complicated magnetic domain structures, i.e. spin-flop domain configurations and head-on domain walls, during hard axis magnetization reversal is demonstrated. In both cases the magnetic properties, the magnetization reversal process as well as the magnetic domain configurations depend sensitively on the artificially introduced length scale.

  12. Magnetic properties of CoO nanoparticles

    NARCIS (Netherlands)

    Flipse, CFJ; Rouwelaar, CB; de Groot, FMF

    1999-01-01

    The magnetic circular X-ray dichroism (MCXD) of CoO nanoparticles was measured at low temperatures and in high magnetic fields. The particles show a superparamagnetic behaviour at room temperature, and a large orbital contribution to the magnetic moment at low temperatures was observed. This enhance

  13. Electronic properties of magnetically doped nanotubes

    Indian Academy of Sciences (India)

    Keivan Esfarjani; Z Chen; Y Kawazoe

    2003-01-01

    Effect of doping of carbon nanotubes by magnetic transition metal atoms has been considered in this paper. In the case of semiconducting tubes, it was found that the system has zero magnetization, whereas in metallic tubes the valence electrons of the tube screen the magnetization of the dopants: the coupling to the tube is usually antiferromagnetic (except for Cr).

  14. Dilution-induced slow magnetic relaxation and anomalous hysteresis in trigonal prismatic dysprosium(III) and uranium(III) complexes.

    Science.gov (United States)

    Meihaus, Katie R; Rinehart, Jeffrey D; Long, Jeffrey R

    2011-09-05

    Magnetically dilute samples of complexes Dy(H(2)BPz(Me2)(2))(3) (1) and U(H(2)BPz(2))(3) (3) were prepared through cocrystallization with diamagnetic Y(H(2)BPz(Me2)(2))(3) (2) and Y(H(2)BPz(2))(3). Alternating current (ac) susceptibility measurements performed on these samples reveal magnetic relaxation behavior drastically different from their concentrated counterparts. For concentrated 1, slow magnetic relaxation is not observed under zero or applied dc fields of several hundred Oersteds. However, a 1:65 (Dy:Y) molar dilution results in a nonzero out-of-phase component to the magnetic susceptibility under zero applied dc field, characteristic of a single-molecule magnet. The highest dilution of 3 (1:90, U:Y) yields a relaxation barrier U(eff) = 16 cm(-1), double that of the concentrated sample. These combined results highlight the impact of intermolecular interactions in mononuclear single-molecule magnets possessing a highly anisotropic metal center. Finally, dilution elucidates the previously observed secondary relaxation process for concentrated 3. This process is slowed down drastically upon a 1:1 molar dilution, leading to butterfly magnetic hysteresis at temperatures as high as 3 K. The disappearance of this process for higher dilutions reveals it to be relaxation dictated by short-range intermolecular interactions, and it stands as the first direct example of an intermolecular relaxation process competing with single-molecule-based slow magnetic relaxation.

  15. Anomalous magnetic ordering in DyxPr1-x alloys

    DEFF Research Database (Denmark)

    Clegg, P.S.; Cowley, R.A.; Goff, J.P.

    2000-01-01

    Epitaxial thin-films of DyxPr1-x alloys have been studied using neutron diffraction and magnetization measurements. The crystal structure changes from HCP to Sm type to DHCP as x decreases; each crystal phase has different magnetic behaviour. Surprisingly, long-range order is suppressed in the DH...

  16. Magnetic properties of ball-milled TbFe2 and TbFe2B

    Indian Academy of Sciences (India)

    J Arout Chelvane; S Kasiviswanathan; M V Rao; G Markandeyulu

    2004-04-01

    The magnetic properties of ball-milled TbFe2 and TbFe2B were studied by magnetization measurements. X-ray diffraction studies on TbFe2B showed that boron occupied interstitial position in the crystal structure, just as hydrogen did. The value of the saturation magnetization of TbFe2B was found to be smaller than that of TbFe2. This is explained on the basis of a charge transfer between the boron atoms and the 3d band of Fe. The anisotropy of TbFe2B was found to be large compared to that of TbFe2. X-ray diffractograms for the ball milled samples showed that after 80 h of milling, a predominantly amorphous phase was obtained. TbFe2B was found to undergo easy amorphization compared to TbFe2. Magnetization of TbFe2 was found to decrease rapidly with initial milling hours and was found to be constant with further hours of milling. TbFe2B exhibited an anomalous behaviour with an increase in moment with milling hours and this may be due to the segregation of -Fe.

  17. Magnetic properties of hybrid elastomers with magnetically hard fillers: rotation of particles

    Science.gov (United States)

    Stepanov, G. V.; Borin, D. Yu; Bakhtiiarov, A. V.; Storozhenko, P. A.

    2017-03-01

    Hybrid magnetic elastomers belonging to the family of magnetorheological elastomers contain magnetically hard components and are of the utmost interest for the development of semiactive and active damping devices as well as actuators and sensors. The processes of magnetizing of such elastomers are accompanied by structural rearrangements inside the material. When magnetized, the elastomer gains its own magnetic moment resulting in changes of its magneto-mechanical properties, which remain permanent, even in the absence of external magnetic fields. Influenced by the magnetic field, magnetized particles move inside the matrix forming chain-like structures. In addition, the magnetically hard particles can rotate to align their magnetic moments with the new direction of the external field. Such an elastomer cannot be demagnetized by the application of a reverse field.

  18. Magnetism in nanoparticles: tuning properties with coatings.

    Science.gov (United States)

    Crespo, Patricia; de la Presa, Patricia; Marín, Pilar; Multigner, Marta; Alonso, José María; Rivero, Guillermo; Yndurain, Félix; González-Calbet, José María; Hernando, Antonio

    2013-12-04

    This paper reviews the effect of organic and inorganic coatings on magnetic nanoparticles. The ferromagnetic-like behaviour observed in nanoparticles constituted by materials which are non-magnetic in bulk is analysed for two cases: (a) Pd and Pt nanoparticles, formed by substances close to the onset of ferromagnetism, and (b) Au and ZnO nanoparticles, which were found to be surprisingly magnetic at the nanoscale when coated by organic surfactants. An overview of theories accounting for this unexpected magnetism, induced by the nanosize influence, is presented. In addition, the effect of coating magnetic nanoparticles with biocompatible metals, oxides or organic molecules is also reviewed, focusing on their applications.

  19. Soft-X-ray magnetic circular dichroism : a new technique for probing magnetic properties of magnetic surfaces and ultrathin films

    NARCIS (Netherlands)

    Tjeng, L.H.; Idzerda, Y.U.; Rudolf, P.; Sette, F.; Chen, C.T.

    1992-01-01

    We demonstrate the feasibility of applying the novel soft-X-ray magnetic circular dichroism (SXMCD) technique to investigate the magnetic properties of magnetic surfaces and uitrathin films. Measurements have been carried out on Ni films of various thickness on a Cu(100) substrate at the Ni L2,3 abs

  20. Photothermal investigation of local and depth dependent magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Pelzl, J; Meckenstock, R, E-mail: pelzl@fks.rub.d [Institute of Experimental Physics, Solid State Spectroscopy, Ruhr-University, D-44780 Bochum (Germany)

    2010-03-01

    To achieve a spatially resolved measurement of magnetic properties two different photothermal approaches are used which rely on heat dissipated by magnetic resonance absorption or thermal modulation of the magnetic properties, respectively. The heat produced by modulated microwave absorption is detected by the classical photothermal methods such as photoacoustic effect and mirage effect. Examples comprise depth resolution of the magnetization of layered tapes and visualisation of magnetic excitations in ferrites. The second photothermal technique relies on the local modulation of magnetic properties by a thermal wave generated with an intensity modulated laser beam incident on the sample. This technique has a higher spatial resolution and sensitivity and has been used to characterize lateral magnetic properties of multilayers and spintronic media. To extend the lateral resolution of the ferromagnetic resonance detection into the nm-range techniques have been developed which are based on the detection of the modulated thermal microwave response by the thermal probe of an atomic force microscope (AFM) or by detection the thermal expansion of the magnetic sample in the course of the resonant microwave absorption with an AFM or tunnelling microscope. These thermal near field based techniques in ferromagnetic resonance have been successfully applied to image magnetic inhomogeneities around nano-structures and to measure the ferromagnetic resonance from magnetic nano-dots.

  1. Magnetic and Electric Properties of , ( Layered Perovskites

    Directory of Open Access Journals (Sweden)

    A. I. Ali

    2013-01-01

    Full Text Available The electric and magnetic properties of layered perovskites have been investigated systematically over the doping range . It was found that both Sr1.5Y0.5CoO4 and Sr1.4Y0.6CoO4 undergo ferromagnetic (FM transition around 145 K and 120 K, respectively. On the other hand, Sr1.3Y0.7CoO4 and Sr1.2Y0.8CoO4 compounds showed paramagnetic behavior over a wide range of temperatures. In addition, spin-glass transition ( was observed at 10 K for Sr1.3Y0.7CoO4. All investigated samples are semiconducting-like within the temperature range of 10–300 K. The temperature dependence of the electrical resistivity, , was described by two-dimensional variable range hopping (2D-VRH model at 50 K < ≤ 300 K. Comparison with other layered perovskites was discussed in this work.

  2. CeRh3B2: A ferromagnet with anomalously large Ce 5d spin and orbital magnetic moments

    Science.gov (United States)

    Yaouanc, A.; Dalmas de Réotier, P.; Sanchez, J.-P.; Tschentscher, Th.; Lejay, P.

    1998-01-01

    We report a high-energy magnetic-Compton-scattering study performed on the ferromagnet CeRh3B2. This technique solely measures the electron spin magnetic moments. In contrast to a number of Ce intermetallics with nonmagnetic elements, the Ce 5d spin moment is found to be large and parallel to the Ce 4f spin moment. Therefore the Kondo effect does not play a key role for CeRh3B2. The inferred large Ce 5d orbital magnetic moment is a signature of the strong spin-orbit interaction for the Ce 5d band.

  3. Magnetic and Magneto-Optical Properties in Paramagnetic NdF3 Under High Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; LIU Gong-Qiang

    2005-01-01

    In this paper, we first theoretically report the magnetic and magneto-optical properties in paramagnetic media under high external magnetic field. Considering the action of the external magnetic field He and indirect exchange interaction Hv, the characteristic of the magnetic saturation and the property of the Faraday rotation to be nonlinear with external magnetic field are presented in paramagnetic NdF3. In terms of our theory, the indirect exchange interaction plays an important role in the magnetization M and the Faraday rotation θ in NdF3 under high external magnetic field. The theory is in good agreement with experimental results. On the other hand, a reasonable explanation for the temperature dependence of the ratio of the Verdet constant to the magnetic susceptibility V/x is obtained.

  4. Magnetic and magnetothermal properties and the magnetic phase diagram of high purity single crystalline terbium along the easy magnetization direction.

    Science.gov (United States)

    Zverev, V I; Tishin, A M; Chernyshov, A S; Mudryk, Ya; Gschneidner, K A; Pecharsky, V K

    2014-02-12

    The magnetic and magnetothermal properties of a high purity terbium single crystal have been re-investigated from 1.5 to 350 K in magnetic fields ranging from 0 to 75 kOe using magnetization, ac magnetic susceptibility and heat capacity measurements. The magnetic phase diagram has been refined by establishing a region of the fan-like phase broader than reported in the past, by locating a tricritical point at 226 K, and by a more accurate definition of the critical fields and temperatures associated with the magnetic phases observed in Tb.

  5. Magnetic Properties of Nd12Co6Pb Compound

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The magnetic and magnetocaloric properties for the Nd12Co6Pb compound were investigated. The Curie temperature TC of the magnetic transition of Nd12Co6Pb compound is 194 K. The experimentally determined magnetic effective paramagnetic moment is μeff=12.36 μB per formula unit (3.49 μB per Nd atom). The maximum magnetic entropy change in the low magnetic field changes of 0~2 T for the Nd12Co6Pb compound is about 215.0 J·mole-1·K-1.

  6. Enhancement in magnetic properties of magnesium substituted bismuth ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jianlong; Xie, Dan, E-mail: xiedan@mail.tsinghua.edu.cn, E-mail: RenTL@mail.tsinghua.edu.cn; Teng, Changjiu; Zhang, Xiaowen; Zhang, Cheng; Sun, Yilin; Ren, Tian-Ling, E-mail: xiedan@mail.tsinghua.edu.cn, E-mail: RenTL@mail.tsinghua.edu.cn [Institute of Microelectronics, Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing 100084 (China); Zeng, Min; Gao, Xingsen [Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006 (China); Zhao, Yonggang [Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China)

    2015-06-14

    We report a potential way to effectively improve the magnetic properties of BiFeO{sub 3} (BFO) nanoparticles through Mg{sup 2+} ion substitution at the Fe-sites of BFO lattice. The high purity and structural changes induced by Mg doping are confirmed by X-ray powder diffractometer and Raman spectra. Enhanced magnetic properties are observed in Mg substituted samples, which simultaneously exhibit ferromagnetic and superparamagnetic properties at room temperature. A physical model is proposed to support the observed ferromagnetism of Mg doped samples, and the superparamagnetic properties are revealed by the temperature dependent magnetization measurements. The improved magnetic properties and soft nature obtained by Mg doping in BFO nanoparticles demonstrate the possibility of BFO nanoparticles to practical applications.

  7. Enhancement in magnetic properties of magnesium substituted bismuth ferrite nanoparticles

    Science.gov (United States)

    Xu, Jianlong; Xie, Dan; Teng, Changjiu; Zhang, Xiaowen; Zhang, Cheng; Sun, Yilin; Ren, Tian-Ling; Zeng, Min; Gao, Xingsen; Zhao, Yonggang

    2015-06-01

    We report a potential way to effectively improve the magnetic properties of BiFeO3 (BFO) nanoparticles through Mg2+ ion substitution at the Fe-sites of BFO lattice. The high purity and structural changes induced by Mg doping are confirmed by X-ray powder diffractometer and Raman spectra. Enhanced magnetic properties are observed in Mg substituted samples, which simultaneously exhibit ferromagnetic and superparamagnetic properties at room temperature. A physical model is proposed to support the observed ferromagnetism of Mg doped samples, and the superparamagnetic properties are revealed by the temperature dependent magnetization measurements. The improved magnetic properties and soft nature obtained by Mg doping in BFO nanoparticles demonstrate the possibility of BFO nanoparticles to practical applications.

  8. Magnetoresistive properties of nanostructured magnetic metals, manganites, and magnetic semiconductors

    Science.gov (United States)

    Solin, N. I.; Romashev, L. N.; Naumov, S. V.; Saranin, A. A.; Zotov, A. V.; Olyanich, D. A.; Kotlyar, V. G.; Utas, O. A.

    2016-02-01

    We consider methods for controlling magnetoresistive parameters of magnetic metal superlattices, manganites, and magnetic semiconductors. By reducing the thickness of ferromagnetic layers in superlattices (e.g., Fe layers in Fe/Cr superlattices), it is possible to form superparamagnetic clustered-layered nanostructures with a magnetoresistance weakly depending on the direction of the external magnetic field, which is very important for applications of such type of materials. Producing Mn vacancies and additionally annealing lanthanum manganites in the oxygen atmosphere, it is possible to increase their magnetoresistance by more than four orders of magnitude. By changing the thickness of p- n junction in the structure of ferromagnetic semiconductors, their magnetoresistance can be increased by 2-3 orders of magnitude.

  9. Neutron diffraction study of anomalous high-field magnetic phases in TmNi2B2C

    DEFF Research Database (Denmark)

    Toft, K.N.; Abrahamsen, A.B.; Eskildsen, M.R.;

    2004-01-01

    .483,0,0), and Q(AII)=(0.496,0,0), all with the magnetic moment along the c axis. In zero and low fields the Tm 4f-moments order in a long wavelength transverse spin density wave with Q=Q(F). The magnetic Q(AI) structure is stabilized by an applied field of 1 T and a transition to Q(AII) is observed at 4 T......We present a (B,T)-phase diagram of the magnetic superconductor TmNi2B2C obtained by neutron scattering. The measurements were performed in magnetic fields up to 6 T applied along the crystalline a axis. The observed phases are characterized by three ordering vectors, Q(F)=(0.094,0.094,0),Q(AI)=(0.......90Yb0.10)Ni2B2C the Q(F)-->Q(AI) phase transition is also observed but at a larger transition field compared to the undoped compound. In (Tm0.85Yb0.15)Ni2B2C the Q(F) phase persists up to at least 1.8 T. The magnetic correlation length of the Q(AI) phase in TmNi2B2C measured parallel and perpendicular...

  10. Neutrino Mass, Dark Matter and Anomalous Magnetic Moment of Muon in a $U(1)_{L_{\\mu}-L_{\\tau}}$ Model

    CERN Document Server

    Biswas, Anirban; Khan, Sarif

    2016-01-01

    The observation of neutrino masses, mixing and the existence of dark matter are amongst the most important signatures of physics beyond the Standard Model (SM). In this paper, we propose to extend the SM by a local $L_\\mu - L_\\tau$ gauge symmetry, two additional complex scalars and three right-handed neutrinos. The $L_\\mu - L_\\tau$ gauge symmetry is broken spontaneously when one of the scalars acquires a vacuum expectation value. The $L_\\mu - L_\\tau$ gauge symmetry is known to be anomaly free and can explain the beyond SM measurement of the anomalous muon $({\\rm g-2})$ through additional contribution arising from the extra $Z_{\\mu\\tau}$ mediated diagram. Small neutrino masses are explained naturally through the Type-I seesaw mechanism, while the mixing angles are predicted to be in their observed ranges due to the broken $L_\\mu-L_\\tau$ symmetry. The second complex scalar is shown to be stable and becomes the dark matter candidate in our model. We show that while the $Z_{\\mu\\tau}$ portal is ineffective for the...

  11. Anomalous magneto-structural behavior of MnBi explained: A path towards an improved permanent magnet

    Directory of Open Access Journals (Sweden)

    N. A. Zarkevich

    2014-03-01

    Full Text Available Low-temperature MnBi (hexagonal NiAs phase exhibits anomalies in the lattice constants (a, c and bulk elastic modulus (B below 100 K, spin reorientation and magnetic susceptibility maximum near 90 K, and, importantly for high-temperature magnetic applications, an increasing coercivity (unique to MnBi above 180  K. We calculate the total energy and magneto-anisotropy energy (MAE versus (a, c using DFT+U methods. We reproduce and explain all the above anomalies. We predict that coercivity and MAE increase due to increasing a, suggesting means to improve MnBi permanent magnets.

  12. Magnetic properties of a nanoribbon: An effective-field theory

    Science.gov (United States)

    Wang, Jiu-Ming; Jiang, Wei; Zhou, Chen-Long; Shi, Zuo; Wu, Chuang

    2017-02-01

    An effective-field theory is proposed to study magnetic properties of a nanoribbon. The model consists of a core spin-3/2 and shell spin-2 with a ferrimagnetic exchange coupling, which is described by transverse Ising model with the anisotropy. Based on the differential operator technique, the magnetization and the susceptibility formulas of the nanoribbon are given. Numerical results of the magnetization, the susceptibility, the hysteresis loop of the system are discussed for specific values of the parameters. Magnetization plateaus exhibits on the magnetization curves at low temperature. The exchange coupling, the anisotropy and the transverse field have important roles in the magnetic properties for the nanoribbon. Results may provide some guidance to design in the nanoribbons.

  13. Stress dependent vector magnetic properties in electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Ktena, Aphrodite, E-mail: aktena@teihal.gr [Department of Electrical Engineering, TEI of Chalkida, Psachna, Evia 34400 (Greece); Davino, Daniele; Visone, Ciro [Engineering Department, University of Sannio (Italy); Hristoforou, Evangelos [Laboratory of Metallurgy, National Technical University of Athens (Greece)

    2014-02-15

    The dependence of macroscopic magnetic properties on applied and residual stresses is promising for development of new magnetic non-destructive evaluation techniques in ferrous materials. The reliability of AC magnetometry, in determining the effect of strain on magnetic macroscopic parameters, is evaluated against scalar and vector Vibrating Sample Magnetometer measurements on strained electrical steel samples after unloading. Hysteresis loops have been measured at 0°, 30°, 45°, 60° and 90° to the direction of the applied stress. Vector magnetic properties reveal a stress-related anisotropy component, which increases with strain and deteriorates after fracture. The effect of residual stress on the saturation and remanent magnetization, as well as the differential susceptibility, is discussed with respect to data from AC magnetometry at 0.1 Hz. The results of the latter are representative of the magnetic configuration of the material under test and make it a promising candidate for NDE applications in steels.

  14. The magnetic properties of powdered and compacted microcrystalline permalloy

    Science.gov (United States)

    Kollár, P.; Olekšáková, D.; Füzer, J.; Kováč, J.; Roth, S.; Polański, K.

    2007-03-01

    The aim of this work is to investigate the magnetic properties of powdered and compacted microcrystalline Ni-Fe (81 wt% of Ni) permalloy. It was found by investigating the influence of mechanical milling on the magnetic properties of powder samples prepared by milling of the ribbon that the alloy remains a solid solution with stable structure during the whole milling process. With decreasing particle size the rotation of magnetization vector gradually becomes dominant magnetization process and thus coercivity increases. After compaction of the powder by uniaxial hot pressing the magnetic contact between powder particles is recreated and for resulting bulk the displacement of the domain walls becomes dominant magnetization process with coercivity of 11 A/m (comparable with the coercivity of conventional permalloy).

  15. Magnetic properties of Pr-Fe-Co-B bonded HDDR magnets with alloying additions

    Directory of Open Access Journals (Sweden)

    Eguiberto Galego

    2007-09-01

    Full Text Available Microstructures and magnetic properties of Pr-Fe-Co-B bonded magnets were investigated. The magnets can be represented by the formulae, Pr14Fe63.9Co16B6M 0.1 (M = Ti, V, Cr, Ni, Zr, Nb or Mo, Pr14Fe63.8Co16B6Nb 0.1T0.1 (T/= Al, Si, P, Cu or Ga and Pr14Fe63.6Co16B6Nb 0.1R0.3 (R = Gd, Tb or Dy. The effects of additions on the magnetic properties of PrFeCoB-based magnets have been studied. Magnetically hard powders have been produced from homogenised alloys using the hydrogenation, disproportionation, desorption and recombination (HDDR process. The HDDR powders were isostatically pressed and bonded with cyanoacrylate adhesive to form permanent magnets.

  16. Relationship between nanoparticle growth and magnetic properties of magnetic nanocomposites

    NARCIS (Netherlands)

    Ortega, D.; Garitaonandia, J. S.; Ramirez-del-Solar, M.; Barrera-Solano, C.; Dominguez, M.

    2008-01-01

    A description of the growth processes of maghemite (gamma-Fe(2)O(3)) nanoparticles in a silica matrix (SiO(2)) synthesized under a classic sol-gel method is proposed in order to explain the observed magnetic behavior at different stages of the sample heat treatment. Analytical electron microscopy st

  17. Processing, properties and some novel applications of magnetic nanoparticles

    Indian Academy of Sciences (India)

    D Bahadur; J Giri; Bibhuti B Nayak; T Sriharsha; P Pradhan; N K Prasad; K C Barick; R D Ambashta

    2005-10-01

    Magnetic nanoparticles have been prepared by various soft chemical methods including self-assembly. The bare or surface-modified particles find applications in areas such as hyperthermia treatment of cancer and magnetic field-assisted radioactive chemical separation. We present here some of the salient features of processing of nanostructured magnetic materials of different sizes and shapes, their properties and some possible applications. The materials studied included metals, metal-ceramic composites, and ferrites.

  18. Magnetic Properties of Nanometer-sized Crystalline and Amorphous Particles

    DEFF Research Database (Denmark)

    Mørup, Steen; Bødker, Franz; Hansen, Mikkel Fougt;

    1997-01-01

    Amorphous transition metal-metalloid alloy particles can be prepared by chemical preparation techniques. We discuss the preparation of transition metal-boron and iron-carbon particles and their magnetic properties. Nanometer-sized particles of both crystalline and amorphous magnetic materials...... are superparamagnetic at finite temperatures. The temperature dependence of the superparamagnetic relaxation time and the influence of inter-particle interactions is discussed. Finally, some examples of studies of surface magnetization of alpha-Fe particles are presented....

  19. Large batch recycling of waste Nd–Fe–B magnets to manufacture sintered magnets with improved magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.T. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Yue, M., E-mail: yueming@bjut.edu.cn [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Liu, W.Q. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Li, X.L.; Yi, X.F.; Huang, X.L. [Anhui Province Key Laboratories of Rare Earth Permanent Magnet Materials, Anhui, 231500 (China); Anhui Earth-panda Advance Magnetic Material Co., Ltd., Anhui, 231500 (China); Zhang, D.T. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Chen, J.W. [Anhui Province Key Laboratories of Rare Earth Permanent Magnet Materials, Anhui, 231500 (China); Anhui Earth-panda Advance Magnetic Material Co., Ltd., Anhui, 231500 (China)

    2015-11-15

    The waste Nd–Fe–B sintered magnets up to 500 kg per batch were recycled to manufacture anisotropic sintered magnets by combination of hydrogen decrepitation (HD) and alloying technique. Magnetic properties and thermal stability of both the waste magnets and recycled magnets were investigated. The recycled magnet exhibits magnetic properties with remanence (B{sub r}) of 12.38 kGs, coercivity (H{sub ci}) of 24.89 kOe, and maximum energy product [(BH){sub max}] of 36.51 MGOe, respectively, which restores 99.20% of B{sub r}, 105.65% of H{sub ci}, and 98.65% of (BH){sub max} of the waste magnets, respectively. The volume fraction of Nd-rich phase in the recycled magnets is about 10.1 vol.%, which is bigger than that of the waste magnets due to the additive of Nd{sub 3}PrFe{sub 14}B alloy containing more rare earth. The remanence temperature coefficient (α) and coercivity temperature coefficient (β) of the recycled magnets are −0.1155%/K and −0.5099%/K in the range of 288–423 K, respectively, which are comparative to those of the waste magnets. - Highlights: • Large batch recycling of waste Nd–Fe–B sintered magnets were performed. • The recycled magnet restores 99.20% of B{sub r}, 105.65% of H{sub ci} and 98.65% of (BH){sub max} of the magnet. • The recycled magnets bears bigger volume fraction and better distribution of Nd-rich phase. • The recycled magnets exhibit similar temperature coefficients and maximum working temperature.

  20. Elastic properties of DNA linked flexible magnetic filaments

    Energy Technology Data Exchange (ETDEWEB)

    Erglis, K; Cebers, A [Department of Theoretical Physics, University of Latvia, Zellu 8, Riga, LV-1002 (Latvia); Zhulenkovs, D; Sharipo, A [Latvian Biomedical Research and Study Center, Ratsupites 1, Riga, LV-1067 (Latvia)], E-mail: aceb@tesla.sal.lv

    2008-05-21

    Elastic properties of magnetic filaments linked by DNA in solutions of univalent and bivalent salts with different pH values are investigated through their deformation in an external field. A strong dependence of the bending modulus in bivalent salt solution on the pH is shown. Experimental results are interpreted on the basis of the magnetic elastica.

  1. Magnetic properties of Fe1-xMnx/Fe nanocomposites

    DEFF Research Database (Denmark)

    Anhøj, Thomas Aarøe; Jacobsen, Claus Schelde; Mørup, Steen

    2004-01-01

    We have prepared nanocomposites of mixtures of ferromagnetic alpha-Fe and antiferromagnetic gamma-Fe50Mn50 nanoparticles, and studied their magnetic and structural properties by magnetization measurements, Mössbauer spectroscopy, and x-ray diffraction. A sample consisting of a 1:1 mixture...

  2. Structural and magnetic properties of granular CoPd multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Vivas, L.G.; Figueroa, A.I.; Bartolomé, F. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Dept. de Física de la Materia Condensada, E-50009 Zaragoza (Spain); Rubín, J. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Dept. de Ciencia y Tecnología de Materiales y Fluidos, E-50018 Zaragoza (Spain); García, L.M. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Dept. de Física de la Materia Condensada, E-50009 Zaragoza (Spain); Deranlot, C.; Petroff, F. [Unité Mixte de Physique CNRS/Thales, F-91767 Palaiseau Cedex, France and Université Paris-Sud, F-191405 Orsay Cedex (France); Ruiz, L.; González-Calbet, J.M [Dept. de Química Inorgánica, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Brookes, N.B.; Wilhelm, F.; Rogalev, A. [European Synchrotron Radiation Facility (ESRF), CS40220, F-38043 Grenoble Cedex 9 (France); Bartolomé, J. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Dept. de Física de la Materia Condensada, E-50009 Zaragoza (Spain)

    2016-02-15

    Multilayers of bimetallic CoPd alloyed and assembled nanoparticles, prepared by room temperature sequential sputtering deposition on amorphous alumina, were studied by means of high-resolution transmission electron microscopy, x-ray diffraction, SQUID-based magnetometry and x-ray magnetic circular dichroism. Alloying between Co and Pd in these nanoparticles gives rise to a high perpendicular magnetic anisotropy. Their magnetic properties are temperature dependent: at low temperature, the multilayers are ferromagnetic with a high coercive field; at intermediate temperature the behavior is of a soft-ferromagnet, and at higher temperature, the perpendicular magnetic anisotropy in the nanoparticles disappears. The magnetic orbital moment to spin moment ratio is enhanced compared with Co bare nanoparticles and Co fcc bulk. - Highlights: • CoPd granular nanolayers show perpendicular magnetic anisotropy. • Three magnetic phases are detected: hard-ferro, soft-ferro and superparamagnetism. • The nanoparticles have Co-core and CoPd alloy shell morphology.

  3. Microstructure characterization and magnetic properties of nano structured materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, X.C

    2000-07-01

    The present thesis deals with the unique microstructural properties and their novel magnetic properties of core-shell Ni-Ce nano composite particles, carbon encapsulated Fe, Co, and Ni nanoparticles and the nano crystallization behavior of typical ferromagnetic Fe{sub 78}Si{sub 9}B{sub 13} ribbons. These properties have intensively been investigated by high resolution transmission electron microscopy (HREM), X-ray diffraction (XRD), scanning electron microscopy (Sem), X-ray energy dispersive spectroscopy [eds.]; selected area electron diffraction pattern (SAED), Ft-IR, differential scanning calorimeter (DSC). In addition, magnetic moments measurements at different temperatures and applied fields have been performed by transmission Moessbauer spectroscopy, superconducting quantum interference device magnetometer (SQUID), and vibrating sample magnetometer (VSM). The present studies may provide the insights for the better understanding of the correlation between the unique microstructure and novel magnetic properties for several magnetic nano structured materials. (Author)

  4. Towards a Better Understanding of the Anomalous Hall Effect

    Science.gov (United States)

    Yue, Di; Jin, Xiaofeng

    2017-01-01

    Recent experimental efforts to identify the intrinsic and extrinsic contributions in the anomalous Hall effect are reviewed. Benefited from the experimental control of artificial impurity density in single crystalline magnetic thin films, a comprehensive physical picture of the anomalous Hall effect involving multiple competing scattering processes has been established. Some new insights into the microscopic mechanisms of the anomalous Hall effect are discussed.

  5. Colossal anisotropy of the magnetic properties of doped lithium nitrodometalates

    Energy Technology Data Exchange (ETDEWEB)

    Antropov, Vladimir P [Ames Laboratory; Antonov, Victor N [Ames Laboratory

    2014-09-01

    We present a first-principles investigation of the electronic structure and physical properties of doped lithium nitridometalates Li2(Li1-xMx)N (LiMN) with M = Cr, Mn, Fe, Co, and Ni. The diverse properties include the equilibrium magnetic moments, magneto-crystalline anisotropy, magneto-optical Kerr spectra, and x-ray magnetic circular dichroism. We explain the colossal magnetic anisotropy in LiFeN by its unique electronic structure which ultimately leads to a series of unusual physical properties. The most unique property is a complete suppression of relativistic effects and freezing of orbital moments for in-plane orientation of the magnetization. This leads to the colossal spatial anisotropy of many magnetic properties including energy, Kerr, and dichroism effects. LiFeN is identified as an ultimate single-ion anisotropy system where a nearly insulating state can be produced by a spin orbital coupling alone. A very nontrivial strongly fluctuating and sign changing character of the magnetic anisotropy with electronic 3d-atomic doping is predicted theoretically. A large and highly anisotropic Kerr effect due to the interband transitions between atomic-like Fe 3d bands is found for LiFeN. A giant anisotropy of the x-ray magnetic circular dichroism for the Fe K spectrum and a very weak one for the Fe L2,3 spectra in LiFeN are also predicted.

  6. Electrical Properties of Nanostructured Magnetic Colloid and Influence of Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    PU Sheng-Li; CHEN Xian-Feng; DI Zi-Yun; GENG Tao; XIA Yu-Xing

    2007-01-01

    We investigate the electrical properties of the nanostructured magnetic colloid without and with magnetic Held. The competition between the directional motion of the charged magnetic nanoparticles and other minor nonmagnetic impurities (also small amount of ions) under applied voltage and their random orientation due to thermal activation is implemented to elaborate the electrically conduction mechanism under zero magnetic Geld. Two equivalent electric circuits are employed for explaining the charging and discharging processes. The tunnelling conduction mechanism upon application of externally magnetic field may exist in the nanostructured magnetic colloid. The alternation of the two conduction mechanisms accounts for the current spikes when the magnetic field is switched on or off. This work presents the peculiar electrical phenomena of the magnetically colloidal system.

  7. Magnetic properties and magnetic exchange interactions in Gd1-xREx(RE=Pr, Nd) alloys

    Institute of Scientific and Technical Information of China (English)

    肖素芬; 陈云贵

    2016-01-01

    The effect of Pr, Nd addition on the magnetic properties and magnetic exchange interaction of gadolinium alloys was sys-tematically studied. Curie temperatureTC and magnetic moment of Gd1–xREx (RE=Pr, Nd) systems withx<0.05 were investigated. Whenx<0.05, Pr and Nd formed respectively with Gd continuous solid solution which has the crystalline structure HCP. Study on the magnetic behavior indicated that at near room temperature, the simple ferromagnetism prevailed in these two systems of alloy. The Curie temperature and magnetic moment of Gd1–xREx alloy decreased with RE (RE= Pr, Nd) contentx increasing. The de Gennes factor of Gd1–xREx alloy which was associated with the exchange interaction between magnetic spin components also decreased with RE content increasing. The above results showed that the magnetic exchange interaction between magnetic atoms in gadolinium could be effectively changed by the Pr, Nd addition.

  8. Anomalous elastic properties of RF-sputtered amorphous TeO2+x thin film for temperature-stable SAW device applications.

    Science.gov (United States)

    Dewan, Namrata; Sreenivas, Kondepudy; Gupta, Vinay

    2008-03-01

    The anomalous elastic properties of TeO2+x thin films deposited by rf diode sputtering on substrates at room temperature have been studied. The deposited films are amorphous, and IR spectroscopy reveals the formation of Te-O bond. X-ray photoelectron spectroscopy confirms the variation in the stoichiometry of TeO2+x film from x=0 to 1 with an increase in the oxygen percentage in processing gas composition. The elastic parameters of the films in comparison to the reported values for TeO2+x single crystal are found to be low. However, the temperature coefficients of elastic parameters of all deposited films exhibit anomalous behavior showing positive values for TC(C11) in the range (32.0 to 600.0)x10(-4) degrees C(-1) and TC(C44)=(35.0 to 645.5)x10(-4) degrees C(-1) against the negative values TC(C11)=-2.7x10(-4) degrees C(-1) and TC(C44)=-0.73x10(-4) degrees C(-1) reported for TeO2+x single crystal. The variation in the elastic parameters and their temperature coefficients is correlated with the change in the three-dimensional network of Te-O bonding. The anomalous elastic properties of the TeO2+x films grown in 100% O2 are useful for potential application in the design of temperature stable surface acoustic wave devices.

  9. Magnetic properties of doped Heisenberg chains

    Energy Technology Data Exchange (ETDEWEB)

    Frahm, Holger; Slavnov, Nikita A

    2000-06-05

    The magnetic susceptibility of systems from a class of integrable models for doped spin-S Heisenberg chains is calculated in the limit of vanishing magnetic field. For small concentrations x{sub h} of the mobile spin-(S-1/2) charge carriers we find an explicit expression for the contribution of the gapless mode associated to the magnetic degrees of freedom of these holes to the susceptibility which exhibits a singularity for x{sub h}{yields}0 for sufficiently large S. We prove a sum rule for the contributions of the two gapless magnetic modes in the system to the susceptibility which holds for arbitrary hole concentration. This sum rule complements the one for the low temperature specific heat which has been obtained previously.

  10. MAGNETIC PROPERTY CHANGE IN AN AUSTENITIC STAINLESS STEEL SUBJECTED TO DAMAGE AT ELEVATED TEMPERATURE - MICROSTRUCTURE RESPONSIBLE FOR MAGNETIC PROPERTY

    Institute of Scientific and Technical Information of China (English)

    Y.Nagae; K.Aoto

    2004-01-01

    It has been found that magnetic property changes in austenitic stainless steel subjected to creep at high temperature. The change of magnetic property is mainly due to decrease the chromium concentration in the vicinity of grain boundary and transform into martensite in the area. However this result is for short-term creep. It is necessary to evaluate the long-term creep in order to develop non-destructive technique for plants. Moreover it is important to evaluate the fatigue. The change of magnetic property for those damages at high temperatures is investigated. The transformation into martensite is observed for both the long-term creep and fatigue. The magnetic regions are observed in sever deformed area and near crack. Then the formation of magnetic phases is related to the damage. The damage at high temperature can be universally evaluated.

  11. Properties of Magnetized Quark-Hybrid Stars

    CERN Document Server

    Orsaria, M; Vucetich, H; Weber, F

    2011-01-01

    The structure of a magnetized quark-hybrid stars (QHS) is modeled using a standard relativistic mean-field equation of state (EoS) for the description of hadronic matter. For quark matter we consider a bag model EoS which is modified perturbatively to account for the presence of a uniform magnetic field. The mass-radius (M-R) relationship, gravitational redshift and rotational Kepler periods of such stars are compared with those of standard neutron stars (NS).

  12. Magnetic properties and thermal stability of anisotropic bonded Nd-Fe-B magnets by warm compaction

    Institute of Scientific and Technical Information of China (English)

    TAO Siwu; LU Xin; TIAN Jianjun; QU Xuanhui; Y. Honkura; H. Mitaraib; K. Noguchi

    2009-01-01

    Anisotropic bonded magnets were prepared by warm compaction using anisotropic Nd-Fe-B powder. The forming process, magnetic properties, and temperature stability were studied. The results indicate that the optimal temperature of the process, which was decided by the viscosity of the binders, was 110℃. With increasing pressure, the density of the magnets increased. When the pressure was above 700 MPa, the powder particles were destroyed and the magnetic properties decreased. The magnetic properties of the anisotropic bonded magnets were as follows: remanence Br = 0.98 T, intrinsic coercivity iHc=1361 kA/m, and maximum energy product BHmax = 166 kJ/m3. The magnets had excellent thermal stability because of the high coercivity and good squareness of demagnetization curves. The flux density of the magnets was 35% higher than that of isotropic bonded Nd-Fe-B magnets at 120℃ for 1000 h. The flux density of the bonded magnets showed little change with regard to temperature.

  13. Magnetic properties of alluvial soils polluted with heavy metals

    Science.gov (United States)

    Dlouha, S.; Petrovsky, E.; Boruvka, L.; Kapicka, A.; Grison, H.

    2012-04-01

    Magnetic properties of soils, reflecting mineralogy, concentration and grain-size distribution of Fe-oxides, proved to be useful tool in assessing the soil properties in terms of various environmental conditions. Measurement of soil magnetic properties presents a convenient method to investigate the natural environmental changes in soils as well as the anthropogenic pollution of soils with several risk elements. The effect of fluvial pollution with Cd, Cu, Pb and Zn on magnetic soil properties was studied on highly contaminated alluvial soils from the mining/smelting district (Příbram; CZ) using a combination of magnetic and geochemical methods. The basic soil characteristics, the content of heavy metals, oxalate, and dithionite extractable iron were determined in selected soil samples. Soil profiles were sampled using HUMAX soil corer and the magnetic susceptibility was measured in situ, further detailed magnetic analyses of selected distinct layers were carried out. Two types of variations of magnetic properties in soil profiles were observed corresponding to indentified soil types (Fluvisols, and Gleyic Fluvisols). Significantly higher values of topsoil magnetic susceptibility compared to underlying soil are accompanied with high concentration of heavy metals. Sequential extraction analysis proved the binding of Pb, Zn and Cd in Fe and Mn oxides. Concentration and size-dependent parameters (anhysteretic and isothermal magnetization) were measured on bulk samples in terms of assessing the origin of magnetic components. The results enabled to distinguish clearly topsoil layers enhanced with heavy metals from subsoil samples. The dominance of particles with pseudo-single domain behavior in topsoil and paramagnetic/antiferromagnetic contribution in subsoil were observed. These measurements were verified with room temperature hysteresis measurement carried out on bulk samples and magnetic extracts. Thermomagnetic analysis of magnetic susceptibility measured on

  14. Integrated On-line Instrumentation System of Magnetic Properties Measurement

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A portable microcomputer-controlled inspection system has been developed for detection of mag netic properties of soft magnetic materials. It incorporates custom designed software for control of the magnetic field during operation such as demagnetization, field sweeping, and for data logging and analysis. Results are recorded using a 12-bit analog to digital converter and are then stored on disk. The magnetic hysteresis loop and Barkhausen noise data can be converted into important magnetic parameters:, coecivity, remanence, and hysteresis loss, Barkhausen ampli tude, and Barkhausen noise energy. This system incorporated with the magnetostriction, and magnetoacoustic emission, is then related with the nondestructive detection of material degra dation.

  15. Thermal to electricity conversion using thermal magnetic properties

    Science.gov (United States)

    West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

    2010-04-27

    A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

  16. Electronic and magnetic properties of ultrathin rhodium nanowires

    CERN Document Server

    Wang Bao Lin; Ren-Yun; Sun Hou Qian; Chen Xiao Shuang; Zhao Ji Jun

    2003-01-01

    The structures of ultrathin rhodium nanowires are studied using empirical molecular dynamics simulations with a genetic algorithm. Helical multishell cylindrical and pentagonal packing structures are found. The electronic and magnetic properties of the rhodium nanowires are calculated using an spd tight-binding Hamiltonian in the unrestricted Hartree-Fock approximation. The average magnetic moment and electronic density of states are obtained. Our results indicate that the electronic and magnetic properties of the rhodium nanowires depend not only on the size of the wire but also on the atomic structure. In particular, centred pentagonal and hexagonal structures can be unusually ferromagnetic.

  17. Magnetic properties and thermodynamics in a metallic nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei, E-mail: weijiang.sut.edu@gmail.com; Li, Xiao-Xi; Guo, An-Bang; Guan, Hong-Yu; Wang, Zan; Wang, Kai

    2014-04-15

    A metallic nanotube composed of the ferromagnetic spin-3/2 inner shell and spin-1 outer shell with a ferrimagnetic interlayer coupling has been studied by using the effective-field theory with correlations (EFT). With both existence of the magnetic anisotropy and transverse field, we have studied effects of them on the magnetic properties and the thermodynamics. Some interesting phenomena have been found in the phase diagrams. At low temperature, the magnetization curves present different behaviors. Two compensation points have been found for the certain values of the system parameters in the system. The research results of metallic nanotubes may have potential applications in the fields of biomedicine and molecular devices. - Highlights: • A hexagonal metallic nanotube is composed of spin-3/2 inner layer and spin-1 outer layer. • Various types of magnetization curves depend on physical parameters and temperature. • We study the effects of physical parameters on the magnetic properties and thermodynamics.

  18. Characterizing the Properties of Coronal Magnetic Null Points

    Science.gov (United States)

    Barnes, Graham; DeRosa, Marc; Wagner, Eric

    2015-08-01

    The topology of the coronal magnetic field plays a role in a wide range of phenomena, from Coronal Mass Ejections (CMEs) through heating of the corona. One fundamental topological feature is the null point, where the magnetic field vanishes. These points are natural sites of magnetic reconnection, and hence the release of energy stored in the magnetic field. We present preliminary results of a study using data from the Helioseismic and Magnetic Imager aboard NASA's Solar Dynamics Observatory to characterize the properties and evolution of null points in a Potential Field Source Surface model of the coronal field. The main properties considered are the lifetime of the null points, their distribution with height, and how they form and subsequently vanish.This work is supported by NASA/LWS Grant NNX14AD45G, and by NSF/SHINE grant 1357018.

  19. Magnetic properties of ferromagnetic nanowire arrays: Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ghaddar, A; Gieraltowski, J [Laboratoire de Magnetisme de Bretagne, UBO, CNRS-FRE 3117, C. S. 93837 Brest Cedex 3 (France); Gloaguen, F, E-mail: abbas.ghaddar@univ-brest.f [Laboratoire de Chimie, Electrochimie Moleculaire et Chimie Analytique, UBO, CNRS-UMR 6521, C. S. 93837 Brest Cedex 3 (France)

    2010-01-01

    Magnetic nanowires are good candidates for microwave filters, sensors and data storage applications. An investigation of magnetic properties of single-component nanowires as a function of diameter and aspect ratio is performed in this work. Nickel nanowire (with 15 and 100 nm diameter and 6000 nm length) are grown with electrodeposition in polycarbonates templates. Two reversal modes (coherent and curling) are studied versus nanowire diameter. Magnetostatic interaction among wires and its effect on nanowire magnetic properties is also studied. Using vibrating magnetometer (VSM) and X-band ferromagnetic resonance (FMR) experiments at room temperature we infer that the interaction field H{sub c} value may vary significantly and may cause a change of magnetic easy axis orientation along geometrical wire axis (for large diameter) to an easy magnetic plane perpendicular to the nanowire axis (for small diameter).

  20. Spectral Properties of the Martian Crustal Magnetic Field

    Science.gov (United States)

    Lewis, K. W.; Simons, F. J.

    2010-12-01

    Although the planet Mars no longer possesses an internal dynamo, its crustal rocks retain strong remanent magnetization thought to have been induced by an ancient core-sourced field. The strength and distribution of the crustal field is extremely heterogeneous, and particularly strong in the Terra Cimmeria region of the southern hemisphere. The field as a whole is inconsistent with induction from a single dipolar source, although previous studies have attempted to isolate individual magnetic anomalies to deduce paleopolar orientations. While several areas of the planet appear to have been demagnetized, including large impact basins and the Tharsis volcanic province, the distribution of the field is generally poorly correlated with surface geologic structures. However, beyond the spatial pattern of crustal magnetization, the magnetic power spectrum can provide information about the nature of the source and formation processes. Previous studies have used the power spectrum of the Martian field to estimate the approximate depth of the magnetic anomalies. We extend this approach by applying the spatiospectral localization technique of Wieczorek and Simons (2005) and Dahlen and Simons (2008) to isolate the magnetic power spectra of several areas of the Martian surface. This method allows us to look beyond the strongly magnetized Terra Cimmeria region, which dominates the global power spectrum. Localized spectral estimates, along with their appropriate errors, allow us to examine the significance of observed variations between distinct regions of the planet, and to evaluate the validity of analyses which operate on the whole sphere. Significant differences are observed between spectra of the Terra Cimmeria region and the remainder of the planet, a result of the concentration of power at certain spherical harmonic degrees in this anomalous region. Approximate depths to the magnetic sources are calculated for tiled windows on the planet using the stochastic magnetized

  1. Magnetic properties and heavy metal contents of automobile emission particulates

    Institute of Scientific and Technical Information of China (English)

    LU Sheng-gao; BAI Shi-qiang; CAI Jing-bo; XU Chuang

    2005-01-01

    Measurements of the magnetic properties and total contents of Cu, Cd, Pb and Fe in 30 automobile emission particulate samples indicated the presence of magnetic particles in them. The values of frequency dependent susceptibility (χfd)showed the absence of superparamagnetic (SP) grains in the samples. The IRM20 mT (isothermal remanent magnetization at 20 mT)being linearly proportional to SIRM (saturation isothermal remanent magnetization) (R2=0.901), suggested that ferrimagnetic minerals were responsible for the magnetic properties of automobile emission particulates. The average contents of Cu, Cd, Pb and Fe in automobile emission particulates were 95.83, 22.14, 30.58 and 34727.31 mg/kg, respectively. Significant positive correlations exist between the magnetic parameters and the contents of Pb, Cu and Fe. The magnetic parameters of automobile emission particulates reflecting concentration of magnetic particles increased linearly with increase of Pb and Cu content, showed that the magnetic measurement could be used as a preliminary index for detection of Pb and Cu pollution.

  2. Magnetic and structural properties of thin films and nanoparticles studied by scattering methods

    Energy Technology Data Exchange (ETDEWEB)

    Feygenson, M.

    2007-12-20

    The present work concerns the magnetic and structural properties of magnetic thin films and magnetic nanoparticles studied by scattering methods. The structural properties of epitaxially grown Fe/Cr/Fe trilayer were studied with anomalous x-ray scattering. Two different X-ray energies have been used; (i) one E{sub 1}=5985 eV to match the maximum contrast of the Fe/Cr interface close to the Cr absorption K-edge and (ii) a second one E{sub 2}=6940 eV where the Fe/Cr interface displays the lowest contrast. The specular reflectivity and longitudinal diffuse scans together with omega scans for both energies were measured. The simulations within the frame of Distorted Wave Born Approximation (DWBA) allowed us to describe quantitatively the morphology of each interface. The roughness, Hurst parameter and the thickness of every layer as well as an oxidation effect at the surface of the sample are derived. The influence of confinement on the magnetic behavior, was investigated in MnO embedded in a porous glass. We studied the magnetic order and phase transition of MnO nanoparticles by polarized neutron scattering. From the temperature dependence of the magnetic ((1)/(2) (1)/(2) (1)/(2)) Bragg intensity we obtained that for the MnO nanoparticles the phase transition is continuous with a Neel temperature T{sub N}=122 K. Furthermore, we observed that a part of the MnO nanoparticle material remains disordered even at 10 K. In order to study the spin-canting effect in magnetic nanoparticles, we explored a synthesis route of Co nanoparticles in which we employed water-in-oil microemulsions that are stabilized by the nonionic surfactants of the ethoxylated alkyl- or arylether series such as C{sub 12}E{sub 5} and Igepal CO520 and contain the NaBH{sub 4}-solution. Co nanoparticle formation is then induced by injecting a solution of Co(AOT){sub 2} in hexane. For a structural characterization of the Co nanoparticles, we performed small-angle X-ray scattering experiments at the JUSIFA

  3. The YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} anomalous second peak and irreversible magnetic field in the magnetization hysteresis cycles

    Energy Technology Data Exchange (ETDEWEB)

    Taoufik, A.; Ramzi, A.; Labrag, A. [Laboratoire des Materiaux Supraconducteurs a Haute Temperature Critique, Departement de Physique, Faculte des Sciences, Universite Ibn Zohr, B.P. 8106, Agadir (Morocco); Senoussi, S. [Laboratoire de Physique des Solides (associe au CNRS. URA. 0002), Universite Paris Sud, Batiment 510, 91405 Orsay Cedex (France)

    2004-05-01

    The flux jumps, the second peak and the irreversible magnetic field in the magnetization hysteresis cycles have been investigated in the high temperature superconductor YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} single crystals. These cycles were obtained for different temperature values, the applied magnetic fields up to 6 T and the angle {theta} between the applied magnetic field and c-axis. The magnetization curves exhibit a remarkable second peak ''fishtail'', this second peak was not observed for the low temperature, but we observed the flux jumps ''saw tooth''. The temperature dependence of the irreversible magnetic field, H{sub irr}, for the applied magnetic field perpendicular to the ab planes is given by an extended expression, H{sub irr}{alpha}(1-T/T {sub c}) {sup {alpha}}, where {alpha} is a constant, the Abrikosov flux dynamics can explain this behavior. The H {sub irr} as a function of {theta} has been strongly influenced by the flux pinning and the thermally assisted flux motion. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Tenth-Order QED contribution to Lepton Anomalous Magnetic Moment - Fourth-Order Vertices Containing Sixth-Order Vacuum-Polarization Subdiagrams

    CERN Document Server

    Aoyama, T; Kinoshita, T; Nio, M

    2011-01-01

    This paper reports the tenth-order contributions to the g-2 of the electron a_e and those of the muon a_mu from the gauge-invariant Set II(c), which consists of 36 Feynman diagrams, and Set II(d), which consists of 180 Feynman diagrams. Both sets are obtained by insertion of sixth-order vacuum-polarization diagrams in the fourth-order anomalous magnetic moment. The mass-independent contributions from Set II(c) and Set II(d) are -0.116 489 (32)(alpha/pi)^5 and -0.243 00 (29)(alpha/pi)^5, respectively. The leading contributions to a_mu, which involve electron loops only, are -3.888 27 (90)(alpha/pi)^5 and 0.4972 (65)(alpha/pi)^5 for Set II(c) and Set II(d), respectively. The total contributions of the electron, muon, and tau-lepton loops to a_e are -0.116 874 (32) (alpha/pi)^5 for Set II(c) and -0.243 10 (29) (alpha/pi)^5 for Set II(d). The contributions of electron, muon, and tau-lepton loops to a_mu are -5.5594 (11) (alpha/pi)^5 for Set II(c) and 0.2465 (65) (alpha/pi)^5 for Set II(d).

  5. Nuclear magnetic resonance properties of lunar samples.

    Science.gov (United States)

    Kline, D.; Weeks, R. A.

    1972-01-01

    Nuclear magnetic resonance spectra of Na-23, Al-27, and P-31 in fines samples 10084,60 and 14163,168 and in crystalline rock samples 12021,55 and 14321,166, have been recorded over a range of frequencies up to 20 MHz. A shift in the field at which maximum absorption occurs for all of the spectra relative to the field at which maximum absorption occurs for terrestrial analogues is attributed to a sample-dependent magnetic field at the Na, Al, and P sites opposing the laboratory field. The magnitude of these fields internal to the samples is sample dependent and varies from 5 to 10 G. These fields do not correlate with the iron content of the samples. However, the presence of single-domain particles of iron distributed throughout the plagioclase fraction that contains the principal fraction of Na and Al is inferred from electron magnetic resonance spectra shapes.

  6. Magnetic properties on strained manganite thin film

    Science.gov (United States)

    Prajapat, C. L.; Singh, M. R.; Gupta, S. K.; Bhattacharya, D.; Basu, S.; Ravikumar, G.

    2014-04-01

    Structural and magnetic studies on La2/3Sr1/3MnO3 (LSMO) epitaxial films grown on STO (100) and MgO (100) substrates by Pulsed Laser Deposition are presented. Due to larger interface strain, the grain size of LSMO on MgO is much smaller than that on STO substrate. However, anisotropy energy produced as a result of in plane tensile strain is much larger in case of the films deposited on MgO in such a way that the blocking (irreversibility) temperature and the coercive fields inferred from temperature and magnetic field dependent magnetization measurements are significantly higher. The importance of this result for the memory applications is highlighted.

  7. Magnetic nanofluid properties as the heat transfer enhancement agent

    Directory of Open Access Journals (Sweden)

    Roszko Aleksandra

    2016-01-01

    Full Text Available The main purpose of this paper was to investigate an influence of various parameters on the heat transfer processes with strong magnetic field utilization. Two positions of experimental enclosure in magnetic environment, two methods of preparation and three different concentrations of nanoparticles (0.0112, 0.056 and 0.112 vol.% were taken into account together with the magnetic field strength. Analysed nanofluids consisted of distilled water (diamagnetic and Cu/CuO particles (paramagnetic of 40–60 nm size. The nanofluids components had different magnetic properties what caused complex interaction of forces’ system. The heat transfer data and fluid flow structure demonstrated the influence of magnetic field on the convective phenomena. The most visible consequence of magnetic field application was the heat transfer enhancement and flow reorganization under applied conditions.

  8. Remanence Properties and Magnetization Reversal Mechanism of Fe Nanowire Arrays

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-Bo; LIU Qing-Fang; XUE De-Sheng; LI Fa-Shen

    2004-01-01

    @@ Remanence properties and magnetization reversal mechanism of Fe nanowire arrays with diameters 16 nm and130nm are studied. Isothermal remanent magnetization curves show that the contribution of irreversible magnetization decreases when the diameter changes from 16nm to 130nm. The remanence coercivities of these nanowires obtained in dc-demagnetization curve are about 2400 Oe and 800 Oe, respectively. The magnetization reversal mechanism is different in these two samples. For the nanowire array with diameter 16nm, both the nucleation and the pinning have effects on magnetization reversal mechanism, and the pinning field (about 2500Oe) is larger than the nucleation field (about 2200 Oe). However, for the nanowire array with diameter 130nm,the magnetization reversal mechanism is dominated by the pinning effect of domain walls.

  9. Superconductivity and magnetism: Materials properties and developments

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, N.H.; Bay, N.; Grivel, J.C. (eds.) [and others

    2003-07-01

    The 24th Risoe International Symposium on Materials Science focuses on development of new materials, devices and applications, as well as experimental and theoretical studies of novel and unexplained phenomena in superconductivity and magnetism, e.g. within high.T{sub c} superconductivity, magnetic superconductors, MgB{sub 2}, CMR materials, nanomagnetism and spin-tronics. The aim is to stimulate exchange of ideas and establish new collaborations between leading Danish and international scientists. The topics are addressed by presentations from 24 invited speakers and by 41 contributed papers. (ln)

  10. Magnetic properties of thin Ni films measured by a dc SQUID-based magnetic microscope

    DEFF Research Database (Denmark)

    Snigirev, O.V.; Andreev, K.E.; Tishin, A.M.;

    1997-01-01

    We have applied a scanning HTS (high-temperature superconductor) de SQUID (superconducting quantum interference device) -based magnetic microscope to study the magnetic properties of Au/Ni/Si(100) films in the thickness range from 8 to 200 Angstrom at T = 77 K. A one-domain structure with in-plan...

  11. Magnetic property and microstructure of SmCo magnetic recording films

    Institute of Scientific and Technical Information of China (English)

    LI; Ning; LI; Shuai

    2009-01-01

    Cr/SmCo/Cr thin films with Sm concentration of 37.7 at.% were deposited on glass substrates by magnetron sputtering. Meas-urement of magnetic properties showed that the SmCo film possessed good magnetic anisotropy, a high coercivity of 3019 kA/m and low magnetic exchange coupling. Microstructure analysis showed that crystallized SmCo5 magnetic phase, non-magnetic SmCo2 phase and Sm2Co7 phase co-existed ill the film. The non-magnetic SmCo2 phase might function as isolator of SmCo grains, leading to a decrease of magnetic exchange coupling. Moreover, a Cr2)3 oxide layer which could protect the SmCo layer from oxidation formed at the surface of the Cr cap layer.

  12. The structural and magnetic properties of holmium/scandium superlattices

    DEFF Research Database (Denmark)

    Bryn-Jacobsen, C.; Cowley, R.A.; McMorrow, D.F.;

    1997-01-01

    The properties of Ho/Sc superlattices grown by molecular beam epitaxy (MBE) have been investigated using X-ray and neutron diffraction techniques. Structural studies reveal the novel existence of more than one a lattice parameter. Examining the magnetic properties, it is found that the Ho 4f...

  13. Anomalous transport

    Science.gov (United States)

    Cheverry, Christophe

    2017-02-01

    This article is concerned with the relativistic Vlasov equation, for collisionless axisymmetric plasmas immersed in a strong magnetic field, like in tokamaks. It provides a consistent kinetic treatment of the microscopic particle phase-space dynamics. It shows that the turbulent transport can be completely described through WKB expansions.

  14. Magnetic properties of a classical XY spin dimer in a "planar" magnetic field

    Science.gov (United States)

    Ciftja, Orion; Prenga, Dode

    2016-10-01

    Single-molecule magnetism originates from the strong intra-molecular magnetic coupling of a small number of interacting spins. Such spins generally interact very weakly with the neighboring spins in the other molecules of the compound, therefore, inter-molecular spin couplings are negligible. In certain cases the number of magnetically coupled spins is as small as a dimer, a system that can be considered the smallest nanomagnet capable of storing non-trivial magnetic information on the molecular level. Additional interesting patterns arise if the spin motion is confined to a two-dimensional space. In such a scenario, clusters consisting of spins with large-spin values are particularly attractive since their magnetic interactions can be described well in terms of classical Heisenberg XY spins. In this work we calculate exactly the magnetic properties of a nanomagnetic dimer of classical XY spins in a "planar" external magnetic field. The problem is solved by employing a mathematical approach whose idea is the introduction of auxiliary spin variables into the starting expression of the partition function. Results for the total internal energy, total magnetic moment, spin-spin correlation function and zero-field magnetic susceptibility can serve as a basis to understand the magnetic properties of large-spin dimer building blocks.

  15. Magnetic and Cohesive Properties from Cononical Bands

    DEFF Research Database (Denmark)

    Poulsen, U. K.; Kollar, J.; Andersen, O. K.

    1976-01-01

    The atomic volumes, the bulk moduli, the magnetizations, the gain susceptibilities and the derivatives of these quantities with respect to pressure have been obtained from first principles for Fe, Ni, Rh, Pd, Ir and Pt at 0K using canonical band theory and the local spin-density approximation...

  16. Electronic, transport, and magnetic properties of punctured carbon nanotubes

    Science.gov (United States)

    dos Santos, Jeová Calisto; de Vasconcelos, Fabrício Morais; de Aguiar, Acrísio Lins; Alves, Tayroni Francisco de Alencar; Meunier, Vincent; Girão, Eduardo Costa

    2016-12-01

    We use a spin-polarized tight-binding model Hamiltonian and the Landauer transport formalism to investigate the electronic transport properties of carbon nanotubes where different types of holes have been drilled through their sidewalls. We focus on zigzag edged defects with different atomic configurations since these systems enable the emergence of magnetic properties. We show that a number of hole geometries, magnetic states, and electronic spins yield attractive transport properties, such as ON/OFF switching for the electronic current, and nontrivial dependence of transmission with hole size.

  17. Defect energetics and magnetic properties of 3 d-transition-metal-doped topological crystalline insulator SnTe

    Science.gov (United States)

    Wang, Na; Wang, JianFeng; Si, Chen; Gu, Bing-Lin; Duan, WenHui

    2016-08-01

    The introduction of magnetism in SnTe-class topological crystalline insulators is a challenging subject with great importance in the quantum device applications. Based on the first-principles calculations, we have studied the defect energetics and magnetic properties of 3 d transition-metal (TM)-doped SnTe. We find that the doped TM atoms prefer to stay in the neutral states and have comparatively high formation energies, suggesting that the uniform TMdoping in SnTe with a higher concentration will be difficult unless clustering. In the dilute doping regime, all the magnetic TMatoms are in the high-spin states, indicating that the spin splitting energy of 3 d TM is stronger than the crystal splitting energy of the SnTe ligand. Importantly, Mn-doped SnTe has relatively low defect formation energy, largest local magnetic moment, and no defect levels in the bulk gap, suggesting that Mn is a promising magnetic dopant to realize the magnetic order for the theoretically-proposed large-Chern-number quantum anomalous Hall effect (QAHE) in SnTe.

  18. The correlations between processing parameters and magnetic properties of an iron-resin soft magnetic composite

    Energy Technology Data Exchange (ETDEWEB)

    Hemmati, I. [Materials Science and Engineering Department, Sharif University of Technology, P.O. Box 11365-9466, Tehran (Iran, Islamic Republic of); Madaah Hosseini, H.R. [Materials Science and Engineering Department, Sharif University of Technology, P.O. Box 11365-9466, Tehran (Iran, Islamic Republic of)]. E-mail: madaah@sharif.edu; Kianvash, A. [Department of Ceramic Engineering, Faculty of Engineering, University of Tabriz, Tabriz 51664 (Iran, Islamic Republic of)

    2006-10-15

    In this study, internal microstrain of an iron-resin composite produced by powder metallurgy has been calculated using the Williamson-Hall method. The effects of microstrain evolution during different processing conditions on magnetic properties such as coercive force and hysteresis loss have been investigated. The results show that there are regular and similar changes of coercivity and hysteresis loss. Both of these properties are directly dependant on the pinning effect of the internal microstrain against the movement of magnetic domain walls during magnetization process.

  19. Magnetic properties of nano-composite particles

    Science.gov (United States)

    Xu, Xia

    Chemical synthesis routes for hollow spherical BaFe12O 19, hollow mesoporous spherical BaFe12O19, worm-shape BaFe12O19 and FeCo particles were developed. These structured particles have great potentials for the applications including magnetic recording medium, catalyst support, and energy storage. Magnetically exchange coupled hard/soft SrFe12O19/FeCo and MnBi/FeCo composites were synthesized through a newly proposed process of magnetic self-assembly. These exchange coupled composites can be potentially used as rare-earth free permanent magnets. Hollow spherical BaFe12O19 particles (shell thickness ˜5 nm) were synthesized from eth-ylene glycol assisted spray pyrolysis. Hollow mesoporous spherical BaFe12O19 particles (shell thickness ˜100 nm) were synthesized from ethanol assisted spray pyrolysis, followed by alkaline ethylene glycol etching at 185 °C. An alpha-Fe2O3 and BaCO3 nanoparticle mixture was synthesized with reverse microemulsion, followed by annealing at 900 °C for 2 hours to get worm-shape BaFe 12O19 particles, which consisted of 3-7 stacked hexagonal plates. FeCo nanoparticles were synthesized by reducing FeCl2 and CoCl2 in diphenyl ether with n-butyllithium at 200 °C in an inert gas environment. The surfactant of oleic acid was used in the synthesis to make particles well dispersed in nonpolar solvents (such as hexane). SrFe12O19/FeCo core/shell particles were prepared through a magnetic self-assembly process. The as-synthesized soft FeCo nanoparticles were magnetically attracted by hard SrFe12O19 parti-cles, forming a SrFe12O19/FeCo core/shell structure. The magnetic self-assembly mechanism was confirmed by applying alternating-current demagnetization to the core/shell particles, which re-sulted in a separation of SrFe 12O19 and FeCo particles. MnBi/FeCo composites were synthesized, and the exchange coupling between MnBi and FeCo phases was demonstrated by smooth magnetic hysteresis loop of MnBi/FeCo composites. The thermal stability of Mn

  20. Magnetic properties of rare earth superlattices

    CERN Document Server

    Wilkins, C J T

    2001-01-01

    Single-crystal Tm/Y and Tm/Lu superlattices have been grown using molecular beam epitaxy and their chemical structures have been determined using X-ray diffraction. Magnetisation measurements have revealed a more complicated phase diagram than that of pure Tm. Application of a field along the c-direction gave rise to an extra transition, and transitions were detected for the superlattices when the field was applied along the b-axis. In neutron diffraction studies, c-axis longitudinally modulated magnetic structures were found for both Tm/Y and Tm/Lu, which propagate coherently through the non-magnetic layers. In the case of Tm/Lu superlattices, there is evidence for ordering of the basal plane components.

  1. Magnetically textured ferrofluid in a non-magnetic matrix: Magnetic properties

    Indian Academy of Sciences (India)

    Mrudul Gadhvi; R V Upadhyay; Kinnari Parekh; R V Mehta

    2004-04-01

    Texturing of two different magnetic fluids were carried out in paraffin wax under the influence of an external magnetic field. The textured samples were characterized using magnetization measurement and a.c. susceptibility techniques. The results are discussed in the light of ratio of anisotropic energy to magnetic and thermal energies.

  2. Synthesis and magnetic properties of a novel ferrite organogel

    Science.gov (United States)

    Li, Sichu; John, Vijay T.; Irvin, Glen C.; Rachakonda, Suguna H.; McPherson, Gary L.; O'Connor, Charles J.

    1999-04-01

    A novel magnetic organogel that can be considered a precursor example of a magnetoresponsive gel is reported. The gel is formed by the bridging of ferrite containing anionic bis(2-ethlhexyl) sodium sulfosuccinate reverse micelles with 2,6-dihydroxynaphthalene (2,6-DHN). The addition of 2,6-DHN leads to a room temperature quotes "freezing in" of the liquid solution to a clear organogel. Ferrite particles in the size range 10-15 nm are doped into the gel network and are thus suspended in the optically clear gel media. The magnetic properties of the gel were measured using a superconducting quantum interference device magnetometer. The results reveal that the gel exhibits superparamagnetic behavior with a blocking temperature of 6 K (at an applied field of 1000 G), and a coercivity of 850 G at 2 K. The ferrites introduced into the gel serve the function of magnetic "seeds" via which magnetic properties are acquired by the gel.

  3. Magnetic Properties and Thermal Entanglement on a Triangulated Kagome Lattice

    CERN Document Server

    Ananikian, N S; Chakhmakhchyan, L A; Kocharian, A N

    2011-01-01

    The magnetic and entanglement thermal (equilibrium) properties in spin-1/2 Ising-Heisenberg model on a triangulated Kagome lattice are analyzed by means of variational mean-field like treatment based on Gibbs-Bogoliubov inequality. Because of the separable character of Ising-type exchange interactions between the Heisenberg trimers the calculation of quantum entanglement in a self-consistent field can be performed for each of the trimers individually. The concurrence in terms of three qubit isotropic Heisenberg model in effective Ising field is non-zero even in the absence of a magnetic field. The magnetic and entanglement properties exhibit common (plateau and peak) features observable via (antferromagnetic) coupling constant and external magnetic field. The critical temperature for the phase transition and threshold temperature for concurrence coincide in the case of antiferromagnetic coupling between qubits. The existence of entangled and disentangled phases in saturated and frustrated phases is establishe...

  4. Computer Simulation of Effect of Intergrain Exchange Interaction on Magnetic Properties of Nanocomposite Magnets

    Institute of Scientific and Technical Information of China (English)

    Fukunaga H; Mukaino H

    2004-01-01

    Effects of the intergrain exchange interaction on magnetic properties of nanocomposite magnets were investigated by using the computer simulation based on the micromagnetic theory. The simulation was carried out under the assumptions that the strength of the intergrain exchange interaction is weaker than that of the intragrain exchange interaction, that inhomogeneous nanostructures result in the distribution of the strength of the intergrain exchange interaction, and that there exists nonmagnetic intergranular phase(NMIP) between grain boundaries. The distribution of the strength of the intergrain exchange interaction was simulated by the lognormal distribution with the standard deviation of σ.The calculations for Nd2Fe14B/α-Fe nanocomposite magnets reveal that a suitably weak intergrain exchange interaction and small grain size enable us to improve magnetic properties. It is also found that a Nd2Fe14B/α-Fe nanocomposite magnet has a potential of a(BH)max value exceeding 300 kJ·m-3. On the other hand, the calculations for Nd2Fe14B/Fe3B nanocomposite magnets reveal that the distribution of the strength of the intergrain exchange interaction deteriorates magnetic properties significantly. Particularly, this tendency is remarkable, when the grain size L is larger than its optimum value, 11 nm. The existence of nonmagnetic boundary layers accelerats this tendency. At σ=0.2, the calculated demagnetization curve for the model magnet composed of Nd2Fe14B(36%)/Fe3B(54%)/NMIP(10%)(Valume fraction) grains(L=15 nm) agrees with that obtained experimentally for a Nd2Fe14B/Fe3B nanocomposite magnet. These results suggest importance of refinement of grain size, suppression of a nonmagnetic intergranular phase, and preparation of homogeneous nanostructure for superior magnetic properties.

  5. PHASE TRANSITION PROPERTIES OF A TWO COMPONENT FINITE MAGNETIC SUPERLATTICE

    Institute of Scientific and Technical Information of China (English)

    WANG XIAO-GUANG; LIU NING-NING; PAN SHAO-HUA; YANG GUO-ZHEN

    2000-01-01

    We study an (l, n) finite superlattice, which consists of two alternative magnetic materials(components) of l and n atomic layers, respectively. Based on the Ising model, we examine the phase transition properties of the magnetic superlattice. By transfer matrix method we derive the equation for Curie temperature of the superlattice. Numerical results are obtained for the dependence of Curie temperature on the thickness and exchange constants of the superlattice.

  6. Magnetic properties of small Fe clusters: a nonorthogonal Hamiltonian study

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    We calculate the magnetic properties of small FeN clusters(N=2~7,9,13,15) by using a parameterized Hubbard tight-binding sp d-band model Hamiltonian, with the parameters obtained from nonorthogonal Ham il tonian parameters. the average magnetic moments, and the spin-polarized charge distribution within clusters are in agreement with those obtained by first-prin ciple and tight-binding calculations. The effect of the nonorthogonal basis is discussed.

  7. GEMAS: Unmixing magnetic properties of European agricultural soil

    Science.gov (United States)

    Fabian, Karl; Reimann, Clemens; Kuzina, Dilyara; Kosareva, Lina; Fattakhova, Leysan; Nurgaliev, Danis

    2016-04-01

    High resolution magnetic measurements provide new methods for world-wide characterization and monitoring of agricultural soil which is essential for quantifying geologic and human impact on the critical zone environment and consequences of climatic change, for planning economic and ecological land use, and for forensic applications. Hysteresis measurements of all Ap samples from the GEMAS survey yield a comprehensive overview of mineral magnetic properties in European agricultural soil on a continental scale. Low (460 Hz), and high frequency (4600 Hz) magnetic susceptibility k were measured using a Bartington MS2B sensor. Hysteresis properties were determined by a J-coercivity spectrometer, built at the paleomagnetic laboratory of Kazan University, providing for each sample a modified hysteresis loop, backfield curve, acquisition curve of isothermal remanent magnetization, and a viscous IRM decay spectrum. Each measurement set is obtained in a single run from zero field up to 1.5 T and back to -1.5 T. The resulting data are used to create the first continental-scale maps of magnetic soil parameters. Because the GEMAS geochemical atlas contains a comprehensive set of geochemical data for the same soil samples, the new data can be used to map magnetic parameters in relation to chemical and geological parameters. The data set also provides a unique opportunity to analyze the magnetic mineral fraction of the soil samples by unmixing their IRM acquisition curves. The endmember coefficients are interpreted by linear inversion for other magnetic, physical and chemical properties which results in an unprecedented and detailed view of the mineral magnetic composition of European agricultural soils.

  8. Effects of temperature and Nickel content on magnetic properties of Ni-doped ZnO

    Institute of Scientific and Technical Information of China (English)

    REN Lingling; JEUNG Won Young

    2006-01-01

    Magnetic properties of diluted magnetic semiconductors (DMSs), Ni-doped ZnO materials, prepared by sol-gel method were investigated by measuring magnetization as functions of magnetic field.The Ni content affects the magnetic properties at low sintered temperature but it has few effects on the magnetic properties at high sintered temperature.The sintered temperature has great effects on the magnetic properties of Ni/ZnO at high original mole ratio of Ni/Zn while it has slight effects on the magnetic properties of Ni/ZnO at low original mole ratio of Ni/Zn whatever low or high sintered temperature.

  9. Magnetic properties of nanostructured CuFe2O4

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Goya, G.F.; Rechenberg, H.R.

    1999-01-01

    -energy ball milling in an open container with grain sizes ranging from 9 to 61 nm. Superparamagnetic relaxation effects have been observed in milled samples at room temperature by Mossbauer and magnetization measurements. At 15 K, the average hyperfine field of CuFe2O4 decreases with decreasing average grain......, approximately 20% enhancement of the saturation magnetization in CuFe2O4 nanoparticles was observed, which could be explained by a cation redistribution induced by milling. The high-field magnetization irreversibility and shift of the hysteresis loop detected in our samples have been assigned to a spin......The structural evolution and magnetic properties of nanostructured copper ferrite, CuFe2O4, have been investigated by X-ray diffraction, Mossbauer spectroscopy, and magnetization measurements. Nanometre-sized CuFe2O4 particles with a partially inverted spinel structure were synthesized by high...

  10. Do micromagnetic simulations correctly predict hard magnetic hysteresis properties?

    Energy Technology Data Exchange (ETDEWEB)

    Toson, P., E-mail: peter.toson@tuwien.ac.at; Zickler, G.A.; Fidler, J.

    2016-04-01

    Micromagnetic calculations using the finite element technique describe semi-quantitatively the coercivity of novel rare earth permanent magnets in dependence on grain size, grain shape, grain alignment and composition of grain boundaries and grain boundary junctions and allow the quantitative prediction of magnetic hysteretic properties of rare earth free magnets based on densely packed elongated Fe and Co nanoparticles, which depend on crystal anisotropy, aspect ratio and packing density. The nucleation of reversed domains preferentially takes place at grain boundary junctions in granular sintered and melt-spun magnets independently on the grain size. The microstructure and the nanocompostion of the intergranular regions are inhomogeneous and too complex in order to make an exact model for micromagnetic simulations and to allow a quantitative prediction. The incoherent magnetization reversal processes near the end surfaces reduce and determine the coercive field values of Co- and Fe-based nanoparticles.

  11. Electronic, magnetic and multiferroic properties of magnetoelectric NiTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Chao [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Wang, Yi [Natural Science Research Center, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080 (China); Sui, Yu, E-mail: suiyu@hit.edu.cn [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Wang, Yang [Natural Science Research Center, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080 (China); Wang, Xianjie; Zhao, Kun; Liu, Zhiguo [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Li, Bingsheng [Natural Science Research Center, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080 (China); Liu, Xiaoyang [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China)

    2014-11-15

    Highlights: • We confirmed that NiTiO{sub 3} in the LiNbO{sub 3} structure is a metastable phase. • The calculated local magnetic moment of Ni ion is 1.61μ{sub B.} • The calculations also showed a spontaneous polarization of 97 μC/cm{sup 2} along the [1 1 1]-direction. • Furthermore, we show the polar lattice distortion can induce weak ferromagnetic. - Abstract: The structural, electronic, magnetic, and ferroelectric properties of NiTiO{sub 3} are predicted through ab initio calculations based on the density functional theory (DFT). The theoretical structure parameters matched well with those obtained experimentally. The electronic structure results show that the antiferromagnetic (AFM) phase of LiNbO{sub 3} (LN)-type NiTiO{sub 3} has a direct band gap of 2.16 eV. The calculated local magnetic moment of Ni ion is 1.61μ{sub B}. The calculated Born effective charges (BECs, denoted by tensor Z{sup *}) show that the Z{sup *} of Ti and O atoms are significantly and anomalously large. Interestingly, ferroelectric spontaneous polarization is predicted to be along [1 1 1] direction with a large magnitude of 97 μC/cm{sup 2}. B-site Ti ions in 3d{sup 0} state dominate ferroelectric polarization of multiferroic NiTiO{sub 3}, whereas A-site Ni ions having partially filled e{sub g} orbitals are considered to contribute to the antiferromagnetic properties of NiTiO{sub 3}. Furthermore, the current study also found that the polar lattice distortion can induce weak ferromagnetism.

  12. Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications

    Directory of Open Access Journals (Sweden)

    Bashar Issa

    2013-10-01

    Full Text Available Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical with controllable sizes enabling their comparison to biological organisms from cells (10–100 μm, viruses, genes, down to proteins (3–50 nm. The optimization of the nanoparticles’ size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents.

  13. Single crystal Processing and magnetic properties of gadolinium nickel

    Energy Technology Data Exchange (ETDEWEB)

    Shreve, Andrew John [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    GdNi is a rare earth intermetallic material that exhibits very interesting magnetic properties. Spontaneous magnetostriction occurs in GdNi at T{sub C}, on the order of 8000ppm strain along the c-axis and only until very recently the mechanism causing this giant magnetostriction was not understood. In order to learn more about the electronic and magnetic structure of GdNi, single crystals are required for anisotropic magnetic property measurements. Single crystal processing is quite challenging for GdNi though since the rare-earth transition-metal composition yields a very reactive intermetallic compound. Many crystal growth methods are pursued in this study including crucible free methods, precipitation growths, and specially developed Bridgman crucibles. A plasma-sprayed Gd2O3 W-backed Bridgman crucible was found to be the best means of GdNi single crystal processing. With a source of high-quality single crystals, many magnetization measurements were collected to reveal the magnetic structure of GdNi. Heat capacity and the magnetocaloric effect are also measured on a single crystal sample. The result is a thorough report on high quality single crystal processing and the magnetic properties of GdNi.

  14. Electronic and Magnetic Properties of Small Iridium Clusters

    Institute of Scientific and Technical Information of China (English)

    KUANG Xiang-jun

    2004-01-01

    The electronic and magnetic properties of small IrN clusters (N=5, 6, 9, 13, and 19 ) are studied by using the discrete-variational local-spin-density-functional method. The equilibrium bond length in the chosen geometry for IrN clusters are determined and show bond contraction compared with the bulk interatomic spacing. The clusters with magnetic ground state have ferromagnetic interaction and their average magnetic moment per atom has a complex size dependence. At last, the reactivity of IrN clusters toward H2, N2 and CO molecules is predicted.

  15. Magnetic properties of superparamagnetic nanoparticles loaded into silicon nanotubes

    Science.gov (United States)

    Granitzer, Petra; Rumpf, Klemens; Gonzalez, Roberto; Coffer, Jeffery; Reissner, Michael

    2014-08-01

    In this work, the magnetic properties of silicon nanotubes (SiNTs) filled with Fe3O4 nanoparticles (NPs) are investigated. SiNTs with different wall thicknesses of 10 and 70 nm and an inner diameter of approximately 50 nm are prepared and filled with superparamagnetic iron oxide nanoparticles of 4 and 10 nm in diameter. The infiltration process of the NPs into the tubes and dependence on the wall-thickness is described. Furthermore, data from magnetization measurements of the nanocomposite systems are analyzed in terms of iron oxide nanoparticle size dependence. Such biocompatible nanocomposites have potential merit in the field of magnetically guided drug delivery vehicles.

  16. Magnetoactive elastomeric composites: Cure, tensile, electrical and magnetic properties

    Indian Academy of Sciences (India)

    K Sasikumar; G Suresh; K A Thomas; Reji John; V Natarajan; T Mukundan; R M R Vishnubhatla

    2006-11-01

    Magnetically active elastomer materials were prepared by incorporating nickel powder in synthetic elastomeric matrices, polychloroprene and nitrile rubber. Cure characteristics, mechanical, electrical and magnetic properties were experimentally determined for different volume fractions of magnetoactive filler. The cure time decreases sharply for initial filler loading and the decrease is marginal for additional loading of filler. The tensile strength and modulus at 100% strain was found to increase with increase in the volume fraction of nickel due to reinforcement action. The magnetic impedance and a.c. conductivity are found to increase with increase in volume fraction of nickel as well as frequency.

  17. Magnetic and optoelectronic properties of gold nanocluster-thiophene assembly.

    Science.gov (United States)

    Qin, Wei; Lohrman, Jessica; Ren, Shenqiang

    2014-07-07

    Nanohybrids consisting of Au nanocluster and polythiophene nanowire assemblies exhibit unique thermal-responsive optical behaviors and charge-transfer controlled magnetic and optoelectronic properties. The ultrasmall Au nanocluster enhanced photoabsorption and conductivity effectively improves the photocurrent of nanohybrid based photovoltaics, leading to an increase of power conversion efficiency by 14 % under AM 1.5 illumination. In addition, nanohybrids exhibit electric field controlled spin resonance and magnetic field sensing behaviors, which open up the potential of charge-transfer complex system where the magnetism and optoelectronics interact.

  18. Microstructure and magnetic properties of colloidal cobalt nano-clusters

    Energy Technology Data Exchange (ETDEWEB)

    Torchio, R. [Dipartimento di Fisica ' E. Amaldi' , Universita di Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy); CNR-TASC c/o GILDA-ESRF Grenoble (France); European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, BP220, 38043 Grenoble Cedex (France); Meneghini, C., E-mail: meneghini@fis.uniroma3.i [Dipartimento di Fisica ' E. Amaldi' , Universita di Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy); CNR-TASC c/o GILDA-ESRF Grenoble (France); Mobilio, S. [Dipartimento di Fisica ' E. Amaldi' , Universita di Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy); CNR-TASC c/o GILDA-ESRF Grenoble (France); Laboratori Nazionali di Frascati INFN, via E. Fermi 40, I-00044 Frascati, Roma (Italy); Capellini, G. [Dipartimento di Fisica ' E. Amaldi' , Universita di Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy); Garcia Prieto, A. [Departamento de Fisica Aplicada I, Universidad del Pais Vasco (Spain); Alonso, J.; Fdez-Gubieda, M.L. [Departamento de Electricidad y Electronica, Universidad del Pais Vasco (Spain); Turco Liveri, V. [Dipartimento di Chimica Fisica ' F. Accascina' , Universita di Palermo, Viale delle Scienze, Parco d' Orleans II, Edificio 17, 90128 Palermo (Italy); Longo, A. [ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, CNR, Via U. La Malfa 153, 90146 Palermo (Italy); Ruggirello, A.M. [Dipartimento di Chimica Fisica ' F. Accascina' , Universita di Palermo, Viale delle Scienze, Parco d' Orleans II, Edificio 17, 90128 Palermo (Italy); Neisius, T. [Federation des Sciences Chimiques de Marseille, Universite Paul Cezanne, Faculte des Sciences et Techniques Campus de Saint Jerome av. Escadrille Normandie Niemen 13397 Marseille Cedex (France)

    2010-11-15

    The magnetic response of nanometer sized Co nanoparticles (NP) prepared using reverse micelle solutions are presented. The use of complementary structural and morphological probes (like transmission electron microscopy, high resolution electron microscopy, X-ray absorption spectroscopy) allowed to relate the magnetic properties to the size, morphology, composition and atomic structure of the nanoparticles. All data agree on the presence of a core-shell structure of NPs made of a metallic Co core surrounded by a thin Co-oxide layer. The core-shell microstructure of NPs affects its magnetic response mainly raising the anisotropy constant.

  19. Composite Materials with Magnetically Aligned Carbon Nanoparticles Having Enhanced Electrical Properties and Methods of Preparation

    Science.gov (United States)

    Hong, Haiping (Inventor); Peterson, G.P. (Bud) (Inventor); Salem, David R. (Inventor)

    2016-01-01

    Magnetically aligned carbon nanoparticle composites have enhanced electrical properties. The composites comprise carbon nanoparticles, a host material, magnetically sensitive nanoparticles and a surfactant. In addition to enhanced electrical properties, the composites can have enhanced mechanical and thermal properties.

  20. Dependence of dynamic magnetization and magneto-transport properties of FeAlSi films with oblique sputtering studied via spin rectification effect

    Energy Technology Data Exchange (ETDEWEB)

    Soh, Wee Tee; Ong, C. K. [Department of Physics, Center for Superconducting and Magnetic Materials, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Zhong, Xiaoxi, E-mail: xiaoxi.zhong@gmail.com [Department of Physics, Center for Superconducting and Magnetic Materials, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); School of Materials Science and Engineering, Sichuan University, Chengdu 610065 (China)

    2014-09-15

    FeAlSi (Sendust) is known to possess excellent soft magnetic properties comparable to traditional soft magnetic alloys such as NiFe (Permalloy), while having a relatively higher resistance for lower eddy current losses. However, their dynamic magnetic and magneto-transport properties are not well-studied. Via the spin rectification effect, we electrically characterize a series of obliquely sputtered FeAlSi films at ferromagnetic resonance. The variations of the anisotropy fields and damping with oblique angle are extracted and discussed. In particular, two-magnon scattering is found to dominate the damping behavior at high oblique angles. An analysis of the results shows large anomalous Hall effect and anisotropic magneto-resistance across all samples, which decreases sharply with increasing oblique incidence.

  1. Improved Electrical Insulation of Rare Earth Permanent Magnetic Materials With High Magnetic Properties

    Institute of Scientific and Technical Information of China (English)

    CHANG Ying; WANG Da-peng; LI Wei; PAN Wei; YU Xiao-jun; QI Min

    2009-01-01

    Rare earth permanent magnetic materials are typical electrical conductor, and their magnetic properties will decrease because of the eddy current effect, so it is difficult to keep them stable for a long enough time under a high frequency AC field. In the present study, as far as rare earth permanent magnets are concerned, for the first time, rare earth permanent magnets with strong electrical insulation and high magnetic performance have been obtained through experiments, and their properties are as follows:(1) Sm2TM17: Br=0.62 T, jHc=803.7 kA/m, (BH)m= The magnetic properties of Sm2TM17 and NdFeB are obviously higher than those of ferrite permanent magnet, and the electric insulating characteristics of Sm2TM17 and NdFeB applied have in fact been approximately the same as those of ferrite. Therefore, Sm2TM17 and NdFeB will possess the ability to take the place of ferrite under a certain high frequency AC electric field.

  2. Review on magnetic and related properties of RTX compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sachin, E-mail: gsachin55@gmail.com; Suresh, K.G., E-mail: suresh@phy.iitb.ac.in

    2015-01-05

    RTX (R = rare earths, T = 3d/4d/5d, transition metals such as Sc, Ti, Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, and X = p-block elements such as Al, Ga, In, Si, Ge, Sn, As, Sb, Bi) series is a huge family of intermetallics compounds. These compounds crystallize in different crystal structures depending on the constituents. Though these compounds have been known for a long time, they came to limelight recently in view of the large magnetocaloric effect (MCE) and magnetoresistance (MR) shown by many of them. Most of these compounds crystallize in hexagonal, orthorhombic and tetragonal crystal structures. Some of them show crystal structure modification with annealing temperature; while a few of them show iso-structural transition in the paramagnetic regime. Their magnetic ordering temperatures vary from very low temperatures to temperatures well above room temperature (∼510 K). Depending on the crystal structure, they show a variety of magnetic and electrical properties. These compounds have been characterized by means of a variety of techniques/measurements such as X-ray diffraction, neutron diffraction, magnetic properties, heat capacity, magnetocaloric properties, electrical resistivity, magnetoresistance, thermoelectric power, thermal expansion, Hall effect, optical properties, XPS, Mössbauer spectroscopy, ESR, μSR, NMR, and NQR. Some amount of work on theoretical calculations on electronic structure, crystal field interaction and exchange interactions has also been reported. The interesting aspect of this series is that they show a variety of physical properties such as Kondo effect, heavy fermion behavior, spin glass state, intermediate valence, superconductivity, multiple magnetic transitions, metamagnetism, large MCE, large positive as well as negative MR, spin orbital compensation, magnetic polaronic behavior, and pseudo gap effect. Except Mn, no other transition metal in these compounds possesses considerable magnetic moments. Because of this

  3. Physical properties of elongated magnetic particles: magnetization and friction coefficient anisotropies.

    Science.gov (United States)

    Vereda, Fernando; de Vicente, Juan; Hidalgo-Alvarez, Roque

    2009-06-02

    Anisotropy counts: A brief review of the main physical properties of elongated magnetic particles (EMPs) is presented. The most important characteristic of an EMP is the additional contribution of shape anisotropy to the total anisotropy energy of the particle, when compared to spherical magnetic particles. The electron micrograph shows Ni-ferrite microrods fabricated by the authors.We present an overview of the main physical properties of elongated magnetic particles (EMPs), including some of their more relevant properties in suspension. When compared to a spherical magnetic particle, the most important characteristic of an EMP is an additional contribution of shape anisotropy to the total anisotropy energy of the particle. Increasing aspect ratios also lead to an increase in both the critical single-domain size of a magnetic particle and its resistance to thermally activated spontaneous reversal of the magnetization. For single-domain EMPs, magnetization reversal occurs primarily by one of two modes, coherent rotation or curling, the latter being facilitated by larger aspect ratios. When EMPs are used to prepare colloidal suspensions, other physical properties come into play, such as their anisotropic friction coefficient and the consequent enhanced torque they experience in a shear flow, their tendency to align in the direction of an external field, to form less dense sediments and to entangle into more intricate aggregates. From a more practical point of view, EMPs are discussed in connection with two interesting types of magnetic colloids: magnetorheological fluids and suspensions for magnetic hyperthermia. Advances reported in the literature regarding the use of EMPs in these two systems are included. In the final section, we present a summary of the most relevant methods documented in the literature for the fabrication of EMPs, together with a list of the most common ferromagnetic materials that have been synthesized in the form of EMPs.

  4. Electromagnetic fields and anomalous transports in heavy-ion collisions-a pedagogical review.

    Science.gov (United States)

    Huang, Xu-Guang

    2016-07-01

    The hot and dense matter generated in heavy-ion collisions may contain domains which are not invariant under P and CP transformations. Moreover, heavy-ion collisions can generate extremely strong magnetic fields as well as electric fields. The interplay between the electromagnetic field and triangle anomaly leads to a number of macroscopic quantum phenomena in these P- and CP-odd domains known as anomalous transports. The purpose of this article is to give a pedagogical review of various properties of the electromagnetic fields, the anomalous transport phenomena, and their experimental signatures in heavy-ion collisions.

  5. Structural, electronic and magnetic properties of MnB2

    Indian Academy of Sciences (India)

    R Masrour; E K Hlil; M Hamedoun; A Benyoussef; O Mounkachi; H El Moussaoui

    2015-08-01

    The self-consistent ab-initio calculations, based on density functional theory approach and using the full potential linear augmented plane wave method, are performed to investigate both electronic and magnetic properties of the MnB2 compounds. Polarized spin and spin–orbit coupling are included in calculations within the framework of the ferromagnetic state between two adjacent Mn atoms. Magnetic moment considered to lie along the (001) axes are computed. The antiferromagnetic and ferromagnetic energies of MnB2 systems are obtained. Obtained data from ab-initio calculations are used as input for the high-temperature series expansions (HTSEs) calculations to compute other magnetic parameters. The exchange interactions between the magnetic atoms Mn–Mn in MnB2 are established by using the mean field theory. The HTSEs of the magnetic susceptibility with the magnetic moments in MnB2 (Mn) through Ising model is given. The critical temperature C (K) is obtained by HTSEs applied to the magnetic susceptibility series combined with the Padé approximant method. The critical exponent associated with the magnetic susceptibility is deduced as well.

  6. Magnetic properties and magnetic phase diagrams of intermetallic compound GdMn2Ge2

    Institute of Scientific and Technical Information of China (English)

    Guo Guang-Hua(郭光华); Zhang Hai-Bei(张海贝); R.Z.Levitin

    2003-01-01

    A modified Yafet-Kittle model is applied to investigate the magnetic properties and magnetic phase transition of the intermetallic compound GdMn2Ge2.Theoretical analysis and calculation show that there are five possible magnetic structures in GdMn2Ge2.Variations of external magnetic field and temperature give rise to the first-order or secondorder magnetic transitions from one phase to another.Based on this model,the magnetic curves of GdMn2Ge2 single crystals at different temperatures are calculated and a good agreement with experimental data has obtained.Based on the calculation,the H-T magnetic phase diagrams of GdMn2Ge2 are depicted.The Gd-Gd,Gd-Mn,intralayer Mn-Mn and interlayer Mn-Mn exchange coupling parameters are estimated.It is shown that,in order to describe the magnetic properties of GdMn2Ge2,the lattice constant and temperature dependence of interlayer Mn-Mn exchange interaction must be taken into account.

  7. Magnetic Properties of Uranium Based Ferromagnetic Superconductors

    NARCIS (Netherlands)

    Sakarya, S.

    2007-01-01

    Ferromagnetism and superconductivity have long been thought to be mutually exclusive. Recently however it was found that the compounds UGe2, URhGe and UIr belong to a class of materials in which ferromagnetisme and superconductivity appear simultaneously. One characteristic property of these compoun

  8. Measurement of magnetic properties at cryogenic temperatures

    CERN Multimedia

    1977-01-01

    This picture shows part of the low-mu permeameter to measure permeability of stainless steels and other low-mu materials used in superconducting magnets. The sample, a 5 mm diam., 45 mm long rod, is suspended to long leads before being inserted in the test cryostat. For the measurement the sample is surrounded by a flux- measuring coil and placed in the field of a superconducting solenoid. At a given field the sample is removed.During the removal, the voltage induced in the flux-measuring coil is time integrated giving the flux variation. This equipment was developed to select stainless steels and other low-mu materials used in the ISR Prototype Superconducting Qaudrupole. The person is W.Ansorge.

  9. Bistability properties of magnetic micro-nanowires

    Science.gov (United States)

    Baranov, S. A.; Yaltychenko, O. V.; Kanarovskii, E. Yu.

    2016-12-01

    A mathematical model that describes the process of the reversal magnetization of an amorphous microwire with the help of a large Barkhausen jump is proposed. The model has been estimated with regard to the optimization of the signal-tonoise ratio. Using nonlinear model, we studied the physical factors that cause the fluctuations of the start field. Based on the results of numerical experiments, the new data on the behavior of the start field under different conditions of a switching in a bistable ferromagnetic, including the conditions of high-frequency swapping, have been obtained and compared to the existing data. The results obtained do not contradict the existing physical concepts concerning a domain wall motion and are more general and realistic in a comparison with the previous model.

  10. Magnetic Properties of Nanoparticle Matrix Composites

    Science.gov (United States)

    2015-06-02

    variety of combinations such as SmCo/FeCo [7], PrCo/Co [8], Fe3B/ Nd2Fe14B [9], SmCo/NdCo [10], NdFeB/Fe [11], and SmCo/Fe [11] have been performed...6.6-10 x 10 7 erg/cm 3 with the minimum stable particle size of 3.05 nm, and Nd2Fe14B with Ku value of 4.6 x 10 7 erg/cm 3 for the minimum...of ~50 MGOe [10-15] for Fe3Pt-FePt composites and 57.6 MGOe for the strongest magnet, Nd2Fe14B . In order to further understand the variation of the

  11. The charmonium dissociation in an "anomalous wind"

    CERN Document Server

    Sadofyev, Andrey V

    2016-01-01

    We study the charmonium dissociation in a strongly coupled chiral plasma in the presence of magnetic field and axial charge imbalance. This type of plasma carries ``anomalous flow" induced by the chiral anomaly and exhibits novel transport phenomena such as chiral magnetic effect. We found that the ``anomalous flow" would modify the charmonium color screening length by using the gauge/gravity correspondence. We derive an analytical expression quantifying the ``anomalous flow" experienced by a charmonium for a large class of chiral plasma with a gravity dual. We elaborate on the similarity and {\\it qualitative} difference between anomalous effects on the charmonium color screening length which are {\\it model-dependent} and those on the heavy quark drag force which are fixed by the second law of thermodynamics. We speculate on the possible charmonium dissociation induced by chiral anomaly in heavy ion collisions.

  12. Magnetic Properties of Nd8Fe83Co3B6 Nanocomposite Magnets

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The influence of quenching technology, annealing temperature and time on the structures and magnetic properties of Nd8Fe83Co3B6 nanocomposite magnets was investigated. The results show that the α-Fe/Nd2Fe14B nanocomposite magnet containing a small amount of B is difficult to form amorphous state. The magnetic properties of 26 m/s quenched Nd8Fe83Co3B6 powders annealed at 640℃×480 s reach iHc=513 kA/m, Br=1.05 T and (BH)max=92.0 kJ/m3. The grain size is Dα-Fe=21.5 nm and DNd2Fe14B=30.2 nm.

  13. Anisotropic mechanical properties of magnetically aligned fibrin gels measured by magnetic resonance elastography.

    Science.gov (United States)

    Namani, Ravi; Wood, Matthew D; Sakiyama-Elbert, Shelly E; Bayly, Philip V

    2009-09-18

    The anisotropic mechanical properties of magnetically aligned fibrin gels were measured by magnetic resonance elastography (MRE) and by a standard mechanical test: unconfined compression. Soft anisotropic biomaterials are notoriously difficult to characterize, especially in vivo. MRE is well-suited for efficient, non-invasive, and non-destructive assessment of shear modulus. Direction-dependent differences in shear modulus were found to be statistically significant for gels polymerized at magnetic fields of 11.7 and 4.7 T compared to control gels. Mechanical anisotropy was greater in the gels polymerized at the higher magnetic field. These observations were consistent with results from unconfined compression tests. Analysis of confocal microscopy images of gels showed measurable alignment of fibrils in gels polymerized at 11.7 T. This study provides direct, quantitative measurements of the anisotropy in mechanical properties that accompanies fibril alignment in fibrin gels.

  14. Detailed magnetic study on the formato-bridged MOFs with anion-tunable magnetic properties

    Institute of Scientific and Technical Information of China (English)

    WANG XinYi; WANG ZheMing; GAO Song

    2012-01-01

    Detailed studies of the structures,magnetic properties and photodimerization of a series of formato-bridged MOFs with the general formula M2(HCOO)3(4,4'-bpe)3(H20)3(X)(4,4'-bpe =4,4'-bipyridylethylene,M =Mn(l-X-),X- =CIO-4,NO-3,BF-4,I-,Br-; M =Co(2-X-),X- =CIO-4,NO-3; M =Zn(3-X-),X- =NO-3)were reported.Careful magnetic measurements on an oriented single crystal of 1-ClO-4 determined the spin-flop magnetic phase diagram and some intrinsic parameters,such as the intralayer coupling J,the anisotropy field HA and the exchange field HE.Different anions can remarkably tune the magnetic properties of l-X-,especially the critical fields of the spin-flop transition.Compound 2-ClO-4 remained paramagnetic down to 2 K.

  15. Magnetic Properties of Different-Aged Chernozemic Soils

    Science.gov (United States)

    Fattakhova, Leysan; Shinkarev, Alexandr; Kosareva, Lina; Nourgaliev, Danis; Shinkarev, Aleksey; Kondrashina, Yuliya

    2016-04-01

    We investigated the magnetic properties and degree of mineral weathering in profiles of different-aged chernozemic soils derived from a uniform parent material. In this work, layer samples of virgin leached chernozem and chernozemic soils formed on the mound of archaeological earthy monument were used. The characterization of the magnetic properties was carried out on the data of the magnetometry and differential thermomagnetic analysis. The evaluation of the weathering degree was carried out on a loss on ignition, cation exchange capacity and X-ray phase analysis on the data of the original soil samples and samples of the heavy fraction of minerals. It was found that the magnetic susceptibility enhancement in humus profiles of newly formed chernozemic soils lagged significantly behind the organic matter content enhancement. This phenomenon is associated with differences in kinetic parameters of humus formation and structural and compositional transformation of the parent material. It is not enough time of 800-900 years to form a relatively "mature" magnetic profile. These findings are well consistent with the chemical kinetic model (Boyle et al., 2010) linking the formation of the soils magnetic susceptibility with the weathering of primary Fe silicate minerals. Different-aged chernozemic soils are at the first stage of formation of a magnetic profile when it is occur an active production of secondary ferrimagnetic minerals from Fe2+ released by primary minerals.

  16. Silica coated nanoparticles: Synthesis, magnetic properties and spin structure

    Energy Technology Data Exchange (ETDEWEB)

    Mazaleyrat, F., E-mail: mazaleyrat@satie.ens-cachan.f [SATIE, ENS de Cachan, CNRS, UniverSud, 61 av President Wilson, F-94230 Cachan (France); Ammar, M.; LoBue, M. [SATIE, ENS de Cachan, CNRS, UniverSud, 61 av President Wilson, F-94230 Cachan (France); Bonnet, J.-P.; Audebert, P. [PPSM, ENS de Cachan, CNRS, UniverSud, 61 av President Wilson, F-94230 Cachan (France); Wang, G.-Y.; Champion, Y. [ICMPE, CNRS, Universite Paris XII, 2-8 rue Henri Dunant, F-94320 Thiais (France); Hytch, M.; Snoeck, E. [CEMES, CNRS, 29 rue Jeanne Marvig, F-31055 Toulouse (France)

    2009-08-26

    In the recent years, magnetic nanoparticles have been extensively studied for their superparamagnetic properties providing useful labels in biology or for fundamental aspects including the size dependence of magnetic atomic moment and the effect of surface anisotropy. In most cases, the particles were smaller than 10 nm and interestingly, the sizes ranging between 10 and 100 nm have been poorly investigated until now. This is mainly due to the fact that usual chemical routes produce 5-10 nm oxide or metallic particles or eventually 20 nm at most. On the over side, atomization techniques yield particles in the micrometer range. Metallic particles are particularly interesting for better magnetic properties compared to oxides, but they have two big drawbacks: they are not biocompatible and they are conducting electricity. Consequently, it's necessary to produce core-shell particles, for which the shell is biocompatible and insulating and with a perfect control of thickness and uniformity of that shell. In this work, we are studying metallic particles synthesized by an original evaporation-condensation technique that produces particles of several tens of nanometers. We prepared hard magnetic cobalt particles and soft FeNi ones coated with a silica shell using a modified sol-gel method. Morphological and magnetic properties are presented, showing the efficiency of ultrasonic sol-gel process for that purpose.

  17. Intrinsic Magnetism and Collective Magnetic Properties of Size-Selected Nanoparticles

    Science.gov (United States)

    Antoniak, C.; Friedenberger, N.; Trunova, A.; Meckenstock, R.; Kronast, F.; Fauth, K.; Farle, M.; Wende, H.

    Using size-selected spherical FePt nanoparticles and cubic Fe/Fe-oxide nanoparticles as examples, we discuss the recent progress in the determination of static and dynamic properties of nanomagnets. Synchroton radiation-based characterisation techniques in combination with detailed structural, chemical and morphological investigations by transmission and scanning electron microscopy allow the quantitative correlation between element-specific magnetic response and spin structure on the one hand and shape, crystal and electronic structure of the particles on the other hand. Examples of measurements of element-specific hysteresis loops of single 18 nm sized nanocubes are discussed. Magnetic anisotropy of superparamagnetic ensembles and their dynamic magnetic response are investigated by ferromagnetic resonance as a function of temperature at different microwave frequencies. Such investigations allow the determination of the magnetic relaxation and the extraction of the average magnetic anisotropy energy density of the individual particles.

  18. Magnetic properties and magnetization reversal of α-Fe nanowires deposited in alumina film

    Science.gov (United States)

    Peng, Yong; Zhang, Hao-Li; Pan, Shan-Lin; Li, Hu-Lin

    2000-05-01

    Uniform arrays of Fe nanowires were prepared by electrochemical deposition of iron into nanoporous anodic aluminum oxide films. The microstructure and crystal structures of the nanowires were studied by transmission electron microscopy and electron diffraction. It was found that each nanowire looked like a chain of dots and each dot in the chain was supposed to be a single crystal of α-Fe. Each dot was shown to be a single magnetic domain. The magnetic properties of a uniform array of Fe nanowires and the magnetization reversal in a Fe nanowire were investigated by Mössbauer spectroscopy and vibrating sample magnetometry, which demonstrated that the film of Fe nanowires in alumina had superior perpendicular magnetic characteristics. The magnetic studies also revealed that the moments of each single domain dot were oriented along the chain. Experimental results could be interpreted by the reversal model of "chains of spheres" with the symmetric fanning mechanism.

  19. Magnetic properties of a long, thin-walled ferromagnetic nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Chen, E-mail: chen.sun@physics.tamu.edu [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843-4242 (United States); Pokrovsky, Valery L. [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843-4242 (United States); Landau Institute for Theoretical Physics, Chernogolovka, Moscow District, 142432 (Russian Federation)

    2014-04-15

    We consider magnetic properties of a long, thin-walled ferromagnetic nanotube. We assume that the tube consists of isotropic homogeneous magnet whose spins interact via the exchange energy, the dipole–dipole interaction energy, and also interact with an external field via Zeeman energy. Possible stable states are the parallel state with the magnetization along the axis of the tube, and the vortex state with the magnetization along azimuthal direction. For a given material, which of them has lower energy depends on the value γ=R{sup 2}d/(Lλ{sub x}{sup 2}), where R is the radius of the tube, d is its thickness, L is its length and λ{sub x} is an intrinsic scale of length characterizing the ratio of exchange and dipolar interaction. At γ<1, the parallel state wins, otherwise the vortex state is stable. A domain wall in the middle of the tube is always energy unfavorable, but it can exist as a metastable structure. Near the ends of a tube magnetized parallel to the axis a half-domain structure transforming gradually the parallel magnetization to a vortex just at the edge of the tube is energy favorable. We also consider the equilibrium magnetization textures in an external magnetic field either parallel or perpendicular to the tube. Finally, magnetic field produced by a nanotube and an array of tubes is analyzed. - Highlights: • We obtain a simple criterion for stable state of a long, thin-walled magnetic tube. • A domain wall in the middle is always energy unfavorable, but can be metastable. • In external field different states show different hystereses. • Field produced by a tube and an array of tubes is calculated.

  20. Anomalous transport due to scale anomaly

    CERN Document Server

    Chernodub, M N

    2016-01-01

    We show that the scale anomaly in field theories leads to new anomalous transport effects that emerge in external electromagnetic field in inhomogeneous gravitational background. In inflating geometry the QED scale anomaly generates electric current which flows in opposite direction with respect to background electric field. In static spatially inhomogeneous gravitational background the dissipationless electric current flows transversely both to the magnetic field axis and to the gradient of the inhomogeneity. The anomalous currents are proportional to the beta function of the theory.

  1. Magnetic properties of tephras from Lake Van (Eastern Turkey)

    Science.gov (United States)

    Makaroglu, Ozlem; Caǧatay, Namık; Pesonen, Lauri J.; Orbay, Naci

    2013-04-01

    Here we present magnetic properties of tephra layers in the cores taken from Lake Van, Eastern Anatolia, Turkey. Lake Van is the fourth largest terminal Lake in the world by volume (607 km3). It is 460 m deep and has a salinity of 21.4 per mil and a pH of 9.81. It is located on the East Anatolian Plateau with present day water level of 1648 m.a.s.l., and surrounded by large stratovolcanoes Nemrut, Suphan, Tendurek, and Ararat to the west and north. It has accumulated varved-sediments with tephra units, which all provide important paleoenvironmental records. After a seismic survey, four different locations were selected for coring in Lake Van, with water depths varying between 60 m and 90 m. Four cores having between 3 and 4.8 m length were analyzed for for element geochemistry using XRF Core Scanner analysis. The sub-samples were taken into plastic boxes with a volume of 6.4 cm3 for mineral magnetic analysis. The mineral magnetic measurements included magnetic susceptibility (χ), anhysteretic remanent magnetisation (ARM), isothermal remanent magnetisation (IRM), hysteresis properties and thermomagnetic analyses. According to the mineral magnetic measurements and geochemical analysis, we identified the five tephra layers (T1-T5). These tephra units were correlated with the previously varve-dated units of Landmann et al. (2011). The varve ages of the tephra layers were used to obtain the age-depth model for the cores. According to the age models the cores extend back to 9500 ka BP (varve years). Down-core profiles of all the magnetic properties are highly correlatable between different cores, suggesting that the magnetic records are of regional character. ARM values are found to be more convenient than χ values for correlating the tephra layers. The hysteresis parameters of samples taken from these layers indicate that they are within Pseudo Single Domain range. IRM curves show that low coersivity magnetic minerals are dominated in all tephra layers. Measurements

  2. Thermodynamic properties of the magnetized Coulomb crystal lattices

    Science.gov (United States)

    Kozhberov, A. A.

    2016-08-01

    It is thought that Coulomb crystals of ions with hexagonal close-packed lattice may form in the crust of strongly-magnetized neutron stars (magnetars). In this work we are trying to verify this prediction assuming that the direction of the magnetic field corresponds to the minimum of the zero-point energy. We also continue a detailed study of vibration modes and thermodynamic properties of magnetized Coulomb crystals in a wide range of temperatures and magnetic fields. It is demonstrated that the total Helmholtz free energy of the body-centered cubic Coulomb crystal is always lower than that of the Coulomb crystal with hexagonal close-packed or face-centered cubic lattice, which casts doubt on the hypothesis above.

  3. Magnetic properties of Fe/NiO/Fe(001) trilayers

    Energy Technology Data Exchange (ETDEWEB)

    Biagioni, P. [INFM - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy)]. E-mail: paolo.biagioni@polimi.it; Brambilla, A. [INFM - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Portalupi, M. [INFM - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Rougemaille, N. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Schmid, A.K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lanzara, A. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Physics, University of California at Berkeley, Berkeley, CA 94720 (United States); Vavassori, P. [INFM - Dipartimento di Fisica, Universita di Ferrara, Via Paradiso 12, 44100 Ferrara (Italy); Zani, M. [INFM - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Finazzi, M. [INFM - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Duo, L. [INFM - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Ciccacci, F. [INFM - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy)

    2005-04-15

    We have investigated the magnetic properties of epitaxially grown Fe/NiO/Fe(001) trilayers, for different thicknesses of the NiO spacer. Magneto Optical Kerr Effect has been exploited to study the in-plane magnetization reversal processes in the iron layers. We found that the NiO thickness t{sub AFM} has a critical value t{sub C} for the magnetic coupling between the Fe layers: for t{sub AFM}magnetization directions align perpendicularly, with zero applied field, while the alignment is collinear for thicker spacers. A phenomenological model has been developed to reproduce and discuss the results. Complementary information has been obtained by means of spin polarized low energy electron microscopy.

  4. Gd doped Au nanoclusters: Molecular magnets with novel properties

    KAUST Repository

    Mokkath, Junais Habeeb

    2014-01-01

    The structural, magnetic, and optical properties of subnanometer Au N and AuN-1Gd1 gas phase clusters (N = 2 to 8) are systematically investigated in the framework of (time-dependent) density functional theory, using the B3LYP hybrid exchange correlation functional. The size dependent evolution of the gap between the highest occupied and lowest unoccupied molecular orbitals, the magnetism, and the absorption spectra are studied. The simultaneous appearance of large magnetic moments, significant band gaps, and plasmon resonances in the visible spectral region leads to novel multi-functional nanomaterials for applications in drug delivery, magnetic resonance imaging, and photo-responsive agents. © 2013 Elsevier B.V. All rights reserved.

  5. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, J. F. D. F.; Bruno, A. C.; Louro, S. R. W. [Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro 22451-900 (Brazil)

    2015-10-15

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer’s sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10{sup −8} Am{sup 2} was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.

  6. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles.

    Science.gov (United States)

    Araujo, J F D F; Bruno, A C; Louro, S R W

    2015-10-01

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer's sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10(-8) Am(2) was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.

  7. Transport properties of graphene under periodic and quasiperiodic magnetic superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Tao, E-mail: luweitao@lyu.edu.cn [School of Science, Linyi University, 276005 Linyi (China); Institute of Condensed Matter Physics, Linyi University, 276005 Linyi (China); Wang, Shun-Jin [Department of Physics, Sichuan University, 610064 Chengdu (China); Wang, Yong-Long; Jiang, Hua [School of Science, Linyi University, 276005 Linyi (China); Institute of Condensed Matter Physics, Linyi University, 276005 Linyi (China); Li, Wen [School of Science, Linyi University, 276005 Linyi (China)

    2013-08-15

    We study the transmission of Dirac electrons through the one-dimensional periodic, Fibonacci, and Thue–Morse magnetic superlattices (MS), which can be realized by two different magnetic blocks arranged in certain sequences in graphene. The numerical results show that the transmission as a function of incident energy presents regular resonance splitting effect in periodic MS due to the split energy spectrum. For the quasiperiodic MS with more layers, they exhibit rich transmission patterns. In particular, the transmission in Fibonacci MS presents scaling property and fragmented behavior with self-similarity, while the transmission in Thue–Morse MS presents more perfect resonant peaks which are related to the completely transparent states. Furthermore, these interesting properties are robust against the profile of MS, but dependent on the magnetic structure parameters and the transverse wave vector.

  8. Influence of Barium Hexaferrite on Magnetic Properties of Hydroxyapatite Ceramics.

    Science.gov (United States)

    Jarupoom, P; Jaita, P

    2015-11-01

    Hydroxyapatite (HA) powders was derived from natural bovine bone by sequence of thermal processes. The barium hexaferrite (BF) find magnetic powders were added into HA powders in ratio of 1-3 vol.%. The HA-BF ceramics were prepared by a solid state reaction method and sintered at 1250 degrees C for 2 h. Effects of BF additive on structural, physical and magnetic properties of HA ceramics were investigated. X-ray diffraction revealed that all HA-BF samples showed a main phase of high purity hydroxyapatite [Ca10(PO4)6(OH)2] with calcium and phosphate molar ratio of 1.67. The addition of BF into HA inhibited grain growth and caused an improvement of mechanical properties. The M-H hysteresis loops also showed an improvement in magnetic behavior for higher content of BF. Moreover, in vitro bioactivity test indicated that the 2-3 vol.% sample may be suitable for biological applications.

  9. Transport and magnetic properties of CMR manganites with antidot arrays

    Science.gov (United States)

    Zhang, Kai; Du, Kai; Niu, Jiebin; Wei, Wengang; Chen, Jinjie; Yin, Lifeng; Shen, Jian

    2014-03-01

    We fabricated and characterized a series of manganites thin film samples with different densities of antidots. With increasing antidot density, the samples show higher MIT temperature and lower resistivity under zero and low magnetic fields. These differences become smaller and finally vanished when the magnetic field is large enough to melt the charge ordered phase in the system, which is expected in our theoretical explanations. We believe that emerging edge states at the ring of antidotes play a significant role for observed metal-insulator transition and electrical transport properties, which are of great importance of real storage and sensor device design. Magnetic property measurements and theoretical simulation also support the conclusion. These results open up new ways to control and tune the strongly correlated oxides without introduce any new material or field.

  10. Surface modification of Fe304 nanoparticles and their magnetic properties

    Institute of Scientific and Technical Information of China (English)

    Hao Yan; Jian-cheng Zhang; Chen-xia You; Zhen-wei Song; Ben-wei Yu; Yue Shen

    2009-01-01

    Fe3O4 magnetic nanoparticles were synthesized by the hydrothermal method, and the influences of the surfactant sodium bis(2-ethylhexyl) sulfosuecinate (AOT) on the particles were investigated. The structure, morphology, and magnetic properties of the products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infra-red spectroscopy (FT-IR), and vibrating sample magnetometer (VSM). It is confirmed that the as-prepared nanopartieles have been modified by using the surfactant during the synthesis process. The amount of the surfactant has an effect on the size, the dispersal, and the magnetic properties of the particles. Besides, the mechanisms of the influences were also discussed.

  11. Preparation and electrical properties of oil-based magnetic fluids

    Science.gov (United States)

    Sartoratto, P. P. C.; Neto, A. V. S.; Lima, E. C. D.; Rodrigues de Sá, A. L. C.; Morais, P. C.

    2005-05-01

    This paper describes an improvement in the preparation of magnetic fluids for electrical transformers. The samples are based on surface-coated maghemite nanoparticles dispersed in transformer insulating oil. Colloidal stability at 90°C was higher for oleate-grafted maghemite-based magnetic fluid, whereas decanoate and dodecanoate-grafted samples were very unstable. Electrical properties were evaluated for samples containing 0.80%-0.0040% maghemite volume fractions. Relative permittivity varied from 8.8 to 2.1 and the minimum value of the loss factor was 12% for the most diluted sample. The resistivity falls in the range of 0.7-2.5×1010Ωm, whereas the ac dielectric strength varied from 70to79kV. These physical characteristics reveal remarkable step forward in the properties of the magnetic fluid samples and may result in better operation of electrical transformers.

  12. Surface magnetism Correlation of structural, electronic and chemical properties with magnetic behavior

    CERN Document Server

    Getzlaff, Mathias

    2010-01-01

    This volume reviews on selected aspects related to surface magnetism, a field of extraordinary interest during the last decade. The special emphasis is set to the correlation of structural, electronic and magnetic properties in rare earth metal systems and ferromagnetic transition metals. This is made possible by the combination of electron emission techniques (spin polarized photoelectron spectroscopy, magnetic dichroism in photoemission and spin polarized metastable deexcitation spectroscopy) and local probes with high lateral resolution down to the atomic scale (spin polarized scanning tunneling microscopy / spectroscopy).

  13. Effects of electric field on magnetic properties of MnxGe_{1-x} diluted magnetic semiconductors

    Science.gov (United States)

    Assefa, Gezahegn; Singh, P.

    2016-03-01

    We report the effect of external electric field (EEF) on the magnetic properties of MnxGe_{1-x}, diluted magnetic semiconductor. We present a Kondo Lattice Model type Hamiltonian with exchange coupling between localized spins, itinerant holes and the EEF. The magnetization, the dispersion and critical temperature (Tc) are calculated for different values of EEF parameters (α) using double time temperature-dependent Green function formalism. The enhancement of the (Tc) with the EEF is shown to be very distinct and is in agreement with recent experimental observation and much required for spintronics applications and devices.

  14. Magnetic and ferroelectric properties of multiferroic RMn2O5

    Science.gov (United States)

    Noda, Y.; Kimura, H.; Fukunaga, M.; Kobayashi, S.; Kagomiya, I.; Kohn, K.

    2008-10-01

    The magnetic and ferroelectric properties of multiferroic RMn2O5 (R = Y, Tb, Ho, Er, Tm) are reviewed based on recent neutron diffraction and dielectric measurements. Successive phase transitions of magnetic and dielectric ordering were found to occur simultaneously in this system. The characteristic magnetic ordering of the system exhibits an incommensurate-commensurate phase transition, and again transitions to an incommensurate phase. Special attention is given to the magnetic structure in order to discuss the mechanism for the introduction of ferroelectric polarization. For all the compounds examined, the spin configuration for Mn4+ and Mn3+ ions in the commensurate magnetic phase, where spontaneous electric polarization occurs, was determined to be a transverse spiral spin structure propagating along the c-axis. By contrast, the alignment of the induced 4f moment of R3+ ions showed variation, depending on the character of each of the elements. Corresponding responses to external fields such as a magnetic field, hydrostatic pressure etc at low temperature are strongly dependent on the rare earth element present in the RMn2O5 system. The so-called colossal magnetoelectric effect in this system can be easily interpreted by the phase transition from the magnetic incommensurate and weak ferroelectric phase to the commensurate and ferroelectric phase.

  15. Defects, phase transformations and magnetic properties of lithium ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, R.K.

    1977-03-01

    Achieving suitable magnetic properties in ceramic ferrites through thermomechanical treatments rather than through varying the processing and fabrication parameters alone has been investigated. Ferrimagnetic lithium ferrite and some other spinel structure materials were chosen for this investigation. Extensive characterization of phase transformations and lattice defects was done.

  16. Magnetic Properties of Nd-Group V Compounds

    DEFF Research Database (Denmark)

    Bak, Poul Erik; Lindgård, Per-Anker

    1973-01-01

    The Nd monopnictides NdP, NdAs and NdSb are simple cubic type I antiferromagnets in which the crystal-field splitting is larger than the exchange energy. The magnetic properties are calculated by means of a mean-field theory including crystal-field and magnetoelastic effects. The calculations are...

  17. Structural analysis and magnetic properties of Fe/Bi system

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Y.; Nakanishi, Y.; Yoshimoto, N.; Daibo, M.; Nakamura, M.; Yoshizawa, M

    2003-05-01

    We have investigated the structure and magnetic properties of Fe/Bi multilayers and trilayers by RHEED, XRD, XRR, XPS and SQUID. The samples were grown by molecular beam epitaxy method. It was found that the synthesis of the multilayer is very difficult. However, we successfully grown Fe/Bi trilayers by adopting the appropriate growth conditions.

  18. Structural and magnetic properties of epitaxial Fe/Cu multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Y. E-mail: t5101008@iwate-u.ac.jp; Nakanishi, Y.; Yoshimoto, N.; Yamaguchi, A.; Nakamura, M.; Yoshizawa, M

    2004-05-01

    We have grown FCC-Fe/Cu multilayers by molecular beam epitaxy method. The structural and magnetic properties were studied by RHEED, XRD and magnetoresistance measurement (MR). The RHEED images confirmed that Fe/Cu multilayers were epitaxially grown on Cu(1 0 0). Furthermore, a clear negative MR was observed. The buffer layer condition for MR effect will be discussed.

  19. Effect of HD Process on Microstructure and Hard Magnetic Properties of NdFeAlB Magnet

    Institute of Scientific and Technical Information of China (English)

    姜忠良; 陈秀云; 陈晓东; 石大立; 杨昌平; 朱静

    2002-01-01

    The effect of Hydrogen Decrepitation (HD) process on the magnetic properties and microstructure of sintered NdFeAlB magnet (HD magnet) was investigated. The results show that the coercivity of HD magnet is higher than that of traditional ball milling (BM) magnet, while the remanence and the maximum energy product of HD magnet are lower. Microstructure analysis shows that some fine un-sintered powders are distributed at the grain boundaries of HD magnet. X-ray diffraction (XRD) analysis reveals that the degree of easy axis alignment of HD magnet is lower. Some ideas to improve the current HD process were proposed.

  20. Synthesis, characterization and magnetic properties of carbon nanotubes decorated with magnetic MIIFe2O4 nanoparticles

    Science.gov (United States)

    Ali, Syed Danish; Hussain, Syed Tajammul; Gilani, Syeda Rubina

    2013-04-01

    In this study, a simple, efficient and reproducible microemulsion method was applied for the successful decoration of carbon nanotubes (CNTs) with magnetic MIIFe2O4 (M = Co, Ni, Cu, Zn) nanoparticles. The structure, composition and morphology of the prepared nanocomposite materials were characterized using X-ray diffraction (XRD), Rutherford backscattering spectroscopy (RBS), Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). The magnetic properties were investigated by the vibrating sample magnetometer (VSM). The SEM results illustrated that large quantity of MIIFe2O4 nanoparticles were uniformly decorated around the circumference of CNTs and the sizes of the nanoparticles ranged from 15 to 20 nm. Magnetic hysteresis loop measurements revealed that all the MIIFe2O4/CNTs nanocomposites displayed ferromagnetic behavior at 300 K and can be manipulated using an external magnetic field. The CoFe2O4/CNTs nanocomposite showed maximum value of saturation magnetization which was 37.47 emu g-1. The as prepared MIIFe2O4/CNTs nanocomposites have many potential application in magnetically guided targeted drug delivery, clinical diagnosis, electrochemical biosensing, magnetic data storage and magnetic resonance imaging.

  1. Magnetic properties of sintered high energy sm-co and nd-fe-b magnets

    Directory of Open Access Journals (Sweden)

    Talijan Nadežda M.

    2006-01-01

    Full Text Available Magnetic properties of permanent magnetic materials based on intermetallic compounds of Sm-Co and Nd-Fe-B are in direct dependence on the microstructure. In the first part of this paper, having in mind the importance of the regime of sintering and heat treatment to obtain the optimal magnetic structure, yet another approach in defining the most adequate technological parameters of the sintering process for applied heat treatment conditions was made. The goal of these investigations was to use the correlation that exists between sintering conditions (temperature and time and intensity of the diffraction peak of the (111 plane of the SmCo5 phase to optimize. In the second part a brief overview of high energy magnetic materials based on Nd-Fe-B is presented with special emphasis to the current research and development of high remanent nanocomposite magnetic materials based on Nd-Fe-B alloys with a reduced Nd content. Part of experimental results gained during research of the sintering process of SmCo5 magnetic materials were realized and published earlier. The scientific meeting devoted to the 60th anniversary of Frankel’s theory of sintering was an opportunity to show once more the importance and role of sintering in optimization of the magnetic microstructure of sintered Sm Co5 magnetic materials.

  2. Chemical characterization of a degradable polymeric bone adhesive containing hydrolysable fillers and interpretation of anomalous mechanical properties.

    Science.gov (United States)

    Young, Anne M; Man Ho, Sze; Abou Neel, Ensanya A; Ahmed, Ifty; Barralet, Jake E; Knowles, Jonathan C; Nazhat, Showan N

    2009-07-01

    An experimental, light-curable, degradable polyester-based bone adhesive reinforced with phosphate glass particles ((P(2)O(5))(0.45)(CaO)(x)(Na(2)O)(0.55-)(x), x=0.3 or 0.4mol) or calcium phosphate (monocalcium phosphate/beta-tricalcium phosphate (MCPM/beta-TCP)) has been characterized. Early water sorption (8wt.% at 1week) by the unfilled set adhesive catalysed subsequent bulk degradation (4wt.% at 2weeks) and substantial decline in both elastic and storage moduli. Addition of phosphate glass fillers substantially enhanced this water sorption, catalysed greater bulk mass loss (40-50 and 52-55wt.%, respectively) but enabled generation of a microporous scaffold within 2weeks. The high levels of acidic polymer degradation products (38-50wt.% of original polymer) were advantageously buffered by the filler, which initially released primarily sodium trimetaphosphate (P(3)O93-). Calcium phosphate addition raised polymer water sorption to a lesser extent (16wt.%) and promoted intermediate early bulk mass loss (12wt.%) but simultaneous anomalous increase in modulus. This was attributed to MCPM reacting with absorbed water and beta-TCP to form more homogeneously dispersed brushite (CaHPO(4)) throughout the polymer. Between 2 and 10weeks, linear erosion of both polymer (0.5wt.%week(-1)) and composites (0.7-1.2wt.%week(-1)) occurred, with all fillers providing long-term buffer action through calcium and orthophosphate (PO43-) release. In conclusion, both fillers can raise degradation of bone adhesives whilst simultaneously providing the buffering action and ions required for new bone formation. Through control of water sorption catalysed filler reactions, porous structures for cell support or substantially stiffer materials may be generated.

  3. Effects of oxygen and carbon on the magnetic properties and microstructure of Sm2Co17 permanent magnets

    Institute of Scientific and Technical Information of China (English)

    TIAN Jianjun; ZHANG Shengen; QU Xuanhui

    2007-01-01

    The research on the sintered Sm2Co17 permanent magnets prepared by metal injection molding is still at the exploratory stage. Carbon and oxygen are two key factors that influence the magnetic properties. In this article, the effects of oxygen and carbon on the properties and microstructure of the magnets have been studied. The results indicate that oxygen consumes the effective Sm content of the magnets and forms Sm2O3-the non-magnetism phase, which result in the deterioration of the magnetic properties. Besides, the magnetic properties decrease in evidence with increasing carbon content. The main factor that affects the magnetic properties is the deterioration of the microstructure of the magnets. The Sm(Co, Cu)5 phase decreases, whereas the cell size increases with the increase of the carbon content. When the carbon content is above 0.43 wt.%, the Sm(Co, Cu)5 phase is not enough to form a uniform cellular microstructure. Thus the magnetic properties disappear. ZrC is detected in the magnets by XRD when the carbon content is above 0.21 wt.%. ZrC also reduces the properties of the magnets.

  4. Magnetic properties of lanthanoid(III) phthalocyaninato triple-decker complexes in an external magnetic field and electronic transport properties for molecular spintronics

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, K; Yamamoto, K; Breedlove, B K; Yamashita, M [Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578 (Japan); Kajiwara, T [Department of Chemistry, Faculty of Science, Nara Women' s University, Nishi-Machi, Kita-Uoya, Nara 630-8506 (Japan); Takeya, J, E-mail: yamashita@agnus.chem.tohoku.ac.jp [Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaragi 567-0047 (Japan)

    2011-07-06

    Lanthanoid phthalocyaninato complexes of Dy{sub 2}(obPc){sub 3} (1) and Tb{sub 2}(obPc){sub 3} (2) are shown to be a single-molecule magnet. The relationships among the magnetic relaxation properties of 1 in a direct current (dc) magnetic field in comparison to 2 and the electronic properties of a cast film are discussed.

  5. Magnetic properties of scalar particles--the scalar Aharonov-Casher effect and supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    He Xiaogang; McKellar, Bruce H.J

    2003-05-01

    The original topological Aharonov-Casher (AC) effect is due to the interaction of the anomalous magnetic dipole moment (MDM) with certain configurations of electric field. Naively one would not expect an AC effect for a scalar particle for which no anomalous MDM can be defined in the usual sense. In this Letter we study the AC effect in supersymmetric systems. In this framework there is the possibility of deducing the AC effect of a scalar particle from the corresponding effect for a spinor particle. In 3+1 dimensions such a connection is not possible because the anomalous MDM is zero if supersymmetry is an exact symmetry. However, in 2+1 dimensions it is possible to have an anomalous MDM even with exact supersymmetry. Having demonstrated the relationship between the spinor and the scalar MDM, we proceed to show that the scalar AC effect is uniquely defined. We then compute the anomalous MDM at the one-loop level, showing how the scalar form arises in 2+1 dimensions from the coupling of the scalar to spinors. This model shows how an AC effect for a scalar can be generated for non-supersymmetric theories, and we construct such a model to illustrate the mechanism.

  6. Magnetic Properties of Scalar Particles --The Scalar Aharonov-Casher Effect and Supersymmetry

    CERN Document Server

    He, X G; He, Xiao-Gang; Kellar, Bruce H. Mc

    2003-01-01

    The original topological Aharonov-Casher (AC) effect is due to the interaction of the anomalous magnetic dipole moment (MDM) with certain configurations of electric field. Naively one would not expect an AC effect for a scalar particle for which no anomalous MDM can be defined in the usual sense. In this letter we study the AC effect in supersymmetric systems. In this framework there is the possibility to deducing the AC effect of a scalar particle from the corresponding effect for a spinor particle. In 3+1 dimensions such a connection is not possible because the anomalous MDM is zero if supersymmetry is an exact symmetry. However, in 2+1 dimensions it is possible to have an anomalous MDM even with exact supersymmetry. We then compute the anomalous MDM at the one loop level, showing how the scalar form arises in 2+1 dimensions from the coupling of the scalar to spinors. The AC effect corresponding to a scalar can be uniquely identified. This model shows us how an AC effect for a scalar can be generated for no...

  7. Magnetic antenna excitation of whistler modes. I. Basic properties

    Energy Technology Data Exchange (ETDEWEB)

    Urrutia, J. M.; Stenzel, R. L. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

    2014-12-15

    Properties of magnetic loop antennas for exciting electron whistler modes have been investigated in a large laboratory plasma. The parameter regime is that of large plasma frequency compared to the cyclotron frequency and signal frequency below half the cyclotron frequency. The antenna diameter is smaller than the wavelength. Different directions of the loop antenna relative to the background magnetic field have been measured for small amplitude waves. The differences in the topology of the wave magnetic field are shown from measurements of the three field components in three spatial directions. The helicity of the wave magnetic field and of the hodogram of the magnetic vector in space and time are clarified. The superposition of wave fields is used to investigate the properties of two antennas for small amplitude waves. Standing whistler waves are produced by propagating two wave packets in opposite directions. Directional radiation is obtained with two phased loops separated by a quarter wavelength. Rotating antenna fields, produced with phased orthogonal loops at the same location, do not produce directionality. The concept of superposition is extended in a Paper II to generate antenna arrays for whistlers. These produce nearly plane waves, whose propagation angle can be varied by the phase shifting the currents in the array elements. Focusing of whistlers is possible. These results are important for designing antennas on spacecraft or diagnosing and heating of laboratory plasmas.

  8. Magnetic and electric properties of C-Co thin films prepared by vaccum arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Tembre, A.; Clin, M.; Picot, J.-C. [Laboratoire de Physique de la Matiere Condensee, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens (France); Dellis, J.-L., E-mail: jean-luc.dellis@u-picardie.fr [Laboratoire de Physique de la Matiere Condensee, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens (France); Henocque, J. [Laboratoire de Physique de la Matiere Condensee, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens (France); Bouzerar, R. [Laboratoire de Physique des Systemes Complexes, Universite de Picardie Jules Verne, 33 rue Saint leu, 80039 Amiens (France); Djellab, K. [Plate-forme de Microscopie Electronique, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens (France)

    2011-09-15

    Highlights: > Cobalt doped carbon thin films have been deposited by pulsed anodic electric arc technique. > The films are composed of well-crystallized cobalt layers and complex graphitic microstructure. > An insulating to a metallic state transition at 60 K is observed. > The magnetic susceptibility measurements show anomalous behaviour around 60 K. - Abstract: Cobalt doped carbon thin films have been deposited by a pulsed anodic electric arc technique. The films were characterized by high resolution transmission electron microscopy, electric measurements under dc magnetic fields, and ac magnetic susceptibility measurements within a temperature range 15-300 K. An insulating to a metallic state transition at a critical temperature around 60 K was observed.

  9. Characteristics of Magnetic Properties of Substituted Hexagonal Ferrites

    Directory of Open Access Journals (Sweden)

    Vladimir Jancarik

    2006-01-01

    Full Text Available The samples of barium hexaferrite BaFe12-2x(Me1Me2xO19 with x from 0.0 to 0.6 were prepared by variousmethods. The cationic preference of mainly divalent Me1 = Zn, Co, Ni, Sn ions and tetravalent Me2 = Ti, Zr, Ir, Sn, Ru ionsand their combinations in substituted Ba ferrites was investigated. The substitutions were performed to reduce the grain sizeand high magnetic uniaxial anisotropy field of the M-type Ba ferrite without affecting the magnetic polarisation. The goal isto reach the properties of ferrite proper for high-density magnetic recording and microwave absorption devices. Magneticproperties were determined as a function of the substitution level x. The specific saturation magnetic polarisation Js–m andremanence Js–rincreased with small x due to the substitution of non-magnetic and less magnetic ions in 4f1 and 4f2 sites. Thesteep decrease of coercivity Hc with increasing x may be caused by the Co2+ preference of 4f2 site and Ti4+or Zr4+ions preference of 2b and slightly in 4f1 sites. The temperature coefficient of the coercivity TKHc was very low (0.01kA.m-1.°C-1for the Co-Zr substitutions and positive for the rest of samples.

  10. Properties of Mesons in a Strong Magnetic Field

    CERN Document Server

    Zhang, Rui; Liu, Yu-xin

    2016-01-01

    By extending the $\\Phi$-derivable approach in Nambu-Jona-Lasinio model to finite magnetic field we calculate the properties of pion, $\\sigma$ and $\\rho$ mesons in a magnetic field at finite temperature in not only the quark-antiquark bound state scheme but also the pion-pion scattering resonant state scenario. Our calculation results manifest that the masses of $\\pi^{0}$ and $\\sigma$ meson can be nearly degenerate at the pseudo-critical temperature which increases with increasing the magnetic field strength, and the $\\pi^{\\pm}$ mass ascends suddenly at almost the same critical temperature. While the $\\rho$ mesons' masses decrease with the temperature but increase with the magnetic field strength. We also check the Gell-Mann-Oakes-Renner relation and find that the relation can be violated obviously with increasing the temperature, and the effect of the magnetic field becomes pronounced around the critical temperature. With different criteria, we analyze the effect of the magnetic field on the chiral phase tran...

  11. Electronic and magnetic properties of DUT-8(Ni).

    Science.gov (United States)

    Trepte, Kai; Schwalbe, Sebastian; Seifert, Gotthard

    2015-07-14

    First principles calculations using density functional theory (DFT) have been performed to investigate the electronic and magnetic properties of DUT-8(Ni) (DUT - Dresden University of Technology). This flexible metal-organic framework (MOF) exists in two crystalline forms: DUT-8(Ni)open and DUT-8(Ni)closed. To identify the energetically favoured magnetic ordering, the density of states (DOS) and the energy difference between a low-spin (LS) and a high-spin (HS) coupling ΔELS-HS for those crystalline structures have been computed. Calculations on supercells have been carried out to include a variety of different magnetic couplings beyond a single unit cell. Several molecular model systems have been employed to further investigate the magnetic behaviour by introducing a diversity of chemical environments to the magnetic centers. The magnetic ground state of both crystalline structures has been found to be the low-spin state (S = 0). This low-spin ordering can be seen in the DOS as well as from ΔELS-HS calculations. Additionally, the calculations on the supercells confirm that the local character of the ordering (i.e. within the Ni dimers) is the most favoured one. However, the model systems indicate a change from the low-spin (S = 0) to a high-spin (S ≠ 0) ordering by introducing certain alterations into the chemical environment. Such alterations could be incorporated into the crystalline systems which should lead to similar results.

  12. Electronic and magnetic properties of small rhodium clusters

    Energy Technology Data Exchange (ETDEWEB)

    Soon, Yee Yeen; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)

    2015-04-24

    We report a theoretical study of the electronic and magnetic properties of rhodium-atomic clusters. The lowest energy structures at the semi-empirical level of rhodium clusters are first obtained from a novel global-minimum search algorithm, known as PTMBHGA, where Gupta potential is used to describe the atomic interaction among the rhodium atoms. The structures are then re-optimized at the density functional theory (DFT) level with exchange-correlation energy approximated by Perdew-Burke-Ernzerhof generalized gradient approximation. For the purpose of calculating the magnetic moment of a given cluster, we calculate the optimized structure as a function of the spin multiplicity within the DFT framework. The resultant magnetic moments with the lowest energies so obtained allow us to work out the magnetic moment as a function of cluster size. Rhodium atomic clusters are found to display a unique variation in the magnetic moment as the cluster size varies. However, Rh{sub 4} and Rh{sub 6} are found to be nonmagnetic. Electronic structures of the magnetic ground-state structures are also investigated within the DFT framework. The results are compared against those based on different theoretical approaches available in the literature.

  13. Surface Spins Pinning Effect on the Magnetic Properties in Co3O4 Nanocrystallites Covered with Polymer Decomposition Residues

    Institute of Scientific and Technical Information of China (English)

    李山东; 毕红; 方江邻; 钟伟; 都有为

    2004-01-01

    We prepare two kinds of Co3O4 antiferromagnetic nanocrystallite systems with different surface structures: one grain surface is covered by polymer decomposition residues (PDRs) (referred to as CS) and the other is naked (NS). It has been found that the magnetic properties of the CS sample deviate greatly from those of the NS sample. For example, the CS sample exhibits an open loop up to 8 T at 4.2K, while the two branches of the hysteresis loop for the NS sample superpose together when the field is in excess of 3 T. The average permanent magnetic moments per Co3O4 cell for the CS sample are about three times larger than that of the NS sample.The coercivity and loop shift for the CS sample are enhanced remarkably in comparison with the NS sample,i.e., from 73.8 and 11.0 kA/m for the NS sample to 116.5 and 25.5 kA/m for the CS sample, respectively. The anomalous magnetic properties and their enhancements for the CS sample are attributed to the surface spin pinning effect by PDRs.

  14. Structural and magnetic properties of GeMn layers; High Curie temperature ferromagnetism induced by self organized GeMn nano-columns

    Energy Technology Data Exchange (ETDEWEB)

    Devillers, T.; Jamet, M.; Barski, A.; Poydenot, V.; Dujardin, R.; Bayle Guillemaud, P.; Bellet Amalric, E.; Mattana, R. [Departement de Recherche Fondamentale sur la Matiere Condensee, Service de Physique des Materiaux et Microstructures, CEA Grenoble, 17 avenue des Martyrs, 38054 Grenoble Cedex (France); Rothman, J. [Laboratoire d' Electronique de Technologie de l' Information, Laboratoire Infrarouge, CEA Grenoble, 17 avenue des Martyrs, 38054 Grenoble Cedex (France); Cibert, J. [Laboratoire Louis Neel, CNRS, BP166, 38042 Grenoble Cedex 9 (France); Tatarenko, S. [Laboratoire de Spectrometrie Physique, BP 87, 38402 Saint-Martin d' Heres (France)

    2007-01-15

    In this paper we report on the structural and magnetic properties of GeMn layers grown on Ge(001). We show that for the optimized Mn concentration (6%) and for optimized growth temperature (close to 130 C), GeMn samples exhibit a high Curie temperature (higher than 400 K) and Anomalous Hall Effect up to room temperature. Our GeMn layers grown at low temperature (70 C to 130 C) are composed of vertical Mn-rich nano-columns. Samples grown at temperatures higher than 130 C contain GeMn nanoclusters. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Optical Writing of Magnetic Properties by Remanent Photostriction

    Science.gov (United States)

    Iurchuk, V.; Schick, D.; Bran, J.; Colson, D.; Forget, A.; Halley, D.; Koc, A.; Reinhardt, M.; Kwamen, C.; Morley, N. A.; Bargheer, M.; Viret, M.; Gumeniuk, R.; Schmerber, G.; Doudin, B.; Kundys, B.

    2016-09-01

    We present an optically induced remanent photostriction in BiFeO3 , resulting from the photovoltaic effect, which is used to modify the ferromagnetism of Ni film in a hybrid BiFeO3/Ni structure. The 75% change in coercivity in the Ni film is achieved via optical and nonvolatile control. This photoferromagnetic effect can be reversed by static or ac electric depolarization of BiFeO3 . Hence, the strain dependent changes in magnetic properties are written optically, and erased electrically. Light-mediated straintronics is therefore a possible approach for low-power multistate control of magnetic elements relevant for memory and spintronic applications.

  16. Magnetic and microstructural properties of nanocrystalline exchange coupled PrFeB permanent magnets

    Science.gov (United States)

    Goll, D.; Seeger, M.; Kronmüller, H.

    1998-05-01

    Nanocrystalline exchange coupled Pr 2Fe 14B single-phase and Pr 2Fe 14B+α-Fe two-phase magnets with grain sizes of about 20 nm were produced using the melt-spinning procedure. In the stoichiometric Pr 2Fe 14B composition a significantly enhanced remanence of JR=0.95 T was achieved in comparison with conventional Pr-rich and therefore decoupled isotropic PrFeB magnets ( JR⩽0.5 JS=0.78 T). In the composite magnets with overstoichiometric Fe a further enhancement of the remanence is possible. Values up to JR=1.42 T and ( BH) max=180.7 kJ/m 3 were obtained. As there exists no spin reorientation in PrFeB magnets, our attention was not only directed to the magnetic behaviour at room temperature but also to the magnetic properties in the whole ferromagnetic temperature range. The microstructural parameters Neff, αK and αex describing the influence of the non-ideal microstructure and the effect of the exchange coupling on the coercive field were determined within the framework of the nucleation model from the temperature dependence of the coercive field. Furthermore, reversibility measurements of the demagnetization curves in the second quadrant give important information about the magnetization processes in exchange coupled magnets. Moreover, we have investigated the law of approach to ferromagnetic saturation of the single-phase magnet in comparison with the decoupled one. The magnetic results are correlated with TEM investigations of the real microstructure.

  17. Structure and magnetic properties of bulk nanocrystalline Nd-Fe-B permanent magnets prepared by hot pressing and hot deformation

    Institute of Scientific and Technical Information of China (English)

    SONG Jie; YUE Ming; ZUO Jianhua; ZHANG Zirui; LIU Weiqiang; ZHANG Dongtao; ZHANG Jiuxing

    2013-01-01

    Structure and magnetic properties were studied for bulk nanocrystalline Nd-Fe-B permanent magnets that were prepared at 650 ℃ for 3 min under 300 MPa using the SPS-3.20-MK-V sintering machine and the hot pressed magnets were then submitted to hot deformation with height reduction of 50%,60%,70%,80%,and 85%.Effects of height reduction (HR) and deformation temperature on the structure and magnetic properties of the magnets were investigated.The crystal structure was evaluated by means of X-ray diffraction (XRD) and the microstructure was observed by transmission electron microscopy (TEM).The magnetic properties of the magnets were investigated by vibrating sample magnetometer (VSM).As the height reduction increased,the remanence (Br) of the magnets increased first,peaks at 1.3 T with HR=60%,then decreased again,and the coercivity (Hci) of the magnets decreased monotonically.On the other hand,as the deformation temperature increased,the Br of the magnets increased first,peaks at 1.36 T with HR=60%,then decreased again,and the Hci of the magnets decreased monotonically.Under optimal conditions,the hot deformed magnet possessed excellent magnetic properties as Br=l.36 T,Hci=1143 kA/m,and (BH)max=370 kJ/m3,suggesting the good potential of the magnets in practical applications.

  18. Magnetic properties of ultrathin tetragonal Heusler D022-Mn3Ge perpendicular-magnetized films

    Science.gov (United States)

    Sugihara, A.; Suzuki, K. Z.; Miyazaki, T.; Mizukami, S.

    2015-05-01

    We investigated the crystal structure and magnetic properties of Manganese-germanium (Mn3Ge) films having the tetragonal D022 structure, with varied thicknesses (5-130 nm) prepared on chromium (Cr)-buffered single crystal MgO(001) substrates. A crystal lattice elongation in the in-plane direction, induced by the lattice mismatch between the D022-Mn3Ge and the Cr buffer layer, increased with decreasing thickness of the D022-Mn3Ge layer. The films exhibited clear magnetic hysteresis loops with a squareness ratio close to unity, and a step-like magnetization reversal even at a 5-nm thickness under an external field perpendicular to the film's plane. The uniaxial magnetic anisotropy constant of the films showed a reduction to less than 10 Merg/cm3 in the small thickness range (≤20 nm), likely due to the crystal lattice elongation in the in-plane direction.

  19. Magnetic structure and magnetic transport properties of graphene nanoribbons with sawtooth zigzag edges.

    Science.gov (United States)

    Wang, D; Zhang, Z; Zhu, Z; Liang, B

    2014-12-23

    The magnetic structure and magnetic transport properties of hydrogen-passivated sawtooth zigzag-edge graphene nanoribbons (STGNRs) are investigated theoretically. It is found that all-sized ground-state STGNRs are ferromagnetic and always feature magnetic semiconductor properties, whose spin splitting energy gap E(g) changes periodically with the width of STGNRs. More importantly, for the STGNR based device, the dual spin-filtering effect with the perfect (100%) spin polarization and high-performance dual spin diode effect with a rectification ratio about 10(10) can be predicted. Particularly, a highly effective spin-valve device is likely to be realized, which displays a giant magnetoresistace (MR) approaching 10(10)%, which is three orders magnitude higher than the value predicted based on the zigzag graphene nanoribbons and six orders magnitude higher than previously reported experimental values for the MgO tunnel junction. Our findings suggest that STGNRs might hold a significant promise for developing spintronic devices.

  20. The effect of magnetic annealing on crystallographic texture and magnetic properties of Fe-2.6% Si

    Energy Technology Data Exchange (ETDEWEB)

    Salih, M.Z., E-mail: mohammedzs2007@hotmail.com [Institut für Werkstoffkunde und Werkstofftechnik, TU Clausthal, Agricolastraße 6, D-38678 Clausthal-Zellerfeld (Germany); Uhlarz, M. [Dresden High Magnetic Field Laboratory (HLD), Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, D-01328 Dresden (Germany); Pyczak, F. [Instiute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht (Germany); Brokmeier, H.-G. [Institut für Werkstoffkunde und Werkstofftechnik, TU Clausthal, Agricolastraße 6, D-38678 Clausthal-Zellerfeld (Germany); Instiute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht (Germany); Weidenfeller, B. [Institut für Elektrochemie, Abteilung für Materialwissenschaft, Arnold-Sommerfeld-Straße 6, D-38678 Clausthal-Zellerfeld (Germany); Al-hamdany, N. [Institut für Werkstoffkunde und Werkstofftechnik, TU Clausthal, Agricolastraße 6, D-38678 Clausthal-Zellerfeld (Germany); Gan, W.M. [Instiute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht (Germany); Zhong, Z.Y. [Institut für Werkstoffkunde und Werkstofftechnik, TU Clausthal, Agricolastraße 6, D-38678 Clausthal-Zellerfeld (Germany); Schell, N. [Instiute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht (Germany)

    2015-05-01

    The effect of magnetic annealing on crystallographic texture, microstructure, defects density and magnetic properties of a Fe-2.6% Si steel has been analyzed. After two stage cold rolling (75% and 60% cold rolled) with intermediate annealing process at (600 °C/1 h) the sample annealed at 600 °C for one hour during which different magnetic field of 0, 7 and 14 T were applied has been investigated. The effect of defects density after cold rolling process on the recrystallization texture and magnetic properties was characterized. Heat treatments under a high external field of 14 T show a drastic improvement of the magnetic properties such as significantly increased permeability. Neutron diffraction measurements were preferred for measurement of the bulk sample texture so that sufficient grain statistics were obtained. Because of its small wavelength (0.05–0.2 Å) Synchrotron diffraction with high photon energy was used to evaluate the defects density by a modified Williamson–Hall plot. - Highlights: • We show the effect of the magnetic annealing after intermediate cold rolling on the crystallographic texture and magnetic properties. • Due the coarse grained we used Neutron diffraction for texture measurement. • We used hysteresis recorder to measure the magnetic properties. • The magnetic annealing leads to drastic improvements of the magnetic properties such as significantly increased permeability. • We show the effect of defect density on the crystallographic texture and magnetic properties.

  1. A TALE OF THREE GALAXIES: ANOMALOUS DUST PROPERTIES IN IRAS F10398+1455, IRAS F21013–0739, AND SDSS J0808+3948

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yanxia; Hao, Lei [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Li, Aigen, E-mail: haol@shao.ac.cn [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States)

    2014-10-20

    On a galactic scale, the 9.7 μm silicate emission is usually only seen in type 1 active galactic nuclei (AGNs). They usually also display a flat emission continuum at ∼5-8 μm and the absence of polycyclic aromatic hydrocarbon (PAH) emission bands. In contrast, starburst galaxies, luminous infrared (IR) galaxies, and ultraluminous IR galaxies exhibit a red 5-8 μm emission continuum, strong 9.7 μm and 18 μm silicate absorption features, and strong PAH emission bands. Here, we report the detection of anomalous dust properties by the Spitzer/Infrared Spectrograph in three galaxies (IRAS F10398+1455, IRAS F21013-0739, and SDSS J0808+3948) which are characterized by the simultaneous detection of a red 5-8 μm emission continuum, the 9.7 and 18 μm silicate emission features, as well as strong PAH emission bands. These apparently contradictory dust IR emission properties are discussed in terms of iron-poor silicate composition, carbon dust deficit, small grain size, and low dust temperature in the young AGN phase of these three galaxies.

  2. Magnetic Properties of Diluted Magnetic Semiconductor Hg0.89Mn0.11Te

    Institute of Scientific and Technical Information of China (English)

    WANG Zewen; JIE Wanqi

    2015-01-01

    The magnetization of Hg0.89Mn0.11Te single crystal grown by vertical Bridgman method was studied by using superconducting quantum interference device magnetometer (SQUID Magnetometer). First, magnetization measurements were done under various magnetic ifeld strengths from-20 kOe to 20 kOe at 5 K, 15 K, and 77 K, respectively. Then, the magnetizations were measured with continuous changes of temperature in the range from 5 K to 300 K under the magnetic ifeld of 0.1 kOe and 10 kOe, respectively. The modiifed Brillouin function was well fitted with the data of magnetization vs. magnetic field strength. The analysis indicated that there was an antiferromagnetic exchange coupling among Mn2+ions. The results of reciprocal susceptibility vs. temperature ift Curie-Weiss law very well at the temperatures above 40 K, but deviate from the law from 5 K to 40 K, which shows that the antiferromagnetic exchange coupling among Mn2+ions increases in the lower temperature range below 40 K. The experimental result was explained by extending higher-order terms in the calculation of susceptibility and fitted by a power law function. The measurements reveal that Hg0.89Mn0.11Te possesses paramagnetic properties at temperatures from 5 K to 300 K.

  3. Ab initio study of ZnCoO diluted magnetic semiconductor and its magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Lardjane, S., E-mail: soumia.lardjane@utbm.fr [Laboratoire d' Etudes et de Recherches, les Procedes et les Surfaces, IRTES-LERMPS, UTBM, Site de Montbeliard, 90010 Belfort Cedex (France); Laboratoire d' Etude et Prediction des Materiaux, Unite de Recherche Materiaux et Energies Renouvelables, LEPM-URMER, Universite de Tlemcen (Algeria); Merad, G. [Laboratoire d' Etude et Prediction des Materiaux, Unite de Recherche Materiaux et Energies Renouvelables, LEPM-URMER, Universite de Tlemcen (Algeria); Fenineche, N.; Billard, A. [Laboratoire d' Etudes et de Recherches, les Procedes et les Surfaces, IRTES-LERMPS, UTBM, Site de Montbeliard, 90010 Belfort Cedex (France); Faraoun, H.I. [Laboratoire d' Etude et Prediction des Materiaux, Unite de Recherche Materiaux et Energies Renouvelables, LEPM-URMER, Universite de Tlemcen (Algeria)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer We have studied the electronic and magnetic properties of ZnCoO using the GGA and GGA + U. Black-Right-Pointing-Pointer The GGA + U calculations show that the ZnCoO system shows semiconductor band structures. Black-Right-Pointing-Pointer The obtained magnetic moment on Co is larger in the GGA + U case. Black-Right-Pointing-Pointer Antiferromagnetic order between nearest-neighbour magnetic ions was predicted. Black-Right-Pointing-Pointer Our results suggest that the range of magnetic interaction is short in ZnCoO. - Abstract: Transition metal-doped wide band gap semiconductors, such as ZnO, attract much attention due to the theoretical prediction that ZnO is a room temperature ferromagnetic semiconductor [1,2]. Very controversial experimental and theoretical papers have been published to discuss the origin of ferromagnetic ordering and the relevance of the Curie temperature (T{sub C}) of Co-doped ZnO [3-5]. In order to get better insight, electronic structure of Co{sub x}Zn{sub 1-x}O magnetic semiconductor was investigated via first principle calculations. The generalised gradient approximations (GGA) and the GGA with Hubbard U correction (GGA + U) in the framework of density functional theory (DFT) have been used. Calculations are done for different doping concentrations to discuss the contribution of different atoms in magnetic moments and magnetic coupling.

  4. Magnetic and electrical properties of In doped cobalt ferrite nanoparticles

    Science.gov (United States)

    Nongjai, Razia; Khan, Shakeel; Asokan, K.; Ahmed, Hilal; Khan, Imran

    2012-10-01

    Nanoparticles of CoFe2O4 and CoIn0.15Fe1.85O4 ferrites were prepared by citrate gel route and characterized to understand their structural, electrical, and magnetic properties. X-ray diffraction and Raman spectroscopy were used to confirm the formation of single phase cubic spinel structure. The average grain sizes from the Scherrer formula were below 50 nm. Microstructural features were obtained by scanning electron microscope and compositional analysis by energy dispersive spectroscopy. The hysteresis curve shows enhancement in coercivity while reduction in saturation magnetization with the substitution of In3+ ions. Enhancement of coercivity is attributed to the transition from multidomain to single domain nature. Electrical properties, such as dc resistivity as a function of temperature and ac conductivity as a function of frequency and temperature were studied for both the samples. The activation energy derived from the Arrhenius equation was found to increase in the doped sample. The dielectric constant (ɛ') and dielectric loss (tan δ) are also studied as a function of frequency and temperature. The variation of dielectric properties ɛ', tan δ, and ac conductivity (σac) with frequency reveals that the dispersion is due to Maxwell-Wagner type of interfacial polarization in general and the hopping of charge between Fe2+ and Fe3+ as well as between Co2+ and Co3+ ions at B-sites. Magnetization and electrical property study showed its dominant dependence on the grain size.

  5. Magnetic properties of zero-magnetostrictive nanocrystalline Fe-Zr-Nb-B soft magnetic alloys with high magnetic induction

    Energy Technology Data Exchange (ETDEWEB)

    Makino, A.; Bitoh, T. E-mail: teruo_bitoh@akita-pu.ac.jp; Kojima, A.; Inoue, A.; Masumoto, T

    2000-06-02

    The soft magnetic properties of the nanocrystalline Fe-Zr-Nb-B alloys have been investigated. The best soft magnetic properties have been obtained for the Fe{sub 85.5}Zr{sub 2}Nb{sub 4}B{sub 8.5} alloy. The alloy shows a high permeability of 60,000 at 1 kHz, a high magnetic induction of 1.64 T and zero magnetostriction, simultaneously. The alloy also exhibits a very low core loss of 0.09 W/kg at 1.4 T and 50 Hz, which is extremely lower than that of Fe-Si-B amorphous. The nanocrystalline Fe-Zr-Nb-B alloy is therefore suitable for a core material for pole transformers.

  6. Magnetic properties of electrodeposited Ni‒P alloys with varying phosphorus content

    Science.gov (United States)

    Knyazev, A. V.; Fishgoit, L. A.; Chernavskii, P. A.; Safonov, V. A.; Filippova, S. E.

    2017-02-01

    The effect thermal treatment has on the magnetic properties (magnetization, saturation magnetization, and coercivity) of Ni‒P alloys prepared via electrodeposition is studied. The process of amorphous Ni‒P alloys devitrification is investigated by differential scanning calorimetry. The effects of chemical composition and thermal treatment on magnetic properties of the alloys are revealed.

  7. Resonant magnetic properties of gadolinium-gallium garnet single crystals

    Science.gov (United States)

    Bedyukh, A. R.; Danilov, V. V.; Nechiporuk, A. Yu.; Romanyuk, V. F.

    1999-03-01

    The results of experimental investigations of resonant magnetic properties of gadolinium-gallium garnet (GGG) single crystals at temperatures 4.2-300 K in the frequency range 1.6-9.3 GHz are considered. It is found that magnetic losses in GGG are determined by the initial splitting of energy levels for gadolinium ions in the garnet crystal lattice and by the dipole broadening. The width and shape of the electron paramagnetic resonance (EPR) line in the GGG crystal, whose asymmetry is manifested most strongly at low frequencies, can be explained by the influence of these factors. Magnetic losses in GGG increase with frequency and upon cooling. It is found that the EPR linewidth increases considerably with decreasing temperature due to the presence of rapidly relaxing impurities.

  8. Magnetic properties related to thermal treatment of pyrite

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Detailed rock magnetic experiments were conducted on high-purity natural crystalline pyrite and its products of thermal treatments in both argon and air atmospheres. In argon atmosphere (reducing environment), the pyrite is altered by heating to magnetite and pyrrhotite; the latter is stable in argon atmosphere, and has coercive force and coercivity of remanence of ~20 and ~30 mT, respectively. Whereas in air, the pyrite is ultimately oxidized to hematite. First order reversal curve (FORC) diagram of the end product shows that the remanence coercivity of hematite is up to ~1400 mT. The corresponding thermal transformation process of pyrite in air can be simply summarized as pyrite→ pyrrhotite→magnetite→hematite. These results are helpful for understanding of sedimentary magnetism, secondary chemical remanence and meteorolite magnetic properties.

  9. Magnetic Properties of Nanocrystalline Nickel-Cobalt Ferrites

    Science.gov (United States)

    Tiwari, D. K.; Villaseñor-Cendejas, L. M.; Thakur, A. K.

    2013-09-01

    In this study, the nanocrystalline nickel-cobalt ferrites were prepared via the citrate route method at . The samples were calcined at for 3 h. The crystalline structure and the single-phase formations were confirmed by X-ray diffraction (XRD) measurements. Prepared materials showed the cubic spinel structure with m3m symmetry and Fd3m space group. The analyses of XRD patterns were carried out using POWD software. It gave an estimation of lattice constant “” of 8.3584 Å, which was in good agreement with the results reported in JCPDS file no. 742081. The crystal size of the prepared materials calculated by Scherer’s formula was 27.6 nm and the electrical conductivity was around . The permeability component variations with frequency were realized. The magnetic properties of the prepared materials were analyzed by a vibrating sample magnetometer (VSM). It showed a saturation magnetization of and the behavior of a hard magnet.

  10. SYNTHESIS AND MAGNETIC PROPERTIES OF Zn SPINEL CERAMICS

    Directory of Open Access Journals (Sweden)

    Huber Š.

    2013-06-01

    Full Text Available We present the synthesis and characterization of ZnTM2O4 spinels (where TM = Cr3+, Mn3+, Fe3+ and Co3+, which are possible impurity phases in TM-doped ZnO that represent a large family of diluted magnetic semiconductors (DMS. The aim of our study was to find a uniform technique simplifying the whole synthesis of zinc spinels and their magnetic characterization. The synthesis was carried out by a conventional ceramic route with one calcination and two sintering steps. The structure of the prepared samples was proofed by X-ray diffraction analysis and magnetic properties were studied using SQUID magnetometer. Excluding the cobalt spinel, all spinels were singe phase and showed antiferromagnetic behavior.

  11. Structure and magnetic properties of nanostructured Ni-ferrite

    Science.gov (United States)

    Albuquerque, A. S.; Ardisson, J. D.; Macedo, W. A. A.; López, J. L.; Paniago, R.; Persiano, A. I. C.

    2001-05-01

    The structural and magnetic properties of NiFe 2O 4 ultrafine powders synthesized by coprecipitation, a nonconventional method of preparation, were investigated. The samples were obtained by annealing at relatively low temperatures (300-600°C) and characterized by X-ray diffraction, Mössbauer spectroscopy, and vibrating sample magnetometry. The average particle diameter ranges from 4 to 15 nm, as determined by X-ray diffraction. All nanometric powder samples presented strong superparamagnetic relaxation at room temperature and reduced magnetic hyperfine fields at -193°C. Magnetometry measurements indicated different magnetic behavior related with crystallinity of samples, coercivity as high as 168 Oe at 27°C, value that is nearly two times higher than coercivity of bulk Ni-ferrite.

  12. Structure and magnetic properties of nanostructured Ni-ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, A.S. E-mail: asa@urano.cdtn.br; Ardisson, J.D.; Macedo, W.A.A.; Lopez, J.L.; Paniago, R.; Persiano, A.I.C

    2001-05-01

    The structural and magnetic properties of NiFe{sub 2}O{sub 4} ultrafine powders synthesized by coprecipitation, a nonconventional method of preparation, were investigated. The samples were obtained by annealing at relatively low temperatures (300-600 deg. C) and characterized by X-ray diffraction, Moessbauer spectroscopy, and vibrating sample magnetometry. The average particle diameter ranges from 4 to 15 nm, as determined by X-ray diffraction. All nanometric powder samples presented strong superparamagnetic relaxation at room temperature and reduced magnetic hyperfine fields at -193 deg. C. Magnetometry measurements indicated different magnetic behavior related with crystallinity of samples, coercivity as high as 168 Oe at 27 deg. C, value that is nearly two times higher than coercivity of bulk Ni-ferrite.

  13. Magnetic properties related to thermal treatment of pyrite

    Institute of Scientific and Technical Information of China (English)

    WANG Lei; PAN YongXin; LI JinHua; QIN HuaFeng

    2008-01-01

    Detailed rock magnetic experiments were conducted on high-purity natural crystalline pyrite and its products of thermal treatments in both argon and air atmospheres. In argon atmosphere (reducing environment), the pyrite is altered by heating to magnetite and pyrrhotite; the latter is stable in argon atmosphere, and has coercive force and coercivity of remanence of ~20 and ~30 mT, respectively.Whereas in air, the pyrite is ultimately oxidized to hematite. First order reversal curve (FORC) diagram of the end product shows that the remanence coercivity of hematite is up to ~1400 mT. The corresponding thermal transformation process of pyrite in air can be simply summarized as pyrite→pyrrhotite→magnetite→hematite. These results are helpful for understanding of sedimentary magnetism, secondary chemical remanence and meteorolite magnetic properties.

  14. Structural and magnetic properties of Ni/Pt multilayers

    Science.gov (United States)

    Quiroga, Matías A.; Cabeza, Gabriela F.; Castellani, Norberto J.

    2007-10-01

    In this work, the variation of the magnetic moments of the Ni/Pt multilayers are studied using the linearized augmented plane waves (LAPW) method in the framework of the density functional theory (DFT) implemented in the version of WIEN2K program. The systems have been modeled by seven layers slab separated in z direction by a vacuum region of four substrate layers. We present the results of the dependence of the magnetic properties with respect to the thickness variation of the different multilayers. The modeling of these systems finds an important empirical support. Experiment and theory show the same trends for the magnetic moments: hybridization effects between Ni and Pt are mostly localized at the interface.

  15. Micromorphology, microstructure and magnetic properties of sputtered garnet multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Marcelli, R. [CNR, Roma (Italy). Ist. di Elettronica dello Stato Solido; Padeletti, G.; Gambacorti, N.; Simeone, M.G.; Fiorani, D. [CNR, Monterotondo Stazione (Italy). Ist. di Chimica dei Materiali

    1998-12-31

    The growth technique, the micromorphological and microstructural characterization by means of atomic force microscopy (AFM) and secondary ions mass spectrometry (SIMS) as well as the magnetic properties of a novel class of magnetic multilayers, based on radio frequency (RF) sputtered thin amorphous garnet films, are presented. One, three and five thin film multilayers composed by amorphous pure yttrium iron garnet (a:YIG) and amorphous gadolinium gallium garnet (a:GGG) have been grown on GGG single crystal substrates. The multilayer interfaces have been found to be comparable in both, the three and five-layers structure. Low field susceptibility measurements, showed a paramagnetic behavior for the single layer YIG film. For the three and five layers samples, irreversibility effects were observed, giving evidence of magnetic clusters at the interface YIG/GGG.

  16. Frequency-Dependent Properties of Magnetic Nanoparticle Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Majetich, Sara [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-05-17

    In the proposed research program we will investigate the time- and frequency-dependent behavior of ordered nanoparticle assemblies, or nanoparticle crystals. Magnetostatic interactions are long-range and anisotropic, and this leads to complex behavior in nanoparticle assemblies, particularly in the time- and frequency-dependent properties. We hypothesize that the high frequency performance of composite materials has been limited because of the range of relaxation times; if a composite is a dipolar ferromagnet at a particular frequency, it should have the advantages of a single phase material, but without significant eddy current power losses. Arrays of surfactant-coated monodomain magnetic nanoparticles can exhibit long-range magnetic order that is stable over time. The magnetic domain size and location of domain walls is governed not by structural grain boundaries but by the shape of the array, due to the local interaction field. Pores or gaps within an assembly pin domain walls and limit the domain size. Measurements of the magnetic order parameter as a function of temperature showed that domains can exist at high temoerature, and that there is a collective phase transition, just as in an exchange-coupled ferromagnet. Dipolar ferromagnets are not merely of fundamental interest; they provide an interesting alternative to exchange-based ferromagnets. Dipolar ferromagnets made with high moment metallic particles in an insulating matrix could have high permeability without large eddy current losses. Such nanocomposites could someday replace the ferrites now used in phase shifters, isolators, circulators, and filters in microwave communications and radar applications. We will investigate the time- and frequency-dependent behavior of nanoparticle crystals with different magnetic core sizes and different interparticle barrier resistances, and will measure the magnetic and electrical properties in the DC, low frequency (0.1 Hz - 1 kHz), moderate frequency (10 Hz - 500

  17. Faraday anomalous dispersion optical tuners

    Science.gov (United States)

    Wanninger, P.; Valdez, E. C.; Shay, T. M.

    1992-01-01

    Common methods for frequency stabilizing diode lasers systems employ gratings, etalons, optical electric double feedback, atomic resonance, and a Faraday cell with low magnetic field. Our method, the Faraday Anomalous Dispersion Optical Transmitter (FADOT) laser locking, is much simpler than other schemes. The FADOT uses commercial laser diodes with no antireflection coatings, an atomic Faraday cell with a single polarizer, and an output coupler to form a compound cavity. This method is vibration insensitive, thermal expansion effects are minimal, and the system has a frequency pull in range of 443.2 GHz (9A). Our technique is based on the Faraday anomalous dispersion optical filter. This method has potential applications in optical communication, remote sensing, and pumping laser excited optical filters. We present the first theoretical model for the FADOT and compare the calculations to our experimental results.

  18. Magnetic and electron-transport properties of spin-gapless semiconducting CoFeCrAl films

    Science.gov (United States)

    Sellmyer, David; Jin, Yunlong; Kharel, Parashu; Valloppilly, Shah; George, Tom; Balasubramanian, Balamurugan; Skomski, Ralph

    Recently, spin-gapless semiconductors (SGS) with a semiconducting or insulating gap in one spin channel and zero gap in the other at the Fermi level have attracted much attention due to their new functionalities such as voltage-tunable spin polarization, the ability to switch between spin-polarized n-type and p-type conduction, high spin polarization and carrier mobility. For the development of spintronic devices utilizing SGS, it is necessary to have a better understanding of the magnetic and transport properties of the thin films of these materials. In this study, the structural, magnetic, and electron-transport properties of a SGS material CoFeCrAl in the thin film geometry have been investigated. CoFeCrAl films were grown on atomically flat SiO2 substrates using magnetron sputtering. The Curie temperature was measured to be 550 K very close to the value reported for bulk CoFeCrAl. Electron-transport measurements on the oriented films revealed a negative temperature coefficient of resistivity, small anomalous Hall conductivity and linear field dependence of magnetoresistance, which are transport signatures of SGS. The effect of elemental compositions and structural ordering on the SGS properties of the CoFeCrAl films will be discussed. Research supported by NSF (Y. J.), DoE (B. B., D. J. S), ARO (T. A. G., S. R. V.), SDSU (P. K.), and NRI (Facilities).

  19. Magnetic and electronic properties of porphyrin-based molecular nanowires

    Directory of Open Access Journals (Sweden)

    Jia-Jia Zheng

    2016-01-01

    Full Text Available Using spin-polarized density functional theory calculations, we performed theoretical investigations on the electronic and magnetic properties of transition metal embedded porphyrin-based nanowires (TM-PNWs, TM = Cr, Mn, Co, Ni, Cu, and Zn. Our results indicate that Ni-PNW and Zn-PNW are nonmagnetic while the rest species are magnetic, and the magnetic moments in TM-PNWs and their corresponding isolated monomer structures are found to be the same. In addition, the spin coupling in the magnetic nanowires can be ignored leading to their degenerate AFM and FM states. These results can be ascribed to the weak intermetallic interactions because of the relatively large distances between neighbor TM atoms. Among all TM-PNW structures considered here, only Mn-PNW shows a half-metallic property while the others are predicted to be semiconducting. The present work paves a new way of obtaining ferromagnetic porphyrin-based nanowires with TM atoms distributed separately and orderly, which are expected to be good candidates for catalysts, energy storage and molecular spintronics.

  20. Size-dependent magnetic properties of branchlike nickel oxide nanocrystals

    Science.gov (United States)

    Liu, Dan; Li, Dongsheng; Yang, Deren

    2017-01-01

    Branchlike nickel oxide nanocrystals with narrow size distribution are obtained by a solution growth method. The size-dependent of magnetic properties of the nickel oxides were investigated. The results of magnetic characterization indicate that the NiO nanocrystals with size below 12.8 nm show very weak ferromagnetic state at room temperature due to the uncompensated spins. Both of the average blocking temperature (Tb) and the irreversible temperature (Tirr) increase with the increase of nanoparticle sizes, while both the remnant magnetization and the coercivity at 300 K increase with the decrease of the particle sizes. Moreover, the disappearance of two-magnon (2M) band and redshift of one-phonon longitudinal (1LO) and two-phonon LO in vibrational properties due to size reduction are observed. Compared to the one with the spherical morphological, it is also found that nano-structured nickel oxides with the branchlike morphology have larger remnant magnetization and the coercivity at 5 K due to their larger surface-to-volume ratio and greater degree of broken symmetry at the surface or the higher proportion of broken bonds.

  1. The magnetic properties of the star Kepler-78

    Science.gov (United States)

    Moutou, C.; Donati, J.-F.; Lin, D.; Laine, R. O.; Hatzes, A.

    2016-06-01

    Kepler-78 is host to a transiting 8.5-h orbit super-Earth. In this paper, the rotation and magnetic properties of the planet host star are studied. We first revisit the Kepler photometric data for a detailed description of the rotation properties of Kepler-78, showing that the star seems to undergo a cycle in the spot pattern of ˜1300 d duration. We then use spectropolarimetric observations with Canada-France-Hawaii Telescope (CFHT)/ESPaDOnS to measure the circular polarization in the line profile of the star during its rotation cycle, as well as spectroscopic proxies of the chromospheric activity. The average field has a strength of 16 G. The magnetic topology is characterized by a poloidal and a toroidal component, encompassing 60 per cent and 40 per cent of the magnetic energy, respectively. Differential rotation is detected with an estimated rate of 0.105±0.039 rad d-1. Activity tracers vary with the rotation cycle of the star; there is no hint that a residual activity level is related to the planetary orbit at the precision of our data. The description of the star magnetic field's characteristics then may serve as input for models of interactions between the star and its close-by planet, e.g. Ohmic dissipation and unipolar induction.

  2. Magnetic and electronic properties of porphyrin-based molecular nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jia-Jia; Li, Qiao-Zhi; Dang, Jing-Shuang; Zhao, Xiang, E-mail: xzhao@mail.xjtu.edu.cn [Institute for Chemical Physics & Department of Chemistry, MOE Key Laboratory for Non-equilibrium Condensed Matter and Quantum Engineering, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Wei-Wei [Research Center for Computational Science, Institute for Molecular Science, Okazaki, Aichi 444-8585 (Japan)

    2016-01-15

    Using spin-polarized density functional theory calculations, we performed theoretical investigations on the electronic and magnetic properties of transition metal embedded porphyrin-based nanowires (TM-PNWs, TM = Cr, Mn, Co, Ni, Cu, and Zn). Our results indicate that Ni-PNW and Zn-PNW are nonmagnetic while the rest species are magnetic, and the magnetic moments in TM-PNWs and their corresponding isolated monomer structures are found to be the same. In addition, the spin coupling in the magnetic nanowires can be ignored leading to their degenerate AFM and FM states. These results can be ascribed to the weak intermetallic interactions because of the relatively large distances between neighbor TM atoms. Among all TM-PNW structures considered here, only Mn-PNW shows a half-metallic property while the others are predicted to be semiconducting. The present work paves a new way of obtaining ferromagnetic porphyrin-based nanowires with TM atoms distributed separately and orderly, which are expected to be good candidates for catalysts, energy storage and molecular spintronics.

  3. Magnetic properties in an ash flow tuff with continuous grain size variation: a natural reference for magnetic particle granulometry

    Science.gov (United States)

    Till, J.L.; Jackson, M.J.; Rosenbaum, J.G.; Solheid, P.

    2011-01-01

    The Tiva Canyon Tuff contains dispersed nanoscale Fe-Ti-oxide grains with a narrow magnetic grain size distribution, making it an ideal material in which to identify and study grain-size-sensitive magnetic behavior in rocks. A detailed magnetic characterization was performed on samples from the basal 5 m of the tuff. The magnetic materials in this basal section consist primarily of (low-impurity) magnetite in the form of elongated submicron grains exsolved from volcanic glass. Magnetic properties studied include bulk magnetic susceptibility, frequency-dependent and temperature-dependent magnetic susceptibility, anhysteretic remanence acquisition, and hysteresis properties. The combined data constitute a distinct magnetic signature at each stratigraphic level in the section corresponding to different grain size distributions. The inferred magnetic domain state changes progressively upward from superparamagnetic grains near the base to particles with pseudo-single-domain or metastable single-domain characteristics near the top of the sampled section. Direct observations of magnetic grain size confirm that distinct transitions in room temperature magnetic susceptibility and remanence probably denote the limits of stable single-domain behavior in the section. These results provide a unique example of grain-size-dependent magnetic properties in noninteracting particle assemblages over three decades of grain size, including close approximations of ideal Stoner-Wohlfarth assemblages, and may be considered a useful reference for future rock magnetic studies involving grain-size-sensitive properties.

  4. Electrical and Magnetic Properties of FeSi2 Nanowires

    Institute of Scientific and Technical Information of China (English)

    PENG Zu-Lin; S. Liang

    2008-01-01

    We report the characterization of serf-assembled epitaxially grown FeSi2 nanowires (NWs) in terms of electrical and magnetic properties. NWs grown by reactive deposition epitaxy (RDE) on silicon (110) show dimensions of 1Onm×5nm, and several micrometres in length. By using conductive-AFM (c-AFM), electron transport properties of one single NW is measured, resistivity of a single crystalline FeSi2 NW is estimated to be 225 μΩ·cm.Using superconducting quantum interference device (SQUID), we measure a magnetic moment of 0.3±0.1 Bohr magneton per iron atom for these FeSi2 NWs.

  5. Magnetic and Magnetoelectric Properties of Rare Earth Molybdates

    Directory of Open Access Journals (Sweden)

    B. K. Ponomarev

    2012-01-01

    Full Text Available We present results on ferroelectric, magnetic, magneto-optical properties and magnetoelectric effect of rare earth molybdates (gadolinium molybdate, GMO, and terbium molybdate, TMO, and samarium molybdate, SMO, belonging to a new type of ferroelectrics predicted by Levanyuk and Sannikov. While cooling the tetragonal β-phase becomes unstable with respect to two degenerate modes of lattice vibrations. The β-β′ transition is induced by this instability. The spontaneous polarization appears as a by-product of the lattice transformation. The electric order in TMO is of antiferroelectric type. Ferroelectric and ferroelastic GMO and TMO at room temperature are paramagnets. At low temperatures GMO and TMO are antiferromagnetic with the Neel temperatures TN=0.3 K (GMO and TN=0.45 K (TMO. TMO shows the spontaneous destruction at 40 kOe magnetic field. Temperature and field dependences of the magnetization in TMO are well described by the magnetism theory of singlets at 4.2 K ≤ T ≤ 30 K. The magnetoelectric effect in SMO, GMO and TMO, the anisotropy of magnetoelectric effect in TMO at T = (1.8–4.2 K, the Zeeman effect in TMO, the inversion of the electric polarization induced by the laser beam are discussed. The correlation between the magnetic moment of rare earth ion and the magnetoelectric effect value is predicted. The giant fluctuations of the acoustic resonance peak intensity near the Curie point are observed.

  6. Magnetic properties of Ni(II)-Mn(III) LDHs

    Energy Technology Data Exchange (ETDEWEB)

    Giovannelli, F., E-mail: fabien.giovannelli@univ-tours.fr [LEMA, UMR 6157 CNRS-CEA, Universite Francois Rabelais, 3 place Jean Jaures, 41029 Blois (France); Zaghrioui, M.; Autret-Lambert, C. [LEMA, UMR 6157 CNRS-CEA, Universite Francois Rabelais, 3 place Jean Jaures, 41029 Blois (France); Delorme, F.; Seron, A. [BRGM, 3 Avenue Claude Guillemin, BP 36009, 45060 Orleans Cedex 2 (France); Chartier, T.; Pignon, B. [LEMA, UMR 6157 CNRS-CEA, Universite Francois Rabelais, 3 place Jean Jaures, 41029 Blois (France)

    2012-11-15

    The synthesis of Ni{sub 1-x}Mn{sub x}(OH){sub 2}(CO{sub 3}){sub x/2}{center_dot}nH{sub 2}O Layered Double Hydroxides (LDHs) for x = 0.2, 0.25 and 0.33, their characterisation by electron microscopy, X-ray diffraction and their magnetic properties are reported in this study. When x increases, the crystallinity of the nanoparticles is improved. The low temperature magnetic behaviour of these compounds is characteristic of the competition between in plane ferromagnetic and interlayer antiferromagnetic interactions. The ferromagnetism is due to in plane Ni cations interaction and decreases when manganese content increases (Tc decreases from 26 to 15 K when x increases from 0.2 to 0.33). It was found that the substitution of Ni by Mn ions favours the in plane antiferromagnetic order. This study demonstrates that magnetic interactions occur in LDH with non magnetic interlayer anions. -- Highlights: Black-Right-Pointing-Pointer The synthesis of Ni{sub 1-x}Mn{sub x}(OH){sub 2}(CO{sub 3}){sub x/2}{center_dot}nH{sub 2}O Layered Double Hydroxides have been performed. Black-Right-Pointing-Pointer The low temperature magnetic behaviour of these compounds has been studied. Black-Right-Pointing-Pointer The substitution of Ni by Mn ions favours the in plane antiferromagnetic order.

  7. Microscopic and magnetic properties of template assisted electrodeposited iron nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Irshad, M. I., E-mail: imrancssp@gmail.com; Mohamed, N. M., E-mail: noranimuti-mohamed@petronas.com.my; Yar, A., E-mail: asfandyarhargan@gmail.com [Department of Fundamental & Applied Sciences, Universiti Teknologi PETRONAS, 31750 PERAK (Malaysia); Ahmad, F., E-mail: faizahmad@petronas.com.my; Abdullah, M. Z., E-mail: zaki-abdullah@petronas.com.my [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 31750 PERAK (Malaysia)

    2015-07-22

    Nanowires of magnetic materials such as Iron, nickel, cobalt, and alloys of them are one of the most widely investigated structures because of their possible applications in high density magnetic recording media, sensor elements, and building blocks in biological transport systems. In this work, Iron nanowires have been prepared by electrodeposition technique using Anodized Aluminium Oxide (AAO) templates. The electrolyte used consisted of FeSO{sub 4.}6H{sub 2}O buffered with H{sub 3}BO{sub 3} and acidized by dilute H{sub 2}SO{sub 4}. FESEM analysis shows that the asdeposited nanowires are parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. To fabricate the working electrode, a thin film of copper (∼ 220 nm thick) was coated on back side of AAO template by e-beam evaporation system to create electrical contact with the external circuit. The TEM results show that electrodeposited nanowires have diameter around 100 nm and are polycrystalline in structure. Magnetic properties show the existence of anisotropy for in and out of plane configuration. These nanowires have potential applications in magnetic data storage, catalysis and magnetic sensor applications.

  8. Magnetic properties of point defects in proton irradiated diamond

    Energy Technology Data Exchange (ETDEWEB)

    Makgato, T.N., E-mail: Thuto.Makgato@students.wits.ac.za [School of Physics, University of the Witwatersrand, Johannesburg 2050 (South Africa); Sideras-Haddad, E. [School of Physics, University of the Witwatersrand, Johannesburg 2050 (South Africa); Center of Excellence in Strong Materials, Physics Building, University of the Witwatersrand, Johannesburg 2050 (South Africa); Ramos, M.A. [CMAM, Centro de Micro-Analisis de Materiales, Universidad Autónoma de Madrid, C/Faraday 3, Campus de Cantoblanco, E-28049 Madrid (Spain); Departamento de Fisica de la Materia Condensada, Condensed Matter Physics Center (IFIMAC) and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid (Spain); García-Hernández, M. [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); Climent-Font, A.; Zucchiatti, A.; Muñoz-Martin, A. [CMAM, Centro de Micro-Analisis de Materiales, Universidad Autónoma de Madrid, C/Faraday 3, Campus de Cantoblanco, E-28049 Madrid (Spain); Shrivastava, S. [School of Physics, University of the Witwatersrand, Johannesburg 2050 (South Africa); Erasmus, R. [School of Physics, University of the Witwatersrand, Johannesburg 2050 (South Africa); Center of Excellence in Strong Materials, Physics Building, University of the Witwatersrand, Johannesburg 2050 (South Africa)

    2016-09-01

    We investigate the magnetic properties of ultra-pure type-IIa diamond following irradiation with proton beams of ≈1–2 MeV energy. SQUID magnetometry indicate the formation of Curie type paramagnetism according to the Curie law. Raman and Photoluminescence spectroscopy measurements show that the primary structural features created by proton irradiation are the centers: GR1, ND1, TR12 and 3H. The Stopping and Range of Ions in Matter (SRIM) Monte Carlo simulations together with SQUID observations show a strong correlation between vacancy production, proton fluence and the paramagnetic factor. At an average surface vacancy spacing of ≈1–1.6 nm and bulk (peak) vacancy spacing of ≈0.3-0.5 nm Curie paramagnetism is induced by formation of ND1 centres with an effective magnetic moment μ{sub eff}~(0.1–0.2)μ{sub B}. No evidence of long range magnetic ordering is observed in the temperature range 4.2-300 K. - Highlights: • Proton macro-irradiation of pure diamond creates fluence dependent paramagnetism. • The effective magnetic moment is found to be in the range μ{sub eff}~(0.1–0.2)μ{sub B}. • No evidence of long range magnetic ordering is observed.

  9. Synthesis and magnetic properties of single phase titanomagnetites

    Energy Technology Data Exchange (ETDEWEB)

    Schoenthal, W., E-mail: wms@andrew.cmu.edu; Liu, X.; Cox, T.; Laughlin, D. E.; McHenry, M. E. [Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Mesa, J. L.; Diaz-Michelena, M. [Instituto Nacional de Tecnica Aeroespacial, Madrid (Spain); Maicas, M. [Universidad Politecnica de Madrid, ISOM-ETSIT, Madrid (Spain)

    2014-05-07

    The focus of this paper is the study of cation distributions and resulting magnetizations in titanomagnetites (TMs), (1−x)Fe{sub 3}O{sub 4−x}Fe{sub 2}TiO{sub 4} solid solutions. TM remnant states are hypothesized to contribute to planetary magnetic field anomalies. This work correlates experimental data with proposed models for the TM pseudobinary. Improved synthesis procedures are reported for single phase Ulvöspinel (Fe{sub 2}TiO{sub 4}), and TM solid solutions were made using solid state synthesis techniques. X-ray diffraction and scanning electron microscopy show samples to be single phase solid solutions. M-H curves of TM75, 80, 85, 90, and 95 (TMX where X = at. % of ulvöspinel) were measured using a Physical Property Measurement System at 10 K, in fields of 0 to 8 T. The saturation magnetization was found to be close to that predicted by the Neel model for cation distribution in TMs. M-T curves of the remnant magnetization were measured from 10 K to 350 K. The remnant magnetization was acquired at 10 K by applying an 8 T field and then releasing the field. Experimental Neel temperatures are reported for samples in the Neel model ground state.

  10. Nonaqueous magnetic nanoparticle suspensions with controlled particle size and nuclear magnetic resonance properties.

    Science.gov (United States)

    Meledandri, Carla J; Stolarczyk, Jacek K; Ghosh, Swapankumar; Brougham, Dermot F

    2008-12-16

    We report the preparation of monodisperse maghemite (gamma-Fe2O3) nanoparticle suspensions in heptane, by thermal decomposition of iron(III) acetylacetonate in the presence of oleic acid and oleylamine surfactants. By varying the surfactant/Fe precursor mole ratio during synthesis, control was exerted both over the nanocrystal core size, in the range from 3 to 6 nm, and over the magnetic properties of the resulting nanoparticle dispersions. We report field-cycling 1H NMR relaxation analysis of the superparamagnetic relaxation rate enhancement of nonaqueous suspensions for the first time. This approach permits measurement of the relaxivity and provides information on the saturation magnetization and magnetic anisotropy energy of the suspended particles. The saturation magnetization was found to be in the expected range for maghemite particles of this size. The anisotropy energy was found to increase significantly with decreasing particle size, which we attribute to increased shape anisotropy. This study can be used as a guide for the synthesis of maghemite nanoparticles with selected magnetic properties for a given application.

  11. Anisotropic magnetic properties of dysprosium iron garnet (DyIG)

    Energy Technology Data Exchange (ETDEWEB)

    Lahoubi, M; Younsi, W; Soltani, M-L [Department of Physics, Badji-Mokhtar University, BP 12 - 23000 Annaba (Algeria); Ouladdiaf, B, E-mail: mlahoubi@gmail.co [Institut Laue Langevin, BP 156 - 38042 Grenoble Cedex 9 (France)

    2010-01-01

    The magnetic properties of dysprosium iron garnet (DyIG) have been studied by performing high resolution powder neutron diffraction experiments and high dc fields magnetizations on single crystals. Among all the reflections (hkl) indexed in the nuclear cubic space group (CSG) Ia 3-bar d with h+k+l=2n and k=[000], the superstructure lines (hkl)* forbidden by the symmetry (222)* and (622)* are not observed in the patterns at all temperatures. The pattern at 130 K is well interpreted within the magnetic modes F belonging to the irreducible representation (IR) T{sub 1g} of the CSG and identified to the room temperature ferrimagnetic Neel model. The high magnetic field behavior of the spontaneous collinear magnetic structure (MS) along the easy axis (EA) <111> is isotropic. Below 130 K, the patterns exhibit additional magnetic superstructure lines. They are associated to the appearance of the spontaneous non collinear MS which is described in the subgroup of the CSG, R 3-bar c within the IR A{sub 2g}. A strong magnetization anisotropy (MA) is observed at 1.5 K in the low symmetry phases were the spin reorientation transition (SR) occur at T{sub RS}=14.5 K. The onset of MA is detected below two characteristic temperatures, Ta{sub 1}=125 K and Ta{sub 2}=75 K respectively to the hard axis (HA) <100> and <110>. Symmetry arguments are used in the framework of the theory of representation analysis (RA) applied to the subgroup of R 3-bar c, C2/c within the IR A{sub g}. It seems that this MA results essentially from the difference between the spontaneous non collinear MS and the field induced (FI) configurations. All results are discussed with previous neutrons studies.

  12. Properties of mesons in a strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rui [Peking University, Department of Physics, State Key Laboratory of Nuclear Physics and Technology, Beijing (China); Fu, Wei-jie [Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany); Liu, Yu-xin [Peking University, Department of Physics, State Key Laboratory of Nuclear Physics and Technology, Beijing (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Peking University, Center for High Energy Physics, Beijing (China)

    2016-06-15

    By extending the Φ-derivable approach in the Nambu-Jona-Lasinio model to a finite magnetic field we calculate the properties of pion, σ, and ρ mesons in a magnetic field at finite temperature not only in the quark-antiquark bound state scheme but also in the pion-pion scattering resonant state scenario. Our calculation as a result makes manifest that the masses of π{sup 0} and σ meson can be nearly degenerate at the pseudo-critical temperature which increases with increasing magnetic field strength, and the π{sup ±} mass ascends suddenly at almost the same critical temperature. Meanwhile the ρ mesons' masses decrease with the temperature but increase with the magnetic field strength. We also check the Gell-Mann-Oakes-Renner relation and find that the relation can be violated clearly with increasing temperature, and the effect of the magnetic field becomes pronounced around the critical temperature. With different criteria, we analyze the effect of the magnetic field on the chiral phase transition and find that the pseudo-critical temperature of the chiral phase cross, T{sub c}{sup χ}, is always enhanced by the magnetic field. Moreover, our calculations indicate that the ρ mesons will get melted as the chiral symmetry has not yet been restored, but the σ meson does not disassociate even at very high temperature. Particularly, it is the first to show that there does not exist a vector meson condensate in the QCD vacuum in the pion-pion scattering scheme. (orig.)

  13. The uncertainties of magnetic properties measurements of electrical sheet steel

    CERN Document Server

    Ahlers, H

    2000-01-01

    In this work, uncertainties in measurements of magnetic properties of Epstein- and single-sheet samples have been determined according to the 'Guide To The Expression Of Uncertainty In Measurement', [International Organization for Standardization (1993)]. They were calculated for the results at predicted values of parameters taking into account the non-linear dependences. The measurement results and the uncertainties are calculated simultaneously by a computer program.

  14. Optical and magnetic properties of PAA@Fe nanocomposite films

    Directory of Open Access Journals (Sweden)

    Jing-jing Zhang

    2013-07-01

    Full Text Available A simple method to fabricate porous anodic alumina films embedded with Fe is reported. The films exhibit vivid structural colors and magnetic properties after being synthesized by an ac electrodeposition method. The optical properties of the samples can be effectively tuned by varying the oxidation time of aluminum. The coercivity mechanism of the Fe nanowires in our case is consistent with fanning reversal mode. PAA@Fe films can be used in many areas including decoration, display and multifunctional anti-counterfeiting applications.

  15. Drug delivery property, bactericidal property and cytocompatibility of magnetic mesoporous bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi-Zhuo [The Education Ministry Key Lab of Resource Chemistry, Shanghai Normal University, Shanghai 200234 (China); Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China); Li, Yang [Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Yu, Xi-Bin [The Education Ministry Key Lab of Resource Chemistry, Shanghai Normal University, Shanghai 200234 (China); Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China); Liu, Li-Na [Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Zhu, Zhen-An, E-mail: zhuzhenan2006@126.com [Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Guo, Ya-Ping, E-mail: ypguo@shnu.edu.cn [The Education Ministry Key Lab of Resource Chemistry, Shanghai Normal University, Shanghai 200234 (China); Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China)

    2014-08-01

    A multifunctional magnetic mesoporous bioactive glass (MMBG) has been widely used for a drug delivery system, but its biological properties have been rarely reported. Herein, the effects of mesopores and Fe{sub 3}O{sub 4} nanoparticles on drug loading–release property, bactericidal property and biocompatibility have been investigated by using mesoporous bioactive glass (MBG) and non-mesoporous bioactive glass (NBG) as control samples. Both MMBG and MBG have better drug loading efficiency than NBG because they possess ordered mesoporous channels, big specific surface areas and high pore volumes. As compared with MBG, the Fe{sub 3}O{sub 4} nanoparticles in MMBG not only provide magnetic property, but also improve sustained drug release property. For gentamicin-loaded MMBG (Gent-MMBG), the sustained release of gentamicin and the Fe{sub 3}O{sub 4} nanoparticles minimize bacterial adhesion significantly and prevent biofilm formation against Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis). Moreover, the magnetic Fe{sub 3}O{sub 4} nanoparticles in MMBG can promote crucial cell functions such as cell adhesion, spreading and proliferation. The excellent biocompatibility and drug delivery property of MMBG suggest that Gent-MMBG has great potentials for treatment of implant-associated infections. - Highlights: • Multifunctional magnetic mesoporous bioactive glass is fabricated. • The bioactive glass has great biocompatibility. • The bioactive glass exhibits high drug loading–release properties. • The drug delivery system has bactericidal property. • Magnetic particles improve cell adhesion, spreading and proliferation.

  16. Hematite nanoplates: Controllable synthesis, gas sensing, photocatalytic and magnetic properties.

    Science.gov (United States)

    Hao, Hongying; Sun, Dandan; Xu, Yanyan; Liu, Ping; Zhang, Guoying; Sun, Yaqiu; Gao, Dongzhao

    2016-01-15

    Uniform hematite (α-Fe2O3) nanoplates exposing {001} plane as basal planes have been prepared by a facile solvothermal method under the assistance of sodium acetate. The morphological evolution of the nanoplates was studied by adjusting the reaction parameters including the solvent and the amount of sodium acetate. The results indicated that both the adequate nucleation/growth rate and selective adsorption of alcohol molecules and acetate anions contribute to the formation of the plate-like morphology. In addition, the size of the nanoplates can be adjusted from ca. 180nm to 740nm by changing the reaction parameters. Three nanoplate samples with different size were selected to investigate the gas sensing performance, photocatalytic and magnetic properties. As gas sensing materials, all the α-Fe2O3 nanoplates exhibited high gas sensitivity and stability toward n-butanol. When applied as photocatalyst, the α-Fe2O3 nanoplates show high photodegradation efficiency towards RhB. Both the gas sensing performance and the photocatalytic property of the products exhibit obvious size-dependent effect. Magnetic measurements reveal that the plate-like α-Fe2O3 particles possess good room temperature magnetic properties.

  17. The Influence Of The Temperature Of Liquid Nitrogen On The Physical Properties Of Powder Magnetic Composites

    Directory of Open Access Journals (Sweden)

    Kapelski D.

    2015-06-01

    Full Text Available The paper presents the physical properties of soft magnetic iron composites and Nd-Fe-B bonded permanent magnets measured at room temperature and at liquid nitrogen. The objective of research was a determination of influence of liquid nitrogen temperature on the magnetic properties, resistivity and mechanical properties of different powder magnetic materials. Research was carried out for three powder materials: soft magnetic, i.e. Somaloy 700, AncorLam and hard magnetic powder MQP-B used for production of bonded magnets. Composite specimens were prepared by compression moulding technology.

  18. Synthesis, photoluminescence and magnetic properties of barium vanadate nanoflowers

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jing [Department of Applied Physics, Chongqing University, 174 Shapingba Street, Chongqing 400044 (China); Chongqing University of Science and Technology, Chongqing 401331 (China); Hu, Chenguo, E-mail: hucg@cqu.edu.cn [Department of Applied Physics, Chongqing University, 174 Shapingba Street, Chongqing 400044 (China); Xi, Yi [Department of Applied Physics, Chongqing University, 174 Shapingba Street, Chongqing 400044 (China); Peng, Chen [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Wan, Buyong; He, Xiaoshan [Department of Applied Physics, Chongqing University, 174 Shapingba Street, Chongqing 400044 (China)

    2011-06-15

    Graphical abstract: The flower-shaped barium vanadate was obtained for the first time. The photoluminescence and magnetic properties of the barium vanadate nanoflowers were investigated at room temperature. Research highlights: {yields} In the paper, the flower-shaped barium vanadate were obtained for the first time. The CHM method used here is new and simple for preparation of barium vanadate. {yields} The photoluminescence and magnetic properties of the barium vanadate nanoflowers were investigated at room temperature. The strong bluish-green emission was observed. {yields} The ferromagnetic behavior of the barium vanadate nanoflowers was found with saturation magnetization of about 83.50 x 10{sup -3} emu/g, coercivity of 18.89 Oe and remnant magnetization of 4.63 x 10{sup -3} emu/g. {yields} The mechanisms of PL and magnetic property of barium vanadate nanoflowers have been discussed. -- Abstract: The flower-shaped barium vanadate has been obtained by the composite hydroxide mediated (CHM) method from V{sub 2}O{sub 5} and BaCl{sub 2} at 200 {sup o}C for 13 h. XRD and XPS spectrum of the as-synthesized sample indicate it is hexagonal Ba{sub 3}V{sub 2}O{sub 8} with small amount of Ba{sub 3}VO{sub 4.8} coexistence. Scan electron microscope and transmission electron microscope display that the flower-shaped crystals are composed of nanosheets with thickness of {approx}20 nm. The UV-visible spectrum shows that the barium vanadate sample has two optical gaps (3.85 eV and 3.12 eV). Photoluminescence spectrum of the barium vanadate flowers exhibits a visible light emission centered at 492 and 525 nm which might be attributed to VO{sub 4} tetrahedron with T{sub d} symmetry in Ba{sub 3}V{sub 2}O{sub 8}. The ferromagnetic behavior of the barium vanadate nanoflowers has been found with saturation magnetization of about 83.50 x 10{sup -3} emu/g, coercivity of 18.89 Oe and remnant magnetization of 4.63 x 10{sup -3} emu/g, which is mainly due to the presence of a non

  19. Magnetic properties changes due to hydrocarbon contaminated groundwater table fluctuations

    Science.gov (United States)

    Ameen, Nawrass

    2013-04-01

    This study aims to understand the mechanisms and conditions which control the formation and transformation of ferro(i)magnetic minerals caused by hydrocarbon contaminated groundwater, in particular in the zone of fluctuating water levels. The work extends previous studies conducted at the same site. The study area is a former military air base at Hradčany, Czech Republic (50°37'22.71"N, 14°45'2.24"E). The site was heavily contaminated with petroleum hydrocarbons, due to leaks in petroleum storage tanks and jet fuelling stations over years of active use by the Soviet Union, which closed the base in 1991. The site is one of the most important sources of high quality groundwater in the Czech Republic. In a previous study, Rijal et al. (2010) concluded that the contaminants could be flushed into the sediments as the water level rose due to remediation processes leading to new formation of magnetite. In this previous study three different locations were investigated; however, from each location only one core was obtained. In order to recognize significant magnetic signatures versus depth three cores from each of these three locations were drilled in early 2012, penetrating the unsaturated zone, the groundwater fluctuation (GWF) zone and extending to about one meter below the groundwater level (~2.3 m depth at the time of sampling). Magnetic susceptibility (MS) profiles combined with other magnetic properties were analyzed to obtain a significant depth distribution of the ferro(i)magnetic concentration. Sediment properties, hydrocarbon content and bacterial activity were additionally studied. The results show that the highest ferrimagnetic mineral concentrations exist between 1.4-1.9 m depth from the baseline which is interpreted as the top of the GWF zone. Spikes of MS detected in the previous studies turned out to represent small-scale isolated features, but the trend of increasing MS values from the lowermost position of the groundwater table upward was verified

  20. Direct hydrothermal synthesis and magnetic property of titanate nanotubes doped magnetic metal ions

    Institute of Scientific and Technical Information of China (English)

    Meili Wang; Gongbao Song; Jian Li; Landong Miao; Baoshu Zhang

    2008-01-01

    Pure titanate nanotubes and titanate nanotubes doped with Fe3+/Ni2+/Mn2+ ions were synthesized by the hydrothermal method. In this process, titanate nanotubes were first prepared synchronously with doping Fe3+/Ni2+/Mn2+ ions. The morphology,structure, thermal stability and magnetic property of titanate nanotubes were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), and magnetic measurement. The titanate nanotubes transformed into the anatase titania nanocrystals,and further the mixture of anatase and rutile titania along with increasing temperature. The results indicate that the titanate nanotubes doped with Fe3+/Ni2+/Mn2+ ions are paramagnetic behaviors.

  1. Determination of the optical properties of La2-xBaxCuO4 for several dopings, including the anomalous x=(1)/(8) phase

    Science.gov (United States)

    Homes, C. C.; Hücker, M.; Li, Q.; Xu, Z. J.; Wen, J. S.; Gu, G. D.; Tranquada, J. M.

    2012-04-01

    The optical properties of single crystals of the high-temperature superconductor La2-xBaxCuO4 have been measured over a wide frequency and temperature range for light polarized in the a-b planes and along the c axis. Three different Ba concentrations have been examined, x=0.095 with a critical temperature Tc=32 K, x=0.125 where the superconductivity is dramatically weakened with Tc≃2.4 K, and x=0.145 with Tc≃24 K. The in-plane behavior of the optical conductivity for these materials at high temperature is described by a Drude-like response with a scattering rate that decreases with temperature. Below Tc in the x=0.095 and 0.145 materials there is a clear signature of the formation of a superconducting state in the optical properties allowing the superfluid density (ρs0) and the penetration depth to be determined. In the anomalous 1/8 phase, some spectral weight shifts from lower to higher frequency (≳300 cm-1) on cooling below the spin-ordering temperature Tso≃42 K, associated with the onset of spin-stripe order; we discuss alternative interpretations in terms of a conventional density-wave gap versus the response to pair-density-wave superconductivity. The two dopings for which a superconducting response is observed both fall on the universal scaling line ρs0/8≃4.4σdcTc, which is consistent with the observation of strong dissipation within the a-b planes. The optical properties for light polarized along the c axis reveal an insulating character dominated by lattice vibrations, superimposed on a weak electronic background. No Josephson plasma edge is observed in the low-frequency reflectance along the c axis for x=1/8; however, sharp plasma edges are observed for x=0.095 and 0.145 below Tc.

  2. Anomalous transport properties and phase diagram of the FeAs-based SmFeAsO1-xFx superconductors.

    Science.gov (United States)

    Liu, R H; Wu, G; Wu, T; Fang, D F; Chen, H; Li, S Y; Liu, K; Xie, Y L; Wang, X F; Yang, R L; Ding, L; He, C; Feng, D L; Chen, X H

    2008-08-22

    We report the detailed phase diagram and anomalous transport properties of Fe-based high-T_{c} superconductors SmFeAsO1-xFx. It is found that superconductivity emerges at x approximately 0.07, and optimal doping takes place in the x approximately 0.20 sample with the highest T_{c} approximately 54 K. T_{c} increases monotonically with doping; the anomaly in resistivity from structural phase or spin-density-wave order is rapidly suppressed, suggesting a quantum critical point around x approximately 0.14. As manifestations, a linear temperature dependence of the resistivity shows up at high temperatures in the x0.14 regime; a drop in carrier density evidenced by a pronounced rise in the Hall coefficient is observed below the temperature of the anomaly peak in resistivity. A scaling behavior is observed between the Hall angle and temperature: cottheta_{H} proportional, variantT;{1.5} for all samples with different x in SmFeAsO1-xFx system.

  3. Magnetic properties of manganese based one-dimensional spin chains.

    Science.gov (United States)

    Asha, K S; Ranjith, K M; Yogi, Arvind; Nath, R; Mandal, Sukhendu

    2015-12-14

    We have correlated the structure-property relationship of three manganese-based inorganic-organic hybrid structures. Compound 1, [Mn2(OH-BDC)2(DMF)3] (where BDC = 1,4-benzene dicarboxylic acid and DMF = N,N'-dimethylformamide), contains Mn2O11 dimers as secondary building units (SBUs), which are connected by carboxylate anions forming Mn-O-C-O-Mn chains. Compound 2, [Mn2(BDC)2(DMF)2], contains Mn4O20 clusters as SBUs, which also form Mn-O-C-O-Mn chains. In compound 3, [Mn3(BDC)3(DEF)2] (where DEF = N,N'-diethylformamide), the distorted MnO6 octahedra are linked to form a one-dimensional chain with Mn-O-Mn connectivity. The magnetic properties were investigated by means of magnetization and heat capacity measurements. The temperature dependent magnetic susceptibility of all the three compounds could be nicely fitted using a one-dimensional S = 5/2 Heisenberg antiferromagnetic chain model and the value of intra-chain exchange coupling (J/k(B)) between Mn(2+) ions was estimated to be ∼1.1 K, ∼0.7 K, and ∼0.46 K for compounds 1, 2, and 3, respectively. Compound 1 does not undergo any magnetic long-range-order down to 2 K while compounds 2 and 3 undergo long-range magnetic order at T(N) ≈ 4.2 K and ≈4.3 K, respectively, which are of spin-glass type. From the values of J/k(B) and T(N) the inter-chain coupling (J(⊥)/k(B)) was calculated to be about 0.1J/k(B) for both compounds 2 and 3, respectively.

  4. E and S hysteresis model for two-dimensional magnetic properties

    CERN Document Server

    Soda, N

    2000-01-01

    We define an effective hysteresis model of two-dimensional magnetic properties for the magnetic field analysis. Our hysteresis model is applicable to both alternating and rotating flux conditions. Moreover, we compare the calculated results with the measured ones, and verify the accuracy of this model. We can calculate iron losses in the magnetic materials exactly. As a result, it is shown that the hysteresis model is generally applicable to two-dimensional magnetic properties of some kinds of magnetic materials.

  5. Self-consistent magnetic properties of magnetite tracers optimized for magnetic particle imaging measured by ac susceptometry, magnetorelaxometry and magnetic particle spectroscopy

    Science.gov (United States)

    Ludwig, Frank; Remmer, Hilke; Kuhlmann, Christian; Wawrzik, Thilo; Arami, Hamed; Ferguson, R. Mathew; Krishnan, Kannan M.

    2014-06-01

    Sensitivity and spatial resolution in magnetic particle imaging are affected by magnetic properties of the nanoparticle tracers used during imaging. Here, we have carried out a comprehensive magnetic characterization of single-core iron oxide nanoparticles that were designed for MPI. We used ac susceptometry, fluxgate magnetorelaxometry, and magnetic particle spectroscopy to evaluate the tracer's magnetic core size, hydrodynamic size, and magnetic anisotropy. Our results present a self-consistent set of magnetic and structural parameters for the tracers that is consistent with direct measurements of size using transmission electron microscopy and dynamic light scattering and that can be used to better understand their MPI performance.

  6. Self-consistent magnetic properties of magnetite tracers optimized for magnetic particle imaging measured by ac susceptometry, magnetorelaxometry and magnetic particle spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Frank; Remmer, Hilke; Kuhlmann, Christian; Wawrzik, Thilo [Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig, Hans-Sommer-Str. 66, D-38106 Braunschweig (Germany); Arami, Hamed; Ferguson, R. Mathew [Department of Materials Science and Engineering Box 352120, University of Washington, Seattle, WA 98195 (United States); Krishnan, Kannan M., E-mail: kannanmk@uw.edu [Department of Materials Science and Engineering Box 352120, University of Washington, Seattle, WA 98195 (United States)

    2014-06-01

    Sensitivity and spatial resolution in magnetic particle imaging are affected by magnetic properties of the nanoparticle tracers used during imaging. Here, we have carried out a comprehensive magnetic characterization of single-core iron oxide nanoparticles that were designed for MPI. We used ac susceptometry, fluxgate magnetorelaxometry, and magnetic particle spectroscopy to evaluate the tracer's magnetic core size, hydrodynamic size, and magnetic anisotropy. Our results present a self-consistent set of magnetic and structural parameters for the tracers that is consistent with direct measurements of size using transmission electron microscopy and dynamic light scattering and that can be used to better understand their MPI performance.

  7. Pure magnetic hard fct FePt nanoparticles: Chemical synthesis, structural and magnetic properties correlations

    Energy Technology Data Exchange (ETDEWEB)

    Suber, L., E-mail: lorenza.suber@ism.cnr.it [ISM-CNR, Area della Ricerca di Roma 1, Via Salaria km 29.300, 00015 Monterotondo Scalo, RM (Italy); Marchegiani, G. [ISM-CNR, Area della Ricerca di Roma 1, Via Salaria km 29.300, 00015 Monterotondo Scalo, RM (Italy); Olivetti, E.S.; Celegato, F.; Coïsson, M.; Tiberto, P. [INRIM, Electromagnetism Division, Strada delle Cacce 91, 10135 Torino (Italy); Allia, P. [DISAT Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Barrera, G. [Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 7, 10125 Torino (Italy); Pilloni, L. [UTTMAT-CHI, Via Anguillarese 10, 00123 S. Maria di Galeria, Roma (Italy); Barba, L. [IC-CNR, Area Science Park, SS 14 Km 163.5 Basovizza, 34149 Trieste (Italy); Padella, F. [UTTMAT-CHI, Via Anguillarese 10, 00123 S. Maria di Galeria, Roma (Italy); Cossari, P. [IGAG-CNR, Area della Ricerca di Roma 1, Via Salaria km 29.300, 00015 Monterotondo Scalo, RM (Italy); Chiolerio, A. [Istituto Italiano di Tecnologia, Center for Space Human Robotics, Corso Trento 21, 10129 Torino (Italy)

    2014-03-01

    FePt nanoparticles, containing a near-equal atomic percentage of Fe and Pt, with a face centered tetragonal structure (fct), are challenging for potential applications in high performance permanent magnets and high density data storage. In this study, we report on the chemical synthesis, carried out both solvothermally and hydrothermally in autoclave reacting iron (III) acetylacetonate and platinum (II) acetylacetonate with tri- or tetra-ethylene glycol, these employed as solvents, reducers and particle surface protecting agents as well. In both methods, a subsequent thermal treatment at high temperatures is necessary to transform the magnetic soft face centered cubic (fcc) phase to the hard fct one. Organic low-weight molecules, generally used to protect the nanoparticle surface and avoid particle aggregation, are decomposed by the thermal treatment resulting in particle aggregation and coalescence phenomena; on the contrary, in this case, a polymer matrix is formed as particle protecting agent and, by thermally treating the hydrothermally prepared nanoparticles up to 750 °C for 1 h, the pure magnetic hard fct phase is obtained while preserving the nanostructure. A detailed study is carried out on FePt nanoparticle structure (fcc and fct phases) and correlated to the magnetic properties of the system. - Highlights: • fct FePt nanoparticles for hard magnetic nanotechnology applications. • Influence of synthesis parameters on the precursor fcc FePt nanoparticle structure. • Easy hydrothermal method for preparing pure fct FePt nanoparticles. • Monitoring the role of temperature and time on the FePt fcc–fct phase transformation. • Correlation between FePt nanoparticle structural and magnetic properties.

  8. Anomalous magnetohydrodynamics in the extreme relativistic domain

    CERN Document Server

    Giovannini, Massimo

    2016-01-01

    The evolution equations of anomalous magnetohydrodynamics are derived in the extreme relativistic regime and contrasted with the treatment of hydromagnetic nonlinearities pioneered by Lichnerowicz in the absence of anomalous currents. In particular we explore the situation where the conventional vector currents are complemented by the axial-vector currents arising either from the pseudo Nambu-Goldstone bosons of a spontaneously broken symmetry or because of finite fermionic density effects. After expanding the generally covariant equations in inverse powers of the conductivity, the relativistic analog of the magnetic diffusivity equation is derived in the presence of vortical and magnetic currents. While the anomalous contributions are generally suppressed by the diffusivity, they are shown to disappear in the perfectly conducting limit. When the flow is irrotational, boost-invariant and with vanishing four-acceleration the corresponding evolution equations are explicitly integrated so that the various physic...

  9. Magnetic properties of electrodeposited Co-W thin films

    Energy Technology Data Exchange (ETDEWEB)

    Admon, U.; Dariel, M.P.; Grunbaum, E.; Lodder, J.C.

    1987-09-01

    Thin films of Co-W, 300--500 A thick, were electrodeposited at various compositions under a wide range of plating conditions. The saturation magnetization, coercivity, and squareness ratio of the films were derived from the parallel (in-plane) and perpendicular hysteresis loops, measured by using a vibrating sample magnetometer. The magnetic properties of the films are strongly related to their microstructure. The nonmagnetic alloying element (W) affects the saturation magnetization via the dilution mechanism. The in-plane coercivity, which increases with increasing content of the hexagonal phase and with decreasing degree of (0001)h texture, is in the range of 100--600 Oe for the crystalline deposits and decreases to a few oersteds for amorphous deposits. The in-plane squareness ratio increases with the fcc or amorphous phase content and with decreasing degree of (0001)h texture. The magnetic measurements suggest that films that appeared amorphous according to their electron diffraction patterns are actually microcrystalline or at least partially crystallized.

  10. Magnetic properties of nickel halide hydrates including deuteration effects

    Science.gov (United States)

    DeFotis, G. C.; Van Dongen, M. J.; Hampton, A. S.; Komatsu, C. H.; Trowell, K. T.; Havas, K. C.; Davis, C. M.; DeSanto, C. L.; Hays, K.; Wagner, M. J.

    2017-01-01

    Magnetic measurements on variously hydrated nickel chlorides and bromides, including deuterated forms, are reported. Results include locations and sizes of susceptibility maxima, Tmax and χmax, ordering temperatures Tc, Curie constants and Weiss theta in the paramagnetic regime, and primary and secondary exchange interactions from analysis of low temperature data. For the latter a 2D Heisenberg model augmented by interlayer exchange in a mean-field approximation is applied. Magnetization data to 16 kG as a function of temperature show curvature and hysteresis characteristics quite system dependent. For four materials high field magnetization data to 70 kG at 2.00 K are also obtained. Comparison is made with theoretical relations for spin-1 models. Trends are apparent, primarily that Tmax of each bromide hydrate is less than for the corresponding chloride, and that for a given halide nD2O (n=1 or 2) deuterates exhibit lesser Tmax than do nH2O hydrates. A monoclinic unit cell determined from powder X-ray diffraction data on NiBr2·2D2O is different from and slightly larger than that of NiBr2·2H2O. This provides some rationale for the difference in magnetic properties between these.

  11. Relationship Between Solar Wind Speed and Coronal Magnetic Field Properties

    CERN Document Server

    Fujiki, Ken'ichi; Iju, Tomoya; Hakamada, Kazuyuki; Kojima, Masayoshi

    2015-01-01

    We have studied the relationship between the solar-wind speed $[V]$ and the coronal magnetic-field properties (a flux expansion factor [$f$] and photospheric magnetic-field strength [$B_{\\mathrm{S}}$]) at all latitudes using data of interplanetary scintillation and solar magnetic field obtained for 24 years from 1986 to 2009. Using a cross-correlation analyses, we verified that $V$ is inversely proportional to $f$ and found that $V$ tends to increase with $B_{\\mathrm{S}}$ if $f$ is the same. As a consequence, we find that $V$ has extremely good linear correlation with $B_{\\mathrm{S}}/f$. However, this linear relation of $V$ and $B_{\\mathrm{S}}/f$ cannot be used for predicting the solar-wind velocity without information on the solar-wind mass flux. We discuss why the inverse relation between $V$ and $f$ has been successfully used for solar-wind velocity prediction, even though it does not explicitly include the mass flux and magnetic-field strength, which are important physical parameters for solar-wind accele...

  12. Properties of magnetic nickel/porous-silicon composite powders

    Directory of Open Access Journals (Sweden)

    Toshihiro Nakamura

    2012-09-01

    Full Text Available The magnetic and photoluminescence (PL properties of nickel/porous-silicon (Ni/PSi composite powders are investigated. Ni/PSi composite powders are prepared by stain etching of Si powder in a HF/HNO3 solution followed by electroless plating of Ni nanoparticles on the stain-etched PSi powder in a NiCl2 solution. The Ni/PSi powders exhibit hydrophillicity, superparamagnetism caused by the deposited Ni nanoparticles, and orange-red PL owing to the nanostructured PSi surface. The degree of magnetization decreases with increasing Ni plating time, indicating its dependence on the size of the Ni nanoparticles. The Ni/PSi composite powders also show a stronger magnetization as compared to that of the Ni-particle-plated Si powder. The stronger magnetization results from the larger surface area of PSi. The PL intensity, peak wavelength, and lifetime of Ni/PSi are strongly dependent on the NiCl2 concentration. This dependence is due to the different thickness of the oxide overlayer on the PSi surface formed during the Ni plating process. The existence of the oxide overlayer also results in a small change in the PL intensity against excitation time.

  13. Tailoring the magnetic properties of cobalt-ferrite nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Vega, A. Estrada de la; Garza-Navarro, M. A., E-mail: marco.garzanr@uanl.edu.mx; Durán-Guerrero, J. G.; Moreno Cortez, I. E.; Lucio-Porto, R.; González-González, V. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica (Mexico)

    2016-01-15

    In this contribution, we report on the tuning of magnetic properties of cobalt-ferrite nanoclusters. The cobalt-ferrite nanoclusters were synthesized from a two-step approach that consists of the synthesis of cobalt-ferrite nanoparticles in organic media, followed by their dispersion into aqueous dissolution to form an oil-in-water emulsion. These emulsions were prepared at three different concentrations of the cationic surfactant cetyltrimethylammonium bromide (CTAB), in order to control the size and clustering density of the nanoparticles in the nanoclusters. The synthesized samples were characterized by transmission electron microscopy and their related techniques, such as bright-field and Z-contrast imaging, electron diffraction and energy-dispersive X-ray spectrometry; as well as static magnetic measures. The experimental evidence indicates that the size, morphology, and nanoparticles clustering density in the nanoclusters is highly dependent of the cobalt-ferrite:CTAB molar ratio that is used in their synthesis. In addition, due to the clustering of the nanoparticles into the nanoclusters, their magnetic moments are blocked to relax cooperatively. Hence, the magnetic response of the nanoclusters can be tailored by controlling the size and nanoparticles clustering density.

  14. Study of magnetic properties of graphene nanostructures and graphene nanoribbons

    Directory of Open Access Journals (Sweden)

    F Fazileh

    2012-03-01

    Full Text Available The discovery of graphene and its remarkable electronic and magnetic properties has initiated great research interest in this material. Furthermore, there are many derivatives in these graphene related materials among which graphene nanoribbons and graphene nanofragments are candidates for future carbon-based nanoelectronics and spintronics. Theoretical studies have shown that magnetism can arise in various situations such as point defects, disorder and reduced dimensionality. Using a mean field Hubbard model, we studied the appearance of magnetic textures in zero-dimensional graphene nanofragments and one-dimensional graphene zigzag nanoribbons. Among nanofragments, triangular shape, bowtie and coronene were studied. We explain how the shape of these materials, the imbalance in the number of atoms belonging to the graphene sublattices, the existence of zero-energy states and the total and local magnetic moments were related. At the end, we focused on the effects of a model disorder potential (Anderson-type, and illustrate how density of states of zigzag nanoribbons was affected.

  15. Size-dependent magnetic properties of iron oxide nanoparticles

    Science.gov (United States)

    Patsula, Vitalii; Moskvin, Maksym; Dutz, Silvio; Horák, Daniel

    2016-01-01

    Uniform iron oxide nanoparticles in the size range from 10 to 24 nm and polydisperse 14 nm iron oxide particles were prepared by thermal decomposition of Fe(III) carboxylates in the presence of oleic acid and co-precipitation of Fe(II) and Fe(III) chlorides by ammonium hydroxide followed by oxidation, respectively. While the first method produced hydrophobic oleic acid coated particles, the second one formed hydrophilic, but uncoated, nanoparticles. To make the iron oxide particles water dispersible and colloidally stable, their surface was modified with poly(ethylene glycol) and sucrose, respectively. Size and size distribution of the nanoparticles was determined by transmission electron microscopy, dynamic light scattering and X-ray diffraction. Surface of the PEG-functionalized and sucrose-modified iron oxide particles was characterized by Fourier transform infrared (FT-IR) and Raman spectroscopy and thermogravimetric analysis (TGA). Magnetic properties were measured by means of vibration sample magnetometry and specific absorption rate in alternating magnetic fields was determined calorimetrically. It was found, that larger ferrimagnetic particles showed higher heating performance than smaller superparamagnetic ones. In the transition range between superparamagnetism and ferrimagnetism, samples with a broader size distribution provided higher heating power than narrow size distributed particles of comparable mean size. Here presented particles showed promising properties for a possible application in magnetic hyperthermia.

  16. The magnetic properties of the planet host star Kepler-78

    CERN Document Server

    Moutou, Claire; Lin, Doug; Laine, Randy; Hatzes, Artie

    2016-01-01

    Kepler-78 is host to a transiting 8.5-hour orbit super-Earth. In this paper, the rotation and magnetic properties of the planet host star are studied. We first revisit the Kepler photometric data for a detailed description of the rotation properties of Kepler-78, showing that the star seems to undergo a cycle in the spot pattern of ~1,300 day duration. We then use spectropolarimetric observations with CFHT/ESPaDOnS to measure the circular polarization in the line profile of the star during its rotation cycle, as well as spectroscopic proxies of the chromospheric activity. The average field has an amplitude of 16 G. The magnetic topology is characterized by a poloidal and a toroidal component, encompassing 60% and 40% of the magnetic energy, respectively. Differential rotation is detected with an estimated rate of 0.105+-0.039 rad/d. Activity tracers vary with the rotation cycle of the star; there is no hint that a residual activity level is related to the planetary orbit at the precision of our data. The desc...

  17. A structural study of effects of NiP seed layer on the magnetic properties of CoCrPt/Ti/NiP perpendicular magnetic films

    CERN Document Server

    Sun, C J; Wang, J P; Soo, E W; Noh, D Y; Je, J H; Hwu, Y K

    2003-01-01

    The CoCrPt/Ti/NiP films for perpendicular magnetic recording were studied using X-ray scattering and anomalous X-ray scattering. When the NiP seed layer was used, the long range order of the texture peak of the magnetic film decreased and less Co was associated with this Bragg order. The structural results were consistent with the observed increased coercivity and decreased magnetization due to the increased magnetic grain isolation caused by the presence of NiP seed layer.

  18. Drug delivery property, bactericidal property and cytocompatibility of magnetic mesoporous bioactive glass.

    Science.gov (United States)

    Liu, Yi-Zhuo; Li, Yang; Yu, Xi-Bin; Liu, Li-Na; Zhu, Zhen-An; Guo, Ya-Ping

    2014-08-01

    A multifunctional magnetic mesoporous bioactive glass (MMBG) has been widely used for a drug delivery system, but its biological properties have been rarely reported. Herein, the effects of mesopores and Fe3O4 nanoparticles on drug loading-release property, bactericidal property and biocompatibility have been investigated by using mesoporous bioactive glass (MBG) and non-mesoporous bioactive glass (NBG) as control samples. Both MMBG and MBG have better drug loading efficiency than NBG because they possess ordered mesoporous channels, big specific surface areas and high pore volumes. As compared with MBG, the Fe3O4 nanoparticles in MMBG not only provide magnetic property, but also improve sustained drug release property. For gentamicin-loaded MMBG (Gent-MMBG), the sustained release of gentamicin and the Fe3O4 nanoparticles minimize bacterial adhesion significantly and prevent biofilm formation against Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis). Moreover, the magnetic Fe3O4 nanoparticles in MMBG can promote crucial cell functions such as cell adhesion, spreading and proliferation. The excellent biocompatibility and drug delivery property of MMBG suggest that Gent-MMBG has great potentials for treatment of implant-associated infections.

  19. FeGa/MgO/Fe/GaAs(001) magnetic tunnel junction: Growth and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Gobaut, B., E-mail: benoit.gobaut@elettra.eu [Sincrotrone Trieste S.C.p.A., S.S. 14-km 163.5, Area Science Park, 34012 Trieste (Italy); Ciprian, R.; Salles, B.R.; Krizmancic, D. [Laboratorio TASC, IOM-CNR, S.S. 14-km 163.5, Basovizza, 34149 Trieste (Italy); Rossi, G. [Laboratorio TASC, IOM-CNR, S.S. 14-km 163.5, Basovizza, 34149 Trieste (Italy); Dipartimento di Fisica, Università di Milano, via Celoria 16, 20133 Milano (Italy); Panaccione, G. [Laboratorio TASC, IOM-CNR, S.S. 14-km 163.5, Basovizza, 34149 Trieste (Italy); Eddrief, M.; Marangolo, M. [Sorbonne Universites, UPMC Univ Paris 06, UMR 7588, INSP, 4 place Jussieu, 75005 Paris (France); CNRS, UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris (France); Torelli, P. [Laboratorio TASC, IOM-CNR, S.S. 14-km 163.5, Basovizza, 34149 Trieste (Italy)

    2015-06-01

    Research on spintronics and on multiferroics leads now to the possibility of combining the properties of these materials in order to develop new functional devices. Here we report the integration of a layer of magnetostrictive material into a magnetic tunnel junction. A FeGa/MgO/Fe heterostructure has been grown on a GaAs(001) substrate by molecular beam epitaxy (MBE) and studied by X-ray magnetic circular dichroism (XMCD). The comparison between magneto optical Kerr effect (MOKE) measurements and hysteresis performed in total electron yield allowed distinguishing the ferromagnetic hysteresis loop of the FeGa top layer from that of the Fe buried layer, evidencing a different switching field of the two layers. This observation indicates an absence of magnetic coupling between the two ferromagnetic layers despite the thickness of the MgO barrier of only 2.5 nm. The in-plane magnetic anisotropy has also been investigated. Overall results show the good quality of the heterostructure and the general feasibility of such a device using magnetostrictive materials in magnetic tunnel junction.

  20. Structures and magnetic properties of Co-Zr-B magnets studied by first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xin; Ke, Liqin; Nguyen, Manh Cuong; Wang, Cai-Zhuang, E-mail: wangcz@ameslab.gov; Ho, Kai-Ming, E-mail: kmh@ameslab.gov [Ames Laboratory, U.S. DOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States)

    2015-06-28

    The structures and magnetic properties of Co-Zr-B alloys near the composition of Co{sub 5}Zr with B at. % ≤6% were studied using adaptive genetic algorithm and first-principles calculations. The energy and magnetic moment contour maps as a function of chemical composition were constructed for the Co-Zr-B magnet alloys through extensive structure searches and calculations. We found that Co-Zr-B system exhibits the same structure motif as the “Co{sub 11}Zr{sub 2}” polymorphs, and such motif plays a key role in achieving strong magnetic anisotropy. Boron atoms were found to be able to substitute cobalt atoms or occupy the “interruption” sites. First-principles calculations showed that the magnetocrystalline anisotropy energies of the boron-doped alloys are close to that of the high-temperature rhombohedral Co{sub 5}Zr phase and larger than that of the low-temperature Co{sub 5.25}Zr phase. Our calculations provide useful guidelines for further experimental optimization of the magnetic performances of these alloys.

  1. Magnetic bubbles and magnetic towers - I. General properties and simple analytical models

    Science.gov (United States)

    Aly, J.-J.; Amari, T.

    2012-02-01

    We consider magnetostatic equilibria in which a bounded region D containing a magnetized plasma is either fully confined by a field-free external medium - magnetic bubble equilibria (MBEqs) - or is confined by both such a medium and line-tying in a dense plasma region - magnetic tower equilibria (MTEqs). We first establish some of their general properties. In particular, we derive a series of useful integral equalities relating the magnetic field and the thermal pressures inside and outside D, respectively. We use them to prove the non-existence of an axisymmetric MBEq with a purely poloidal field, and to discuss some recent results of Braithwaite on MBEq formation by relaxation from an initial non-equilibrium state. We next present two families of exact analytical axisymmetric MBEqs with, respectively, spherical and toroidal shapes. The first family is extracted from Prendergast's model of a self-gravitating magnetized body, while the second one is constructed by using Palumbo's theory of isodynamic equilibria, for which both magnetic and thermal pressures take constant values on any flux surface. MTEqs with a large variety of structures are thus obtained in a simple way: we start from an arbitrary MBEq and just consider the part of it above a given plane cutting the bubble D. For MBEqs and MTEqs in either family, we compute in closed form most of the interesting physical quantities (such as energy, magnetic helicity and twist). Our results are expected to be useful for building up simple models of several astrophysical objects (such as X-ray cavities in the intracluster medium, jets emitted by disc accreting compact objects, eruptive events in stellar coronae and their ejecta).

  2. Magnetic properties and the effect of non-magnetic impurities in the quasi-2D quantum magnet

    Science.gov (United States)

    Khuntia, P.; Dey, T.; Mahajan, A. V.

    2016-09-01

    We present synthesis, x-ray diffraction, magnetisation and specific heat studies on the quasi-two-dimensional (2D) S = 1/2 antiferromagnet (CuCl)LaNb2O7 and its doping analogues (Cu1-x Zn x Cl)LaNb2O7 (0 ≤ x ≤ 0.05), (Cu0.95Mg0.05Cl)LaNb2O7, and (CuCl)La1-y Ba y Nb2O7 (0 ≤ y ≤ 0.10). The magnetic susceptibility and specific heat of the parent compound and its isovalent or hetereovalent counterparts do not display any signature of magnetic ordering down to 1.8 K. The parent compound and its doping variants exhibit spin-singlet behaviour with a finite gap in the spin excitation spectrum due to dimerisation of the dominant intradimer interactions as evidenced from our magnetic susceptibility and specific heat data. The systematic increase of magnetic susceptibility at low temperature with non-magnetic Zn2+ and Mg2+ (S = 0) substitution at the Cu2+ site reflect that impurities induce local moments around the non-magnetic sites. While heterovalent Ba2+ substitution at the La3+ site do not result in mobile holes but rather give rise to a Curie term in the susceptibility due to localisation. The low value of spin S = 1/2, and absence of long range ordering or spin freezing, and the presence of competing exchange interactions hold special significance in hosting novel magnetic properties in this class of quasi-2D quantum material.

  3. Self-Assembled Magnetic Metallic Nanopillars in Ceramic Matrix with Anisotropic Magnetic and Electrical Transport Properties.

    Science.gov (United States)

    Su, Qing; Zhang, Wenrui; Lu, Ping; Fang, Shumin; Khatkhatay, Fauzia; Jian, Jie; Li, Leigang; Chen, Fanglin; Zhang, Xinghang; MacManus-Driscoll, Judith L; Chen, Aiping; Jia, Quanxi; Wang, Haiyan

    2016-08-10

    Ordered arrays of metallic nanopillars embedded in a ceramic matrix have recently attracted considerable interest for their multifunctionality in advanced devices. A number of hurdles need to be overcome for achieving practical devices, including selections of metal-ceramic combination, creation of tunable and ordered structure, and control of strain state. In this article, we demonstrate major advances to create such a fine nanoscale structure, i.e., epitaxial self-assembled vertically aligned metal-ceramic composite, in one-step growth using pulsed laser deposition. Tunable diameter and spacing of the nanopillars can be achieved by controlling the growth parameters such as deposition temperature. The magnetic metal-ceramic composite thin films demonstrate uniaxial anisotropic magnetic properties and enhanced coercivity compared to that of bulk metal. The system also presents unique anisotropic electrical transport properties under in-plane and out-of-plane directions. This work paves a new avenue to fabricate epitaxial metal-ceramic nanocomposites, which can simulate broader future explorations in nanocomposites with novel magnetic, optical, electrical, and catalytical properties.

  4. Electronic and Magnetic Properties of the p-NPNN

    Institute of Scientific and Technical Information of China (English)

    LUO Shi-Jun; YAO Kai-Lun

    2003-01-01

    In this paper, we study the electronic band structure and the ferromagnetic properties of the organic radicalp-NPNN by employing density-functional theory with generalized gradient approximation (GGA) and local-spin densityapproximation (LSDA). The density of states, the total energy, and the spin magnetic moment are calculated. Thecalculations reveal that the δ-phase of p-NPNN has a stable ferromagnetic ground state. It is found that an unpairedelectron in this compound is localized in a single occupied molecular orbital (SOMO) constituted primarily of π* (NO)orbitals, and the main contribution of the spin magnetic moment comes from the π* (NO) orbitals. By comparison, wefind that the GGA is more suitable to describe free radical systems than LSDA.

  5. Geometry effect on the magnetic properties of manganese zinc ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Landgraf, F.J.G.; Lazaro-Colan, V. [Polytechnic School - EPUSP, Av.Prof. Luciano Gualberto 380, Sao Paulo 05508-900 (Brazil); Leicht, J. [Institute for Technological Research of Sao Paulo, Almeida Prado 532, Sao Paulo 05508-901 (Brazil)], E-mail: leichtj@ipt.br; Janasi, S.R. [Institute for Technological Research of Sao Paulo, Almeida Prado 532, Sao Paulo 05508-901 (Brazil); Lopes, M.F. [IMAG Industria e Comercio de Componentes Eletronicos Ltda, Embaixador 74, Ribeirao Pires 09410-650 (Brazil)

    2008-10-15

    The geometry effect on the bulk magnetic properties of MnZn ferrite toroidal cores produced by the ceramic method was investigated. The MnZn ferrite powder was pressed at two different toroidal sizes and sintered, under controlled atmosphere at different temperatures. The MnZn ferrites cores were characterized according to their magnetic losses, electrical resistivity, initial permeability and Curie temperature. The total loss (200 mT, 100 kHz) in the small cores S (aspect ratio (AR)=2.84) is lower compared with the total loss in the large cores L (AR=0.79). These results show an agreement with the geometry effect observed on electrical steels.

  6. Electronic and Magnetic Properties of the p-NPNN

    Institute of Scientific and Technical Information of China (English)

    LUOShi-Jun; YAOKai-Lun

    2003-01-01

    In this paper, we study the electronic band structure and the ferromagnetic properties of the organic radical p-NPNN by employing density-functional theory with generalized gradient approximation (GGA ) and local-spin density approximation (LSDA). The density of states, the total energy, and the spin magnetic moment are calculated. The calculations reveal that the δ-phase of p-NPNN has a stable ferromagnetic ground state. It is found that an unpaired electron in this compound is localized in a single occupied molecular orbital (SOMO) constituted primarily of π* (NO) orbitals, and the main contribution of the spin magnetic moment comes from the π* (NO) orbitals. By comparison, we find that the GGA is more suitable to describe free radical systems than LSDA.

  7. Homogeneous Precipitation Synthesis and Magnetic Properties of Cobalt Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhigang Liu

    2008-01-01

    Full Text Available Magnetic nanoparticles (NPs of cobalt ferrite have been synthesized via a homogeneous precipitation route using hexamethylenetetramine (HMT as the precipitant. The particle size, crystal structure, and magnetic properties of the synthesized particles were investigated by X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The NPs are of cubic inverse spinel structure and nearly spherical shape. With the increase of oxidation time from 30 to 180 minutes in the reaction solution at 90∘C, the average particle size increases from ~30 nm to ~45 nm. The as-synthesized NPs ~30 nm in size show higher Ms (61.5 emu/g and moderate Hc (945 Oe and Mr/Ms (0.45 value compared with the materials synthesized by coprecipitation method using NaOH as precipitate at high pH value.

  8. Optimization of the magnetic properties of materials for fluxgate sensors

    Directory of Open Access Journals (Sweden)

    Luiz Carlos de Carvalho Benyosef

    2008-06-01

    Full Text Available A study was made of the variation of the magnetic properties of cobalt-based alloys using different compositions of CoFeSiB and CoFeSiBCr systems, which were produced by the melt-spinning technique and some of them subjected to a stress annealing treatment. A comparative study of core geometry and supporting material was also performed in order to obtain low noise fluxgate sensor core using amorphous magnetic ribbons of these alloys. The best alloy was a stress annealed Co67.5Fe3.5Si17.4B11.6 sample, which yielded fluxgate sensors with lower noise levels than those of commercial crystalline materials.

  9. Anisotropic Thermal Properties of Nanostructured Magnetic, Carbon and Hybrid Magnetic - Carbon Materials

    Science.gov (United States)

    Ramirez, Sylvester

    In this dissertation research we investigated thermal properties of three groups of nanostructured materials: (i) magnetic; (ii) reduced graphene oxide films; and (iii) hybrid magnetic -- graphite -- graphene composites. The thermal measurements were conducted using the transient "hot disk" and "laser flash" techniques. The rare-earth free nanostructured SrFe12O19 permanent magnets were produced by the current activated pressure assisted densification technique. The thermal conductivity of the nanostructured bulk magnets was found to range from 3.8 to 5.6 W/mK for the in-plane and 2.36 W/mk to 2.65 W/mK for the cross-plane directions, respectively. The heat conduction was dominated by phonons near the room temperature. The anisotropy of heat conduction was explained by the brick-like alignment of crystalline grains with the longer grain size in-plane direction. The thermal conductivity scales up with the average grain size and mass density of the material revealing weak temperature dependence. Using the nanostructured ferromagnetic Fe3O4 composites as an example system, we incorporated graphene and graphite fillers into magnetic material without changing their morphology. It was demonstrated that addition of 5 wt. % of equal mixture of graphene and graphite flakes to the composite results in a factor of x2.6 enhancement of the thermal conductivity without significant degradation of the saturation magnetization. We investigated thermal conductivity of free-standing reduced graphene oxide films subjected to a high-temperature treatment of up to 1000°C. It was found that the high-temperature annealing dramatically increased the in-plane thermal conductivity, K, of the films from ˜3 W/mK to ˜61 W/mK at room temperature. The cross-plane thermal conductivity, K⊥, revealed an interesting opposite trend of decreasing to a very small value of ˜0.09 W/mK in the reduced graphene oxide films annealed at 1000°C. The obtained films demonstrated an exceptionally strong

  10. Anomalous Hall Effect for chiral fermions

    CERN Document Server

    Zhang, P -M

    2014-01-01

    Semiclassical chiral fermions manifest the anomalous spin-Hall effect: when put into a pure electric field, they suffer a side jump, analogous to what happens to their massive counterparts in non-commutative mechanics. The transverse shift is consistent with the conservation of the angular momentum. In a pure magnetic field a cork-screw-like, spiraling motion is found.

  11. Structural and magnetic properties of nanocrystalline stannic substituted cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Y.M., E-mail: ymabbas@live.com [Physics Department, Faculty of Science, Suez Canal University, Ismailia (Egypt); Mansour, S.A. [Physics Department, Faculty of Science, Suez Canal University, Ismailia (Egypt); Physics Department, Faculty of Science, King AbdulAziz University, Rabegh (Saudi Arabia); Ibrahim, M.H. [Physics Department, Faculty of Science, Suez Canal University, Ismailia (Egypt); Physics Department, Faculty of Science, King AbdulAziz University (Saudi Arabia); Ali, Shehab. E., E-mail: shehab_ali@science.suez.edu.eg [Physics Department, Faculty of Science, Suez Canal University, Ismailia (Egypt)

    2012-09-15

    The structural and magnetic properties of the spinel ferrite system Co{sub 1+x}Fe{sub 2-2x}Sn{sub x}O{sub 4} (x=0.0-1.0) have been studied. Samples in the series were prepared by the ceramic technique. The structural and microstructural evolutions of the nanophase have been studied using X-ray powder diffraction and the Rietveld method. The refinement result showed that the type of the cationic distribution over the tetrahedral and octahedral sites in the nanocrystalline lattice is partially an inverse spinel. Far infrared absorption spectra show two significant absorption bands, around 600 cm{sup -1} and 425 cm{sup -1}, which are respectively attributed to tetrahedral (A) and octahedral [B] vibrations of the spinel. Scanning Electron Microscopy (SEM) was used to study surface morphology. SEM images reveal particles in the nanosize range. The transmission electronic microscope (TEM) reveals that the grains are spherical in shape. TEM analysis confirmed the X-ray results. The magnetic properties of the prepared samples were characterized by using a vibrating sample magnetometer. - Highlights: Black-Right-Pointing-Pointer The spinel ferrite system has been formed at 1000 Degree-Sign C by using ceramic techniques. Black-Right-Pointing-Pointer Structural and microstructural evolutions have been studied using XRD and the Rietveld method. Black-Right-Pointing-Pointer The refinement result showed cationic distribution in the lattice is partially an inverse spinel. Black-Right-Pointing-Pointer The transmission electronic microscope analysis confirmed the X-ray results. Black-Right-Pointing-Pointer Magnetic properties of the samples were characterized by using a vibrating sample magnetometer.

  12. Tailoring magnetic and dielectric properties of rubber ferrite composites containing mixed ferrites

    Indian Academy of Sciences (India)

    M R Anantharaman; K A Malini; S Sindhu; E M Mohammed; S K Date; S D Kulkarni; P A Joy; Philip Kurian

    2001-12-01

    Rubber ferrite composites containing various mixed ferrites were prepared for different compositions and various loadings. The magnetic and dielectric properties of the fillers as well as the ferrite filled matrixes were evaluated separately. The results are correlated. Simple equations are proposed to predetermine the magnetic and dielectric properties. The validity of these equations is verified and they are found to be in good agreement. These equations are useful in tailoring the magnetic and dielectric properties of these composites with predetermined properties.

  13. Measurement system of alternating magnetic properties under DC-biased field

    CERN Document Server

    Enokizono, M

    2000-01-01

    This paper presents magnetic properties under DC-biased magnetization of a grain-oriented silicon steel sheet 30Z. We have practised the measurement of DC-biased flux density by using flux meter directly. The DC-biased magnetic properties have been made clear in this experimental approach.

  14. The magnetic properties of the spin-1 Heisenberg antiferromagnetic chain with single-ion anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Gangsan; Zhu, Rengui, E-mail: rgzhu@mail.ahnu.edu.cn

    2015-02-15

    The magnetic properties of the spin-1 Heisenberg antiferromagnetic chain with exchange anisotropy and single-ion anisotropy are studied by the double-time Green's function method. The determinative equations for the critical temperature, the magnetization, and the zero-field susceptibility are derived analytically. The effects of the anisotropies on the magnetic properties are presented.

  15. Formation of Ferric Porphyrinoids with Unusual Electronic and Magnetic Properties

    Institute of Scientific and Technical Information of China (English)

    M.Nakamura; Y.Ohgo; A.Ikezaki

    2007-01-01

    1 Results Energy levels of the metal 3d orbitals in iron(Ⅲ) porphyrinoids are controlled by various factors such as the nature and number of axial ligands, electronic and steric effects of peripheral substituents, deformation and core modification of porphyrin ring, hydrogen bonding to the axial ligand, etc. By manipulating these factors, we are now able to prepare various iron(Ⅲ) porphyrinoids withunusual electronic and magnetic properties[1]. Here, we report the formation of such complexes as ⅰ) low-s...

  16. Flux Pinning Properties and Magnetic Relaxation of Superconducting SmFe0.9Co0.1AsO

    Science.gov (United States)

    Zhuang, J. C.; Sun, Y.; Ding, Y.; Yuan, F. F.; Liu, J. T.; Shi, Z. X.; Li, X. W.

    2012-12-01

    Magnetic Co ion doped SmFeAsO polycrystal was synthesized via solid-state reaction. Resistivity, SEM and magnetic hysteresis loops (MHLs) were measured to investigate magnetic properties of the sample. Critical current densities as well as the flux pinning forces densities were estimated from MHLs. This paper reports for the first time the research of superconducting MHLs as well as magnetic relaxation properties of SmFe0.9Co0.1AsO. Results suggest that: (i) A tail effect in the resistivity measurement together with the rapid decrease in critical current densities at low fields shows the evidence for granularity of the sample; (ii) The asymmetry of the MHLs may be caused by the Bean-Livingstone (BL) surface pinning or granular nature, and none of theoretical models are suitable to the scaling behaviors of flux pinning forces densities; (iii) The anomalous tendency of the temperature dependence of magnetic relaxation rate as well as the effective pinning energy were observed, which may be attributed to the competition between the bulk pinning and the BL surface pinning.

  17. Structural and magnetic properties of Gd{sup 3+} ion substituted magnesium ferrite nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Elkady, Ashraf S. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Department of Reactor Physics, NRC, Atomic Energy Authority, Cairo (Egypt); Hussein, Shaban I. [Department of Reactor Physics, NRC, Atomic Energy Authority, Cairo (Egypt); Rashad, Mohamed M., E-mail: rashad133@yahoo.com [Central Metallurgical Research and Development Institute, Helwan, Cairo 11421 (Egypt)

    2015-07-01

    Nanocrystalline MgGd{sub x}Fe{sub 2−x}O{sub 4} powders (where x=0, 0.05, 0.1, 0.2, 0.25, 0.3) have been synthesized by the ethylene diamine tetraacetic acid (EDTA)-based sol–gel combustion method. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, high resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometer (VSM) were applied in order to study the effect of variation of Gd{sup 3+} ion substitution and its impact on crystal structure, crystallite size, lattice parameters, nanostructure and magnetic properties of the formed powders. XRD indicated that, after doping and calcination at 400 °C for 2 h, all samples have two spinel ferrite structures namely cubic and tetragonal phases, which are dependent on Gd{sup 3+} ion concentration. The cubic phase is found to increase with increasing the Gd{sup 3+} ion molar ratio up to 0.1, compared to pure MgFe{sub 2}O{sub 4} and higher Gd{sup 3+} content samples. Indeed, with increasing Gd{sup 3+} ion, the crystallite size was almost unchanged whereas the lattice parameter was found to increase. FT-IR spectrum showed broadening of the ν{sub 2} band and the presence of another band in the range (465–470 cm{sup −1}) upon adding Gd{sup 3+} ion, which confirm the presence of Gd{sup 3+} ion in addition to Fe{sup 3+} ion at octahedral site. Besides, these bands were assigned to the formation of (Gd{sup 3+}–O{sup 2−}) complexes at B-sites. HRTEM images showed that the studied samples consist of nanocrystallites having average particle sizes around 9 nm for pure MgFe{sub 2}O{sub 4} up to 27 and 42 nm for the Gd{sup 3+} ion substituted MgFe{sub 2}O{sub 4} of molar ratio 0.05 and 0.30, respectively. An examination of the magnetic properties revealed an increase in saturation magnetization with increasing Gd concentration incorporation up to x=0.1, as a result of the change of cubic and tetragonal spinel ratio and lattice parameters. Meanwhile, the formed powders exhibited

  18. Investigation of magnetic sensor properties of magnetic tunnel junctions with superparamagnetic free layer at low frequencies for biomedical imaging applications

    Science.gov (United States)

    Ishikawa, Kyohei; Oogane, Mikihiko; Fujiwara, Kousuke; Jono, Junichi; Tsuchida, Masaaki; Ando, Yasuo

    2016-12-01

    The magnetic sensor properties of magnetic tunnel junctions (MTJs) with a superparamagnetic (SP) free layer were systematically investigated at low frequencies (<10 Hz). We prepared four varieties of MTJs with various SP properties by changing the annealing temperature. The temperature dependence of magnetoresistance curves and the signal/noise property at 285 K were evaluated. We found that the SP free layer has the advantage of detecting very small and low-frequency AC magnetic fields compared with a ferromagnetic free layer. The SP free layer strongly suppressed magnetic 1/f noise at low frequencies and expressed a very linear response to a small magnetic field. The obtained properties in MTJs with the SP free layer are suitable for detecting biomagnetic fields. The detectivity was 111 nT at low frequencies (from 0.1 to 10 Hz), which is one of the highest values in single-MTJ sensors.

  19. Growth and magnetic properties dependence of the Co–Cu/Cu films electrodeposited under high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Franczak, Agnieszka, E-mail: agnieszka.franczak@mtm.kuleuven.be [Laboratoire d’Ingénierie et Sciences des Matériaux (LISM EA 4695), Université de Reims Champagne-Ardenne, UFR Sciences et Naturelles, Bat. 6, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2 (France); Department of Materials Science (MTM), KU Leuven, Kasteelpark Arenberg 44, 3001 Haverlee (Leuven) (Belgium); Levesque, Alexandra [Laboratoire d’Ingénierie et Sciences des Matériaux (LISM EA 4695), Université de Reims Champagne-Ardenne, UFR Sciences et Naturelles, Bat. 6, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2 (France); Zabinski, Piotr [Laboratory of Physical Chemistry and Electrochemistry, Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. A. Mickiewicza 30, 30059 Krakow (Poland); Li, Donggang [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, 314 Box, 110004 Shenyang (China); Czapkiewicz, Maciej [Department of Electronics, AGH University of Science and Technology, al. A. Mickiewicza 30, 30059 Krakow (Poland); Kowalik, Remigiusz [Laboratory of Physical Chemistry and Electrochemistry, Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. A. Mickiewicza 30, 30059 Krakow (Poland); Bohr, Frédéric [Laboratoire d’Ingénierie et Sciences des Matériaux (LISM EA 4695), Université de Reims Champagne-Ardenne, UFR Sciences et Naturelles, Bat. 6, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2 (France); and others

    2015-07-15

    The present work is focused on the investigations of magnetic properties dependence on microstructure of Co–Cu/Cu films electrodeposited under superimposed high magnetic field. The experimental results indicate a strong effect of an external magnetic field on the morphology of deposited films, more precisely on the Co:Cu ratio that determines the film growth. It is shown that the Co–Cu/Cu films electrodeposited without superimposed magnetic field consisted of two clearly visible features: compact film with incorporated granular particles. Under a superimposed external high magnetic field the privilege growth of the particles was induced. As a consequence, development of the well-defined branched structure of Co–Cu/Cu film was observed. In contrary, the phase compositional investigations do not reveal any changes in the phase formation during electrodeposition under magnetic field conditions. Thus, it is assumed that a strong growth of Co–Cu/Cu films in (111) direction under magnetic or non-magnetic electrodeposition conditions is related with the growth of Cu (111) plane and embedded into it some of the Co fcc atoms of same (111) orientation, as well as the Co hcp atoms that grows in the (002) direction. This non-equilibrium growth of Co–Cu/Cu films under magnetic deposition conditions affects strongly the magnetic properties of deposited films, revealing that films obtained under magnetic fields higher than 3 T were no more magnetic materials. - Highlights: • Co–Cu/Cu electrodeposits were obtained at elevated temperature under HMFs. • The effects of HMFs on microstructure and magnetic properties were investigated. • Interesting morphological changes due to HMFs has been observed. • Changes in Co:Cu ratio due to HMFs modified the magnetic properties of deposits.

  20. Determination of the Optical Properties of La2 xBaxCuO4 for Several Dopings, Including the Anomalous x = 1/8 Phase

    Energy Technology Data Exchange (ETDEWEB)

    Homes C. C.; Hucker, M.; Li, Q.; Xu, Z.J.; Wen, J.S.; Gu, G.D.; Tranquada, J.M.

    2012-04-11

    The optical properties of single crystals of the high-temperature superconductor La{sub 2-x}Ba{sub x}CuO{sub 4} have been measured over a wide frequency and temperature range for light polarized in the a-b planes and along the c axis. Three different Ba concentrations have been examined, x = 0.095 with a critical temperature T{sub c} = 32 K, x = 0.125 where the superconductivity is dramatically weakened with T{sub c} {approx_equal} 2.4 K, and x = 0.145 with T{sub c} {approx_equal} 24 K. The in-plane behavior of the optical conductivity for these materials at high temperature is described by a Drude-like response with a scattering rate that decreases with temperature. Below T{sub c} in the x = 0.095 and 0.145 materials there is a clear signature of the formation of a superconducting state in the optical properties allowing the superfluid density ({rho}{sub s0}) and the penetration depth to be determined. In the anomalous 1/8 phase, some spectral weight shifts from lower to higher frequency ({ge} 300 cm{sup -1}) on cooling below the spin-ordering temperature T{sub so} {approx_equal} 42 K, associated with the onset of spin-stripe order; we discuss alternative interpretations in terms of a conventional density-wave gap versus the response to pair-density-wave superconductivity. The two dopings for which a superconducting response is observed both fall on the universal scaling line {rho}{sub s0}/8 {approx_equal} 4.4 {sigma}{sub dc}T{sub c}, which is consistent with the observation of strong dissipation within the a-b planes. The optical properties for light polarized along the c axis reveal an insulating character dominated by lattice vibrations, superimposed on a weak electronic background. No Josephson plasma edge is observed in the low-frequency reflectance along the c axis for x = 1/8; however, sharp plasma edges are observed for x = 0.095 and 0.145 below T{sub c}.