WorldWideScience

Sample records for anodic polarization

  1. Anodic polarization behavior of pure copper in carbonate solutions and in bentonite/sand mixture

    International Nuclear Information System (INIS)

    Copper is one of the candidate materials for overpacks. Anodic polarization curves of pure copper were measured at 80degC in carbonate solution and in bentonite/sand mixture in order to understand the corrosion behavior of copper overpack at oxidizing period. The experimental results in carbonate solutions indicated that the anodic polarization curves became active dissolution type with increase in chloride ion concentration, while anodic polarization curves became passive type with increase in bicarbonate ion concentration. No effect of sulfate ion concentration was observed on the type of anodic polarization curve. The passive film break down potential became less noble with increase in chloride ion concentration and sulfate ion concentration. In contrast, the passive film break down potential became noble with increase in bicarbonate ion concentration. By the comparison of these experimental results with previous study performed at 30degC, it was indicated that anodic polarization curves become passive type with the rise of temperature. However, no effect of temperature on passive film break down potential was observed thin the experimental conditions. As to the results in bentonite/sand mixture, the effects of the composition in test solutions on the anodic polarization curves were small and the anodic polarization curves were almost active dissolution types. (author)

  2. Single polarity charge sensing in high pressure xenon using a coplanar anode configuration

    Science.gov (United States)

    Sullivan, Clair Julia

    A new design of a high pressure xenon ionization chamber has been fabricated in an attempt to eliminate the problems associated with acoustical vibrations of the Frisch grid. The function of the traditional Frisch grid has been accomplished by employing a coplanar anode system capable of single polarity charge sensing by means of the Shockley-Ramo theorem. Two different detectors have been built in order to determine if the operation of a high pressure xenon detector in coplanar anode mode is possible. The first is the helical detector comprised of two anode wires wound about a central ceramic core. Through calculation, it is shown that for a cathode bias of -5 kV a potential of 363 V is necessary to collect all of the electrons on the collecting anode, however this is contradicted by the observed pulse waveforms. The results of several experiments are presented that demonstrate the helical detector should work, however in the interest in determining if a coplanar high pressure xenon detector is viable, emphasis was placed on the second detector design. The second design is a parallel plate detector, more analogous to the coplanar semiconductor devices. This detector has demonstrated that it is possible to operate a high pressure xenon detector in coplanar anode mode. However, it is shown that the performance of this detector is limited by high surface leakage current and detector capacitance. Additionally, since the leakage current increases with potential between the two anodes, it is not possible to obtain very high resolution gamma-ray spectroscopy since the required potential between the two anodes for coplanar operation is so high that the detector is already dominated by surface leakage current as this value.

  3. Three-Dimensional Simulation of SOFC Anode Polarization Characteristics Based on Sub-Grid Scale Model

    OpenAIRE

    Kishimoto, Masashi; Iwai, Hiroshi; Saito, Motohiro; Yoshida, Hideo

    2011-01-01

    Three-dimensional numerical simulation of SOFC anode polarization is conducted with a structure obtained by a focused ion beam and scanning electron microscope (FIB-SEM). Electronic, ionic and gaseous transports with electrochemical reaction are considered. A sub-grid scale model is newly developed and effectively used to evaluate the transport flux in the porous structure. The proposed SGS model shows its potential to reasonably evaluate the transport flux considering the microstructure smal...

  4. Layer growth mechanisms on metallic electrodes under anodic polarization in cryolite-alumina melt

    International Nuclear Information System (INIS)

    Highlights: •Oxidation mechanisms of Fe, Ni and Co were studied at low potential in cryolite alumina melt. •At low overpotential, anodic dissolution of metal M occurs. •At the metal surface, Mn+ react with Al3+ and O2− to form an Al-containing spinel. •A minimal current density is required to precipitate the spinel phase. •With further polarization, a monoxide layer grows at the metal/spinel interface. -- Abstract: The anodic behavior of Fe, Ni, Co electrodes was investigated in a cryolite-alumina melt at 960 °C, by electrochemical techniques, microstructural characterizations and thermodynamic calculations, to provide a fundamental understanding of layers formation at metal (M) electrode surface. At low overpotential, anodic dissolution of M occurs; when the Mn+ concentration at the surface reaches saturation, a MxAl3−xO4 spinel phase precipitates. Then, a dense MyO layer grows at the metal/spinel interface. As for Fe, polarization at higher overpotentials lead to the same layers of spinel and monoxide, but pores at the metal/FeyO interface cause loss of adhesion of the oxide film

  5. Corrosion rate of construction materials in hot phosphoric acid with the contribution of anodic polarization

    DEFF Research Database (Denmark)

    Kouril, M.; Christensen, Erik; Eriksen, S.;

    2011-01-01

    The paper is focused on selection of a proper material for construction elements of water electrolysers, which make use of a 85% phosphoric acid as an electrolyte at temperature of 150 8C and which might be loaded with anodic polarization up to 2.5 V versus a saturated Ag/AgCl electrode (SSCE......% phosphoric acid at 150 8C and at polarization of 2.5 V/SSCE is tantalum. In that case, even a gentle cathodic polarization is harmful in such an acidic environment. Hydrogen reduction leads to tantalum hydride formation, to loss of mechanical properties and to complete disintegration of the metal. Contrary...... to tantalum, titanium is free of any corrosion resistance in hot phosphoric acid. Its corrosion rate ranges from tens of millimetres to metres per year depending on temperature of the acid. Alloy bonded tantalum coating was recognized as an effective corrosion protection for both titanium and stainless steel...

  6. Effect of anodic polarization on the free-floating parts at Pt/YSZ catalyst electrode

    International Nuclear Information System (INIS)

    Photoemission electron microscopy (PEEM) was used as spatially resolving method to explore the effect of electrochemical pumping with a positive voltage to porous platinum electrodes interfaced as working electrode to yttrium stabilized zirconia (YSZ). The experiments were conducted under UHV conditions (p ≈ 10−9 mbar). In PEEM a uniform rapid darkening of the Pt surface was observed during anodic polarization followed by the appearance of bright spots on a dark background. The bright spots observed in PEEM images are due to zirconia reduction around electrically isolated Pt islands

  7. Effect of anodic polarization on the free-floating parts at Pt/YSZ catalyst electrode

    Energy Technology Data Exchange (ETDEWEB)

    Toghan, Arafat, E-mail: arafat.toghan@yahoo.com [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, D-91058 Erlangen (Germany); Chemistry Department, Faculty of Science, South Valley University, 83523 Qena (Egypt); Institut für Physikalische Chemie und Elektrochemie, Leibniz-Universität Hannover, Callinstrasse 3-3a, D-30167 Hannover (Germany); Imbihl, R. [Institut für Physikalische Chemie und Elektrochemie, Leibniz-Universität Hannover, Callinstrasse 3-3a, D-30167 Hannover (Germany)

    2015-09-30

    Photoemission electron microscopy (PEEM) was used as spatially resolving method to explore the effect of electrochemical pumping with a positive voltage to porous platinum electrodes interfaced as working electrode to yttrium stabilized zirconia (YSZ). The experiments were conducted under UHV conditions (p ≈ 10{sup −9} mbar). In PEEM a uniform rapid darkening of the Pt surface was observed during anodic polarization followed by the appearance of bright spots on a dark background. The bright spots observed in PEEM images are due to zirconia reduction around electrically isolated Pt islands.

  8. Three-Dimensional Simulation of SOFC Anode Polarization Characteristics Based on Sub-Grid Scale Modeling of Microstructure

    OpenAIRE

    Kishimoto, Masashi; Iwai, Hiroshi; Saito, Motohiro; Yoshida, Hideo

    2012-01-01

    Three-dimensional numerical analysis of solid oxide fuel cell (SOFC) anode polarization is conducted with a microstructure obtained by a focused ion beam and scanning electron microscope (FIB-SEM). Electronic, ionic and gaseous transports with electrochemical reaction are considered in the porous anode. A sub-grid scale (SGS) model is newly developed and effectively used to consider the structural information whose characteristic scale is smaller than calculation grid size. The proposed SGS m...

  9. An in vitro investigation of the anodic polarization and capacitance behavior of 316-L stainless steel.

    Science.gov (United States)

    Sutow, E J; Pollack, S R; Korostoff, E

    1976-09-01

    Determinations were made of how the corrosion-resistant properties of the passive film on 316-L stainless steel are influenced by the material's mechanical and surface states, and the variable pH and PO2 conditions of the interstitial fluid. Cold-rolled and annealed specimens were surface-prepared, commercially and in the laboratory, respectively, as if for orthopedic implantation. Passive film behavior was studied by the anodic polarization and pulse-potentiostatic capacitance methods. The pH and PO2 of the Ringer's test solution were varied to include interstitial fluid values occurring postoperatively and onto recovery. The anodic polarization behavior of all specimens was found to be pH- and PO2-independent. Breakdown potentials of annealed specimens were 800-950 mV (SCE), in contrast to previously reported values of approximately 350 mV. This substantial increase is related to the influence of surface preparation and, in particular, to the optimization of electropolishing time which acts to produce a microscopically smooth surface, free of debris and disarrayed material. Capacitance behavior of annealed material for potentials greater than 400 mV was consistent with a model involving the entry of chloride and metal ions (mostly Fe) into the passive film. This entry is related to the onset of pitting. PMID:10307

  10. Blue TiO2 Nanotube Array as an Oxidant Generating Novel Anode Material Fabricated by Simple Cathodic Polarization

    International Nuclear Information System (INIS)

    Graphical abstract: - Abstract: Great interest in anode materials has dramatically emerged with increasing demand for electrochemically generated oxidants in industrial electrochemistry. For the last five decades, these needs have been mostly achieved by the introduction of two well-known anode materials, the dimensional stable anode (DSA®) and boron-doped diamond (BDD) electrodes. Nevertheless, the high cost and complicated process in fabricating these electrodes remains as a big obstacle for further development. Here, we report a novel anode material for the production of oxidants, the dark blue colored TiO2 nanotube array (NTA) (denoted as Blue TiO2 NTA) which has never been successfully achieved with titania-based materials. This titania-based electrocatalyst with irreversible electrochromism and high conductivity was successfully fabricated with simple cathodic polarization of anatase TiO2 NTA and exhibits the excellent electrocatalytic activity in generating chlorine (Cl2) and hydroxyl radical (• OH) which is comparable to the commercial DSA® and BDD electrodes, respectively. Thus, this Blue TiO2 NTA is suggested as a potential cost effective anodic material in industrial electrochemistry. In addition, even in other metal oxides other than titania, the cathodic polarization (accompanied with irreversible electrochromism) method may be applied to explore a new route for low-cost and novel anodic materials

  11. Anodic polarization behavior and film breakdown potential of pure copper in the simulated geological environment containing carbonate

    International Nuclear Information System (INIS)

    In order to clarify the influence of environmental factors on the corrosion behavior of copper overpacks in oxidizing environment, potentiodynamic and potentiostatic anodic polarization tests were performed in carbonate aqueous solutions at 80degC. As the results, the passivation was promoted and film breakdown was suppressed in higher carbonate concentrations, in lower chloride ion concentrations, and in higher pH conditions. The sulfate ion tended to promote the film breakdown of copper. The effects of the composition of the test solutions on the anodic polarization curve of copper in bentonite/sand mixture were quite smaller than those in simple aqueous solution. By comparison with previous data for lower temperature condition, it was clarified that passivation of copper was promoted in higher temperature condition, but breakdown potential, Eb was independent of temperature. The Eb, was expressed as a function of the ratio of aggressive ion and inhibiting ion such as [Cl-]/[HCO3-] and [SO42-]/[HCO3-], and it was confirmed that the Eb was lowered with increasing the ratio. When the ratio exceeds a certain value, the Eb was no longer able to be determined since the anodic polarization curve becomes active dissolution type. The lower limit of Eb in passive type region was estimated to be about -200 mV vs. SCE. The results of potentiostatic tests showed that pitting corrosion or non-uniform corrosion was observed at the potentials over Eb or second current peak potentials in anodic polarization curve. (author)

  12. Sacrificial anode stability and polarization potential variation in a ternary Al-xZn-xMg alloy in a seawater-marine environment

    Science.gov (United States)

    Muazu, Abubakar; Aliyu, Yaro Shehu; Abdulwahab, Malik; Idowu Popoola, Abimbola Patricia

    2016-06-01

    In this paper, the effects of zinc (Zn) and magnesium (Mg) addition on the performance of an aluminum-based sacrificial anode in seawater were investigated using a potential measurement method. Anodic efficiency, protection efficiency, and polarized potential were the parameters used. The percentages of Zn and Mg in the anodes were varied from 2% to 8% Zn and 1% to 4% Mg. The alloys produced were tested as sacrificial anodes for the protection of mild steel in seawater at room temperature. Current efficiency as high as 88.36% was obtained in alloys containing 6% Zn and 1% Mg. The polarized potentials obtained for the coupled (steel/Al-based alloys) are as given in the Pourbaix diagrams, with steel lying within the immunity region/cathodic region and the sacrificial anodes within the anodic region. The protection offered by the sacrificial anodes to the steel after the 7th and 8th week was measured and protection efficiency values as high as 99.66% and 99.47% were achieved for the Al-6%Zn-1%Mg cast anode. The microstructures of the cast anodes comprise of intermetallic structures of hexagonal Mg3Zn2 and body-centered cubic Al2Mg3Zn3. These are probably responsible for the breakdown of the passive alumina film, thus enhancing the anode efficiency.

  13. Layer growth mechanisms on metallic electrodes under anodic polarization in cryolite-alumina melt

    OpenAIRE

    Oudot, Magaly; Cassayre, Laurent; Chamelot, Pierre; Gibilaro, Mathieu; Massot, Laurent; Pijolat, Michèle; Bouvet, Sylvie

    2014-01-01

    The anodic behavior of Fe, Ni, Co electrodes was investigated in a cryolite-alumina melt at 960 °C, by electrochemical techniques, microstructural characterizations and thermodynamic calculations, to provide a fundamental understanding of layers formation at metal (M) electrode surface. At low overpotential, anodic dissolution of M occurs; when the Mn+ concentration at the surface reaches saturation, a MxAl3-xO4 spinel phase precipitates. Then, a dense MyO layer grows at the metal/spinel inte...

  14. Anodic polarization curves of austenitic steel Super304H in sulphuric acid solution

    OpenAIRE

    Chmela T.

    2016-01-01

    Polarization curves measured in a sufficiently aggressive environment (e.g. 0.5 mol dm−3 of H2SO4) may help to assess corrosion resistance of stainless steels. New phases precipitate in steel exposed long-term to high temperatures, which may affect the corrosion resistance. Potentiostatic polarization curves were measured on austenitic steel Super304H in a solution annealed state (from the producer) and in a state aged for 15 000 hours at temperatures of 650, 675 and 700 °C. The higher level ...

  15. The passive film characterization and anodic polarization behavior of 11% Cr ferritic/martensitic and 15% Cr oxide dispersion strengthened steels in different electrolytic solutions

    International Nuclear Information System (INIS)

    The ferritic/martensitic (F/M) and oxide dispersion strengthened (ODS) steels are the most promising candidate materials for future nuclear power plants. In the present work, the passive film compositions and its correlation with anodic polarization behavior of 11% Cr F/M and 15% Cr ODS steels was examined in different electrolytic solutions of borate buffer, acidic, acidified chloride and in chloride solution. The X-ray photoelectron spectroscopy analysis of the passive film reveals the existence of the layers of Cr2O3 and Fe2O3 and in 15% Cr ODS steel along with Y2O3. The open circuit potential and potentiodynamic anodic polarization measurements show that pitting corrosion resistance is strongly dependent on electrolytic solutions and passive film compositions. The ODS steel indicated increased breakdown potential and wider passive range as compared to F/M steel in chloride containing media. In a non-chloride environment, this difference is not prominent. However, low pitting corrosion resistance of both steels in chloride solutions was attributable to Cl− and microstructural inhomogeneity. The SEM micrographs of surface morphology of corrosion attack showed severe pitting corrosion attack in chloride solutions. The anodic polarization behavior of F/M and ODS steels in different electrolytic solutions was studied for this work in relation to passive film compositions.

  16. Detection of divalent europium, ytterbium, and samarium ions in aqueous solution during anodic polarization of the corresponding amalgam

    International Nuclear Information System (INIS)

    Amalgams of europium, ytterbium, and samarium are oxidized both at constant current and at constant potential. It was found experimentally that the potential of the indicator electrode moved to negative values when the circuit was closed and anodic current (1.0 to 60.0 mA) or potential (of the starting wave, half wave, or limiting current) applied. The potential of the microelectrode was 0.05 V, and remained unchanged during the entire electrolysis time, when pure mercury was used as the anode. The data reported for europium, ytterbium, and samarium amalgam confirm the results otained previously. By measuring the redox potentials of couples Sm3+-Sm2, Yb3+-Yb2+ and Eu3+-Eu2+ directly at the electrode surface the authors have established the formation of divalent samarium, ytterbium, and europium ions during anodic oxidation of the corresponding amalgams

  17. Process and electrolyte for applying barrier layer anodic coatings

    International Nuclear Information System (INIS)

    Various metals may be anodized, and preferably barrier anodized, by anodizing the metal in an electrolyte comprising quaternary ammonium compound having a complex metal anion in a solvent containing water and a polar, water soluble organic material. (U.S.)

  18. Anode glow and double layer in DC magnetron anode plasma

    International Nuclear Information System (INIS)

    Sputtering magnetron is widely used device in research and industry alike. DC planar magnetron employs series of magnets to create magnetic field above the electrode surface which traps electrons in closed E-bar x B-bar drift. Similar device used in reversed polarity power was reported for use in various applications. In contrast to its normal counterpart there is no closed drift effect in there. This device has very limited understanding. We here investigate this device for its discharge properties. Our device is dominated by anode glow. The anode glow is expected to have the electron sheath which provides energy to electron to excite the neutrals. Where as many experimental studies have been reported for anode glow and anode double layer, many of them uses auxiliary anode in the discharge. Most of the cases anode double layer (fire ball/fire rod) is small structures very near to anode surface which in itself is required to be small. The DC planar magnetron biased in reverse polarity have glow only near anode. Measurements confirm it as anode glow and the presence of electrons sheath is proven. The double layer structure was observed and measured in two mutually perpendicular directions. The double layer shows sub MHz oscillation that is typical of the unstable anode double layer. The dimension of anode glow is relatively large and is primarily in magnetic field free region making it easy to probe. The potential structure still shows large cathode fall but surprisingly visible cathode glow is not present. The device operates very stable for pressure bellow 0.01 mbar. But it shows instabilities such as unstable anode double layer above said pressure. (author)

  19. Anodic oxidation

    CERN Document Server

    Ross, Sidney D; Rudd, Eric J; Blomquist, Alfred T; Wasserman, Harry H

    2013-01-01

    Anodic Oxidation covers the application of the concept, principles, and methods of electrochemistry to organic reactions. This book is composed of two parts encompassing 12 chapters that consider the mechanism of anodic oxidation. Part I surveys the theory and methods of electrochemistry as applied to organic reactions. These parts also present the mathematical equations to describe the kinetics of electrode reactions using both polarographic and steady-state conditions. Part II examines the anodic oxidation of organic substrates by the functional group initially attacked. This part particular

  20. Anodic oxidation of Zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Conte, A.; Borello, A.; Cabrini, A.

    1976-07-01

    The anodic polarization of zircaloy-2 in different electrolytic baths has been investigated in order to obtain thick oxide films with properties suitable for wear applications. The operative conditions to obtain hard, thick, compact oxide films resistant to thermal shocks have been determined. The influence of the bath composition and temperature on the oxide growth is reported.

  1. Anodizing of aluminum with improved corrosion properties

    International Nuclear Information System (INIS)

    Anodizing of aluminum was studied in sulphuric/oxalic/boric acid electroiyte system. The corrosion resistance of the anodic oxide coating of aluminum was determined by potentiodynamic polarization test and scanning electron microscope (SEM) was used to investigate the surface morphology before and after corrosion test. It was found that the oxide coating obtained by this method showed better corrosion resistance with no significant difference in surface morphology. (author)

  2. Vacuum arc anode phenomena

    International Nuclear Information System (INIS)

    A brief review of anode phenomena in vacuum arcs is presented. Discussed in succession are: the transition of the arc into the anode spot mode; the temperature of the anode before, during and after the anode spot forms; and anode ions. Characteristically the anode spot has a temperature of the order of the atmospheric boiling point of the anode material and is a copious source of vapor and energetic ions. The dominant mechanism controlling the transition of the vacuum arc into the anode spot mode appears to depend upon the electrode geometry, the electrode material, and the current waveform of the particular vacuum arc being considered. Either magnetic constriction in the gap plasma or gross anode melting can trigger the transition; indeed, a combination of the two is a common cause of anode spot formation

  3. Galvanic aspects of aluminum sacrificial anode alloys in seawater.

    OpenAIRE

    Cummings, Jon Richard

    2012-01-01

    Galvanic aspects of aluminum sacrificial anode alloys in artificial seawater were investigated. Specifically, two mercury-bearing alloys and one tin-bearing alloy were studied. The polarization behavior of the aluminum sacrificial anode alloys coupled to HY-80 steel is discussed. Current versus time curves were obtained for aluminum/steel galvanic couples immersed in artificial seawater for specific intervals. Scanning elecron microscopy was used to characterize the anode dissolution patt...

  4. Graphite: An active or an inactive anode?

    Energy Technology Data Exchange (ETDEWEB)

    Rueffer, Matthew; Bejan, Dorin [Electrochemical Technology Centre, Chemistry Department, University of Guelph, 50 Stone Road East, Guelph Ontario, N1G 2W1 (Canada); Bunce, Nigel J., E-mail: nbunce@uoguelph.c [Electrochemical Technology Centre, Chemistry Department, University of Guelph, 50 Stone Road East, Guelph Ontario, N1G 2W1 (Canada)

    2011-02-01

    Positive polarization of a graphite anode in aqueous solution functionalizes the surface and releases soluble organic carbon to the solution concurrent with the electrolysis of water. Mineralization of the anode occurs at more positive potentials, and can be explained as a repetitive sequence involving functionalization, oxidation to carboxyl, and Kolbe decarboxylation, without recourse to hydroxyl radicals. Other lines of evidence against the intermediacy of hydroxyl radicals include the resistance of p-benzoquinone towards oxidation at graphite - i.e., graphite does not function as an inactive anode towards the oxidation of added substrates. A direct electron transfer mechanism operates for substrates that are oxidizable in the range of water stability, such as acetaminophen and sulfide ion. In the potential range of oxygen evolution we propose that graphite behaves as a modified active anode, at which the oxygen atom to be transferred to an oxidizable substrate first becomes bonded to the previously functionalized surface.

  5. Advances in aluminum anodizing

    Science.gov (United States)

    Dale, K. H.

    1969-01-01

    White anodize is applied to aluminum alloy surfaces by specific surface preparation, anodizing, pigmentation, and sealing techniques. The development techniques resulted in alloys, which are used in space vehicles, with good reflectance values and excellent corrosive resistance.

  6. Physicochemical investigation of anodic processes involved in silver electrowinning in refining technology

    OpenAIRE

    Lebed, A. B.; Zaikov, Yu. P.; Potapov, A. M.; Shpoltakova, I. A.; Mal'tsev, G. I.

    2013-01-01

    During silver electrowinning in refining technology, irrespectively of the nature of electrolyte and anode material, an anode deposit is formed due to oxidation of singly charged silver ions to higher degrees of oxidation (+2 and +3) under polarization. Absorption spectra of Ag(II) have been obtained in solutions with various concentrations of silver ions and nitric acid using anodic polarization in combination with electronic absorption spectroscopy; silver ions of high oxidation degrees wer...

  7. Improving Efficiency of Aluminium Sacrificial Anode Using Cold Work Process

    Science.gov (United States)

    Asmara, Y. P.; Siregar, J. P.; Tezara, C.; Ann, Chang Tai

    2016-02-01

    Aluminium is one of the preferred materials to be used as sacrificial anode for carbon steel protection. The efficiency of these can be low due to the formation of oxide layer which passivate the anodes. Currently, to improve its efficiency, there are efforts using a new technique called surface modifications. The objective of this research is to study corrosion mechanism of aluminium sacrificial anode which has been processed by cold work. The cold works are applied by reducing the thickness of aluminium sacrificial anodes at 20% and 40% of thickness reduction. The cathodic protection experiments were performed by immersion of aluminium connected to carbon steel cylinder in 3% NaCl solutions. Visual inspections using SEM had been conducted during the experiments and corrosion rate data were taken in every week for 8 weeks of immersion time. Corrosion rate data were measured using weight loss and linear polarization technique (LPR). From the results, it is observed that cold worked aluminium sacrificial anode have a better corrosion performance. It shows higher corrosion rate and lower corrosion potential. The anodes also provided a long functional for sacrificial anode before it stop working. From SEM investigation, it is shown that cold works have changed the microstructure of anodes which is suspected in increasing corrosion rate and cause de-passivate of the surface anodes.

  8. Anodizing Aluminum with Frills.

    Science.gov (United States)

    Doeltz, Anne E.; And Others

    1983-01-01

    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are also…

  9. Anodized aluminum on LDEF

    Science.gov (United States)

    Golden, Johnny L.

    1993-01-01

    A compilation of reported analyses and results obtained for anodized aluminum flown on the Long Duration Exposure Facility (LDEF) was prepared. Chromic acid, sulfuric acid, and dyed sulfuric acid anodized surfaces were exposed to the space environment. The vast majority of the anodized surface on LDEF was chromic acid anodize because of its selection as a thermal control coating for use on the spacecraft primary structure, trays, tray clamps, and space end thermal covers. Reports indicate that the chromic acid anodize was stable in solar absorptance and thermal emittance, but that contamination effects caused increases in absorptance on surfaces exposed to low atomic oxygen fluences. There were some discrepancies, however, in that some chromic acid anodized specimens exhibited significant increases in absorptance. Sulfuric acid anodized surfaces also appeared stable, although very little surface area was available for evaluation. One type of dyed sulfuric acid anodize was assessed as an optical baffle coating and was observed to have improved infrared absorptance characteristics with exposure on LDEF.

  10. Anodic dissolution of metals in oxide-free cryolite melts

    OpenAIRE

    Cassayre, Laurent; Chamelot, Pierre; Arurault, Laurent; Taxil, Pierre

    2005-01-01

    The anodic behavior of metals in molten cryolite-alumina melts has been investigated mostly for use as inert anodes for the Hall-Héroult process. In the present work, gold, platinum, palladium, copper, tungsten, nickel, cobalt and iron metal electrodes were anodically polarized in an oxide-free cryolite melt (11%wt. excess AlF3 ; 5%wt. CaF2) at 1273 K. The aim of the experiments was to characterize the oxidation reactions of the metals occurring without the effect of oxygen-containing dissolv...

  11. Electrically conductive anodized aluminum coatings

    Science.gov (United States)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  12. Anodic oxidation of benzoquinone using diamond anode.

    Science.gov (United States)

    Panizza, Marco

    2014-01-01

    The anodic degradation of 1,4-benzoquinone (BQ), one of the most toxic xenobiotic, was investigated by electrochemical oxidation at boron-doped diamond anode. The electrolyses have been performed in a single-compartment flow cell in galvanostatic conditions. The influence of applied current (0.5-2 A), BQ concentration (1-2 g dm(-3)), temperature (20-45 °C) and flow rate (100-300 dm(3) h(-1)) has been studied. BQ decay kinetic, the evolution of its oxidation intermediates and the mineralization of the aqueous solutions were monitored during the electrolysis by high-performance liquid chromatograph (HPLC) and chemical oxygen demand (COD) measurements. The results obtained show that the use of diamond anode leads to total mineralization of BQ in any experimental conditions due to the production of oxidant hydroxyl radicals electrogenerated from water discharge. The decay kinetics of BQ removal follows a pseudo-first-order reaction, and the rate constant increases with rising current density. The COD removal rate was favoured by increasing of applied current, recirculating flow rate and it is almost unaffected by solution temperature. PMID:24710725

  13. The effect of grain size on aluminum anodes for Al-air batteries in alkaline electrolytes

    Science.gov (United States)

    Fan, Liang; Lu, Huimin

    2015-06-01

    Aluminum is an ideal material for metallic fuel cells. In this research, different grain sizes of aluminum anodes are prepared by equal channel angular pressing (ECAP) at room temperature. Microstructure of the anodes is examined by electron backscatter diffraction (EBSD) in scanning electron microscope (SEM). Hydrogen corrosion rates of the Al anodes in 4 mol L-1 NaOH are determined by hydrogen collection method. The electrochemical properties of the aluminum anodes are investigated in the same electrolyte using electrochemical impedance spectroscopy (EIS) and polarization curves. Battery performance is also tested by constant current discharge at different current densities. Results confirm that the electrochemical properties of the aluminum anodes are related to grain size. Finer grain size anode restrains hydrogen evolution, improves electrochemical activity and increases anodic utilization rate. The proposed method is shown to effectively improve the performance of Al-air batteries.

  14. Effect of intermetallic phases on the anodic oxidation and corrosion of 5A06 aluminum alloy

    Science.gov (United States)

    Li, Song-mei; Li, Ying-dong; Zhang, You; Liu, Jian-hua; Yu, Mei

    2015-02-01

    Intermetallic phases were found to influence the anodic oxidation and corrosion behavior of 5A06 aluminum alloy. Scattered intermetallic particles were examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) after pretreatment. The anodic film was investigated by transmission electron microscopy (TEM), and its corrosion resistance was analyzed by electrochemical impedance spectroscopy (EIS) and Tafel polarization in NaCl solution. The results show that the size of Al-Fe-Mg-Mn particles gradually decreases with the iron content. During anodizing, these intermetallic particles are gradually dissolved, leading to the complex porosity in the anodic film beneath the particles. After anodizing, the residual particles are mainly silicon-containing phases, which are embedded in the anodic film. Electrochemical measurements indicate that the porous anodic film layer is easily penetrated, and the barrier plays a dominant role in the overall protection. Meanwhile, self-healing behavior is observed during the long immersion time.

  15. Fabrication of independent nickel microstructures with anodizing of aluminum,laser irradiation, and electrodeposition

    Institute of Scientific and Technical Information of China (English)

    T. Kikuchi; M. Sakairi; H. Takahashi

    2003-01-01

    Independent microstructures made of Ni metal were fabricated by five sequential processes: porous anodic oxide film for-mation, pore sealing, laser irradiation, Ni electroplating, and removal of the aluminum substrate and anodic oxide films. Aluminumplates and rods were anodized in an oxalic acid solution to form porous type anodic oxide films, and then immersed in boiling dis-tilled water for pore sealing. The anodized and pore-sealed specimens were irradiated with a pulsed neodymium-doped yttrium alu-minum garnet (Nd-YAG) laser beam in a Ni plating solution to remove anodic oxide film locally by rotating and moving up / downwith an XYZθ-stage. Nickel was deposited at the area where film had been removed by cathodic polarization in the solution beforeremoving the aluminum substrate and anodic oxide films in NaOH solutions. Cylindrical or plain network structures were fabricated successfully.

  16. Preparation and Properties of Al-Ni Composite Anodic Films on Aluminum Surface

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xuhui; YE Hao; ZHANG Xiaofeng; ZUO Yu

    2012-01-01

    Ni element was introduced to aluminum surface by a simple chemical immersion method,and Al-Ni composite anodic films were obtained by following anodizing.The morphology,structure and composition of the Al-Ni anodic films were examined by scanning electron microscopy (SEM),energy disperse spectroscopy (EDS) and atomic force microscopy(AFM).The electrochemical behaviors of the films were studied by means of polarization measurement and electrochemical impedance spectroscopy (EIS).The experimental results show that the A1-Ni composite anodic film is more compact with smaller pore diameters than that of the Al anodic film.The introduction of nickel increases the impedances of both the barrier layer and the porous layer of the anodic films.In NaCl solutions,the Al-Ni composite anodic films show higher impedance values and better corrosion resistance.

  17. A comparison of chromic acid and sulfuric acid anodizing

    Science.gov (United States)

    Danford, M. D.

    1992-01-01

    Because of federal and state mandates restricting the use of hexavalent chromium, it was deemed worthwhile to compare the corrosion protection afforded 2219-T87 aluminum alloy by both Type I chromic acid and Type II sulfuric acid anodizing per MIL-A-8625. Corrosion measurements were made on large, flat 2219-T87 aluminum alloy sheet material with an area of 1 cm(exp 2) exposed to a corrosive medium of 3.5-percent sodium chloride at pH 5.5. Both ac electrochemical impedance spectroscopy and the dc polarization resistance techniques were employed. The results clearly indicate that the corrosion protection obtained by Type II sulfuric acid anodizing is superior, and no problems should result by substituting Type II sulfuric acid anodizing for Type I chromic acid anodizing.

  18. Pulsed diode source of polarized ions

    International Nuclear Information System (INIS)

    The advantages of polarized nuclei for fusion reactors have recently been described. We propose a pulsed source of polarized nuclei that consists of an ion diode with a polarized anode. With magnetic resonance techniques the nuclear spins of the protons of solid NH3 can be made about 90 to 95% polarized. This material would be used for the anode. The diode would be pulsed with a voltage of 1-200K-volts for 1-2 μ sec. Flashover of the anode produces a surface plasma from which the polarized protons would be extracted to form a beam. Depolarization could be detected by comparing reaction cross sections and/or distribution of reaction products with similar results for unpolarized beams

  19. Double anodization experiments in tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Albella, J.M.; Fernandez, M.; Gomez-Aleixandre, C.; Martinez-Duart, J.M.; Montero, I.

    1985-10-01

    Based on our previous model of anodization, a new formula is given for the relation between the breakdown voltage V /SUB B/ during the anodic oxidation of tantalum and the anodization parameters. The formula predicts the well known diminution of V /SUB B/ with the logarithm of the electrolyte concentration. The model also explains the experimentally-observed fact that V /SUB B/ is solely determined by the latter electrolyte in double anodization experiments.

  20. Inert Anode Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1999-07-01

    This ASME report provides a broad assessment of open literature and patents that exist in the area of inert anodes and their related cathode systems and cell designs, technologies that are relevant for the advanced smelting of aluminum. The report also discusses the opportunities, barriers, and issues associated with these technologies from a technical, environmental, and economic viewpoint.

  1. Anodes for alkaline electrolysis

    Science.gov (United States)

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  2. Corrosion resistance of anodized AZ31 Mg alloy in borate solution containing titania sol

    Energy Technology Data Exchange (ETDEWEB)

    Guo Yan; Wang Guixiang [Key Laboratory of Superlight Material and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Dong Guojun [Key Laboratory of Superlight Material and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China)], E-mail: dgj1129@163.com; Gong Fan; Zhang Lili; Zhang Milin [Key Laboratory of Superlight Material and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China)

    2008-09-08

    Anodic films were prepared on the AZ31 magnesium alloy in alkaline borate solution with or without addition of titania sol under the constant potential of 50 V (dc) for 10 min at room temperature. The morphology of the anodic films was observed by scanning electron microscope (SEM). The corrosion resistance of the anodic films was evaluated in 3.5% NaCl solution using fast anti-acid test, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The anodic film formed in borate solution with addition of 4% titania sol has superior uniform surface and higher corrosion resistance than in other conditions.

  3. Effect of change in cation composition of cryolite-alumina melts on anodic overwork

    International Nuclear Information System (INIS)

    Stationary polarization of platinum and glass carbon anodes in minor KF and LiF doped cryolite-alumina melt at different concentrations of alumina is searched in laboratory cell. Individual additive of LiF results in the raise of anode overvoltage by 50-80 mV at glass carbon and ∼25 mV at platinum anodes. Substitution of part of Na+ ions for Li+ in the amount to ∼3.7 mol.% of LiF (∼1.8 mas.%) results in the low polarization

  4. Direct methanol utilization in intermediate temperature liquid-tin anode solid oxide fuel cells

    International Nuclear Information System (INIS)

    Highlights: • Modification of Sn-based anode with Cu/SDC improves power density. • Cu and SDC improve wetting of Sn on YSZ and reduce anode polarization resistance. • Carbon formation has not been observed in SOFCs containing tin-based anodes. • Micro-channel structure in the anode reduces gas conversion resistance. - Abstract: Direct utilization of methanol in liquid tin anode solid oxide fuel cells has been experimentally demonstrated at 1023 K. A Cu and SDC modified Sn anode solid oxide fuel cell had a maximum power density of 259.2 mW/cm2 during operation on methanol. Carbon deposition was not observed in the Raman spectra of the post-test anodes. Electrochemical impedance spectroscopy indicated that gas conversion resistance increased when using methanol instead of hydrogen. The micro-channel architecture of the electrode mitigated the increase. Scanning electron microscopy images showed that addition of Cu and Sn improved wetting of Sn on YSZ and reduced anode polarization resistance. The anode gases were analyzed by mass spectroscopy and a mechanism for electrochemical oxidation of methanol has been proposed

  5. Anodic bonded graphene

    OpenAIRE

    Balan, Adrian; Kumar, Rakesh; Boukhicha, Mohamed; Beyssac, Olivier; Bouillard, Jean-Claude; Taverna, Dario; Sacks, William; Marangolo, Massimiliano; Lacaze, Emmanuelle; Escoffier, Walter; Poumirol, Jean-Marie; Shukla, Abhay

    2010-01-01

    Abstract We show how to prepare graphene samples on a glass substrate with the anodic bonding method. In this method, a graphite precursor in flake form is bonded to a glass substrate with the help of an electrostatic field and then cleaved off to leave few layer graphene on the substrate. Now that several methods are available for producing graphene, the relevance of our method is in its simplicity and practicality for producing graphene samples of about 100 ?m lateral dimensions. This me...

  6. Improving pitting corrosion resistance of aluminum by anodizing process

    International Nuclear Information System (INIS)

    Summary: Anodizing of aluminum was studied in sulphuric/citric/boric acid electrolyte system to improve pitting corrosion resistance. Maximum oxide film thickness was obtained using 5% sulphuric acid, 3% citric acid and 0.5% boric acid electrolyte composition. The corrosion resistance of aluminum sample was determined to find the effectiveness of oxide coating by potentiodynamic polarization test. The surface morphology of aluminum samples was investigated using scanning electron microscope (SEM) before and after corrosion test. It was found that the coated aluminum sample obtained by anodizing in sulphuric/citric/boric acid electrolyte system exhibited better pitting corrosion resistance with no significant difference in surface morphology. (author)

  7. Anodization of AZ91 magnesium alloy in alkaline solution containing silicate and corrosion properties of anodized films

    Institute of Scientific and Technical Information of China (English)

    LI Ling-ling; CHENG Ying-liang; WANG Hui-min; ZHANG Zhao

    2008-01-01

    The anodization of AZ91 magnesium alloy in an alkaline electrolyte of 100g/L NaOH+20g/L Na2B4O7·10H2O+50g/L C6H5Na3O7·2H2O+60g/L Na2SiO3·9H2O was studied.The corrosion resistance of the anodized films was studied by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques.The microstructure of the films was examined with scanning electronic microscope (SEM) and X-ray diffractometer (XRD).The results show that,under the experimental conditions,the optimum anodizing time and the optimum anodizing current density are 40min and 20mA/cm2 respectively for obtaining the anodic film with high corrosion resistance.The XRD pattern shows that the components of the anodized film consist of MgO and Mg2 (SiO4).

  8. Process for anodizing aluminum foil

    International Nuclear Information System (INIS)

    In an integrated process for the anodization of aluminum foil for electrolytic capacitors including the formation of a hydrous oxide layer on the foil prior to anodization and stabilization of the foil in alkaline borax baths during anodization, the foil is electrochemically anodized in an aqueous solution of boric acid and 2 to 50 ppm phosphate having a pH of 4.0 to 6.0. The anodization is interrupted for stabilization by passing the foil through a bath containing the borax solution having a pH of 8.5 to 9.5 and a temperature above 800 C. and then reanodizing the foil. The process is useful in anodizing foil to a voltage of up to 760 V

  9. 3D Microstructure Effects in Ni-YSZ Anodes: Influence of TPB Lengths on the Electrochemical Performance

    OpenAIRE

    Omar M. Pecho; Andreas Mai; Beat Münch; Thomas Hocker; Robert J. Flatt; Lorenz Holzer

    2015-01-01

    3D microstructure-performance relationships in Ni-YSZ anodes for electrolyte-supported cells are investigated in terms of the correlation between the triple phase boundary (TPB) length and polarization resistance (Rpol). Three different Ni-YSZ anodes of varying microstructure are subjected to eight reduction-oxidation (redox) cycles at 950 °C. In general the TPB lengths correlate with anode performance. However, the quantitative results also show that there is no simplistic relationship betwe...

  10. Photoelectrochemical cell with nondissolving anode

    Science.gov (United States)

    Ellis, A. B.; Kaiser, S. W.; Wrighton, M. S.

    1980-01-01

    Improved electrolytic cells have efficiencies comparable to those of best silicon solar cells but are potentially less expensive to manufacture. Cells consist of light-sensitive n-type semiconductor anode and metallic cathode immersed in electrolytic solution. Reversible redox cells produce no chemical change in electrolyte and stabilize anode against dissolving. Cell can produce more than 500 mW of power per square centimeter of anode area at output voltage of 0.4 V.

  11. Kinetics of the zinc anodic dissolution reaction in near neutral EDTA solutions

    Directory of Open Access Journals (Sweden)

    NEDELJKO KRSTAJIC

    2003-03-01

    Full Text Available Polarization curves of the anodic dissolution reaction of zinc were determined in EDTA solutions of different total molar concentrations (0.05, 0.10, 0.15 and 0.20 mol dm-3, the pH values of which were systematically varied (pH 3.0 – 10.0. The Tafel slopes of the anodic polarization curves are close to 40 mV dec-1 at lower current densities (10-5 – 5x10-4 A cm-2, while at higher current densities (5x10-4 – 10-2 A cm-2 the slopes are in the range of 60 – 120 mV dec-1. The order of the anodic reaction determined from the anodic polarization curves at lower current densities are: z+ (H+ ~ –1/2 for pH 8, while z+(H4Y ~ 1 for all pH values of the examined EDTA solutions. On the basis of these results, two mechanisms of the zinc anodic dissolution reaction are proposed: at pH 8. In both cases the relevant EDTA species directly participate as reactants in the anodic reaction. The dependences of the corrosion potential on pH and on total molar EDTA concentration indicate that the relevant EDTA species take part as reactants in both the cathodic (hydrogen evolution and anodic (zinc dissolution reactions of the zinc corrosion process.

  12. Anodic bonded graphene

    Energy Technology Data Exchange (ETDEWEB)

    Balan, Adrian; Kumar, Rakesh; Boukhicha, Mohamed; Beyssac, Olivier; Bouillard, Jean-Claude; Taverna, Dario; Sacks, William; Shukla, Abhay [Universite Pierre et Marie Curie-Paris 6, CNRS-UMR7590, Institut de Mineralogie et de Physique des Milieux Condenses, 140 rue de Lourmel, Paris, F-75015 France (France); Marangolo, Massimiliano; Lacaze, Emanuelle; Gohler, Roger [Universite Pierre et Marie Curie-Paris 6, CNRS-UMR7588, Institut des Nanosciences de Paris, 140 rue de Lourmel, Paris, F-75015 France (France); Escoffier, Walter; Poumirol, Jean-Marie, E-mail: abhay.shukla@upmc.f [Laboratoire National des Champs Magnetiques Intenses, INSA UPS CNRS, UPR 3228, Universite de Toulouse, 143 avenue de Rangueil, 31400 Toulouse (France)

    2010-09-22

    We show how to prepare graphene samples on a glass substrate with the anodic bonding method. In this method, a graphite precursor in flake form is bonded to a glass substrate with the help of an electrostatic field and then cleaved off to leave few layer graphene on the substrate. Now that several methods are available for producing graphene, the relevance of our method is in its simplicity and practicality for producing graphene samples of about 100 {mu}m lateral dimensions. This method is also extensible to other layered materials. We discuss some detailed aspects of the fabrication and results from Raman spectroscopy, local probe microscopy and transport measurements on these samples.

  13. Anodes for Solid Oxide Fuel Cells Operating at Low Temperatures

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain

    An important issue that has limited the potential of Solid Oxide Fuel Cells (SOFCs) for portable applications is its high operating temperatures (800-1000 ºC). Lowering the operating temperature of SOFCs to 400-600 ºC enable a wider material selection, reduced degradation and increased lifetime....... On the other hand, low-temperature operation poses serious challenges to the electrode performance. Effective catalysts, redox stable electrodes with improved microstructures are the prime requisite for the development of efficient SOFC anodes. The performance of Nb-doped SrT iO3 (STN) ceramic anodes...... at 400ºC. The potential of using WO3 ceramic as an alternative anode materials has been explored. The relatively high electrode polarization resistance obtained, 11 Ohm cm2 at 600 ºC, proved the inadequate catalytic activity of this system for hydrogen oxidation. At the end of this thesis...

  14. Screened Anode N2 Laser

    OpenAIRE

    Sabry, M. Montaser Foad

    1985-01-01

    An experimental study of the effect of screening the discharge channel on the output energy is presented. It has been found that a screened anode nitrogen laser generates higher output energy than that of a screened cathode, and also higher than that when both cathode and anode are unshielded at higher pressures.

  15. Mesoporous Silicon-Based Anodes

    Science.gov (United States)

    Peramunage, Dharmasena

    2015-01-01

    For high-capacity, high-performance lithium-ion batteries. A new high-capacity anode composite based on mesoporous silicon is being developed. With a structure that resembles a pseudo one-dimensional phase, the active anode material will accommodate significant volume changes expected upon alloying and dealloying with lithium (Li).

  16. Iron migration from the anode surface in alumina electrolysis

    Science.gov (United States)

    Zhuravleva, Elena N.; Drozdova, Tatiana N.; Ponomareva, Svetlana V.; Kirik, Sergei D.

    2013-01-01

    Corrosion destruction of two-component iron-based alloys used as an anode in high-temperature alumina electrolysis in the melt of NaF/KF/AlF3 electrolyte has been considered. Ni, Si, Cu, Cr, Mn, Al, Ti in the amount of up to 10% have been tested as the dopants to an anode alloys. The composition of the corrosion products has been studied using X-ray diffraction, scanning electron microscopy and electron microprobe analysis. It has been established that the anode corrosion is induced by a surface electrochemical polarization and iron atom oxidation. Iron ions come into an exchange interaction with the fluoride components of the melted electrolyte, producing FeF2. The last interacts with oxyfluoride species transforming into the oxide forms: FeAl2O4, Fe3O4, Fe2O3. Due to the low solubility, the iron oxides are accumulated in the near-electrode sheath. The only small part of iron from anode migrates to cathode that makes an production of high purity aluminum of a real task. The alloy dopants are also subjected to corrosion in accordance with electromotive series resulting corrosion tunnels on the anode surface. The oxides are final compounds which collect in the same area. The corrosion products form an anode shell which is electronic conductor at electrolysis temperature. The electrolysis of alumina occurs beyond the corrosion shell. The rate limiting step in the corrosion is the electrolyte penetration through corrosion shell to the anode surface. The participation of the released oxygen in the corrosion has not been observed.

  17. Electrochemical behaviors of anodic alumina sealed by Ce-Mo in NaCl solutions

    Institute of Scientific and Technical Information of China (English)

    TIAN Lian-peng; ZHAO Xu-hui; ZHAO Jing-mao; ZHANG Xiao-feng; ZUO Yu

    2006-01-01

    The elimination of toxic materials in sealing methods for anodic films on 1070 aluminum alloy was studied. The new process uses chemical treatments in cerium solution and an electrochemical treatment in a molybdate solution. Potentiodynamic polarization and electrochemical impedance spectroscopy(EIS) were used to study the influences of sealing methods on the corrosion behavior of anodic films in NaCl solutions. The results show that the Ce-Mo sealing makes the surface structure and morphology of anodic films uniform and compact. Ce and Mo produce a cooperative effect to improve the corrosion resistance of anodic films. Anodic films sealed by Ce-Mo provide high corrosion resistance both in acidic and basic solutions.

  18. Anode oxidation of cadmium in acid and that of zinc in neutral sulfate solutions

    International Nuclear Information System (INIS)

    By the method of anode polarization curves on rotary disc electrode there have been studied kinetics and mechanism of zinc and cadmium dissolution in 0.1-2.0 N sulfate solutions. There have been determined exchange currents of the first and second stages of ionization and transfer coefficients. Cadmium anode dissolution takes place in sequent single-electron stages with diffusion stage of reaction being superimposed

  19. Final report on the characterization of the film on inert anodes

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, C.F. Jr.; Stice, N.D.

    1991-01-01

    Results of post-test microscopic and elemental analysis of the reaction zone on polarized cermet inert anodes, over a range of current densities and alumina concentrations, suggest that an alumina film does not form to protect the anode from dissolution. Rather, significant morphological and compositional changes occur at or near the anode surface. These changes and the chemical reactions that cause them involve the cermet material itself and appear to be responsible for properties that were previously assigned to an alumina film. In particular, a reaction layer formed from the cermet material may have protective properties, while changes in roughness and porosity may contribute to the electrochemical impedance.

  20. Iron migration from the anode surface in alumina electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravleva, Elena N.; Drozdova, Tatiana N.; Ponomareva, Svetlana V. [Siberian Federal University, Krasnoyarsk, 660041 (Russian Federation); Kirik, Sergei D., E-mail: kiriksd@yandex.ru [Siberian Federal University, Krasnoyarsk, 660041 (Russian Federation); Institute of Chemistry and Chemical Technology SB RAS, Krasnoyarsk, 660036 (Russian Federation)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Corrosion destruction of two-component iron-based alloys in high-temperature aluminum electrolysis in the cryolite alumina melt has been studied. Black-Right-Pointing-Pointer It was found that at the first stage oxidative polarization of iron atoms on the anode surface into Fe{sup 2+} takes place. Black-Right-Pointing-Pointer Fe{sup 2+} interacts with cryolite melt producing FeF{sub 2}. Black-Right-Pointing-Pointer FeF{sub 2} gives oxides FeAl{sub 2}O{sub 4}, Fe{sub 3}O{sub 4}, Fe{sub 2}O{sub 3}. Black-Right-Pointing-Pointer The participation of oxygen in the corrosion has not been observed. - Abstract: Corrosion destruction of two-component iron-based alloys used as an anode in high-temperature alumina electrolysis in the melt of NaF/KF/AlF{sub 3} electrolyte has been considered. Ni, Si, Cu, Cr, Mn, Al, Ti in the amount of up to 10% have been tested as the dopants to an anode alloys. The composition of the corrosion products has been studied using X-ray diffraction, scanning electron microscopy and electron microprobe analysis. It has been established that the anode corrosion is induced by a surface electrochemical polarization and iron atom oxidation. Iron ions come into an exchange interaction with the fluoride components of the melted electrolyte, producing FeF{sub 2}. The last interacts with oxyfluoride species transforming into the oxide forms: FeAl{sub 2}O{sub 4}, Fe{sub 3}O{sub 4}, Fe{sub 2}O{sub 3}. Due to the low solubility, the iron oxides are accumulated in the near-electrode sheath. The only small part of iron from anode migrates to cathode that makes an production of high purity aluminum of a real task. The alloy dopants are also subjected to corrosion in accordance with electromotive series resulting corrosion tunnels on the anode surface. The oxides are final compounds which collect in the same area. The corrosion products form an anode shell which is electronic conductor at electrolysis temperature. The

  1. Iron migration from the anode surface in alumina electrolysis

    International Nuclear Information System (INIS)

    Highlights: ► Corrosion destruction of two-component iron-based alloys in high-temperature aluminum electrolysis in the cryolite alumina melt has been studied. ► It was found that at the first stage oxidative polarization of iron atoms on the anode surface into Fe2+ takes place. ► Fe2+ interacts with cryolite melt producing FeF2. ► FeF2 gives oxides FeAl2O4, Fe3O4, Fe2O3. ► The participation of oxygen in the corrosion has not been observed. - Abstract: Corrosion destruction of two-component iron-based alloys used as an anode in high-temperature alumina electrolysis in the melt of NaF/KF/AlF3 electrolyte has been considered. Ni, Si, Cu, Cr, Mn, Al, Ti in the amount of up to 10% have been tested as the dopants to an anode alloys. The composition of the corrosion products has been studied using X-ray diffraction, scanning electron microscopy and electron microprobe analysis. It has been established that the anode corrosion is induced by a surface electrochemical polarization and iron atom oxidation. Iron ions come into an exchange interaction with the fluoride components of the melted electrolyte, producing FeF2. The last interacts with oxyfluoride species transforming into the oxide forms: FeAl2O4, Fe3O4, Fe2O3. Due to the low solubility, the iron oxides are accumulated in the near-electrode sheath. The only small part of iron from anode migrates to cathode that makes an production of high purity aluminum of a real task. The alloy dopants are also subjected to corrosion in accordance with electromotive series resulting corrosion tunnels on the anode surface. The oxides are final compounds which collect in the same area. The corrosion products form an anode shell which is electronic conductor at electrolysis temperature. The electrolysis of alumina occurs beyond the corrosion shell. The rate limiting step in the corrosion is the electrolyte penetration through corrosion shell to the anode surface. The participation of the released oxygen in the corrosion has

  2. Adsorption orientation of sodium of polyaspartic acid effect on anodic films formed on magnesium alloy

    Science.gov (United States)

    Liu, YuPing; Zhang, Dingfei; Chen, Changguo; Zhang, Jiangang; Cui, libo

    2011-06-01

    We previously reported organic addition agent in improving the performance of anodic film formed on magnesium alloy. Here we report that the environment-friendly electrolyte with sodium of polyaspartic acid (PASP) affects the anodizing process including the microstructure, phase constituents and corrosion performance. We have used SEM, XRD, XPS and polarization curve to study in detail the electrolyte impact. Our results show that the anodic film in electrolyte with 19.2-28.8 g/L PASP is compact, smooth and high corrosion resistant. And also, increasing the PASP concentration ranging from 9.6 to 28.8 g/L results in enhancing the cell voltage, thickness and the content of compound including MgO and Mg 2SiO 4 in anodic film. Interestingly, the anodic film is non-stoichiometric oxide. Comparing with Tafel curves of the anodic film to the addition of PASP or not to, the corrosion current density is 1-2 magnitudes less than the later. Furthermore, a plausible model we propose that the anodizing process is regulated by two main plausible adsorption orientations of PASP at the surface anode. With the increasing of PASP content, the adsorption orientation may transit from "end-on" to "flat-on". This research using organic addition agent PASP may further broaden applications of organic additive in the anti-corrosion engineering and electrochemical surface treatment of magnesium alloy.

  3. Alternative Anodes for the Electrolytic Reduction of Uranium Dioxide

    Science.gov (United States)

    Merwin, Augustus

    Reprocessing of spent nuclear fuel is an essential step in closing the nuclear fuel cycle. In order to consume current stockpiles, ceramic uranium dioxide spent nuclear fuel will be subjected to an electrolytic reduction process. The current reduction process employs a platinum anode and a stainless steel alloy 316 cathode in a molten salt bath consisting of LiCl-2wt% Li 2O and occurs at 700°C. A major shortcoming of the existing process is the degradation of the platinum anode under the severely oxidizing conditions encountered during electrolytic reduction. This work investigates alternative anode materials for the electrolytic reduction of uranium oxide. The high temperature and extreme oxidizing conditions encountered in these studies necessitated a unique set of design constraints on the system. Thus, a customized experimental apparatus was designed and constructed. The electrochemical experiments were performed in an electrochemical reactor placed inside a furnace. This entire setup was housed inside a glove box, in order to maintain an inert atmosphere. This study investigates alternative anode materials through accelerated corrosion testing. Surface morphology was studied using scanning electron microscopy. Surface chemistry was characterized using energy dispersive spectroscopy and Raman spectroscopy. Electrochemical behavior of candidate materials was evaluated using potentiodynamic polarization characteristics. After narrowing the number of candidate electrode materials, ferrous stainless steel alloy 316, nickel based Inconel 718 and elemental tungsten were chosen for further investigation. Of these materials only tungsten was found to be sufficiently stable at the anodic potential required for electrolysis of uranium dioxide in molten salt. The tungsten anode and stainless steel alloy 316 cathode electrode system was studied at the required reduction potential for UO2 with varying lithium oxide concentrations. Electrochemical impedance spectroscopy

  4. Effect of anodization on corrosion behaviour and biocompatibility of Cp-titanium in simulated body fluid

    Indian Academy of Sciences (India)

    Archana Singh; B P Singh; Mohan R Wani; Dinesh Kumar; J K Singh; Vakil Singh

    2013-10-01

    The objective of this investigation is to study the effectiveness of anodized surface of commercial purity titanium (Cp-Ti) on its corrosion behaviour in simulated body fluid (SBF) and proliferation of osteoblast cells on it, to assess its potentiality as a process of surface modification in enhancing corrosion resistance and osseointegration of dental implants. Highly ordered nano-porous oxide layer, with nano-sized pores, is developed on the surface of Cp-Ti through electrochemical anodization in the electrolyte of aqueous solution of 0.5% HF at 15 V for 30 min at 24 °C. The nano-porous feature of the anodized surface is characterized by field-emission scanning electron microscope (FESEM). Pores of some anodized samples are sealed by exposing the anodized surface in boiling water. Corrosion behaviour of the anodized specimen is studied in Ringer’s solution at 30 ± 2 °C, using electrochemical impedance and cyclic polarization technique. Biocompatibility of the anodized surface is accessed using MG63 osteoblast cells. Both corrosion as well as pitting resistance of Cp-Ti in simulated body fluid are found to be highest in the anodized and sealed condition and followed in decreasing order by those of anodized and unanodized ones. Significantly higher MG63 osteoblast cell proliferations are found on the anodized surface than that on the unanodized one. Anodized Cp-Ti develops nano-size surface pores, like that of natural bone. It enhances corrosion and pitting resistance and also the process of osteoblast cell proliferation on Cp-Ti.

  5. Electrically Conductive Anodized Aluminum Surfaces

    Science.gov (United States)

    Nguyen, Trung Hung

    2006-01-01

    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to anodized surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic, electrostaticdischarge- suppressing finishes: examples include silver impregnated anodized, black electroless nickel, black chrome, and black copper. In

  6. Nano structural anodes for radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, Joseph V.; Serkiz, Steven M.; McWhorter, Christopher S.; Sexton, Lindsay T.; Retterer, Scott T.

    2015-07-07

    Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., .sup.10B) allow the use of neutron detectors that do not use .sup.3He.

  7. Anodized Steel Electrodes for Supercapacitors.

    Science.gov (United States)

    Sagu, Jagdeep S; Wijayantha, K G Upul; Bohm, Mallika; Bohm, Siva; Kumar Rout, Tapan

    2016-03-01

    Steel was anodized in 10 M NaOH to enhance its surface texture and internal surface area for application as an electrode in supercapacitors. A mechanism was proposed for the anodization process. Field-emission gun scanning electron microscopy (FEGSEM) studies of anodized steel revealed that it contains a highly porous sponge like structure ideal for supercapacitor electrodes. X-ray photoelectron spectroscopy (XPS) measurements showed that the surface of the anodized steel was Fe2O3, whereas X-ray diffraction (XRD) measurements indicated that the bulk remained as metallic Fe. The supercapacitor performance of the anodized steel was tested in 1 M NaOH and a capacitance of 18 mF cm(-2) was obtained. Cyclic voltammetry measurements showed that there was a large psueudocapacitive contribution which was due to oxidation of Fe to Fe(OH)2 and then further oxidation to FeOOH, and the respective reduction of these species back to metallic Fe. These redox processes were found to be remarkably reversible as the electrode showed no loss in capacitance after 10000 cycles. The results demonstrate that anodization of steel is a suitable method to produce high-surface-area electrodes for supercapacitors with excellent cycling lifetime. PMID:26891093

  8. Effect of concentration gradient on the anodic behavior of tungsten

    International Nuclear Information System (INIS)

    Potentiodynamic and potentiostatic polarization experiments, the electrochemical impedance spectroscopy, the rotating disk electrode technique, and surface pH measurements were used to study the effect of tungstate ions on the anodic behavior of tungsten (W). Deliberately added tungstate ions, which are also tungsten dissolution products, were found to decrease the anodic currents at around the point of zero charge, increase the anodic currents in the neutral to weakly basic range and have no effect on the anodic currents in the strongly basic conditions. This variable effect was attributed to the competition between the stabilization of the tungsten oxide due to higher concentration of the dissolution products next to the metal surface and the stabilization of the local pH as a result of the enhanced polymerization reactions of the tungstate species. The surface pH measurements showed that the polymerization reactions kept the W surface pH higher (i.e. closer to the bulk pH) in the absence of a pH buffer in the neutral and weakly basic solutions. The tungstate ion was considered as a potentially useful additive in W chemical mechanical polishing (CMP) slurries, since this ion could increase the stability of the oxide phase to be removed by polishing and serve as a pH buffering agent

  9. Anodic oxide growth on Zr in neutral aqueous solution

    Indian Academy of Sciences (India)

    Z Tun; J J Noël; D W Shoesmith

    2008-10-01

    Anodization and subsequent cathodic reactions on a thin-film sample of Zr were studied with in-situ neutron reflectometry (NR) and electrochemical impedance spectroscopy (EIS). The NR results during anodization showed the originally 485 Å thick Zr film generally behaved similar to a bulk electrode in neutral solution. The anodization ratio measured at applied potentials increased in steps of 0.5 V was somewhat higher than the value determined by coulometry, while the Pilling Bedworth ratio is in good agreement with published data. Thickening of the oxide layer, accelerated immediately after each potential increase, gradually decreased over several hours, but remained non-zero even after ∼ 12 h. The thickened oxide eventually cracked when its thickness reached ∼ 120 Å, causing loss of passivation. Surprisingly, neither the anodization ratio nor the Pilling Bedworth ratio showed any discontinuity at the time of oxide cracking, and the EIS behaviour remained qualitatively as before. This observation is taken as the evidence that the cracked and intact regions of the electrode behave more or less independently as parallel electrodes. When the potential was eventually switched to cathodic polarity, NR shows, as expected, that the effects of oxide cracking were irreversible. However, the electrode resistance recovered partially suggesting the cracks were rapidly plugged with newly formed oxide.

  10. Ruthenium behaviour during anodic dissolution of ruthenium alloys with nickel in sulfuric acid solutions

    International Nuclear Information System (INIS)

    Investigated are the forms of being of ruthenium in sulfuric acid electrolytes and ruthenium distribution between the solution and slime after anodic dissolution of the nickel-ruthenium alloys (1.5 and 10 mass.% Ru) at 65+-1 deg in the conditions imitating processes of secondary electrolysis. The oxidation state and the forms of being of ruthenium in anolytes were established by the spectrophotometric method. The anodic polarization curves of the Ni-Ru alloy are presented. It is shown that in the process under investigation ruthenium in anolytes is in the oxidation degree (4) in the form of a mixture of labile anionic and neutral oxoaquohydroxosulfate complexes independing of the alloy content, anodic potential and type of an electrolytic cell. Slime formed in the process of electrolysis is a fine dispersed product, consisting of amorphous metallic Ru and its oxides. The Ru transition into anolyte is determined by the value of anodic potential and Ru content in the alloy

  11. The kinetics of anodic dissolution of rhenium in aqueous electrolyte solutions

    International Nuclear Information System (INIS)

    The kinetics of anodic rhenium dissolution was investigated by means of potentiodynamic and potentiostatic polarization curves recorded at temperature from 293 to 333 K in different media (NaOH, KOH, NaCl, NaBr, HCl, H2SO4) using the rotating disc technique. It is shown that the kinetics of anodic rhenium dissolution and effective activation energy depend not only on the composition and pH value of the solutions but also on the structure of the dissolving rhenium surface. The investigation of the anodic behaviour of the rhenium monocrystal revealed the existence of anisotropy of the monocrystal electrochemical properties. The experimental results point to an important role of adsorption processes in anodic rhenium dissolution. Rhenium dissolution proceeds with formation of intermediate surface adsorption complexes between the metal and the components of the solution

  12. Antimony/Graphitic Carbon Composite Anode for High-Performance Sodium-Ion Batteries.

    Science.gov (United States)

    Zhao, Xin; Vail, Sean A; Lu, Yuhao; Song, Jie; Pan, Wei; Evans, David R; Lee, Jong-Jan

    2016-06-01

    Although the room-temperature rechargeable sodium-ion battery has emerged as an attractive alternative energy storage solution for large-scale deployment, major challenges toward practical sodium-ion battery technology remain including identification and engineering of anode materials that are both technologically feasible and economical. Herein, an antimony-based anode is developed by incorporating antimony into graphitic carbon matrices using low-cost materials and scalable processes. The composite anode exhibits excellent overall performance in terms of packing density, fast charge/discharge capability and cyclability, which is enabled by the conductive and compact graphitic network. A full cell design featuring this composite anode with a hexacyanometallate cathode achieves superior power output and low polarization, which offers the potential for realizing a high-performance, cost-effective sodium-ion battery. PMID:27172376

  13. The influence of Ti and Sr alloying elements on electrochemical properties of aluminum sacrificial anodes

    Energy Technology Data Exchange (ETDEWEB)

    Saremi, M.; Sina, H.; Keyvani, A.; Emamy, M. [Metallurgy and Materials Department, University of Tehran, P.O. Box 11365/4563, Tehran (Iran)

    2004-07-01

    Aluminum sacrificial anodes are widely used in cathodic protection of alloys in seawater. The interesting properties due to low specific weight, low electrode potential and high current capacity are often hindered by the presence of a passive oxide film which causes several difficulties in their practical application. In this investigation, the electrochemical behavior of Al- 5Zn-0.02In sacrificial anode is studied in 3 wt. % sodium chloride solution. The experiments focused on the influence of Ti and Sr as alloying elements on electrochemical behavior of aluminum sacrificial anode. Ti and Sr are used in different concentrations from 0.03 to 0.1 wt.% 0.01 to 0.05 wt.%, respectively. NACE efficiency and polarization tests are used in this case. It is shown that by using 0.03 wt.% Ti and 0.01 wt.% Sr as the alloying elements to investigate the anodic behavior of the anodes, homogeneous microstructures are obtained which results in improvement of electrochemical properties of aluminum sacrificial anode such as current capacity and anode efficiency. (authors)

  14. Composite corrosion inhibitors for secondary alkaline zinc anodes

    Institute of Scientific and Technical Information of China (English)

    JIA Zheng; ZHOU De-rui; ZHANG Cui-fen

    2005-01-01

    The corrosion inhibition property of PEG600 and In(OH)3 as composite corrosion inhibitors for secondary alkaline zinc electrodes was studied,and the inhibition efficiency was determined as 81.9%.The research focused on the mechanism by the methods of electrochemical impedance spectroscopy,polarization curves and IR spectroscopy.The results indicate that the corrosion inhibition effectiveness is attributed to the joint inhibition of anodic zinc dissolution and cathodic hydrogen evolution.And the anodic process is depressed to a greater extent than the cathodic process.The synergistic mechanism of the composite inhinbitors proves to be the enhancement of adsorption of PEG600 by In(OH)3.Potentiostatic experiment results and SEM images verify the inhibition of dendritic growth by the composite inhibitors.

  15. Anodic behavior and microstructure of Al/Pb-Ag anode during zinc electrowinning%Al/Pb-Ag阳极在锌电积过程中的阳极行为和微观结构

    Institute of Scientific and Technical Information of China (English)

    张永春; 陈步明; 杨海涛; 郭忠诚; 徐瑞东

    2014-01-01

    Anodic behaviors and oxygen evolution kinetics of Pb-0.8%Ag and Al/Pb-0.8%Ag anodes during the initial 24 h zinc electrowinning were investigated with cyclic voltammetry (CV) curves and electrochemical impedance spectroscopy (EIS). The results reveal that the anodic behaviors and reaction kinetics of the two anodes vary a lot during the anodic polarization which indicate the formation and stabilization of anodic layer. Compared with conventional Pb-0.8%Ag anode, Al/Pb-0.8%Ag anode has longer time of anodic polarization. At the very beginning of anodic polarization, the two anodes all exhibit higher potential of oxygen evolution reaction (OER) since the reaction is controlled by the transformation step of intermediates. Then, its OER potential is largely diminished and OER rate is deduced from the formation and adsorption of the first intermediate (S-OHads). In the prolonged anodic polarization, the anodic potential of Al/Pb-0.8%Ag gradually decreases and the final value is more stable than that of conventional Pb-0.8%Ag anode. On the anodic layer after 24 h of anodic polarization, the OER potential is controlled by the formation and adsorption of intermediate. The microstructures of Al/Pb-0.8%Ag and Pb-0.8%Ag anodes after 24 h of anodic polarization were analyzed by scanning electron microscope (SEM).%采用循环伏安曲线(CV)和电化学交流阻抗谱(EIS)研究Pb-0.8%Ag 和Al/Pb-0.8%Ag阳极在最初24 h锌电积过程中的阳极行为和析氧动力学。结果表明:2种阳极材料在阳极极化过程中的阳极行为和动力学的多种变化表明阳极表面膜的形成和稳定。与传统的Pb-0.8%Ag阳极相比,Al/Pb-0.8%Ag阳极具有较长的极化时间。在最初的电积过程中,阳极表面中间产物的转变使2种阳极都表现出较高的析氧电位。随着析氧电位降低,析氧反应速率可以由阳极表面最初的生成物和中间产物S-OHads推断。随着电积的持续进行,Al/Pb-0.8%Ag阳极的析

  16. Kinetics of the zinc anodic dissolution reaction in near neutral EDTA solutions

    OpenAIRE

    NEDELJKO KRSTAJIC; MILAN VOJNOVIC; SLAVKA STANKOVIC; BRANIMIR N. GRGUR

    2003-01-01

    Polarization curves of the anodic dissolution reaction of zinc were determined in EDTA solutions of different total molar concentrations (0.05, 0.10, 0.15 and 0.20 mol dm-3), the pH values of which were systematically varied (pH 3.0 10.0). The Tafel slopes of the anodic polarization curves are close to 40 mV dec-1 at lower current densities (10-5 5x10-4 A cm-2), while at higher current densities (5x10-4 10-2 A cm-2) the slopes are in the range of 60 120 mV dec-1. The order of the anodic r...

  17. Relation of bacterial settlement patterns to anodic activity on stainless steel weldments

    Energy Technology Data Exchange (ETDEWEB)

    Eashwar, M.; Dexter, S.C. [Univ. of Delaware, Lewes, DE (United States). Coll. of Marine Studies

    1999-11-01

    Bacterial settlement on welded stainless steel samples exposed to seawater occurred more rapidly in the heat-affected zone (HAZ) and the root of the weld as compared to the parent metal. Preferential attachment of bacteria to a network of surface cracks was an occasional feature, which became more conspicuous during mild anodic polarization of the samples. In a less corrosive fresh water system, bacterial settlement was more random, until application of anodic polarization which triggered bacterial settlement patterns analogous to the sea water system. Supplementary experiments on bacterial response to pre-initiated corrosion sites in the form of pits and scratches reinforced the idea that bacteria preferentially colonize areas of anodic electrochemical activity and/or metal ion release.

  18. Hierarchically oriented macroporous anode-supported solid oxide fuel cell with thin ceria electrolyte film.

    Science.gov (United States)

    Chen, Yu; Zhang, Yanxiang; Baker, Jeffrey; Majumdar, Prasun; Yang, Zhibin; Han, Minfang; Chen, Fanglin

    2014-04-01

    Application of anode-supported solid oxide fuel cell (SOFC) with ceria based electrolyte has often been limited by high cost of electrolyte film fabrication and high electrode polarization. In this study, dense Gd0.1Ce0.9O2 (GDC) thin film electrolytes have been fabricated on hierarchically oriented macroporous NiO-GDC anodes by a combination of freeze-drying tape-casting of the NiO-GDC anode, drop-coating GDC slurry on NiO-GDC anode, and co-firing the electrolyte/anode bilayers. Using 3D X-ray microscopy and subsequent analysis, it has been determined that the NiO-GDC anode substrates have a porosity of around 42% and channel size from around 10 μm at the electrolyte side to around 20 μm at the other side of the NiO-GDC (away from the electrolyte), indicating a hierarchically oriented macroporous NiO-GDC microstructure. Such NiO-GDC microstructure shows a tortuosity factor of ∼1.3 along the thickness direction, expecting to facilitate gas diffusion in the anode during fuel cell operation. SOFCs with such Ni-GDC anode, GDC film (30 μm) electrolyte, and La0.6Sr0.4Co0.2Fe0.8O3-GDC (LSCF-GDC) cathode show significantly enhanced cell power output of 1.021 W cm(-2) at 600 °C using H2 as fuel and ambient air as oxidant. Electrochemical Impedance Spectroscopy (EIS) analysis indicates a decrease in both activation and concentration polarizations. This study has demonstrated that freeze-drying tape-casting is a very promising approach to fabricate hierarchically oriented porous substrate for SOFC and other applications. PMID:24621230

  19. Effect of heat treatment on anodic activation of aluminium by trace element indium

    Energy Technology Data Exchange (ETDEWEB)

    Graver, Brit [Department of Materials Science and Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Helvoort, Antonius T.J. van [Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Nisancioglu, Kemal, E-mail: kemal.nisancioglu@material.ntnu.n [Department of Materials Science and Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)

    2010-11-15

    Research highlights: {yields} Indium segregation activates AlIn alloy surface anodically in chloride solution. {yields} Enrichment of In on Al surface can occur thermally by heat treatment at 300 {sup o}C. {yields} Increasing temperature homogenises indium in aluminium reducing anodic activation. {yields} Indium can activate AlIn surface by segregating through dealloying of aluminium. {yields} Anodic activation is caused by AlIn amalgam formation at aluminium surface. - Abstract: The presence of trace elements in Group IIIA-VA is known to activate aluminium anodically in chloride environment. The purpose of this paper is to investigate the surface segregation of trace element In by heat treatment and resulting surface activation. Model binary AlIn alloys, containing 20 and 1000 ppm by weight of In, were characterized after heat treatment at various temperatures by use of glow discharge optical emission spectroscopy, electron microscopy and electrochemical polarization. Heat treatment for 1 h at 300 {sup o}C gave significant segregation of discrete In particles (thermal segregation), which activated the surface. Indium in solid solution with aluminium, obtained by 1 h heat treatment at 600 {sup o}C, also activated by surface segregation of In on alloy containing 1000 ppm In, resulting from the selective dissolution of the aluminium component during anodic oxidation (anodic segregation). The effect of anodic segregation was reduced by decreasing indium concentration in solid solution; it had negligible effect at the 20 ppm level. The segregated particles were thought to form a liquid phase alloy with aluminium during anodic polarization, which in turn, together with the chloride in the solution destabilized the oxide.

  20. Development of a standard bench-scale cell for electrochemical studies on inert anodes. Inert Anode/Cathode Program

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, C.F. Jr.; Boget, D.I.

    1986-07-01

    Objective of this work was to develop a standard bench-scale cell for performing short-term ac and dc polarization studies on inert anode candidate materials in molten cryolite. Two designs for electrochemical cells were developed and successfully evaluated in short-term experiments. Both cells consisted on the inert anode as a small cylindrical specimen partially sheathed in alumina, an Al/Al/sub 2/O/sub 3/ reference electrode, and a cryolite bath saturated in alumina. The difference between the two cells was in the design of the cathode. One cell used a bare solid metal cathode; the other used an aluminum pad similar to the Hall-Heroult configuration.

  1. Aluminum oxide as a dual-functional modifier of Ni-based anodes of solid oxide fuel cells for operation on simulated biogas

    Science.gov (United States)

    Wang, Feng; Wang, Wei; Ran, Ran; Tade, Moses O.; Shao, Zongping

    2014-12-01

    Al2O3 and SnO2 additives are introduced into the Ni-YSZ cermet anode of solid oxide fuel cells (SOFCs) for operation on simulated biogas. The effects of incorporating Al2O3/SnO2 on the electrical conductivity, morphology, coking resistance and catalytic activity for biogas reforming of the cermet anode are systematically studied. The electrochemical performance of the internal reforming SOFC is enhanced by introducing an appropriate amount of Al2O3 into the anode, but it becomes worse with excess alumina addition. For SnO2, a negative effect on the electrochemical performance is demonstrated, although the coking resistance of the anode is improved. For fuel cells operating on biogas, stable operation under a polarization current for 130 h at 750 °C is achieved for a cell with an Al2O3-modified anode, while cells with unmodified or SnO2-modified Ni-YSZ anodes show much poorer stability under the same conditions. The improved performance of the cell with the Al2O3-modified anode mainly results from the suppressed coking and sintering of the anode and from the formation of NiAl2O4 in the unreduced anode. In sum, modifying the anode with Al2O3 may be a useful and facile way to improve the coking resistance and electrochemical performance of the nickel-based cermet anodes for SOFCs.

  2. Anodes for Rechargeable Lithium-Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Ruiguo; Xu, Wu; Lu, Dongping; Xiao, Jie; Zhang, Jiguang

    2015-04-10

    In this work, we will review the recent developments on the protection of Li metal anode in Li-S batteries. Various strategies used to minimize the corrosion of Li anode and reducing its impedance increase will be analyzed. Other potential anodes used in sulfur based rechargeable batteries will also be discussed.

  3. Ellipsometry of anodic film growth

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.G.

    1978-08-01

    An automated computer interpretation of ellisometer measurements of anodic film growth was developed. Continuous mass and charge balances were used to utilize more fully the time dependence of the ellipsometer data and the current and potential measurements. A multiple-film model was used to characterize the growth of films which proceeds via a dissolution--precipitation mechanism; the model also applies to film growth by adsorption and nucleation mechanisms. The characteristic parameters for film growth describe homogeneous and heterogeneous crystallization rates, film porosities and degree of hydration, and the supersaturation of ionic species in the electrolyte. Additional descriptions which may be chosen are patchwise film formation, nonstoichiometry of the anodic film, and statistical variations in the size and orientation of secondary crystals. Theories were developed to describe the optical effects of these processes. An automatic, self-compensating ellipsometer was used to study the growth in alkaline solution of anodic films on silver, cadmium, and zinc. Mass-transport conditions included stagnant electrolyte and forced convection in a flow channel. Multiple films were needed to characterize the optical properties of these films. Anodic films grew from an electrolyte supersatuated in the solution-phase dissolution product. The degree of supersaturation depended on transport conditions and had a major effect on the structure of the film. Anodic reaction rates were limited by the transport of charge carriers through a primary surface layer. The primary layers on silver, zinc, and cadmium all appeared to be nonstoichiometric, containing excess metal. Diffusion coefficients, transference numbers, and the free energy of adsorption of zinc oxide were derived from ellipsometer measurements. 97 figures, 13 tables, 198 references.

  4. Anode sheath transition in an anodic arc for synthesis of nanomaterials

    Science.gov (United States)

    Nemchinsky, V. A.; Raitses, Y.

    2016-06-01

    The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium.

  5. -Based Cermet Inert Anodes for Aluminum Electrolysis

    Science.gov (United States)

    Tian, ZhongLiang; Lai, YanQing; Li, ZhiYou; Chai, DengPeng; Li, Jie; Liu, YeXiang

    2014-11-01

    The new aluminum electrolysis technology based on inert electrodes has received much interest for several decades because of the environment and energy advantages. The key to realize this technique is the inert anode. This article presents China's recent developments of NiFe2O4-based cermet inert anodes, which include the optimization of material performance, the joint between the cermet inert anode and metallic bar, as well as the results of 20 kA pilot testing for a large-size inert anode group. The problems NiFe2O4-based cermet inert anodes face are also discussed.

  6. [Vernier Anode Design and Image Simulation].

    Science.gov (United States)

    Zhao, Ai-rong; Ni, Qi-liang; Song, Ke-fei

    2015-12-01

    Based-MCP position-sensitive anode photon-counting imaging detector is good at detecting extremely faint light, which includes micro-channel plate (MCP), position-sensitive anode and readout, and the performances of these detectors are mainly decided by the position-sensitive anode. As a charge division anode, Vernier anode using cyclically varying electrode areas which replaces the linearly varying electrodes of wedge-strip anode can get better resolution and greater electrode dynamic range. Simulation and design of the Vernier anode based on Vernier's decode principle are given here. Firstly, we introduce the decode and design principle of Vernier anode with nine electrodes in vector way, and get the design parameters which are the pitch, amplitude and the coarse wavelength of electrode. Secondly, we analyze the effect of every design parameters to the imaging of the detector. We simulate the electron cloud, the Vernier anode and the detector imaging using Labview software and get the relationship between the pitch and the coarse wavelength of the anode. Simultaneously, we get the corresponding electron cloud for the designing parameters. Based on the result of the simulation and the practical machining demand, a nine electrodes Vernier anode was designed and fabricated which has a pitch of 891 µm, insulation width of 25 µm, amplitude of 50 µm, coarse pixel numbers of 5. PMID:26964205

  7. Electrocatalysis of carbon anode in aluminium electrolysis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The anodic overvoltage of the carbon anode in aluminum electrolysis isof the order of 0.6 V at normal current densities. However, it can be reduced somewhat by doping the anode carbon with various inorganic compounds. A new apparatus was designed to improve the precision of overvoltage measurements. Anodes were doped with MgAl2O4 and AlF3 both by impregnation of the coke and by adding powder, and the measured overvoltage was compared with that of undoped samples. For prebake type anodes baked at around 1150 oC, the anodic overvoltage was reduced by 40-60 mV, and for Soderberg type anodes, baked at 950 oC, by 60-80 mV.

  8. Studies of a granular aluminum anode in an alkaline fuel cell

    Science.gov (United States)

    Popovich, Neil A.; Govind, Rakesh

    A granular aluminum anode was investigated for use in an alkaline aluminum/hydrogen peroxide fuel cell. The fuel cell utilizes granules of aluminum (8-12 mm in diameter) as an anode, potassium hydroxide (KOH) as an anolyte and hydrogen peroxide as a catholyte. Granular anodes have a significantly higher surface area than planar surfaces, thereby resulting in higher utilization of the anode material. Polarization experiments were performed as well as closed circuit power production experiments. KOH concentrations were varied in the experiments. Polarization experiments achieved a current density of 10.02 mA/cm 2 using 2 M KOH and granular aluminum with a surface area of 205.6 cm 2. Power production experiments sustained a current density of 0.05 mA/cm 2 using 1.5 M KOH and granular aluminum with a surface area of 59.8 cm 2. Results indicate that granular metal anodes have potential for use in high energy density fuel cells.

  9. Effects of single and two stages anodizing on nonporous anodic alumina template at different potentials

    International Nuclear Information System (INIS)

    The porous anodic alumina has extensive applications as mold or template for filling the highly ordered patterned ID nanomaterials (semiconductors, magnetic nanowires etc.) and as a mask for nano dots of different materials. Pores in anodic alumina synthesized under appropriate conditions are self organized. Pore density, pore diameter, interpore distance may be changed through variation of different parameter such as anodic potential, choice of electrolyte, temperature and kind of pre-treatment. The porous anodic alumina has been synthesized by single and double stage anodizing at different potentials. The potentials used were 40V, 50V, 60V and 70V. By comparison of ordered pore formation under both the conditions, it has been found that pores formed in doubly anodized alumina are more ordered/organized than in singly anodized anodic alumina at same potential used for both type of synthesis. SEM images revealed that the pore density in the singly anodized alumina was greater than in doubly anodized alumina prepared under the same potential. Using the SEM image, the pore diameter in the case of doubly anodized alumina was found to be in the range of 50- 70 nm, whereas, for singly anodized alumina pore diameter was found to be in the range of 50-100 nm. Scanning electron Microscope images and electrochemical parameters showed that two stage anodizing is better than single stage anodizing to achieve highly ordered nanoporous alumina template. (author)

  10. Improvement of the current capacity of Al-Zn-In anode by casting parameters and magnesium addition

    Energy Technology Data Exchange (ETDEWEB)

    Saremi, M.; Keyvani, A.; Sina, H.; Emamy, M. [Metallurgy and Materials Department, University of Tehran, P.O.Box 11365/4563, Tehran (Iran)

    2004-07-01

    In the present work the effects of mold temperature and casting temperature have been studied on the potential and current capacity of Al-Zn-In anodes. Electrochemical polarization and NACE standard methods were used to evaluate the anodic behavior, potential and current capacity of the anodes. It is shown that metallic molds having higher temperatures could provide better condition for obtaining homogenous structures with minor inclusions. The optimum condition of anode operation may be provided where mold and pouring temperatures equal to 400 and 710 deg. C respectively, in which a fine structure, phase distribution and lack of casting faults are obtained. Some alloying elements such as Mg, Mn, Ti, Zr, Sr are added to the base alloy in order to improve its efficiency together with its capacity. In this study the anodic behavior of influence of mold temperature and Al-Zn-In alloy at different concentration of magnesium of 1 to 4 wt. %, is studied. The result of experiments of this anode shows that 2 wt. % Mg, casting and mold temperature at 730 and 350 deg. C are obtained the consumption decrease from about 3.8 to 3.3 Kg.Ay{sup -1}. Anode capacity also increases and potential of this anode stands to about -1045 mV. (author)

  11. Plasmonic properties of gold-coated nanoporous anodic alumina with linearly organized pores

    Indian Academy of Sciences (India)

    Dheeraj Pratap; P Mandal; S Anantha Ramakrishna

    2014-12-01

    Anodization of aluminium surfaces containing linearly oriented scratches leads to the formation of nanoporous anodic alumina (NAA) with the nanopores arranged preferentially along the scratch marks. NAA, when coated with a thin gold film, support plasmonic resonances. Dark-field spectroscopy revealed that gold-coated NAA with such linearly arranged pores shows a polarization-dependent scattering, that is larger when the incident light is polarized parallel to the scratch direction than when polarized perpendicular to the scratch direction. Fluorescence studies from rhodamine-6G (R6G) molecules dissolved in polymethylmethacrylate (PMMA) and deposited on these NAA templates showed that fluorescence can be strongly enhanced with the bare NAA due to multiple light scattering in the NAA, while fluorescence from the molecules deposited on gold-coated NAA is strongly quenched due to the strong plasmonic coupling.

  12. Effect of sealing on the morphology of anodized aluminum oxide

    International Nuclear Information System (INIS)

    Highlights: • We explored structural change of anodizing aluminum oxide induced by sealing. • All sealing methods decrease pore size as shown by X-ray/neutron scattering. • Cold sealing and hot water sealing do not alter the aluminum oxide framework. • Hot nickel acetate sealing both fills the pores and deposits on air oxide interface. • Samples with hot nickel acetate sealing outperform other sealing methods. - Abstract: Ultra-small angle X-ray scattering (USAXS), small-angle neutron scattering (SANS), X-ray reflectometry (XRR) and neutron reflectometry (NR) were used to probe structure evolution induced by sealing of anodized aluminum. While cold nickel acetate sealing and hot-water sealing decrease pore size, these methods do not alter the cylindrical porous framework of the anodic aluminum oxide layer. Hot nickel acetate both fills the pores and deposits on the air surface (air–oxide interface), leading to low porosity and small mean pore radius (39 Å). Electrochemical impedance spectroscopy and direct current polarization show that samples sealed by hot nickel acetate outperform samples sealed by other sealing methods

  13. Reactions on carbon anodes in aluminium electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Eidet, Trygve

    1997-12-31

    The consumption of carbon anodes and energy in aluminium electrolysis is higher than what is required theoretically. This thesis studies the most important of the reactions that consume anode materials. These reactions are the electrochemical anode reaction and the airburn and carboxy reactions. The first part of the thesis deals with the kinetics and mechanism of the electrochemical anode reaction using electrochemical impedance spectroscopy. The second part deals with air and carboxy reactivity of carbon anodes and studies the effects of inorganic impurities on the reactivity of carbon anodes in the aluminium industry. Special attention is given to sulphur since its effect on the carbon gasification is not well understood. Sulphur is always present in anodes, and it is expected that the sulphur content of available anode cokes will increase in the future. It has also been suggested that sulphur poisons catalyzing impurities in the anodes. Other impurities that were investigated are iron, nickel and vanadium, which are common impurities in anodes which have been reported to catalyze carbon gasification. 88 refs., 92 figs., 24 tabs.

  14. Investigation into anodic dissolution of sodium-tungsten bronzes in tungstate melt

    International Nuclear Information System (INIS)

    Anodic dissolution of monocrystals of sodium-tungsten bronzes and tungsten in tungstate melts with different content of tungsten trioxide (20, 40, 60 mol%) is studied. It is shown that the dissolution of sodium-tungsten bronze at small current densities on the both electrodes proceeds reversibly in terms of identical chemical behaviour of cathode and anode processes and small polarization. As the current density increases, the process becomes complicated by the fact that alongside with the dissolution of bronzes their solid-phase oxidation takes place

  15. Investigation into anodic dissolution of sodium-tungsten bronzes in tungstate melt

    Energy Technology Data Exchange (ETDEWEB)

    Aksent' ev, A.G.; Kaliev, K.A.; Baraboshkin, A.N. (AN SSSR, Sverdlovsk. Inst. Ehlektrokhimii)

    1982-05-01

    Anodic dissolution of monocrystals of sodium-tungsten bronzes and tungsten in tungstate melts with different content of tungsten trioxide (20, 40, 60 mol%) is studied. It is shown that the dissolution of sodium-tungsten bronze at small current densities on both electrodes proceeds reversibly in terms of identical chemical behaviour of cathode and anode processes and small polarization. As the current density increases, the process becomes complicated by the fact that alongside with the dissolution of bronzes their solid-phase oxidation takes place.

  16. Rare Earth Application in Sealing Anodized Al-Based Metal Matrix Composites

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new method for corrosion protection of Al-based metal matrixcomposites (MMC) was developed using two-step process, which involves anodizing in H2SO4 solution and sealing in rare earth solution. Corrosion resistance of the treated surface was evaluated with polarization curves.The results showed that the effect of the protection using rare earth sealing is equivalent to that using chromate sealing for Al6061/SiCp. The rare earth metal salt can be an alternative to the toxic chromate for sealing anodized Al MMC.

  17. The function of microporous layers and the interaction between the anode and cathode in DMFCs

    DEFF Research Database (Denmark)

    Zhang, H. F.; Wang, SY; Pei, PC;

    2008-01-01

    A combined effect of microporous layers (MPLs) on direct methanol fuel cells (DMFCs) is investigated. From the distribution of the outstanding carbon loading combinations of the cathode MPL and anode MPL as well as the evolutions of polarization curves, a combined effect in which the contributions...... of the two MPLs interdepend is observed. A further discussion indicates that either MPL in DMFCs is of double roles: a side role of obstructing mass transfers and a main role of adjusting an interaction between the anode and cathode. It is inferred that it is the combination of the two roles that produces...

  18. A highly active anode functional layer for solid oxide fuel cells based on proton-conducting electrolyte BaZr0.1Ce0.7Y0.2O3-δ

    Science.gov (United States)

    Zhang, Xiuling; Qiu, Yu'e.; Jin, Feng; Guo, Feng; Song, Yulan; Zhu, Baoyong

    2013-11-01

    Extensive works have been performed to diminish cathode polarization for proton-conducting electrolyte based solid oxide fuel cells (SOFCs) while not much attention is paid to functional anode for improving electrochemical reaction at three-phase-boundaries (TPB). In this work, a highly active anode functional layer (FL) synthesized by a modified combustion method was employed to significantly elevate the cell performance at intermediate operation temperatures (550-650 °C). The effects of anode structure configuration, FL powder size and thickness on power outputs and electrode polarization were investigated. A maximum power density of 489 mW cm-2 and a low electrode polarization resistance of 0.37 Ω cm2 were achieved at 650 °C, indicating fuel gas transport and hydrogen oxidation reaction at TPB sites largely contribute to total cell resistance which could be effectively diminished by optimization of anodic interface environment with the adoption of highly active anode powders.

  19. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication and...... characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  20. Anodic Materials for Electrocatalytic Ozone Generation

    OpenAIRE

    Yun-Hai Wang; Qing-Yun Chen

    2013-01-01

    Ozone has wide applications in various fields. Electrocatalytic ozone generation technology as an alternative method to produce ozone is attractive. Anodic materials have significant effect on the ozone generation efficiency. The research progress on anodic materials for electrocatalytic ozone generation including the cell configuration and mechanism is addressed in this review. The lead dioxide and nickel-antimony-doped tin dioxide anode materials are introduced in detail, including their st...

  1. Anodizing And Sealing Aluminum In Nonchromated Solutions

    Science.gov (United States)

    Emmons, John R.; Kallenborn, Kelli J.

    1995-01-01

    Improved process for anodizing and sealing aluminum involves use of 5 volume percent sulfuric acid in water as anodizing solution, and 1.5 to 2.0 volume percent nickel acetate in water as sealing solution. Replaces process in which sulfuric acid used at concentrations of 10 to 20 percent. Improved process yields thinner coats offering resistance to corrosion, fatigue life, and alloy-to-alloy consistency equal to or superior to those of anodized coats produced with chromated solutions.

  2. Anode Sheath Switching in a Carbon Nanotube Arc Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Abe Fetterman, Yevgeny Raitses, and Michael Keidar

    2008-04-08

    The anode ablation rate is investigated as a function of anode diameter for a carbon nanotube arc plasma. It is found that anomalously high ablation occurs for small anode diameters. This result is explained by the formation of a positive anode sheath. The increased ablation rate due to this positive anode sheath could imply greater production rate for carbon nanotubes.

  3. Anode Sheath Switching in a Carbon Nanotube Arc Plasma

    International Nuclear Information System (INIS)

    The anode ablation rate is investigated as a function of anode diameter for a carbon nanotube arc plasma. It is found that anomalously high ablation occurs for small anode diameters. This result is explained by the formation of a positive anode sheath. The increased ablation rate due to this positive anode sheath could imply greater production rate for carbon nanotubes.

  4. Polarized electroproduction

    International Nuclear Information System (INIS)

    A new type of information on proton structure, its internal spin structure, has recently become available from a new type of experiment, polarized electroproduction. The scattering of longitudinally polarized electrons was measured by longitudinally polarized protons. The quantity measured was the asymmetry A, the normalized difference between the differential scattering cross sections for the antiparallel and parallel spin configurations. Data have been obtained for elastic, deep inelastic, and reasonance region scattering. Polarized electrons were obtained by the photoionization of polarized Li atomic beam with pulsed UV light. The important characteristics of the polarized electron beam are the intensity of 109 e-/1.5 μs pulse at repetition rate of 120 pps, and polarization of 0.85 +- 0.08. A number of data on deep inelastic scattering, preliminary asymmetry in the resonance region and others are described and illustrated in several graphs. There are several implications in these data; 1) test of Bjorken sum rule, 2) scaling, and 3) models of proton structure, which are mentioned hereinafter. The Bjorken sum rule predicts equality in the scaling limit between an integral over ω of the product of spin-averaged nucleon structure function W2 and spin dependent function A, and the ratio of axial vector to vector weak coupling constants of beta decay. Data on the asymmetries in deep inelastic and resonance region scattering will make possible the evaluation of a famous old problem -- the effect of proton polarizability on the hyperfine structure interval in hydrogen. (Wakatsuki, Y.)

  5. Modulation of Transmission Spectra of Anodized Alumina Membrane Distributed Bragg Reflector by Controlling Anodization Temperature

    OpenAIRE

    Zheng WenJun; Fei GuangTao; Wang Biao; Zhang Li

    2009-01-01

    Abstract We have successfully prepared anodized alumina membrane distributed Bragg reflector (DBR) using electrochemical anodization method. The transmission peak of this distributed Bragg reflector could be easily and effectively modulated to cover almost any wavelength range of the whole visible spectrum by adjusting anodization temperature.

  6. Modulation of Transmission Spectra of Anodized Alumina Membrane Distributed Bragg Reflector by Controlling Anodization Temperature

    Directory of Open Access Journals (Sweden)

    Zheng WenJun

    2009-01-01

    Full Text Available Abstract We have successfully prepared anodized alumina membrane distributed Bragg reflector (DBR using electrochemical anodization method. The transmission peak of this distributed Bragg reflector could be easily and effectively modulated to cover almost any wavelength range of the whole visible spectrum by adjusting anodization temperature.

  7. Improvements in the corrosion resistance and biocompatibility of biomedical Ti–6Al–7Nb alloy using an electrochemical anodization treatment

    International Nuclear Information System (INIS)

    The biocompatibility of an implant material is determined by its surface characteristics. This study investigated the application of an electrochemical anodization surface treatment to improve both the corrosion resistance and biocompatibility of Ti–6Al–7Nb alloy for implant applications. The electrochemical anodization treatment produced an Al-free oxide layer with nanoscale porosity on the Ti–6Al–7Nb alloy surface. The surface topography and microstructure of Ti–6Al–7Nb alloy were analyzed. The corrosion resistance was investigated using potentiodynamic polarization curve measurements in simulated blood plasma (SBP). The adhesion and proliferation of human bone marrow mesenchymal stem cells to test specimens were evaluated using various biological analysis techniques. The results showed that the presence of a nanoporous oxide layer on the anodized Ti–6Al–7Nb alloy increased the corrosion resistance (i.e., increased the corrosion potential and decreased both the corrosion rate and the passive current) in SBP compared with the untreated Ti–6Al–7Nb alloy. Changes in the nanotopography also improved the cell adhesion and proliferation on the anodized Ti–6Al–7Nb alloy. We conclude that a fast and simple electrochemical anodization surface treatment improves the corrosion resistance and biocompatibility of Ti–6Al–7Nb alloy for biomedical implant applications. - Highlights: ► Simple/fast electrochemical anodization was applied to biomedical Ti–6Al–7Nb surface. ► Anodized surface had nano-porous topography and contained Al-free oxide layer. ► Anodized surface raised corrosion resistance in three simulated biological solutions. ► Anodized surface enhanced cell adhesion and cell proliferation. ► Electrochemical anodization has potential as biomedical implant surface treatment

  8. Enhanced corrosion resistance and biocompatibility of β-type Ti–25Nb–25Zr alloy by electrochemical anodization

    International Nuclear Information System (INIS)

    The biocompatibility of implants is largely determined by their surface characteristics. This study presents a novel method for performing electrochemical anodization on β-type Ti–25Nb–25Zr alloy with a low elastic modulus (approximately 70 GPa). This method results in a thin hybrid layer capable of enhancing the surface characteristics of the implants. We investigated the surface topography and microstructure of the resulting Ti–25Nb–25Zr alloy. The corrosion resistance was evaluated using potentiodynamic polarization curve measurements in simulated body fluid. The cytotoxicity was evaluated according to International Organization for Standardization 10993–5 specification. Cell adhesion of human bone marrow mesenchymal stem cells on the test specimens was observed using scanning electron microscopy and fluorescence microscopy. The anodization produced a thin (approximately 40 nm-thick) hybrid oxide layer with a nanoporous outer sublayer (pore size < 15 nm) and a dense inner layer. The thin hybrid oxide layer increased the corrosion resistance of the Ti–25Nb–25Zr alloy by increasing the corrosion potential and decreasing both the corrosion rate and passive current. Ti–25Nb–25Zr alloys with and without anodization treatment were non-toxic. Surface nanotopography on the anodized Ti–25Nb–25Zr alloy enhanced protein adsorption and cell adhesion. Our results demonstrate that electrochemical anodization increases the corrosion resistance and cell adhesion of β-type Ti–25Nb–25Zr alloy while providing a lower elastic modulus suitable for implant applications. - Highlights: • An electrochemical anodization was applied to β-type Ti–25Nb–25Zr alloy surface. • Anodized surface had nanoscale hybrid oxide layer. • Anodized surface increased corrosion resistance due to dense inner sublayer. • Anodized surface enhanced cell adhesion due to nanoporous outer sublayer. • Electrochemical anodization has potential as implant surface treatment

  9. Anodic dissolution and corrosion of Cu30Ni alloys in chloride solutions

    International Nuclear Information System (INIS)

    Anodic and corrosion behaviour of Cu30Ni alloy in 3n. NaCl+0.01n. HCl solution is studied by radiometric method using 58Co gamma-isotopes (as an alien label for nickel) and 64Cu ones in combination with electrochemical measurements. It is ascertained that under stationary conditions both in the process of anodic dissolution and corrosion the alloy dissolves gradually. Partial anodic polarization dissolution curves of the alloy components are obtained. It is shown that kinetics of their dissolution differs from dissolution regularities of the corresponding pure metals. During the alloy corrosion in oxygen atmoshere the reverse precipitation of copper on the alloy surface is absent. The mentioned peculiarities in corrosion-electrochemical behaviour of the alloy in a concentrated chloride solution are explained by the presence of nickel on the surface of the dissolving alloy

  10. Performance of laboratory polymer electrolyte membrane hydrogen generator with sputtered iridium oxide anode

    Science.gov (United States)

    Labou, D.; Slavcheva, E.; Schnakenberg, U.; Neophytides, S.

    The continuous improvement of the anode materials constitutes a major challenge for the future commercial use of polymer electrolyte membranes (PEM) electrolyzers for hydrogen production. In accordance to this direction, iridium/titanium films deposited directly on carbon substrates via magnetron sputtering are operated as electrodes for the oxygen evolution reaction interfaced with Nafion 115 electrolyte in a laboratory single cell PEM hydrogen generator. The anode with 0.2 mg cm -2 Ir catalyst loading was electrochemically activated by cycling its potential value between 0 and 1.2 V (vs. RHE). The water electrolysis cell was operated at 90 °C with current density 1 A cm -2 at 1.51 V without the ohmic contribution. The corresponding current density per mgr of Ir catalyst is 5 A mg -1. The achieved high efficiency is combined with sufficient electrode stability since the oxidation of the carbon substrate during the anodic polarization is almost negligible.

  11. Anodic corrosion of lead, tin and lead-tin alloys in sulphuric acid solutions. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Salmi, K.

    1993-01-01

    The electrochemical behavior of lead and tin and the effect of tin on the anodic behavior of lead in sulfuric acid solutions has been studied in relation to the corrosion of the positive grid of the lead acid battery. The release of soluble Pb(IV) species into sulfuric acid during the anodic polarization of lead has been mapped using the ring-disk electrode technique and their role in the electrochemistry of lead is discussed. Part of the tetravalent products formed on lead are reduced only at high negative potentials. The usefulness of the rotating ring-disk electrode for the determination of different soluble corrosion products has been demonstrated. Mechanisms for tin dissolution in different regions (open circuit, active dissolution and passive region) have been proposed. Ex situ surface analysis of the anodic layer formed on the tin electrode showed this to be mainly SnO.

  12. Anodization process produces opaque, reflective coatings on aluminum

    Science.gov (United States)

    1965-01-01

    Opaque, reflective coatings are produced on aluminum articles by an anodizing process wherein the anodizing bath contains an aqueous dispersion of finely divided insoluble inorganic compounds. These particles appear as uniformly distributed occlusions in the anodic deposit on the aluminum.

  13. Mechanical properties of free standing porous anodic alumina films

    OpenAIRE

    Ignashev, E.; Shulgov, V.

    2012-01-01

    Free-standing films of anodic alumina obtained from the one-sided anodization of aluminum were studied. The flexural strength of free-standing porous anodic alumina films to the lateral bending, circular bending, and microhardness were studied.

  14. Anodic behavior of alloy 22 in bicarbonate containing media: Effect of alloying

    International Nuclear Information System (INIS)

    Alloy 22 is one of the candidates for the manufacture of high level nuclear waste containers. These containers provide services in natural environments characterized by multi-ionic solutions.It is estimated they could suffer three types of deterioration: general corrosion, localized corrosion (specifically crevice corrosion) and stress corrosion cracking (SCC). It has been confirmed that the presence of bicarbonate and chloride ions is necessary to produce cracking, . It has also been determined that the susceptibility to SCC could be related to the occurrence of an anodic peak in the polarization curves in these media at potentials below transpassivity. The aim of this work is to study the effect of alloying elements on the anodic behavior of Alloy 22 in media containing bicarbonate and chloride ions at different concentrations and temperatures. Polarization curves were made on alloy 22 (Ni-22% Cr-13% Mo), Ni-Mo (Ni-28, 5% Mo) and Ni-Cr (Ni-20% Cr) in the following solutions: 1 mol/L NaCl at 90oC, and 1.148 mol/L NaHCO3; 1.148 mol/L NaHCO3 + 1 mol/L NaCl; 1.148 mol/L NaHCO3 + 0.1 mol/L NaCl, at 90oC, 75oC, 60oC and 25oC. It was found that alloy 22 has a anodic current density peak at potentials below transpassivity, only in the presence of bicarbonate ions. Curves performed in 1 mol/L NaCl did not show any anodic peak, in any of the tested alloys. The curves made on alloys Ni-Mo and Ni-Cr in the presence of bicarbonate ions, allowed to determine that Cr, is responsible for the appearance of the anodic peak in alloy 22. The curves of alloy Ni-Mo showed no anodic peak in the studied conditions. The potential at which the anodic peak appears in alloy 22 and Ni-Cr alloy, increases with decreasing temperature. The anodic peak was also affected by solution composition. When chloride ion is added to bicarbonate solutions, the anodic peak is shifted to higher potential and current densities, depending on the concentration of added chloride ions (author)

  15. Growth behavior of anodic oxide formed by aluminum anodizing in glutaric and its derivative acid electrolytes

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-12-01

    The growth behavior of anodic oxide films formed via anodizing in glutaric and its derivative acid solutions was investigated based on the acid dissociation constants of electrolytes. High-purity aluminum foils were anodized in glutaric, ketoglutaric, and acetonedicarboxylic acid solutions under various electrochemical conditions. A thin barrier anodic oxide film grew uniformly on the aluminum substrate by glutaric acid anodizing, and further anodizing caused the film to breakdown due to a high electric field. In contrast, an anodic porous alumina film with a submicrometer-scale cell diameter was successfully formed by ketoglutaric acid anodizing at 293 K. However, the increase and decrease in the temperature of the ketoglutaric acid resulted in non-uniform oxide growth and localized pitting corrosion of the aluminum substrate. An anodic porous alumina film could also be fabricated by acetonedicarboxylic acid anodizing due to the relatively low dissociation constants associated with the acid. Acid dissociation constants are an important factor for the fabrication of anodic porous alumina films.

  16. Anodic behavior of nickel alloys in media containing bicarbonate ions

    International Nuclear Information System (INIS)

    Alloy 22 has been designed to resist corrosion in oxidizing and reducing conditions. Thanks to these properties it is considered a possible candidate for the fabrication of containers of high-level radioactive waste. Since the containers provide services in natural environments characterized by multi-ionic solutions, it is estimated they could suffer three types of deterioration: general corrosion, localized corrosion (specifically crevice corrosion) and stress corrosion cracking (SCC). It has been confirmed that the presence of bicarbonate and chloride ions is required in order to produce cracking. It has also been determined that the susceptibility to SCC could be related to the occurrence of an anodic peak in the polarization curves in these media potentials below trans-passivity. The aim of this work is to study the anodic behavior of Alloy 22 in different media containing bicarbonate and chloride ions in various concentrations and temperatures and compare the results with other alloys containing nickel, and relate them to the susceptibility to stress corrosion cracking in a future job. Polarization curves were made on alloy 22 (Ni-Cr-Mo), 600 (Ni- Cr-Fe), 800h (Ni-Fe- Cr) and 201 (Ni commercially pure) in the following environments: 1.148 mol/L NaHCO3, 1.148 mol/L NaHCO3 + 1 mol/L NaCl, 1.148 mol/L NaHCO3 + 0.1 mol/L NaCl. The tests were performed at the following temperatures: 90°C, 75°C, 60°C and 25°C. It was found that alloy 22 has a current peak in the anodic domain at potentials below trans-passivity between 200 and 300 m VECS, when the test temperature was 90°C. The potential, at which this peak occurred, increased with decreasing temperature. Also there was a variation of the peak with the composition of the solution. When bicarbonate ions were added to a solution containing chloride ions, the peak potential shifted to higher current densities, depending on the concentration of added chloride ions. It was found that diminishing the content of

  17. High speed aluminum wire anodizing and process

    International Nuclear Information System (INIS)

    A high speed aluminum wire anodizing machine and process are provided which includes anodizing aluminum wire in an anodizer tank having wire ingress and egress openings. At least two adjacent rotatable wire accumulator drums are provided in the tank, preferably with means for producing a flow of anodizing electrolytes into each of the drums through an end hub thereof and out of the sidewalls of the drums passed circumferential wire separators. An anode is located proximal to the wire ingress opening, preferably in a contact cell which has an adjustable wire egress window. At least one cathode is provided in the tank. The cathode is preferably either between the drums or a pair of cathodes are provided above and below the drums adjacent to the sidewalls thereof, or both

  18. Preparation and performance characterization of the Fe-Ni/ScSZ cermet anode for oxidation of ethanol fuel in SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bo; Wang, S.R.; Liu, R.Z.; Wen, T.L. [Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China)

    2007-05-15

    An anodic cermet of Fe-Ni alloy and scandia stabilized zirconia (ScSZ) has been investigated for a solid oxide fuel cell (SOFC) running on ethanol fuel. Composite anodes having alloy compositions of 0, 12.5, 25, 37.5, 50 and 100 wt.% Ni were exposed to ethanol stream at 700 C for 12 h to demonstrate that carbon formation is greatly suppressed on the Fe-Ni alloys compared to that of pure Ni. Then the short-term stability for the cells with the Ni/ScSZ and Fe{sub 0.5}Ni{sub 0.5}/ScSZ anodes in ethanol stream at 700 C was checked over a relative long period of operation. Open circuit voltages (OCVs) increased from 1.03 to 1.1 V, and power densities increased from 120 to 460 mW cm{sup 2} as the operating temperature of a SOFC with Fe{sub 0.5}Ni{sub 0.5}/ScSZ anode was increased from 700 to 850 C in ethanol stream. Electrochemical impedance spectra (EIS) illustrated that the cell with Ni/ScSZ anode exhibits slightly less total impedance than that observed for the cell with Fe{sub 0.5}Ni{sub 0.5}/ScSZ anode. The performance of a fuel cell made with the Ni/ScSZ and Fe{sub 0.5}Ni{sub 0.5}/ScSZ anodes was tested in ethanol stream for 48 h and showed a significant decrease in polarization resistance with time. Impedance spectra of similar fuel cells suggest that small carbon deposits are formed with time and that the decrease in polarization resistance is due to enhanced electronic conductivity in the anode. (author)

  19. Ultrasound-assisted anodization of aluminum in oxalic acid

    International Nuclear Information System (INIS)

    Porous anodic alumina is an important nanoscale template for fabrication of various nanostructures. We report a new ultrasound-assisted anodization process in oxalic acid. Under the continuous irradiation of ultrasound, the one-step-anodized sample has a smooth and clean surface, and two-step-anodization brings ordered porous anodic alumina with higher growth rate of 52 μm/h. The ultrasound applied during the anodization can clean the surface and enhance the nanopore growth since it can accelerate the oxide dissolving on the electrolyte/oxide interface. The ultrasound-assisted anodization may be utilized for other anodizations.

  20. Anodic behavior of stainless-steel substrate in organic electrolyte solutions containing different lithium salts

    International Nuclear Information System (INIS)

    Highlights: • We investigated anodic behavior of stainless-steel in organic electrolytes for advanced capacitor. • Anion of the electrolyte affected the anodic stability of the alloy. • Anodic passivation occurs in LiPF6 solution but pitting or active dissolution proceeds in other electrolyte solutions. • Fluoride source in the solution contributes to forming a stable surface layer on the stainless steel. - Abstract: The anodic behavior of austenitic stainless-steel, SUS304, as a current collector of positive electrode in lithium-ion battery/capacitor has been investigated in organic electrolyte solutions based on a mixed alkyl carbonate solvent with different lithium salts. Stable passivation characteristics were observed for the stainless-steel in the LiPF6 solution, but pitting corrosion or active dissolution proceeded in the solutions containing other anions, BF4-, (CF3SO2)2N- (TFSA-) and ClO4-. The mass ratios of the dissolved metal species in the solutions of LiTFSA and LiClO4 were equivalent to that of the alloy composition, which suggests that no preferential dissolution occurs during the anodic polarization in these electrolyte solutions. An HF component formed by decomposition of PF6- with the contaminate water will act as an F- source for the formation of a surface fluoride layer, that will contribute to the anodic stability of SUS304 in the LiPF6 solution. The anodic corrosion in the LiTFSA solution was suppressed in part by mixing the PF6 salt or adding HF in the electrolyte

  1. High-performance anode-supported solid oxide fuel cell with impregnated electrodes

    Science.gov (United States)

    Osinkin, D. A.; Bogdanovich, N. M.; Beresnev, S. M.; Zhuravlev, V. D.

    2015-08-01

    The 61%NiO + 39%Zr0.84Y0.16O1.92 (NiO-YSZ) and 56%NiO + 44%Zr0.83Sc0.16Ce0.01O1.92 (NiO-CeSSZ) composite powders have been prepared using two-steps and one-step combustion synthesis, respectively. The Ni-YSZ anode substrate with a low level of electrical resistance (less than 1 mOhm cm) and porosity of about 53% in the reduced state was fabricated. The functional layer of the anode with the high level of electrochemical activity was made of NiO-CeSSZ. The single anode-supported solid oxide fuel cell with the bi-layer Ni-cermet anode, Zr0.84Sc0.16O1.92 film electrolyte and the Pt + 3% Zr0.84Y0.16O1.92 cathode was fabricated. The power density and the U-I curves of the fuel cell at initial state and after impregnation of the cathode and anode by praseodymium and cerium oxides, respectively, have been measured at different temperatures. The maximum of power density of the initial fuel cell was 0.35 W cm-2 at conditions of wet hydrogen (air) supply to the anode (cathode) at 900 °C. After the electrodes were impregnated, the value of power density increased by seven times and was approximately 2.4 W cm-2 at 0.6 V. It was suggested that after the electrodes impregnation the polarization resistance of the fuel cell was determined by the gas diffusion in the supported anode.

  2. Structured SiCu thin films in LiB as anodes

    International Nuclear Information System (INIS)

    Both helical and inclined columnar Si–10 at.% Cu structured thin films were deposited on Cu substrates using glancing angle deposition (GLAD) technique. In order to deposit Cu and Si two evaporation sources were used. Ion assistance was utilized in the first 5 min of the GLAD to enhance the adhesion and the density of the films. These films were characterized by thin film XRD, GDOES, SEM, and EDS. Electrochemical characterizations were made by testing the thin films as anodes in half-cells for 100 cycles. The results showed that the columnar SiCu thin film delivered 2200 mAh g−1, where the helical one exhibited 2600 mAh g−1, and, their initial coulombic efficiencies were found to be 38%–50% respectively. For the columnar and the helical thin film anodes, sustainable 520 and 800 mAh g−1 with 90% and 99% coulombic efficiencies were achieved for 100 cycles. These sustainable capacities showed the importance of the thin film structure having nano-sized crystals and amorphous particles. The higher surface area of the helices increases the capacity of the electrode because the contact area of the thin film anode with Li ions is increased, and the polarization which otherwise forms on the anode surface due to SEI formation is decreased. In addition, because of larger interspaces between the helices the ability of the anode to accommodate the volumetric changes is improved, which results in a higher coulombic efficiency and capacity retention during cycling test. - Highlights: • Cu and Si atoms were co-evaporated to form composite thin film. • GLAD is an alternative method to form new electrodes for LIB. • Uses of the composite helices and nanocolumns as anodes were shown experimentally. • IAD was used to improve the adhesion of the structured thin films. • High surface area, porosities and Cu presence improve the Si anode performance

  3. Facile incorporation of hydroxyapatite onto an anodized Ti surface via a mussel inspired polydopamine coating

    Science.gov (United States)

    Zhe, Wang; Dong, Chaofang; Sefei, Yang; Dawei, Zhang; Kui, Xiao; Xiaogang, Li

    2016-08-01

    Inspired by the porous morphology of anodized Ti and the adhesive versatility of polydopamine (PDA), which can induce apatite mineralization, we fabricated a novel interface by coating a porous anodized TiO2 layer with PDA to rapidly immobilize HA on Ti-based substrates. It was found that the as-prepared PDA/anodized (HD) surface exhibited nanoscale roughness, which possessed an excellent ability to form apatite when immersed in 1.5× simulated body fluid (SBF), as observed by AFM and FE-SEM. The morphology and composition of each layer were further confirmed by XPS, XRD and FTIR. The corrosion resistance of the multilayer was investigated using potentiodynamic polarization curve and electrochemical impedance spectra (EIS) measurements in a 0.9 wt% NaCl solution, the results suggested that the HA/PDA/anodized (HDA) layer increased the corrosion resistance of pure Ti with higher corrosion potential and lower passive current, the surface wettability was also enhanced with the incorporation of HA. In vitro cellular assays showed that the HDA layer stimulated cell attachment and improved the alkaline phosphate (ALP) activity. Overall, the PDA/anodized treatment provided a viable method to quickly integrate HA, and the obtained HDA layer improved both corrosion resistance and biocompatibility of the Ti surface.

  4. Effects Of Anodic Protection On SCC Behavior Of X80 Pipeline Steel In High-pH Carbonate-Bicarbonate Solution

    Directory of Open Access Journals (Sweden)

    Zhao W.

    2015-06-01

    Full Text Available The potentiodynamic polarization test and slow strain rate tensile tests of X80 pipeline steel were performed in 0.5M Na2CO3-1M NaHCO3 solution to study the electrochemical and stress corrosion cracking properties. The results of potentiodynamic polarization test show that there is an obvious stable passive region, about from 0v to 0.8V (SCE, indicating that anodic protection is feasible. The results of slow strain rate tensile tests show that the stress corrosion cracking sensibility is high and cathodic protection effect is restricted due to the hydrogen permeation. However, the elongation, yielding strength and tensile strength all increase with anodic protection. The higher anodic protection potential in the stable passive region is benefit to improve tensile strength and yielding strength. However, the higher elongation is obtained at 0.5V (SCE anodic protection potential.

  5. The Nitrogen-Nitride Anode.

    Energy Technology Data Exchange (ETDEWEB)

    Delnick, Frank M.

    2014-10-01

    Nitrogen gas N 2 can be reduced to nitride N -3 in molten LiCl-KCl eutectic salt electrolyte. However, the direct oxidation of N -3 back to N 2 is kinetically slow and only occurs at high overvoltage. The overvoltage for N -3 oxidation can be eliminated by coordinating the N -3 with BN to form the dinitridoborate (BN 2 -3 ) anion which forms a 1-D conjugated linear inorganic polymer with -Li-N-B-N- repeating units. This polymer precipitates out of solution as Li 3 BN 2 which becomes a metallic conductor upon delithiation. Li 3 BN 2 is oxidized to Li + + N 2 + BN at about the N 2 /N -3 redox potential with very little overvoltage. In this report we evaluate the N 2 /N -3 redox couple as a battery anode for energy storage.

  6. Perovskites synthesis to SOFC anodes

    International Nuclear Information System (INIS)

    Perovskite structure materials containing lanthanum have been widely applied as solid oxide fuel cells (SOFCs) electrodes, due to its electrical properties. Was investigated the obtain of the perovskite structure LaCr0,5Ni0,5O3, by Pechini method, and its suitability as SOFC anode. The choice of this composition was based on the stability provided by chromium and the catalytic properties of nickel. After preparing the resins, the samples were calcined at 300 deg C, 600 deg C, 700 deg C and 850 deg C. The resulting powders were characterized by X-ray diffraction to determine the existing phases. Furthermore, were performed other analysis, like X-ray fluorescence, He pycnometry, specific surface area by BET isotherm and scanning electronic microscopy (author)

  7. Application of in situ digital holography to the study of the effect of a magnetic field on the anodic dissolution of iron in thichloroacetic acid

    Directory of Open Access Journals (Sweden)

    XUEGENG YANG

    2006-01-01

    Full Text Available The effect of a magnetic field on the anodic dissolution of iron in 1.0 mol dm-3 trichloroacetic acid solution was studied by the potentiodynamic polarization method and in situ digital holography. It was found that the magnetohydrodynamic force increased the mass transport, which resulted in a faster anodic dissolution of iron. The effect of the magnetic field was analyzed by holograms and is discussed in terms of the magnetohydrodynamic force.

  8. Characterization of native and anodic oxide films formed on commercial pure titanium using electrochemical properties and morphology techniques

    International Nuclear Information System (INIS)

    Potentiostatically anodized oxide films on the surface of commercial pure titanium (cp-Ti) formed in sulfuric (0.5 M H2SO4) and in phosphoric (1.4 M H3PO4) acid solutions under variables anodizing voltages were investigated and compared with the native oxide film. Potentiodynamic polarization and electrochemical impedance spectroscopy, EIS, were used to predicate the different in corrosion behavior of the oxide film samples. Scanning electron microscope, SEM, and electron diffraction X-ray analysis, EDX, were used to investigate the difference in the morphology between different types of oxide films. The electrochemical characteristics were examined in phosphate saline buffer solution, PSB (pH 7.4) at 25 deg. C. Results have been shown that the nature of the native oxide film is thin and amorphous, while the process of anodization of Ti in both acid solutions plays an important role in changing the properties of passive oxide films. Significant increase in the corrosion resistance of the anodized surface film was recorded after 3 h of electrode immersion in PSB. On the other side, the coverage (θ) of film formed on cp-Ti was differed by changing the anodized acid solution. Impedance results showed that both the native film and anodized film formed on cp-Ti consist of two layers. The resistance of the anodized film has reached to the highest value by anodization of cp-Ti in H3PO4 and the inner layer in the anodized film formed in both acid solutions is also porous.

  9. Anodizing of High Electrically Stressed Components

    Energy Technology Data Exchange (ETDEWEB)

    Flores, P. [NSTec; Henderson, D. J. [NSTec; Good, D. E. [NSTec; Hogge, K. [NSTec; Mitton, C. V. [NSTec; Molina, I. [NSTec; Naffziger, C. [NSTec; Codova, S. R. [SNL; Ormond, E. U. [SNL

    2013-06-01

    Anodizing creates an aluminum oxide coating that penetrates into the surface as well as builds above the surface of aluminum creating a very hard ceramic-type coating with good dielectric properties. Over time and use, the electrical carrying components (or spools in this case) experience electrical breakdown, yielding undesirable x-ray dosages or failure. The spool is located in the high vacuum region of a rod pinch diode section of an x-ray producing machine. Machine operators have recorded decreases in x-ray dosages over numerous shots using the reusable spool component, and re-anodizing the interior surface of the spool does not provide the expected improvement. A machine operation subject matter expert coated the anodized surface with diffusion pump oil to eliminate electrical breakdown as a temporary fix. It is known that an anodized surface is very porous, and it is because of this porosity that the surface may trap air that becomes a catalyst for electrical breakdown. In this paper we present a solution of mitigating electrical breakdown by oiling. We will also present results of surface anodizing improvements achieved by surface finish preparation and surface sealing. We conclude that oiling the anodized surface and using anodized hot dip sealing processes will have similar results.

  10. Corrosion Behavior of the Rare Earth Sealing Anodized Coating on Aluminum Alloy LY12

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Technological process of rare earth sealing anodized LY12 (2024) alloy is introduced. Corrosion behavior of the filmwas studied by polarization curves and electrochemical impedance spectroscopy (EIS). The results showed that thecoating remained passivity at the potential range from the open circuit potential (-780 mV) to -250 mV in NaClsolution. When the potential exceeded -200 mV, corrosion reaction happened on the coating. the results of ElSanalysis was consistent with the results of polarization curves.

  11. Anodic behaviour of the stainless steel AISI 430 in aqueous solutions of chloride and sulphate ions

    International Nuclear Information System (INIS)

    The kinetics of the dissolution of stainless steel AISI 430 in the presence of chloride and sulphate ions has been studied in terms of the ion concentration, the pH variation, and the velocity of the working electrode. The experimental method utilized was the potentiostatic anodic polarization, and the reactants used were NaCl and Na2 SO4 at room temperature. Atomic Absorption spectrophotometry and Auger Electrons spectroscopy (AES) analyses were made in order to support the interpretation of results obtained by means of the potentiostatic polarization method. (author)

  12. Polar Stratigraphy

    Science.gov (United States)

    1999-01-01

    These three images were taken on three different orbits over the north polar cap in April 1999. Each shows a different part of the same ice-free trough. The left and right images are separated by a distance of more than 100 kilometers (62 miles). Note the similar layers in each image.

  13. Anodic titania films as anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Titania thin films were prepared through the anodisation of titanium metal in a 1.0 M sulphuric acid solution at 80 oC utilising a series of pulsed dc constant currents of increasing magnitude. Films were then tested as a potential anode material for lithium batteries using a variety of techniques. Electrochemical testing revealed that the films (3.8 cm2) offered good rate capabilities affording a constant capacity of 48 μAh for a constant current of 10 μA which decreased to 25 μAh on increasing the current to 1250 μA. Cyclic voltammetry was conducted over a range of scan rates from which capacitive currents were examined and rate constants, transfer coefficients and diffusion coefficients calculated. Electrochemical impedance spectroscopy was conducted over six potentials in the range 0.1-2.7 V with the experimental data successfully modelled using an equivalent circuit with the notation R(Q(RW))C. TEM observation of focussed ion beam milled cross-sections showed significant structural differences between the as-anodised film and those cycled in a lithium battery. Raman spectroscopy showed that the films had an anatase character that transformed into an unidentified lithium-containing, titanate phase on cycling. Based on a film thickness of 100 nm, and assuming density of 4 g cm-3 such films offered a stable capacity of 316 mAh g-1

  14. Pt -based anode catalysts for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    In this work it is studied the electro-catalytic behavior of pure platinum and platinum-based alloys with Ru, Sn, Ir, and Os supported on carbon to the ethanol electro-oxidation in aims to develop anodic catalysts for direct ethanol fuel cells, additionally, porous electrodes and membrane electrode assemblies were built for proton exchange membrane fuel cells in which the electrodes were tested. Catalysts characterization was made by cyclic voltammetry whereas the fuel cells behavior tests were made by current-potential polarization curves. in general, all alloys show a lower on-set reaction potential and a higher catalytic activity than pure platinum. However, in the high over potential zone, pure platinum has higher catalytic activity than the alloys. In agreement with these results, the alloys studied here could be useful in fuel cells operating on moderated and low current

  15. A novel CZT detector using strengthened electric field line anode

    Science.gov (United States)

    Fu, Jian-Qiang; Li, Yu-Lan; Zhang, Lan; Niu, Li-Bo; Jiang, Hao; Li, Yuan-Jing

    2014-12-01

    In this paper, we report on the design, simulation and testing of a novel CZT detector with an electrode named the Strengthened Electric Field Line Anode (SEFLA). The Strengthened Electric Field (SEF) technique and Single Polarity Charge Sensing (SPCS) technique are implemented. It could achieve the same performance as Coplanar Grid, Pixel Array CZT detectors but requires only a simple readout system. Geant4, Ansoft Maxwell and a self-developed Induced Current Calculator (ICC) package are used to develop an understanding of how the energy spectrum is formed, and the parameters of the detector are optimized. A prototype is fabricated. Experimental results demonstrate the effectiveness of this design. The test shows that the SEFLA detector achieves a FWHM of 6.0% @59.5 keV and 1.6% @662 keV, which matches well with the simulations.

  16. Design comparison of single-anode and double-anode 300-MW magnetron injection gun

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, W.; Specht, V. (Univ. of Maryland, College Park (United States))

    1993-07-01

    Analytic tradeoff equations based on adiabatic assumptions are used to explore feasible design regions for single-anode Magnetron Injection Guns (MIG's). Particle simulations are then used to optimize a single-anode and a double-anode design for a 1-[mu]s, 500-kV, 600-A MIG which is required for a second-harmonic gyroklystron. The advantages and disadvantages of each configuration are critically examined.

  17. Chemo-mechanical softening during in situ nanoindentation of anodic porous alumina with anodization processing

    OpenAIRE

    Cheng, C; Ngan, AHW

    2013-01-01

    Simultaneous application of mechanical stresses on a material as it undergoes an electrochemical reaction can result in interesting coupling effects between the chemical and mechanical responses of the material. In this work, anodic porous alumina supported on Al is found to exhibit significant softening during in situ nanoindentation with anodization processing. Compared with ex situ nanoindentation without anodization processing, the in situ hardness measured on the alumina is found to be m...

  18. Reactivity of Anode Raw  Materials and Anodes for Production of Aluminium

    OpenAIRE

    Engvoll, Marianne Aanvik

    2002-01-01

    In the Hall-Héroult process for primary production of aluminium, a considerable amount of anode carbon is lost through unwanted gasification in air and CO2. The carbon gasification reactions are catalyzed by a number of inorganic impurities normally present in the anodes. Some of these impurities follow the anode raw materials while others are introduced during the anode manufacturing process.The aim of this work is to obtain a fundamental knowledge of how the bath compounds: AlF3, Al2O3, NaF...

  19. Macrokinetic relationships between anodic processes in chlorine electrolysis on ruthenium-titanium oxide anodes

    International Nuclear Information System (INIS)

    Effect of porosity on kinetics of the main (chlorine evolution) and side (oxygen evolution and anodic dissolution of ruthenium dioxide) reactions for chlorine electrolysis conditions has been analyzed. Making allowance for chlorine hydrolysis secondary reaction, the distribution of chlorine concentration, solution pH and current densities of the main and side processes over the porous anode depth, have been found. It is shown that solution acidification in the anode pores due to chlorine hydrolysis can bring about replacement of oxygen evolution and ruthenium dioxide dissolution side reactions toward the porous anode external sides thus affecting its selectivity and corrosion resistance

  20. Low voltage aluminium anodes. Optimization of the insert-anode bond

    Energy Technology Data Exchange (ETDEWEB)

    Le Guyader, Herve; Debout, Valerie; Grolleau, Anne-Marie [DCN Cherbourg, Departement 2EI, Place Bruat, BP 440, 50104 Cherbourg-Octeville (France); Pautasso, Jean-Pierre [DGA/CTA 16 bis, avenue Prieur de la Cote D' Or, 94 114 Arcueil Cedex (France)

    2004-07-01

    Zinc or Al/Zn/In sacrificial anodes are widely used to protect submerged marine structures from corrosion. Their Open Circuit Potential range from - 1 V vs. Ag/AgCl for Zn anodes to -1.1 V vs. Ag/AgCl for Al/Zn/In. These potentials are sufficiently electronegative as to reduce the threshold for stress corrosion cracking and/or hydrogen embrittlement, KISCC, especially in the presence of high strength alloys. In the 90's, an extensive research programme was initiated by DGA/DCN to implement a new low voltage material. Laboratory and full scale marine tests performed on industrial castings, as previously reported, led to the development of a new patented Al- 0.1%Ga alloy having a working potential of - 0.80 to - 0.83 V vs. Ag/AgCl. This alloy was also evaluated at full scale at the Naval Research Laboratory anode qualification site in Key West, Fl, and gave satisfactory results. Around 500 cylindrical AlGa anodes were then installed on a submerged marine structure replacing the classical zinc anode. A first inspection, carried out after a few months of service, showed that some of the anodes had not operated as expected, which led to further investigations. The examinations performed indicated that the problem was due to a bad metallurgical compatibility between the insert and the sacrificial materials inducing a poor bond between the anode and the plain rod insert. Progressive loss of contact between the anode and the structure to be protected was then induced by penetration of sea water and corrosion at the anode-insert interface. This phenomenon was aggravated by seawater pressure. Additional studies were therefore launched with two aims: (1) find temporary remedies for the anodes already installed on the structure; (2) correct the anode original design and/or manufacturing process to achieve the maximum performance on new anodes lots. This paper describes the various solutions investigated to improve the insert-anode bond: design of the anode, rugosity and

  1. Structural Engineering of Nanoporous Anodic Alumina Photonic Crystals by Sawtooth-like Pulse Anodization.

    Science.gov (United States)

    Law, Cheryl Suwen; Santos, Abel; Nemati, Mahdieh; Losic, Dusan

    2016-06-01

    This study presents a sawtooth-like pulse anodization approach aiming to create a new type of photonic crystal structure based on nanoporous anodic alumina. This nanofabrication approach enables the engineering of the effective medium of nanoporous anodic alumina in a sawtooth-like manner with precision. The manipulation of various anodization parameters such as anodization period, anodization amplitude, number of anodization pulses, ramp ratio and pore widening time allows a precise control and fine-tuning of the optical properties (i.e., characteristic transmission peaks and interferometric colors) exhibited by nanoporous anodic alumina photonic crystals (NAA-PCs). The effect of these anodization parameters on the photonic properties of NAA-PCs is systematically evaluated for the establishment of a fabrication methodology toward NAA-PCs with tunable optical properties. The effective medium of the resulting NAA-PCs is demonstrated to be optimal for the development of optical sensing platforms in combination with reflectometric interference spectroscopy (RIfS). This application is demonstrated by monitoring in real-time the formation of monolayers of thiol molecules (11-mercaptoundecanoic acid) on the surface of gold-coated NAA-PCs. The obtained results reveal that the adsorption mechanism between thiol molecules and gold-coated NAA-PCs follows a Langmuir isotherm model, indicating a monolayer sorption mechanism. PMID:27171214

  2. Masking of aluminum surface against anodizing

    Science.gov (United States)

    Crawford, G. B.; Thompson, R. E.

    1969-01-01

    Masking material and a thickening agent preserve limited unanodized areas when aluminum surfaces are anodized with chromic acid. For protection of large areas it combines well with a certain self-adhesive plastic tape.

  3. Challenge for lowering concentration polarization in solid oxide fuel cells

    Science.gov (United States)

    Shimada, Hiroyuki; Suzuki, Toshio; Yamaguchi, Toshiaki; Sumi, Hirofumi; Hamamoto, Koichi; Fujishiro, Yoshinobu

    2016-01-01

    In the scope of electrochemical phenomena, concentration polarization at electrodes is theoretically inevitable, and lowering the concentration overpotential to improve the performance of electrochemical cells has been a continuing challenge. Electrodes with highly controlled microstructure, i.e., high porosity and uniform large pores are therefore essential to achieve high performance electrochemical cells. In this study, state-of-the-art technology for controlling the microstructure of electrodes has been developed for realizing high performance support electrodes of solid oxide fuel cells (SOFCs). The key is controlling the porosity and pore size distribution to improve gas diffusion, while maintaining the integrity of the electrolyte and the structural strength of actual sized electrode supports needed for the target application. Planar anode-supported SOFCs developed in this study realize 5 μm thick dense electrolyte (yttria-stabilized zirconia: YSZ) and the anode substrate (Ni-YSZ) of 53.6 vol.% porosity with a large median pore diameter of 0.911 μm. Electrochemical measurements reveal that the performance of the anode-supported SOFCs improves with increasing anode porosity. This Ni-YSZ anode minimizes the concentration polarization, resulting in a maximum power density of 3.09 W cm-2 at 800 °C using humidified hydrogen fuel without any electrode functional layers.

  4. Effects of Tin Content and Heat Treatment on the Anodic Characteristics of Al-Sn Alloy

    International Nuclear Information System (INIS)

    Anodic characteristics of specifically prepared laboratory Al-Sn binary alloys in 3% NaCl aqueous solution have been studied to clarify the effect of Sn addition to Al sacrificial anode. Five nine grade pure Al and reagent grade Sn were melted in a high purity graphite crucible in a glove box under Ar atmosphere. The amount of Sn addition to Al was varied in the range of 0.05 to 0.8% by weight. Alloys thus prepared were fashioned into electrode specimens as cast or after different heat-treatments. Distribution of Sn in alloy specimens was examined by EPMA method, which revealed that only the alloy specimens containing less than 0.2% w/o Sn maintain the Al-Sn solid solution after homogenizing heat-treatment at 620 .deg. C for 18 hrs. Segregation of Sn at grain boundaries and even within grains occurs in other specimens. Only the Sn dissolved within aluminum grains appeared to have a major effect on the anodic characteristics of alloy. Most Al-Sn alloy containing more than 0.05 w/o Sn exhibited very low corrosion potential of -1450 ± 20mV vs. SCE except those heat-treated at 500 .deg. C. In potentiostatic anodic polarization measurements for alloy specimens, the largest polarized currents at each set potentials were observed in the alloy specimen which contains 0.2 w/o Sn and homogenized at 620 .deg. C as well. Galvanic couples of the latter alloy specimen coupled to mild steel cathode with the apparent area ratio of anode to cathode 1:63 gave steady state galvanic current of 17 mA and exhibited electrode potential of -1190 mV vs. SCE in 3% NaCl solution, completely protecting the steel cathode even after 72 hours passed

  5. Lithium Ion Battery Anode Aging Mechanisms

    Directory of Open Access Journals (Sweden)

    Victor Agubra

    2013-03-01

    Full Text Available Degradation mechanisms such as lithium plating, growth of the passivated surface film layer on the electrodes and loss of both recyclable lithium ions and electrode material adversely affect the longevity of the lithium ion battery. The anode electrode is very vulnerable to these degradation mechanisms. In this paper, the most common aging mechanisms occurring at the anode during the operation of the lithium battery, as well as some approaches for minimizing the degradation are reviewed.

  6. Sorption of plutonium on anodized aluminum

    International Nuclear Information System (INIS)

    Adsorption of plutonium on anodic alumina films was investigated. The results obtained suggest that equilibrium in the aqueous solution-solid surface system is achieved after 3 hours. In case of aqueous solutions maximum sorption was observed at pH 3.5. The adsorption isotherms for both aqueous and ethanolic solutions are presented. Up to 15 μg of Pu can be adsorbed by 1 cm2 of anodic alumina surface. (author)

  7. Electrochemically exfoliated graphene anodes with enhanced biocurrent production in single-chamber air-breathing microbial fuel cells.

    Science.gov (United States)

    Najafabadi, Amin Taheri; Ng, Norvin; Gyenge, Előd

    2016-07-15

    Microbial fuel cells (MFCs) present promising options for environmentally sustainable power generation especially in conjunction with waste water treatment. However, major challenges remain including low power density, difficult scale-up, and durability of the cell components. This study reports enhanced biocurrent production in a membrane-free MFC, using graphene microsheets (GNs) as anode and MnOx catalyzed air cathode. The GNs are produced by ionic liquid assisted simultaneous anodic and cathodic electrochemical exfoliation of iso-molded graphite electrodes. The GNs produced by anodic exfoliation increase the MFC peak power density by over 300% compared to plain carbon cloth (i.e., 2.85Wm(-2) vs 0.66Wm(-2), respectively), and by 90% compared to conventional carbon black (i.e., Vulcan XC-72) anode. These results exceed previously reported power densities for graphene-containing MFC anodes. The fuel cell polarization results are corroborated by electrochemical impedance spectroscopy indicating three times lower charge transfer resistance for the GN anode. Material characterizations suggest that the best performing GN samples were of relatively smaller size (~500nm), with higher levels of ionic liquid induced surface functionalization during the electrochemical exfoliation process. PMID:26926591

  8. The hydrogen anode in chromium electrowinning

    International Nuclear Information System (INIS)

    The use of a hydrogen anode for electrowinning of chromium from an ammonium chromium sulfate electrolyte (chrome alum process) was investigated in a laboratory-scale cell equipped with a diaphragm. The composition of the solution and the temperature followed industrial practice. Current density, pH, and anolyte flow rate through the diaphragm were varied and optimized for the cell. For a cathodic current density of 915 A/m2 at 50oC, the optimum initial pH was 2.37. The hydrogen anode was made of a platinized Toray carbon paper (0.35 mg Pt per cm2) supplied by E-TEK. The hydrogen pressure was maintained at 2 cm H20 above ambient atmosphere. The potential of the hydrogen anode was about 1 V lower than that of a Pb-Ag anode (1%Ag) in a similar cell. As expected, no Cr+6 was generated in the anolyte. The cathodic current efficiency was slightly lower with the hydrogen anode than with the Pb-Ag anode. (author)

  9. Improvement of rate capability of spinel lithium titanate anodes using microwave-assisted zinc nanocoating

    International Nuclear Information System (INIS)

    Highlights: ► Microwave-assisted Zn layers onto Li4Ti5O12 crystals serves as superior anode materials. ► Microwave heating is capable of depositing Zn layers over the surface of spinel Li4Ti5O12 within 6 min. ► The thickness of Zn layer is an increasing function of zinc nitrate concentration. ► The deposition of Zn coating shows a positive effect on the rate-capability improvement of anodes. - Abstract: In this study, the deposition of microwave-assisted Zn layers onto spinel lithium titanate (Li4Ti5O12) crystals as superior anode materials for Li-ion batteries has been investigated. Microwave heating is capable of rapidly depositing Zn layers over the surface of spinel Li4Ti5O12 within 6 min. The thickness of Zn layer (i.e., 1–10 nm) is an increasing function of zinc nitrate concentration under the microwave irradiation. The charge–discharge curve of Zn–Li4Ti5O12 anode still maintains the plateau at 1.5 V, contributing to the major portion in the overall specific capacity. The presence of Zn coating significantly facilitates the capacity retention (78.1% at 10 C/0.2 C) of the composite anodes with high Coulombic efficiency (>99.9%), indicating an excellent reversibility of insertion/de-insertion of Li ions. This can be ascribed to the fact that well-dispersed Zn layer offers an electronic pathway over the Li4Ti5O12 powder, thus imparting electronic conduction and reducing cell polarization. Accordingly, the deposition of Zn coating, prepared by the rapid microwave heating, shows a positive effect on the rate-capability improvement of Li4Ti5O12 anodes.

  10. Synthesis of anodic titania nanotubes in Na{sub 2}SO{sub 4}/NaF electrolyte: A comparison between anodization time and specimens with biomaterial based approaches

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, M., E-mail: blkrish88@gmail.com [Department of Metallurgical Engineering, PSG College of Technology, Coimbatore 641 004 (India); Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Narayanan, R. [Department of Metallurgical Engineering, PSG College of Technology, Coimbatore 641 004 (India); Department of Mechanical Engineering, Saveetha School of Engineering, Chennai 602 105 (India)

    2013-07-01

    Surface modification of commercially pure titanium (cp-Ti) has been carried out by electrochemical anodic oxidation at constant voltage for different time periods (0.5, 1, 2 and 4.5 h). Currents developed during the anodization indicate that the nanotubes are formed due to the competition of titania formation and dissolution under the assistance of electric field. Topologies of the anodized titanium change remarkably with time of oxidation. The morphology of the as-prepared nanotubes was characterized by scanning electron microscopy and atomic force microscopy while the chemistry and crystallinity were characterized by energy-dispersive X-ray spectroscopy and X-ray diffraction respectively. The as-anodized oxide was of amorphous but transformed to anatase and/or rutile crystal structure upon annealing for 3 h at 600 °C. The anatase structure showed excellent apatite-forming ability and produced a compact apatite layer covering the surface completely upon treatment in simulated body fluid (SBF) solution for 30 h. Corrosion of anodized titanium samples was studied in a SBF solution using open circuit potential, polarization and electrochemical impedance measurements and compared with that of non-oxidized titanium. Among these samples, titanium anodized for 4.5 h exhibited superior corrosion properties. - Highlights: • We synthesized TiO{sub 2} nanotubes by anodization in Na{sub 2}SO{sub 4}/NaF electrolyte. • Topologies of the anodized titanium change remarkably with oxidation time. • We studied surface morphologies of TiO{sub 2} nanotubes. • TiO{sub 2} nanotubes show superior corrosion resistance.

  11. Electrical and Mechanical Performance of Carbon Fiber-Reinforced Polymer Used as the Impressed Current Anode Material

    Directory of Open Access Journals (Sweden)

    Ji-Hua Zhu

    2014-07-01

    Full Text Available An investigation was performed by using carbon fiber-reinforced polymer (CFRP as the anode material in the impressed current cathodic protection (ICCP system of steel reinforced concrete structures. The service life and performance of CFRP were investigated in simulated ICCP systems with various configurations. Constant current densities were maintained during the tests. No significant degradation in electrical and mechanical properties was found for CFRP subjected to anodic polarization with the selected applied current densities. The service life of the CFRP-based ICCP system was discussed based on the practical reinforced concrete structure layout.

  12. Improvement of corrosion resistance of AZ31 Mg alloy by anodizing with co-precipitation of cerium oxide

    Institute of Scientific and Technical Information of China (English)

    Salah Abdelghany SALMAN; Ryoichi ICHINO; Masazumi OKIDO

    2009-01-01

    Anodizing of AZ31 Mg alloy in NaOH solution by co-precipitation of cerium oxide was investigated. The chemical composition and phase structure of the coating film were determined via optical microscopy, SEM and XRD. The corrosion properties of the anodic film were characterized by using potentiodynamic polarization curves in 17 mmol/L NaCl and 0.1 mol/L Na2SO4 solution at 298 K. The corrosion resistance of AZ31 magnesium alloy is significantly improved by adding cerium oxide to alkaline solution. In addition, the surface properties are enhanced and the film contains no crack.

  13. Synthesis, Characterization, and Optimization of Novel Solid Oxide Fuel Cell Anodes

    Science.gov (United States)

    Miller, Elizabeth C.

    (SLT) anode supports, thin La1--xSr x Ga0.8Mg0.2O3 (x = 0.1, 0.2) dense electrolytes, and porous LSGM anode functional layers. The SLT support and the LSGM functional layer are infiltrated with nanoscale Ni, creating extensive electrochemically active triple phase boundary area. The scope of the work presented here encompasses every step of cell development including powder synthesis, optimization of firing conditions, and long-term stability testing. Using an optimized fabrication process, cells with power density > 1.2 W cm-2 were fabricated. Dry pressing and colloidal de-position were used to make the first generation of these cells, and once suitable times and temperatures were determined, the process was shifted to tape casting to make larger batches of uniform cells. After obtaining initial results of low anode polarization resistance and high power density, the long-term stability of the Ni-infiltrated anodes was examined. A coarsening model was developed using the data from accelerated degradation tests to predict cell performance over a typical device lifetime. This thesis encompasses a broad range of novel SOFC anode materials, each of which has its own strengths and weaknesses. Presenting several possible avenues for SOFC development provides a complete picture of the ?eld and its current focuses. The wide scope of this work offers multiple solutions for the SOFC community and demonstrates that SOFCs are a strong candidate for meeting the United States' need for energy conversion and storage.

  14. 3D Microstructure Effects in Ni-YSZ Anodes: Influence of TPB Lengths on the Electrochemical Performance

    Directory of Open Access Journals (Sweden)

    Omar M. Pecho

    2015-10-01

    Full Text Available 3D microstructure-performance relationships in Ni-YSZ anodes for electrolyte-supported cells are investigated in terms of the correlation between the triple phase boundary (TPB length and polarization resistance (Rpol. Three different Ni-YSZ anodes of varying microstructure are subjected to eight reduction-oxidation (redox cycles at 950 °C. In general the TPB lengths correlate with anode performance. However, the quantitative results also show that there is no simplistic relationship between TPB and Rpol. The degradation mechanism strongly depends on the initial microstructure. Finer microstructures exhibit lower degradation rates of TPB and Rpol. In fine microstructures, TPB loss is found to be due to Ni coarsening, while in coarse microstructures reduction of active TPB results mainly from loss of YSZ percolation. The latter is attributed to weak bottlenecks associated with lower sintering activity of the coarse YSZ. The coarse anode suffers from complete loss of YSZ connectivity and associated drop of TPBactive by 93%. Surprisingly, this severe microstructure degradation did not lead to electrochemical failure. Mechanistic scenarios are discussed for different anode microstructures. These scenarios are based on a model for coupled charge transfer and transport, which allows using TPB and effective properties as input. The mechanistic scenarios describe the microstructure influence on current distributions, which explains the observed complex relationship between TPB lengths and anode performances. The observed loss of YSZ percolation in the coarse anode is not detrimental because the electrochemical activity is concentrated in a narrow active layer. The anode performance can be predicted reliably if the volume-averaged properties (TPBactive, effective ionic conductivity are corrected for the so-called short-range effect, which is particularly important in cases with a narrow active layer.

  15. Anodized aluminum on LDEF: A current status of measurements on chromic acid anodized aluminum

    Science.gov (United States)

    Golden, Johnny L.

    1992-01-01

    Chromic acid anodize was used as the exterior coating for aluminum surfaces on LDEF to provide passive thermal control. Chromic acid anodized aluminum was also used as test specimens in thermal control coatings experiments. The following is a compilation and analysis of the data obtained thus far.

  16. Anodized aluminum on LDEF: A current status of measurements on chromic acid anodized aluminum

    International Nuclear Information System (INIS)

    Chromic acid anodize was used as the exterior coating for aluminum surfaces on LDEF to provide passive thermal control. Chromic acid anodized aluminum was also used as test specimens in thermal control coatings experiments. The following is a compilation and analysis of the data obtained thus far

  17. New High-Energy Nanofiber Anode Materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiangwu; Fedkiw, Peter; Khan, Saad; Huang, Alex; Fan, Jiang

    2013-11-15

    The overall goal of the proposed work was to use electrospinning technology to integrate dissimilar materials (lithium alloy and carbon) into novel composite nanofiber anodes, which simultaneously had high energy density, reduced cost, and improved abuse tolerance. The nanofiber structure allowed the anodes to withstand repeated cycles of expansion and contraction. These composite nanofibers were electrospun into nonwoven fabrics with thickness of 50 μm or more, and then directly used as anodes in a lithium-ion battery. This eliminated the presence of non-active materials (e.g., conducting carbon black and polymer binder) and resulted in high energy and power densities. The nonwoven anode structure also provided a large electrode-electrolyte interface and, hence, high rate capacity and good lowtemperature performance capability. Following are detailed objectives for three proposed project periods. • During the first six months: Obtain anodes capable of initial specific capacities of 650 mAh/g and achieve ~50 full charge/discharge cycles in small laboratory scale cells (50 to 100 mAh) at the 1C rate with less than 20 percent capacity fade; • In the middle of project period: Assemble, cycle, and evaluate 18650 cells using proposed anode materials, and demonstrate practical and useful cycle life (750 cycles of ~70% state of charge swing with less than 20% capacity fade) in 18650 cells with at least twice improvement in the specific capacity than that of conventional graphite electrodes; • At the end of project period: Deliver 18650 cells containing proposed anode materials, and achieve specific capacities greater than 1200 mAh/g and cycle life longer than 5000 cycles of ~70% state of charge swing with less than 20% capacity fade.

  18. Analysis of carbon fiber brush loading in anodes on startup and performance of microbial fuel cells

    KAUST Repository

    Hutchinson, Adam J.

    2011-11-01

    Flat carbon anodes placed near a cathode in a microbial fuel cell (MFC) are adversely affected by oxygen crossover, but graphite fiber brush anodes placed near the cathode produce high power densities. The impact of the brush size and electrode spacing was examined by varying the distance of the brush end from the cathode and solution conductivity in multiple MFCs. The startup time was increased from 8 ± 1 days with full brushes (all buffer concentrations) to 13 days (50 mM), 14 days (25 mM) and 21 days (8 mM) when 75% of the brush anode was removed. When MFCs were all first acclimated with a full brush, up to 65% of the brush material could be removed without appreciably altering maximum power. Electrochemical impedance spectroscopy (EIS) showed that the main source of internal resistance (IR) was diffusion resistance, which together with solution resistance reached 100 Ω. The IR using EIS compared well with that obtained using the polarization data slope method, indicating no major components of IR were missed. These results show that using full brush anodes avoids adverse effects of oxygen crossover during startup, although brushes are much larger than needed to sustain high power. © 2011 Elsevier B.V.

  19. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance. PMID:26393523

  20. Hierarchically ordered self-lubricating superhydrophobic anodized aluminum surfaces with enhanced corrosion resistance.

    Science.gov (United States)

    Vengatesh, Panneerselvam; Kulandainathan, Manickam Anbu

    2015-01-28

    Herein, we report a facile method for the fabrication of self-lubricating superhydrophobic hierarchical anodic aluminum oxide (AAO) surfaces with improved corrosion protection, which is greatly anticipated to have a high impact in catalysis, aerospace, and the shipping industries. This method involves chemical grafting of as-formed AAO using low surface free energy molecules like long chain saturated fatty acids, perfluorinated fatty acid (perfluorooctadecanoic acid, PFODA), and perfluorosulfonicacid-polytetrafluoroethylene copolymer. The pre and post treatment processes in the anodization of aluminum (Al) play a vital role in the grafting of fatty acids. Wettability and surface free energy were analyzed using a contact angle meter and achieved 161.5° for PFODA grafted anodized aluminum (PFODA-Al). This study was also aimed at evaluating the surface for corrosion resistance by Tafel polarization and self-lubricating properties by tribological studies using a pin-on-disc tribometer. The collective results showed that chemically grafted AAO nanostructures exhibit high corrosion resistance toward seawater and low frictional coefficient due to low surface energy and self-lubricating property of fatty acids covalently linked to anodized Al surfaces. PMID:25529561

  1. Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials

    KAUST Repository

    Zhu, Xiuping

    2013-04-01

    Power density curves for microbial fuel cells (MFCs) often show power overshoot, resulting in inaccurate estimation of MFC performance at high current densities. The reasons for power overshoot are not well understood, but biofilm acclimation and development are known factors. In order to better explore the reasons for power overshoot, exoelectrogenic biofilms were developed at four different anode potentials (-0.46 V, -0.24 V, 0 V, and 0.50 V vs. Ag/AgCl), and then the properties of the biofilms were examined using polarization tests and cyclic voltammetry (CV). The maximum power density of the MFCs was 1200±100 mW/m2. Power overshoot was observed in MFCs incubated at -0.46 V, but not those acclimated atmore positive potentials, indicating that bacterial activitywas significantly influenced by the anode acclimation potential. CV results further indicated that power overshoot of MFCs incubated at the lowest anode potential was associatedwith a decreasing electroactivity of the anodic biofilm in the high potential region,which resulted from a lack of sufficient electron transfer components to shuttle electrons at rates needed for these more positive potentials. © 2012 Elsevier B.V.

  2. Anodization of carbon fibers on interfacial mechanical properties of epoxy matrix composites.

    Science.gov (United States)

    Park, Soo-Jin; Chang, Yong-Hwan; Kim, Yeong-Cheol; Rhee, Kyong-Yop

    2010-01-01

    The influence of anodic oxidation on the mechanical interfacial properties of carbon-fiber-reinforced epoxy resin composites was investigated. The surface properties of the anodized carbon fibers were studied through the measurement of contact angles and through SEM, XPS, and FT-IR analyses. The mechanical interfacial properties of the composites were studied through measurements of interlaminar shear strength (ILSS), critical stress intensity factor (K(IC)), and critical strain energy release rate (G(IC)). It was shown that the surface functional groups containing oxygen on the anodized carbon fibers exert great effects on the surface energetics of fibers and the mechanical interfacial properties, e.g., ILSS, of the resulting composites. Contact angle measurements based on the wicking rate of a test liquid showed that anodic oxidation lead to an increase in the surface free energy of the carbon fibers, mainly in its specific (or polar) component. In terms of surface energetics, it was found that wetting played an important role in increasing the degree of adhesion at interfaces between the fibers and the resin matrices of the composites. PMID:20352820

  3. Porous and mesh alumina formed by anodization of high purity aluminum films at low anodizing voltage

    International Nuclear Information System (INIS)

    Electrochemical oxidation of high-purity aluminum (Al) films under low anodizing voltages (1–10) V has been conducted to obtain anodic aluminum oxide (AAO) with ultra-small pore size and inter-pore distance. Different structures of AAO have been obtained e.g. nanoporous and mesh structures. Highly regular pore arrays with small pore size and inter-pore distance have been formed in oxalic or sulfuric acids at different temperatures (22–50 °C). It is found that the pore diameter, inter-pore distance and the barrier layer thickness are independent of the anodizing parameters, which is very different from the rules of general AAO fabrication. The brand formation mechanism has been revealed by the scanning electron microscope study. Regular nanopores are formed under 10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultra-small nanopores. Anodization that is performed at voltages less than 5 V leads to mesh structured alumina. In addition, we have introduced a simple one-pot synthesis method to develop thin walls of oxide containing lithium (Li) ions that could be used for battery application based on anodization of Al films in a supersaturated mixture of lithium phosphate and phosphoric acid as matrix for Li-composite electrolyte. - Highlights: • We develop anodic aluminum oxide (AAO) with small pore size and inter-pore distance. • Applying low anodizing voltages onto aluminum film leads to form mesh structures. • The value of anodizing voltage (1–10 V) has no effect on pore size or inter-pore distance. • Applying anodizing voltage less than 5 V leads to mesh structured AAO. • AAO can be used as a matrix for Li-composite electrolytes

  4. Porous and mesh alumina formed by anodization of high purity aluminum films at low anodizing voltage

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Elnaiem, Alaa M., E-mail: alaa.abd-elnaiem@science.au.edu.eg [KACST-Intel Consortium Center of Excellence in Nano-manufacturing Applications (CENA), Riyadh (Saudi Arabia); Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Mebed, A.M. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Department of Physics, Faculty of Science, Al-Jouf University, Sakaka 2014 (Saudi Arabia); El-Said, Waleed Ahmed [Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Abdel-Rahim, M.A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)

    2014-11-03

    Electrochemical oxidation of high-purity aluminum (Al) films under low anodizing voltages (1–10) V has been conducted to obtain anodic aluminum oxide (AAO) with ultra-small pore size and inter-pore distance. Different structures of AAO have been obtained e.g. nanoporous and mesh structures. Highly regular pore arrays with small pore size and inter-pore distance have been formed in oxalic or sulfuric acids at different temperatures (22–50 °C). It is found that the pore diameter, inter-pore distance and the barrier layer thickness are independent of the anodizing parameters, which is very different from the rules of general AAO fabrication. The brand formation mechanism has been revealed by the scanning electron microscope study. Regular nanopores are formed under 10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultra-small nanopores. Anodization that is performed at voltages less than 5 V leads to mesh structured alumina. In addition, we have introduced a simple one-pot synthesis method to develop thin walls of oxide containing lithium (Li) ions that could be used for battery application based on anodization of Al films in a supersaturated mixture of lithium phosphate and phosphoric acid as matrix for Li-composite electrolyte. - Highlights: • We develop anodic aluminum oxide (AAO) with small pore size and inter-pore distance. • Applying low anodizing voltages onto aluminum film leads to form mesh structures. • The value of anodizing voltage (1–10 V) has no effect on pore size or inter-pore distance. • Applying anodizing voltage less than 5 V leads to mesh structured AAO. • AAO can be used as a matrix for Li-composite electrolytes.

  5. Electric current characteristic of anodic bonding

    International Nuclear Information System (INIS)

    In this paper, a novel current–time model of anodic bonding is proposed and verified experimentally in order to investigate underlying mechanisms of anodic bonding and to achieve real-time monitoring of bonding procedure. The proposed model provides a thorough explanation for the electric current characteristic of anodic bonding. More significantly, it explains two issues which other models cannot explain. One is the sharp rise in current when a voltage is initially applied during anodic bonding. The other is the unexpected large width of depletion layers. In addition, enlargement of the intimately contacted area during anodic bonding can be obtained from the proposed model, which can be utilized to monitor the bonding process. To verify the proposed model, Borofloat33 glass and silicon wafers were adopted in bonding experiments in SUSS SB6 with five different bonding conditions (350 °C 1200 V; 370 °C 1200 V; 380 °C 1200 V; 380 °C 1000 V; and 380 °C 1400 V). The results indicate that the observed current data highly coincide with the proposed current-time model. For widths of depletion layers, depth profiling using secondary ion mass spectrometry demonstrates that the calculated values by the model are basically consistent with the experimental values as well. (paper)

  6. Anode current density distribution in a cusped field thruster

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huan, E-mail: wuhuan58@qq.com; Liu, Hui, E-mail: hlying@gmail.com; Meng, Yingchao; Zhang, Junyou; Yang, Siyu; Hu, Peng; Chen, Pengbo; Yu, Daren [Mail Box 458, Harbin Institute of Technology (HIT), Harbin 150001 (China)

    2015-12-15

    The cusped field thruster is a new electric propulsion device that is expected to have a non-uniform radial current density at the anode. To further study the anode current density distribution, a multi-annulus anode is designed to directly measure the anode current density for the first time. The anode current density decreases sharply at larger radii; the magnitude of collected current density at the center is far higher compared with the outer annuli. The anode current density non-uniformity does not demonstrate a significant change with varying working conditions.

  7. Influence of Polarization of the Incident Beam on Integrated Intensities in X-Ray Energy-Dispersive Diffractometry

    DEFF Research Database (Denmark)

    Olsen, J. Staun; Buras, B.; Jensen, T.;

    1978-01-01

    Polarization measurements of the primary X-ray beam produced by thick copper and tungsten anodes are reported and formulas derived for integrated intensities of Bragg reflections in energy-dispersive diffractometry with the polarization of the primary beam taken into account. It was found that for...... photon energies and at scattering angles close to 90...

  8. Microwave processing of tantalum capacitor anodes

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R J; Hamby, C; Holcombe, C E [Oak Ridge National Lab., TN (United States); Vierow, W F [AVX Tantalum Corp., Biddeford, ME (United States)

    1992-08-01

    Porous tantalum anodes were sintered at temperatures from 1600 to 1900{degrees}C using a conventional high-vacuum furnace as well as both 2.45 GHz fixed-frequency and 4--8 GHz variable-frequency microwave furnaces. Various insulation and casketing techniques were used to couple the microwave power to the tantalum compacts. Several types of tantalum powder were used to assess the effect of microwave processing on sintered surface area and impurity levels. Some microwave sintered anodes have an unusual surface rippling not seen on conventionally fired parts. The rippling suggests that a microscopic arcing or plasma might have been generated. Two important effects could be exploited if this phenomenon can be controlled. First, the effective tantalum surface area could be increased, yielding higher capacitance per volume. Second, surface impurities might be cleaned away, allowing the formation of a better dielectric film during the anodization process and, ultimately, higher working voltage.

  9. Effect of surface state of type 18-10 stainless steel on the authenticity and reproducibility of potentiodynamic polarization curves

    International Nuclear Information System (INIS)

    The effect of mechanic and electrochemical methods of finishing the surface of the 18-10 stainless steel (polishing, electropolishing) and its oxidation in air at room temperature on the authenticity and reproducibility of anode polarization curves is investigated. It is established that the behaviour of anode potentiodynamic polarization curves, both in active and passive range of potentials, depends on microgeometry and on the oxidation degree of initial electrode surface as well. An optimal method of preparing surfaces of the 18-10 steel for polarization measurements is suggested

  10. Fabrication and characterization of anode-supported micro-tubular solide oxide fuel cell by phase inversion method

    Science.gov (United States)

    Ren, Cong

    performance was attributed to the phase purity of the anode fabricated by different polymer binders. Sulfur-free polymer binder PEI exhibits advantages over the commonly applied PESf and other sulfur-free polymer binder candidates. To eliminate the skin layer formed close to the inner side of the tubular sample when using the phase inversion method. Polyethersulfone (PESf)-polyethylenimine (PEI) blend was employed as the polymer binder to fabricate the micro-tubular solid oxide fuel cells (MT-SOFCs). The potential impurity introduced in the anode support by the polymer binder was examined by XPS and the resulting novel microstructure was analyzed based on the backscattered electron (BSE) images. Cells fabricated with blend polymer binder showed significantly enhanced power output compared with those cells only fabricated with PEI or PESf. The improved cell performance demonstrated that using blend polymer as binder is a promising and versatile approach for MT-SOFC fabrication via phase inversion method. Finally, to investigate the effect of the anode microstructure on the total cell performance, two types of anode support with different microstructure were prepared via the phase inversion method at different temperature. Cells fabricated based on these two anode supports were tested at 750 °C with hydrogen or hydrogen mixture with fuel gas. The measured current density-voltage (I-V) curves were fitted by a polarization model, and several parameters were archived through the modeling process. The influence of the anode support on the total cell performance was discussed based on the calculated result.

  11. An Insoluble Titanium-Lead Anode for Sulfate Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ferdman, Alla

    2005-05-11

    The project is devoted to the development of novel insoluble anodes for copper electrowinning and electrolytic manganese dioxide (EMD) production. The anodes are made of titanium-lead composite material produced by techniques of powder metallurgy, compaction of titanium powder, sintering and subsequent lead infiltration. The titanium-lead anode combines beneficial electrochemical behavior of a lead anode with high mechanical properties and corrosion resistance of a titanium anode. In the titanium-lead anode, the titanium stabilizes the lead, preventing it from spalling, and the lead sheathes the titanium, protecting it from passivation. Interconnections between manufacturing process, structure, composition and properties of the titanium-lead composite material were investigated. The material containing 20-30 vol.% of lead had optimal combination of mechanical and electrochemical properties. Optimal process parameters to manufacture the anodes were identified. Prototypes having optimized composition and structure were produced for testing in operating conditions of copper electrowinning and EMD production. Bench-scale, mini-pilot scale and pilot scale tests were performed. The test anodes were of both a plate design and a flow-through cylindrical design. The cylindrical anodes were composed of cylinders containing titanium inner rods and fitting over titanium-lead bushings. The cylindrical design allows the electrolyte to flow through the anode, which enhances diffusion of the electrolyte reactants. The cylindrical anodes demonstrate higher mass transport capabilities and increased electrical efficiency compared to the plate anodes. Copper electrowinning represents the primary target market for the titanium-lead anode. A full-size cylindrical anode performance in copper electrowinning conditions was monitored over a year. The test anode to cathode voltage was stable in the 1.8 to 2.0 volt range. Copper cathode morphology was very smooth and uniform. There was no

  12. Separation of radioactive substances by anodic electrolysis

    International Nuclear Information System (INIS)

    In experiments on the electrodeposition of radioisotopes on a platinum anode it was observed that the isotopes could be classified into: (1) those whose cations are deposited as oxides; and (2) those whose cations are only adsorbed on the anode. Under given conditions this difference can be used to separate ions of the two groups. In the present paper, experimental details are given of the separation of 144Ce from 140La. The separation of 144Ce from uranium fission products in the presence of uranyl ion is also discussed. (U.K.)

  13. Some regularities of metal anodic dissolution in voltammetry with pressed two-electrode cell

    International Nuclear Information System (INIS)

    Mathematical expressions for the distribution of ion concentration of anode-solving metal in the near-electrode layer of a solution for the conditions of a clamp-type two-electrode electrolytic cell have been obtained. A possibility is shown of theoretical calculation of critical parameters of polarographic curves measured during operation according to the given technique. The obtained dependences are suggested to be taken as the basis in the choice of the optimum polarization conditions of the working electrode for determining the thickness of metal coatings using voltametry method. The calculated results have been experimentally tested on the example of anode dissolution of copper, cadmium and silver in the clamp-type cell. 1MNaSO4 (for Cu and Cd), 2MNH4F (for silver) at I=2.5 mA served as background electrolytes

  14. Improving the Performance of SOFC Anodes by Decorating Perovskite with Ni Nanoparticles

    KAUST Repository

    Boulfrad, S.

    2013-10-07

    In this work (La0.75Sr0.25)0.97Cr0.5Mn0.5O3 (LSCM) perovskite powders were pre-coated with 5 wt% nickel and mixed with different amounts of CGO for testing as anode materials under 3% wet H2. By using scanning transmission electron microscopy (STEM) with X-ray energy dispersive spectroscopy (EDS), we demonstrated that Ni forms a solid solution in the perovkite phase under oxidizing atmosphere and exsolves in form of nanoparticles under reducing atmospheres. The presence of the catalyst nanoparticles led to a decrease in the anodic activation energy by half and thus the polarization resistance was dropped by 60% at 800¢ªC. The effect of CGO amount will be also discussed.

  15. Realistic simulation of the Space-borne Compton Polarimeter POLAR

    Science.gov (United States)

    Xiao, Hualin

    2016-07-01

    POLAR is a compact wide field space-borne detector dedicated for precise measurements of the linear polarization of hard x-rays emitted by transient sources. Its energy range sensitivity is optimized for the detection of the prompt emission of Gamma-ray bursts (GRBs). POLAR is developed by an international collaboration of China, Switzerland and Poland. It is planned to be launched into space in 2016 onboard the Chinese space laboratory TG2. The energy range of POLAR spans between 50 keV and 500 keV. POLAR detects gamma rays with an array of 1600 plastic scintillator bars read out by 25 muti-anode PMTs (MAPMTs). Polarization measurements use Compton scattering process and are based on detection of energy depositions in the scintillator bars. Reconstruction of the polarization degree and polarization angle of GRBs requires comparison of experimental modulation curves with realistic simulations of the full instrument response. In this paper we present a method to model and parameterize the detector response including efficiency of the light collection, contributions from crosstalk and non-uniformity of MAPMTs as well as dependency on low energy detection thresholds and noise from readout electronics. The performance of POLAR for determination of polarization is predicted with such realistic simulations and carefully cross-checked with dedicated laboratory tests.

  16. Optical Polarization Properties of Metal Nanowire Array Film Synthesized by Electrodeposition Technology

    Institute of Scientific and Technical Information of China (English)

    梁燕萍; 史启祯; 吴振森; 王尧宇; 高胜利

    2005-01-01

    Metal nanowire array films were prepared by electrodepositing Cu, Ag, Ni, Co and Cu-Ag on porous anodic alumina film. Optical transmittance of both the porous anodic alumina film and metal nanowire array film was measured in the wavelength range of 400---2600 nm under an obliquely incident light. The experimental results show that metal nanowire array films exhibit a prominent polarization function. It was found that optical polarization properties can be improved by choosing suitable kinds of electrodepositing metal, controlling the shape and length of nanowire, and changing the incident angle.

  17. Aluminum microstructures on anodic alumina for aluminum wiring boards.

    Science.gov (United States)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki

    2010-03-01

    The paper demonstrates simple methods for the fabrication of aluminum microstructures on the anodic oxide film of aluminum. The aluminum sheets were first engraved (patterned) either by laser beam or by embossing to form deep grooves on the surface. One side of the sheet was then anodized, blocking the other side by using polymer mask to form the anodic alumina. Because of the lower thickness at the bottom part of the grooves, the part was completely anodized before the complete oxidation of the other parts. Such selectively complete anodizing resulted in the patterns of metallic aluminum on anodic alumina. Using the technique, we fabricated microstructures such as line patterns and a simple wiring circuit-board-like structure on the anodic alumina. The aluminum microstructures fabricated by the techniques were embedded in anodic alumina/aluminum sheet, and this technique is promising for applications in electronic packaging and devices. PMID:20356280

  18. Fabrication of anodic aluminum oxide with incorporated chromate ions

    Science.gov (United States)

    Stępniowski, Wojciech J.; Norek, Małgorzata; Michalska-Domańska, Marta; Bombalska, Aneta; Nowak-Stępniowska, Agata; Kwaśny, Mirosław; Bojar, Zbigniew

    2012-10-01

    The anodization of aluminum in 0.3 M chromic acid is studied. The influence of operating conditions (like anodizing voltage and electrolyte's temperature) on the nanoporous anodic aluminum oxide geometry (including pore diameter, interpore distance, the oxide layer thickness and pores density) is thoroughly investigated. The results revealed typical correlations of the anodic alumina nanopore geometry with operating conditions, such as linear increase of pore diameter and interpore distance with anodizing voltage. The anodic aluminum oxide is characterized by a low pores arrangement, as determined by Fast Fourier transforms analyses of the FE-SEM images, which translates into a high concentration of oxygen vacancies. Moreover, an optimal experimental condition where chromate ions are being successfully incorporated into the anodic alumina walls, have been determined: the higher oxide growth rate the more chromate ions are being trapped. The trapped chromate ions and a high concentration of oxygen vacancies make the anodic aluminum oxide a promising luminescent material.

  19. Silicon Whisker and Carbon Nanofiber Composite Anode Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) proposes to develop a silicon whisker and carbon nanofiber composite anode for lithium ion batteries on a Phase I program. This anode...

  20. Carbon foam anode modified by urea and its higher electrochemical performance in marine benthic microbial fuel cell

    Science.gov (United States)

    Fu, Yubin; Lu, Zhikai; Zai, Xuerong; Wang, Jian

    2015-08-01

    Electrode materials have an important effect on the property of microbial fuel cell (MFC). Carbon foam is utilized as an anode and further modified by urea to improve its performance in marine benthic microbial fuel cell (BMFC) with higher voltage and output power. The electrochemical properties of plain carbon foam (PC) and urea-modified carbon foam (UC) are measured respectively. Results show that the UC obtains better wettability after its modification and higher anti-polarization ability than the PC. A novel phenomenon has been found that the electrical potential of the modified UC anode is nearly 100 mV lower than that of the PC, reaching -570 ±10 mV ( vs. SCE), and that it also has a much higher electron transfer kinetic activity, reaching 9399.4 mW m-2, which is 566.2-fold higher than that from plain graphite anode (PG). The fuel cell containing the UC anode has the maximum power density (256.0 mW m-2) among the three different BMFCs. Urea would enhance the bacteria biofilm formation with a more diverse microbial community and maintain more electrons, leading to a lower anodic redox potential and higher power output. The paper primarily analyzes why the electrical potential of the modified anode becomes much lower than that of others after urea modification. These results can be utilized to construct a novel BMFC with higher output power and to design the conditioner of voltage booster with a higher conversion ratio. Finally, the carbon foam with a bigger pore size would be a potential anodic material in conventional MFC.

  1. Anodic behavior of Mg in acidic AlCl3–1-ethyl-3-methyl-imidazolium chloride ionic liquid

    International Nuclear Information System (INIS)

    Highlights: • A viscous layer formed at Mg/ionic liquid interface after the dissolution of Mg. • As direct evidence, photo of viscous layer at the interface was presented. • Viscous layer was resulted from accumulation of dissolved Mg(II) at interface. • Formation of viscous layer resulted in a homogenous etched Mg surface. • Dissolution model of Mg and formation mechanism of viscous layer was discussed. - Abstract: In this paper, anodic behavior of Mg in acidic AlCl3–1-ethyl-3-methyl-imidazolium chloride (AlCl3–EMIC) ionic liquid was investigated by conducting linear sweep voltammetry, chronoamperometry and chonopotentiometry. The viscosity of Mg dissolved ionic liquid and the surface morphologies of Mg were characterized using an Ostwald viscometer and a scanning electron microscopy, respectively. The results showed that the oxide film on the surface of Mg had great effects on the anodic behavior. The dissolution of Mg under anodic polarization occurred after the breakdown of oxide film. A viscous layer was observed forming at the interface of Mg/ionic liquid during the dissolution process. The formation of viscous layer was attributed to the accumulation of Mg dissolved AlCl3–EMIC ionic liquid at the interface, which was of high viscosity. With a viscous layer formed in the anodic process, the etched surface of Mg anode was homogeneous and flat without any etching pits. Otherwise, the Mg showed a morphology of pitting on the surface

  2. Influence of 8-hydroxyquinoline on properties of anodic coatings obtained by micro arc oxidation on AZ91 magnesium alloys

    International Nuclear Information System (INIS)

    Highlights: ► 8-HQ can promote the coating formation and change the coating color. ► 8-HQ can increase the coating thickness and decrease the pore size. ► Insoluble Mg(HQ)2 is formed in anodic coatings in an alkaline solution with 8-HQ. ► 8-HQ improves the corrosion resistance of the anodized magnesium alloys. - Abstract: The influence of 8-hydroxyquinoline (8-HQ) on formation and properties of anodic coatings obtained by micro arc oxidation (MAO) on AZ91 magnesium alloys was studied by scanning electron microscope (SEM), energy dispersive spectrometry (EDS), Fourier transform infrared (FT-IR) spectroscopy and potentiodynamic polarization tests. The results demonstrate that 8-HQ can decrease the solution conductivity, take part in the coating formation and change the coating color. By developing anodic coatings with increasing thickness, insoluble Mg(HQ)2 and small pore size, 8-HQ improves the corrosion resistance of the anodized magnesium alloys. The coating shows the best corrosion resistance in the solution of 10 g/L NaOH and 18 g/L Na2SiO3 with 2 g/L 8-HQ.

  3. Influence of 8-hydroxyquinoline on properties of anodic coatings obtained by micro arc oxidation on AZ91 magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R.F. [Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); School of Material Science and Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Zhang, S.F., E-mail: zhangshufang790314@sina.com [Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); School of Material Science and Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Yang, N.; Yao, L.J.; He, F.X.; Zhou, Y.P.; Xu, X.; Chang, L.; Bai, S.J. [School of Material Science and Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013 (China)

    2012-10-25

    Highlights: Black-Right-Pointing-Pointer 8-HQ can promote the coating formation and change the coating color. Black-Right-Pointing-Pointer 8-HQ can increase the coating thickness and decrease the pore size. Black-Right-Pointing-Pointer Insoluble Mg(HQ){sub 2} is formed in anodic coatings in an alkaline solution with 8-HQ. Black-Right-Pointing-Pointer 8-HQ improves the corrosion resistance of the anodized magnesium alloys. - Abstract: The influence of 8-hydroxyquinoline (8-HQ) on formation and properties of anodic coatings obtained by micro arc oxidation (MAO) on AZ91 magnesium alloys was studied by scanning electron microscope (SEM), energy dispersive spectrometry (EDS), Fourier transform infrared (FT-IR) spectroscopy and potentiodynamic polarization tests. The results demonstrate that 8-HQ can decrease the solution conductivity, take part in the coating formation and change the coating color. By developing anodic coatings with increasing thickness, insoluble Mg(HQ){sub 2} and small pore size, 8-HQ improves the corrosion resistance of the anodized magnesium alloys. The coating shows the best corrosion resistance in the solution of 10 g/L NaOH and 18 g/L Na{sub 2}SiO{sub 3} with 2 g/L 8-HQ.

  4. Effects of benzotriazole on anodized film formed on AZ31B magnesium alloy in environmental-friendly electrolyte

    International Nuclear Information System (INIS)

    An environmental-friendly electrolyte of silicate and borate, which contained an addition agent of 1H-benzotriazole (BTA) with low toxicity (LD50 of 965 mg/kg), was used to prepare an anodized film on AZ31B magnesium alloy under the constant current density of 1.5 A/dm2 at room temperature. Effects of BTA on the properties of the anodized film were studied by scanning electron microscopy (SEM), energy dispersion spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), loss weight measurement, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS), respectively. The results demonstrated that anodized growth process, surface morphology, thickness, phase structure and corrosion resistance of the anodized film were strongly dependant on the BTA concentration, which might be attributed to the formation of an BTA adsorption layer on magnesium substrate surface. When the BTA concentration was 5 g/L in the electrolyte, a compact and thick anodized film could provide excellent corrosion resistance for AZ31B magnesium alloy.

  5. Multilayer tape cast SOFC – Effect of anode sintering temperature

    DEFF Research Database (Denmark)

    Hauch, Anne; Birkl, Christoph; Brodersen, Karen; Jørgensen, Peter Stanley

    2012-01-01

    Multilayer tape casting (MTC) is considered a promising, cost-efficient, up-scalable shaping process for production of planar anode supported solid oxide fuel cells (SOFC). Multilayer tape casting of the three layers comprising the half cell (anode support/active anode/electrolyte) can potentially...

  6. Cadmium plated steel caps seal anodized aluminum fittings

    Science.gov (United States)

    Padden, J.

    1971-01-01

    Cadmium prevents fracturing of hard anodic coating under torquing to system specification requirements, prevents galvanic coupling, and eliminates need for crush washers, which, though commonly used in industry, do not correct leakage problem experienced when anodized aluminum fittings and anodized aluminum cap assemblies are joined.

  7. Anodic Stripping Voltammetry: An Instrumental Analysis Experiment.

    Science.gov (United States)

    Wang, Joseph

    1983-01-01

    Describes an experiment designed to acquaint students with the theory and applications of anodic stripping voltammetry (ASV) as well as such ASV problems as contamination associated with trace analysis. The experimental procedure, instrumentation, and materials discussed are designed to minimize cost and keep procedures as simple as possible. (JM)

  8. Basic Principles of Anodic Stripping Voltammetry (ASV)

    OpenAIRE

    2012-01-01

    In this interactive exercise, the basic principles of Anodic Stripping Voltammetry are shown. Each step of the voltammetric process is described using simulated animations. This activity illustrates what takes place in the voltammetric cell when this technique is applied to the determination of cadmium as well as to the simultaneous determination of copper and cadmium.

  9. Superconducting transition temperature in anodized aluminum

    International Nuclear Information System (INIS)

    We have measured the superconducting transition temperature of anodized aluminum films of grain sizes ranging from less than 100 to 3000 A. The transition temperature is 1.8 K for films of grain size 100 A and decreases monotonically with increasing grain size to 1.2 K for 3000-A grains. The effect depends only on the volume of the grains

  10. Silicon Whisker and Carbon Nanofiber Composite Anode

    Science.gov (United States)

    Ma, Junqing (Inventor); Newman, Aron (Inventor); Lennhoff, John (Inventor)

    2015-01-01

    A carbon nanofiber can have a surface and include at least one crystalline whisker extending from the surface of the carbon nanofiber. A battery anode composition can be formed from a plurality of carbon nanofibers each including a plurality of crystalline whiskers.

  11. An inert metal anode for magnesium electrowinning

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J. F.; Hryn, J. N.; Pellin, M. J.; Calaway, W. F.; Watson, K.

    1999-12-01

    Results from the development of a novel type of anode for electrowinning Mg are reported. A tailored alloy system based on the binary Cu-Al can be made to form a thin alumina layer on its surface that is relatively impervious to attack by the molten chloride melt at high temperature. This barrier is thin enough (5--50 nm) to conduct electrical current without significant IR loss. As the layer slowly dissolves, the chemical potential developed at the surface drives the diffusion of aluminum from the bulk alloy to reform (heal) the protective alumina layer. In this way, an anode that generates Cl{sub 2} (melt electrolysis) and O{sub 2} (wet feed hydrolysis) and no chlorocarbons can be realized. Further, the authors expect the rate of loss of the anode to be dramatically less than the coke-derived carbon anodes typically in use for this technology, leading to substantial cost savings and ancillary pollution control by eliminating coke plant emissions, as well as eliminating chlorinated hydrocarbon emissions from Mg electrowinning cells.

  12. Hybrid anode for semiconductor radiation detectors

    Science.gov (United States)

    Yang, Ge; Bolotnikov, Aleksey E; Camarda, Guiseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B

    2013-11-19

    The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).

  13. Characterization of nanopores ordering in anodic alumina

    DEFF Research Database (Denmark)

    Mátéfi-Tempfli, Stefan; Mátéfi-Tempfli, M.; Piraux, L.

    2008-01-01

    A simple characterization method of the ordering of the nanopores is described for nanoporous anodized aluminium oxides. The method starts with image analysis on scanning electron microscopy representations for the purpose to find repetitive shapes and their centres, i.e. nanopores. Then triangle...

  14. Study on selenium extraction from anode slime

    Institute of Scientific and Technical Information of China (English)

    GU; Heng

    2005-01-01

    Taking a copper anode slime as the raw material, a novel process for selenium extraction was studied. The primary selenium recovery can reach above 88.5 % and the quality index of selenium product can be up to 99.5 %. The economic benefit resulted is remarkable and environment has been protected.

  15. The effect of the presence of alcohol in the dispersing phase of oxide sols on the properties of RuO2-TiO2/Ti anodes obtained by the sol–gel procedure

    Directory of Open Access Journals (Sweden)

    R. ATANASOSKI

    2000-09-01

    Full Text Available The effect of the addition of ethanol and 2-propanol to the dispersing phase of TiO2 and RuO2 sols mixture on the morphology and, consequently, on the electrochemical properties of the sol-gel obtained activated titanium anodes was investigated. The properties of the obtained anodes were compared to those obtained by the thermal decomposition of appropriate chloride salts. The morphology of the anode coatings was examined by scanning tunneling microscopy. The electrochemical behaviour was investigated by cyclic voltammetry and by polarization measurements. An accelerated stability test was used for the examination of the stability of the anodes under simultaneous oxygen and chlorine evolution reaction. A dependence of the anode stability on the type of added alcohol is indicated.

  16. Anodic behaviours, dissolution and passivation of iron-nickel alloys in sulphuric environment. Influence of friction

    International Nuclear Information System (INIS)

    This research thesis reports the study of anodic dissolution and passivation of iron-nickel alloys (10, 20 and 31 pc nickel) in a sulphuric environment, with or without friction, by using anodic polarization curves. Without friction, the three alloys have a similar behaviour as pure iron. The analysis reveals different dissolution and passivation mechanisms with pure iron, and highlights the influence of nickel content on corresponding kinetics. The influence of cyclic plane-on-plane friction has been studied for the 31 pc nickel alloy which has an unsteady austenitic structure. Fretting results in some modifications of polarization curves. These modifications are analysed with respect to fretting parameters (relative speed of antagonist surfaces, contact pressure). They reveal the specific influence of the following phenomena: material strain hardening, martensitic transformation induced by strain hardening, partial destruction of adsorbates and/or of the passive film. Modifications of polarization curves give also information on the evolution of friction characteristics with respect to speed (a phenomenon of lubrication by the electrolyte occurs)

  17. A high pressure xenon gamma-ray spectrometer using a coplanar anode configuration

    Science.gov (United States)

    Sullivan, C. J.; He, Z.; Knoll, G. F.; Tepper, G.; Wehe, D. K.

    2003-06-01

    A new design of a high pressure xenon ionization chamber has been fabricated in an attempt to eliminate the problems associated with acoustical vibrations of the Frisch grid. The function of the traditional Frisch grid has been accomplished by employing a coplanar anode system capable of single polarity charge sensing. Two different detector designs have been fabricated using both cylindrical and parallel plate geometries. Each is filled with highly purified xenon gas at a pressure of approximately 57 atm. The designs of these new spectrometers and their measured characteristics will be presented.

  18. A high pressure xenon gamma-ray spectrometer using a coplanar anode configuration

    International Nuclear Information System (INIS)

    A new design of a high pressure xenon ionization chamber has been fabricated in an attempt to eliminate the problems associated with acoustical vibrations of the Frisch grid. The function of the traditional Frisch grid has been accomplished by employing a coplanar anode system capable of single polarity charge sensing. Two different detector designs have been fabricated using both cylindrical and parallel plate geometries. Each is filled with highly purified xenon gas at a pressure of approximately 57 atm. The designs of these new spectrometers and their measured characteristics will be presented

  19. Structural comparison of anodic nanoporous-titania fabricated from single-step and three-step of anodization using two paralleled-electrodes anodizing cell

    Directory of Open Access Journals (Sweden)

    Mallika Thabuot

    2016-02-01

    Full Text Available Anodization of Ti sheet in the ethylene glycol electrolyte containing 0.38wt% NH4F with the addition of 1.79wt% H2O at room temperature was studied. Applied potential of 10-60 V and anodizing time of 1-3 h were conducted by single-step and three-step of anodization within the two paralleled-electrodes anodizing cell. Their structural and textural properties were investigated by X-ray diffraction (XRD and scanning electron microscopy (SEM. After annealing at 600°C in the air furnace for 3 h, TiO2-nanotubes was transformed to the higher proportion of anatase crystal phase. Also crystallization of anatase phase was enhanced as the duration of anodization as the final step increased. By using single-step of anodization, pore texture of oxide film was started to reveal at the applied potential of 30 V. Better orderly arrangement of the TiO2-nanotubes array with larger pore size was obtained with the increase of applied potential. The applied potential of 60 V was selected for the three-step of anodization with anodizing time of 1-3 h. Results showed that the well-smooth surface coverage with higher density of porous-TiO2 was achieved using prolonging time at the first and second step, however, discontinuity tube in length was produced instead of the long-vertical tube. Layer thickness of anodic oxide film depended on the anodizing time at the last step of anodization. More well arrangement of nanostructured-TiO2 was produced using three-step of anodization under 60 V with 3 h for each step.

  20. Penta prism laser polarizer.

    Science.gov (United States)

    Lotem, H; Rabinovitch, K

    1993-04-20

    A novel type of laser prism polarizer is proposed. The polarizer is characterized by a high transmission efficiency, a high optical damage threshold, and a high extinction ratio. The polarizer is shaped like a regular penta prism and, thus, it is a constant deviation angle device. Polarization effects occur upon the two internal cascade reflections in the prism. Anisotropic and Isotropic types of the polarizer are discussed. The isotropic polarizer is a prism made of a high refractive-index glass coated by multilayer polarization-type dielectric coatings. Efficient s-state polarization is obtained because of p-state leakage upon the two internal cascade reflections. The anisotropic polarizer is made of a birefringent crystal in which angular polarization splitting is obtained by the bireflectance (double-reflection) effect. Fanning of a laser beam into up to eight polarized beams is possible in a prism made of a biaxial crystal. PMID:20820335

  1. Local deposition of polypyrrole on aluminum by anodizing, laser irradiation, and electrolytic polymerization and its application to the fabrication of micro-actuators

    International Nuclear Information System (INIS)

    Polypyrrole was deposited at selected areas on aluminum by anodizing, laser irradiation, and electrolytic polymerization, and the application of the technique for fabricating micro-actuators was attempted. Aluminum specimens covered with porous type anodic oxide films were irradiated with a pulsed Nd-YAG laser to remove the oxide films locally, and then thin Ni layers were deposited at areas where film had been removed. Polypyrrole could be successfully deposited only on the Ni layer by anodic polarization of the specimens in pyrrole monomer solution, and a polypyrrole/Ni bilayer structure could be obtained by dissolution of the aluminum substrate and anodic oxide film in NaOH solutions. The bilayer structure was found to be inactive to doping and dedoping of ions during anodic and cathodic polarization. A three-layer structure, nitrocellulose/Ni/polypyrrole, fabricated by electrolytic polymerization after nitrocellulose coating on a Ni layer detached from the aluminum substrate, showed ion-doping and -dedoping activity, suggesting the possibility of fabricating micro-actuators in this manner

  2. Further observations on the operation of a GaAs polarized electron source

    Energy Technology Data Exchange (ETDEWEB)

    Guo, X.Q.; Crowe, D.M.; Lubell, M.S.; Tang, F.C.; Vasilakis, A. (Department of Physics, The City College of CUNY, New York, New York 10031 (USA)); Eminyan, M. (Laboratoire de Physique Atomique, Tour 24, Universite Paris VII, F-75251 Paris (France)); Slevin, J. (Department of Experimental Physics, St. Patrick' s College, Maynooth, County Kildare (Ireland))

    1990-07-01

    We report on several important features of GaAs polarized electron source operation. Specifically we point out the beneficial effect on crystal lifetime produced by the constant low-level application of cesium from a dispenser embedded in an extraction anode. Using our experience in low-energy polarized electron-atom scattering as a reference, we also discuss the importance of frequent energy calibrations of GaAs electron beams for high-resolution investigations.

  3. Further observations on the operation of a GaAs polarized electron source

    International Nuclear Information System (INIS)

    We report on several important features of GaAs polarized electron source operation. Specifically we point out the beneficial effect on crystal lifetime produced by the constant low-level application of cesium from a dispenser embedded in an extraction anode. Using our experience in low-energy polarized electron-atom scattering as a reference, we also discuss the importance of frequent energy calibrations of GaAs electron beams for high-resolution investigations

  4. Investigation of mechanism of anode plasma formation in ion diode with dielectric anode

    Science.gov (United States)

    Pushkarev, A.

    2015-10-01

    The results of investigation of the anode plasma formation in a diode with a passive anode in magnetic insulation mode are presented. The experiments have been conducted using the BIPPAB-450 ion accelerator (350-400 kV, 6-8 kA, 80 ns) with a focusing conical diode with Br external magnetic field (a barrel diode). For analysis of plasma formation at the anode and the distribution of the ions beam energy density, infrared imaging diagnostics (spatial resolution of 1-2 mm) is used. For analysis of the ion beam composition, time-of-flight diagnostics (temporal resolution of 1 ns) were used. Our studies have shown that when the magnetic induction in the A-C gap is much larger than the critical value, the ion beam energy density is close to the one-dimensional Child-Langmuir limit on the entire working surface of the diode. Formation of anode plasma takes place only by the flashover of the dielectric anode surface. In this mode, the ion beam consists primarily of singly ionized carbon ions, and the delay of the start of formation of the anode plasma is 10-15 ns. By reducing the magnetic induction in the A-C gap to a value close to the critical one, the ion beam energy density is 3-6 times higher than that calculated by the one-dimensional Child-Langmuir limit, but the energy density of the ion beam is non-uniform in cross-section. In this mode, the anode plasma formation occurs due to ionization of the anode material with accelerated electrons. In this mode, also, the delay in the start of the formation of the anode plasma is much smaller and the degree of ionization of carbon ions is higher. In all modes occurred effective suppression of the electronic component of the total current, and the diode impedance was 20-30 times higher than the values calculated for the mode without magnetic insulation of the electrons. The divergence of the ion beam was 4.5°-6°.

  5. Grain-dependent anodic dissolution of iron

    International Nuclear Information System (INIS)

    The influence of different dissolution techniques (electropolishing or chemical polishing and electrochemical machining (ECM)) on the topography of grains and grain boundaries of polycrystalline iron was analyzed by a combination of electron backscatter diffraction (EBSD) and contact-mode AFM. For electrochemical dissolution at large current densities, small electrode areas were addressed by a capillary microcell to specify the influence of grain orientation on the anodic behaviour, especially the dissolution in sodium nitrate solutions

  6. Electrocatalysis of anodic oxidation of ethanol

    International Nuclear Information System (INIS)

    The results of fundamental and applied studies in the field of electrocatalysis of anodic oxidation of ethanol in fuel cells are considered. Features of the mechanism of ethanol electrooxidation are discussed as well as the structure and electrochemical properties of the most widely used catalysts of this process. The prospects of further studies of direct ethanol fuel cells with alkaline and acidic electrolytes are outlined. The bibliography includes 166 references

  7. High performance anode for advanced Li batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lake, Carla [Applied Sciences, Inc., Cedarville, OH (United States)

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI’s Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI’s patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  8. Effects of NaCl concentration on anode microbes in microbial fuel cells.

    Science.gov (United States)

    Miyahara, Morio; Kouzuma, Atsushi; Watanabe, Kazuya

    2015-12-01

    Understanding of how operational parameters affect the composition of exoelectrogenic microbes is an important step in the development of efficient microbial fuel cells (MFCs). In the present study, single-chamber MFCs were inoculated with rice paddy-field soil and continuously supplied with an acetate medium containing different concentrations of NaCl (0-1.8 M). Polarization analyses showed that power output increased as the NaCl concentration increased to 0.1 M, while it was markedly diminished over 0.3 M. The increase in power output was associated with an increased abundance of anode microbes as assessed by protein assays. Notably, the power increase was also accompanied by an increase in the abundance ratio of Geobacter bacteria to total anode bacteria as assessed by pyrosequencing of 16S rRNA gene amplicons and specific quantitative PCR. Although most Geobacter species are known to exhibit high growth rates in freshwater media without NaCl, the present study shows that 0.1 M NaCl facilitates the growth of Geobacter in MFC anode biofilms. This result suggests that the optimum salt concentration in MFC is determined by the balance of two factors, namely, the solution conductivity and salt tolerance of exoelectrogens. PMID:26061773

  9. Nickel-cermet anode for fuel elements with LSGM-electrolyte

    International Nuclear Information System (INIS)

    Effect of certain process variables (burning temperature, interface layer thickness of the solid electrolyte Ce0.82Gd0.18O1.91 (GDC), quantity of the GDC-electrolyte in Ni-cermet) on electrochemical and electric properties of the nickel-cermet (Ni-GDC) anode for fuel elements with the La0.88Sr0.12Ga0.82Mg0.18O2.85 (LSGM) electrolyte is studied. It is shown that polarization resistance of such electrode depends weakly on the quantity of GDC-electrolyte in the Ni-cermet and on the interface GDC-layer thickness (4.5-23.5 μm), but it grows with the increase of sintering temperature of anode. Contact resistance is established to concentrate at the GDC/LSGM bound in cells with the developed nickel-cermet electrode. At 700 Deg C developed anodes make provision for the current density 1 A/cm2 at overwork less than 100 mV when using wet hydrogen and methane-oxygen mixture as fuel

  10. Nondiffracting transversally polarized beam.

    Science.gov (United States)

    Yuan, G H; Wei, S B; Yuan, X-C

    2011-09-01

    Generation of a nondiffracting transversally polarized beam by means of transmitting an azimuthally polarized beam through a multibelt spiral phase hologram and then highly focusing by a high-NA lens is presented. A relatively long depth of focus (∼4.84λ) of the electric field with only radial and azimuthal components is achieved. The polarization of the wavefront near the focal plane is analyzed in detail by calculating the Stokes polarization parameters. It is found that the polarization is spatially varying and entirely transversally polarized, and the polarization singularity disappears at the beam center, which makes the central bright channel possible. PMID:21886250

  11. Electrochemical activity of Geobacter sulfurreducens biofilms on stainless steel anodes

    International Nuclear Information System (INIS)

    Stainless steel was studied as anode for the biocatalysis of acetate oxidation by biofilms of Geobacter sulfurreducens. Electrodes were individually polarized at different potential in the range -0.20 V to +0.20 V vs. Ag/AgCl either in the same reactor or in different reactors containing acetate as electron donor and no electron acceptor except the working electrode. At +0.20 V vs. Ag/AgCl, the current increased after a 2-day lag period up to maximum current densities around 0.7 A m-2 and 2.4 A m-2 with 5 mM and 10 mM acetate, respectively. No current was obtained during chronoamperometry (CA) at potential values lower than 0.00 V vs. Ag/AgCl, while the cyclic voltammetries (CV) that were performed periodically always detected a fast electron transfer, with the oxidation starting around -0.25 V vs. Ag/AgCl. Epifluorescent microscopy showed that the current recorded by chronoamperometry was linked to the biofilm growth on the electrode surface, while CVs were more likely linked to the cells initially adsorbed from the inoculum. A model was proposed to explain the electrochemical behaviour of the biofilm, which appeared to be controlled by the pioneering adherent cells playing the role of 'electrochemical gate' between the biofilm and the electrode surface

  12. Electrochemical activity of Geobacter sulfurreducens biofilms on stainless steel anodes

    Energy Technology Data Exchange (ETDEWEB)

    Dumas, Claire; Basseguy, Regine; Bergel, Alain [Laboratoire de Genie Chimique CNRS-INPT, 5 rue Paulin Talabot, BP 1301, 31106 Toulouse Cedex 1 (France)

    2008-06-30

    Stainless steel was studied as anode for the biocatalysis of acetate oxidation by biofilms of Geobacter sulfurreducens. Electrodes were individually polarized at different potential in the range -0.20 V to +0.20 V vs. Ag/AgCl either in the same reactor or in different reactors containing acetate as electron donor and no electron acceptor except the working electrode. At +0.20 V vs. Ag/AgCl, the current increased after a 2-day lag period up to maximum current densities around 0.7 A m{sup -2} and 2.4 A m{sup -2} with 5 mM and 10 mM acetate, respectively. No current was obtained during chronoamperometry (CA) at potential values lower than 0.00 V vs. Ag/AgCl, while the cyclic voltammetries (CV) that were performed periodically always detected a fast electron transfer, with the oxidation starting around -0.25 V vs. Ag/AgCl. Epifluorescent microscopy showed that the current recorded by chronoamperometry was linked to the biofilm growth on the electrode surface, while CVs were more likely linked to the cells initially adsorbed from the inoculum. A model was proposed to explain the electrochemical behaviour of the biofilm, which appeared to be controlled by the pioneering adherent cells playing the role of ''electrochemical gate'' between the biofilm and the electrode surface. (author)

  13. Improvement in direct methanol fuel cell performance by treating the anode at high anodic potential

    Science.gov (United States)

    Joghee, Prabhuram; Pylypenko, Svitlana; Wood, Kevin; Corpuz, April; Bender, Guido; Dinh, Huyen N.; O'Hayre, Ryan

    2014-01-01

    This work investigates the effect of a high anodic potential treatment protocol on the performance of a direct methanol fuel cell (DMFC). DMFC membrane electrode assemblies (MEAs) with PtRu/C (Hi-spec 5000) anode catalyst are subjected to anodic treatment (AT) at 0.8 V vs. DHE using potentiostatic method. Despite causing a slight decrease in the electrochemical surface area (ECSA) of the anode, associated with ruthenium dissolution, AT results in significant improvement in DMFC performance in the ohmic and mass transfer regions and increases the maximum power density by ∼15%. Furthermore, AT improves the long-term DMFC stability by reducing the degradation of the anode catalyst. From XPS investigation, it is hypothesized that the improved performance of AT-treated MEAs is related to an improved interface between the catalyst and Nafion ionomer. Among potential explanations, this improvement may be caused by incorporation of the ionomer within the secondary pores of PtRu/C agglomerates, which generates a percolating network of ionomer between PtRu/C agglomerates in the catalyst layer. Furthermore, the decreased concentration of hydrophobic CF2 groups may help to enhance the hydrophilicity of the catalyst layer, thereby increasing the accessibility of methanol and resulting in better performance in the high current density region.

  14. The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films

    Science.gov (United States)

    Ren, Jianjun; Zuo, Yu

    2012-11-01

    The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films were studied. The voltage-time response for galvanostatic anodization of aluminum in malonic acid solution exhibits a conventional three-stage feature but the formation voltage is much higher. With the increase of electrolyte concentration, the electrolyte viscosity increases simultaneously and the high viscosity decreases the film growth rate. With the concentration increase of the malonic acid electrolyte, the critical current density that initiates local "burning" on the sample surface decreases. For malonic acid anodization, the field-assisted dissolution on the oxide surface is relatively weak and the nucleation of pores is more difficult, which results in greater barrier layer thickness and larger cell dimension. The embryo of the porous structure of anodic film has been created within the linear region of the first transient stage, and the definite porous structure has been established before the end of the first transient stage. The self-ordering behavior of the porous film is influenced by the electrolyte concentration, film thickness and the applied current density. Great current density not only improves the cell arrangement order but also brings about larger cell dimension.

  15. Anodic stripping voltammetry of technetium alkaline media

    International Nuclear Information System (INIS)

    A method of direct determination of technetium in 0.1 M NaOH by anodic stripping voltametry at glassy carbon electrode has been elaborated. The peak height of anodic TcO2(OH)2 dissolution was found to be linearly dependent on preconcentration time, and the concentration of technetium in the range 5.0 * 10-8 -6 M. The detection limit for the Tc determination by ASV technique under study was found to be 5.0 * 10-8 M with standard deviation 5-7% (p2(OH)2 anodic dissolution peak current. Addition of 1.0* 10-6 M U(UI) to the sample solution was found to shift the peak of the TcO2(OH)2 100 mV towards negative direction and disturb the linearity of the calibration curve. Therefore; for a successful application of the developed ASV technique for Tc determination in the alkaline media, uranium should be removed from the analyte before determination

  16. Chromic acid anodizing of aluminum foil

    Science.gov (United States)

    Dursch, H.

    1988-01-01

    The success of the Space Station graphite/epoxy truss structure depends on its ability to endure long-term exposure to the LEO environment, primarily the effects of atomic oxygen and the temperture cycling resulting from the 94 minute orbit. This report describes the development and evaluation of chromic acid anodized (CAA) aluminum foil as protective coatings for these composite tubes. Included are: development of solar absorptance and thermal emittance properties required of Al foil and development of CAA parameters to achieve these optical properties; developing techniques to CAA 25 ft lengths of Al foil; developing bonding processes for wrapping the Al foil to graphite/epoxy tubes; and atomic oxygen testing of the CAA Al foil. Two specifications were developed and are included in the report: Chromic Acid Anodizing of Aluminum Foil Process Specification and Bonding of Anodized Aluminum Foil to Graphite/Epoxy Tubes. Results show that CAA Al foil provides and excellent protective and thermal control coating for the Space Station truss structure.

  17. Effect of various de-anodizing techniques on the surface stability of non-colored and colored nanoporous AAO films in acidic solution

    Science.gov (United States)

    Awad, Ahmed M.; Shehata, Omnia S.; Heakal, Fakiha El-Taib

    2015-12-01

    Anodic aluminum oxide (AAO) is well known as an important nanostructured material, and a useful template in the fabrication of nanostructures. Nanoporous anodic alumina (PAA) with high open porosity was prepared by adopting three de-anodizing regimes following the first anodizing step and preceding the second one. The de-anodizing methods include electrolytic etching (EE) and chemical etching using either phosphoric acid (PE) or sodium hydroxide (HE) solutions. Three of the obtained AAO samples were black colored by electrodeposition of copper nanoparticles in their pores. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques were used to characterize the electrochemical performance of the two sets of the prepared samples. In general, the data obtained in aggressive aerated 0.5 M HCl solution demonstrated dissimilar behavior for the three prepared samples despite that the second anodizing step was the same for all of them. The data indicated that the resistance and thickness of the inner barrier part of nano-PAA film, are the main controlling factors determining its stability. On the other hand, coloring the film decreased its stability due to the galvanic effect. The difference in the electrochemical behavior of the three colored samples was discussed based on the difference in both the pore size and thickness of the outer porous part of PAA film as supported by SEM, TEM and cross-sectional micrographs. These results can thus contribute for better engineering applications of nanoporous AAO.

  18. Research of nickel’s electrochemical property in sulfuric acid solution by using potentiodynamic polarization curve.

    Directory of Open Access Journals (Sweden)

    Bekenova Gulmira

    2015-03-01

    Full Text Available In the presented work in order to deeply study the mechanism of electrode processes that take place while polarizing the nickel electrode in acid solutions by alternating current, potentiodynamic polarization curves were obtained.The detailed study of shapes of polarization curves; their dependence on concentration, temperature, and other physical and chemical parameters, gives opportunity to obtain full information on the nature and kinesthetic of processes taking place on electrode surface. The electrochemical properties of nickel electrode were researched by estimating cyclic potentiodynamic polarization curves in sulfuric acid medium; and the influence of electrolyte concentration, potential giving speed, the temperature of solution on anodic and cathode processes were also studied. The meanings of transfer number (an and diffusion (D coefficient, the reaction order of metal ions during the process of nickel electrode’s anode corrosion in sulfuric acid solution, and the activation energy is estimated. Result of the calculations showed that nickel’s melting process goes in mixed, diffusion-kinetic regime. It was found that the raising of solution’s temperature increases the height of corrosion current. The results of the experiments done during the application of cyclic polarization curves showed that the electrochemical processes that take place in polarization by industrial alternating current in anode and cathode half periods is different from those done in stable current and with more complex mechanism.

  19. Polarization-balanced beamsplitter

    Science.gov (United States)

    Decker, D.E.

    1998-02-17

    A beamsplitter assembly is disclosed that includes several beamsplitter cubes arranged to define a plurality of polarization-balanced light paths. Each polarization-balanced light path contains one or more balanced pairs of light paths, where each balanced pair of light paths includes either two transmission light paths with orthogonal polarization effects or two reflection light paths with orthogonal polarization effects. The orthogonal pairing of said transmission and reflection light paths cancels polarization effects otherwise caused by beamsplitting. 10 figs.

  20. Zinc electrowinning: anode conditioning and current distribution studies

    International Nuclear Information System (INIS)

    In the zinc electrowinning (EW) process, Pb-Ag anodes are widely used. Prior to their use in the EW process, anodes are conditioned to form a stable oxide layer that can evolve O2 without excessive Pb contamination of the cathode and MnO2 precipitation. The most widely used conditioning techniques are: passivation in a KF-H2SO4 electrolysis bath, chemical oxidation in a KMnO4-H2SO4 solution, and sandblasting. In this paper, a comparison of these treatments using flat and corrugated anodes is presented. Laboratory and industrial-scale tests carried out at Cominco's Trail and Cajamarquilla zinc plants indicated that flat anodes should be sandblasted or electrochemically passivated before their use in the Zn electrowinning process. Further, corrugated anodes should be sandblasted or chemically conditioned in a KMnO4-H2SO4 -electrolyte. The beneficial effects of chemical conditioning are lost if the anode is non-corrugated. Flat, chemically conditioned anodes generate up to 10 times more mud than corrugated-chemically conditioned anodes. Because anode mud growth is evenly distributed on sandblasted anodes, short-circuit frequency may decrease and anode life may increase. Sandblasting does not appear to affect anode performance. Parallel to the industrial anode conditioning tests, current distribution measurements were made. Current flow measurements were used to correct troublesome electrodes and/or bad electrical contacts. In Cajamarquilla, this technique was used in four industrial electrowinning cells and energy consumption values lower than 3000 kWh/t Zn were obtained at current efficiencies as high as 95% and at current densities up to 450 A/m2. (author)

  1. Anodic Dissolution of API X70 Pipeline Steel in Arabian Gulf Seawater after Different Exposure Intervals

    Directory of Open Access Journals (Sweden)

    El-Sayed M. Sherif

    2014-01-01

    Full Text Available The anodic dissolution of API X70 pipeline steel in Arabian Gulf seawater (AGSW was investigated using open-circuit potential (OCP, electrochemical impedance spectroscopy (EIS, cyclic potentiodynamic polarization (CPP, and current-time measurements. The electrochemical experiments revealed that the X70 pipeline steel suffers both general and pitting corrosion in the AGSW solution. It was found that the general corrosion decreases as a result of decreasing the corrosion current density (jcorr, corrosion rate (Rcorr and absolute currents as well as the increase of polarization resistance of X70 with increasing the exposure time. On the other hand, the pitting corrosion was found to increase with increasing the immersion time. This was confirmed by the increase of current with time and by the SEM images that were obtained on the steel surface after 20 h immersion before applying an amount of 0–.35 V versus Ag/AgCl for 1 h.

  2. Improvement of rate capability of spinel lithium titanate anodes using microwave-assisted zinc nanocoating

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Chien-Te, E-mail: cthsieh@saturn.yzu.edu.tw [Department of Chemical Engineering and Materials Science, Yuan Ze Fuel Cell Center, Yuan Ze University, Taoyuan 320, Taiwan (China); Chang, Bi-Sheng; Lin, Jia-Yi; Juang, Ruey-Shin [Department of Chemical Engineering and Materials Science, Yuan Ze Fuel Cell Center, Yuan Ze University, Taoyuan 320, Taiwan (China)

    2012-02-05

    Highlights: Black-Right-Pointing-Pointer Microwave-assisted Zn layers onto Li{sub 4}Ti{sub 5}O{sub 12} crystals serves as superior anode materials. Black-Right-Pointing-Pointer Microwave heating is capable of depositing Zn layers over the surface of spinel Li{sub 4}Ti{sub 5}O{sub 12} within 6 min. Black-Right-Pointing-Pointer The thickness of Zn layer is an increasing function of zinc nitrate concentration. Black-Right-Pointing-Pointer The deposition of Zn coating shows a positive effect on the rate-capability improvement of anodes. - Abstract: In this study, the deposition of microwave-assisted Zn layers onto spinel lithium titanate (Li{sub 4}Ti{sub 5}O{sub 12}) crystals as superior anode materials for Li-ion batteries has been investigated. Microwave heating is capable of rapidly depositing Zn layers over the surface of spinel Li{sub 4}Ti{sub 5}O{sub 12} within 6 min. The thickness of Zn layer (i.e., 1-10 nm) is an increasing function of zinc nitrate concentration under the microwave irradiation. The charge-discharge curve of Zn-Li{sub 4}Ti{sub 5}O{sub 12} anode still maintains the plateau at 1.5 V, contributing to the major portion in the overall specific capacity. The presence of Zn coating significantly facilitates the capacity retention (78.1% at 10 C/0.2 C) of the composite anodes with high Coulombic efficiency (>99.9%), indicating an excellent reversibility of insertion/de-insertion of Li ions. This can be ascribed to the fact that well-dispersed Zn layer offers an electronic pathway over the Li{sub 4}Ti{sub 5}O{sub 12} powder, thus imparting electronic conduction and reducing cell polarization. Accordingly, the deposition of Zn coating, prepared by the rapid microwave heating, shows a positive effect on the rate-capability improvement of Li{sub 4}Ti{sub 5}O{sub 12} anodes.

  3. Inert Electrodes Program: Characterization of the reaction layer or film on PNL (Pacific Northwest Laboratory) inert anodes: Progress Report for April-December 1989

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, C.F. Jr.; Stice, N.D.

    1990-05-01

    This progress report addresses activities conducted at Pacific Northwest Laboratory (PNL) between April 1989 and December 1989 to characterize the reaction layer or film previously proposed by PNL to form on cermet anodes during the electrolytic production of aluminum in Hall-Heroult cells. Formation of this resistive film was thought to protect the cermet anode from corrosion reactions that would otherwise occur in the molten cryolite electrolyte. The results of potential-step studies, electrochemical impedance spectroscopy, and post-mortem microscopic analysis of polarized anodes suggest that the processes of corrosion of the metallic phase of the anode and the production of oxygen gas are separable and exhibit very different kinetic behavior. The corrosion reactions occur predominantly at low anode potentials, appear to show diffusion control, and may be related to the porosity of the anode. The oxygen production reaction is the predominant reaction above 2.2 V, exhibits activation control, occurs primarily on the surface of the anode, and is accompanied by an increase in surface roughness at higher current densities. Evidence presented in this report indicates that the production of oxygen shuts down the corrosion reactions, possibly through a pore-blocking mechanism. In addition, roughness effects may help explain some of the impedance relationships previously observed by PNL for these anodes. Although the present results do not rule out the formation of a protective layer or film, they strongly indicate mechanisms other than the formation of a macroscopic protective film for the apparent attenuation of corrosion reactions at typical operating current densities. 11 refs.

  4. Polarized targets and beams

    International Nuclear Information System (INIS)

    First the experimental situation of the single-pion photoproduction and the photodisintegration of the deuteron is briefly discussed. Then a description of the Bonn polarization facilities is given. The point of main effort is put on the polarized target which plays a vital role in the program. A facility for photon induced double polarization experiments at ELSA will be presented in section 4. Properties of a tensor polarized deuteron target are discussed in section 5. The development in the field of polarized targets, especially on new target materials, enables a new generation of polarized target experiments with (polarized) electrons. Some comments on the use of a polarized target in combination with electron beams will be discussed in section 6. Electron deuteron scattering from a tensor polarized deuteron target is considered and compared with other experimental possibilities. (orig./HSI)

  5. Fundamental Investigation of Si Anode in Li-Ion Cells

    Science.gov (United States)

    Wu, James J.; Bennett, William R.

    2012-01-01

    Silicon is a promising and attractive anode material to replace graphite for high capacity lithium ion cells since its theoretical capacity is approximately 10 times of graphite and it is an abundant element on earth. However, there are challenges associated with using silicon as Li-ion anode due to the significant first cycle irreversible capacity loss and subsequent rapid capacity fade during cycling. In this paper, cyclic voltammetry and electrochemical impedance spectroscopy are used to build a fundamental understanding of silicon anodes. The results show that it is difficult to form the SEI film on the surface of Si anode during the first cycle, the lithium ion insertion and de-insertion kinetics for Si are sluggish, and the cell internal resistance changes with the state of lithiation after electrochemical cycling. These results are compared with those for extensively studied graphite anodes. The understanding gained from this study will help to design better Si anodes.

  6. Redox Stable Anodes for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Guoliang eXiao

    2014-06-01

    Full Text Available Solid oxide fuel cells (SOFCs can convert chemical energy from the fuel directly to electrical energy with high efficiency and fuel flexibility. Ni-based cermets have been the most widely adopted anode for SOFCs. However, the conventional Ni-based anode has low tolerance to sulfur-contamination, is vulnerable to deactivation by carbon build-up (coking from direct oxidation of hydrocarbon fuels, and suffers volume instability upon redox cycling. Among these limitations, the redox instability of the anode is particularly important and has been intensively studied since the SOFC anode may experience redox cycling during fuel cell operations even with the ideal pure hydrogen as the fuel. This review aims to highlight recent progresses on improving redox stability of the conventional Ni-based anode through microstructure optimization and exploration of alternative ceramic-based anode materials.

  7. Anodes Stimulate Anaerobic Toluene Degradation via Sulfur Cycling in Marine Sediments.

    Science.gov (United States)

    Daghio, Matteo; Vaiopoulou, Eleni; Patil, Sunil A; Suárez-Suárez, Ana; Head, Ian M; Franzetti, Andrea; Rabaey, Korneel

    2016-01-01

    Hydrocarbons released during oil spills are persistent in marine sediments due to the absence of suitable electron acceptors below the oxic zone. Here, we investigated an alternative bioremediation strategy to remove toluene, a model monoaromatic hydrocarbon, using a bioanode. Bioelectrochemical reactors were inoculated with sediment collected from a hydrocarbon-contaminated marine site, and anodes were polarized at 0 mV and +300 mV (versus an Ag/AgCl [3 M KCl] reference electrode). The degradation of toluene was directly linked to current generation of up to 301 mA m(-2) and 431 mA m(-2) for the bioanodes polarized at 0 mV and +300 mV, respectively. Peak currents decreased over time even after periodic spiking with toluene. The monitoring of sulfate concentrations during bioelectrochemical experiments suggested that sulfur metabolism was involved in toluene degradation at bioanodes. 16S rRNA gene-based Illumina sequencing of the bulk anolyte and anode samples revealed enrichment with electrocatalytically active microorganisms, toluene degraders, and sulfate-reducing microorganisms. Quantitative PCR targeting the α-subunit of the dissimilatory sulfite reductase (encoded by dsrA) and the α-subunit of the benzylsuccinate synthase (encoded by bssA) confirmed these findings. In particular, members of the family Desulfobulbaceae were enriched concomitantly with current production and toluene degradation. Based on these observations, we propose two mechanisms for bioelectrochemical toluene degradation: (i) direct electron transfer to the anode and/or (ii) sulfide-mediated electron transfer. PMID:26497463

  8. Anodes Stimulate Anaerobic Toluene Degradation via Sulfur Cycling in Marine Sediments

    Science.gov (United States)

    Daghio, Matteo; Vaiopoulou, Eleni; Patil, Sunil A.; Suárez-Suárez, Ana; Head, Ian M.

    2015-01-01

    Hydrocarbons released during oil spills are persistent in marine sediments due to the absence of suitable electron acceptors below the oxic zone. Here, we investigated an alternative bioremediation strategy to remove toluene, a model monoaromatic hydrocarbon, using a bioanode. Bioelectrochemical reactors were inoculated with sediment collected from a hydrocarbon-contaminated marine site, and anodes were polarized at 0 mV and +300 mV (versus an Ag/AgCl [3 M KCl] reference electrode). The degradation of toluene was directly linked to current generation of up to 301 mA m−2 and 431 mA m−2 for the bioanodes polarized at 0 mV and +300 mV, respectively. Peak currents decreased over time even after periodic spiking with toluene. The monitoring of sulfate concentrations during bioelectrochemical experiments suggested that sulfur metabolism was involved in toluene degradation at bioanodes. 16S rRNA gene-based Illumina sequencing of the bulk anolyte and anode samples revealed enrichment with electrocatalytically active microorganisms, toluene degraders, and sulfate-reducing microorganisms. Quantitative PCR targeting the α-subunit of the dissimilatory sulfite reductase (encoded by dsrA) and the α-subunit of the benzylsuccinate synthase (encoded by bssA) confirmed these findings. In particular, members of the family Desulfobulbaceae were enriched concomitantly with current production and toluene degradation. Based on these observations, we propose two mechanisms for bioelectrochemical toluene degradation: (i) direct electron transfer to the anode and/or (ii) sulfide-mediated electron transfer. PMID:26497463

  9. Microstructural degradation of Ni-YSZ anodes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Thyden, K.

    2008-03-15

    Ni-YSZ cermets have been used as anode materials in SOFCs for more than 20 years. Despite this fact, the major cause of degradation within the Ni-YSZ anode, namely Ni sintering / coarsening, is still not fully understood. Even if microstructural studies of anodes in tested cells are of technological relevance, it is difficult to identify the effect from isolated parameters such as temperature, fuel gas composition and polarization. Model studies of high temperature aged Ni-YSZ cermets are generally performed in atmospheres containing relatively low concentrations of H2O. In this work, the microstructural degradation in both electrochemically longterm tested cells and high-temperature aged model materials are studied. Since Ni particle sintering / coarsening is attributed to be the major cause of anode degradation, this subject attains the primary focus. A large part of the work is focused on improving microstructural techniques and shows that the application of low acceleration voltages (<= 1 kV) in a FE-SEM makes it possible to obtain two useful types of contrast between the phases in Ni-YSZ composites. By changing between the ordinary lateral SE detector and the inlens detector, using similar microscope settings, two very different sample characteristics are probed: 1) The difference in secondary emission coefficient, delta, between the percolating and non-percolating Ni is maximized in the low-voltage range due to a high delta for the former and the suppression of delta by a positive charge for the latter. This difference yields a contrast between the two phases which is picked up by an inlens secondary electron detector. 2) The difference in backscatter coefficient, eta, between Ni and YSZ is shown to increase with decreasing voltage. The contrast is illustrated in images collected by the normal secondary detector since parts of the secondary signals are generated by backscattered electrons. High temperature aging experiments of model Ni-YSZ anode cermets show

  10. Galvanic anodes for reinforced concrete repair : French experience

    OpenAIRE

    Bouteiller, Véronique; TACHE, Guy

    2009-01-01

    This conference will serve as an introduction to the Workshop untitled "Cathodic Protection of Steel in Concrete by galvanic anodes" and will present the French state of the art on the use of this type of repair. Galvanic (or sacrificial) anode systems can be applied in many structures like bridges, harbours, industrial silos, buildings, car parks, for example. These structures exist in various environments : carbonated, chlorinated, marine, etc. Galvanic anode systems can be surface ins...

  11. Battery, especially for portable devices, has an anode containing silicon

    OpenAIRE

    S. Y. Kan

    2002-01-01

    The anode (2) contains silicon. A battery with a silicon-containing anode is claimed. An Independent claim is also included for a method used to make the battery, comprising the doping of a silicon substrate (1) with charge capacity-increasing material (preferably boron, phosphorous or arsenic), etching the doped substrate layer in order to increase its porosity, and applying a cathode (3) in the form of a lithium oxide compound onto the resulting anode and applying an electrolyte (4) to the ...

  12. Effective pulsed-repetitive vircator with double anode grid

    International Nuclear Information System (INIS)

    In this paper we present investigation results of a vircator characteristics with a double anode grid operating in pulsed-repetitive regime. Electrons were emitted with a plain graphite cathode and injected to a parabolic drift chamber of the vircator through the anode, made of tungsten wire. Experimentally it was shown that use of the anode on the form of double grid provides significant increase of the generated microwave radiation in comparison with a traditional single-grid variant

  13. Polarization measurements on single-step co-fired solid oxide fuel cells (SOFCs)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Kyung Joong; Zink, Peter; Gopalan, Srikanth; Pal, Uday B. [Department of Manufacturing Engineering, Boston University, Boston, MA 02215 (United States)

    2007-10-11

    Anode-supported planar solid oxide fuel cells (SOFC) were successfully fabricated by a single step co-firing process. The cells comprised of a Ni + yttria-stabilized zirconia (YSZ) anode, a YSZ or scandia-stabilized zirconia (ScSZ) electrolyte, a (La{sub 0.85}Ca{sub 0.15}){sub 0.97}MnO{sub 3} (LCM) + YSZ cathode active layer, and an LCM cathode current collector layer. The fabrication process involved tape casting of the anode, screen printing of the electrolyte and the cathode, and single step co-firing of the green-state cells in the temperature range of 1300-1330 C for 2 h. Cells were tested in the temperature range of 700-800 C with humidified hydrogen as fuel and air as oxidant. Cell test results and polarization modeling showed that the polarization losses were dominated by the ohmic loss associated with the electrodes and the activation polarization of the cathode, and that the ohmic loss due to the ionic resistance of the electrolyte and the activation polarization of the anode were relatively insignificant. Ohmic resistance associated with the electrode was lowered by improving the electrical contact between the electrode and the current collector. Activation polarization of the cathode was reduced by the improvement of the microstructure of the cathode active layer and lowering the cell sintering temperature. The cell performance was further improved by increasing the porosity in the anode. As a result, the maximum power density of 1.5 W cm{sup -2} was achieved at 800 C with humidified hydrogen and air. (author)

  14. Cerium oxide coated anodes for aluminum electrowinning: Topical report, October 1, 1986-June 30, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J. K.

    1987-12-01

    Because of the cost of building and maintaining a carbon anode plant and the energy penalties associated with the use of carbon anodes in the production of aluminum, the use of inert anodes has long been proposed. Various cermet anodes have been investigated. In this paper, tests on a material, cerium oxyfluoride (CEROX), deposited in situ as an anode, are reported. (JDH)

  15. The Performance of Electron-Mediator Modified Activated Carbon as Anode for Direct Glucose Alkaline Fuel Cell

    Directory of Open Access Journals (Sweden)

    Zi Li

    2016-06-01

    Full Text Available Six different electron mediators were immobilized on the activated carbon (AC anode and their effects on performance of a direct glucose alkaline fuel cell were explored. 2-hydroxy-1, 4-naphthoquinone (NQ, methyl viologen (MV, neutral red (NR, methylene blue (MB, 1, 5-dichloroanthraquinone (DA and anthraquinone (AQ were doped in activated carbon (AC, respectively, and pressed on nickel foam to fabricate the anodes. NQ shows comparable performance with MV, but with much lower cost and environmental impact. With NQ-AC anode, the fuel cell attained a peak power density of 16.10 Wm−2, peak current density of 48.09 Am−2, and open circuit voltage of 0.76 V under the condition of 1 M glucose, 3 M KOH, and ambient temperature. Polarization curve, EIS and Tafel measurements were also conducted to explore the mechanism of performance enhancement. The high performance is likely due to the enhanced charge transfer and more reactive sites provided on the anode.

  16. Anodization of Aluminium using a fast two-step process

    Indian Academy of Sciences (India)

    Murugaiya Sridar Ilango; Amruta Mutalikdesai; Sheela K Ramasesha

    2016-01-01

    Ultra-fast two-step anodization method is developed for obtaining ordered nano-pores on aluminium (Al) foil. First anodization was carried out for 10 min, followed by 3 min of second anodization at high voltage (150 V) compared to previous reports of anodization times of 12 h (40-60 V). The pore dimensions on anodized alumina are 180 nm for pore diameter and 130 nm for inter-pore distance. It was evident that by increasing the anodization voltage to 150 V, the diameter of the pores formed was above 150 nm. The electrolyte and its temperature affect the shape and size of the pore formation. At lower anodization temperature, controlled pore formation was observed. The anodized samples were characterized using the field emission scanning electron microscope (FE-SEM) to determine the pore diameter and inter-pore distance. Using UVVisible spectroscopy, the reflectance spectra of anodized samples were measured. The alumina (Al2O3) peaks were identified by x-ray diffraction (XRD) technique. The x-ray photo electron spectroscopy (XPS) analysis confirmed the Al 2p peak at 73.1 eV along with the oxygen O 1s at 530.9 eV and carbon traces C 1s at 283.6 eV.

  17. Testing and Characterization of Anode Current in Aluminum Reduction Cells

    Science.gov (United States)

    Wang, Yongliang; Tie, Jun; Sun, Shuchen; Tu, Ganfeng; Zhang, Zhifang; Zhao, Rentao

    2016-06-01

    Anode current is an important parameter in the aluminum reduction process, but to test the anode current accurately is difficult at present. This study tested the individual anode current using the fiber-optic current sensor. The testing results show that this method can effectively avoid the interference of the electromagnetic field, and the current is measured with high precision which error is less than 1 pct. In the paper, the test currents under different cell conditions, including anode changing, metal tapping, abnormal current, and anode effect, are investigated using the method of time-domain and frequency-domain analysis, and the simulation method is also combined to investigate the cell conditions. The results prove that different cell conditions will show different anode current characteristics, and the individual current can monitor the cell conditions, especially the localized cell conditions. Some abnormal cell conditions can be found through anode current rather than cell voltage. The anode current can also be used for early detection of anode effect.

  18. The corrosion protection of 2219-T87 aluminum by anodizing

    Science.gov (United States)

    Danford, M. D.

    1991-01-01

    Various types of anodizing coatings were studied for 2219-T87 aluminum. These include both type II and type III anodized coats which were water sealed and a newly developed and proprietary Magnaplate HCR (TM) coat. Results indicate that type II anodizing is not much superior to type II anodizing as far as corrosion protection for 2219-T87 aluminum is concerned. Magnaplate HCR (TM) coatings should provide superior corrosion protection over an extended period of time using a coating thickness of 51 microns (2.0 mils).

  19. Generation of high brightness ion beam from insulated anode PED

    International Nuclear Information System (INIS)

    Generation and focusing of a high density ion beam with high brightness from a organic center part of anode of a PED was reported previously. Mass, charge and energy distribution of this beam were analyzed. Three kind of anode were tried. Many highly ionized medium mass ions (up to C4+, O6+) accelarated to several times of voltage difference between anode and cathode were observed. In the case of all insulator anode the current carried by the medium mass ions is about half of that carried by protons. (author)

  20. Characteristics, apatite-forming ability and corrosion resistance of NiTi surface modified by AC anodization

    International Nuclear Information System (INIS)

    NiTi samples were anodized in the non-sparking regime using AC voltage in a solution containing calcium and phosphate ions (solution Ca-P). The as-anodized samples were subsequently treated hydrothermally in water (sample A-W-NiTi) or in solution Ca-P (sample A-CaP-NiTi). Thin-film X-ray diffractometry (TF-XRD) analysis confirmed the existence of anatase in the hydrothermally treated samples, but not in the as-anodized sample, while hydroxyapatite (HA) was detected only in sample A-CaP-NiTi. Cross-sectional micrograph by scanning-electron microscopy (SEM) revealed that the thickness of the modified surface layer formed on sample A-CaP-NiTi was ∼200 nm. X-ray photoelectron spectroscopy (XPS) analysis showed that the Ni concentrations at the surface of sample A-W-NiTi and sample A-CaP-NiTi were in the order of 0.4 and 0.3 at.%, respectively, which were about an order of magnitude lower than that for bare NiTi. Both Ca and P were present in the surface layer on as-anodized NiTi and sample A-CaP-NiTi, but negligible on sample A-W-NiTi, as determined from XPS composition depth profiling. Immersion tests in a conventional simulated body fluid (SBF) of the Kokubo type to study apatite-forming ability showed that growth of apatite was induced on A-W-NiTi and much more abundantly on A-CaP-NiTi, but not on bare NiTi and as-anodized NiTi, suggesting that the presence of anatase and HA is favorable for apatite growth. The apatite-forming ability of the samples in the present study may be ranked in ascending order as: bare NiTi < As-anodized NiTi < A-W-NiTi < A-CaP-NiTi. Polarization tests in Hanks' solution recorded significant increase in corrosion resistance due to anodization and further increase was obtained via hydrothermal treatment. The present study thus shows that anodization followed by hydrothermal treatment is a simple method to form a potentially bioactive and at the same time corrosion resistant surface layer on NiTi

  1. STUDY ON COMPOSITION IN NIOBIUM ANODE

    Institute of Scientific and Technical Information of China (English)

    Li Chunguang; Gao Yong; Dong Ningli

    2004-01-01

    Niobium capacitor uses electrolytic Nb2O5 as dielectric layer formed on surface of porous niobium anode through electrolytic reaction. Analysis of Scanning Electronics Microscope (SEM) combined with X-ray Photoemission Spectrum(XPS) shows that the formed niobium oxide dielectric consists of not only Nb2O5, but also two kinds of low valence niobium NbO2 and NbO oxide. When using different electrolytic reaction conditions, different valence niobium oxide shows different relative content. The fact provides an important basis for analyzing and improving performances of niobium capacitor.

  2. Results from some anode wire aging tests

    International Nuclear Information System (INIS)

    Using twin setups to test anode wire aging in small gas avalanche tubes, a variety of different gas mixtures were tried and other parameters were varied to study their effects upon the gain drop, nomalized to charge transfer: - 1/Q dI/I. This was found to be quite sensitive to the purity of the gases, and also sensitive to the nominal gain and the gas flow rate. The wire surface material can also significantly affect the aging, as can additives, such as ethanol or water vapor. Certain gas mixtures have been found to be consistent with zero aging at the sensitivity level of this technique

  3. Low temperature anodic bonding to silicon nitride

    DEFF Research Database (Denmark)

    Weichel, Steen; Reus, Roger De; Bouaidat, Salim;

    2000-01-01

    Low-temperature anodic bonding to stoichiometric silicon nitride surfaces has been performed in the temperature range from 3508C to 4008C. It is shown that the bonding is improved considerably if the nitride surfaces are either oxidized or exposed to an oxygen plasma prior to the bonding. Both bulk...... and thin-film glasses were used in the bonding experiments. Bond quality was evaluated using a tensile test on structured dies. The effect of oxygen-based pre-treatments of the nitride surface on the bond quality has been evaluated. Bond strengths up to 35 Nrmm2 and yields up to 100% were obtained....

  4. Nanotube Arrays in Porous Anodic Alumina Membranes

    Institute of Scientific and Technical Information of China (English)

    Liang LI; Naoto KOSHIZAKI; Guanghai LI

    2008-01-01

    This review summarizes the various techniques developed for fabricating nanotube arrays in porous anodic alumina membranes (AAMs). After a brief introduction to the fabrication process of AAMs, taking carbons, metals, semiconductors, organics, biomoleculars, and heterojunctions as typical examples, attention will be focused on the recently established methods to fabricate nanotubes in AAM, including electrochemical deposition, surface sol-gel, modified chemical vapor deposition, atomic layer deposition, and layer-by-layer growth. Every method is demonstrated by one or two reported results. Finally, this review is concluded with some perspectives on the research directions and focuses on the AAM-based nanotubes fields.

  5. Effect of natural marine biofilms on galvanic corrosion predicted using potentiodynamic polarization curves

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, S.C.; LaFontaine, J.P. [Univ. of Delaware, Lewes, DE (United States). Coll. of Marine Studies

    1998-12-31

    Galvanic corrosion of copper, 1018 steel, 3003 aluminum and zinc coupled in turn to cathodes of stainless steel alloy N08367 was tested with and without natural marine biofilms on the cathode surface. Weight losses were significantly higher, and corrosion currents were up to two decades higher with a biofilm on the cathode surface for anodes of copper, steel and aluminum, but there was no difference for zinc. Results indicate that, in any case where biofilms on the cathodic member of a galvanic couple result in a systematic and significant increase in the reduction current at the mixed potential of the couple, an increase in consumption of the anodic material should be expected. Cathodic reduction currents (vs. controls with no biofilm) were increased at all potentials down to about {minus}900 mV{sub SCE}, resulting in an elevated current capacity capable of increasing the weight loss of anodic materials over a sustained period of at least two months. Biofilms, however, did not increase consumption of sacrificial anodes with potentials equal to, or more active than zinc. Potentiodynamic polarization curves taken from the corroded samples were used successfully to predict the effect of biofilms on galvanic corrosion rates for the materials tested. Weight loss values calculated by Faraday`s law using corrosion currents from the polarization curves agreed well with actual measured values for anodes of steel, aluminum and zinc, although there were some discrepancies for copper.

  6. NESDIS VIIRS Polar Winds

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains the Level 3 Polar Winds Northern and Southern Hemisphere datasets. The Level 3 Polar Winds data from VIIRS for the Arctic and Antarctic from...

  7. Bumblebees Learn Polarization Patterns

    OpenAIRE

    Foster, James J.; Sharkey, Camilla R.; Gaworska, Alicia V.A.; Roberts, Nicholas W.; Whitney, Heather M.; Partridge, Julian C.

    2014-01-01

    Summary Foraging insect pollinators such as bees must find and identify flowers in a complex visual environment. Bees use skylight polarization patterns for navigation [1–3], a capacity mediated by the polarization-sensitive dorsal rim area (DRA) of their eye [4, 5]. While other insects use polarization sensitivity to identify appropriate habitats [6], oviposition sites, and food sources [7], to date no nonnavigational functions of polarization vision have been identified in bees. Here we inv...

  8. Performance and life-time behaviour of NiCu-CGO anodes for the direct electro-oxidation of methane in IT-SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Sin, A.; Kopnin, E.; Dubitsky, Y.; Zaopo, A. [Pirelli Labs S.p.A., Viale Sarca 222, I-20126 Milan (Italy); Arico, A.S.; La Rosa, D.; Gullo, L.R.; Antonucci, V. [CNR-ITAE, Via Salita Santa Lucia Sopra Contesse 5, I-98125 Messina (Italy)

    2007-01-10

    An anodic cermet of NiCu alloy and gadolinia doped ceria has been investigated for CH{sub 4} electro-oxidation in IT-SOFCs. Polarization curves have been recorded in the temperature range from 650 to 800{sup o}C. A maximum power density of 320mWcm{sup -2} at 800{sup o}C has been obtained in the presence of dry methane in an electrolyte-supported cell. The electrochemical behaviour during 1300h operation in dry methane and in the presence of redox-cycles has been investigated at 750{sup o}C; variation of the electrochemical properties during these experiments have been interpreted in terms of anode morphology modifications. The methane cracking process at the anode catalyst has been investigated by analysing the oxidative stripping of deposited carbon species. (author)

  9. Preparation of IrO2+MnO2 coating anodes and their application in NaClO production

    Institute of Scientific and Technical Information of China (English)

    Yongle Ni; Huimin Meng; Dong Chen; Dongbai Sun; Hongying Yu

    2008-01-01

    To improve the durability as well as to reduce the cost of anodes, the IrO2+MnO2 composite coating anodes for NaC10 production were prepared by thermal decomposition. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction analysis (XRD) were carried out to investigate the morphologies, element distribution, and microstructure. The anodic polarization curves were employed to study the effect of sintering temperature on the C12 evolution reaction (CER) of the electrodes. The accelerated life tests (ALT) and electrochemical impedance spectroscopy measurement (EIS) were utilized to investigate the stability. The rules of NaC10 production were also studied by the static electrolysis experiment. The results indicate that sintering temperature has a significant influence on the CER properties as well as the ALT values of the electrodes. The electrode prepared at 400℃ has the best CER properties and the longest ALT value.

  10. Polarized triplet production by circularly polarized photons

    CERN Document Server

    Bytev, V V; Galynsky, M V; Potylitsin, A P

    2002-01-01

    A process of the pair production by a circularly polarized photon in the field of unpolarized atomic electron has been considered in the Weizaecker-Williams approximation. The degree of longitudinal polarization of positron and electron has been calculated. An exclusive cross-section as well as a spectral distribution are obtained. We estimate the accuracy of our calculations at the level of a few percent. We show the identity of the positron polarization for considered process and for process of pair production in the screened Coulomb field of nucleus.

  11. Alternative Anode Reaction for Copper Electrowinning

    Energy Technology Data Exchange (ETDEWEB)

    2005-07-01

    This report describes a project funded by the Department of Energy, with additional funding from Bechtel National, to develop a copper electrowinning process with lower costs and lower emissions than the current process. This new process also includes more energy efficient production by using catalytic-surfaced anodes and a different electrochemical couple in the electrolyte, providing an alternative oxidation reaction that requires up to 50% less energy than is currently required to electrowin the same quantity of copper. This alternative anode reaction, which oxidizes ferric ions to ferrous, with subsequent reduction back to ferric using sulfur dioxide, was demonstrated to be technically and operationally feasible. However, pure sulfur dioxide was determined to be prohibitively expensive and use of a sulfur burner, producing 12% SO{sub 2}, was deemed a viable alternative. This alternate, sulfur-burning process requires a sulfur burner, waste heat boiler, quench tower, and reaction towers. The electrolyte containing absorbed SO{sub 2} passes through activated carbon to regenerate the ferrous ion. Because this reaction produces sulfuric acid, excess acid removal by ion exchange is necessary and produces a low concentration acid suitable for leaching oxide copper minerals. If sulfide minerals are to be leached or the acid unneeded on site, hydrogen was demonstrated to be a potential reductant. Preliminary economics indicate that the process would only be viable if significant credits could be realized for electrical power produced by the sulfur burner and for acid if used for leaching of oxidized copper minerals on site.

  12. CO tolerance of proton exchange membrane fuel cells with Pt/C and PtMo/C anodes operating at high temperatures: A mass spectrometry investigation

    International Nuclear Information System (INIS)

    Highlights: ► CO tolerance of Pt/C and PtMo/C PEMFC anodes is investigated by on line mass spectrometry. ► High CO tolerance is observed for high PEMFC temperatures. ► Increase of tolerance for Pt/C is due to thermal desorption, reduced CO oxidation potentials, and CO oxidation by O2 crossover. ► PtMo/C presents increased CO tolerance due the occurrence of a MoOx-mediated was gas shift reaction. -- Abstract: The performance of proton exchange membrane fuel cells (PEMFC) with Pt/C and PtMo/C anodes has been investigated using single cell polarization and on line mass spectrometry (OLMS) measurements in a wide range of temperature (70–105 °C) for the system supplied with hydrogen containing different amounts of CO. As expected a higher CO tolerance is observed at higher temperatures for both catalysts. The anode exit gas analysis revealed that CO2 is produced already at the cell open circuit potential, and it increases with the increase of the anode overpotential. The CO tolerance phenomena are assigned to different processes depending on the catalyst nature. For the Pt/C containing anodes, at temperatures above 80 °C, thermal desorption, reduced CO oxidation potential and CO oxidation by O2 crossover are responsible for enhanced tolerance, whilst PtMo/C shows greater tolerance due the occurrence of a MoOx-mediated water gas shift reaction (WGS), which is activated at high temperatures. Although the occurrence of WGS leads to the anode poisoning in the presence of CO2, the polarization results show that only small additive contamination effect occurs by the combined presence of CO + CO2 in the hydrogen stream

  13. Radiometric study of the anodic behavior of steel 12Kh18N10T in hot alkali solutions

    International Nuclear Information System (INIS)

    The anodic behavior of steel 12Kh18N10T in alkali solutions was studied by the methods of neutron activation and gamma-ray spectrometry. The solutions consisted of 10 and 50% KOH, 20 and 40% NaOH at 90/degree/C, the service conditions of membrane-type bipolar electrolytic baths for the production of chlorine and alkalis. Irradiated samples were tested under conditions of self-passivation and anodic polarization. Partial rates and the selectivity of dissolution of the components of the steel were determined by sampling the corrosion products and subjecting them to gamma-ray spectrometric analysis on a Ge(Li) semiconductor spectrometer. Recommendations and limits for the use of the steel in KOH and NaOH production equipment are made based on an analysis of the results

  14. Etude de l'anode pour la pile à combustible directe aux borohydrures

    OpenAIRE

    Olu, Pierre-Yves

    2015-01-01

    The present work focuses on direct borohydride fuel cell (DBFC) anodes. A first approach to develop a suitable anode design for the DBFC consists in the study of the anode within the real DBFC system. In that frame, carbon-supported platinum and palladium nanoparticles are characterized and compared as anode electrocatalyst in DBFC configuration. Other variables such as the morphology of the anode and the stability of the catalyst nanoparticles are considered.The ideal DBFC anode catalyst sho...

  15. Acceleration of polarized particles

    International Nuclear Information System (INIS)

    The spin kinetics of polarized beams in circular accelerators is reviewed in the case of spin-1/2 particles (electrons and protons) with emphasis on the depolarization phenomena. The acceleration of polarized proton beams in synchrotrons is described together with the cures applied to reduce depolarization, including the use of 'Siberian Snakes'. The in-situ polarization of electrons in storage rings due to synchrotron radiation is studied as well as depolarization in presence of ring imperfections. The applications of electron polarization to accurately calibrate the rings in energy and to use polarized beams in colliding-beam experiments are reviewed. (author) 76 refs., 19 figs., 1 tab

  16. Battery, especially for portable devices, has an anode containing silicon

    NARCIS (Netherlands)

    Kan, S.Y.

    2002-01-01

    The anode (2) contains silicon. A battery with a silicon-containing anode is claimed. An Independent claim is also included for a method used to make the battery, comprising the doping of a silicon substrate (1) with charge capacity-increasing material (preferably boron, phosphorous or arsenic), etc

  17. Fundamental Investigation of Silicon Anode in Lithium-Ion Cells

    Science.gov (United States)

    Wu, James J.; Bennett, William R.

    2012-01-01

    Silicon is a promising and attractive anode material to replace graphite for high capacity lithium ion cells since its theoretical capacity is 10 times of graphite and it is an abundant element on Earth. However, there are challenges associated with using silicon as Li-ion anode due to the significant first cycle irreversible capacity loss and subsequent rapid capacity fade during cycling. Understanding solid electrolyte interphase (SEI) formation along with the lithium ion insertion/de-insertion kinetics in silicon anodes will provide greater insight into overcoming these issues, thereby lead to better cycle performance. In this paper, cyclic voltammetry and electrochemical impedance spectroscopy are used to build a fundamental understanding of silicon anodes. The results show that it is difficult to form the SEI film on the surface of a Si anode during the first cycle; the lithium ion insertion and de-insertion kinetics for Si are sluggish, and the cell internal resistance changes with the state of lithiation after electrochemical cycling. These results are compared with those for extensively studied graphite anodes. The understanding gained from this study will help to design better Si anodes, and the combination of cyclic voltammetry with impedance spectroscopy provides a useful tool to evaluate the effectiveness of the design modifications on the Si anode performance.

  18. New development of anodizing process of magnesium alloys

    Institute of Scientific and Technical Information of China (English)

    BAI Li-qun; LI Di

    2004-01-01

    Magnesium alloy, a kind of environment-friendly material with promising and excellent properties, is a good choice for a number of applications. The research and development of anodizing on magnesium alloys and its application situation are reviewed, and the anodizing development trend on magnesium alloys is summarized.

  19. Planar metal-supported SOFC with novel cermet anode

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Hjelm, Johan; Klemensø, Trine; Persson, Åsa Helen; Ramousse, Severine; Mogensen, Mogens Bjerg

    2011-01-01

    Metal-supported solid oxide fuel cells are expected to offer several potential advantages over conventional anode (Ni-YSZ) supported cells. For example, increased resistance against mechanical and thermal stresses and a reduction in material costs. When Ni-YSZ based anodes are used in metal suppo...

  20. Development of Planar Metal Supported SOFC with Novel Cermet Anode

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Hjelm, Johan; Klemensø, Trine; Persson, Åsa Helen; Brodersen, Karen; Srivastava, Akhilesh Kumar; Frandsen, Henrik Lund; Lundberg, Mats; Ramousse, Severine; Mogensen, Mogens Bjerg

    2009-01-01

    Metal-supported solid oxide fuel cells are expected to offer several potential advantages over conventional anode (Ni-YSZ) supported cells, such as increased resistance against mechanical and thermal stresses and a reduction in materials cost. When Ni-YSZ based anodes are used in metal supported ...

  1. Optimal Conditions for Fast Charging and Long Cycling Stability of Silicon Microwire Anodes for Lithium Ion Batteries, and Comparison with the Performance of Other Si Anode Concepts

    OpenAIRE

    Enrique Quiroga-González; Jürgen Carstensen; Helmut Föll

    2013-01-01

    Cycling tests under various conditions have been performed for lithium ion battery anodes made from free-standing silicon microwires embedded at one end in a copper current collector. Optimum charging/discharging conditions have been found for which the anode shows negligible fading (< 0.001%) over 80 cycles; an outstanding result for this kind of anodes. Several performance parameters of the anode have been compared to the ones of other Si anode concepts, showing that especially the capacity...

  2. The Physics of Polarization

    Science.gov (United States)

    Degl'Innocenti, Egidio Landi

    2015-10-01

    The introductory lecture that has been delivered at this Symposium is a condensed version of an extended course held by the author at the XII Canary Island Winter School from November 13 to November 21, 2000. The full series of lectures can be found in Landi Degl'Innocenti (2002). The original reference is organized in 20 Sections that are here itemized: 1. Introduction, 2. Description of polarized radiation, 3. Polarization and optical devices: Jones calculus and Muller matrices, 4. The Fresnel equations, 5. Dichroism and anomalous dispersion, 6. Polarization in everyday life, 7. Polarization due to radiating charges, 8. The linear antenna, 9. Thomson scattering, 10. Rayleigh scattering, 11. A digression on Mie scattering, 12. Bremsstrahlung radiation, 13. Cyclotron radiation, 14. Synchrotron radiation, 15. Polarization in spectral lines, 16. Density matrix and atomic polarization, 17. Radiative transfer and statistical equilibrium equations, 18. The amplification condition in polarized radiative transfer, and 19. Coupling radiative transfer and statistical equilibrium equations.

  3. Polarization effects. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Courant, E.

    1981-01-01

    The use of polarized proton beams in ISABELLE is important for several general reasons: (1) With a single longitudinally polarized proton beam, effects involving parity violation can be identified and hence processes involving weak interactions can be separated from those involving strong and electromagnetic interactions. (2) Spin effects are important in the strong interactions and can be useful for testing QCD. The technique for obtaining polarized proton beams in ISABELLE appears promising, particularly in view of the present development of a polarized proton beam for the AGS. Projections for the luminosity in ISABELLE for collisions of polarized protons - one or both beams polarized with longitudinal or transverse polarization - range from 1/100 to 1 times the luminosity for unpolarized protons.

  4. Investigation of Anode Striation in 34VGA Shadow Mask PDP

    Institute of Scientific and Technical Information of China (English)

    TU Yan; JIANG Youyan; YANG Lanlan; ZHANG Xiong; WANG Baoping

    2007-01-01

    A macro-cell was used to study the phenomenon of anode striation on a 34 VGA Shadow Mask Plasma Display Panel(SMPDP).The breakdown process in the sustaining period of the macro-cell was taken by an Intensified Charge Coupled Device(ICCD)with narrow band filters.The mechanism of formation and evolution of the anode striation on SMPDP were investigated.The influence of the width of the electrode,the sustaining voltage,sustaining frequency and the voltage of the shadow mask on the anode striation was also studied.The results showed that the width of the electrodes,the sustaining voltage and frequency had a strong influence on the anode striation.The voltage of the shadow mask,however,hardly affected the anode striation,the firing voltage or the sustaining voltage.

  5. Natural gas anodes for aluminium electrolysis in molten fluorides.

    Science.gov (United States)

    Haarberg, Geir Martin; Khalaghi, Babak; Mokkelbost, Tommy

    2016-08-15

    Industrial primary production of aluminium has been developed and improved over more than 100 years. The molten salt electrolysis process is still suffering from low energy efficiency and considerable emissions of greenhouse gases (CO2 and PFC). A new concept has been suggested where methane is supplied through the anode so that the CO2 emissions may be reduced significantly, the PFC emissions may be eliminated and the energy consumption may decrease significantly. Porous carbon anodes made from different graphite grades were studied in controlled laboratory experiments. The anode potential, the anode carbon consumption and the level of HF gas above the electrolyte were measured during electrolysis. In some cases it was found that the methane oxidation was effectively participating in the anode process. PMID:27210046

  6. Room Temperature Anodization of Aluminum at Low Voltage

    International Nuclear Information System (INIS)

    Membranes with nanometer-scale features have many applications, such as in optics, electronics, catalysis, selective molecule separation, filtration and purification, bio sensing, and single-molecule detection. Anodization process was conducted using 15, 20, 30 and 35% by volume phosphoric acid. Results showed that Porous Anodized Aluminum (PAA) with ideal nano pore arrays can be fabricated at room temperature by one-step anodization on high purity aluminum foil at 5 V. Morphology of the PAA was characterized by scanning electron microscopy (SEM). The electrochemical behavior of anodized aluminum was studied in 0.1 M Na2SO4 solutions using electrochemical impedance spectroscopy (EIS). The highest resistance of the porous layer (Rp) was detected for the samples anodized in 20% phosphoric acid

  7. Mechanically stable insoluble titanium-lead anodes for sulfate electrolytes

    Directory of Open Access Journals (Sweden)

    Chmiola J.

    2003-01-01

    Full Text Available Different formulations of a new material to be used as an insoluble anode for copper electrowinning, a Ti-Pb composite, were investigated for both mechanical and electrochemical properties. Mechanical and metallographic characteristic tests, as well as short-term deposition tests were used to study the effect of the Ti/Pb ratio on anode performance. Yield strength and elastic modulus, obtained through tensile testing, significantly exceed that of lead. Metallographic procedures were used to assess the uniformity of lead distribution in the material, as well as porosity, which would be decreased below 1 % for most of the compositions under study. Short-term deposition tests were used to determine power consumption, deposit quality current efficiency and weight loss characteristics of the new anode material. The material with only 30 vol.% lead shows approximately the same electrochemical performance as a pure lead anode, but has much higher mechanical properties which prevent warping and extend the lifetime of the anode.

  8. Interfacial chemistry of zinc anodes for reinforced concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Covino, B.S. Jr.; Bullard, S.J.; Cramer, S.D.; Holcomb, G.R. [Dept. of Energy, Albany, OR (United States). Albany Research Center; McGill, G.E.; Cryer, C.B. [Oregon Dept. of Transportation, Salem, OR (United States); Stoneman, A. [International Lead Zinc Research Organization, Research Triangle Park, NC (United States); Carter, R.R. [California Dept. of Transportation, Sacramento, CA (United States)

    1997-12-01

    Thermally-sprayed zinc anodes are used in both galvanic and impressed current cathodic protection systems for reinforced concrete structures. The Albany Research Center, in collaboration with the Oregon Department of Transportation, has been studying the effect of electrochemical aging on the bond strength of zinc anodes for bridge cathodic protection systems. Changes in anode bond strength and other anode properties can be explained by the chemistry of the zinc-concrete interface. The chemistry of the zinc-concrete interface in laboratory electrochemical aging studies is compared with that of several bridges with thermal-sprayed zinc anodes and which have been in service for 5 to 10 years using both galvanic and impressed current cathodic protection systems. The bridges are the Cape Creek Bridge on the Oregon coast and the East Camino Undercrossing near Placerville, CA. Also reported are interfacial chemistry results for galvanized steel rebar from the 48 year old Longbird Bridge in Bermuda.

  9. Focused cathode design to reduce anode heating during vircator operation

    Science.gov (United States)

    Lynn, Curtis F.; Dickens, James C.; Neuber, Andreas A.

    2013-10-01

    Virtual cathode oscillators, or vircators, are a type of high power microwave device which operates based on the instability of a virtual cathode, or cloud of electrons, which forms when electron current injected into the drift tube exceeds the space charge limited current within the drift tube. Anode heating by the electron beam during vircator operation ultimately limits achievable pulse lengths, repetition rates, and the duration of burst mode operation. This article discusses a novel cathode design that focuses electrons through holes in the anode, thus significantly reducing anode heating by the electrons emitted from the cathode during the first transit through the A-K gap. Reflexing electrons continue to deposit energy on the anode; however, the discussed minimization of anode heating by main beam electrons has the potential to enable higher repetition rates as well as efficiency and longer diode lifetime. A simulation study of this type of cathode design illustrates possible advantages.

  10. Focused cathode design to reduce anode heating during vircator operation

    Energy Technology Data Exchange (ETDEWEB)

    Lynn, Curtis F.; Dickens, James C.; Neuber, Andreas A. [Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2013-10-15

    Virtual cathode oscillators, or vircators, are a type of high power microwave device which operates based on the instability of a virtual cathode, or cloud of electrons, which forms when electron current injected into the drift tube exceeds the space charge limited current within the drift tube. Anode heating by the electron beam during vircator operation ultimately limits achievable pulse lengths, repetition rates, and the duration of burst mode operation. This article discusses a novel cathode design that focuses electrons through holes in the anode, thus significantly reducing anode heating by the electrons emitted from the cathode during the first transit through the A-K gap. Reflexing electrons continue to deposit energy on the anode; however, the discussed minimization of anode heating by main beam electrons has the potential to enable higher repetition rates as well as efficiency and longer diode lifetime. A simulation study of this type of cathode design illustrates possible advantages.

  11. Focused cathode design to reduce anode heating during vircator operation

    International Nuclear Information System (INIS)

    Virtual cathode oscillators, or vircators, are a type of high power microwave device which operates based on the instability of a virtual cathode, or cloud of electrons, which forms when electron current injected into the drift tube exceeds the space charge limited current within the drift tube. Anode heating by the electron beam during vircator operation ultimately limits achievable pulse lengths, repetition rates, and the duration of burst mode operation. This article discusses a novel cathode design that focuses electrons through holes in the anode, thus significantly reducing anode heating by the electrons emitted from the cathode during the first transit through the A-K gap. Reflexing electrons continue to deposit energy on the anode; however, the discussed minimization of anode heating by main beam electrons has the potential to enable higher repetition rates as well as efficiency and longer diode lifetime. A simulation study of this type of cathode design illustrates possible advantages

  12. Recovery of plutonium from electrorefining anode heels at Savannah River

    International Nuclear Information System (INIS)

    In a joint effort, the Savannah River Laboratory (SRL), Savannah River Plant (SRP), and the Rocky Flats Plant (RFP) have developed two processes to recover plutonium from electrorefining anode heel residues. Aqueous dissolution of anode heel metal was demonstrated at SRL on a laboratory scale and on a larger pilot scale using either sulfamic acid or nitric acid-hydrazine-fluoride solutions. This direct anode heel metal dissolution requires the use of a geometrically favorable dissolver. The second process developed involves first diluting the plutonium in the anode heel residues by alloying with aluminum. The alloyed anode heel plutonium can then be dissolved using a nitric acid-fluoride-mercury(II) solution in large non-geometrically favorable equipment where nuclear safety is ensured by concentration control

  13. Growth of anatase titanium dioxide nanotubes via anodization

    Directory of Open Access Journals (Sweden)

    Ed Adrian Dilla

    2012-06-01

    Full Text Available In this work, titanium dioxide nanotubes were grown via anodization of sputtered titanium thin films using different anodization parameters in order to formulate a method of producing long anatase titanium dioxide nanotubes intended for solar cell applications. The morphological features of the nanotubes grown via anodization were explored using a Philips XL30 Field Emission Scanning Electron Microscope. Furthermore, the grown nanotubes were also subjected to X-ray diffraction and Raman spectroscopy in order to investigate the effect of the predominant crystal orientation of the parent titanium thin film on the crystal phase of the nanotubes. After optimizing the anodization parameters, nanotubes with anatase TiO2 crystal phase and tube length more than 2 microns was produced from parent titanium thin films with predominant Ti(010 crystal orientation and using ammonium fluoride in ethylene glycol as an electrolyte with a working voltage equal to 60V during 1-hour anodization runs.

  14. Modeling of gas transport with electrochemical reaction in nickel-yttria-stabilized zirconia anode during thermal cycling by Lattice Boltzmann method

    Science.gov (United States)

    Guo, Pengfei; Guan, Yong; Liu, Gang; Liang, Zhiting; Liu, Jianhong; Zhang, Xiaobo; Xiong, Ying; Tian, Yangchao

    2016-09-01

    This work reports an investigation of the impact of microstructure on the performance of solid oxide fuel cells (SOFC) composed of nickel yttria-stabilized zirconia (Ni YSZ). X-ray nano computed tomography (nano-CT) was used to obtain three-dimensional (3D) models of Ni-YSZ composite anode samples subjected to different thermal cycles. Key parameters, such as triple phase boundary (TPB) density, were calculated using 3D reconstructions. The electrochemical reaction occurring at active-TPB was modeled by the Lattice Boltzmann Method for simulation of multi-component mass transfer in porous anodes. The effect of different electrode geometries on the mass transfer and the electrochemical reaction in anodes was studied by TPB distributions measured by nano CT for samples subjected to different thermal cycles. The concentration polarization and the activation polarization were estimated respectively. The results demonstrate that a combined approach involving nano-CT experiments in conjunction with simulations of gas transport and electrochemical reactions using the Lattice Boltzmann method can be used to better understand the relationship between electrode microstructure and performance of nickel yttria-stabilized zirconia anodes.

  15. Electrical Resistance Measurements and Microstructural Characterization of the Anode/Interconnect Contact in Simulated Anode-Side SOFC Conditions

    DEFF Research Database (Denmark)

    Harthøj, Anders; Alimadadi, Hossein; Holt, Tobias;

    2015-01-01

    in phase transformation of the steel and in formation of oxides with a poor electrical conductivity in the anode. In this study, the area specific resistance (ASR) of the steel Crofer 22 APU, in contact with a Ni/YSZ anode with and without a tape casted CeO2 barrier layer was measured in simulated SOFC...

  16. Device For Viewing Polarized Light

    Science.gov (United States)

    Noever, David A.

    1995-01-01

    Technique for detection of polarized light based on observation of scene through two stacked polarizing disks. No need to rotate polarizers to create flicker indicative of polarization. Implemented by relatively simple, lightweight apparatus. Polarization seen as bow-tie rainbow pattern. Advantageous for detecting polarization in variety of meteorological, geological, astronomical, and related applications.

  17. Tracer Studies of the Influence of Foreign Substances at the Surface of the Electrodes. I. Polarization Phenomena

    International Nuclear Information System (INIS)

    Radioactive stearic acid (14C) has been used to determine the number of molecular layers present on copper electrode surfaces and its distribution. The stability of these layers under the experimental conditions has been studied and it has been shown that its presence has no influence on the anodic and cathodic polarization. an increase of these polarizations has been observed with mixed multilayers of stearic acid and sterolamide. (Author) 13 refs

  18. Development of anode zone using dual-anode system to reduce organic matter crossover in membraneless microbial fuel cells.

    Science.gov (United States)

    Kim, Jisu; Kim, Bongkyu; An, Junyeong; Lee, Yoo Seok; Chang, In Seop

    2016-08-01

    To prevent the occurrence of the organic crossover in membraneless microbial fuel cells (ML-MFCs), dual-anode MFC (DA-MFC) was designed from multi-anode concept to ensure anode zone. The anode zone addressed increase the utilization of organic matter in ML-MFCs, as the result, the organic crossover was prevented and performance of MFCs were enhanced. The maximum power of the DA-MFC was 0.46mW, which is about 1.56 times higher than the ML-MFC (0.29mW). Furthermore, the DA-MFC had advantage in correlation of organic substance concentration and dissolved oxygen concentration, and even electric over-potential. In addition, in terms of cathode fouling, the DA-MFC showed clearer surface. Hence, the anode zone should be considered in the advanced ML-MFC for practically use in wastewater treatment process, and also for scale-up of MFCs. PMID:26972026

  19. Calibration of Gamma-ray Burst Polarimeter POLAR

    CERN Document Server

    Xiao, H L; Bao, T W; Batsch, T; Bernasconi, T; Cernuda, I; Chai, J Y; Dong, Y W; Gauvin, N; Kole, M; Kong, M N; Kong, S W; Li, L; Liu, J T; Liu, X; Marcinkowski, R; Orsi, S; Pohl, M; Produit, N; Rapin, D; Rutczynska, A; Rybka, D; Shi, H L; Song, L M; Sun, J C; Szabelski, J; Wu, B B; Wang, R J; Wen, X; Xu, H H; Zhang, L; Zhang, L Y; Zhang, S N; Zhang, X F; Zhang, Y J; Zwolinska, A

    2015-01-01

    Gamma Ray Bursts (GRBs) are the strongest explosions in the universe which might be associated with creation of black holes. Magnetic field structure and burst dynamics may influence polarization of the emitted gamma-rays. Precise polarization detection can be an ultimate tool to unveil the true GRB mechanism. POLAR is a space-borne Compton scattering detector for precise measurements of the GRB polarization. It consists of a 40$\\times$40 array of plastic scintillator bars read out by 25 multi-anode PMTs (MaPMTs). It is scheduled to be launched into space in 2016 onboard of the Chinese space laboratory TG2. We present a dedicated methodology for POLAR calibration and some calibration results based on the combined use of the laboratory radioactive sources and polarized X-ray beams from the European Synchrotron Radiation Facility. They include calibration of the energy response, computation of the energy conversion factor vs. high voltage as well as determination of the threshold values, crosstalk contributions...

  20. A method to localize gamma-ray bursts using POLAR

    International Nuclear Information System (INIS)

    The hard X-ray polarimeter POLAR aims to measure the linear polarization of the 50-500 keV photons arriving from the prompt emission of γ-ray bursts (GRBs). The position in the sky of the detected GRBs is needed to determine their level of polarization. We present here a method by which, despite of the polarimeter incapability of taking images, GRBs can be roughly localized using POLAR alone. For this purpose scalers are attached to the output of the 25 multi-anode photomultipliers (MAPMs) that collect the light from the POLAR scintillator target. Each scaler measures how many GRB photons produce at least one energy deposition above 50 keV in the corresponding MAPM. Simulations show that the relative outputs of the 25 scalers depend on the GRB position. A database of very strong GRBs simulated at 10 201 positions has been produced. When a GRB is detected, its location is calculated searching the minimum of the χ2 obtained in the comparison between the measured scaler pattern and the database. This GRB localization technique brings enough accuracy so that the error transmitted to the 100% modulation factor is kept below 10% for GRBs with fluence Ftot≥10-5ergcm-2. The POLAR localization capability will be useful for those cases where no other instruments are simultaneously observing the same field of view.

  1. Variable anodic thermal control coating on aluminum

    Science.gov (United States)

    Duckett, R. J.; Gilliland, C. S.

    1983-01-01

    A variable thermal control coating (modified chromic acid anodizing) has been developed to meet the needs for the thermal control of spacecraft. This coating, with controlled variable ranges of 0.10 to 0.72 thermal emittance and 0.2 to 0.4 solar absorptance, allows the user to select any value of thermal emittance and solar absorptance within the range specified and obtain both values within + or - 0.02. Preliminary solar stability has shown less than 15 percent degradation over 2000 hours of vacuum solar exposure. The technique has been determined to be sensitive to the parameters of voltage, rate of voltage application, time, temperature, acid concentration, and material pretreatment.

  2. Effects of temperature and voltage mode on nanoporous anodic aluminum oxide films by one-step anodization

    International Nuclear Information System (INIS)

    Many conventional anodic aluminum oxide (AAO) templates were performed using two-step direct current anodization (DCA) at low temperature (0–5 °C) to avoid dissolution effects. This process is relatively complex. Pulse anodization (PA) by switching between high and low voltages has been used to improve wear resistance and corrosion resistance in barrier type anodic oxidation of aluminum or hard anodization for current nanotechnology. However, there are only few investigations of AAO by hybrid pulse anodization (HPA) with normal-positive and small-negative voltages, especially for the one-step anodization, to shorten the running time. In this article, the effects of temperature and voltage modes (DCA vs. HPA) on one-step anodization have been investigated. The porous AAO films were fabricated using one-step anodization in 0.5 M oxalic acid in different voltage modes including the HPA and DCA and the environment temperature were varied at 5–15 °C. The morphology, pore size and oxide thickness of AAO films were characterized by high resolution field emission scanning electron microscope. The pore size distribution and circularity of AAO films can be quantitatively analyzed by image processing of SEM. The pore distribution uniformity and circularity of AAO by HPA is much better than DCA due to its effective cooling at relatively high temperatures. On the other hand, increasing environment temperature can increase the growth rate and enlarge the pore size of AAO films. The results of one-step anodization by hybrid pulse could promote the AAO quality and provide a simple and convenient fabrication compared to DCA.

  3. ZIRCONIUM OXIDE NANOSTRUCTURES PREPARED BY ANODIC OXIDATION

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Y. Y.; Bhuiyan, M.S.; Paranthaman, M. P.

    2008-01-01

    Zirconium oxide is an advanced ceramic material highly useful for structural and electrical applications because of its high strength, fracture toughness, chemical and thermal stability, and biocompatibility. If highly-ordered porous zirconium oxide membranes can be successfully formed, this will expand its real-world applications, such as further enhancing solid-oxide fuel cell technology. Recent studies have achieved various morphologies of porous zirconium oxide via anodization, but they have yet to create a porous layer where nanoholes are formed in a highly ordered array. In this study, electrochemical methods were used for zirconium oxide synthesis due to its advantages over other coating techniques, and because the thickness and morphology of the ceramic fi lms can be easily tuned by the electrochemical parameters, such as electrolyte solutions and processing conditions, such as pH, voltage, and duration. The effects of additional steps such as pre-annealing and post-annealing were also examined. Results demonstrate the formation of anodic porous zirconium oxide with diverse morphologies, such as sponge-like layers, porous arrays with nanoholes ranging from 40 to 75 nm, and nanotube layers. X-ray powder diffraction analysis indicates a cubic crystallographic structure in the zirconium oxide. It was noted that increased voltage improved the ability of the membrane to stay adhered to the zirconium substrate, whereas lower voltages caused a propensity for the oxide fi lm to fl ake off. Further studies are needed to defi ne the parameters windows that create these morphologies and to investigate other important characteristics such as ionic conductivity.

  4. Thin-film sulfuric acid anodizing as a replacement for chromic acid anodizing

    Science.gov (United States)

    Kallenborn, K. J.; Emmons, J. R.

    1995-01-01

    Chromic acid has long been used to produce a thin, corrosion resistant (Type I) coating on aluminum. Following anodizing, the hardware was sealed using a sodium dichromate solution. Sealing closes up pores inherent in the anodized coating, thus improving corrosion resistance. The thinness of the brittle coating is desirable from a fatigue standpoint, and chromium was absorbed by the coating during the sealing process, further improving corrosion resistance. Unfortunately, both chromic acid and sodium dichromate contain carcinogenic hexavalent chromium. Sulfuric acid is being considered as a replacement for chromic acid. Sulfuric acid of 10-20 percent concentration has traditionally been used to produce relatively thick (Types II and III) or abrasion resistant (Type III) coatings. A more dilute, that is five weight percent, sulfuric acid anodizing process, which produces a thinner coating than Type II or III, with nickel acetate as the sealant has been developed. The process was evaluated in regard to corrosion resistance, throwing power, fatigue life, and processing variable sensitivity, and shows promise as a replacement for the chromic acid process.

  5. High-capacity nanocarbon anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Highlights: • The nanocarbon anodes in lithium-ion batteries deliver a high capacity of ∼1100 mA h g−1. • The nanocarbon anodes exhibit excellent cyclic stability. • A novel structure of carbon materials, hollow carbon nanoboxes, has potential application in lithium-ion batteries. - Abstract: High energy and power density of secondary cells like lithium-ion batteries become much more important in today’s society. However, lithium-ion battery anodes based on graphite material have theoretical capacity of 372 mA h g−1 and low charging-discharging rate. Here, we report that nanocarbons including mesoporous graphene (MPG), carbon tubular nanostructures (CTN), and hollow carbon nanoboxes (HCB) are good candidate for lithium-ion battery anodes. The nanocarbon anodes have high capacity of ∼1100, ∼600, and ∼500 mA h g−1 at 0.1 A g−1 for MPG, CTN, and HCB, respectively. The capacity of 181, 141, and 139 mA h g−1 at 4 A g−1 for MPG, CTN, and HCB anodes is retained. Besides, nanocarbon anodes show high cycling stability during 1000 cycles, indicating formation of a passivating layer—solid electrolyte interphase, which support long-term cycling. Nanocarbons, constructed with graphene layers which fulfill lithiation/delithiation process, high ratio of graphite edge structure, and high surface area which facilitates capacitive behavior, deliver high capacity and improved rate-capability

  6. Studies of a liquid anode for plutonium electrorefining

    International Nuclear Information System (INIS)

    They are developing a solvent anode as an alternate method for producing plutonium metal of high purity by an electrorefining process. The goals are to produce metal of 99.98% purity with an anode residue containing less than 2% of the plutonium in the feed material. If they are successful, they will design and demonstrate a system utilizing semi-continuous and remotely controlled operations. Establishing a solvent anode method should lead to improved yields and a substantial reduction in the amount of residues generated by the electrorefining process. The new method should be a viable pyrochemical technique for recovering both plutonium and uranium from spent reactor fuel. Initially, the anode consists of a tantalum rod immersed in a pool of liquid cadmium at 7400C. Impure plutonium or a solid anode residue is in contact with the cadmium. As current passes through the anode, plutonium in the cadmium is oxidized and transfers into the molten salt as tripositive plutonium. More plutonium dissolves into the cadmium and the oxidation continues. The tri-positive plutonium is carried through the salt to the cathode, where it is reduced to pure, liquid metal. This metal, which is heavier than the salt, drips from the cathode into an annulus between the anode and cathode compartments and forms a product ring

  7. Nanostructural Engineering of Nanoporous Anodic Alumina for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Josep Ferré-Borrull

    2014-07-01

    Full Text Available Modifying the diameter of the pores in nanoporous anodic alumina opens new possibilities in the application of this material. In this work, we review the different nanoengineering methods by classifying them into two kinds: in situ and ex situ. Ex situ methods imply the interruption of the anodization process and the addition of intermediate steps, while in situ methods aim at realizing the in-depth pore modulation by continuous changes in the anodization conditions. Ex situ methods permit a greater versatility in the pore geometry, while in situ methods are simpler and adequate for repeated cycles. As an example of ex situ methods, we analyze the effect of changing drastically one of the anodization parameters (anodization voltage, electrolyte composition or concentration. We also introduce in situ methods to obtain distributed Bragg reflectors or rugate filters in nanoporous anodic alumina with cyclic anodization voltage or current. This nanopore engineering permits us to propose new applications in the field of biosensing: using the unique reflectance or photoluminescence properties of the material to obtain photonic barcodes, applying a gold-coated double-layer nanoporous alumina to design a self-referencing protein sensor or giving a proof-of-concept of the refractive index sensing capabilities of nanoporous rugate filters.

  8. Interconnected hollow carbon nanospheres for stable lithium metal anodes.

    Science.gov (United States)

    Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng; Lee, Hyun-Wook; Yan, Kai; Yao, Hongbin; Wang, Haotian; Li, Weiyang; Chu, Steven; Cui, Yi

    2014-08-01

    For future applications in portable electronics, electric vehicles and grid storage, batteries with higher energy storage density than existing lithium ion batteries need to be developed. Recent efforts in this direction have focused on high-capacity electrode materials such as lithium metal, silicon and tin as anodes, and sulphur and oxygen as cathodes. Lithium metal would be the optimal choice as an anode material, because it has the highest specific capacity (3,860 mAh g(-1)) and the lowest anode potential of all. However, the lithium anode forms dendritic and mossy metal deposits, leading to serious safety concerns and low Coulombic efficiency during charge/discharge cycles. Although advanced characterization techniques have helped shed light on the lithium growth process, effective strategies to improve lithium metal anode cycling remain elusive. Here, we show that coating the lithium metal anode with a monolayer of interconnected amorphous hollow carbon nanospheres helps isolate the lithium metal depositions and facilitates the formation of a stable solid electrolyte interphase. We show that lithium dendrites do not form up to a practical current density of 1 mA cm(-2). The Coulombic efficiency improves to ∼ 99% for more than 150 cycles. This is significantly better than the bare unmodified samples, which usually show rapid Coulombic efficiency decay in fewer than 100 cycles. Our results indicate that nanoscale interfacial engineering could be a promising strategy to tackle the intrinsic problems of lithium metal anodes. PMID:25064396

  9. Atmospheric pressure arc discharge with ablating graphite anode

    Energy Technology Data Exchange (ETDEWEB)

    Nemchinsky, V. A. [Keiser University, Fort Lauderdale Campus, FL, 33309, USA; Raitses, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2015-05-18

    The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322–6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement.

  10. Decay of Polarized Delta

    OpenAIRE

    Ramachandran, G.; Venkataraya; Vidya, M. S.; Balasubramanyam, J.; Padmanabha, G.

    2009-01-01

    The resonance $\\Delta(1232)$ with spin-parity ${3 \\over 2}^+$, which contributes dominantly to the reactions like $\\gamma N \\to \\pi N$ and $NN \\to NN\\pi$ at intermediate energies, may be expected to be produced in characteristically different polarized spin states. As such an analysis of the decay of polarized delta is presented, which may be utilized to probe empirically the production mechanism. It is shown that measurements of the angular distributions of the pion and the polarization of t...

  11. Effects Of Anodic Protection On SCC Behavior Of X80 Pipeline Steel In High-pH Carbonate-Bicarbonate Solution

    OpenAIRE

    Zhao W; Zou Y.; Xia D.X.; Zou Z.D.

    2015-01-01

    The potentiodynamic polarization test and slow strain rate tensile tests of X80 pipeline steel were performed in 0.5M Na2CO3-1M NaHCO3 solution to study the electrochemical and stress corrosion cracking properties. The results of potentiodynamic polarization test show that there is an obvious stable passive region, about from 0v to 0.8V (SCE), indicating that anodic protection is feasible. The results of slow strain rate tensile tests show that the stress corrosion cracking sensibility is hig...

  12. Transformation and removal of arsenic in groundwater by sequential anodic oxidation and electrocoagulation

    Science.gov (United States)

    Zhang, Peng; Tong, Man; Yuan, Songhu; Liao, Peng

    2014-08-01

    Oxidation of As(III) to As(V) is generally essential for the efficient remediation of As(III)-contaminated groundwater. The performance and mechanisms of As(III) oxidation by an as-synthesized active anode, SnO2 loaded onto Ti-based TiO2 nanotubes (Ti/TiO2NTs/Sb-SnO2), were investigated. The subsequent removal of total arsenic by electrocoagulation (EC) was further tested. The Ti/TiO2NTs/Sb-SnO2 anode showed a high and lasting electrochemical activity for As(III) oxidation. 6.67 μM As(III) in synthetic groundwater was completely oxidized to As(V) within 60 min at 50 mA. Direct electron transfer was mainly responsible at the current below 30 mA, while hydroxyl radicals contributed increasingly with the increase in the current above 30 mA. As(III) oxidation was moderately inhibited by the presence of bicarbonate (20 mM), while was dramatically increased with increasing the concentration of chloride (0-10 mM). After the complete oxidation of As(III) to As(V), total arsenic was efficiently removed by EC in the same reactor by reversing electrode polarity. The removal efficiency increased with increasing the current but decreased by the presence of phosphate and silica. Anodic oxidation represents an effective pretreatment approach to increasing EC removal of As(III) in groundwater under O2-limited conditions.

  13. Flash vacuum-ultraviolet generator having a mercury-anode tube

    Science.gov (United States)

    Sagae, Michiaki; Sato, Eiichi; Oizumi, Teiji; Yamamoto, Mariko; Takabe, Akihito; Sakamaki, Kimio; Ojima, Hidenori; Takayama, Kazuyoshi; Tamakawa, Yoshiharu; Yanagisawa, Toru

    1995-09-01

    The fundamental studies on a flash vacuum-ultraviolet (VUV) generator for producing water- window x rays are described. this generator consisted of the following essential components: a high-voltage power supply, a polarity-inversion-type high-voltage pulser having a 15 nF condenser, a thyristor pulser as a trigger device, a turbo molecular pump, and a VUV tube. The VUV tube employed a mercury anode, and the ferrite cathode was embedded in the anode. The pressure in the tube was primarily determined by the steam pressure of mercury as a function of temperature. The condenser in the pulser was charged from -10 to -30 kV by the power supply, and the electric charges in the condenser were discharged to the radiation tube after closing a gap switch by the thyristor pulser. As the high electron flows from the cathode electrode evaporated the anode electrode, VUV rays were then produced. The maximum output voltage from the pulser was approximately -1 times the charging voltage, and both the tube voltage and current displayed damped oscillations. The maximum values of the tube voltage and current were 14 kV and 2.0 kA, respectively. Since the effective accelerating voltage was substantially decreased by the ferrite cathode, soft x rays were easily generated. The pulse durations of the VUV rays including water-window x rays were nearly equivalent to those of the damped oscillations of the voltage and current, and their values were less than 15 microsecond(s) .

  14. Polarized negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Haeberli, W.

    1981-04-01

    This paper presents a survey of methods, commonly in use or under development, to produce beams of polarized negative ions for injection into accelerators. A short summary recalls how the hyperfine interaction is used to obtain nuclear polarization in beams of atoms. Atomic-beam sources for light ions are discussed. If the best presently known techniques are incorporated in all stages of the source, polarized H/sup -/ and D/sup -/ beams in excess of 10 ..mu..A can probably be achieved. Production of polarized ions from fast (keV) beams of polarized atoms is treated separately for atoms in the H(25) excited state (Lamb-Shift source) and atoms in the H(1S) ground state. The negative ion beam from Lamb-Shift sources has reached a plateau just above 1 ..mu..A, but this beam current is adequate for many applications and the somewhat lower beam current is compensated by other desirable characteristics. Sources using fast polarized ground state atoms are in a stage of intense development. The next sections summarize production of polarized heavy ions by the atomic beam method, which is well established, and by optical pumping, which has recently been demonstrated to yield very large nuclear polarization. A short discussion of proposed ion sources for polarized /sup 3/He/sup -/ ions is followed by some concluding remarks.

  15. Polarization at SLC

    International Nuclear Information System (INIS)

    The SLAC Linear Collider has been designed to readily accommodate polarized electron beams. Considerable effort has been made to implement a polarized source, a spin rotation system, and a system to monitor the beam polarization. Nearly all major components have been fabricated. At the current time, several source and polarimeter components have been installed. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses. It is expected that a beam polarization of 45% will be achieved with no loss in luminosity. 13 refs., 15 figs

  16. Polarized negative ions

    International Nuclear Information System (INIS)

    This paper presents a survey of methods, commonly in use or under development, to produce beams of polarized negative ions for injection into accelerators. A short summary recalls how the hyperfine interaction is used to obtain nuclear polarization in beams of atoms. Atomic-beam sources for light ions are discussed. If the best presently known techniques are incorporated in all stages of the source, polarized H- and D- beams in excess of 10 μA can probably be achieved. Production of polarized ions from fast (keV) beams of polarized atoms is treated separately for atoms in the H(25) excited state (Lamb-Shift source) and atoms in the H(1S) ground state. The negative ion beam from Lamb-Shift sources has reached a plateau just above 1 μA, but this beam current is adequate for many applications and the somewhat lower beam current is compensated by other desirable characteristics. Sources using fast polarized ground state atoms are in a stage of intense development. The next sections summarize production of polarized heavy ions by the atomic beam method, which is well established, and by optical pumping, which has recently been demonstrated to yield very large nuclear polarization. A short discussion of proposed ion sources for polarized 3He- ions is followed by some concluding remarks

  17. Anodic Behavior of Alloy 22 in Calcium Chloride and in Calcium Chloride Plus Calcium Nitrate Brines

    Energy Technology Data Exchange (ETDEWEB)

    Evans, K J; Day, S D; Ilevbare, G O; Whalen, M T; King, K J; Hust, G A; Wong, L L; Estill, J C; Rebak, R B

    2003-05-13

    Alloy 22 (UNS N60622) is a nickel-based alloy, which is extensively used in aggressive industrial applications, especially due to its resistance to localized corrosion and stress corrosion cracking in high chloride environments. The purpose of this work was to characterize the anodic behavior of Alloy 22 in concentrated calcium chloride (CaCl{sub 2}) brines and to evaluate the inhibitive effect of nitrate, especially to localized corrosion. Standard electrochemical tests such as polarization resistance and cyclic polarization were used. Results show that the corrosion potential of Alloy 22 was approximately -360 mV in the silver-silver chloride (SSC) scale and independent of the tested temperature. Cyclic polarization tests showed that Alloy 22 was mainly susceptible to localized attack in 5 M CaCl{sub 2} at 75 C and higher temperatures. The addition of nitrate in a molar ratio of chloride to nitrate equal to 10 increased the onset of localized corrosion to approximately 105 C. The addition of nitrate to the solution also decreased the uniform corrosion rate and the passive current of the alloy.

  18. Inert Anode Life in Low Temperature Reduction Process

    Energy Technology Data Exchange (ETDEWEB)

    Bradford, Donald R.

    2005-06-30

    The production of aluminum metal by low temperature electrolysis utilizing metal non-consumable anodes and ceramic cathodes was extensively investigated. Tests were performed with traditional sodium fluoride--aluminum fluoride composition electrolytes, potassium fluoride-- aluminum fluoride electrolytes, and potassium fluoride--sodium fluoride--aluminum fluoride electrolytes. All of the Essential First-Tier Requirements of the joint DOE-Aluminum Industry Inert Anode Road Map were achieved and those items yet to be resolved for commercialization of this technology were identified. Methods for the fabrication and welding of metal alloy anodes were developed and tested. The potential savings of energy and energy costs were determined and potential environmental benefits verified.

  19. Modelling the initial stage of porous alumina growth during anodization

    Science.gov (United States)

    Aryslanova, E. M.; Alfimov, A. V.; Chivilikhin, S. A.

    2013-05-01

    Artificially on the surface of aluminum there may be build a thick layer of Al2O3, which has a porous structure. In this paper we present a model of growth of porous alumina in the initial stage of anodizing, identifying dependencies anodizing parameters on the rate of growth of the film and the distance between the pores and as a result of the created model equations were found for changes in the disturbance of alumina for the initial stage of anodizing aluminum oxide porous border aluminum-alumina and alumina-electrolyte, with the influence of surface diffusion of aluminum oxide.

  20. Na-Ion Battery Anodes: Materials and Electrochemistry.

    Science.gov (United States)

    Luo, Wei; Shen, Fei; Bommier, Clement; Zhu, Hongli; Ji, Xiulei; Hu, Liangbing

    2016-02-16

    The intermittent nature of renewable energy sources, such as solar and wind, calls for sustainable electrical energy storage (EES) technologies for stationary applications. Li will be simply too rare for Li-ion batteries (LIBs) to be used for large-scale storage purposes. In contrast, Na-ion batteries (NIBs) are highly promising to meet the demand of grid-level storage because Na is truly earth abundant and ubiquitous around the globe. Furthermore, NIBs share a similar rocking-chair operation mechanism with LIBs, which potentially provides high reversibility and long cycling life. It would be most efficient to transfer knowledge learned on LIBs during the last three decades to the development of NIBs. Following this logic, rapid progress has been made in NIB cathode materials, where layered metal oxides and polyanionic compounds exhibit encouraging results. On the anode side, pure graphite as the standard anode for LIBs can only form NaC64 in NIBs if solvent co-intercalation does not occur due to the unfavorable thermodynamics. In fact, it was the utilization of a carbon anode in LIBs that enabled the commercial successes. Anodes of metal-ion batteries determine key characteristics, such as safety and cycling life; thus, it is indispensable to identify suitable anode materials for NIBs. In this Account, we review recent development on anode materials for NIBs. Due to the limited space, we will mainly discuss carbon-based and alloy-based anodes and highlight progress made in our groups in this field. We first present what is known about the failure mechanism of graphite anode in NIBs. We then go on to discuss studies on hard carbon anodes, alloy-type anodes, and organic anodes. Especially, the multiple functions of natural cellulose that is used as a low-cost carbon precursor for mass production and as a soft substrate for tin anodes are highlighted. The strategies of minimizing the surface area of carbon anodes for improving the first-cycle Coulombic efficiency are

  1. The impact of the inclination of the anode bottom on anode gas covering in the Hall-Heroult cell

    Energy Technology Data Exchange (ETDEWEB)

    Poncsak, S.; Kiss, L.I.; Perron, A. [Quebec Univ., Chicoutimi, PQ (Canada). Dept. des Sciences Appliquees; Perron, S. [Alcan Arvida Research and Development Centre, Jonquiere, PQ (Canada)

    2006-07-01

    The electrical efficiency and the energy consumption of aluminium electrolysis cells is influenced by carbon dioxide bubbles generated at the anode-bath interface. Electrically isolating these carbon-dioxide bubbles increases the ohmic resistance and ultimately, the energy consumption of the aluminium reduction cell. This study examined the impact of the anode inclination and current density on gas coverings and bath velocity for both carbon dioxide-cryolite and air-water systems. A bubble layer simulator based on a Lagrangian description of the bubble layer was constructed to examine these effect. Since the rate of gas production is determined by the applied current density, anode covering can be decreased only by a faster evacuation of the gas from the inter-electrode space. The curvature of the anode bottom promotes the release of the bubbles thereby decreasing the mean value of the covering. New anodes have a square shape with a flat, horizontal bottom. Inhomogeneous current distribution results in non-uniform anode consumption and the corners become progressively rounded during electrolysis. The curvature increases the interelectrode distance around the corner. Results illustrating the effect of the anode curvature on gas covering were obtained through the use of the bubble layer simulator based on the Lagrangian description.14 refs., 2 tabs., 4 figs.

  2. Novel structure formation at the bottom surface of porous anodic alumina fabricated by single step anodization process.

    Science.gov (United States)

    Ali, Ghafar; Ahmad, Maqsood; Akhter, Javed Iqbal; Maqbool, Muhammad; Cho, Sung Oh

    2010-08-01

    A simple approach for the growth of long-range highly ordered nanoporous anodic alumina film in H(2)SO(4) electrolyte through a single step anodization without any additional pre-anodizing procedure is reported. Free-standing porous anodic alumina film of 180 microm thickness with through hole morphology was obtained. A simple and single step process was used for the detachment of alumina from aluminum substrate. The effect of anodizing conditions, such as anodizing voltage and time on the pore diameter and pore ordering is discussed. The metal/oxide and oxide/electrolyte interfaces were examined by high resolution scanning transmission electron microscope. The arrangement of pores on metal/oxide interface was well ordered with smaller diameters than that of the oxide/electrolyte interface. The inter-pore distance was larger in metal/oxide interface as compared to the oxide/electrolyte interface. The size of the ordered domain was found to depend strongly upon anodizing voltage and time. PMID:20493719

  3. Pre-coating of LSCM perovskite with metal catalyst for scalable high performance anodes

    KAUST Repository

    Boulfrad, Samir

    2013-07-01

    In this work, a highly scalable technique is proposed as an alternative to the lab-scale impregnation method. LSCM-CGO powders were pre-coated with 5 wt% of Ni from nitrates. After appropriate mixing and adequate heat treatment, coated powders were then dispersed into organic based vehicles to form a screen-printable ink which was deposited and fired to form SOFC anode layers. Electrochemical tests show a considerable enhancement of the pre-coated anode performances under 50 ml/min wet H2 flow with polarization resistance decreased from about 0.60cm2 to 0.38 cm2 at 900 C and from 6.70 cm2 to 1.37 cm2 at 700 C. This is most likely due to the pre-coating process resulting in nano-scaled Ni particles with two typical sizes; from 50 to 200 nm and from 10 to 40 nm. Converging indications suggest that the latter type of particle comes from solid state solution of Ni in LSCM phase under oxidizing conditions and exsolution as nanoparticles under reducing atmospheres. Copyright © 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  4. Effect of the ethanol concentration in the anode on the direct ethanol fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Belchor, Pablo Martins; Loeser, Neiva; Forte, Maria Madalena de Camargo [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil); Carpenter, Deyse [Fundacao Universidade Regional de Blumenau (FURB), Blumenau, SC (Brazil)], Email: rafarstv@hotmail.com

    2010-07-01

    Changes in the climate, sources and development of renewable energy are issues that have gain greater importance, and fuel cells have been investigated as an alternative source to produce energy through electrochemical reactions. Among the fuel cells types the Proton Exchange Membrane (PEMFC), fed with pure hydrogen at the anode and oxygen at the cathode, seen be the more promising ones as an electrolyte for portable, mobile and stationary applications due to its low emissions, low operating temperature, high power density and quick configuration. To avoid inconvenience of storage and transportation of pure hydrogen a PEMFC fed with alcohols has been developed, named Direct Alcohol Fuel Cells (DAFC). One way to increase the performance of DAFC is added water in the alcohol inserted into the anode, because the water keeps the membrane hydrated. In this work, the performance of a DAFC was evaluated by following the loss in the polarization curve and cell power by varying the ethanol/water ratio. The aim of this study was determine the optimal water/ethanol ratio to be feed in a DEFC prototype mounted in the lab. By the results it was possible to point that the best concentration of ethanol aqueous solution for the DEFC tested was around 1 mol.L-1. (author)

  5. RHIC Polarized proton operation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.; Ahrens, L.; Alekseev, I.G.; Aschenauer, E.; Atoian, G.; Bai, M.; Bazilevsky, A.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; Dion, A.; D' Ottavio, T.; Drees, K.A.; Fischer, W.; Gardner, C.; Glenn, J.W.; Gu, X.; Harvey, M.; Hayes, T.; Hoff, L.; Hulsart, R.L.; Laster, J.; Liu, C.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Marr, G.J.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R,; Minty, M.; Montag, C.; Morris, J.; Nemesure, S.; Poblaguev, A.; Ptitsyn, V.; Ranjibar, V.; Robert-Demolaize, G.; Roser, T.; J.; Severino, F.; Schmidke, B.; Schoefer, V.; Severino, F.; Smirnov, D.; Smith, K.; Steski, D.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J. Wang, G.; Wilinski, M.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2011-03-28

    The Relativistic Heavy Ion Collider (RHIC) operation as the polarized proton collider presents unique challenges since both luminosity(L) and spin polarization(P) are important. With longitudinally polarized beams at the experiments, the figure of merit is LP{sup 4}. A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system is installed to improve longitudinal match at injection and to increase luminosity. The beam dump was upgraded to increase bunch intensity. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control is also improved this year. Additional efforts are put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point is chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper. Siberian snakes are essential tools to preserve polarization when accelerating polarized beams to higher energy. At the same time, the higher order resonances still can cause polarization loss. As seen in RHIC, the betatron tune has to be carefully set and maintained on the ramp and during the store to avoid polarization loss. In addition, the orbit control is also critical to preserve polarization. The higher polarization during this run comes from several improvements over last run. First we have a much better orbit on the ramp. The orbit feedback brings down the vertical rms orbit error to 0.1mm, much better than the 0.5mm last run. With correct BPM offset and vertical realignment, this rms orbit error is indeed small. Second, the jump quads in the AGS improved input polarization for RHIC. Third, the vertical tune was pushed further away from 7/10 snake resonance. The tune feedback maintained the tune at the desired value through the ramp. To calibrate the analyzing power of RHIC polarimeters at any energy above

  6. RHIC Polarized proton operation

    International Nuclear Information System (INIS)

    The Relativistic Heavy Ion Collider (RHIC) operation as the polarized proton collider presents unique challenges since both luminosity(L) and spin polarization(P) are important. With longitudinally polarized beams at the experiments, the figure of merit is LP4. A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system is installed to improve longitudinal match at injection and to increase luminosity. The beam dump was upgraded to increase bunch intensity. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control is also improved this year. Additional efforts are put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point is chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper. Siberian snakes are essential tools to preserve polarization when accelerating polarized beams to higher energy. At the same time, the higher order resonances still can cause polarization loss. As seen in RHIC, the betatron tune has to be carefully set and maintained on the ramp and during the store to avoid polarization loss. In addition, the orbit control is also critical to preserve polarization. The higher polarization during this run comes from several improvements over last run. First we have a much better orbit on the ramp. The orbit feedback brings down the vertical rms orbit error to 0.1mm, much better than the 0.5mm last run. With correct BPM offset and vertical realignment, this rms orbit error is indeed small. Second, the jump quads in the AGS improved input polarization for RHIC. Third, the vertical tune was pushed further away from 7/10 snake resonance. The tune feedback maintained the tune at the desired value through the ramp. To calibrate the analyzing power of RHIC polarimeters at any energy above injection

  7. Embrittlement and anodic process in stress corrosion cracking: study of the influent micro-mechanical parameters

    International Nuclear Information System (INIS)

    We study the influence of local mechanical parameters on crack propagation in Stress Corrosion Cracking, at the scale of the microstructure. Two systems are compared: the CuAl9Ni3Fe2 copper-aluminium alloy in synthetic sea water under cathodic polarization, where the crack propagation mechanism is related to strain-assisted anodic dissolution, and the 316L austenitic stainless steel in MgCl2 solution, where embrittlement mechanisms related to hydrogen effects prevail. We use micro-notched tensile specimen that allow to study isolated short cracks. These experiments are modelled by means of finite elements calculations, and further characterized by Electron Back scattered Diffraction (EBSD) in the case of the 316L alloy. In terms of the local mechanical parameters that control propagation, fundamental differences are outlined between the two systems. They are discussed from the viewpoint of the available models of Stress Corrosion Cracking. (author)

  8. Electrochemically oxidized carbon anode in direct L-ascorbic acid fuel cells

    International Nuclear Information System (INIS)

    The activity of electrochemically oxidized carbon electrode was investigated in the operation of a direct L-ascorbic acid fuel cell anode. The surface oxygen species placed on electrochemically oxidized carbon electrode were analyzed by X-ray photoelectron spectroscopy and cyclic voltammetry. The electrochemical oxidation process of carbon electrode can facilitate the pore-filling process (i.e., wetting) of the electrolyte into the microstructure of the carbon electrode by increasing the number of more polar functional groups on the electrode surface. The electrochemically oxidized carbon electrode exhibited significantly enhanced electro-catalytic oxidation activity of L-ascorbic acid compared to an unmodified carbon electrode. Moreover, the simplified electrode structure using carbon paper without an additional powder-based precious catalyst layer is very favorable in creating percolation network and generates power density of 18 mW/cm2 at 60 deg. C

  9. Improved ceramic anodes for SOFCs with modified electrode/electrolyte interface

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain; Høgh, Jens Valdemar Thorvald; Zhang, Wei; Stamate, Eugen; Thydén, Karl Tor Sune; Bonanos, Nikolaos

    2012-01-01

    was deposited by magnetron sputtering. Effecting from heat treatments, Pd nanoparticles with particle sizes in the range of 5–20 nm were distributed at the interface, and throughout the backbone. The polarization resistance of the modified STN reduced to 30 Ωcm2 at 600 °C, which is three times less......The electrode performance of solid oxide fuel cell anode with Pd nanoparticles at the interface of ScYSZ electrolyte and Sr0.94Ti0.9Nb0.1O3 (STN) electrode introduced in the form of metal functional layer have been investigated at temperatures below 600 °C. A metal functional layer consisting of Pd...

  10. Corrosion protection of AZ91 magnesium alloy by anodizing in niobium and zirconium-containing electrolytes

    International Nuclear Information System (INIS)

    A new Nb + Zr-based anodized coating was designed for the corrosion protection of AZ91 magnesium alloy. Polarization curves and electrochemical impedance diagrams plotted in Na2SO4 electrolyte showed its high protective effect. Analysis of the chemical composition by X-ray photoelectron spectroscopy indicated that the coating mainly consisted of (i) magnesium metaborate and metaphosphate, (ii) MgF2 and ZrF4, and (iii) Nb2O5, ZrO2 and MgO. A higher concentration of fluorine at both interfaces and an enrichment in Zr compared to Nb were revealed by SEM and EDS analyses. Thus, Zr-based compounds and MgF2 play a key role in the anti-corrosion ability of the coating.

  11. Anodic slimes formation in copper electrowinning

    Directory of Open Access Journals (Sweden)

    Ipinza, J.

    2004-02-01

    Full Text Available The slime formation in acidic electrolytes of copper with several metallic impurities has been studied. On Pb-Ca-Sn anode surface firstly the formation of PbSO4 takes place, then, it is transformed in PbO2, which covers the anode surface. It was experimentally established the formation of a manganese dioxide double layer at the anode. This layer was always composed of a thick external layer of non-adhering and easily removable scales, and of a thin internal layer, which adheres relatively well to the surface of the electrode. It was found that the manganese dioxide present in the slime is of different nature: a non-adhering layer produced by electrolysis (ε-MnO2 on the PbO2 surface and a pure chemical precipitate in the solution (β- MnO2. Lead sulfate was found on the β-MnO2layer when iron was in the electrolyte. When arsenic or antimony was present in the electrolyte, the slime was lead sulfate and amorphous compounds of those ions. Slime of Chilean electrowinning (EW plants is also discussed.

    Se estudió la formación de borras anódicas debido a la presencia de varias impurezas metálicas en electrólitos de cobre. Sobre la superficie de un ánodo de Pb-Ca-Sn se forma primero PbSO4 y luego se transforma en PbO2, el cual cubre la superficie del ánodo. Se estableció experimentalmente la formación de una doble capa de dióxido de manganeso en el ánodo. Esta estuvo siempre compuesta por una capa externa gruesa, no adherente y de fácil remoción, y otra interna delgada y adherida a la superficie del electrodo. Se encontró que los óxidos de manganeso en las borras eran de distinta naturaleza: una capa no adherente producida por electrólisis sobre la superficie de PbO2 (ε-MnO2 y una producida sólo por precipitación química en la solución (β-MnO2. A1 existir hierro en el electrólito se encontró sulfato de

  12. The effect of antimony presence in anodic copper on kinetics and mechanism of anodic dissolution and cathodic deposition of copper

    Directory of Open Access Journals (Sweden)

    Stanković Z.D.

    2008-01-01

    Full Text Available The influence of the presence of Sb atoms, as foreign metal atoms in anode copper, on kinetics, and, on the mechanism of anodic dissolution and cathodic deposition of copper in acidic sulfate solution has been investigated. The galvanostatic single-pulse method has been used. Results indicate that presence of Sb atoms in anode copper increase the exchange current density as determined from the Tafel analysis of the electrode reaction. It is attributed to the increase of the crystal lattice parameter determined from XRD analysis of the electrode material.

  13. Fabrication and Characterization of Graded Anodes for Anode-Supported Solid Oxide Fuel Cells by Tape Casting and Lamination

    DEFF Research Database (Denmark)

    Beltran-Lopez, J.F.; Laguna-Bercero, M.A.; Gurauskis, Jonas;

    2014-01-01

    Graded anodes for anode-supported solid oxide fuel cells (SOFCs) are fabricated by tape casting and subsequent cold lamination of plates using different compositions. Rheological parameters are adjusted to obtain stable suspensions for tape casting. The conditions for the tape casting and...... lamination will be described. Flexural strength of the reduced cermets measured using three-point bending configuration is 468±37MPa. The graded anode supports are characterized by scanning electron microscope observations, mercury porosimetry intrusion, and resistivity measurements, showing an adequate and...

  14. Lambda polarization at HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Belostotski, S. [Petersburg Nuclear Physics Institute RAS Gatchina, Leningrad district 188300 (Russian Federation); Naryshkin, Yu., E-mail: naryshk@mail.desy.d [Petersburg Nuclear Physics Institute RAS Gatchina, Leningrad district 188300 (Russian Federation); Veretennikov, D. [Petersburg Nuclear Physics Institute RAS Gatchina, Leningrad district 188300 (Russian Federation)

    2011-01-15

    Transverse polarization of {Lambda} and {Lambda}-bar hyperons produced inclusively in quasi-real photon-nucleon scattering has been studied for several nuclear targets in a wide range of atomic-mass numbers A. A strong A-dependence of the {Lambda} polarization is observed.

  15. Polarization modulators for CMBPol

    International Nuclear Information System (INIS)

    We review a number of technologies that are candidates for active polarization modulators for CMBPol. The technologies are appropriate for instruments that use bolometric detectors and include birefringent crystal-based and metal-mesh-based half-wave plates, variable phase polarization modulator, Faraday rotator, and photolithographed modulators. We also give a current account of the status of millimeter-wave orthomode transducers.

  16. Polarization modulators for CMBPol

    Energy Technology Data Exchange (ETDEWEB)

    Ade, P A R; Savini, G [Cardiff University, School of Physics and Astronomy, Queens Buildings, The Parade, Cardiff, CF24 3AA (United Kingdom); Chuss, D T [NASA Goddard Space Flight Center, Code 665, Greenbelt, MD, 20771 (United States); Hanany, S [School of Physics and Astronomy, University of Minnesota/Twin Cities, Minneapolis, MN, 55455 (United States); Haynes, V; Pisano, G [University of Manchester, School of Physics and Astronomy - Alan Turing Building, Upper Brooke street, Manchester, M13 4PL (United Kingdom); Keating, B G [Department of Physics, University of California, San Diego, La Jolla, CA 92093-0424 (United States); Kogut, A [Code 665 Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ruhl, J E [Physics Department, Case Western Reserve University, Cleveland, OH, 44106 (United States); Wollack, E J [Observational Cosmology Laboratory, NASA/GSFC, Greenbelt, MD 20771 (United States)

    2009-03-01

    We review a number of technologies that are candidates for active polarization modulators for CMBPol. The technologies are appropriate for instruments that use bolometric detectors and include birefringent crystal-based and metal-mesh-based half-wave plates, variable phase polarization modulator, Faraday rotator, and photolithographed modulators. We also give a current account of the status of millimeter-wave orthomode transducers.

  17. Polarization and polarization fatigue in ferroelectrics

    Science.gov (United States)

    Du, Xiaofeng

    This thesis addresses some fundamental issues in ferroelectricity and its applications through a computational and experimental effort. It focuses on a variety of perovskite-type ferroelectric oxides and investigates the physical basis for spontaneous polarization, domain wall dynamics, and texture development in thin film applications. The dipole-dipole interactions between ionic species in perovskite-type materials have been calculated to determine the local field and the lattice instability. Different ferroelectric and anti-ferroelectric polarization transitions can be realized by taking into account the structure distortion of the parent perovskites. We find the local field is enhanced by short range disorder and its nature varies from disorder to disorder, causing polarization transitions in non-(100) directions. The molecular field theory has also been extended to layered perovskites, which favors in-plane polarization over c-polarization. These theoretical predictions are in agreement with the experimental observations of various perovskites and layered perovskites in both single crystal and thin film forms. Domain switching in PZT has been studied by probing the frequency dependency of polarization hysteresis. A picture of thermally activated domain wall movement is established from the frequency spectra of coercive field. The field dependence of domain wall bulging and the nature of the binding between pinning obstacles and the walls are inferred from such a study. Consistent with this picture, polarization fatigue can be defined as a process of increasing the resistance from pinning defects to domain wall motion. The chemical species that act as pinning defects have been identified through model experiments that control carrier injection, electrode interfaces, and film compositions. Based on these observations, a methodology is proposed to evaluate and predict the fatigue damage of both PZT and layered perovskite thin films. Processing of layered

  18. Topics in Chemical Instrumentation: CII. Automated Anodic Stripping Voltammetry.

    Science.gov (United States)

    Stock, John T.; Ewing, Galen W., Ed.

    1980-01-01

    Presents details of anodic stripping analysis (ASV) in college chemistry laboratory experiments. Provides block diagrams of the analyzer system, circuitry and power supplies of the automated stripping analyzer, and instructions for implementing microcomputer control of the ASV. (CS)

  19. Blue fluorescent organic light emitting diodes with multilayered graphene anode

    International Nuclear Information System (INIS)

    As an innovative anode for organic light emitting devices (OLEDs), we have investigated graphene films. Graphene has importance due to its huge potential in flexible OLED applications. In this work, graphene films have been catalytically grown and transferred to the glass substrate for OLED fabrications. We have successfully fabricated 2 mm × 2 mm device area blue fluorescent OLEDs with graphene anodes which showed 2.1% of external quantum efficiency at 1000 cd/m2. This is the highest value reported among fluorescent OLEDs using graphene anodes. Oxygen plasma treatment on graphene has been found to improve hole injections in low voltage regime, which has been interpreted as oxygen plasma induced work function modification. However, plasma treatment also increases the sheet resistance of graphene, limiting the maximum luminance. In summary, our works demonstrate the practical possibility of graphene as an anode material for OLEDs and suggest a processing route which can be applied to various graphene related devices.

  20. Nanocomposite anode materials for sodium-ion batteries

    Science.gov (United States)

    Manthiram, Arumugam; Kim Il, Tae; Allcorn, Eric

    2016-06-14

    The disclosure relates to an anode material for a sodium-ion battery having the general formula AO.sub.x--C or AC.sub.x--C, where A is aluminum (Al), magnesium (Mg), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), zirconium (Zr), molybdenum (Mo), tungsten (W), niobium (Nb), tantalum (Ta), silicon (Si), or any combinations thereof. The anode material also contains an electrochemically active nanoparticles within the matrix. The nanoparticle may react with sodium ion (Na.sup.+) when placed in the anode of a sodium-ion battery. In more specific embodiments, the anode material may have the general formula M.sub.ySb-M'O.sub.x--C, Sb-MO.sub.x--C, M.sub.ySn-M'C.sub.x--C, or Sn-MC.sub.x--C. The disclosure also relates to rechargeable sodium-ion batteries containing these materials and methods of making these materials.

  1. Digital simulation of anodic stripping voltammetry from thin film electrodes

    International Nuclear Information System (INIS)

    The anodic stripping voltammetry (ASV) is routinely applied to control of Cu(II) in heavy water in the primary cooling loop of the Nuclear Power Reactor. The anodic stripping voltammetry (ASV) is a very well-known technique in electroanalytical chemistry. However, due to the complexity of the phenomena, it is practised with the fundamentals of empiric considerations. A geometric model for the anodic stripping voltammetry (ASV) from thin film electrodes which can be calculated by explicit digital simulation method is proposed as a possibility of solving the electrochemically reversible, cuasi-reversible and irreversible reactions under linear potential scan and multiple potential scans. (Until now the analytical mathematical method was applied to reversible reactions). All the results are compared with analytical solutions and experimental results and it permits to conclude that the anodic stripping voltammetry (ASV) can be studied with the simplicity and potentialities of explicit digital simulation methods. (M.E.L.)

  2. Excitation of anodized alumina films with a light source

    DEFF Research Database (Denmark)

    Aggerbeck, Martin; Canulescu, Stela; Rechendorff, K.;

    Optical properties of anodized aluminium alloys were determined by optical diffuse reflectance spectroscopy of such films. Samples with different concentrations of dopants were excited with a white-light source combined with an integrating sphere for fast determination of diffuse reflectance. The...... UV-VIS reflectance of Ti-doped anodized aluminium films was measured over the wavelength range of 200 nm to 900 nm. Titanium doped-anodized aluminium films with 5-15 wt% Ti were characterized. Changes in the diffuse light scattering of doped anodized aluminium films, and thus optical appearance, with...... doping are discussed. Using the Kubelka-Munk model on the diffuse reflectance spectra of such films, the bandgap Eg of the oxide alloys can be determined....

  3. Recent anode advances in solid oxide fuel cells

    Science.gov (United States)

    Sun, Chunwen; Stimming, Ulrich

    Solid oxide fuel cells (SOFCs) are electrochemical reactors that can directly convert the chemical energy of a fuel gas into electrical energy with high efficiency and in an environment-friendly way. The recent trends in the research of solid oxide fuel cells concern the use of available hydrocarbon fuels, such as natural gas. The most commonly used anode material Ni/YSZ cermet exhibits some disadvantages when hydrocarbons were used as fuels. Thus it is necessary to develop alternative anode materials which display mixed conductivity under fuel conditions. This article reviews the recent developments of anode in SOFCs with principal emphasis on the material aspects. In addition, the mechanism and kinetics of fuel oxidation reactions are also addressed. Various processes used for the cost-effective fabrication of anode have also been summarized. Finally, this review will be concluded with personal perspectives on the future research directions of this area.

  4. Effect of processing on structural features of anodic aluminum oxides

    Science.gov (United States)

    Erdogan, Pembe; Birol, Yucel

    2012-09-01

    Morphological features of the anodic aluminum oxide (AAO) templates fabricated by electrochemical oxidation under different processing conditions were investigated. The selection of the polishing parameters does not appear to be critical as long as the aluminum substrate is polished adequately prior to the anodization process. AAO layers with a highly ordered pore distribution are obtained after anodizing in 0.6 M oxalic acid at 20 °C under 40 V for 5 minutes suggesting that the desired pore features are attained once an oxide layer develops on the surface. While the pore features are not affected much, the thickness of the AAO template increases with increasing anodization treatment time. Pore features are better and the AAO growth rate is higher at 20 °C than at 5 °C; higher under 45 V than under 40 V; higher with 0.6 M than with 0.3 M oxalic acid.

  5. ALUMINUM RECLAMATION BY ACIDIC EXTRACTION OF ALUMINUM-ANODIZING SLUDGES

    Science.gov (United States)

    Extraction of aluminum-anodizing sludges with sulfuric acid was examined to determine the potential for production of commercial-strength solutions of aluminum sulfate, that is liquid alum. The research established kinetic and stoichiometric relationships and evaluates product qu...

  6. Formation of anodic aluminum oxide with serrated nanochannels.

    Science.gov (United States)

    Li, Dongdong; Zhao, Liang; Jiang, Chuanhai; Lu, Jia G

    2010-08-11

    We report a simple and robust method to self-assemble porous anodic aluminum oxide membranes with serrated nanochannels by anodizing in phosphoric acid solution. Due to high field conduction and anionic incorporation, an increase of anodizing voltage leads to an increase of the impurity levels and also the field strength across barrier layer. On the basis of both experiment and simulation results, the initiation and formation of serrated channels are attributed to the evolution of oxygen gas bubbles followed by plastic deformation in the oxide film. Alternating anodization in oxalic and phosphoric acids is applied to construct multilayered membranes with smooth and serrated channels, demonstrating a unique way to design and construct a three-dimensional hierarchical system with controllable morphology and composition. PMID:20617804

  7. Silicon Whisker and Carbon Nanofiber Composite Anode Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) has successfully developed a silicon whisker and carbon nanofiber composite anode for lithium ion batteries on a Phase I program. PSI...

  8. Formation of complex anodic films on porous alumina matrices

    Indian Academy of Sciences (India)

    Alexander Zahariev; Assen Girginov

    2003-04-01

    The kinetics of growth of complex anodic alumina films was investigated. These films were formed by filling porous oxide films (matrices) having deep pores. The porous films (matrices) were obtained voltastatically in (COOH)2 aqueous solution under various voltages. The filling was done by re-anodization in an electrolyte solution not dissolving the film. Data about the kinetics of re-anodization depending on the porosity of the matrices were obtained. On the other hand, the slopes of the kinetic curves during reanodization were calculated by two equations expressing the dependence of these slopes on the ionic current density. A discrepancy was ascertained between the values of the calculated slopes and those experimentally found. For this discrepancy a possible explanation is proposed, related to the temperature increase in the film, because of that the real current density significantly increases during re-anodization.

  9. Polarization Mode Dispersion

    CERN Document Server

    Galtarossa, Andrea

    2005-01-01

    This book contains a series of tutorial essays on polarization mode dispersion (PMD) by the leading experts in the field. It starts with an introductory review of the basic concepts and continues with more advanced topics, including a thorough review of PMD mitigation techniques. Topics covered include mathematical representation of PMD, how to properly model PMD in numerical simulations, how to accurately measure PMD and other related polarization effects, and how to infer fiber properties from polarization measurements. It includes discussions of other polarization effects such as polarization-dependent loss and the interaction of PMD with fiber nonlinearity. It additionally covers systems issues like the impact of PMD on wavelength division multiplexed systems. This book is intended for research scientists or engineers who wish to become familiar with PMD and its system impacts.

  10. Polarization Optics in Telecommunications

    CERN Document Server

    Damask, Jay N

    2005-01-01

    The strong investments into optical telecommunications in the late 1990s resulted in a wealth of new research, techniques, component designs, and understanding of polarization effects in fiber. Polarization Optics in Telecommunications brings together recent advances in the field to create a standard, practical reference for component designers and optical fiber communication engineers. Beginning with a sound foundation in electromagnetism, the author offers a dissertation of the spin-vector formalism of polarization and the interaction of light with media. Applications discussed include optical isolators, optical circulators, fiber collimators, and a variety of applied waveplate and prism combinations. Also included in an extended discussion of polarization-mode dispersion (PMD) and polarization-dependent loss (PDL), their representation, behavior, statistical properties, and measurement. This book draws extensively from the technical and patent literature and is an up-to-date reference for researchers and c...

  11. Parallel Polarization State Generation.

    Science.gov (United States)

    She, Alan; Capasso, Federico

    2016-01-01

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security. PMID:27184813

  12. Parallel Polarization State Generation

    Science.gov (United States)

    She, Alan; Capasso, Federico

    2016-05-01

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.

  13. Parallel Polarization State Generation

    CERN Document Server

    She, Alan

    2016-01-01

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristi...

  14. Effect of different ions on the anodic behaviour of alloy 800 chloride solutions at high temperature

    International Nuclear Information System (INIS)

    The anodic behaviour and passivity breakdown of alloy 800 in sodium bicarbonate and sodium phosphate aqueous solutions were studied in the temperature range from 100 degrees C to 280 degrees C by means of electrochemical techniques. The effect of phosphate or bicarbonate additions on the pitting susceptibility and pitting morphology of the alloy in chloride solutions was also examined. Experiments were performed in the following solutions: 0.1M NaHCO3, at 100 degrees C, 200 degrees C, 280 degrees C; 0.06M NaH2PO4 + 0.04M Na2HPO4, at 100 degrees C, 200 degrees C and 280 degrees C, and 0.1M NaCl with different additions of bicarbonate ion (0.02M, 0.05M and 0.1M) and phosphate ion (0.01M, 0.05M and 0.1M) at 100 degrees C and 280 degrees C. The anodic polarization curves of alloy 800 in deaerated 0.1M NaHCO3 and 0.06M NaH2PO4 + 0.04M Na2HPO4 solutions exhibited a similar shape at all the tested temperatures. No localized or generalized corrosion was detected on the metallic surface after polarization. The results obtained in chloride plus bicarbonate and chloride plus phosphate mixtures showed that the pitting potential of alloy 800 in chloride solutions was increased by the presence of bicarbonate or phosphate ions. In those solutions where the inhibitor concentration in the mixture is equal or higher than the chloride concentration , the behaviour of the alloy is similar to the one observed in the absence of chlorides. Changes in pitting morphology were found in phosphate containing solutions, while the pits found in bicarbonate containing solutions were similar to those formed in pure chloride solutions. (author). 3 refs., 4 figs

  15. Determination of beam polarization from integrated Borrmann intensities

    International Nuclear Information System (INIS)

    The Borrmann effect can be used to determine the extent of beam polarization of any x-ray beam. The method is applicable, without any modification, to any diffractometer equipped with a partial or full Eulerian cradle. It consists of rocking a perfect crystal, in a thick crystal Laue transmission geometry, through the Bragg angle at various values of the azimuthal angle /sub chi/. If the thickness of the perfect crystal is such that μT/sub 0/>10, then it measures directly the polarization of the incident beam. Three different Ge perfect crystals were used to study the amount of polarization of x-rays produced by a MO and a W source, followed by a double crystal graphite monochromator. A 1800 periodicity in the integrated intensity, as a function of /sub chi/, is observed; the periodic extremes show the extent of beam polarization. Anomalously transmitted integrated intensity ratios between parallel (σ-component) and perpendicular (π-component) scanning directions, with respect to the scattering plane, are used to characterize the polarization since they are quite insensitive to beam divergences, whereas the corresponding peak height radius show very important beam divergence effects. Also, the polarization properties of graphite monochromators can be related to those of a perfect crystal if the (002) lattice planes are used for any excitation line of the W-anode. This is due to the polarization contribution of the intense white radiation spectrum superimposed on that of the line. On the other hand, the same spectrum impinging on the (004) lattice planes produce polarization properties closer to that of the ideally mosaic crystal

  16. Diagnostics of reverse polarity planar DC magnetron

    International Nuclear Information System (INIS)

    Magnetron is being widely used in thin film deposition and other industrial manufacturing processes. Using special geometry of magnetic field on the cathode surface the ionization can be enhanced many fold, resulting in plasma density enhancement by few orders of magnitude. Recently use of magnetron in reverse polarity as ion source has been reported. The concept is also reported for better plasma polymerization process. In present study plasma property of the discharge is being investigated in reverse polarity, the usual E × B region of electron trap is now disappeared. The characteristic ring of the normal magnetron now becomes donut shaped anode dark space, and plasma takes shape of an inverted funnel. A measurement of spatial variation of electron temperature and density has been done, in plume region across magnetron with the help of single and double Langmuir probe. The potential structure is mapped in transverse direction. Electron temperature was measured with respect to changing discharge voltage i.e. input power and background pressure. Density found to increases with both input power and pressure while temperature falls in the central region of the plume. (author)

  17. The Evolution of Solid Oxide Fuel Cell Nickel-Yttria Stabilized Zirconia Anodes Studied Using Electrochemical and Three-Dimensional Microstructural Characterizations

    Science.gov (United States)

    Kennouche, David O.

    This thesis focuses on Solid Oxide Fuel Cells (SOFCs). The 21st century will see major changes in the way energy is produced, stored, and used around the world. SOFCs, which provide an efficient, scalable, and low-pollution alternative method for electricity generation, are expected to play an important role. SOFCs can also be operated in electrolysis mode for energy storage, important since health and economic reasons are causing a shift towards intermittent renewable energy resources. However, multiple limitations mainly linked to cost and durability have prevented the expansion of this technology to mass markets. This work focuses on the Nickel - Yttria Stabilized Zirconia (Ni-YSZ) anode that is widely used in SOFCs. Coarsening of Ni in the Ni-YSZ anode has been widely cited as a primary cause of long-term SOFC degradation. While there have been numerous studies of Ni coarsening reported, these have typically only tracked the evolution of Ni particle size, not the entire microstructure, and have typically not been correlated directly with electrochemical performance. In this thesis, the advanced tomography techniques Focused Ion Beam - Scanning Electron Microscopy (FIB-SEM) tomography and Trans- mission X-ray Microscopy (TXM) have been utilized to enable insight into the evolution of Ni-YSZ structure and how it relates to performance degradation. Extensive anode aging studies were done for relatively short times using temperatures higher than in normal SOFC operation in order to accelerate microstructural evolution. In addition the microstructure changes were correlated with changes in anode polarization resistance. While most of the measurements were done by comparing different anodes aged under different conditions, the first example of a "pseudo in situ" measurement where the same anode was 3D imaged repeatedly with intervening aging steps, was also demonstrated. A microstructural evolution model that focuses on the active three-phase boundary density was

  18. Performance evaluation of a liquid tin anode solid oxide fuel cell operating under hydrogen, argon and coal

    Science.gov (United States)

    Khurana, Sanchit; LaBarbera, Mark; Fedkin, Mark V.; Lvov, Serguei N.; Abernathy, Harry; Gerdes, Kirk

    2015-01-01

    A liquid tin anode solid oxide fuel cell is constructed and investigated under different operating conditions. Electrochemical Impedance Spectroscopy (EIS) is used to reflect the effect of fuel feed as the EIS spectra changes significantly on switching the fuel from argon to hydrogen. A cathode symmetric cell is used to separate the impedance from the two electrodes, and the results indicate that a major contribution to the charge-transfer and mass-transfer impedance arises from the anode. The OCP of 0.841 V for the cell operating under argon as a metal-air battery indicates the formation of a SnO2 layer at the electrolyte/anode interface. The increase in the OCP to 1.1 V for the hydrogen fueled cell shows that H2 reduces the SnO2 film effectively. The effective diffusion coefficients are calculated using the Warburg element in the equivalent circuit model for the experimental EIS data, and the values of 1.9 10-3 cm2 s-1 at 700 °C, 2.3 10-3 cm2 s-1 at 800 °C and 3.5 10-3 cm2 s-1 at 900 °C indicate the system was influenced by diffusion of hydrogen in the system. Further, the performance degradation over time is attributed to the irreversible conversion of Sn to SnO2 resulting from galvanic polarization.

  19. Two-phase flow in anode flow field of a small direct methanol fuel cell in different gravities

    Institute of Scientific and Technical Information of China (English)

    GUO Hang; WU Feng; YE Fang; ZHAO JianFu; WAN ShiXin; L(U) CuiPing; MA ChongFang

    2009-01-01

    An in-situ visualization of two-phase flow inside anode flow bed of a small liquid fed direct methanol fuel cells in normal and reduced gravity has been conducted in a drop tower. The anode flow bed con-sists of 11 parallel straight channels. The length, width and depth of single channel, which had rec-tangular cross section, are 48.0, 2.5 and 2.0 mm, respectively. The rib width was 2.0 ram. The experi-mental results indicated that when the fuel cell orientation is vertical, two-phase flow pattern in anode channels can evolve from bubbly flow in normal gravity into slug flow in microgravity. The size of bub-bles in the reduced gravity is also bigger. In microgravity, the bubbles rising speed in vertical channels is obviously slower than that in normal gravity. When the fuel cell orientation is horizontal, the slug flow in the reduced gravity has almost the same characteristic with that in normal gravity. It implies that the effect of gravity on two-phase flow is small and the bubbles removal is governed by viscous drag. When the gas slugs or gas columns occupy channels, the performance of liquid fed direct methanol fuel cells is failing rapidly. It infers that in long-term microgravity, flow bed and operating condition should be optimized to avoid concentration polarization of fuel cells.

  20. Two-phase flow in anode flow field of a small direct methanol fuel cell in different gravities

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    An in-situ visualization of two-phase flow inside anode flow bed of a small liquid fed direct methanol fuel cells in normal and reduced gravity has been conducted in a drop tower.The anode flow bed con-sists of 11 parallel straight channels.The length,width and depth of single channel,which had rec-tangular cross section,are 48.0,2.5 and 2.0mm,respectively.The rib width was 2.0mm.The experi-mental results indicated that when the fuel cell orientation is vertical,two-phase flow pattern in anode channels can evolve from bubbly flow in normal gravity into slug flow in microgravity.The size of bub-bles in the reduced gravity is also bigger.In microgravity,the bubbles rising speed in vertical channels is obviously slower than that in normal gravity.When the fuel cell orientation is horizontal,the slug flow in the reduced gravity has almost the same characteristic with that in normal gravity.It implies that the effect of gravity on two-phase flow is small and the bubbles removal is governed by viscous drag.When the gas slugs or gas columns occupy channels,the performance of liquid fed direct methanol fuel cells is failing rapidly.It infers that in long-term microgravity,flow bed and operating condition should be optimized to avoid concentration polarization of fuel cells.

  1. Note: Anodic bonding with cooling of heat-sensitive areas

    DEFF Research Database (Denmark)

    Vesborg, Peter Christian Kjærgaard; Olsen, Jakob Lind; Henriksen, Toke Riishøj;

    2010-01-01

    Anodic bonding of silicon to glass always involves heating the glass and device to high temperatures so that cations become mobile in the electric field. We present a simple way of bonding thin silicon samples to borosilicate glass by means of heating from the glass side while locally cooling heat......-sensitive areas from the silicon side. Despite the high thermal conductivity of silicon, this method allows a strong anodic bond to form just millimeters away from areas essentially at room temperature....

  2. Inertial friction welding process for making an anode assembly

    International Nuclear Information System (INIS)

    A method is specified for fixing a stem to a disc which includes an x-ray target to a selected surface area of a substrate to make an anode assembly for a rotating x-ray anode tube. The disc, wherein the substrate comprises molybdenum or molybdenum based alloys, and the stem which comprises columbium or columbium alloys are welded together in a butt joint by inertial friction. (U.K.)

  3. Formation and Morphology of Anodic Oxide Films of Ti

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The morphology and structure of the oxide films of Ti in H3PO4 were investigated by galvanostatic anodization, SEM and XRD. The oxide film grew from some pores in the grooves to layered microdomains as increasing anodizing voltage. The crystallinity of the oxide films decreased with the increase of the concentration of the electrolyte. The model has been proposed for the growth of the oxide films by two steps, i.e. by uniform thickening and by local deposition.

  4. Anodic Activation of Aluminum by Trace Element Tin

    OpenAIRE

    Tan, Juan

    2011-01-01

    Anodic activation of commercial and model aluminum alloys in chloride solution became of practical importance in connection with filiform corrosion of painted aluminum sheet in architectural application and aluminum components of brazed heat exchangers. Activation in chloride solution manifests itself in the form of a significant negative shift in the pitting potential relative to pure aluminum and a significant increase in the anodic current output at potentials where aluminum is normally ex...

  5. Metal-Supported SOFC with Ceramic-Based Anode

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Klemensø, Trine; Persson, Åsa Helen;

    2011-01-01

    Metal-supported solid oxide fuel cells have shown promise to offer several potential advantages over conventional anode (Ni-YSZ) supported cells, such as increased resistance against mechanical and thermal stresses and a reduction in materials cost. The purpose of this work is to illustrate how t......), zirconia-free anode, in a planar metal-supported SOFC concept is discussed. ©2011 COPYRIGHT ECS - The Electrochemical Society...

  6. Mixed conductor anodes: Ni as electrocatalyst for hydrogen conversion

    DEFF Research Database (Denmark)

    Primdahl, S.; Mogensen, Mogens Bjerg

    2002-01-01

    Five types of anodes for solid oxide fuel cells (SOFC) are examined on an yttria-stabilised zirconia (YSZ) electrolyte by impedance spectroscopy at 850 degreesC in hydrogen. The examined porous anodes are a Ni/Zr(0.92)Y(0.16)O(2.08) (Ni/YSZ) cermet, a Ni/Ce(0.9)Gd(0.1)O(1.95) (Ni/CGI) cermet, a Ce...

  7. A method to localize gamma-ray bursts using POLAR

    CERN Document Server

    Suarez-Garcia, E; Hajdas, W; Lamanna, G; Lechanoine-Leluc, C; Marcinkowski, R; Mtchedlishvili, A; Orsi, S; Pohl, M; Produit, N; Rapin, D; Rybka, D; Vialle, J -P; 10.1016/j.nima.2010.10.006

    2010-01-01

    The hard X-ray polarimeter POLAR aims to measure the linear polarization of the 50-500 keV photons arriving from the prompt emission of gamma-ray bursts (GRBs). The position in the sky of the detected GRBs is needed to determine their level of polarization. We present here a method by which, despite of the polarimeter incapability of taking images, GRBs can be roughly localized using POLAR alone. For this purpose scalers are attached to the output of the 25 multi-anode photomultipliers (MAPMs) that collect the light from the POLAR scintillator target. Each scaler measures how many GRB photons produce at least one energy deposition above 50 keV in the corresponding MAPM. Simulations show that the relative outputs of the 25 scalers depend on the GRB position. A database of very strong GRBs simulated at 10201 positions has been produced. When a GRB is detected, its location is calculated searching the minimum of the chi2 obtained in the comparison between the measured scaler pattern and the database. This GRB lo...

  8. Stainless steel anodes for alkaline water electrolysis and methods of making

    Science.gov (United States)

    Soloveichik, Grigorii Lev

    2014-01-21

    The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

  9. Preparation of Porous Alumina Film on Aluminum Substrate by Anodization in Oxalic Acid

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Self-ordering of the cell arrangement of the anodic porous alumina was prepared in oxalic acid solution at a constant potential of 40V and at a temperature of 20°C. The honeycomb structure made by one step anodization method and two step anodization method is different.Pores in the alumina film prepared by two step anodization method were more ordered than those by one step anodization method.

  10. The Temperature Stage Which Used At Anode Paste Doughing Process In Green Plant PT Inalum

    OpenAIRE

    Simatupang, Dian Christian

    2011-01-01

    Anode is raw material which used in electrolyse process aluminium smelting, where anode is form mixed of cokes and coal tar pitch, containing carbon element which required in smelting process of alumina to produce aluminium. PT INALUM has been able to produce anode it self, while cathode is still be imported from other countries. Aluminium smelter process which taking place continiously require many of anode, good quality and durable, especially temperature at doughing process of anode paste ...

  11. Process for anodizing a robotic device

    Science.gov (United States)

    Townsend, William T.

    2011-11-08

    A robotic device has a base and at least one finger having at least two links that are connected in series on rotary joints with at least two degrees of freedom. A brushless motor and an associated controller are located at each joint to produce a rotational movement of a link. Wires for electrical power and communication serially connect the controllers in a distributed control network. A network operating controller coordinates the operation of the network, including power distribution. At least one, but more typically two to five, wires interconnect all the controllers through one or more joints. Motor sensors and external world sensors monitor operating parameters of the robotic hand. The electrical signal output of the sensors can be input anywhere on the distributed control network. V-grooves on the robotic hand locate objects precisely and assist in gripping. The hand is sealed, immersible and has electrical connections through the rotary joints for anodizing in a single dunk without masking. In various forms, this intelligent, self-contained, dexterous hand, or combinations of such hands, can perform a wide variety of object gripping and manipulating tasks, as well as locomotion and combinations of locomotion and gripping.

  12. Polarization behavior of vanadium tetraoxides electrodes in neutral solutions

    International Nuclear Information System (INIS)

    Vanadium tetraoxides was anodically formed on vanadium plates in a solution of acetic acid-sodium tetraborate containing small quantities of water, and an electrochemical study of the vanadium tetraoxides was made in a sodium borateboric acid solution of pH 8.39 using an electronic potentiostat with special reference to the dissolution behavior of oxide. Vanadium tetraoxides dissolved anodically as orthovanadate ion (H2VO4-) and chemically as hypovanadate ion (HV2O5-) at immersion potential. The polarization curve of the anodic dissolution obeys the Tafel law with a slope of 0.06/dec. In the potential region between -0.20 (the immersion potential) and -1.00V (S.C.E.), the cathodic current decreased at constant potential in inverse proportion to time. This current decrease is attributed to the formation of a layer of a lower-valence oxide on the vanadium tetraoxides electrodes to be controlled by the chemical dissolution of the oxide surface. (auth.)

  13. Copper anode corrosion affects power generation in microbial fuel cells

    KAUST Repository

    Zhu, Xiuping

    2013-07-16

    Non-corrosive, carbon-based materials are usually used as anodes in microbial fuel cells (MFCs). In some cases, however, metals have been used that can corrode (e.g. copper) or that are corrosion resistant (e.g. stainless steel, SS). Corrosion could increase current through galvanic (abiotic) current production or by increasing exposed surface area, or decrease current due to generation of toxic products from corrosion. In order to directly examine the effects of using corrodible metal anodes, MFCs with Cu were compared with reactors using SS and carbon cloth anodes. MFCs with Cu anodes initially showed high current generation similar to abiotic controls, but subsequently they produced little power (2 mW m-2). Higher power was produced with microbes using SS (12 mW m-2) or carbon cloth (880 mW m-2) anodes, with no power generated by abiotic controls. These results demonstrate that copper is an unsuitable anode material, due to corrosion and likely copper toxicity to microorganisms. © 2013 Society of Chemical Industry.

  14. Microbial community composition is unaffected by anode potential

    KAUST Repository

    Zhu, Xiuping

    2014-01-21

    There is great controversy on how different set anode potentials affect the performance of a bioelectrochemical system (BES). It is often reported that more positive potentials improve acclimation and performance of exoelectrogenic biofilms, and alter microbial community structure, while in other studies relatively more negative potentials were needed to achieve higher current densities. To address this issue, the biomass, electroactivity, and community structure of anodic biofilms were examined over a wide range of set anode potentials (-0.25, -0.09, 0.21, 0.51, and 0.81 V vs a standard hydrogen electrode, SHE) in single-chamber microbial electrolysis cells. Maximum currents produced using a wastewater inoculum increased with anode potentials in the range of -0.25 to 0.21 V, but decreased at 0.51 and 0.81 V. The maximum currents were positively correlated with increasing biofilm biomass. Pyrosequencing indicated biofilm communities were all similar and dominated by bacteria most similar to Geobacter sulfurreducens. Differences in anode performance with various set potentials suggest that the exoelectrogenic communities self-regulate their exocellular electron transfer pathways to adapt to different anode potentials. © 2013 American Chemical Society.

  15. Superhydrophobicity of Bionic Alumina Surfaces Fabricated by Hard Anodizing

    Institute of Scientific and Technical Information of China (English)

    Jing Li; Feng Du; Xianli Liu; Zhonghao Jiang; Luquan Ren

    2011-01-01

    Bionic alumina samples were fabricated on convex dome type aluminum alloy substrate using hard anodizing technique.The convex domes on the bionic sample were fabricated by compression molding under a compressive stress of 92.5 MPa.The water contact angles of the as-anodized bionic samples were measured using a contact angle meter (JC2000A) with the 3 μL water drop at room temperature.The measurement of the wetting property showed that the water contact angle of the unmodified as-anodized bionic alumina samples increases from 90° to 137° with the anodizing time.The increase in water contract angle with anodizing time arises from the gradual formation of hierarchical structure or composite structure.The structure is composed of the micro-scaled alumina columns and pores.The height of columns and the depth of pores depend on the anodizing time.The water contact angle increases significantly from 96° to 152° when the samples were modified with self-assembled monolayer of octadecanethiol (ODT),showing a change in the wettability from hydrophobicity to super-hydrophobicity.This improvement in the wetting property is attributed to the decrease in the surface energy caused by the chemical modification.

  16. Optimal Conditions for Fast Charging and Long Cycling Stability of Silicon Microwire Anodes for Lithium Ion Batteries, and Comparison with the Performance of Other Si Anode Concepts

    Directory of Open Access Journals (Sweden)

    Enrique Quiroga-González

    2013-10-01

    Full Text Available Cycling tests under various conditions have been performed for lithium ion battery anodes made from free-standing silicon microwires embedded at one end in a copper current collector. Optimum charging/discharging conditions have been found for which the anode shows negligible fading (< 0.001% over 80 cycles; an outstanding result for this kind of anodes. Several performance parameters of the anode have been compared to the ones of other Si anode concepts, showing that especially the capacity as well as the rates of charge flow per nominal area of anode are the highest for the present anode. With regard to applications, the specific parameters per area are more important than the specific gravimetric parameters like the gravimetric capacity, which is good for comparing the capacity between materials but not enough for comparing between anodes.

  17. Impurity-defect structure of anodic aluminum oxide produced by two-sided anodizing in tartaric acid

    Science.gov (United States)

    Chernyakova, K. V.; Vrublevsky, I. A.; Ivanovskaya, M. I.; Kotsikau, D. A.

    2012-03-01

    Porous aluminum oxide is prepared in a 0.4 M aqueous solution of tartaric acid by two-sided anodizing. Fourier Transform IR spectroscopy (FTIR) data reveal the presence, in the alumina, of unoxidized tartarate ions, as well as products of their partial (radical organic products and CO) and complete (CO2) oxidation. Carboxylate ions and elemental carbon contained in the anodic oxide impart a gray color to the films.

  18. Review of Polarized Ion Sources

    Science.gov (United States)

    Zelenski, A.

    2016-02-01

    Recent progress in polarized ion sources development is reviewed. New techniques for production of polarized H‑ ion (proton), D‑ (D+) and 3He++ ion beams will be discussed. A novel polarization technique was successfully implemented for the upgrade of the RHIC polarized H‑ ion source to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from an external source) in the He-gas ionizer cell. Polarized electron capture from the optically-pumped Rb vapor further produces proton polarization (Optically Pumped Polarized Ion Source technique). The upgraded source reliably delivered beam for the 2013 polarized run in RHIC at S = 510 GeV. This was a major factor contributing to RHIC polarization increase to over 60 % for colliding beams. Feasibility studies of a new polarization technique for polarized 3He++ source based on BNL Electron Beam Ion Source is also discussed.

  19. Is there a difference between the primary stability of anodized and non-anodized mini-screws subjected to repeated cycles of autoclave sterilization?

    OpenAIRE

    Ledingham, Austin D; Şar, Çağla; English, Jeryl D.; Akyalçın, Sercan

    2014-01-01

    Objective: To determine if autoclave sterilization has any deleterious effects on the clinical stability of anodized versus non-anodized mini-screws. Materials and Methods: Thirty anodized and thirty non-anodized Aarhus System mini-screws (American Orthodontics, Sheboygan, WI) were utilized. Each group was divided into three test groups. In each group, mini-screws that were sterilized once using a steam autoclave (Statim 5000, SciCan USA, Canonsburg, Pa) served as the control group (n=10). Th...

  20. GUIDE FOR POLARIZED NEUTRONS

    Science.gov (United States)

    Sailor, V.L.; Aichroth, R.W.

    1962-12-01

    The plane of polarization of a beam of polarized neutrons is changed by this invention, and the plane can be flipped back and forth quicitly in two directions in a trouble-free manner. The invention comprises a guide having a plurality of oppositely directed magnets forming a gap for the neutron beam and the gaps are spaced longitudinally in a spiral along the beam at small stepped angles. When it is desired to flip the plane of polarization the magnets are suitably rotated to change the direction of the spiral of the gaps. (AEC)

  1. Polarized atomic beams for targets

    International Nuclear Information System (INIS)

    The basic principle of the production of polarized atomic hydrogen and deuterium beams are reviewed. The status of the present available polarization, density and intensity are presented. The improvement of atomic beam density by cooling the hydrogen atoms to low velocity is discussed. The possible use of polarized atomic beams as targets in storage rings is shown. It is proposed that polarized atomic beams can be used to produce polarized gas targets with high polarization and greatly improved density

  2. The behaviour of amalgams of some d-metals during cathodic polarization in solutions

    International Nuclear Information System (INIS)

    Results of electrochemical investigation of rhenium, molybdenum and tungsten amalgams during cathodic polarization in alkali and acid solutions are presented. A variant of electrolysis with sodium amalgam as anode is used for the investigation. On the basis of experimental data on potentials of amalgam cathodes (under current and after switching off one), as well as redox-potentials of solutions near the cathode surface, formation of negative ions of metals (rhenium, molybdenum and tungsten) is established

  3. Effect of ionic conductivity of zirconia electrolytes on polarization properties of various electrodes in SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masahiro; Uchida, Hiroyuki; Yoshida, Manabu [Yamanashi Univ., Kofu (Japan)

    1996-12-31

    Solid oxide fuel cells (SOFCs) have been intensively investigated because, in principle, their energy conversion efficiency is fairly high. Lowering the operating temperature of SOFCs from 1000{degrees}C to around 800{degrees}C is desirable for reducing serious problems such as physical and chemical degradation of the constructing materials. The object of a series of the studies is to find a clue for achieving higher electrode performances at a low operating temperature than those of the present level. Although the polarization loss at electrodes can be reduced by using mixed-conducting ceria electrolytes, or introducing the mixed-conducting (reduced zirconia or ceria) laver on the conventional zirconia electrolyte surface, no reports are available on the effect of such an ionic conductivity of electrolytes on electrode polarizations. High ionic conductivity of the electrolyte, of course, reduces the ohmic loss. However, we have found that the IR-free polarization of a platinum anode attached to zirconia electrolytes is greatly influenced by the ionic conductivity, {sigma}{sub ion}, of the electrolytes used. The higher the {sigma}{sub ion}, the higher the exchange current density, j{sub 0}, for the Pt anode in H{sub 2} at 800 {approximately} 1000{degrees}C. It was indicated that the H{sub 2} oxidation reaction rate was controlled by the supply rate of oxide ions through the Pt/zirconia interface which is proportional to the {sigma}{sub ion}. Recently, we have proposed a new concept of the catalyzed-reaction layers which realizes both high-performances of anodes and cathodes for medium-temperature operating SOFCs. We present the interesting dependence of the polarization properties of various electrodes (the SDC anodes with and without Ru microcatalysts, Pt cathode, La(Sr)MnO{sub 3} cathodes with and without Pt microcatalysts) on the {sigma}{sub ion} of various zirconia electrolytes at 800 {approximately} 1000{degrees}C.

  4. Formation of Nanoporous Anodic Alumina by Anodization of Aluminum Films on Glass Substrates.

    Science.gov (United States)

    Lebyedyeva, Tetyana; Kryvyi, Serhii; Lytvyn, Petro; Skoryk, Mykola; Shpylovyy, Pavlo

    2016-12-01

    Our research was aimed at the study of aluminum films and porous anodic alumina (PAA) films in thin-film РАА/Al structures for optical sensors, based on metal-clad waveguides (MCWG). The results of the scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies of the structure of Al films, deposited by DC magnetron sputtering, and of PAA films, formed on them, are presented in this work.The study showed that the structure of the Al films is defined by the deposition rate of aluminum and the thickness of the film. We saw that under anodization in 0.3 M aqueous oxalic acid solution at a voltage of 40 V, the PAA film with a disordered array of pores was formed on aluminum films 200-600 nm thick, which were deposited on glass substrates with an ultra-thin adhesive Nb layer. The research revealed the formation of two differently sized types of pores. The first type of pores is formed on the grain boundaries of aluminum film, and the pores are directed perpendicularly to the surface of aluminum. The second type of pores is formed directly on the grains of aluminum. They are directed perpendicularly to the grain plains. There is a clear tendency to self-ordering in this type of pores. PMID:27083584

  5. Kinetics of enhanced adsorption by polarization for organic pollutants on activated carbon fiber

    Institute of Scientific and Technical Information of China (English)

    HAN Yanhe; QUAN Xie; ZHAO Huimin; CHEN Shuo; ZHAO Yazhi

    2007-01-01

    The adsorption kinetics for model pollutants on activated carbon fiber(ACF)by polarization was investigated in this work.Kinetics data obtained for the adsorption of these model pollutants at open-circuit.400 mV,and -400 mV polarization were applied to the Lagergren equation,and adsorption rate constants(Ka)were determined.With the anodic polarization of 400 mV,the capacity of sodium phenoxide was increased from 0.0083 mmol/g at open circuit to 0.18 mmol/g,and a 17-fold enhancement was achieved;however,the capacity of p-nitrophenol was decreased from 2.93 mmol/g at open-circuit to 2.65 mmol/g.With the cathodal polarization of -400 mV,the capacity of aniline was improved from 3.60 mmol/g at open-circuit to 3.88 mmol/g;however,the capacity of sodium dodecylben zene sulfonate was reduced from 2.20 mmol/g at open-circuit to 1.59 mmol/g.The enhancement for electrosorption changed with different groups substituting.Anodic polarization enhances the adsorption of benzene with the electron donating group.But whether anodic or not,cathodal polarization had less effect on the adsorption of electron-accepting aromatic compounds,and decreased the adsorption capacity of benzene-bearing donor-conjugate bridge-acceptor,while increasing its adsorption rate.Electrostatic interaction played a very important role in the electrosorption of ion-pollutants.

  6. Ni/YSZ pattern anodes fabrication and their microstructure and electrochemical behavior changes in H2-H2O environments

    Science.gov (United States)

    Yao, W.; Croiset, E.

    2013-03-01

    An effective photolithographic process was investigated to fabricate Ni/YSZ pattern anodes using a bi-layer lift-off resist method. Suitable undercut size was found critical for successful pattern fabrication. Effects of Ni thickness, temperature and H2O content on Ni pattern microstructure were evaluated. Ni/YSZ pattern anodes with 0.5 μm thick Ni was tested in dry H2 at 550 °C without significantly changing the TPB line. Ni/YSZ pattern anodes with Ni thickness of 0.8 μm were tested at 550 °C under dry and humidified H2 (3-50% H2O) conditions without TPB line change. At 700 °C, and for 0.8 μm thick patterns, the TPB length showed pronounced change in H2 with 10-50% H2O. Significant increase in TPB length due to holes formation was observed at 800 °C with 3% and 10% H2O. Ni/YSZ pattern anodes with 1.0 μm thick Ni was stable in H2 with 3% H2O in the range 550-800 °C, with TPB line only slightly modified. However, distinct change of TPB line and Ni microstructure was observed with 10-70% H2O above 700 °C. Stabilization of the polarization resistance depends on temperature. To accelerate stabilization of the cell, pre-treatment of the cell in H2 with 3% H2O at 750 °C or 800 °C could be performed.

  7. Time Domain Induced Polarization

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders Vest;

    2012-01-01

    Time-domain-induced polarization has significantly broadened its field of reference during the last decade, from mineral exploration to environmental geophysics, e.g., for clay and peat identification and landfill characterization. Though, insufficient modeling tools have hitherto limited the use...... of time-domaininduced polarization for wider purposes. For these reasons, a new forward code and inversion algorithm have been developed using the full-time decay of the induced polarization response, together with an accurate description of the transmitter waveform and of the receiver transfer...... is above 100%. Furthermore, the presence of low-pass filters in time-domain-induced polarization instruments affects the early times of the acquired decays (typically up to 100 ms) and has to be modeled in the forward response to avoid significant loss of resolution. The developed forward code has...

  8. Polarization Dependence of Emissivity

    OpenAIRE

    J, David; Strozzi,, A.G.; McDonald, Kirk T.

    2000-01-01

    We deduce the emissivity of radiation from a metallic surface as a function of angle and polarization. This effect has found application in the calibration of detectors for cosmic microwave background radiation.

  9. Polar-bulge galaxies

    CERN Document Server

    Reshetnikov, V P; Mosenkov, A V; Sotnikova, N Ya; Bizyaev, D V

    2015-01-01

    Based on SDSS data, we have selected a sample of nine edge-on spiral galaxies with bulges whose major axes show a high inclination to the disk plane. Such objects are called polar-bulge galaxies. They are similar in their morphology to polar-ring galaxies, but the central objects in them have small size and low luminosity. We have performed a photometric analysis of the galaxies in the g and r bands and determined the main characteristics of their bulges and disks. We show that the disks of such galaxies are typical for the disks of spiral galaxies of late morphological types. The integrated characteristics of their bulges are similar to the parameters of normal bulges. The stellar disks of polar-bulge galaxies often show large-scale warps, which can be explained by their interaction with neighboring galaxies or external accretion from outside.

  10. Dynamic nuclear spin polarization

    International Nuclear Information System (INIS)

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs

  11. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H.B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  12. Conductive Polymeric Binder for Lithium-Ion Battery Anode

    Science.gov (United States)

    Gao, Tianxiang

    Tin (Sn) has a high-specific capacity (993 mAhg-1) as an anode material for Li-ion batteries. To overcome the poor cycling performance issue caused by its large volume expansion and pulverization during the charging and discharging process, many researchers put efforts into it. Most of the strategies are through nanostructured material design and introducing conductive polymer binders that serve as matrix of the active material in anode. This thesis aims for developing a novel method for preparing the anode to improve the capacity retention rate. This would require the anode to have high electrical conductivity, high ionic conductivity, and good mechanical properties, especially elasticity. Here the incorporation of a conducting polymer and a conductive hydrogel in Sn-based anodes using a one-step electrochemical deposition via a 3-electrode cell method is reported: the Sn particles and conductive component can be electrochemically synthesized and simultaneously deposited into a hybrid thin film onto the working electrode directly forming the anode. A well-defined three dimensional network structure consisting of Sn nanoparticles coated by conducting polymers is achieved. Such a conductive polymer-hydrogel network has multiple advantageous features: meshporous polymeric structure can offer the pathway for lithium ion transfer between the anode and electrolyte; the continuous electrically conductive polypyrrole network, with the electrostatic interaction with elastic, porous hydrogel, poly (2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylonitrile) (PAMPS) as both the crosslinker and doping anion for polypyrrole (PPy) can decrease the volume expansion by creating porous scaffold and softening the system itself. Furthermore, by increasing the amount of PAMPS and creating an interval can improve the cycling performance, resulting in improved capacity retention about 80% after 20 cycles, compared with only 54% of that of the control sample without PAMPS. The cycle

  13. In situ characterization of nanoscale catalysts during anodic redox processes

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Renu [National Institute of Standards and Technology; Crozier, Peter [Arizona State University; Adams, James [Arizona State University

    2013-09-19

    Controlling the structure and composition of the anode is critical to achieving high efficiency and good long-term performance. In addition to being a mixed electronic and ionic conductor, the ideal anode material should act as an efficient catalyst for oxidizing hydrogen, carbon monoxide and dry hydrocarbons without de-activating through either sintering or coking. It is also important to develop novel anode materials that can operate at lower temperatures to reduce costs and minimized materials failure associated with high temperature cycling. We proposed to synthesize and characterize novel anode cermets materials based on ceria doped with Pr and/or Gd together with either a Ni or Cu metallic components. Ceria is a good oxidation catalyst and is an ionic conductor at room temperature. Doping it with trivalent rare earths such as Pr or Gd retards sintering and makes it a mixed ion conductor (ionic and electronic). We have developed a fundamental scientific understanding of the behavior of the cermet material under reaction conditions by following the catalytic oxidation process at the atomic scale using a powerful Environmental Scanning Transmission Electron Microscope (ESTEM). The ESTEM allowed in situ monitoring of structural, chemical and morphological changes occurring at the cermet under conditions approximating that of typical fuel-cell operation. Density functional calculations were employed to determine the underlying mechanisms and reaction pathways during anode oxidation reactions. The dynamic behavior of nanoscale catalytic oxidation of hydrogen and methane were used to determine: ? Fundamental processes during anodic reactions in hydrogen and carbonaceous atmospheres ? Interfacial effects between metal particles and doped ceria ? Kinetics of redox reaction in the anode material

  14. Corrosion Behaviour of Titanium Anodized Film in Different Corrosive Environments

    Directory of Open Access Journals (Sweden)

    Mr. Sunil D. Kahar

    2014-07-01

    Full Text Available Anodizing is an electrochemical process in which thickness of the natural oxide layer is increased and converted it into a decorative, durable, corrosion-resistant film. Titanium is used as a biocompatible material in human implants due to its excellent corrosion and wears resistance. Stable, continuous, highly adherent, and protective oxide films can be developed on titanium using various acid or alkaline baths. Anodizing of titanium generates a spectrum of different color without use of dyes. This spectrum of color dependent on the thickness of the oxide, voltage ranges, interference of light reflecting off the oxide surface and reflecting off the underlying metal surface. The anodized film of Titanium is mainly consists of TiO2 or mixtures of TiO2 & Ti2O3 etc. In the present work, Pure Titanium plate has been anodized using bath of Chromic Acid at different voltage range. The anodized film is characterized by visual observation, SEM & EDAX analysis & A.C Impedance Spectroscopy, while the corrosion studies were performed using Potentiodynamic studies were performed in 3.5% NaCl & 0.1N H2SO4. The Results show that the anodized film of Titanium show different spectrum of colors from Brown-Violet-Tea or Peacock. SEM & EDAX analyses show that the anodized film of Titanium is mainly made up of TiO2 and Ti2O3. Potentiodynamic study implies that the film developed on Titanium using the bath of Chromic Acid exhibits good corrosion resistance. The A.C. Impedance study shows that the film is more compact, adherent and more uniform in chromic acid bath.

  15. Cyclic and Linear Polarization of Yttrium-Containing Iron-Based Amorphous Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Day, S D; Lian, T; Farmer, J C; Rebak, R B

    2007-08-10

    Iron-based amorphous alloys are produced by rapid solidification from the melt. These alloys may possess unique mechanical and corrosion resistant properties. The chemical composition of the alloy may influence the cooling rate that is necessary for the alloys to be completely vitreous. At the same time, the corrosion resistance of the amorphous alloys may also depend on their chemical composition. This paper examines the anodic behavior of iron-based amorphous alloys containing three different concentrations (1, 3 and 5 atomic %) of yttrium (Y) in several electrolyte solutions. Results from polarization resistance potentiodynamic polarization show that when the alloy contains 5% atomic Y, the corrosion resistance decreases.

  16. Polarized protons and RHIC

    International Nuclear Information System (INIS)

    RHIC, the heavy ion collider being built at Brookhaven, offers an exciting opportunity to collide highly polarized protons at high energy and luminosity. This new facility would combine the existing AGS polarized proton capability with the new Booster/Accumulator and spin rotators to achieve collisions between intense beams of polarized protons at a collision energy of 500 GeV. At this energy and the expected luminosity of 2 x 1032 cm2/second physics probes will include high PT jets, direct photons, Drell-Yan, W±, and heavy quarks. The accessible physics includes study of the spin content of the proton, particularly gluon and antiquark polarization, study of large PQCD-predicted asymmetries for parton-parton subprocesses, and parity violation studies and searches. The proton spin direction at a RHIC crossing can be longitudinal or transverse and can alternate bunch-to-bunch giving exquisite control of systematic errors. At RHIC double spin experiments can be done with pure beams and the energy and luminosity open a new domain for probing the physics of spin. An international collaboration is forming which proposes to exploit the unique physics available from a polarized RHIC. Important steps, leading to a polarized RHIC, have been taken. The AGS has already accelerated polarized protons. A new Booster/Accumulator has been commissioned. A beautiful series of machine experiments at Indian University have verified that spin rotators indeed remove spin resonance behavior, which is the key to achieving polarized proton acceleration to high energy. E880, an accelerator experiment which will build, install, and test a Siberian Snake in the AGS, was approved by the Brookhaven PAC in August 1991. The snake will be installed in the AGS in the summer of 1993. RHIC construction has started, with heavy ion experiments to begin in 1997

  17. Political Competition and Polarization

    DEFF Research Database (Denmark)

    Schultz, Christian

    This paper considers political competition and the consequences of political polarization when parties are better informed about how the economy functions than voters are. Specifically, parties know the cost producing a public good, voters do not. An incumbent's choice of policy acts like a signal...... for costs before an upcoming election. It is shown that the more polarized the political parties the more distorted the incumbent's policy choice....

  18. No More Polarization, Please!

    OpenAIRE

    Reinholt, Mia

    2006-01-01

    The organizational science literature on motivation has for long been polarized into two main positions; the organizational economic position focusing on extrinsic motivation and the organizational behavior position emphasizing intrinsic motivation. With the rise of the knowledge economy and the increasing levels of complexities it entails, such polarization is not fruitful in the attempt to explain motivation of organizational members. This paper claims that a more nuanced perspective on mot...

  19. Growth behavior of anodic porous alumina formed in malic acid solution

    Science.gov (United States)

    Kikuchi, Tatsuya; Yamamoto, Tsuyoshi; Suzuki, Ryosuke O.

    2013-11-01

    The growth behavior of anodic porous alumina formed on aluminum by anodizing in malic acid solutions was investigated. High-purity aluminum plates were electropolished in CH3COOH/HClO4 solutions and then anodized in 0.5 M malic acid solutions at 293 K and constant cell voltages of 200-350 V. The anodic porous alumina grew on the aluminum substrate at voltages of 200-250 V, and a black, burned oxide film was formed at higher voltages. The nanopores of the anodic oxide were only formed at grain boundaries of the aluminum substrate during the initial stage of anodizing, and then the growth region extended to the entire aluminum surface as the anodizing time increased. The anodic porous alumina with several defects was formed by anodizing in malic acid solution at 250 V, and oxide cells were approximately 300-800 nm in diameter.

  20. Neuromodulation of conditioned placebo/nocebo in heat pain: anodal vs cathodal transcranial direct current stimulation to the right dorsolateral prefrontal cortex.

    Science.gov (United States)

    Egorova, Natalia; Yu, Rongjun; Kaur, Navneet; Vangel, Mark; Gollub, Randy L; Dougherty, Darin D; Kong, Jian; Camprodon, Joan A

    2015-07-01

    Placebo and nocebo play an important role in clinical practice and medical research. Modulating placebo/nocebo responses using noninvasive brain stimulation methods, such as transcranial direct current stimulation (tDCS), has the potential to harness these effects to therapeutic benefit in a clinical setting. In this study, we assessed the effect of anodal and cathodal tDCS over the right dorsolateral prefrontal cortex (rDLPFC) on conditioned placebo/nocebo cue response to heat pain. Two matched groups of healthy volunteers were subjected to an identical session of conditioning, during which low and high cues (abstract images) were associated with low and high pain levels, respectively. Twenty-minute 2-mA tDCS (either anodal or cathodal) over the rDLPFC was applied. The influence of tDCS current polarity (anodal vs cathodal) on placebo and nocebo was assessed, using subjects' pain ratings in response to identical pain preceded by the conditioned high or low cues. The duration of cue presentation varied to allow either fully conscious or subliminal processing. Significant placebo and nocebo effects in the anodal but not the cathodal group were elicited with the conditioning paradigm. This study provides evidence of a possibility to modulate the conditioned placebo and nocebo effect by changing the excitability of the rDLPFC using tDCS. PMID:25806605

  1. Rectilinear lattices of polarization vortices with various spatial polarization distributions.

    Science.gov (United States)

    Fu, Shiyao; Zhang, Shikun; Wang, Tonglu; Gao, Chunqing

    2016-08-01

    In this paper, we propose a type of rectilinear lattices of polarization vortices, each spot in which has mutually independent, and controllable spatial polarization distributions. The lattices are generated by two holograms under special design. In the experiment, the holograms are encoded on two spatial light modulators, and the results fit very well with theory. Our scheme makes it possible to generate multiple polarization vortices with various polarization distributions simultaneously, for instance, radially and azimuthally polarized beams, and can be used in the domains as polarization-based data transmission system, optical manufacture, polarization detection and so on. PMID:27505812

  2. Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Segura, Sergi, E-mail: sergigarcia@ub.edu [Advanced Water Management Centre, The University of Queensland, Level 4, Gehrmann Bld. (60), St Lucia, QLD 072 (Australia); Laboratori d’Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain); Keller, Jürg [Advanced Water Management Centre, The University of Queensland, Level 4, Gehrmann Bld. (60), St Lucia, QLD 072 (Australia); Brillas, Enric [Laboratori d’Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain); Radjenovic, Jelena, E-mail: j.radjenovic@awmc.uq.edu.au [Advanced Water Management Centre, The University of Queensland, Level 4, Gehrmann Bld. (60), St Lucia, QLD 072 (Australia)

    2015-02-11

    Graphical abstract: - Highlights: • Mineralization of secondary effluent by anodic oxidation with BDD anode. • Complete removal of 29 pharmaceuticals and pesticides at trace level concentrations. • Organochlorine and organobromine byproducts were formed at low μM concentrations. • Chlorine species evolution assessed to evaluate the anodic oxidation applicability. - Abstract: Electrochemical advanced oxidation processes (EAOPs) have been widely investigated as promising technologies to remove trace organic contaminants from water, but have rarely been used for the treatment of real waste streams. Anodic oxidation with a boron-doped diamond (BDD) anode was applied for the treatment of secondary effluent from a municipal sewage treatment plant containing 29 target pharmaceuticals and pesticides. The effectiveness of the treatment was assessed from the contaminants decay, dissolved organic carbon and chemical oxygen demand removal. The effect of applied current and pH was evaluated. Almost complete mineralization of effluent organic matter and trace contaminants can be obtained by this EAOP primarily due to the action of hydroxyl radicals formed at the BDD surface. The oxidation of Cl{sup −} ions present in the wastewater at the BDD anode gave rise to active chlorine species (Cl{sub 2}/HClO/ClO{sup −}), which are competitive oxidizing agents yielding chloramines and organohalogen byproducts, quantified as adsorbable organic halogen. However, further anodic oxidation of HClO/ClO{sup −} species led to the production of ClO{sub 3}{sup −} and ClO{sub 4}{sup −} ions. The formation of these species hampers the application as a single-stage tertiary treatment, but posterior cathodic reduction of chlorate and perchlorate species may reduce the risks associated to their presence in the environment.

  3. Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Mineralization of secondary effluent by anodic oxidation with BDD anode. • Complete removal of 29 pharmaceuticals and pesticides at trace level concentrations. • Organochlorine and organobromine byproducts were formed at low μM concentrations. • Chlorine species evolution assessed to evaluate the anodic oxidation applicability. - Abstract: Electrochemical advanced oxidation processes (EAOPs) have been widely investigated as promising technologies to remove trace organic contaminants from water, but have rarely been used for the treatment of real waste streams. Anodic oxidation with a boron-doped diamond (BDD) anode was applied for the treatment of secondary effluent from a municipal sewage treatment plant containing 29 target pharmaceuticals and pesticides. The effectiveness of the treatment was assessed from the contaminants decay, dissolved organic carbon and chemical oxygen demand removal. The effect of applied current and pH was evaluated. Almost complete mineralization of effluent organic matter and trace contaminants can be obtained by this EAOP primarily due to the action of hydroxyl radicals formed at the BDD surface. The oxidation of Cl− ions present in the wastewater at the BDD anode gave rise to active chlorine species (Cl2/HClO/ClO−), which are competitive oxidizing agents yielding chloramines and organohalogen byproducts, quantified as adsorbable organic halogen. However, further anodic oxidation of HClO/ClO− species led to the production of ClO3− and ClO4− ions. The formation of these species hampers the application as a single-stage tertiary treatment, but posterior cathodic reduction of chlorate and perchlorate species may reduce the risks associated to their presence in the environment

  4. A Thermally Conductive Separator for Stable Li Metal Anodes.

    Science.gov (United States)

    Luo, Wei; Zhou, Lihui; Fu, Kun; Yang, Zhi; Wan, Jiayu; Manno, Michael; Yao, Yonggang; Zhu, Hongli; Yang, Bao; Hu, Liangbing

    2015-09-01

    Li metal anodes have attracted considerable research interest due to their low redox potential (-3.04 V vs standard hydrogen electrode) and high theoretical gravimetric capacity of 3861 mAh/g. Battery technologies using Li metal anodes have shown much higher energy density than current Li-ion batteries (LIBs) such as Li-O2 and Li-S systems. However, issues related to dendritic Li formation and low Coulombic efficiency have prevented the use of Li metal anode technology in many practical applications. In this paper, a thermally conductive separator coated with boron-nitride (BN) nanosheets has been developed to improve the stability of the Li metal anodes. It is found that using the BN-coated separator in a conventional organic carbonate-based electrolyte results in the Coulombic efficiency stabilizing at 92% over 100 cycles at a current rate of 0.5 mA/cm(2) and 88% at 1.0 mA/cm(2). The improved Coulombic efficiency and reliability of the Li metal anodes is due to the more homogeneous thermal distribution resulting from the thermally conductive BN coating and to the smaller surface area of initial Li deposition. PMID:26237519

  5. Surface characterization of anodized zirconium for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, A. Gomez [Division corrosion - INTEMA, Universidad Nacional del Mar del Plata - CONICET, Juan B. Justo 4302, (7600) Mar del Plata (Argentina); Schreiner, W. [LSI - LANSEN, Departamento de Fisica, UFPR, Curitiba (Brazil); Duffo, G. [Departamento de Materiales, Comision Nacional de Energia Atomica - CONICET, Av. Gral. Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Universidad Nacional de Gral. San Martin, Av. Gral. Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Cere, S., E-mail: smcere@fi.mdp.edu.ar [Division corrosion - INTEMA, Universidad Nacional del Mar del Plata - CONICET, Juan B. Justo 4302, (7600) Mar del Plata (Argentina)

    2011-05-15

    Mechanical properties and corrosion resistance of zirconium make this material suitable for biomedical implants. Its good in vivo performance is mainly due to the presence of a protective oxide layer that minimizes corrosion rate, diminishes the amount of metallic ions released to the biological media and facilitates the osseointegration process. Since the implant surface is the region in contact with living tissues, the characteristics of the surface film are of great interest. Surface modification is a route to enhance both biocompatibility and corrosion resistance of permanent implant materials. Anodizing is presented as an interesting process to modify metal surfaces with good reproducibility and independence of the geometry. In this work the surface of zirconium before and after anodizing in 1 mol/L phosphoric acid solution at a fixed potential between 3 and 30 V, was characterized by means of several surface techniques. It was found that during anodization the surface oxide grows with an inhomogeneous coverage on zirconium surface, modifying the topography. The incorporation of P from the electrolyte to the surface oxide during the anodizing process changes the surface chemistry. After 30 days of immersion in Simulated Body Fluid (SBF) solution, Ca-P rich compounds were present on anodized zirconium.

  6. Theoretical motivation of indented-anode diode for HERMES III

    International Nuclear Information System (INIS)

    HERMES III is an accelerator being designed as a uniform source of flash γ-rays. Diode designs are needed that efficiently convert electrical energy to γ-ray energy and that distribute that γ-ray energy uniformly over a large area. Code simulations of coaxial diode designs show that the electron beam in the anode-cathode gap forms a weak pinch, which results in excessive on-axis radiation. In this report, a diode concept is developed that can reduce the pinch at the anode converter and thus can improve the uniformity of the radiation. This concept employs an indentation in the anode to passively control the beam. For this diode, electron flow, impedance models, and scaling laws of the diode behavior as a function of the geometric parameters of the diode, voltage, and current are developed. We evaluate the subsequent radiation output and improvement in radiation uniformity relative to diodes with planar anodes. The analysis shows that not only is the indented-anode capable of significantly improving radiation uniformity, but that it is also capable of reducing the width of the radiation pulse

  7. Hybrid intelligent PID control design for PEMFC anode system

    Institute of Scientific and Technical Information of China (English)

    Rui-min WANG; Ying-ying ZHANG; Guang-yi CAO

    2008-01-01

    Control design is important for proton exchange membrane fuel cell (PEMFC) generator. This work researched the anode system of a 60-kW PEMFC generator. Both anode pressure and humidity must he maintained at ideal levels during steady operation. In view of characteristics and requirements of the system, a hybrid intelligent PID controller is designed specifically based on dynamic simulation. A single neuron PI controller is used for anode humidity by adjusting the water injection to the hydrogen cell. Another incremental PID controller, based on the diagonal recurrent neural network (DRNN) dynamic identification, is used to control anode pressure to be more stable and exact by adjusting the hydrogen flow rate. This control strategy can avoid the coupling problem of the PEMFC and achieve a more adaptive ability. Simulation results showed that the control strategy can maintain both anode humidity and pressure at ideal levels regardless of variable load, nonlinear dynamic and coupling characteristics of the system. This work will give some guides for further control design and applications of the total PEMFC generator.

  8. Plant-scale anodic dissolution of unirradiated IFR fuel pins

    International Nuclear Information System (INIS)

    This report discusses anodic dissolution which is a major operation in the pyrometallurgical process for recycling spent metal fuels from the Integral Fast Reactor (IFR), an advanced reactor design developed at Argonne National Laboratory. This process involves electrorefining the heavy metals (uranium and plutonium) from chopped, steel-clad fuel segments. The heavy metals are electrotransported from anodic dissolution baskets to solid and liquid cathodes in a molten salt electrolyte (LiCl-KCI) at 500 degrees C. Uranium is recovered on a solid cathode mandrel, while a uranium-plutonium mixture is recovered in a liquid cadmium cathode. The anode configuration consists of four baskets mounted on an anode shaft. These baskets provide parallel circuits in the electrolyte and salt flow through the chopped fuelbed as the baskets are rotated. The baskets for the engineering-scale tests were sized to contain up to 2.5 kg of heavy metal. Anodic dissolution of 10 kg batches of chopped, steel-clad simulated tuel (U-10% Zr and U-Zr-Fs alloy) was demonstrated

  9. Surface characterization of anodized zirconium for biomedical applications

    Science.gov (United States)

    Sanchez, A. Gomez; Schreiner, W.; Duffó, G.; Ceré, S.

    2011-05-01

    Mechanical properties and corrosion resistance of zirconium make this material suitable for biomedical implants. Its good in vivo performance is mainly due to the presence of a protective oxide layer that minimizes corrosion rate, diminishes the amount of metallic ions released to the biological media and facilitates the osseointegration process. Since the implant surface is the region in contact with living tissues, the characteristics of the surface film are of great interest. Surface modification is a route to enhance both biocompatibility and corrosion resistance of permanent implant materials. Anodizing is presented as an interesting process to modify metal surfaces with good reproducibility and independence of the geometry. In this work the surface of zirconium before and after anodizing in 1 mol/L phosphoric acid solution at a fixed potential between 3 and 30 V, was characterized by means of several surface techniques. It was found that during anodization the surface oxide grows with an inhomogeneous coverage on zirconium surface, modifying the topography. The incorporation of P from the electrolyte to the surface oxide during the anodizing process changes the surface chemistry. After 30 days of immersion in Simulated Body Fluid (SBF) solution, Ca-P rich compounds were present on anodized zirconium.

  10. Surface characterization of anodized zirconium for biomedical applications

    International Nuclear Information System (INIS)

    Mechanical properties and corrosion resistance of zirconium make this material suitable for biomedical implants. Its good in vivo performance is mainly due to the presence of a protective oxide layer that minimizes corrosion rate, diminishes the amount of metallic ions released to the biological media and facilitates the osseointegration process. Since the implant surface is the region in contact with living tissues, the characteristics of the surface film are of great interest. Surface modification is a route to enhance both biocompatibility and corrosion resistance of permanent implant materials. Anodizing is presented as an interesting process to modify metal surfaces with good reproducibility and independence of the geometry. In this work the surface of zirconium before and after anodizing in 1 mol/L phosphoric acid solution at a fixed potential between 3 and 30 V, was characterized by means of several surface techniques. It was found that during anodization the surface oxide grows with an inhomogeneous coverage on zirconium surface, modifying the topography. The incorporation of P from the electrolyte to the surface oxide during the anodizing process changes the surface chemistry. After 30 days of immersion in Simulated Body Fluid (SBF) solution, Ca-P rich compounds were present on anodized zirconium.

  11. Carbonaceous deposits in direct utilization hydrocarbon SOFC anode

    Science.gov (United States)

    He, Hongpeng; Vohs, John M.; Gorte, Raymond J.

    Carbonaceous deposits formed in Cu-based SOFC anode compartment by exposing porous YSZ anodes to n-butane at elevated temperatures were studied using a combination of V- I curves, impedance spectroscopy, SEM, and TPO measurements. While short-term exposure of a porous YSZ matrix to n-butane at 973 K resulted in the deposition of electronically conducting carbonaceous film and therefore to enhance the fuel cell performance, the power density decays quickly in n-butane at temperature 1073 K or higher for long-term operation. SEM results indicate that the carbonaceous deposits arising from gas phase reaction have different morphology, and a dense layer composed of poly-aromatic rings has been formed on the porous anode surface. The dense layer could block the penetration of fuels to the anode and ions transfer to the three-phase boundaries where electrochemical reactions occur, resulting in the drop of the power density. TPO measurements revealed that the amount of carbonaceous deposits increased and the type of deposits changed with exposure time to n-butane. The stability of deposits increased with extending the exposure time according to the increased oxidation temperature. Steam can remove the carbonaceous deposits from the porous YSZ anode, but the reaction temperature was severely elevated compared to that of oxygen. The carbonaceous deposits can also be removed at 973 K by steam but the deposition of carbon will be controlled by the speed of removal and formation from the gas phase reaction.

  12. Low cost fuel cell diffusion layer configured for optimized anode water management

    Science.gov (United States)

    Owejan, Jon P; Nicotera, Paul D; Mench, Matthew M; Evans, Robert E

    2013-08-27

    A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel is higher than the diffusion resistance of the cathode gas diffusion layer. The anode gas diffusion layer may comprise filler particles having in-plane platelet geometries and be made of lower cost materials and manufacturing processes than currently available commercial carbon fiber substrates. The diffusion resistance difference between the anode gas diffusion layer and the cathode gas diffusion layer may allow for passive water balance control.

  13. High performance single step co-fired solid oxide fuel cells (SOFC): Polarization measurements and analysis

    Science.gov (United States)

    Yoon, Kyung Joong

    At present, one of the major obstacles for the commercialization of solid oxide fuel cell (SOFC) power systems is their high manufacturing costs expressed in terms of SOFC system cost per unit power ($/kW). In this work, anode-supported planar SOFCs were fabricated by a cost-competitive single step co-firing process. The cells were comprised of a porous Ni + yittria-stabilized zirconia (YSZ) anode support, a porous-fine-grained Ni + YSZ anode active layer for some experiments, a dense YSZ electrolyte, a porous-fine-grained Ca-doped LaMnO3 (LCM) + YSZ cathode active layer, and a porous LCM cathode current collector layer. The fabrication process involved tape casting or high shear compaction (HSC) of the anode support followed by screen printing of the remaining component layers. The cells were then co-fired at 1300˜1340°C for 2 hours. The performance of the cell fabricated with the tape casting anode was improved by minimizing various polarization losses through experimental and theoretical modeling approaches, and the maximum power density of 1.5 W/cm 2 was obtained at 800°C with humidified hydrogen (3% H2O) and air. The cells were also tested with various compositions of humidified hydrogen (3˜70% H2O) to simulate the effect of practical fuel utilization on the cell performance. Based on these measurements, an analytical model describing anodic reactions was developed to understand reaction kinetics and rate limiting steps. The cell performance at high fuel utilization was significantly improved by increasing the number of the reaction sites near the anode-electrolyte interface. For anode substrate fabrication, the HSC process offers many advantages such as low fabrication costs, high production throughput, and good control of shrinkage and thickness over the conventional tape casting process. HSC process was successfully employed in single step co-firing process, and SOFCs fabricated with HSC anodes showed adequate performance both at low and high fuel

  14. Polarization: A Must for Fusion

    Directory of Open Access Journals (Sweden)

    Guidal M.

    2012-10-01

    Full Text Available Recent realistic simulations confirm that the polarization of the fuel would improve significantly the DT fusion efficiency. We have proposed an experiment to test the persistence of the polarization in a fusion process, using a terawatt laser hitting a polarized HD target. The polarized deuterons heated in the plasma induced by the laser can fuse producing a 3He and a neutron in the final state. The angular distribution of the neutrons and the change in the corresponding total cross section are related to the polarization persistence. The experimental polarization of DT fuel is a technological challenge. Possible paths for Magnetic Confinement Fusion (MCF and for Inertial Confinement Fusion (ICF are reviewed. For MCF, polarized gas can be used. For ICF, cryogenic targets are required. We consider both, the polarization of gas and the polarization of solid DT, emphasizing the Dynamic Nuclear polarization (DNP of HD and DT molecules.

  15. Effect of heat treatment on bioactivity of anodic titania films

    International Nuclear Information System (INIS)

    Anodic oxidation could be employed to produce crystalline titania films on Ti6Al4 V surfaces for inducing apatite formation in simulated body fluid (SBF). In this work, the effect of further heat treatment on the bioactivity of anodic titania films was researched. The surface constitution, morphology, crystal structure and apatite-forming ability of titania films were characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicated the apatite formation on the Ti6Al4 V surfaces could be attributed to abundance of Ti-OH groups formed via anodic oxidation, but subsequent heat treatment would decrease the amount of surface hydroxyl (OH) groups and result in the loss of the apatite-forming ability.

  16. Magnetic field influence on pulsed air arc anode mass loss

    International Nuclear Information System (INIS)

    Anode mass loss was studied in pulsed air arcs between two electrode pairs, 99.99% Ni/Ni and 99.5% Cu/Cu, in a transverse magnetic field. In both cases the anode mass loss decreased (by a factor of 2 for Cu and by a factor of 6 for Ni) when the magnetic field was increased up to 15-20 Oe and then remained approximately constant for Cu and decreased weakly for Ni. The observed dependences of anode mass loss were explained by the published behaviour of an arc motion in a magnetic field. The lattice parameter was decreased by the discharge treatment. The decrease was attributed to residual tensile stress produced on the arced surface. The lattice parameter of Ni increased with magnetic field, while for Cu it did not change substantially. The different behaviour is attributed to the magneto-plastic effect on magnetic Ni, which increases the plasticity with magnetic field. (paper)

  17. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development

    Directory of Open Access Journals (Sweden)

    Gerrard Eddy Jai Poinern

    2011-02-01

    Full Text Available The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering.

  18. Tin nanoparticles as an effective conductive additive in silicon anodes.

    Science.gov (United States)

    Zhong, L; Beaudette, C; Guo, J; Bozhilov, K; Mangolini, L

    2016-01-01

    We have found that the addition of tin nanoparticles to a silicon-based anode provides dramatic improvements in performance in terms of both charge capacity and cycling stability. Using a simple procedure and off-the-shelf additives and precursors, we developed a structure in which the tin nanoparticles are segregated at the interface between the silicon-containing active layer and the solid electrolyte interface. Even a minor addition of tin, as small as ∼2% by weight, results in a significant decrease in the anode resistance, as confirmed by electrochemical impedance spectroscopy. This leads to a decrease in charge transfer resistance, which prevents the formation of electrically inactive "dead spots" in the anode structure and enables the effective participation of silicon in the lithiation reaction. PMID:27484849

  19. Tin nanoparticles as an effective conductive additive in silicon anodes

    Science.gov (United States)

    Zhong, L.; Beaudette, C.; Guo, J.; Bozhilov, K.; Mangolini, L.

    2016-01-01

    We have found that the addition of tin nanoparticles to a silicon-based anode provides dramatic improvements in performance in terms of both charge capacity and cycling stability. Using a simple procedure and off-the-shelf additives and precursors, we developed a structure in which the tin nanoparticles are segregated at the interface between the silicon-containing active layer and the solid electrolyte interface. Even a minor addition of tin, as small as ∼2% by weight, results in a significant decrease in the anode resistance, as confirmed by electrochemical impedance spectroscopy. This leads to a decrease in charge transfer resistance, which prevents the formation of electrically inactive “dead spots” in the anode structure and enables the effective participation of silicon in the lithiation reaction. PMID:27484849

  20. Tunable structural color of anodic tantalum oxide films

    Institute of Scientific and Technical Information of China (English)

    Sheng Cui-Cui; Cai Yun-Yu; Dai En-Mei; Liang Chang-Hao

    2012-01-01

    Tantalum (Ta) oxide films with tunable structural color were fabricated easily using anodic oxidation.The structure,components,and surface valence states of the oxide filns were investigated by using gazing incidence X-ray diffractometry,X-ray photoelectron microscopy,and surface analytical techniques.Their thickness and optical properties were studied by using spectroscopic ellipsometry and total reflectance spectrum.Color was accurately defined using L*a*b* scale.The thickness of compact Ta2O5 films was linearly dependent on anodizing voltage.The film color was tunable by adjusting the anodic voltage.The difference in color appearance resulted from the interference behavior between the interfaces of air-oxide and oxide-metal.

  1. Fabrication of alumina films with laminated structures by ac anodization

    International Nuclear Information System (INIS)

    Anodization techniques by alternating current (ac) are introduced in this review. By using ac anodization, laminated alumina films are fabricated. Different types of alumina films consisting of 50–200 nm layers were obtained by varying both the ac power supply and the electrolyte. The total film thickness increased with an increase in the total charge transferred. The thickness of the individual layers increased with the ac voltage; however, the anodization time had little effect on the film thickness. The laminated alumina films resembled the nacre structure of shells, and the different morphologies exhibited by bivalves and spiral shells could be replicated by controlling the rate of increase of the applied potentials. (paper)

  2. Niobium-doped strontium titanates as SOFC anodes

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Kammer Hansen, Kent; Wallenberg, L. Reine;

    2008-01-01

    Sr-vacancy compensated Nb-doped SrTiO(3) with the nominal composition Sr(0.94)Ti(0.9)Nb(0.1)O(3) has been evaluated as part of a solid oxide fuel cell (SOFC) anode material in terms of redox stability, electrical conductivity, as well as electrochemical properties. Sr(0.94)Ti(0.9)Nb(0.1)O(3) has...... potential ability of the Nb-doped titanates to be used as a part of a SOFC anode. However, the catalytic activity of the materials was not sufficient and it needs to be improved if titanate based materials are to be realized as constituents in SOFC anodes....

  3. Surface of Alumina Films after Prolonged Breakdowns in Galvanostatic Anodization

    Directory of Open Access Journals (Sweden)

    Christian Girginov

    2011-01-01

    Full Text Available Breakdown phenomena are investigated at continuous isothermal (20∘C and galvanostatic (0.2–5 mA cm−2 anodizing of aluminum in ammonium salicylate in dimethylformamide (1 M AS/DMF electrolyte. From the kinetic (-curves, the breakdown voltage ( values are estimated, as well as the frequency and amplitude of oscillations of formation voltage ( at different current densities. The surface of the aluminum specimens was studied using atomic force microscopy (AFM. Data on topography and surface roughness parameters of the electrode after electric breakdowns are obtained as a function of anodization time. The electrode surface of anodic films, formed with different current densities until the same charge density has passed (2.5 C cm−2, was assessed. Results are discussed on the basis of perceptions of avalanche mechanism of the breakdown phenomena, due to the injection of electrons and their multiplication in the volume of the film.

  4. Polarized protons at RHIC

    International Nuclear Information System (INIS)

    The approval for construction of the Relativistic Heavy Ion Collider (RHIC) provides a potential opportunity to collide polarized proton beams at energies up to 500 GeV in the center of mass and high luminosities approaching 2 x 1032/cm2/sec. This capability is enhanced by the fact that the AGS has already accelerated polarized protons and relies on the newly completed Accumulator/Booster for providing the required polarized proton intensity and a system of spin rotators (Siberian snakes) to retain the polarization. The RHIC Spin Collaboration was formed and submitted a Letter of Intent to construct this polarized collider capability and utilize its physics opportunities. In this presentation, I will discuss the plans to upgrade the AGS, the proposed layout of the RHIC siberian snakes, and timetables. The physics focus is the measurement of the spin dependent parton distributions with such accessible probes including high p(t) jets, direct photons, and Drell Yan. The attainable sensitivities and the progress that has been reached in defining the detector requirements will be outlined

  5. Anodic passivation of Pb-Ag-Nd anode in fluoride-containing H2SO4 solution

    Institute of Scientific and Technical Information of China (English)

    钟晓聪; 蒋良兴; 刘芳洋; 李劼; 刘业翔

    2015-01-01

    An attempt was made to build up a thick and compact oxide layer rapidly by pre-treating the Pb-Ag-Nd anode in fluoride-containing H2SO4 solution. The passivation reaction of Pb-Ag-Nd anode during pre-treatment process was investigated using cyclic voltammetry, linear scanning voltammetry, environmental scanning electron microscopy and X-ray diffraction analysis. The results show that PbF2 and PbSO4 are formed near the potential of Pb/PbSO4 couple. The pre-treatment in fluoride-containing H2SO4 solution contributes to the formation of a thick, compact and adherent passive film. Furthermore, pre-treatment in fluoride-containing H2SO4 solution also facilitates the formation of PbO2 on the anodic layer, and the reason could be attributed to the formation of more PbF2 and PbSO4 during the pre-treatment which tend to transform to PbO2 during the following electrowinning process. In addition, the anodic layer on anode with pre-treatment in fluoride-containing H2SO4 solution is thick and compact, and its predominant composition isβ-PbO2. In summary, the pre-treatment in fluoride-containing H2SO4 solution benefits the formation of a desirable protective layer in a short time.

  6. POLAR: A Space-borne X-Ray Polarimeter for Transient Sources

    CERN Document Server

    ,

    2010-01-01

    POLAR is a novel compact Compton X-ray polarimeter designed to measure the linear polarization of the prompt emission of Gamma Ray Bursts (GRB) and other strong transient sources such as soft gamma repeaters and solar flares in the energy range 50-500 keV. A detailed measurement of the polarization from astrophysical sources will lead to a better understanding of the source geometry and emission mechanisms. POLAR is expected to observe every year several GRBs with a minimum detectable polarization smaller than 10%, thanks to its large modulation factor, effective area, and field of view. POLAR consists of 1600 low-Z plastic scintillator bars, divided in 25 independent modular units, each read out by one flat-panel multi-anode photomultiplier. The design of POLAR is reviewed, and results of tests of one modular unit of the engineering and qualification model (EQM) of POLAR with synchrotron radiation are presented. After construction and testing of the full EQM, we will start building the flight model in 2011, ...

  7. Physics of polarized targets

    CERN Document Server

    Niinikoski, Tapio

    2014-01-01

    For developing, building and operating solid polarized targets we need to understand several fields of physics that have seen sub stantial advances during the last 50 years. W e shall briefly review a selection of those that are important today. These are: 1) quantum statistical methods to describe saturation and relaxation in magnetic resonance; 2) equal spin temperature model for dy namic nuclear polarization; 3 ) weak saturation during NMR polarization measurement; 4 ) refrigeration using the quantum fluid properties of helium isotopes. These, combined with superconducting magnet technologies, permit today to reach nearly complete pola rization of almost any nuclear spins. Targets can be operated in frozen spin mode in rather low and inhomogeneous field of any orientation, and in DNP mode in beams of high intensity. Beyond such experiments of nuclear and particle physics, applications a re also emerging in macromolecular chemistry and in magnetic resonance imaging. This talk is a tribute to Michel Borghini...

  8. No More Polarization, Please!

    DEFF Research Database (Denmark)

    Hansen, Mia Reinholt

    The organizational science literature on motivation has for long been polarized into two main positions; the organizational economic position focusing on extrinsic motivation and the organizational behavior position emphasizing intrinsic motivation. With the rise of the knowledge economy and the...... increasing levels of complexities it entails, such polarization is not fruitful in the attempt to explain motivation of organizational members. This paper claims that a more nuanced perspective on motivation, acknowledging the co-existence of intrinsic and extrinsic motivation, the possible interaction...... between the two as well as different types of motivations filling in the gap between the two polar types, is urgently needed in the organizational science literature. By drawing on the research on intrinsic and extrinsic motivation conducted in social psychology and combining this with contributions from...

  9. Polar continuum mechanics

    CERN Document Server

    Hadjesfandiari, Ali R

    2010-01-01

    The existing polar continuum theory contains unresolved indeterminacies in the spherical part of the couple-stress tensor. This severely restricts its applicability in the study of micro and nano-scale solid and fluid mechanics and, perhaps more importantly, in the investigation of fluid turbulence phenomena, which involve a broad range of scales. In this paper, we rely on the energy equation, along with some kinematical considerations, to establish a consistent couple-stress theory for polar continua that resolves all indeterminacies. After presenting the general formulation and obtaining conservation laws, we concentrate exclusively on couple stress theory for polar fluid mechanics. We specialize the theory for linear viscous flow and consider several boundary value problems in couple-stress fluid mechanics. More generally, the resulting theory presented here may provide a basis for fundamental continuum-level studies at the finest scales.

  10. Tin-phosphate glass anode for sodium ion batteries

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Honma

    2013-11-01

    Full Text Available The electrochemical property of tin-phosphate (designate as GSPO glass anode for the sodium ion battery was studied. During the first charge process, sodium ion diffused into GSPO glass matrix and due to the reduction of Sn2+ to Sn0 state sodiated tin metal nano-size particles are formed in oxide glass matrix. After the second cycle, we confirmed the steady reversible reaction ∼320 mAh/g at 0–1 V cutoff voltage condition by alloying process in NaxSn4. The tin-phosphate glass is a promising candidate of new anode active material that realizes high energy density sodium ion batteries.

  11. Silver as Anode in Cryolite—Alumina-Based Melts

    OpenAIRE

    Kucharik, M.; Chamelot, Pierre; Cassayre, Laurent; Taxil, Pierre

    2007-01-01

    The anodic behaviour of silver was investigated in cryolite—alumina-based melt. Silver has a lower melting point (ca. 960◦C) than the other metals considered as possible inert materials for aluminium electrolysis. The working temperature used in aluminium industry is approximately 960◦C, depending on the melt composition. Therefore, the stability of silver during the anodic process was tested at 870◦C in an acidic electrolyte consisting of 65.5 mass % Na3AlF6 + 22.9 mass % AlF3 + 5.7 mass ...

  12. Anodic Aluminum Oxide Templates for Nano wires Array Fabrication

    International Nuclear Information System (INIS)

    This paper reports on the process developed to fabricate anodic aluminium oxide (AAO) templates suitable for the fabrication of nano wire arrays. Anodization process has been used to fabricate the AAO templates with pore diameters ranging from 15 nm to 30 nm. Electrodeposition of parallel arrays of high aspect ratio nickel nano wires were demonstrated using these fabricated AAO templates. The nano wires produced were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the orientations of the electrodeposited nickel nano wires were governed by the deposition current and electrolyte conditions. (author)

  13. Oxygen-producing inert anodes for SOM process

    Science.gov (United States)

    Pal, Uday B

    2014-02-25

    An electrolysis system for generating a metal and molecular oxygen includes a container for receiving a metal oxide containing a metallic species to be extracted, a cathode positioned to contact a metal oxide housed within the container; an oxygen-ion-conducting membrane positioned to contact a metal oxide housed within the container; an anode in contact with the oxygen-ion-conducting membrane and spaced apart from a metal oxide housed within the container, said anode selected from the group consisting of liquid metal silver, oxygen stable electronic oxides, oxygen stable crucible cermets, and stabilized zirconia composites with oxygen stable electronic oxides.

  14. Stresses in sulfuric acid anodized coatings on aluminum

    Science.gov (United States)

    Alwitt, R. S.; Xu, J.; Mcclung, R. C.

    1993-01-01

    Stresses in porous anodic alumina coatings have been measured for specimens stabilized in air at different temperatures and humidities. In ambient atmosphere the stress is tensile after anodic oxidation and is compressive after sealing. Exposure to dry atmosphere causes the stress to change to strongly tensile, up to 110 MPa. The stress increase is proportional to the loss of water from the coating. These changes are reversible with changes in humidity. Similar reversible effects occur upon moderate temperature changes. The biaxial modulus of the coating is about 100 GPa.

  15. The approach curve method for large anode-cathode distances

    Energy Technology Data Exchange (ETDEWEB)

    Mammana, Victor P.; Monteiro, Othon R.; Fonseca, Leo R.C.

    2003-09-20

    An important technique used to characterize field emission is the measurement of the emitted current against electric field (IxE). In this work we discuss a procedure for obtaining IxE data based on multiple approach curves. We show that the simulated features obtained for an idealized uniform surface matches available experimental data for small anode-cathode distances, while for large distances the simulation predicts a departure from the linear regime. We also discuss the shape of the approach curves for large anode-cathode distances for a cathode made of carbon nanotubes.

  16. Fabrication of sacrificial anode cathodic protection through casting method

    International Nuclear Information System (INIS)

    Aluminum is one of the few metals that can be cast by all of the processes used in casting metals. These processes consist of die casting, permanent mold casting, sand casting (green sand and dry sand), plaster casting, investment casting, and continuous casting. Other processes such as lost foam, squeeze casting, and hot isostatic pressing are also used. Permanent mold casting method was selected in which used for fabricating of sacrificial anode cathodic protection. This product was ground for surface finished and fabricated in the cylindrical form and reinforced with carbon steel at a center of the anode. (Author)

  17. Composite anodes for lithium-ion batteries: status and trends

    Directory of Open Access Journals (Sweden)

    Alain Mauger

    2016-07-01

    Full Text Available Presently, the negative electrodes of lithium-ion batteries (LIBs is constituted by carbon-based materials that exhibit a limited specific capacity 372 mAh g−1 associated with the cycle between C and LiC6. Therefore, many efforts are currently made towards the technological development nanostructured materials in which the electrochemical processes occurs as intercalation, alloying or conversion reactions with a good accommodation of dilatation/contraction during cycling. In this review, attention is focused on advanced anode composite materials based on carbon, silicon, germanium, tin, titanium and conversion anode composite based on transition-metal oxides.

  18. Simultaneous Use Of Zr And Mg Anodes In XPS

    Science.gov (United States)

    Allgeyer, D. F.; Pratz, E. H.

    1996-01-01

    Improved x-ray source for x-ray photoelectron spectroscopy (XPS) contains both zirconium anode with beryllium window and magnesium anode with aluminum window. Previously unresolvable peaks of electron-energy spectrum become resolvable. Developed specifically for use in analyzing distributions of chemical constituents in surface layers of specimens of 2219 aluminum alloy and in determining the depths of surface oxide layers and relative proportions of aluminum and oxide in layers. Also used to study chemical constituents of surface layers in other material systems - for example, thin oxide films on silicon-based semiconductor devices, oxide films on alloys, and surface layers affecting adhesion of paints or bonding materials.

  19. Inward lithium-ion breathing of hierarchically porous silicon anodes

    OpenAIRE

    Xiao, Qiangfeng; Gu, Meng; Yang, Hui; Li, Bing; Zhang, Cunman; Liu, Yang; Liu, Fang; Dai, Fang; Yang, Li; Liu, Zhongyi; Xiao, Xingcheng; Liu, Gao; Zhao, Peng; Zhang, Sulin; Wang, Chongmin

    2015-01-01

    Silicon has been identified as a highly promising anode for next-generation lithium-ion batteries (LIBs). The key challenge for Si anodes is large volume change during the lithiation/delithiation cycle that results in chemomechanical degradation and subsequent rapid capacity fading. Here we report a novel fabrication method for hierarchically porous Si nanospheres (hp-SiNSs), which consist of a porous shell and a hollow core. On charge/discharge cycling, the hp-SiNSs accommodate the volume ch...

  20. Overview of SOFC Anode Interactions with Coal Gas Impurities

    Energy Technology Data Exchange (ETDEWEB)

    O. A. Marina; L. R. Pederson; R. Gemmen; K. Gerdes; H. Finklea; I. B. Celik

    2010-03-01

    An overview of the results of SOFC anode interactions with phosphorus, arsenic, selenium, sulfur, antimony, and hydrogen chloride as single contaminants or in combinations is discussed. Tests were performed using both anode- and electrolyte-supported cells in synthetic and actual coal gas for periods greater than 1000 hours. Post-test analyses were performed to identify reaction products formed and their distribution, and compared to phases expected from thermochemical modeling. The ultimate purpose of this work is to establish maximum permissible concentrations for impurities in coal gas, to aid in the selection of appropriate coal gas clean-up technologies.

  1. Gas-discharge particle detector with ball-tipped anodes

    International Nuclear Information System (INIS)

    A new gas-discharge particle detector, whose anode is a set of balls 2mm in diameter is investigated. The chamber is blowing down by the argon-methane-methylal gas mixture with the ratio 3:1:1. The detector operates in the self-quenching streamer mode, has high efficiency and a wide counting characteristic plateau. The maximum counting rate of particles at one ball is ∼ 2.5x104 s-1. The ball-tipped anodes allow making reliable complex-shaped detectors. Two-coordinate detection of multiparticle events can be naturally organized in detectors like that

  2. Mechanism and kinetics of anodic dissolution of aluminium and its alloy with zinc and rare earths in a sodium polyvanadate solution

    International Nuclear Information System (INIS)

    It is established through gravimetry variable-current impedance, roentgenoelectron spectroscopy and measurement of anodic polarization curves method that the Al-Zn (45 mass %) alloy in the NaVO3 (0.5 M) at 298 K is characterized by lower corrosion resistance as compared to the same alloy microalloyed by rare earth metals (0.1 mass %). The minimum value for electrode capacity is noted at the metal/solution interface of the Al-Zn alloy (45 mass %) and the maximum value for the Al-Zn alloy (45 mass %)-Sc (0.1 mass %); in the latter case it is related also to the minimum value of the anodic passivation current density

  3. Polarized atomic hydrogen beam

    Energy Technology Data Exchange (ETDEWEB)

    Chan, N.; Crowe, D.M.; Lubell, M.S.; Tang, F.C.; Vasilakis, A.; Mulligan, F.J.; Slevin, J.

    1988-12-01

    We describe the design and operating characteristics of a simple polarized atomic hydrogen beam particularly suitable for applications to crossed beams experiments. In addition to experimental measurements, we present the results of detailed computer models, using Monte-Carlo ray tracing techniques, optical analogs, and phase-space methods, that not only provide us with a confirmation of our measurement, but also allow us to characterize the density, polarization, and atomic fraction of the beam at all points along its path. As a subsidiary result, we also present measurements of the relative and absolute efficiencies of the V/G Supavac mass analyzer for masses 1 and 2.

  4. Polarization versus photon spin

    OpenAIRE

    Luis Aina, Alfredo; Rodil, Alfonso

    2014-01-01

    We examine whether the Stokes parameters of a two-mode electromagnetic field results from the superposition of the spins of the photons it contains. To this end we express any n-photon state as the result of the action on the vacuum of n creation operators generating photons which can have may different polarization states in general. We find that the macroscopic polarization holds as sum of the single-photon Stokes parameters only for the SU(2) orbits of photon-number states. The states that...

  5. Source of polarized electrons

    International Nuclear Information System (INIS)

    This paper reports on a source of polarized electrons based on photoemission of GaAsP-cathodes set up at the Mainz 300 MeV linear accelerator. It was successfully run in a measurement of parity violation in quasielastic electron beryllium scattering at 300 MeV and backwards angles. The source parameters are: Degree of polarization P=0.44, average beam current 1=28 μA, peak current 1p=140 mA, life time of cathode 200 h. A c.w. source for the Mainz race track microtron MAMI is designed using the same basic photoemission process

  6. Microwave Frequency Polarizers

    Science.gov (United States)

    Ha, Vien The; Mirel, Paul; Kogut, Alan J.

    2013-01-01

    This article describes the fabrication and analysis of microwave frequency polarizing grids. The grids are designed to measure polarization from the cosmic microwave background. It is effective in the range of 500 to 1500 micron wavelength. It is cryogenic compatible and highly robust to high load impacts. Each grid is fabricated using an array of different assembly processes which vary in the types of tension mechanisms to the shape and size of the grids. We provide a comprehensive study on the analysis of the grids' wire heights, diameters, and spacing.

  7. Polarization encoded color camera.

    Science.gov (United States)

    Schonbrun, Ethan; Möller, Guðfríður; Di Caprio, Giuseppe

    2014-03-15

    Digital cameras would be colorblind if they did not have pixelated color filters integrated into their image sensors. Integration of conventional fixed filters, however, comes at the expense of an inability to modify the camera's spectral properties. Instead, we demonstrate a micropolarizer-based camera that can reconfigure its spectral response. Color is encoded into a linear polarization state by a chiral dispersive element and then read out in a single exposure. The polarization encoded color camera is capable of capturing three-color images at wavelengths spanning the visible to the near infrared. PMID:24690806

  8. Depolarized SnO2-based gas anodes for electrowinning of silver in molten chlorides

    Directory of Open Access Journals (Sweden)

    Xiao S.

    2013-01-01

    Full Text Available SnO2-based porous anodes were prepared and the behavior of gas bubbles on the porous anodes with different original coarse grain size, immersed in ethanol to simulate molten chlorides, was primarily investigated. SnO2-based porous anodes were used as gas anodes for the electrowinning of silver in CaCl2-NaCl-CaO-AgCl melts at 680°C. Hydrogen was introduced to the anode/electrolyte interface through the gas anode. Carbon was used as the cathode. Obvious depolarization of the anode potential was observed after the introduction of hydrogen comparing with no reducing gas introduced, indicating the involvement of hydrogen in the anode reaction. Metallic silver was deposited on the cathode.

  9. Anode power in a quasi-steady MPD thruster. Ph.D. Thesis

    Science.gov (United States)

    Saber, A. J.

    1974-01-01

    Local anode heat flux in a quasi-steady MPD thruster is measured by thermocouples attached to the inside surface of a shell anode. Over a range of arc currents J from 5.5 to 44 kiloamperes and argon propellant mass flows m from 1 to 48 g/sec, with the ratio J2/m held constant, the fraction of arc power deposited in the anode is found to decrease with increasing arc power. Specifically, this anode power fraction decreases from 50% at 200 kW arc power, to 10% at 20 MW. In an effort to account for this functional behavior, the current density, plasma potential, and electron temperature in the plasma adjacent to the anode are measured with probes, and the results are used in a theoretical anode heat flux model. The model asserts that energy exchange between electrons and heavy particles in the plasma near the anode occur over distances greater than the anode sheath thickness.

  10. Effects of sodium tartrate anodizing on fatigue life of TA15 titanium alloy

    Directory of Open Access Journals (Sweden)

    Fu Chunjuan

    2015-08-01

    Full Text Available Anodizing is always used as an effective surface modification method to improve the corrosion resistance and wear resistance of titanium alloy. The sodium tartrate anodizing is a new kind of environmental anodizing method. In this work, the effects of sodium tartrate anodizing on mechanical property were studied. The oxide film was performed on the TA15 titanium alloy using sodium tartrate as the film former. The effects of this anodizing and the traditional acid anodizing on the fatigue life of TA15 alloy were compared. The results show that the sodium tartrate anodizing just caused a slight increase of hydrogen content in the alloy, and had a slight effect on the fatigue life. While, the traditional acid anodizing caused a significant increase of hydrogen content in the substrate and reduced the fatigue life of the alloy significantly.

  11. Microstructure and optical appearance of anodized friction stir processed Al - Metal oxide surface composites

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Bordo, Kirill;

    2014-01-01

    oxide particles which will influence the scattering of light. This paper presents the investigations on relation between microstructure of the FSP zone and optical appearance of the anodized layer due to incorporation of metal oxide particles and modification of the oxide particles due to the anodizing...... process. The effect of anodizing parameters on the optical appearance of the anodized surface was studied. Characterization was performed using FIB-SEM and TEM. The surface appearance was analysed using spectrophotometry technique which measures the diffuse and total reflectance of the surface. The...... appearance of the anodized surface changed from dark to bright upon increasing the anodizing voltage. Particles in the FSP zone were partially or completely modified during the anodizing process and modified the morphology of the surrounding anodized Al matrix which has a clear influence on the mechanism of...

  12. Impedance spectroscopy for the study of anodic copper dissolution in sulfuric acid in presence of benzotriazole

    International Nuclear Information System (INIS)

    The presence of an anodic surface film dramatically affects the electrochemical behavior of dissolving electrode in processes like corrosion inhibition, passivity, electropolishing or pitting. The present study was initiated to learn more about the physical properties of the surface films present at the surface of a copper electrode during anodic dissolution in 0.5 SM sulfuric acid and 40 mM benzotriazole (BTA) at 250C. This study is of practical importance because this organic compound is widely used for corrosion inhibition and as etching additive. The impedance spectra measured after 10 min of polarization (with a SOLARTRAN 1250 Frequency Response Analyzer and a SOLARTRON 1286 Electrochemical Interface) were analyzed by comparison with a physical model of the electrochemical interface in which the passive electrode is covered with a barrier layer. The main assumptions are that this barrier layer is a good electronic insulator of stoichiometric composition and that charge transfer reactions and double layer charging occur at both metal-barrier layer and barrier layer-electrolyte interphases. This model also considers the change in the barrier layer thickness under the influence of the applied potential. Least squares fitting of measured impedance spectra yield physical parameters of reasonable order of magnitude to support the proposed model. As predicted it was found that the barrier layer is itself covered by an outer porous film of corrosion products and that the metallic ions transfer through the barrier layer under high field conduction. By comparing the crystallographic lattice parameters and the dielectric constants of different copper compounds, the jump distance was determined to be about 5.5 A, indicating that the barrier layer is likely to be an hydrated copper sulfate (CuSO/sub 4/ 5H/sub 2/O)

  13. Impact of nanostructured anode on low-temperature performance of thin-film-based anode-supported solid oxide fuel cells

    Science.gov (United States)

    Park, Jung Hoon; Han, Seung Min; Yoon, Kyung Joong; Kim, Hyoungchul; Hong, Jongsup; Kim, Byung-Kook; Lee, Jong-Ho; Son, Ji-Won

    2016-05-01

    The impact of a nanostructured Ni-yttria-stabilized zirconia (Ni-YSZ) anode on low-temperature solid oxide fuel cell (LT-SOFC) performance is investigated. By modifying processing techniques for the anode support, anode-supported SOFCs based on thin-film (∼1 μm) electrolytes (TF-SOFCs) with and without the nanostructured Ni-YSZ (grain size ∼100 nm) anode are fabricated and a direct comparison of the TF-SOFCs to reveal the role of the nanostructured anode at low temperature is made. The cell performance of the nanostructured Ni-YSZ anode significantly increases as compared to that of the cell without it, especially at low temperatures (500 °C). The electrochemical analyses confirm that increasing the triple-phase boundary (TPB) density near the electrolyte and anode interface by the particle-size reduction of the anode increases the number of sites available for charge transfer. Thus, the nanostructured anode not only secures the structural integrity of the thin-film components over it, it is also essential for lowering the operating temperature of the TF-SOFC. Although it is widely considered that the cathode is the main factor that determines the performance of LT-SOFCs, this study directly proves that anode performance also significantly affects the low-temperature performance.

  14. Polarized Proton Collisions at RHIC

    CERN Document Server

    Bai, Mei; Alekseev, Igor G; Alessi, James; Beebe-Wang, Joanne; Blaskiewicz, Michael; Bravar, Alessandro; Brennan, Joseph M; Bruno, Donald; Bunce, Gerry; Butler, John J; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Laster, Jonathan S; Lee, Roger C; Luccio, Alfredo U; Luo, Yun; MacKay, William W; Makdisi, Yousef; Marr, Gregory J; Marusic, Al; McIntyre, Gary; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oddo, Peter; Oerter, Brian; Osamu, Jinnouchi; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smith, Kevin T; Svirida, Dima; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Wilinski, Michelle; Zaltsman, Alex; Zelenski, Anatoli; Zeno, Keith; Zhang, S Y

    2005-01-01

    The Relativistic Heavy Ion Collider~(RHIC) provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC to avoid depolarizing resonances. In 2003, polarized proton beams were accelerated to 100~GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. RHIC polarized proton run experience demonstrates that optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limite...

  15. Influence of Anode Area and Electrode Gap on the Morphology of Nanotubes Arrays

    OpenAIRE

    Min Wang; Li Jia; Shuangmei Deng

    2013-01-01

    In order to fabricate the titanium dioxide (TiO2) nanotubes arrays which were used in the photocatalytic degradation of total volatile organic compounds (TVOC) by anodization, the influence of the electrode gap and anode area on the morphology of the titanium dioxide (TiO2) nanotubes was studied. Titanium dioxide (TiO2) nanotube arrays were prepared by anodization with various electrode gaps and anode areas. Field emission scanning electron microscopy was used to investigate the morphology of...

  16. Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries.

    Science.gov (United States)

    Aymard, Luc; Oumellal, Yassine; Bonnet, Jean-Pierre

    2015-01-01

    The state of the art of conversion reactions of metal hydrides (MH) with lithium is presented and discussed in this review with regard to the use of these hydrides as anode materials for lithium-ion batteries. A focus on the gravimetric and volumetric storage capacities for different examples from binary, ternary and complex hydrides is presented, with a comparison between thermodynamic prediction and experimental results. MgH2 constitutes one of the most attractive metal hydrides with a reversible capacity of 1480 mA·h·g(-1) at a suitable potential (0.5 V vs Li(+)/Li(0)) and the lowest electrode polarization (hydrides Mg2MH x and other Mg-based hydrides. The reversible conversion reaction mechanism of MgH2, which is lithium-controlled, can be extended to others hydrides as: MH x + xLi(+) + xe(-) in equilibrium with M + xLiH. Other reaction paths-involving solid solutions, metastable distorted phases, and phases with low hydrogen content-were recently reported for TiH2 and Mg2FeH6, Mg2CoH5 and Mg2NiH4. The importance of fundamental aspects to overcome technological difficulties is discussed with a focus on conversion reaction limitations in the case of MgH2. The influence of MgH2 particle size, mechanical grinding, hydrogen sorption cycles, grinding with carbon, reactive milling under hydrogen, and metal and catalyst addition to the MgH2/carbon composite on kinetics improvement and reversibility is presented. Drastic technological improvement in order to the enhance conversion process efficiencies is needed for practical applications. The main goals are minimizing the impact of electrode volume variation during lithium extraction and overcoming the poor electronic conductivity of LiH. To use polymer binders to improve the cycle life of the hydride-based electrode and to synthesize nanoscale composite hydride can be helpful to address these drawbacks. The development of high-capacity hydride anodes should be inspired by the emergent nano-research prospects which

  17. Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Luc Aymard

    2015-08-01

    Full Text Available The state of the art of conversion reactions of metal hydrides (MH with lithium is presented and discussed in this review with regard to the use of these hydrides as anode materials for lithium-ion batteries. A focus on the gravimetric and volumetric storage capacities for different examples from binary, ternary and complex hydrides is presented, with a comparison between thermodynamic prediction and experimental results. MgH2 constitutes one of the most attractive metal hydrides with a reversible capacity of 1480 mA·h·g−1 at a suitable potential (0.5 V vs Li+/Li0 and the lowest electrode polarization (2, TiH2, complex hydrides Mg2MHx and other Mg-based hydrides. The reversible conversion reaction mechanism of MgH2, which is lithium-controlled, can be extended to others hydrides as: MHx + xLi+ + xe− in equilibrium with M + xLiH. Other reaction paths—involving solid solutions, metastable distorted phases, and phases with low hydrogen content—were recently reported for TiH2 and Mg2FeH6, Mg2CoH5 and Mg2NiH4. The importance of fundamental aspects to overcome technological difficulties is discussed with a focus on conversion reaction limitations in the case of MgH2. The influence of MgH2 particle size, mechanical grinding, hydrogen sorption cycles, grinding with carbon, reactive milling under hydrogen, and metal and catalyst addition to the MgH2/carbon composite on kinetics improvement and reversibility is presented. Drastic technological improvement in order to the enhance conversion process efficiencies is needed for practical applications. The main goals are minimizing the impact of electrode volume variation during lithium extraction and overcoming the poor electronic conductivity of LiH. To use polymer binders to improve the cycle life of the hydride-based electrode and to synthesize nanoscale composite hydride can be helpful to address these drawbacks. The development of high-capacity hydride anodes should be inspired by the emergent

  18. Polarizer reflectivity variations

    International Nuclear Information System (INIS)

    On Shiva the beam energy along the chain is monitored using available reflections and/or transmission through beam steering, splitting, and polarizing optics without the intrusion of any additional glass for diagnostics. On the preamp table the diagnostic signal is obtained from the signal transmitted through turning mirrors. At the input of each chain the signal is obtained from the transmission through one of the mirrors used for the chain input alignment sensor (CHIP). At the chain output the transmission through the final turning mirror is used. These diagnostics have proved stable and reliable. However, one of the prime diagnostic locations is at the output of the beta rod. The energy at this location is measured by collecting small reflections from the last polarizer surface of the beta Pockels cell polarizer package. Unfortunately, calibration of this diagnostic has varied randomly, seldom remaining stable for a week or more. The cause of this fluctuation has been investigated for the past year and'it has been discovered that polarizer reflectivity varies with humidity. This report will deal with the possible causes that were investigated, the evidence that humidity is causing the variation, and the associated mechanism

  19. The Description of Polarization

    OpenAIRE

    Mweene, Habatwa V.

    2005-01-01

    In this paper, we extend to polarization the method we have recently employed to treat spin. We are led to a generalization of its treatment. Thus, we are able to connect its matrix treatment to first principles, and we obtain the most generalized probability amplitudes and operators for its description.

  20. DESY: HERA polarization

    International Nuclear Information System (INIS)

    The new HERA electron-proton collider at DESY in Hamburg achieved the first luminosity for electron-proton collisions on 19 October last year. Only one month later, on 20 November, HERA passed another important milestone with the observation of transverse electron polarization

  1. Polarization of Bremsstrahlung

    International Nuclear Information System (INIS)

    The numerical results for the polarization of Bremsstrahlung are presented. The multiple scattering of electrons in the target is taken into account. The angular-and photon energy dependences are seen on the curves for an incident 25 MeV electron energy. (Author)

  2. Pure HD polarized targets

    International Nuclear Information System (INIS)

    The HD polarized target project is now ready to use a target in a physics experiment. This must be done in early 1998 at LEGS (BNL). The IPN cryogenic group takes its part in this venture by doing the transfer and in-beam cryostats. (authors)

  3. Polarization predictions for LEAR

    International Nuclear Information System (INIS)

    Large polarization properties have recently been experimentally found in quasi-two-body reactions. From these results, the additive quark model and assumptions on the relative size of some participant matrix elements (which will be motivated elsewhere as properties of colour confinement), we present prediction for the reactions pp- to YY-. (Author)

  4. Coordenadas polares: curvas maravillosas

    Directory of Open Access Journals (Sweden)

    Norberto Jaime Chau Pérez

    2010-07-01

    Full Text Available Se presenta una actividad colaborativa en la que se trabaja el tema coordenadas polares. Se presentan los objetivos de aprendizaje, el desarrollo de la actividad, los conocimientos previos necesarios y recomendaciones para una aplicación posterior.

  5. Polarized Neutron Scattering

    OpenAIRE

    Roessli, B.; Böni, P.

    2000-01-01

    The technique of polarized neutron scattering is reviewed with emphasis on applications. Many examples of the usefulness of the method in various fields of physics are given like the determination of spin density maps, measurement of complex magnetic structures with spherical neutron polarimetry, inelastic neutron scattering and separation of coherent and incoherent scattering with help of the generalized XYZ method.

  6. Recollision with circular polarization

    Science.gov (United States)

    Mauger, Francois; Kamor, Adam; Bandrauk, Andre; Chandre, Cristel; Uzer, Turgay

    2013-05-01

    Since its identification in the 90s, the recollision scenario has revealed to be very helpful in explaining many phenomena in atomic and molecular systems subjected to strong and short laser pulses, and it is now at the core of the strong field physics and attosecond science. For linearly polarized laser fields, the recollision scenario has been able to explain nonsequential double ionization (NSDI), high harmonic generation (HHG) and laser induced diffraction (LIED), just to cite them. The same scenario also predicts the absence of recollision when the field is circularly polarized, therefore leading to the absence of NSDI, HHG or LIED. Recently, the influence of the ellipticity of the laser has drawn an increasing level of interest in the strong field community as it is seen as a way to control the electronic dynamics and, for instance, HHG. Using classical models, the common belief of the absence of recollision with circularly polarized laser fields has been proven wrong. In my talk I will present classical and quantum evidence of the presence of recollision with circular polarization. I will discuss the conditions under which such recollisions happen and what they imply.

  7. Graphics of polar figure

    International Nuclear Information System (INIS)

    The objective of this work, is that starting from a data file coming from a spectra that has been softened, and of the one that have been generated its coordinates to project it in stereographic form, to create the corresponding polar figure making use of the Cyber computer of the ININ by means of the GRAPHOS package. This work only requires a Beta, Fi and Intensity (I) enter data file. It starts of the existence of a softened spectra of which have been generated already with these data, making use of some language that in this case was FORTRAN for the Cyber computer, a program is generated supported in the Graphos package that allows starting of a reading of the Beta, Fi, I file, to generate the points in a stereographic projection and that it culminates with the graph of the corresponding polar figure. The program will request the pertinent information that is wanted to capture in the polar figure just as: date, name of the enter file, indexes of the polar figure, number of levels, radio of the stereographic projection (cms.), crystalline system to which belongs the sample, name the neuter graph file by create and to add the own general data. (Author)

  8. Planetary polarization nephelometer

    Science.gov (United States)

    Banfield, D.; Dissly, R.; Mishchenko, M.; Muñoz, O.; Roos-Serote, M.; Stam, D.; Volten, H.

    2004-02-01

    We have proposed to develop a polarization nephelometer for use on future planetary descent probes. It will measure both the scattered intensity and polarization phase functions of the aerosols it encounters descending through an atmosphere. These measurements will be taken at two wavelengths separated by about an octave, with one light source near 500nm and another near 1μm. Adding polarization measurements to the intensity phase functions greatly increases our ability to constrain the size distribution, shape and chemical composition of the sampled particles. There remain important questions about these parameters of the aerosols on Venus, the giant planets and Titan that can only be addressed with a nephelometer like ours. The NRC Planetary Sciences Decadal Survey has identified probe missions to Venus and Jupiter as a priority. On both of these missions, our proposed instrument would be an excellent candidate for flight. We also expect that future probe missions to Saturn, Uranus, Neptune or Titan would employ our instrument. It could also find use in Earth in situ aerosol studies. We will use a technique to simultaneously measure intensity and polarization phase functions that uses polarization modulation of a light source. This technique has been implemented in laboratory settings, but not with considerations to the environment on a planetary descent probe. We have proposed to design and build a flexible breadboard nephelometer to test the components and concepts of our approach. We would then test the device against well defined aerosols, ensuring that it accurately measures their expected intensity and polarization phase functions. With the knowledge gained in this flexible design, we would then design and build a breadboard polarization nephelometer more suited to integration on a planetary descent probe. To include traceability in the technical requirements of our device, we would also conduct an Observing System Simulation Experiment. In this study, we

  9. The corrosion protection of several aluminum alloys by chromic acid and sulfuric acid anodizing

    Science.gov (United States)

    Danford, M. D.

    1994-01-01

    The corrosion protection afforded 7075-T6, 7075-T3, 6061-T6, and 2024-T3 aluminum alloys by chromic acid and sulfuric acid anodizing was examined using electrochemical techniques. From these studies, it is concluded that sulfuric acid anodizing provides superior corrosion protection compared to chromic acid anodizing.

  10. On the influence of the external optical radiation upon anode double layers

    International Nuclear Information System (INIS)

    The obtained results demonstrate that the changes in the parameters (frequency, amplitude) of electrical oscillations generated in an anode double layer can be used as optical detectors when the anode glow is irradiated with an external optical electromagnetic wave. It has been demonstrated that the local electrical properties of an anode glow have changed under the influence of electromagnetic radiation

  11. 46 CFR 35.01-25 - Sacrificial anode installations-TB/ALL.

    Science.gov (United States)

    2010-10-01

    ... submitted for approval. The anode should be magnesium free and the silicon content limited to trace amounts... 46 Shipping 1 2010-10-01 2010-10-01 false Sacrificial anode installations-TB/ALL. 35.01-25 Section... Operating Requirements § 35.01-25 Sacrificial anode installations—TB/ALL. (a) The installation of...

  12. Polarized light and optical measurement

    CERN Document Server

    Clarke, D N; Ter Haar, D

    2013-01-01

    Polarized Light and Optical Measurement is a five-chapter book that begins with a self-consistent conceptual picture of the phenomenon of polarization. Chapter 2 describes a number of interactions of light and matter used in devising optical elements in polarization studies. Specific optical elements are given in Chapter 3. The last two chapters explore the measurement of the state of polarization and the various roles played in optical instrumentation by polarization and polarization-sensitive elements. This book will provide useful information in this field of interest for research workers,

  13. Modeling of an anode-supported Ni-YSZ vertical stroke Ni-ScSZ vertical stroke ScSZ vertical stroke LSM-ScSZ multiple layers SOFC cell. Part I. Experiments, model development and validation

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yixiang; Cai, Ningsheng; Li, Chen; Bao, Cheng [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084 (China); Croiset, Eric [Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Qian, Jiqin; Hu, Qiang; Wang, Shaorong [Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China)

    2007-10-11

    This paper is the first part of a two-part paper and presents the development, calibration and validation of a two-dimensional isothermal mechanistic model of a composite yttria/scandia-stabilized zirconia anode-supported multiple layers solid oxide fuel cell (Ni-YSZ vertical stroke Ni-ScSZ vertical stroke ScSZ vertical stroke LSM-ScSZ). This model was developed to describe the intricate interdependency among the ionic conduction, electronic conduction, multi-component species transport, electrochemical reaction processes and electrode microstructure for intermediate temperatures operation between 750 and 850 C. This model takes into account the fact that the electrochemical reactions take place throughout the electrodes and not only at the electrolyte/electrode boundaries. The model was calibrated using experimental polarization curves and then validated by comparing each cell component polarizations (anodic, cathodic and electrolyte) determined from the simulation and from specific experiments using a symmetric cell and EIS measurements. (author)

  14. Controlling the Electron Energy Distribution Function Using an Anode

    Science.gov (United States)

    Baalrud, Scott D.; Barnat, Edward V.; Hopkins, Mathew M.

    2014-10-01

    Positively biased electrodes inserted into plasmas influence the electron energy distribution function (EEDF) by providing a sink for low energy electrons that would otherwise be trapped by ion sheaths at the chamber walls. We develop a model for the EEDF in a hot filament generated discharge in the presence of positively biased electrodes of various surface areas, and compare the model results with experimental Langmuir probe measurements and particle-in-cell simulations. In the absence of an anode, the EEDF is characterized by a cool trapped population at energies below the sheath energy, and a comparatively warm tail population associated with the filament primaries. Anodes that are small enough to collect a negligible fraction of the electrons exiting the plasma have little affect on the EEDF, but as the anode area approaches √{me /mi }Aw , where Aw is the chamber wall area, the anode collects most of the electrons leaving the plasma. This drastically reduces the density of the otherwise trapped population, causing an effective heating of the electrons and a corresponding density decrease. A global model is developed based on the EEDF model and current balance, which shows the interconnected nature of the electron temperature, density and the plasma potential. This work was supported by the Office of Fusion Energy Science at the U.S. Department of Energy under Contract DE-AC04-94SL85000, and by the University of Iowa Old Gold Program.

  15. Current collection by high voltage anodes in near ionospheric conditions

    Science.gov (United States)

    Antoniades, John A.; Greaves, Rod G.; Boyd, D. A.; Ellis, R.

    1990-01-01

    The authors experimentally identified three distinct regimes with large differences in current collection in the presence of neutrals and weak magnetic fields. In magnetic field/anode voltage space the three regions are separated by very sharp transition boundaries. The authors performed a series of laboratory experiments to study the dependence of the region boundaries on several parameters, such as the ambient neutral density, plasma density, magnetic field strength, applied anode voltage, voltage pulsewidth, chamber material, chamber size and anode radius. The three observed regimes are: classical magnetic field limited collection; stable medium current toroidal discharge; and large scale, high current space glow discharge. There is as much as several orders of magnitude of difference in the amount of collected current upon any boundary crossing, particularly if one enters the space glow regime. They measured some of the properties of the plasma generated by the breakdown that is present in regimes II and III in the vicinity of the anode including the sheath modified electrostatic potential, I-V characteristics at high voltage as well as the local plasma density.

  16. Magnesium Sulphide as Anode Material for Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Highlights: • A single step preparation method of magnesium sulphide-carbon composite by mechanically milling the elemental mixture is reported. • The as-prepared MgS-carbon composite was investigated as an anode for lithium-ion batteries. • From XRD and electrochemical studies a reversible lithiation/delithiation mechanism of MgS is concluded. • The practicality of MgS-carbon composite anode in full cell using lithium nickel manganese cobalt oxide (LNMC) and lithium iron phosphate (LFP) as cathodes are evaluated. -- Abstract: Herein, we report magnesium sulphide (MgS) as an anode for lithium ion batteries. Magnesium sulphide-carbon composite is directly synthesized by mechanically milling the elemental mixture. A possible lithiation and delithiation mechanism for MgS is proposed based on electrochemical and ex-situ XRD studies. The electrochemical reaction of MgS with lithium results in the formation of Li2S and Mg, the as-formed Mg simultaneously reacts with lithium and forms LixMg alloy further contributing to the capacity. A stable reversible capacity of 530 mAh g−1 was achieved after 100 cycles within the voltage window of 0.001–2.5 V. The compatibility of MgS anode was tested in full cell using lithium nickel manganese cobalt oxide (LNMC) and lithium iron phosphate (LFP) as cathodes

  17. High Rate and Stable Cycling of Lithium Metal Anode

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu; Bhattacharya, Priyanka; Engelhard, Mark H.; Borodin, Oleg; Zhang, Jiguang

    2015-02-20

    Lithium (Li) metal is an ideal anode material for rechargeable batteries. However, dendritic Li growth and limited Coulombic efficiency (CE) during repeated Li deposition/stripping processes have prevented the application of this anode in rechargeable Li metal batteries, especially for use at high current densities. Herein, we report that the use of highly concentrated electrolytes composed of ether solvents and the lithium bis(fluorosulfonyl)imide (LiFSI) salt enables the high rate cycling of a Li metal anode at high CE (up to 99.1 %) without dendrite growth. With 4 M LiFSI in 1,2-dimethoxyethane (DME) as the electrolyte, a Li|Li cell can be cycled at high rates (10 mA cm-2) for more than 6000 cycles with no increase in the cell impedance, and a Cu|Li cell can be cycled at 4 mA cm-2 for more than 1000 cycles with an average CE of 98.4%. These excellent high rate performances can be attributed to the increased solvent coordination and increased availability of Li+ concentration in the electrolyte. Further development of this electrolyte may lead to practical applications for Li metal anode in rechargeable batteries. The fundamental mechanisms behind the high rate ion exchange and stability of the electrolytes also shine light on the stability of other electrochemical systems.

  18. Vanadium-based anode catalysts for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fu, X.Z.; Luo, J.L.; Chuang, K.T.; Sanger, A.R. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering; Tu, H.Y. [Shanghai Jiao Tong Univ., Shanghai (China). Inst. of Fuel Cell, School of Mechanical Engineering; Yang, Q.M. [Vale-Inco Ltd., Mississauga, ON (Canada)

    2010-07-01

    Solid oxide fuel cells (SOFCs) are considered as important electricity generators because they convert carbon-containing fuels from fossil sources to electricity without generating pollution. Syngas is more available and less expensive than highly purified hydrogen. However, when exposed to syngas at SOFC operating temperatures, conventional nickel anode catalysts result in carbon deposition, which compromises their performance. Syngas derived from conversion of hydrocarbon or coal resources normally also contain hydrogen sulphide, which poisons nickel anode catalysts. In order to use syngas, it is necessary to either stringently clean the feed, which is a costly process, or develop catalysts that can operate using impure feed and are not prone to carbon deposition. This paper discussed the development of a vanadium-based material (VOx) which is an active anode catalyst for SOFCs, that is not prone to coking and is sulfur resistant. The VOx material was obtained by decomposition and reduction of ammonium metavanadate (NH{sub 4}VO{sub 3}) at high temperature. Coking and sulfur resistance of as-prepared VOx and nickel were compared in hydrogen sulphide-containing syngas environments at 900 degrees Celsius. It was concluded that the VOx material had much higher coking resistance and sulfur tolerance than nickel. The SOFC with VOx anode catalyst demonstrated excellent performance using hydrogen sulphide-containing syngas as fuel. 3 refs.

  19. Thin film Li-Ion batteries with carbon anode

    Czech Academy of Sciences Publication Activity Database

    Merta, J.; Bludská, Jana; Jakubec, Ivo

    Brno: University of Technology Brno, 2003, s. 37-40. ISBN 80-214-2298-X. [Advanced Batteries and Accumulators /4./. Brno (CZ), 15.06.2003-19.06.2003] Institutional research plan: CEZ:AV0Z4032918 Keywords : carbon anode Subject RIV: CA - Inorganic Chemistry

  20. High Performance SLED Fabricated by Pulsed Anodic Oxidation

    Institute of Scientific and Technical Information of China (English)

    GAO Xin; BO Bao-xue; ZHANG Jing; LI Hui; QU Yi

    2009-01-01

    InGaAs/AlGaAs MQW superluminescent LED (SLED) is fabricated by using pulsed anodic oxidation and molecular beam epitaxy (MBE). The power and spectral output characteristics of three kinds of device structures are investigated. An output power above 10mW with FWHM of 18nm is demonstrated at a current of 150mA.

  1. Prelithiated Silicon Nanowires as an Anode for Lithium Ion Batteries

    KAUST Repository

    Liu, Nian

    2011-08-23

    Silicon is one of the most promising anode materials for the next-generation high-energy lithium ion battery (LIB), while sulfur and some other lithium-free materials have recently shown high promise as cathode materials. To make a full battery out of them, either the cathode or the anode needs to be prelithiated. Here, we present a method for prelithiating a silicon nanowire (SiNW) anode by a facile self-discharge mechanism. Through a time dependence study, we found that 20 min of prelithiation loads ∼50% of the full capacity into the SiNWs. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies show that the nanostructure of SiNWs is maintained after prelithiation. We constructed a full battery using our prelithiated SiNW anode with a sulfur cathode. Our work provides a protocol for pairing lithium-free electrodes to make the next-generation high-energy LIB. © 2011 American Chemical Society.

  2. Use of tungsten anodes in microgap gas chambers

    International Nuclear Information System (INIS)

    In a continuation of the authors' earlier tests, tungsten has been used for anode strips in the fabrication of microgap gas chambers (MGCs) in an attempt to find a metallization suitable for gas avalanche microdetectors (MSGCs or MGCs) that will be both highly robust against sparking and yet have sufficiently low resistivity to permit use of detectors of relatively larger sizes. MGCs having about 5,500 and 7,500 angstrom thick tungsten anodes were fabricated using a sputtering technique, and the sheet resistances for these layers were measured as 0.42 and 0.27 Ω/□, respectively. The detectors were subjected to sparks having a range of energies, and the damage to the anode strips was assessed using optical and scanning electron microscope (SEM) photographs, and by measuring leakage current before and after sparking. In this paper, the spark damage test results of tungsten anodes in MGCs are reported, and an interpretation is made regarding the viability of use of this metal for larger sizes of detectors

  3. A multi-anode photomultiplier with position sensitivity

    International Nuclear Information System (INIS)

    We have measured the properties of a specially developed photomultiplier with proximity dynodes and 10 wire anodes. This design allows us to determine the position of emission of the photoelectrons from the cathode with an accuracy of 1.3 mm fwhm. This tube is also extremely fast due to the short transit time and the geometry of its dynodes. (orig.)

  4. Mechanical failure of anodic films on aluminum and tantalum

    International Nuclear Information System (INIS)

    Anodized specimens of aluminum and tantalum were deformed in laboratory air; strain to failure and the failure characteristics of the oxide film were evaluated optically. Barrier-type anodic aluminum oxide films of thickness greater than approximately 400A failed at approximately 0.925% strain normal to the tensile axis and apparently suppresssed substrate slip emergence. Thinner anodic films on aluminum failed along substrate slip traces at approximately 1.12% strain. These films did not suppress slip emergence, but were apparently stronger. The presence of a porous oxide superimposed on thin barrier-type films caused them to fail in the thick film mode; this was the only effect of a porous layer. Anodic films on mechanically polished tantalum failed at approximately 0.28% strain, independent of thickness, but showed a failure mode dependence on thickness analogous to that of aluminum. Films on chemically polished tantalum substrates always failed in simple tension, but showed a thickness dependence, failing at approximately 0.14% strain for thicknesses greater than approximately 680A, and approximately 0.20% strain for thicknesses less than that value. Failure of these films was accompanied by separation of the films from the substrate. 18 figures

  5. The corrosion protection of aluminum by various anodizing treatments

    Science.gov (United States)

    Danford, Merlin D.

    1989-01-01

    Corrosion protection to 6061-T6 aluminum, afforded by both teflon-impregnated anodized coats (Polylube and Tufram) and hard-anodized coats (water sealed and dichromate sealed), was studied at both pH 5.5 and pH 9.5, with an exposure period of 28 days in 3.5 percent NaCl solution (25 C) for each specimen. In general, corrosion protection for all specimens was better at pH 9.5 than at pH 5.5. Protection by a Tufram coat proved superior to that afforded by Polylube at each pH, with corrosion protection by the hard-anodized, water-sealed coat at pH 9.5 providing the best protection. Electrochemical work in each case was corroborated by microscopic examination of the coats after exposure. Corrosion protection by Tufram at pH 9.5 was most comparable to that of the hard-anodized samples, although pitting and some cracking of the coat did occur.

  6. Experimental breakdown of selected anodized aluminum samples in dilute plasmas

    Science.gov (United States)

    Grier, Norman T.; Domitz, Stanley

    1992-01-01

    Anodized aluminum samples representative of Space Station Freedom structural material were tested for electrical breakdown under space plasma conditions. In space, this potential arises across the insulating anodized coating when the spacecraft structure is driven to a negative bias relative to the external plasma potential due to plasma-surface interaction phenomena. For anodized materials used in the tests, it was found that breakdown voltage varied from 100 to 2000 volts depending on the sample. The current in the arcs depended on the sample, the capacitor, and the voltage. The level of the arc currents varied from 60 to 1000 amperes. The plasma number density varied from 3 x 10 exp 6 to 10 exp 3 ions per cc. The time between arcs increased as the number density was lowered. Corona testing of anodized samples revealed that samples with higher corona inception voltage had higher arcing inception voltages. From this it is concluded that corona testing may provide a method of screening the samples.

  7. Optimal Set Anode Potentials Vary in Bioelectrochemical Systems

    KAUST Repository

    Wagner, Rachel C.

    2010-08-15

    In bioelectrochemical systems (BESs), the anode potential can be set to a fixed voltage using a potentiostat, but there is no accepted method for defining an optimal potential. Microbes can theoretically gain more energy by reducing a terminal electron acceptor with a more positive potential, for example oxygen compared to nitrate. Therefore, more positive anode potentials should allow microbes to gain more energy per electron transferred than a lower potential, but this can only occur if the microbe has metabolic pathways capable of capturing the available energy. Our review of the literature shows that there is a general trend of improved performance using more positive potentials, but there are several notable cases where biofilm growth and current generation improved or only occurred at more negative potentials. This suggests that even with diverse microbial communities, it is primarily the potential of the terminal respiratory proteins used by certain exoelectrogenic bacteria, and to a lesser extent the anode potential, that determines the optimal growth conditions in the reactor. Our analysis suggests that additional bioelectrochemical investigations of both pure and mixed cultures, over a wide range of potentials, are needed to better understand how to set and evaluate optimal anode potentials for improving BES performance. © 2010 American Chemical Society.

  8. Spark protection layers for CMOS pixel anode chips in MPGDs

    NARCIS (Netherlands)

    Bilevych, Y.; Blanco Carballo, V.M.; Chefdeville, M.A.; Colas, P.; Delagnes, E.; Fransen, M.; Graaff, van der H.; Koppert, W.J.C.; Melai, J.; Salm, C.; Schmitz, J.; Timmermans, J.; Wyrsch, N.

    2011-01-01

    In this work we have investigated the functioning of high resistivity amorphous silicon and silicon-rich nitride layers as a protection against discharges in Micro-Patterned Gaseous Detectors (MPGDs).When the anode is protected by a high resistivity layer, discharge signals are limited in charge. A

  9. Aerogel and xerogel composites for use as carbon anodes

    Science.gov (United States)

    Cooper, John F.; Tillotson, Thomas M.; Hrubesh, Lawrence W.

    2008-08-12

    Disclosed herein are aerogel and xerogel composite materials suitable for use as anodes in fuel cells and batteries. Precursors to the aerogel and xerogel compounds are infused with inorganic polymeric materials or carbon particles and then gelled. The gels are then pyrolyzed to form composites with internal structural support.

  10. Novel Ceramic Materials for Polymer Electrolyte Membrane Water Electrolysers' Anodes

    DEFF Research Database (Denmark)

    Polonsky, J.; Bouzek, K.; Prag, Carsten Brorson;

    2012-01-01

    Tantalum carbide was evaluated as a possible new support for the IrO2 for use in anodes of polymer electrolyte membrane water electrolysers. A series of supported electrocatalysts varying in mass content of iridium oxide was prepared. XRD, powder conductivity measurements and cyclic and linear...

  11. A review of liquid metal anode solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    ALIYA TOLEUOVA

    2013-06-01

    Full Text Available This review discusses recent advances in a solid oxide fuel cell (SOFC variant that uses liquid metal electrodes (anodes with the advantage of greater fuel tolerance and the ability to operate on solid fuel. Key features of the approach are discussed along with the technological and research challenges that need to be overcome for scale-up and commercialisation.

  12. Nanocomposite anode materials for sodium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Manthiram, Arumugam; Kim Il, Tae; Allcorn, Eric

    2016-06-14

    The disclosure relates to an anode material for a sodium-ion battery having the general formula AO.sub.x--C or AC.sub.x--C, where A is aluminum (Al), magnesium (Mg), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), zirconium (Zr), molybdenum (Mo), tungsten (W), niobium (Nb), tantalum (Ta), silicon (Si), or any combinations thereof. The anode material also contains an electrochemically active nanoparticles within the matrix. The nanoparticle may react with sodium ion (Na.sup.+) when placed in the anode of a sodium-ion battery. In more specific embodiments, the anode material may have the general formula M.sub.ySb-M'O.sub.x--C, Sb-MO.sub.x--C, M.sub.ySn-M'C.sub.x--C, or Sn-MC.sub.x--C. The disclosure also relates to rechargeable sodium-ion batteries containing these materials and methods of making these materials.

  13. A review of liquid metal anode solid oxide fuel cells

    OpenAIRE

    ALIYA TOLEUOVA; VLADIMIR YUFIT; STEFAAN SIMONS; Maskell, William C.; Brett, Daniel J. L.

    2013-01-01

    This review discusses recent advances in a solid oxide fuel cell (SOFC) variant that uses liquid metal electrodes (anodes) with the advantage of greater fuel tolerance and the ability to operate on solid fuel. Key features of the approach are discussed along with the technological and research challenges that need to be overcome for scale-up and commercialisation.

  14. Measurement of focal spot size in microfocus rod anode tubes

    International Nuclear Information System (INIS)

    This paper explains how focal spot size is measured in common microfocus rod anode tubes. Differences in beam geometry, beam angle and target arrangement make it necessary to define the measurement setup precisely. The author presents a measurement method using examples for explanation. The paper contains PowerPoint slides.

  15. Global Geospace Science/Polar Plasma Laboratory: POLAR

    Science.gov (United States)

    1996-01-01

    The Global Geospace Science (GGS) Project is discussed as part of the International Solar-Terrestrial Physics (ISTP) Science Initiative. The objectives of Polar Plasma Laboratory (POLAR), one of the two spacecraft to be used by the Project to fill critical gaps in the scientific understanding of solar and plasma physics, are outlined. POLAR Laboratory is described, along with POLAR instrumentation, support subsystems, and orbits. Launch vehicle and injection into orbit are also addressed.

  16. Are you positive? Electric dipole polarity discrimination in the yellow stingray, Urobatis jamaicensis.

    Science.gov (United States)

    Siciliano, Avery M; Kajiura, Stephen M; Long, John H; Porter, Marianne E

    2013-10-01

    It is well established that elasmobranchs can detect dipole electric fields. However, it is unclear whether they can discriminate between the anode and cathode. To investigate this subject, we employed a behavioral assay to determine the discriminatory ability of the yellow stingray, Urobatis jamaicensis. We conditioned stingrays with food rewards to bite either the anode (n=5) or the cathode (n=6) of a direct-current dipole located on the floor of an experimental tank. All individuals successfully performed the task after 18 to 22 days. Stingrays were then tested in experimental sessions when they were rewarded only after they identified the correct pole. Stingrays successfully discriminated between the poles at a rate greater than chance, ranging among individuals from a mean of 66% to 93% correct. During experimental sessions, stingrays conditioned to distinguish the anode performed similarly to those conditioned to distinguish the cathode. We hypothesize that the ability to discriminate anode from cathode is physiologically encoded, but its utility in providing spatial information under natural conditions remains to be demonstrated. The ability to discriminate polarity may eliminate ambiguity in induction-based magnetoreception and facilitate navigation with respect to the geomagnetic field. PMID:24243961

  17. Polarity Specific Suppression Effects of Transcranial Direct Current Stimulation for Tinnitus

    Directory of Open Access Journals (Sweden)

    Kathleen Joos

    2014-01-01

    Full Text Available Tinnitus is the perception of a sound in the absence of an external auditory stimulus and affects 10–15% of the Western population. Previous studies have demonstrated the therapeutic effect of anodal transcranial direct current stimulation (tDCS over the left auditory cortex on tinnitus loudness, but the effect of this presumed excitatory stimulation contradicts with the underlying pathophysiological model of tinnitus. Therefore, we included 175 patients with chronic tinnitus to study polarity specific effects of a single tDCS session over the auditory cortex (39 anodal, 136 cathodal. To assess the effect of treatment, we used the numeric rating scale for tinnitus loudness and annoyance. Statistical analysis demonstrated a significant main effect for tinnitus loudness and annoyance, but for tinnitus annoyance anodal stimulation has a significantly more pronounced effect than cathodal stimulation. We hypothesize that the suppressive effect of tDCS on tinnitus loudness may be attributed to a disrupting effect of ongoing neural hyperactivity, independent of the inhibitory or excitatory effects and that the reduction of annoyance may be induced by influencing adjacent or functionally connected brain areas involved in the tinnitus related distress network. Further research is required to explain why only anodal stimulation has a suppressive effect on tinnitus annoyance.

  18. LONGSHOT operation with anode-side magnetic field coils

    International Nuclear Information System (INIS)

    The LONGSHOT experiment uses a radially magnetically-insulated ion diode to generate an annular ion beam for ion-ring formation studies. The insulating magnetic field had been produced by coils on the cathode side of the diode gap, and flux-shaping conducting surfaces on the anode side. In this configuration, the about 100 keV, about 50 A/cm2, 400 nsec proton beam showed at least 2.50 half-angle divergence 15 cm from the gap, after traversing the cross-magnetic field region of the return flux of the insulating field coils. We have recently eliminated this return flux by relocating the coils to the anode side of the gap so that the return flux is behind the anode and out of the beam path. With proper location and configuration of coils and anode surface and using a flux-excluding cathode tip we now get the same or greater ion current output, but the divergence 15 cm from the gap is reduced to 0 half-angle. Divergence is measured by apertures followed by damage targets. This improvement is presumably due to elimination of all magnetic field downstream of the gap. It is significant that the ion optics are not degraded by using a flux-excluding cathode, which gives highly distorted, curved applied magnetic field lines at the cathode. This gap, in both original and new configurations, gives ion current densities a factor of 30 or more above Child-Langmuir flow for the geometric gap, so the virtual cathode electron flow must be located very near the anode surface, and the diamagnetism of the electron flow must modify the magnetic field in such a way as to produce a flat effective cathode. Experimental results from the present diode, and also preliminary results from LONGSHOT II, a scaled-up version of this new configuration, are presented

  19. Silicon Based Anodes for Li-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiguang; Wang, Wei; Xiao, Jie; Xu, Wu; Graff, Gordon L.; Yang, Zhenguo; Choi, Daiwon; Li, Xiaolin; Wang, Deyu; Liu, Jun

    2012-06-15

    Silicon is environmentally benign and ubiquitous. Because of its high specific capacity, it is considered one of the most promising candidates to replace the conventional graphite negative electrode used in today's Li ion batteries. Silicon has a theoretical specific capacity of nearly 4200 mAh/g (Li21Si5), which is 10 times larger than the specific capacity of graphite (LiC6, 372 mAh/g). However, the high capacity of silicon is associated with huge volume changes (more than 300 percent) when alloyed with lithium, which can cause severe cracking and pulverization of the electrode and lead to significant capacity loss. Significant scientific research has been conducted to circumvent the deterioration of silicon based anode materials during cycling. Various strategies, such as reduction of particle size, generation of active/inactive composites, fabrication of silicon based thin films, use of alternative binders, and the synthesis of 1-D silicon nanostructures have been implemented by a number of research groups. Fundamental mechanistic research has also been performed to better understand the electrochemical lithiation and delithiation process during cycling in terms of crystal structure, phase transitions, morphological changes, and reaction kinetics. Although efforts to date have not attained a commercially viable Si anode, further development is expected to produce anodes with three to five times the capacity of graphite. In this chapter, an overview of research on silicon based anodes used for lithium-ion battery applications will be presented. The overview covers electrochemical alloying of the silicon with lithium, mechanisms responsible for capacity fade, and methodologies adapted to overcome capacity degradation observed during cycling. The recent development of silicon nanowires and nanoparticles with significantly improved electrochemical performance will also be discussed relative to the mechanistic understanding. Finally, future directions on the

  20. Optimization and Domestic Sourcing of Lithium Ion Battery Anode Materials

    Energy Technology Data Exchange (ETDEWEB)

    Wood, III, D. L.; Yoon, S. [A123 Systems, Inc.

    2012-10-25

    The purpose of this Cooperative Research and Development Agreement (CRADA) between ORNL and A123Systems, Inc. was to develop a low-temperature heat treatment process for natural graphite based anode materials for high-capacity and long-cycle-life lithium ion batteries. Three major problems currently plague state-of-the-art lithium ion battery anode materials. The first is the cost of the artificial graphite, which is heat-treated well in excess of 2000°C. Because of this high-temperature heat treatment, the anode active material significantly contributes to the cost of a lithium ion battery. The second problem is the limited specific capacity of state-of-the-art anodes based on artificial graphites, which is only about 200-350 mAh/g. This value needs to be increased to achieve high energy density when used with the low cell-voltage nanoparticle LiFePO4 cathode. Thirdly, the rate capability under cycling conditions of natural graphite based materials must be improved to match that of the nanoparticle LiFePO4. Natural graphite materials contain inherent crystallinity and lithium intercalation activity. They hold particular appeal, as they offer huge potential for industrial energy savings with the energy costs essentially subsidized by geological processes. Natural graphites have been heat-treated to a substantially lower temperature (as low as 1000-1500°C) and used as anode active materials to address the problems described above. Finally, corresponding graphitization and post-treatment processes were developed that are amenable to scaling to automotive quantities.

  1. The POLAR gamma-ray burst polarimeter onboard the Chinese Spacelab

    Science.gov (United States)

    Orsi, Silvio; Cadoux, Franck; Leluc, Catherine; Paniccia, Mercedes; Pohl, Martin; Rapin, Divic; Gauvin, Neal; Produit, Nicolas; Bao, Tianwei; Chai, Junying; Dong, Yongwei; Kong, Minnan; Lu, Li; Liu, Jiangtao; Liu, Xin; Shi, Haoli; Sun, Jianchao; Wang, Ruijie; Wen, Xing; Wu, Bobing; Xiao, Hualin; Xu, Hanhui; Zhang, Li; Zhang, Laiyu; Zhang, Shuangnan; Zhang, Yongjie; Britvich, Ilia; Hajdas, Wojtek; Marcinkowski, Radoslaw; Rybka, Dominik K.; Batsch, Tadeusz; Rutczynska, Aleksandra; Szabelski, Jacek; Zwolinska, Ania

    2014-07-01

    POLAR is a joint European-Chinese experiment aimed at a precise measurement of hard X-ray polarization (50-500 keV) of the prompt emission of Gamma-Ray Bursts. The main aim is a better understanding of the geometry of astrophysical sources and of the X-ray emission mechanisms. POLAR is a compact Compton polarimeter characterized by a large modulation factor, effective area, and field of view. It consists of 1600 low-Z plastic scintillator bars read out by 25 at-panel multi-anode photomultipliers. The incoming X-rays undergo Compton scattering in the bars and produce a modulation pattern; experiments with polarized synchrotron radiation and GEANT4 Monte Carlo simulations have shown that the polarization degree and angle can be retrieved from this pattern with the accuracy necessary for identifying the GRB mechanism. The flight model of POLAR is currently under construction in Geneva. The POLAR instrument will be placed onboard the Chinese spacelab TG-2, scheduled for launch in low Earth orbit in 2015. The main milestones of the space qualification campaign will be described in the paper.

  2. Analysis of polarization methods for elimination of power overshoot in microbial fuel cells

    KAUST Repository

    Watson, Valerie J.

    2011-01-01

    Polarization curves from microbial fuel cells (MFCs) often show an unexpectedly large drop in voltage with increased current densities, leading to a phenomenon in the power density curve referred to as "power overshoot". Linear sweep voltammetry (LSV, 1 mV s- 1) and variable external resistances (at fixed intervals of 20 min) over a single fed-batch cycle in an MFC both resulted in power overshoot in power density curves due to anode potentials. Increasing the anode enrichment time from 30 days to 100 days did not eliminate overshoot, suggesting that insufficient enrichment of the anode biofilm was not the primary cause. Running the reactor at a fixed resistance for a full fed-batch cycle (~ 1 to 2 days), however, completely eliminated the overshoot in the power density curve. These results show that long times at a fixed resistance are needed to stabilize current generation by bacteria in MFCs, and that even relatively slow LSV scan rates and long times between switching circuit loads during a fed-batch cycle may produce inaccurate polarization and power density results for these biological systems. © 2010 Elsevier B.V. All rights reserved.

  3. Anode purge strategy optimization of the polymer electrode membrane fuel cell system under the dead-end anode operation

    Science.gov (United States)

    Hu, Zhe; Yu, Yi; Wang, Guangjin; Chen, Xuesong; Chen, Pei; Chen, Jun; Zhou, Su

    2016-07-01

    Dead-ended anode (DEA) mode is commonly applied in fuel cell vehicles for the hydrogen purge at the anode side, to reduce fuel waste and enhance fuel cell efficiency. Anode purge is necessary and is definitely important with respect to removing liquid water and accumulated nitrogen in the gas diffusion layer and the flow field of the DEA-mode fuel cell. In this paper, the effect of different purge strategies on the stack performance and system efficiency is investigated experimentally using fast data acquisition and advanced tools, such as the fast cell voltage measurement (CVM) system and the mass spectrum. From the fast data acquisition, the voltage stability, liquid water and nitrogen concentration measurement in the anode exhaust are compared and analyzed under different purge strategy designs and using different purge valves. The results show that under the optimal purge strategy, the DEA fuel cell stack can achieve the desired stability and system efficiency based on the analysis of the cell voltage and purge volume. Moreover, the diameter of the purge valve has a great impact on the voltage stability because a diameter change will result in a different pressure drop and purge volume when the purge valve is open.

  4. POLARIZED PROTON COLLISIONS AT RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BAI, M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; ET AL.

    2005-05-16

    The Relativistic Heavy Ion Collider provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC. In 2002, polarized proton beams were first accelerated to 100 GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. Optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limited conditions are reported.

  5. Focusing the partly polarized light

    Science.gov (United States)

    Borovytsky, Volodymyr

    2015-11-01

    The paper presents the mathematical technique for calculation of three dimensional intensity distribution near a focal point of an optical system in case of partly polarized light. The proposed technique considers a high aperture optical system that focuses a partly polarized parallel beam. The principal idea is based on Huygens-Fresnel principle: a spherical wave at an exit pupil of an optical system is considered as a numerous set of secondary light point sources. Each source emits a partly polarized spherical wave. The polarization orientation of each wave can be calculated using angular pupil coordinates. Modulation of amplitude, phase or polarization can be introduced depending on these pupil coordinates. The total intensity is defined as superposition of complex wave amplitudes taking into account polarization orientation, degree of polarization and orientation of detector aperture. The paper presents the intensity distributions calculated for beams with various types and degrees of polarization.

  6. Polarization: A Must for Fusion

    OpenAIRE

    Guidal M.; Deutsch C; Didelez J.P.

    2012-01-01

    Recent realistic simulations confirm that the polarization of the fuel would improve significantly the DT fusion efficiency. We have proposed an experiment to test the persistence of the polarization in a fusion process, using a terawatt laser hitting a polarized HD target. The polarized deuterons heated in the plasma induced by the laser can fuse producing a 3He and a neutron in the final state. The angular distribution of the neutrons and the change in the corresponding total cross section ...

  7. Pilot study of mechanism of property-modified anode in aluminum electrolysis

    Institute of Scientific and Technical Information of China (English)

    肖劲; 杨建红; 胡国荣; 赖延清; 王先黔; 刘业翔

    2003-01-01

    On the basis of serial laboratory research and industrial test, the mechanism of saving energy and reducing carbon consumption of property-modified prebaked anode in aluminum electrolysis was discussed. It is considered that the anodic over voltage is affected by the concentration of carbon monoxide surrounding anode. The property-modified prebaked anode can restrain the production of carbon monoxide. The reason of reducing carbon consumption was also analyzed, the result shows that besides physical action, chemical action also exists in the process where additives change the reaction rate of anodes.

  8. Laser-Ultrasonic Measurement of Elastic Properties of Anodized Aluminum Coatings

    Science.gov (United States)

    Singer, F.

    Anodized aluminum oxide plays a great role in many industrial applications, e.g. in order to achieve greater wear resistance. Since the hardness of the anodized films strongly depends on its processing parameters, it is important to characterize the influence of the processing parameters on the film properties. In this work the elastic material parameters of anodized aluminum were investigated using a laser-based ultrasound system. The anodized films were characterized analyzing the dispersion of Rayleigh waves with a one-layer model. It was shown that anodizing time and temperature strongly influence Rayleigh wave propagation.

  9. The effect of compression on natural graphite anode performance and matrix conductivity

    OpenAIRE

    Striebel, K.A.; A. Sierra; Shim, J.; Wang, C.-W.; Sastry, A.M.

    2004-01-01

    Anodes for lithium-ion cells were constructed from three types of natural graphite, two coated spherical and one flaky. Anode samples were compressed from 0 to 300 kg/cm2 and studied in half-cells to study the relations between anode density, SEI formation and anode cyclability. The C/25 formation of the SEI layer was found to depend on the nature of the graphite and the anode density. Compression of the uncoated graphite lead to an increased conductivity, but only slight improvements i...

  10. Exploding metal film active anode source experiments on the lion extractor ion diode

    International Nuclear Information System (INIS)

    This paper reports that exploding metal film anode plasma source (EM-FAAPS) experiments show that intense beams with improved turn-on time compared to epoxy-filled-groove anodes can be produced. When a plasma opening switch is used to provide the current path that explodes the thin film anode the ion turn-on time is reduced by about 5 ns compared with the previous scheme in which an electron collector on the anode provided this current, and by 10 ns compared to epoxy anodes

  11. Comparative Study of Electrochemical Performance of SnO2 Anodes with Different Nanostructures for Lithium-Ion Batteries.

    Science.gov (United States)

    Sun, Yan-Hui; Dong, Pei-Pei; Lang, Xu; Chen, Hong-Yu; Nan, Jun-Min

    2015-08-01

    Powders composed of SnO2 nanostructures including microporous nanospheres, mesoporous nanospheres and nanosheets were synthesized by the direct hydrothermal hydrolyzation of SnCl4, hydrothermal hydrolyzation of SnCl4 using glucose as a soft template and precipitation of SnCl2 ∙ 2H20 using oxalic acid as a precipitant, respectively. The electrochemical performance of the three samples used as the anode of a lithium ion battery was determined using galvanostatic discharge/charge tests and electrochemical impedance spectroscopy. Among of them, the anode composed of microporous SnO2 nanospheres demonstrated outstanding initial discharge and charge capacities of 2480 and 1510 mAh g-1, respectively, with a coulombic efficiency of 60.9% at a current density of 78 mA g-1 (0.1 C). In addition, high initial discharge and charge capacities of 1398 mAh g-1 and 950 mAh g-1, respectively, with a coulombic efficiency of 67.95% were obtained even at a high current density of 550 mA g-1 (0.7 C). Moreover, a reversible capacity of 500 mAh g-1 with a coulombic efficiency of 99.95% was attained even after 50 discharging/charging cycles at 550 mA g-1 (0.7 C). This superior electrochemical performance of the SnO2 anodes can be attributed to the large specific surface area (172.7 m2 g-1), small crystal size (approximately 15 nm) and the interstitial microporous pores (<2 nm) of the particles, which favored lithium-ion diffusion and insertion/desertion at the surface of SnO2 and decreased the polarization and the volume expansion of SnO2. Moreover, the resistance of the cell and Li+ diffusion coefficient were studied by electrochemical impedance spectroscopy. PMID:26369165

  12. The CHEER polarization rotator

    International Nuclear Information System (INIS)

    A major part of the research program with the proposed Canadian High Energy Electron Ring (CHEER) requires that the electron beam, in the interaction region, be polarized either parallel or antiparallel to the beam direction. To accomplish this, use of magnetic solenoid polarization rotators on either end of the interaction region has been suggested. This report is a preliminary design study of a superconducting solenoid to satisfy this requirement. To achieve the required 53 T.m induction-length product a 6 T solenoid with a 10 m overall length is proposed. This would be wound with intrinsically stable NbTi superconductor and cooled with integral cooling tubes carrying supercritical helium. An assembly of three warm bore cryostats would constitute one 53 T.m solenoid. (auth)

  13. Polarized electrogowdy spacetimes censored

    Energy Technology Data Exchange (ETDEWEB)

    Nungesser, Ernesto, E-mail: ernesto.nungesser@aei.mpg.d [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, 14476 Potsdam (Germany)

    2010-05-01

    A sketch of the proof of strong cosmic censorship is presented for a class of solutions of the Einstein-Maxwell equations, those with polarized Gowdy symmetry. A key element of the argument is the observation that by means of a suitable choice of variables the central equations in this problem can be written in a form where they are identical to the central equations for general (i.e. non-polarized) vacuum Gowdy spacetimes. Using this it is seen that the results of Ringstroem on strong cosmic censorship in the vacuum case have implications for the Einstein-Maxwell case. Working out the geometrical meaning of these analytical results leads to the main conclusion.

  14. Polarized electrogowdy spacetimes censored

    International Nuclear Information System (INIS)

    A sketch of the proof of strong cosmic censorship is presented for a class of solutions of the Einstein-Maxwell equations, those with polarized Gowdy symmetry. A key element of the argument is the observation that by means of a suitable choice of variables the central equations in this problem can be written in a form where they are identical to the central equations for general (i.e. non-polarized) vacuum Gowdy spacetimes. Using this it is seen that the results of Ringstroem on strong cosmic censorship in the vacuum case have implications for the Einstein-Maxwell case. Working out the geometrical meaning of these analytical results leads to the main conclusion.

  15. Galactic Diffuse Polarized Emission

    Indian Academy of Sciences (India)

    Ettore Carretti

    2011-12-01

    Diffuse polarized emission by synchrotron is a key tool to investigate magnetic fields in the Milky Way, particularly the ordered component of the large scale structure. Key observables are the synchrotron emission itself and the RM is by Faraday rotation. In this paper the main properties of the radio polarized diffuse emission and its use to investigate magnetic fields will be reviewed along with our current understanding of the galactic magnetic field and the data sets available. We will then focus on the future perspective discussing RM-synthesis – the new powerful instrument devised to unlock the information encoded in such an emission – and the surveys currently in progress like S-PASS and GMIMS.

  16. The experimental dielectric function of porous anodic alumina in the infrared region; a comparison with the Maxwell-Garnett model

    Science.gov (United States)

    Wäckelgård, Ewa

    1996-06-01

    The infrared reflectance from thin alumina films on metal substrates has a deep minimum for p-polarized light at oblique incidence. This originates from absorption when light couples with a longitudinal optical (LO) phonon mode with k-vector zero. The absorption band is wide for amorphous alumina and is shifted to longer wavelengths for porous oxides compared to non-porous ones. Anodic alumina, prepared in phosphoric acid, with a pore volume fraction of 0.3, has been investigated. The s- and p-polarized reflectance has been measured for selected angles of incidence between 0953-8984/8/23/019/img1 and 0953-8984/8/23/019/img2, and the dielectric function has been determined from these measurements. The effective dielectric function has been calculated using Maxwell-Garnett effective-medium theory for a two-component anisotropic medium consisting of air-filled cylindrical pores perpendicular to the surface in an alumina matrix with optical constants of non-porous evaporated alumina. The theoretical and experimental results are in good agreement, which shows that the redshift of the LO mode absorption for p-polarized light can be explained by the presence of pores.

  17. Polar Warming: An Opportune Inconvenience

    NARCIS (Netherlands)

    R. Lefeber

    2012-01-01

    The inaccessibility of the Polar Regions explains the relative pristine state of these regions to date. The human presence in these regions is presently limited by the extreme climatological circumstances. This will change as a result of polar warming. The ecological boundaries of the Polar Regions

  18. Hydrogen-facilitated anodic dissolution-type stress corrosion cracking of pipeline steels in near-neutral pH solution

    Energy Technology Data Exchange (ETDEWEB)

    Gu, B.; Mao, X. [Univ. of Calgary, Alberta (Canada). Dept. of Mechanical Engineering; Luo, J. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Chemical and Materials Engineering

    1999-01-01

    The effect of hydrogen on stress corrosion cracking (SCC) of pipeline steels in the near-neutral pH solutions that form in coating disbondments was studied using slow strain rate tests (SSRT), polarization techniques, scanning electron microscopy (SEM), and secondary ion mass spectrometry (SIMS). Results showed hydrogen could diffuse into the steels around the crack tip during the SCC process. Hydrogen facilitated the dissolution rate of the steel in the solution and increased SCC intensity. A mechanism was proposed that showed hydrogen enhances the anodic dissolution type of SCC in dilute aqueous solution. Thermodynamic analysis of the SCC process was consistent with experimental results.

  19. Transverse polarization in ; production

    Indian Academy of Sciences (India)

    Saurabh D Rindani

    2007-11-01

    With the use of transverse polarization (TP), a CP-odd and T-odd observable can be constructed when the final-state particles are self-conjugate. In the case of production, this observable can be used to probe a certain effective four-point + - CP-violating coupling, not accessible without TP. Effective CP-violating coupling does not contribute to this observable. A similar observable in production can be used to probe + - four-point couplings.

  20. Quark transverse polarization

    International Nuclear Information System (INIS)

    The distribution of h1(x) of quark transverse polarization can be measured by Deep Inelastic Scattering using Collins effect as quark polarimeter. We propose to calibrate this polarimeter in e+e- → 2 jets. We give an explanation of single spin asymmetries in inclusive meson production based on the Collins effect. We propose a proportionality between the electric dipole moment of the nucleon on its tensor charge. (authors)