WorldWideScience

Sample records for anodic materials

  1. Carbon Anode Materials

    Science.gov (United States)

    Ogumi, Zempachi; Wang, Hongyu

    Accompanying the impressive progress of human society, energy storage technologies become evermore urgent. Among the broad categories of energy sources, batteries or cells are the devices that successfully convert chemical energy into electrical energy. Lithium-based batteries stand out in the big family of batteries mainly because of their high-energy density, which comes from the fact that lithium is the most electropositive as well as the lightest metal. However, lithium dendrite growth after repeated charge-discharge cycles easily will lead to short-circuit of the cells and an explosion hazard. Substituting lithium metal for alloys with aluminum, silicon, zinc, and so forth could solve the dendrite growth problem.1 Nevertheless, the lithium storage capacity of alloys drops down quickly after merely several charge-discharge cycles because the big volume change causes great stress in alloy crystal lattice, and thus gives rise to cracking and crumbling of the alloy particles. Alternatively, Sony Corporation succeeded in discovering the highly reversible, low-voltage anode, carbonaceous material and commercialized the C/LiCoO2 rocking chair cells in the early 1990s.2 Figure 3.1 schematically shows the charge-discharge process for reversible lithium storage in carbon. By the application of a lithiated carbon in place of a lithium metal electrode, any lithium metal plating process and the conditions for the growth of irregular dendritic lithium could be considerably eliminated, which shows promise for reducing the chances of shorting and overheating of the batteries. This kind of lithium-ion battery, which possessed a working voltage as high as 3.6 V and gravimetric energy densities between 120 and 150 Wh/kg, rapidly found applications in high-performance portable electronic devices. Thus the research on reversible lithium storage in carbonaceous materials became very popular in the battery community worldwide.

  2. New High-Energy Nanofiber Anode Materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiangwu [North Carolina State Univ., Raleigh, NC (United States); Fedkiw, Peter [North Carolina State Univ., Raleigh, NC (United States); Khan, Saad [North Carolina State Univ., Raleigh, NC (United States); Huang, Alex [North Carolina State Univ., Raleigh, NC (United States); Fan, Jiang [North Carolina State Univ., Raleigh, NC (United States)

    2013-11-15

    The overall goal of the proposed work was to use electrospinning technology to integrate dissimilar materials (lithium alloy and carbon) into novel composite nanofiber anodes, which simultaneously had high energy density, reduced cost, and improved abuse tolerance. The nanofiber structure allowed the anodes to withstand repeated cycles of expansion and contraction. These composite nanofibers were electrospun into nonwoven fabrics with thickness of 50 μm or more, and then directly used as anodes in a lithium-ion battery. This eliminated the presence of non-active materials (e.g., conducting carbon black and polymer binder) and resulted in high energy and power densities. The nonwoven anode structure also provided a large electrode-electrolyte interface and, hence, high rate capacity and good lowtemperature performance capability. Following are detailed objectives for three proposed project periods. During the first six months: Obtain anodes capable of initial specific capacities of 650 mAh/g and achieve ~50 full charge/discharge cycles in small laboratory scale cells (50 to 100 mAh) at the 1C rate with less than 20 percent capacity fade; In the middle of project period: Assemble, cycle, and evaluate 18650 cells using proposed anode materials, and demonstrate practical and useful cycle life (750 cycles of ~70% state of charge swing with less than 20% capacity fade) in 18650 cells with at least twice improvement in the specific capacity than that of conventional graphite electrodes; At the end of project period: Deliver 18650 cells containing proposed anode materials, and achieve specific capacities greater than 1200 mAh/g and cycle life longer than 5000 cycles of ~70% state of charge swing with less than 20% capacity fade.

  3. Anode materials for lithium-ion batteries

    Science.gov (United States)

    Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

    2014-12-30

    An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

  4. Battery designs with high capacity anode materials and cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Masarapu, Charan; Anguchamy, Yogesh Kumar; Han, Yongbong; Deng, Haixia; Kumar, Sujeet; Lopez, Herman A.

    2017-10-03

    Improved high energy capacity designs for lithium ion batteries are described that take advantage of the properties of high specific capacity anode active compositions and high specific capacity cathode active compositions. In particular, specific electrode designs provide for achieving very high energy densities. Furthermore, the complex behavior of the active materials is used advantageously in a radical electrode balancing design that significantly reduced wasted electrode capacity in either electrode when cycling under realistic conditions of moderate to high discharge rates and/or over a reduced depth of discharge.

  5. Nanocomposite anode materials for sodium-ion batteries

    Science.gov (United States)

    Manthiram, Arumugam; Kim Il, Tae; Allcorn, Eric

    2016-06-14

    The disclosure relates to an anode material for a sodium-ion battery having the general formula AO.sub.x--C or AC.sub.x--C, where A is aluminum (Al), magnesium (Mg), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), zirconium (Zr), molybdenum (Mo), tungsten (W), niobium (Nb), tantalum (Ta), silicon (Si), or any combinations thereof. The anode material also contains an electrochemically active nanoparticles within the matrix. The nanoparticle may react with sodium ion (Na.sup.+) when placed in the anode of a sodium-ion battery. In more specific embodiments, the anode material may have the general formula M.sub.ySb-M'O.sub.x--C, Sb-MO.sub.x--C, M.sub.ySn-M'C.sub.x--C, or Sn-MC.sub.x--C. The disclosure also relates to rechargeable sodium-ion batteries containing these materials and methods of making these materials.

  6. Investigation of different anode materials for aluminium rechargeable batteries

    Science.gov (United States)

    Muñoz-Torrero, David; Leung, Puiki; García-Quismondo, Enrique; Ventosa, Edgar; Anderson, Marc; Palma, Jesús; Marcilla, Rebeca

    2018-01-01

    In order to shed some light into the importance of the anodic reaction in reversible aluminium batteries, we investigate here the electrodeposition of aluminium in an ionic liquid electrolyte (BMImCl-AlCl3) using different substrates. We explore the influence of the type of anodic material (aluminium, stainless steel and carbon) and its 3D geometry on the reversibility of the anodic reaction by cyclic voltammetry (CV) and galvanostatic charge-discharge. The shape of the CVs confirms that electrodeposition of aluminium was feasible in the three materials but the highest peak currents and smallest peak separation in the CV of the aluminium anode suggested that this material was the most promising. Interestingly, carbon-based substrates appeared as an interesting alternative due to the high peak currents in CV, moderate overpotentials and dual role as anode and cathode. 3D substrates such as fiber-based carbon paper and aluminium mesh showed significantly smaller overpotentials and higher efficiencies for Al reaction suggesting that the use of 3D substrates in full batteries might result in enhanced power. This is corroborated by polarization testing of full Al-batteries.

  7. Carbon Cryogel Silicon Composite Anode Materials for Lithium Ion Batteries

    Science.gov (United States)

    Woodworth James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 10 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-4,9 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  8. Flexible anodized aluminum oxide membranes with customizable back contact materials.

    Science.gov (United States)

    Nadimpally, B; Jarro, C A; Mangu, R; Rajaputra, S; Singh, V P

    2016-12-16

    Anodized aluminum oxide (AAO) membranes were fabricated using flexible substrate/carrier material. This method facilitates the use of AAO templates with many different materials as substrates that are otherwise incompatible with most anodization techniques. Thin titanium (Ti) and tungsten (W) layers were employed as interlayer materials. Titanium enhances adhesion. Tungsten not only helps eliminate the barrier layer but also plays a critical role in enabling the use of flexible substrates. The resulting flexible templates provide new, exciting opportunities in photovoltaic and other device applications. CuInSe 2 nanowires were electrochemically deposited into porous AAO templates with molybdenum (Mo) as the back contact material. The feasibility of using any material to form a contact with semiconductor nanowires has been demonstrated for the first time enabling new avenues in photovoltaic applications.

  9. Flexible anodized aluminum oxide membranes with customizable back contact materials

    Science.gov (United States)

    Nadimpally, B.; Jarro, C. A.; Mangu, R.; Rajaputra, S.; Singh, V. P.

    2016-12-01

    Anodized aluminum oxide (AAO) membranes were fabricated using flexible substrate/carrier material. This method facilitates the use of AAO templates with many different materials as substrates that are otherwise incompatible with most anodization techniques. Thin titanium (Ti) and tungsten (W) layers were employed as interlayer materials. Titanium enhances adhesion. Tungsten not only helps eliminate the barrier layer but also plays a critical role in enabling the use of flexible substrates. The resulting flexible templates provide new, exciting opportunities in photovoltaic and other device applications. CuInSe2 nanowires were electrochemically deposited into porous AAO templates with molybdenum (Mo) as the back contact material. The feasibility of using any material to form a contact with semiconductor nanowires has been demonstrated for the first time enabling new avenues in photovoltaic applications.

  10. High capacity anode materials for lithium ion batteries

    Science.gov (United States)

    Lopez, Herman A.; Anguchamy, Yogesh Kumar; Deng, Haixia; Han, Yongbon; Masarapu, Charan; Venkatachalam, Subramanian; Kumar, Suject

    2015-11-19

    High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.

  11. Anode materials for lithium ion batteries

    Science.gov (United States)

    Abouimrane, Ali; Amine, Khalil

    2015-06-09

    A composite material has general Formula (1-x)J-(x)Q wherein: J is a metal carbon alloy of formula Sn.sub.zSi.sub.z'Met.sub.wMet'.sub.w'C.sub.t; Q is a metal oxide of formula A.sub..gamma.M.sub..alpha.M'.sub..alpha.'O.sub..beta.; A is Li, Na, or K; M, M', Met, and Met' are individually Ge, Mo, Al, Ga, As, Sb, Te, Ti, Ta, Zr, Ca, Mg, Sr, Ba, Li, Na, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Rt, Ru or Cd; 0

  12. Anode materials for lithium ion batteries

    Science.gov (United States)

    Abouimrane, Ali; Amine, Khalil

    2017-04-11

    An electrochemical device includes a composite material of general Formula (1-x)J-(x)Q wherein: J is a metal carbon alloy of formula Sn.sub.zSi.sub.z'Met.sub.wMet'.sub.w'C.sub.t; Q is a metal oxide of formula A.sub..gamma.M.sub..alpha.M'.sub..alpha.'O.sub..beta.; and wherein: A is Li, Na, or K; M and M' are individually Ge, Mo, Al, Ga, As, Sb, Te, Ti, Ta, Zr, Ca, Mg, Sr, Ba, Li, Na, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Rt, Ru or Cd; Met and Met' are individually Ge, Mo, Al, Ga, As, Sb, Te, Ti, Ta, Zr, Ca, Mg, Sr, Ba, Li, Na, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Rt, Ru or Cd; 0

  13. Microstructural evolution of nanograin nickel-zirconia cermet anode materials for solid oxide fuel cell applications

    International Nuclear Information System (INIS)

    Nayak, Bibhuti Bhusan

    2012-01-01

    The aim of the study is to study the structure, microstructure, porosity, thermal expansion, electrical conductivity and electrochemical behavior of the anode material thus synthesized in order to find its suitability for solid oxide fuel cell (SOFC) anode application

  14. Preparation and properties of antimony thin film anode materials

    Institute of Scientific and Technical Information of China (English)

    SU Shufa; CAO Gaoshao; ZHAO Xinbing

    2004-01-01

    Metallic antimony thin films were deposited by magnetron sputtering and electrodeposition. Electrochemical properties of the thin film as anode materials for lithium-ion batteries were investigated and compared with those of antimony powder. It was found that both magnetron sputtering and electrodeposition are easily controllable processes to deposit antimony films with fiat charge/discharge potential plateaus. The electrochemical performances of antimony thin films, especially those prepared with magnetron sputtering, are better than those of antimony powder. The reversible capacities of the magnetron sputtered antimony thin film are above 400 mA h g-1 in the first 15 cycles.

  15. Graphene composites as anode materials in lithium-ion batteries

    Science.gov (United States)

    Mazar Atabaki, M.; Kovacevic, R.

    2013-03-01

    Since the world of mobile phones and laptops has significantly altered by a big designer named Steve Jobs, the electronic industries have strived to prepare smaller, thinner and lower weight products. The giant electronic companies, therefore, compete in developing more efficient hardware such as batteries used inside the small metallic or polymeric frame. One of the most important materials in the production lines is the lithium-based batteries which is so famous for its ability in recharging as many times as a user needs. However, this is not an indication of being long lasted, as many of the electronic devices are frequently being used for a long time. The performance, chemistry, safety and above all cost of the lithium ion batteries should be considered when the design of the compounds are at the top concern of the engineers. To increase the efficiency of the batteries a combination of graphene and nanoparticles is recently introduced and it has shown to have enormous technological effect in enhancing the durability of the batteries. However, due to very high electronic conductivity, these materials can be thought of as preparing the anode electrode in the lithiumion battery. In this paper, the various approaches to characterize different types of graphene/nanoparticles and the process of preparing the anode for the lithium-ion batteries as well as their electrical properties are discussed.

  16. Porous graphene for high capacity lithium ion battery anode material

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yusheng, E-mail: xxwysheng@163.com [College of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou 450011 (China); School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Zhang, Qiaoli; Jia, Min; Yang, Dapeng [College of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou 450011 (China); Wang, Jianjun; Li, Meng [College of Science, Zhongyuan University of Technology, Zhengzhou 450007 (China); Zhang, Jing [College of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou 450011 (China); Sun, Qiang [School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Jia, Yu, E-mail: jiayu@zzu.edu.cn [School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China)

    2016-02-15

    Graphical abstract: - Highlights: • Porous graphene sheet as Li storage media. • Excellent mobility both along in-plane and out-plane directions. • The interactions can be easily tuned by an applied strain. - Abstract: Based on density functional theory calculations, we studied the Li dispersed on porous graphene (PG) for its application as Li ion battery anode material. The hybridization of Li atoms and the carbon atoms enhanced the interaction between Li atoms and the PG. With holes of specific size, the PG can provide excellent mobility with moderate barriers of 0.37–0.39 eV. The highest Li storage composite can be LiC{sub 0.75}H{sub 0.38} which corresponds to a specific capacity of 2857.7 mA h/g. Both specific capacity and binding energy are significantly larger than the corresponding value of graphite, this makes PG a promising candidate for the anode material in battery applications. The interactions between the Li atoms and PG can be easily tuned by an applied strain. Under biaxial strain of 16%, the binding energy of Li to PG is increased by 17% compared to its unstrained state.

  17. Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); James, Christine [Michigan State Univ., East Lansing, MI (United States); Gaines, Linda [Argonne National Lab. (ANL), Argonne, IL (United States); Gallagher, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States); Dai, Qiang [Argonne National Lab. (ANL), Argonne, IL (United States); Kelly, Jarod C. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    The Greenhouse gases, Regulated Emissions and Energy use in Transportation (GREET) model has been expanded to include four new cathode materials that can be used in the analysis of battery-powered vehicles: lithium nickel cobalt manganese oxide (LiNi0.4Co0.2Mn0.4O2 [NMC]), lithium iron phosphate (LiFePO4 [LFP]), lithium cobalt oxide (LiCoO2 [LCO]), and an advanced lithium cathode (0.5Li2MnO3∙0.5LiNi0.44Co0.25Mn0.31O2 [LMR-NMC]). In GREET, these cathode materials are incorporated into batteries with graphite anodes. In the case of the LMR-NMC cathode, the anode is either graphite or a graphite-silicon blend. Lithium metal is also an emerging anode material. This report documents the material and energy flows of producing each of these cathode and anode materials from raw material extraction through the preparation stage. For some cathode materials, we considered solid state and hydrothermal preparation methods. Further, we used Argonne National Laboratory’s Battery Performance and Cost (BatPaC) model to determine battery composition (e.g., masses of cathode, anode, electrolyte, housing materials) when different cathode materials were used in the battery. Our analysis concluded that cobalt- and nickel-containing compounds are the most energy intensive to produce.

  18. Silicon oxide based high capacity anode materials for lithium ion batteries

    Science.gov (United States)

    Deng, Haixia; Han, Yongbong; Masarapu, Charan; Anguchamy, Yogesh Kumar; Lopez, Herman A.; Kumar, Sujeet

    2017-03-21

    Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.

  19. Metal oxides and lithium alloys as anode materials for lithium-ion batteries

    CSIR Research Space (South Africa)

    Kebede, M

    2016-07-01

    Full Text Available -generation anode materials for lithium–ion batteries with high prospect of replacing graphite. Most of these anode materials have higher specific capacities between the range of 600-1000 mA h g(sup-1) compared with 340 mA h g(sup-1) of graphite. These high...

  20. Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; James, Christine [Michigan State Univ., East Lansing, MI (United States). Chemical Engineering and Materials Science Dept.; Gaines, Linda G. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Gallagher, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Division

    2014-09-30

    The Greenhouse gases, Regulated Emissions and Energy use in Transportation (GREET) model has been expanded to include four new cathode materials that can be used in the analysis of battery-powered vehicles: lithium nickel cobalt manganese oxide (LiNi0.4Co0.2Mn0.4O2 [NMC]), lithium iron phosphate (LiFePO4 [LFP]), lithium cobalt oxide (LiCoO2 [LCO]), and an advanced lithium cathode (0.5Li2MnO3∙0.5LiNi0.44Co0.25Mn0.31O2 [LMR-NMC]). In GREET, these cathode materials are incorporated into batteries with graphite anodes. In the case of the LMR-NMC cathode, the anode is either graphite or a graphite-silicon blend. This report documents the material and energy flows of producing each of these cathode and anode materials from raw material extraction through the preparation stage. For some cathode materials, we considered solid state and hydrothermal preparation methods. Further, we used Argonne National Laboratory’s Battery Performance and Cost (BatPaC) model to determine battery composition (e.g., masses of cathode, anode, electrolyte, housing materials) when different cathode materials were used in the battery. Our analysis concluded that cobalt- and nickel-containing compounds are the most energy intensive to produce.

  1. Effective regeneration of anode material recycled from scrapped Li-ion batteries

    Science.gov (United States)

    Zhang, Jin; Li, Xuelei; Song, Dawei; Miao, Yanli; Song, Jishun; Zhang, Lianqi

    2018-06-01

    Recycling high-valuable metal elements (such as Li, Ni, Co, Al and Cu elements) from scrapped lithium ion batteries can bring significant economic benefits. However, recycling and reusing anode material has not yet attracted wide attention up to now, due to the lower added-value than the above valuable metal materials and the difficulties in regenerating process. In this paper, a novel regeneration process with significant green advance is proposed to regenerate anode material recycled from scrapped Li-ion batteries for the first time. After regenerated, most acetylene black (AB) and all the styrene butadiene rubber (SBR), carboxymethylcellulose sodium (CMC) in recycled anode material are removed, and the surface of anode material is coated with pyrolytic carbon from phenolic resin again. Finally, the regenerated anode material (graphite with coating layer, residual AB and a little CMC pyrolysis product) is obtained. As expected, all the technical indexs of regenerated anode material exceed that of a midrange graphite with the same type, and partial technical indexs are even closed to that of the unused graphite. The results indicate the effective regeneration of anode material recycled from scrapped Li-ion batteries is really achieved.

  2. RATIONALIZATION OF THE SCHEMA OF SACRIFICIAL ANODES USING FROM THE STANDPOINT OF MATERIAL AND POWER RESOURCES ECONOMY

    Directory of Open Access Journals (Sweden)

    S. E. Chikilev

    2008-01-01

    Full Text Available The calculations, allowing to optimize using of sacrificial copper anodes in the process of wire brassing, and also the results of experimental matching of material for insoluble anodes are given.

  3. Aqueous supercapacitors of high energy density based on MoO3 nanoplates as anode material.

    Science.gov (United States)

    Tang, Wei; Liu, Lili; Tian, Shu; Li, Lei; Yue, Yunbo; Wu, Yuping; Zhu, Kai

    2011-09-28

    MoO(3) nanoplates were prepared as anode material for aqueous supercapacitors. They can deliver a high energy density of 45 W h kg(-1) at 450 W kg(-1) and even maintain 29 W h kg(-1) at 2 kW kg(-1) in 0.5 M Li(2)SO(4) aqueous electrolyte. These results present a new direction to explore non-carbon anode materials.

  4. Novel Ceramic Materials for Polymer Electrolyte Membrane Water Electrolysers' Anodes

    DEFF Research Database (Denmark)

    Polonsky, J.; Bouzek, K.; Prag, Carsten Brorson

    2012-01-01

    Tantalum carbide was evaluated as a possible new support for the IrO2 for use in anodes of polymer electrolyte membrane water electrolysers. A series of supported electrocatalysts varying in mass content of iridium oxide was prepared. XRD, powder conductivity measurements and cyclic and linear...

  5. Trends in Catalytic Activity for SOFC Anode materials

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Bessler, W. G.

    2008-01-01

    that oxygen spillover, where adsorbed oxygen is a key intermediate, is the dominant reaction pathway under the conditions used in the experiments. In this way the activity is linked directly to the microscopic binding affinities of reaction intermediates, providing a new understanding of the anode reaction...

  6. Expanded graphite as an intercalation anode material for lithium systems

    Czech Academy of Sciences Publication Activity Database

    Makovička, J.; Sedlaříková, M.; Arenillas, A.; Velická, Jana; Vondrák, Jiří

    2009-01-01

    Roč. 13, č. 9 (2009), s. 1467-1471 ISSN 1432-8488 R&D Projects: GA AV ČR(CZ) KJB208130604; GA MŽP SN/3/171/05; GA ČR(CZ) GA104/06/1471 Institutional research plan: CEZ:AV0Z40320502 Keywords : graphite * anode * mild oxidation CO2 Subject RIV: CA - Inorganic Chemistry Impact factor: 1.821, year: 2009

  7. The nature of conducting materials by anodic coupling of pyrene

    Energy Technology Data Exchange (ETDEWEB)

    Zotti, G.; Schiavon, G. (Ist. di Polarografia ed Elettrochimica Preparativa, Consiglio Nazionale delle Ricerche, Padua (Italy))

    1992-05-01

    Polypyrenes from anodic coupling of pyrene in acetonitrile and 1,2-dichloroethane have been identified as the 1,1'-coupled dimer and tetramer, respectively, on the basis of electrochemical analysis and IR, UV-Vis and mass spectroscopies. Bipyrene and tetrapyrene are reversibly reduced at -2.27 and -2.15 V versus Ag/Ag{sup +}, respectively. Their electrochemical oxidation (at 0.96 and 0.87 V) is followed by further polymerization and ultimate degradation whereas iodine doping of tetrapyrene leads reversibly to a conducting adduct (6x10{sup -3} S/cm). (orig.).

  8. Alternative anode materials for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B.; Huang, Yun-Hui [Texas Materials Institute, ETC 9.102, 1 University Station, C2200, The University of Texas at Austin, Austin, TX 78712 (United States)

    2007-11-08

    The electrolyte of a solid oxide fuel cell (SOFC) is an O{sup 2-}-ion conductor. The anode must oxidize the fuel with O{sup 2-} ions received from the electrolyte and it must deliver electrons of the fuel chemisorption reaction to a current collector. Cells operating on H{sub 2} and CO generally use a porous Ni/electrolyte cermet that supports a thin, dense electrolyte. Ni acts as both the electronic conductor and the catalyst for splitting the H{sub 2} bond; the oxidation of H{sub 2} to H{sub 2}O occurs at the Ni/electrolyte/H{sub 2} triple-phase boundary (TPB). The CO is oxidized at the oxide component of the cermet, which may be the electrolyte, yttria-stabilized zirconia, or a mixed oxide-ion/electron conductor (MIEC). The MIEC is commonly a Gd-doped ceria. The design and fabrication of these anodes are evaluated. Use of natural gas as the fuel requires another strategy, and MIECs are being explored for this application. The several constraints on these MIECs are outlined, and preliminary results of this on-going investigation are reviewed. (author)

  9. Nanotemplated platinum fuel cell catalysts and copper-tin lithium battery anode materials for microenergy devices

    Energy Technology Data Exchange (ETDEWEB)

    Rohan, J.F., E-mail: james.rohan@tyndall.ie [Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland); Hasan, M.; Holubowitch, N. [Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland)

    2011-11-01

    Highlights: > Anodic Aluminum oxide formation on Si substrate. > High density nanotemplated Pt catalyst on Si for integrated energy and electronics. > CuSn alloy deposition from a single, high efficiency methanesulfonate plating bath. > Nanotemplated CuSn Li anode electrodes with high capacity retention. - Abstract: Nanotemplated materials have significant potential for applications in energy conversion and storage devices due to their unique physical properties. Nanostructured materials provide additional electrode surface area beneficial for energy conversion or storage applications with short path lengths for electronic and ionic transport and thus the possibility of higher reaction rates. We report on the use of controlled growth of metal and alloy electrodeposited templated nanostructures for energy applications. Anodic aluminium oxide templates fabricated on Si for energy materials integration with electronic devices and their use for fuel cell and battery materials deposition is discussed. Nanostructured Pt anode catalysts for methanol fuel cells are shown. Templated CuSn alloy anodes that possess high capacity retention with cycling for lithium microbattery integration are also presented.

  10. Hybrid Direct Carbon Fuel Cell Performance with Anode Current Collector Material

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Kammer Hansen, Kent

    2015-01-01

    collectors were studied: Au, Ni, Ag, and Pt. It was shown that the performance of the direct carbon fuel cell (DCFC) is dependent on the current collector materials, Ni and Pt giving the best performance, due to their catalytic activity. Gold is suggested to be the best material as an inert current collector......The influence of the current collector on the performance of a hybrid direct carbon fuel cell (HDCFC), consisting of solid oxide fuel cell (SOFC) with a molten carbonate-carbon slurry in contact with the anode, has been investigated using current-voltage curves. Four different anode current...

  11. Silicon Composite Anode Materials for Lithium Ion Batteries Based on Carbon Cryogels and Carbon Paper

    Science.gov (United States)

    Woodworth, James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nanofoams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  12. Carbon Cryogel and Carbon Paper-Based Silicon Composite Anode Materials for Lithium-Ion Batteries

    Science.gov (United States)

    Woodworth, James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 6 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-5 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  13. Suitability of granular carbon as an anode material for sediment microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Arends, Jan B.A.; Blondeel, Evelyne; Boon, Nico; Verstraete, Willy [Ghent Univ. (Belgium). Faculty of Bioscience Engineering; Tennison, Steve R. [Mast Carbon International Ltd., Basingstoke, Hampshire (United Kingdom)

    2012-08-15

    Purpose: Sediment microbial fuel cells (S-MFCs) are bio-electrochemical devices that are able to oxidize organic matter directly into harvestable electrical power. The flux of organic matter into the sediment is rather low; therefore, other researchers have introduced plants for a continuous supply of organic matter to the anode electrode. Until now only interconnected materials have been considered as anode materials in S-MFCs. Here, granular carbon materials were investigated for their suitability as an anode material in S-MFCs. Materials and methods: Laboratory microcosms with eight different electrode materials (granules, felts and cloths) were examined with controlled organic matter addition under brackish conditions. Current density, organic matter removal and microbial community composition were monitored using 16S rRNA gene PCR followed by denaturing gradient gel electrophoresis (DGGE). The main parameters investigated were the influence of the amount of electrode material applied to the sediment, the size of the granular material and the electrode configuration. Results and discussion: Felt material had an overall superior performance in terms of current density per amount of applied electrode material; felt and granular anode obtained similar current densities (approx. 50-60 mA m{sup -2}), but felt materials required 29 % less material to be applied. Yet, when growing plants, granular carbon is more suited because it is considered to restore, upon disturbance, the electrical connectivity within the anode compartment. Small granules (0.25-0.5 mm) gave the highest current density compared to larger granules (1-5 mm) of the same material. Granules with a rough surface had a better performance compared to smooth granules of the same size. The different granular materials lead to a selection of distinct microbial communities for each material, as shown by DGGE. Conclusions: Granular carbon is suitable as an anode material for S-MFCs. This opens the possibility

  14. Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liang, Chu; Gao, Mingxia; Pan, Hongge; Liu, Yongfeng; Yan, Mi

    2013-01-01

    Highlights: •Progress in lithium alloys and metal oxides as anode materials for lithium-ion batteries is reviewed. •Electrochemical characteristics and lithium storage mechanisms of lithium alloys and metal oxides are summarized. •Strategies for improving electrochemical lithium storage properties of lithium alloys and metal oxides are discussed. •Challenges in developing lithium alloys and metal oxides as commercial anodes for lithium-ion batteries are pointed out. -- Abstract: Lithium alloys and metal oxides have been widely recognized as the next-generation anode materials for lithium-ion batteries with high energy density and high power density. A variety of lithium alloys and metal oxides have been explored as alternatives to the commercial carbonaceous anodes. The electrochemical characteristics of silicon, tin, tin oxide, iron oxides, cobalt oxides, copper oxides, and so on are systematically summarized. In this review, it is not the scope to retrace the overall studies, but rather to highlight the electrochemical performances, the lithium storage mechanism and the strategies in improving the electrochemical properties of lithium alloys and metal oxides. The challenges and new directions in developing lithium alloys and metal oxides as commercial anodes for the next-generation lithium-ion batteries are also discussed

  15. Corrosion rate of construction materials in hot phosphoric acid with the contribution of anodic polarization

    DEFF Research Database (Denmark)

    Kouril, M.; Christensen, Erik; Eriksen, S.

    2011-01-01

    The paper is focused on selection of a proper material for construction elements of water electrolysers, which make use of a 85% phosphoric acid as an electrolyte at temperature of 150 8C and which might be loaded with anodic polarization up to 2.5 V versus a saturated Ag/AgCl electrode (SSCE...

  16. Polyaniline coated Fe3O4 hollow nanospheres as anode materials for lithium ion batteries

    DEFF Research Database (Denmark)

    Wang, Xiaoliang; Liu, Yanguo; Han, Hongyan

    2017-01-01

    Polyaniline (PANI) coated Fe3O4 hollow nanospheres (h-Fe3O4@ PANI) have been successfully synthesized and investigated as anode materials for lithium ion batteries (LIBs). The structure and composition analyses have been performed by employing X-ray diffraction (XRD), scanning electron microscopy...

  17. Methane steam reforming kinetics over Ni-YSZ anode materials for Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Mogensen, David

    of internal reforming has to be carefully controlled. The objective of this thesis is to make such a careful control possible by examining the rate of internal steam reforming in SOFCs. The catalytic steam reforming activity of Ni-YSZ anode material was tested both in a packed bed reactor to determine...

  18. Carbon-Coated SnO2 Nanorod Array for Lithium-Ion Battery Anode Material

    Directory of Open Access Journals (Sweden)

    Ji Xiaoxu

    2010-01-01

    Full Text Available Abstract Carbon-coated SnO2 nanorod array directly grown on the substrate has been prepared by a two-step hydrothermal method for anode material of lithium-ion batteries (LIBs. The structural, morphological and electrochemical properties were investigated by means of X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM and electrochemical measurement. When used as anodes for LIBs with high current density, as-obtained array reveals excellent cycling stability and rate capability. This straightforward approach can be extended to the synthesis of other carbon-coated metal oxides for application of LIBs.

  19. Binary iron sulfides as anode materials for rechargeable batteries: Crystal structures, syntheses, and electrochemical performance

    Science.gov (United States)

    Xu, Qian-Ting; Li, Jia-Chuang; Xue, Huai-Guo; Guo, Sheng-Ping

    2018-03-01

    Effective utilization of energy requires the storage and conversion device with high ability. For well-developed lithium ion batteries (LIBs) and highly developing sodium ion batteries (SIBs), this ability especially denotes to high energy and power densities. It's believed that the capacity of a full cell is mainly contributed by anode materials. So, to develop inexpensive anode materials with high capacity are meaningful for various rechargeable batteries' better applications. Iron is a productive element in the crust, and its oxides, sulfides, fluorides, and oxygen acid salts are extensively investigated as electrode materials for batteries. In view of the importance of electrode materials containing iron, this review summarizes the recent achievements on various binary iron sulfides (FeS, FeS2, Fe3S4, and Fe7S8)-type electrodes for batteries. The contents are mainly focused on their crystal structures, synthetic methods, and electrochemical performance. Moreover, the challenges and some improvement strategies are also discussed.

  20. Boron oxide–tin oxide/graphene composite as anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Wen, Lina; Qin, Xue; Meng, Wei; Cao, Ning; Song, Zhonghai

    2016-01-01

    Highlights: • B_2O_3–SnO_2/G anode material is prepared by chemical heat solvent method for LIBs. • B_2O_3–SnO_2/G shows much improved cycling performance and rate capability. • B_2O_3 plays an important role in improving the performance. - Abstract: B_2O_3–SnO_2/graphene (B_2O_3–SnO_2/G) composite is fabricated via a chemical heat solvent method and utilized as anode material for lithium ion batteries. The added B_2O_3 dramatically improves the electrochemical performance of lithium ion batteries compared to the SnO_2/G composite. The B_2O_3–SnO_2/G composites as anode show an outstanding discharge capacity of 1404.9 mAh g"−"1 at 500 mA g"−"1 after 200 cycles and an excellent rate capacity, which apparently outperforms the previously reported SnO_2-based anode material. These improved electrochemical performance characteristics are due to the B_2O_3 played a buffering role, which are easily beneficial for accommodating the volume change during the lithium ions insertion/extraction processes. Furthermore, boron atoms can accept electrons for its electron-deficient nature and boron ions could release electrons, which lead to electrons' increased density and conductivity are increased. The results indicate that the B_2O_3–SnO_2/G composite is a promising anode material for lithium ion batteries.

  1. Amorphous boron nanorod as an anode material for lithium-ion batteries at room temperature.

    Science.gov (United States)

    Deng, Changjian; Lau, Miu Lun; Barkholtz, Heather M; Xu, Haiping; Parrish, Riley; Xu, Meiyue Olivia; Xu, Tao; Liu, Yuzi; Wang, Hao; Connell, Justin G; Smith, Kassiopeia A; Xiong, Hui

    2017-08-03

    We report an amorphous boron nanorod anode material for lithium-ion batteries prepared through smelting non-toxic boron oxide in liquid lithium. Boron in theory can provide capacity as high as 3099 mA h g -1 by alloying with Li to form B 4 Li 5 . However, experimental studies of the boron anode have been rarely reported for room temperature lithium-ion batteries. Among the reported studies the electrochemical activity and cycling performance of the bulk crystalline boron anode material are poor at room temperature. In this work, we utilized an amorphous nanostructured one-dimensional (1D) boron material aiming at improving the electrochemical reactivity between boron and lithium ions at room temperature. The amorphous boron nanorod anode exhibited, at room temperature, a reversible capacity of 170 mA h g -1 at a current rate of 10 mA g -1 between 0.01 and 2 V. The anode also demonstrated good rate capability and cycling stability. The lithium storage mechanism was investigated by both sweep voltammetry measurements and galvanostatic intermittent titration techniques (GITTs). The sweep voltammetric analysis suggested that the contributions from lithium ion diffusion into boron and the capacitive process to the overall lithium charge storage are 57% and 43%, respectively. The results from GITT indicated that the discharge capacity at higher potentials (>∼0.2 V vs. Li/Li + ) could be ascribed to a capacitive process and at lower potentials (ions and the amorphous boron nanorod. This work provides new insights into designing nanostructured boron materials for lithium-ion batteries.

  2. Boron oxide–tin oxide/graphene composite as anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Lina [Department of chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Qin, Xue, E-mail: qinxue@tju.edu.cn [Department of chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071 (China); Meng, Wei; Cao, Ning; Song, Zhonghai [Department of chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China)

    2016-11-15

    Highlights: • B{sub 2}O{sub 3}–SnO{sub 2}/G anode material is prepared by chemical heat solvent method for LIBs. • B{sub 2}O{sub 3}–SnO{sub 2}/G shows much improved cycling performance and rate capability. • B{sub 2}O{sub 3} plays an important role in improving the performance. - Abstract: B{sub 2}O{sub 3}–SnO{sub 2}/graphene (B{sub 2}O{sub 3}–SnO{sub 2}/G) composite is fabricated via a chemical heat solvent method and utilized as anode material for lithium ion batteries. The added B{sub 2}O{sub 3} dramatically improves the electrochemical performance of lithium ion batteries compared to the SnO{sub 2}/G composite. The B{sub 2}O{sub 3}–SnO{sub 2}/G composites as anode show an outstanding discharge capacity of 1404.9 mAh g{sup −1} at 500 mA g{sup −1} after 200 cycles and an excellent rate capacity, which apparently outperforms the previously reported SnO{sub 2}-based anode material. These improved electrochemical performance characteristics are due to the B{sub 2}O{sub 3} played a buffering role, which are easily beneficial for accommodating the volume change during the lithium ions insertion/extraction processes. Furthermore, boron atoms can accept electrons for its electron-deficient nature and boron ions could release electrons, which lead to electrons' increased density and conductivity are increased. The results indicate that the B{sub 2}O{sub 3}–SnO{sub 2}/G composite is a promising anode material for lithium ion batteries.

  3. Review on recent progress of nanostructured anode materials for Li-ion batteries

    KAUST Repository

    Goriparti, Subrahmanyam

    2014-07-01

    This review highlights the recent research advances in active nanostructured anode materials for the next generation of Li-ion batteries (LIBs). In fact, in order to address both energy and power demands of secondary LIBs for future energy storage applications, it is required the development of innovative kinds of electrodes. Nanostructured materials based on carbon, metal/semiconductor, metal oxides and metal phosphides/nitrides/sulfides show a variety of admirable properties for LIBs applications such as high surface area, low diffusion distance, high electrical and ionic conductivity. Therefore, nanosized active materials are extremely promising for bridging the gap towards the realization of the next generation of LIBs with high reversible capacities, increased power capability, long cycling stability and free from safety concerns. In this review, anode materials are classified, depending on their electrochemical reaction with lithium, into three groups: intercalation/de-intercalation, alloy/de-alloy and conversion materials. Furthermore, the effect of nanoscale size and morphology on the electrochemical performance is presented. Synthesis of the nanostructures, lithium battery performance and electrode reaction mechanisms are also discussed. To conclude, the main aim of this review is to provide an organic outline of the wide range of recent research progresses and perspectives on nanosized active anode materials for future LIBs.

  4. Review on recent progress of nanostructured anode materials for Li-ion batteries

    KAUST Repository

    Goriparti, Subrahmanyam; Miele, Ermanno; De Angelis, Francesco; Di Fabrizio, Enzo M.; Proietti Zaccaria, Remo; Capiglia, Claudio

    2014-01-01

    This review highlights the recent research advances in active nanostructured anode materials for the next generation of Li-ion batteries (LIBs). In fact, in order to address both energy and power demands of secondary LIBs for future energy storage applications, it is required the development of innovative kinds of electrodes. Nanostructured materials based on carbon, metal/semiconductor, metal oxides and metal phosphides/nitrides/sulfides show a variety of admirable properties for LIBs applications such as high surface area, low diffusion distance, high electrical and ionic conductivity. Therefore, nanosized active materials are extremely promising for bridging the gap towards the realization of the next generation of LIBs with high reversible capacities, increased power capability, long cycling stability and free from safety concerns. In this review, anode materials are classified, depending on their electrochemical reaction with lithium, into three groups: intercalation/de-intercalation, alloy/de-alloy and conversion materials. Furthermore, the effect of nanoscale size and morphology on the electrochemical performance is presented. Synthesis of the nanostructures, lithium battery performance and electrode reaction mechanisms are also discussed. To conclude, the main aim of this review is to provide an organic outline of the wide range of recent research progresses and perspectives on nanosized active anode materials for future LIBs.

  5. ANODE CATALYST MATERIALS FOR USE IN FUEL CELLS

    DEFF Research Database (Denmark)

    2002-01-01

    Catalyst materials having a surface comprising a composition M¿x?/Pt¿3?/Sub; wherein M is selected from the group of elements Fe, Co, Rh and Ir; or wherein M represent two different elements selected from the group comprising Fe, CO, Rh, Ir, Ni, Pd, CU, Ag, Au and Sn; and wherein Sub represents...

  6. Suitability of new anode materials in mammography: Dose and subject contrast considerations using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Delis, H.; Spyrou, G.; Costaridou, L.; Tzanakos, G.; Panayiotakis, G.

    2006-01-01

    Mammography is the technique with the highest sensitivity and specificity, for the early detection of nonpalpable lesions associated with breast cancer. As screening mammography refers to asymptomatic women, the task of optimization between the image quality and the radiation dose is critical. A way toward optimization could be the introduction of new anode materials. A method for producing the x-ray spectra of different anode/filter combinations is proposed. The performance of several mammographic spectra, produced by both existing and theoretical anode materials, is evaluated, with respect to their dose and subject contrast characteristics, using a Monte Carlo simulation.The mammographic performance is evaluated utilizing a properly designed mathematical phantom with embedded inhomogeneities, irradiated with different spectra, based on combinations of conventional and new (Ru, Ag) anode materials, with several filters (Mo, Rh, Ru, Ag, Nb, Al). An earlier developed and validated Monte Carlo model, for deriving both image and dose characteristics in mammography, was utilized and overall performance results were derived in terms of subject contrast to dose ratio and squared subject contrast to dose ratio. Results demonstrate that soft spectra, mainly produced from Mo, Rh, and Ru anodes and filtered with k-edge filters, provide increased subject contrast for inhomogeneities of both small size, simulating microcalcifications and low density, simulating masses. The harder spectra (W and Ag anode) come short in the discrimination task but demonstrate improved performance when considering the dose delivered to the breast tissue. As far as the overall performance is concerned, new theoretical spectra demonstrate a noticeable good performance that is similar, and in some cases better compared to commonly used systems, stressing the possibility of introducing new materials in mammographic practice as a possible contribution to its optimization task. In the overall

  7. Porous silicon based anode material formed using metal reduction

    Science.gov (United States)

    Anguchamy, Yogesh Kumar; Masarapu, Charan; Deng, Haixia; Han, Yongbong; Venkatachalam, Subramanian; Kumar, Sujeet; Lopez, Herman A.

    2015-09-22

    A porous silicon based material comprising porous crystalline elemental silicon formed by reducing silicon dioxide with a reducing metal in a heating process followed by acid etching is used to construct negative electrode used in lithium ion batteries. Gradual temperature heating ramp(s) with optional temperature steps can be used to perform the heating process. The porous silicon formed has a high surface area from about 10 m.sup.2/g to about 200 m.sup.2/g and is substantially free of carbon. The negative electrode formed can have a discharge specific capacity of at least 1800 mAh/g at rate of C/3 discharged from 1.5V to 0.005V against lithium with in some embodiments loading levels ranging from about 1.4 mg/cm.sup.2 to about 3.5 mg/cm.sup.2. In some embodiments, the porous silicon can be coated with a carbon coating or blended with carbon nanofibers or other conductive carbon material.

  8. Manganese pyridinedicarboxylates: New anode materials for lithium-ion batteries with good cycling performance

    International Nuclear Information System (INIS)

    Fei, Hailong; Li, Zhiwei; Liu, Xin

    2015-01-01

    Highlights: • Manganese 2,3-pyridinedicarboxylate and 2,5-pyridinedicarboxylate. • Firstly tested as anode materials. • High capacity and good cycle stability. - Abstract: It is significant to discover new environmental friendly, sustainable and renewable electrode materials for lithium-ion batteries. Manganese dicarboxylate [Mn 2 (pdc) 2 (H 2 O) 3 ] n ⋅2nH 2 O (pdc = pyridine-2,3-dicarboxylate) is firstly found to be a high-energy anode material for lithium-ion batteries. It shows a high discharge capacity of 573.7 mA h g −1 for the second cycle between a 0.05 and 3.0 V voltage limit at a discharge current density of 500 mA g −1 . The reversible capacity of 457.2 mA h g −1 is remained after 100 cycles with a capacity retention being 79.6%. In addition, it is found that Mn 2,5-pyridinedicarboxyle was also stable anode materials with high capacity

  9. Nitrogen-Doped Carbon for Red Phosphorous Based Anode Materials for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jiaoyang Li

    2018-01-01

    Full Text Available Serving as conductive matrix and stress buffer, the carbon matrix plays a pivotal role in enabling red phosphorus to be a promising anode material for high capacity lithium ion batteries and sodium ion batteries. In this paper, nitrogen-doping is proved to effective enhance the interface interaction between carbon and red phosphorus. In detail, the adsorption energy between phosphorus atoms and oxygen-containing functional groups on the carbon is significantly reduced by nitrogen doping, as verified by X-ray photoelectron spectroscopy. The adsorption mechanisms are further revealed on the basis of DFT (the first density functional theory calculations. The RPNC (red phosphorus/nitrogen-doped carbon composite material shows higher cycling stability and higher capacity than that of RPC (red phosphorus/carbon composite anode. After 100 cycles, the RPNC still keeps discharge capacity of 1453 mAh g−1 at the current density of 300 mA g−1 (the discharge capacity of RPC after 100 cycles is 1348 mAh g−1. Even at 1200 mA g−1, the RPNC composite still delivers a capacity of 1178 mAh g−1. This work provides insight information about the interface interactions between composite materials, as well as new technology develops high performance phosphorus based anode materials.

  10. Manganese pyridinedicarboxylates: New anode materials for lithium-ion batteries with good cycling performance

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Hailong, E-mail: feilin09053@gmail.com [College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town Fuzhou, Fujian 350116 (China); Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071 (China); Li, Zhiwei; Liu, Xin [College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town Fuzhou, Fujian 350116 (China)

    2015-08-15

    Highlights: • Manganese 2,3-pyridinedicarboxylate and 2,5-pyridinedicarboxylate. • Firstly tested as anode materials. • High capacity and good cycle stability. - Abstract: It is significant to discover new environmental friendly, sustainable and renewable electrode materials for lithium-ion batteries. Manganese dicarboxylate [Mn{sub 2}(pdc){sub 2}(H{sub 2}O){sub 3}]{sub n}⋅2nH{sub 2}O (pdc = pyridine-2,3-dicarboxylate) is firstly found to be a high-energy anode material for lithium-ion batteries. It shows a high discharge capacity of 573.7 mA h g{sup −1} for the second cycle between a 0.05 and 3.0 V voltage limit at a discharge current density of 500 mA g{sup −1}. The reversible capacity of 457.2 mA h g{sup −1} is remained after 100 cycles with a capacity retention being 79.6%. In addition, it is found that Mn 2,5-pyridinedicarboxyle was also stable anode materials with high capacity.

  11. Recent progress in the development of anode materials for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Cowin, Peter I.; Petit, Christophe T.G.; Lan, Rong; Tao, Shanwen [Department of Chemical and Process Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom); Irvine, John T.S. [School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST (United Kingdom)

    2011-05-15

    The field of research into solid oxide fuel cell (SOFC) anode materials has been rapidly moving forward. In the four years since the last in-depth review significant advancements have been made in the reduction of the operating temperature and improvement of the performance of SOFCs. This progress report examines the developments in the field and looks to draw conclusions and inspiration from this research. A brief introduction is given to the field, followed by an overview of the principal previous materials. A detailed analysis of the developments of the last 4 years is given using a selection of the available literature, concentrating on metal-fluorite cermets and perovskite-based materials. This is followed by a consideration of alternate fuels for use in SOFCs and their associated problems and a short discussion on the effect of synthesis method on anode performance. The concluding remarks compile the significant developments in the field along with a consideration of the promise of future research. The recent progress in the development of anode materials for SOFCs based on oxygen ion conducting electrolytes is reviewed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Cobalt nanosheet arrays supported silicon film as anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Huang, X.H.; Wu, J.B.; Cao, Y.Q.; Zhang, P.; Lin, Y.; Guo, R.Q.

    2016-01-01

    Cobalt nanosheet arrays supported silicon film is prepared and used as anode materials for lithium ion batteries. The film is fabricated using chemical bath deposition, hydrogen reduction and radio-frequency magnetron sputtering techniques. The microstructure and morphology are characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). In this composite film, the silicon layer is supported by interconnected aligned cobalt nanosheet arrays that act as the three-dimensional current collector and buffering network. The electrochemical performance as anode materials for lithium ion batteries is investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge tests. The results show that the film prepared by sputtering for 1500 s exhibits high capacity, good rate capability and stable cycle ability. It is believed that the cobalt nanosheet arrays play important roles in the electrochemical performance of the silicon layer.

  13. Electrocoagulation of whey acids: anode and cathode materials, electroactive area and polarization curves

    Directory of Open Access Journals (Sweden)

    Francisco Prieto Garcia

    2017-06-01

    Full Text Available Anode (Al and Fe and cathode (graphite and Ti/RuO2 materials have been tested for electrocoagulation (EC and purification of the acid whey. The electroactive areas (EA of electrodes were calculated by the double layer capacitance method. Experiments were performed by cyclic voltammetry, chronoamperometry and polarization experiments. Among cathodic materials, the Ti/RuO2 electrode showed higher EA (2167 cm2 than graphite (1560 cm2. The Fe anode was found more stable than Al with greater charge transfer carried out in less time. Correlation of these results with those obtained during preliminary tests confirmed high removals (79 % in 8 h. For the Al electrode, 24 h were required to achieve efficiency of 49 %.

  14. Fabrication of cellulose/graphene paper as a stable-cycling anode materials without collector.

    Science.gov (United States)

    Zhang, Chunliang; Cha, Ruitao; Yang, Luming; Mou, Kaiwen; Jiang, Xingyu

    2018-03-15

    Flexible and foldable devices attract substantial attention in low-cost electronics. Among the flexible substrate materials, paper has several attractive advantages. In our study, we fabricate cellulose/graphene paper by wet end formation (papermaking). The cationic polyacrylamide remarkably improve the retention ratio of graphene of cellulose/graphene slurry. Besides, cellulose/graphene paper exhibits well mechanical properties such as its flexibility and folding endurance. And we replace copper foil collector with cellulose/graphene paper in lithium-ion batteries without collector, and investigate its electrochemical properties. The obtained results show that cellulose/graphene paper presents excellent charge-discharge stability after 1600th cycles as the anode of lithium-ion batteries. These advantages highlight the potential applications of cellulose/graphene paper as anode materials for lithium-ion batteries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. SiC Nanofibers as Long-Life Lithium-Ion Battery Anode Materials

    Directory of Open Access Journals (Sweden)

    Xuejiao Sun

    2018-05-01

    Full Text Available The development of high energy lithium-ion batteries (LIBs has spurred the designing and production of novel anode materials to substitute currently commercial using graphitic materials. Herein, twisted SiC nanofibers toward LIBs anode materials, containing 92.5 wt% cubic β-SiC and 7.5 wt% amorphous C, were successfully synthesized from resin-silica composites. The electrochemical measurements showed that the SiC-based electrode delivered a stable reversible capacity of 254.5 mAh g−1 after 250 cycles at a current density of 0.1 A g−1. It is interesting that a high discharge capacity of 540.1 mAh g−1 was achieved after 500 cycles at an even higher current density of 0.3 A g−1, which is higher than the theoretical capacity of graphite. The results imply that SiC nanomaterials are potential anode candidate for LIBs with high stability due to their high structure stability as supported with the transmission electron microscopy images.

  16. SiC Nanofibers as Long-Life Lithium-Ion Battery Anode Materials.

    Science.gov (United States)

    Sun, Xuejiao; Shao, Changzhen; Zhang, Feng; Li, Yi; Wu, Qi-Hui; Yang, Yonggang

    2018-01-01

    The development of high energy lithium-ion batteries (LIBs) has spurred the designing and production of novel anode materials to substitute currently commercial using graphitic materials. Herein, twisted SiC nanofibers toward LIBs anode materials, containing 92.5 wt% cubic β-SiC and 7.5 wt% amorphous C, were successfully synthesized from resin-silica composites. The electrochemical measurements showed that the SiC-based electrode delivered a stable reversible capacity of 254.5 mAh g -1 after 250 cycles at a current density of 0.1 A g -1 . It is interesting that a high discharge capacity of 540.1 mAh g -1 was achieved after 500 cycles at an even higher current density of 0.3 A g -1 , which is higher than the theoretical capacity of graphite. The results imply that SiC nanomaterials are potential anode candidate for LIBs with high stability due to their high structure stability as supported with the transmission electron microscopy images.

  17. Microporous carbon derived from polyaniline base as anode material for lithium ion secondary battery

    International Nuclear Information System (INIS)

    Xiang, Xiaoxia; Liu, Enhui; Huang, Zhengzheng; Shen, Haijie; Tian, Yingying; Xiao, Chengyi; Yang, Jingjing; Mao, Zhaohui

    2011-01-01

    Highlights: → Nitrogen-containing microporous carbon was prepared from polyaniline base by K 2 CO 3 activation, and used as anode material for lithium ion secondary battery. → K 2 CO 3 activation promotes the formation of amorphous and microporous structure. → High nitrogen content, and large surface area with micropores lead to strong intercalation between carbon and lithium ion, and thus improve the lithium storage capacity. -- Abstract: Microporous carbon with large surface area was prepared from polyaniline base using K 2 CO 3 as an activating agent. The physicochemical properties of the carbon were characterized by scanning electron microscope, X-ray diffraction, Brunauer-Emmett-Teller, elemental analyses and X-ray photoelectron spectroscopy measurement. The electrochemical properties of the microporous carbon as anode material in lithium ion secondary battery were evaluated. The first discharge capacity of the microporous carbon was 1108 mAh g -1 , whose first charge capacity was 624 mAh g -1 , with a coulombic efficiency of 56.3%. After 20 cycling tests, the microporous carbon retains a reversible capacity of 603 mAh g -1 at a current density of 100 mA g -1 . These results clearly demonstrated the potential role of microporous carbon as anode for high capacity lithium ion secondary battery.

  18. Electrolytic deposition of Sn-coated mesocarbon microbeads as anode material for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Min-Jen [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Jen-Teh Junior College of Medicine, Nursing and Management, Taiwan (China); Tsai, Du-Cheng [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Ho, Wen-Hsien [Taiwan Textile Research Institute, Taipei 23674, Taiwan (China); Li, Ching-Fei, E-mail: chingfei.li@gmail.com [Phoenix Silicon International Corporation, Hsinchu 30094, Taiwan (China); Shieu, Fuh-Sheng, E-mail: fsshieu@dragon.nchu.edu.tw [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Center of Nanoscience and Nanotechnology, National Chung Hsing University, Taichung 40227, Taiwan (China)

    2013-11-15

    Deposited of crystalline tin (Sn) coatings on mesocarbon microbead (MCMB) powder as anodes of lithium ion (Li-ion) battery was conducted in the SnSO{sub 4} solution by a cathodic electrochemical synthesis. The Sn-coated MCMB specimens were characterized by X-ray diffraction, scanning electron microscopy, and charge/discharge tests. The synthesis condition of Sn-coated MCMB was optimized by considering the agglomeration, size, and adhesion of the samples to the current collectors in the battery. The Sn-coated MCMB electrodes exhibit increased reversible capacity without sacrificing its cycling behavior, compared with bare MCMB electrodes. It is concluded that electrolysis-deposited Sn-coated MCMB electrodes may emerge as a practical and promising anode material for secondary Li-ion batteries.

  19. Electrolytic deposition of Sn-coated mesocarbon microbeads as anode material for lithium ion battery

    International Nuclear Information System (INIS)

    Deng, Min-Jen; Tsai, Du-Cheng; Ho, Wen-Hsien; Li, Ching-Fei; Shieu, Fuh-Sheng

    2013-01-01

    Deposited of crystalline tin (Sn) coatings on mesocarbon microbead (MCMB) powder as anodes of lithium ion (Li-ion) battery was conducted in the SnSO 4 solution by a cathodic electrochemical synthesis. The Sn-coated MCMB specimens were characterized by X-ray diffraction, scanning electron microscopy, and charge/discharge tests. The synthesis condition of Sn-coated MCMB was optimized by considering the agglomeration, size, and adhesion of the samples to the current collectors in the battery. The Sn-coated MCMB electrodes exhibit increased reversible capacity without sacrificing its cycling behavior, compared with bare MCMB electrodes. It is concluded that electrolysis-deposited Sn-coated MCMB electrodes may emerge as a practical and promising anode material for secondary Li-ion batteries.

  20. Theoretical investigation of the use of nanocages with an adsorbed halogen atom as anode materials in metal-ion batteries.

    Science.gov (United States)

    Razavi, Razieh; Abrishamifar, Seyyed Milad; Rajaei, Gholamreza Ebrahimzadeh; Kahkha, Mohammad Reza Rezaei; Najafi, Meysam

    2018-02-21

    The applicability of C 44 , B 22 N 22 , Ge 44 , and Al 22 P 22 nanocages, as well as variants of those nanocages with an adsorbed halogen atom, as high-performance anode materials in Li-ion, Na-ion, and K-ion batteries was investigated theoretically via density functional theory. The results obtained indicate that, among the nanocages with no adsorbed halogen atom, Al 22 P 22 would be the best candidate for a novel anode material for use in metal-ion batteries. Calculations also suggest that K-ion batteries which utilize these nanocages as anode materials would give better performance and would yield higher cell voltages than the corresponding Li-ion and Na-ion batteries with nanocage-based anodes. Also, the results for the nanocages with an adsorbed halogen atom imply that employing them as anode materials would lead to higher cell voltages and better metal-ion battery performance than if the nanocages with no adsorbed halogen atom were to be used as anode materials instead. Results further implied that nanocages with an adsorbed F atom would give higher cell voltages and better battery performance than nanocages with an adsorbed Cl or Br atom. We were ultimately able to conclude that a K-ion battery that utilized Al 21 P 22 with an adsorbed F atom as its anode material would afford the best metal-ion battery performance; we therefore propose this as a novel highly efficient metal-ion battery. Graphical abstract The results of a theoretical investigation indicated that Al 22 P 22 is a better candidate for a high-performance anode material in metal-ion batteries than Ge 44 is. Calculations also showed that K-ion batteries with nanocage-based anodes would produce higher cell voltages and perform better than the equivalent Li-ion and Na-ion batteries with nanocage-based anodes, and that anodes based on nanocages with an adsorbed F atom would perform better than anodes based on nanocages with an adsorbed Cl or Br atom.

  1. Investigation of residual anode material after electrorefining uranium in molten chloride salt

    Energy Technology Data Exchange (ETDEWEB)

    Rose, M.A., E-mail: marose@anl.gov [Department of Nuclear Engineering, Purdue University, West Lafayette, IN, 47907 (United States); Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Williamson, M.A.; Willit, J. [Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2015-12-15

    A buildup of material at uranium anodes during uranium electrorefining in molten chloride salts has been observed. Potentiodynamic testing has been conducted using a three electrode cell, with a uranium working electrode in both LiCl/KCl eutectic and LiCl each containing ∼5 mol% UCl{sub 3}. The anodic current response was observed at 50° intervals between 450 °C and 650 °C in the eutectic salt. These tests revealed a buildup of material at the anode in LiCl/KCl salt, which was sampled at room temperature, and analyzed using ICP-MS, XRD and SEM techniques. Examination of the analytical data, current response curves and published phase diagrams has established that as the uranium anode dissolves, the U{sup 3+} ion concentration in the diffusion layer surrounding the electrode rises precipitously to levels, which may at low temperatures exceed the solubility limit for UCl{sub 3} or in the case of the eutectic salt for K{sub 2}UCl{sub 5}. The reduction in current response observed at low temperature in eutectic salt is eliminated at 650 °C, where K{sub 2}UCl{sub 5} is absent due to its congruent melting and only simple concentration polarization effects are seen. In LiCl similar concentration effects are seen though significantly longer time at applied potential is required to effect a reduction in the current response as compared to the eutectic salt.

  2. Metal-decored graphites as anode materials for use in lithium-ion accumulators

    International Nuclear Information System (INIS)

    Licht, Bjoern Karl

    2015-01-01

    Graphitic materials are currently the most frequently used anode materials for lithium ion batteries (LIB). This type of battery is considered to be the ideal application for energy storage in electromobility or in mobile devices that require a high power density. Although intercalated graphite has only about 8 % of the gravimetric energy density of lithium metal, these materials are preferred due to safety reasons. However, by chemical modification of the surface, the electrochemical performance of graphite can be enhanced. In the thesis presented at hand, a novel synthesis route for the preparation of homogenous metal depositions on graphite is shown. The reaction proceeds via a gas phase reaction by the thermal decomposition of metal carboxylates. The decomposition process was analyzed by thermogravimetry and gas phase analysis. In comparison to the unmodified graphite, copper-coated graphite shows in increased capacity and cycle stability when used as anode materials in LIBs. Special emphasis should be placed on an improved adhesion of the active material on the copper current collector. The proven catalytic activity of the metal depositions not only enables a use in battery devices but could also be innovating for catalytic processes such as chlorine-alkali electrolysis.

  3. Carbon-coated mesoporous SnO2 nanospheres as anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Wang, Fei; Song, Xiaoping; Yao, Gang; Zhao, Mingshu; Liu, Rui; Xu, Minwei; Sun, Zhanbo

    2012-01-01

    In this paper mesoporous SnO 2 nanospheres with an average diameter of about 83 nm, composed of many tiny primary particles (∼10 nm) and holes, are synthesized on a large scale by a simple hydrothermal route. The as-prepared mesoporous SnO 2 nanospheres were uniformly coated with carbon by a further hydrothermal treatment in glucose aqueous solution. As anode materials for lithium-ion batteries, the core–shell SnO 2 /C nanocomposites exhibit a markedly improved cycling performance.

  4. Carbon-Encapsulated Co3O4 Nanoparticles as Anode Materials with Super Lithium Storage Performance

    Science.gov (United States)

    Leng, Xuning; Wei, Sufeng; Jiang, Zhonghao; Lian, Jianshe; Wang, Guoyong; Jiang, Qing

    2015-11-01

    A high-performance anode material for lithium storage was successfully synthesized by glucose as carbon source and cobalt nitrate as Co3O4 precursor with the assistance of sodium chloride surface as a template to reduce the carbon sheet thickness. Ultrafine Co3O4 nanoparticles were homogeneously embedded in ultrathin porous graphitic carbon in this material. The carbon sheets, which have large specific surface area, high electronic conductivity, and outstanding mechanical flexibility, are very effective to keep the stability of Co3O4 nanoparticales which has a large capacity. As a consequence, a very high reversible capacity of up to 1413 mA h g-1 at a current density of 0.1 A g-1 after 100 cycles, a high rate capability (845, 560, 461 and 345 mA h g-1 at 5, 10, 15 and 20 C, respectively, 1 C = 1 A g-1), and a superior cycling performance at an ultrahigh rate (760 mA h g-1 at 5 C after 1000 cycles) are achieved by this lithium-ion-battery anode material.

  5. A review of refractory materials for vapor-anode AMTEC cells

    Science.gov (United States)

    King, Jeffrey C.; El-Genk, M. S.

    2000-01-01

    Recently, refractory alloys have been considered as structural materials for vapor-anode Alkali Metal Thermal-to-Electric Conversion (AMTEC) cells, for extended (7-15 years) space missions. This paper reviewed the existing database for refractory metals and alloys of potential use as structural materials for vapor-anode sodium AMTEC cells. In addition to requiring that the vapor pressure of the material be below 10-9 torr (133 nPa) at a typical hot side temperature of 1200 K, other screening considerations were: (a) low thermal conductivity, low thermal radiation emissivity, and low linear thermal expansion coefficient; (b) low ductile-to-brittle transition temperature, high yield and rupture strengths and high strength-to-density ratio; and (c) good compatibility with the sodium AMTEC operating environment, including high corrosion resistance to sodium in both the liquid and vapor phases. Nb-1Zr (niobium-1% zirconium) alloy is recommended for the hot end structures of the cell. The niobium alloy C-103, which contains the oxygen gettering elements zirconium and hafnium as well as titanium, is recommended for the colder cell structure. This alloy is stronger and less thermally conductive than Nb-1Zr, and its use in the cell wall reduces parasitic heat losses by conduction to the condenser. The molybdenum alloy Mo-44.5Re (molybdenum-44.5% rhenium) is also recommended as a possible alternative for both structures if known problems with oxygen pick up and embrittlement of the niobium alloys proves to be intractable. .

  6. Fe_3C@carbon nanocapsules/expanded graphite as anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Huang, You-Guo; Lin, Xi-Le; Zhang, Xiao-Hui; Pan, Qi-Chang; Yan, Zhi-Xiong; Wang, Hong-Qiang; Chen, Jian-Jun; Li, Qing-Yu

    2015-01-01

    ABSTRACT: Fe_3C@carbonnanocapsules(*)/expanded graphite composite was successfully prepared by a new and facile method, including mix of starting materials and heat treatment of the precursor. It is featured by unique 3-D structure, where expanded graphite acts as scaffold to ensure a continuous entity, and Fe_3C particles coated by carbon nanocapsules are embedded intimately. The Fe_3C nanoparticles encased in carbon nanocapsules act as catalyst in the modification of SEI film during the cycles. The interesting 3-D architecture which aligns the conductivity paths in the planar direction with expanded graphite and in the axial direction with carbon nanocapsules minimizes the resistance and enhances the reversible capacity. The prepared composite exhibits a high reversible capacity and excellent rate performance as an anode material for lithium ion batteries. The composite maintains a reversible capacity of 1226.2 mAh/g after 75 cycles at 66 mA/g. When the current density increases to 200 mA/g, the reversible capacity maintains 451.5 mAh/g. The facile synthesis method and excellent electrochemical performances make the composite expected to be one of the most potential anode material for lithium ion batteries.

  7. Evaluation of lithium alloy anode materials for Li-TiS2 cells

    Science.gov (United States)

    Huang, C.-K.; Subbarao, S.; Shen, D. H.; Deligiannis, F.; Attia, A.; Halpert, G.

    1991-01-01

    A study was performed to select candidate lithium alloy anode materials and establish selection criteria. Some of the selected alloy materials were evaluated for their electrochemical properties and performance. This paper describes the criteria for the selection of alloys and the findings of the studies. Li-Si and Li-Cd alloys have been found to be unstable in the EC+2-MeTHF-based electrolyte. The Li-Al alloy system was found to be promising among the alloy systems studied in view of its stability and reversibility. Unfortunately, the large volume changes of LiAl alloys during charge/discharge cycling cause considerable 'exfoliation' of its active mass. This paper also describes ways how to address this problem. The rate of disintegration of this anode would probably be surpressed by the presence of an inert solid solution or a uniform distribution of precipitates within the grains of the active mass. It was discovered that the addition of a small quantity of Mn may improve the mechanical properties of LiAl. In an attempt to reduce the Li-Al alloy vs. Li voltage, it was observed that LiAlPb(0.1)Cd(0.3) material can be cycled at 1.5 mA/sq cm without exfoliation of the active mass.

  8. Recent Progress in Synthesis and Application of Low-Dimensional Silicon Based Anode Material for Lithium Ion Battery

    Directory of Open Access Journals (Sweden)

    Yuandong Sun

    2017-01-01

    Full Text Available Silicon is regarded as the next generation anode material for LIBs with its ultra-high theoretical capacity and abundance. Nevertheless, the severe capacity degradation resulting from the huge volume change and accumulative solid-electrolyte interphase (SEI formation hinders the silicon based anode material for further practical applications. Hence, a variety of methods have been applied to enhance electrochemical performances in terms of the electrochemical stability and rate performance of the silicon anodes such as designing nanostructured Si, combining with carbonaceous material, exploring multifunctional polymer binders, and developing artificial SEI layers. Silicon anodes with low-dimensional structures (0D, 1D, and 2D, compared with bulky silicon anodes, are strongly believed to have several advanced characteristics including larger surface area, fast electron transfer, and shortened lithium diffusion pathway as well as better accommodation with volume changes, which leads to improved electrochemical behaviors. In this review, recent progress of silicon anode synthesis methodologies generating low-dimensional structures for lithium ion batteries (LIBs applications is listed and discussed.

  9. Flagellar filament bio-templated inorganic oxide materials – towards an efficient lithium battery anode

    Science.gov (United States)

    Beznosov, Sergei N.; Veluri, Pavan S.; Pyatibratov, Mikhail G.; Chatterjee, Abhijit; MacFarlane, Douglas R.; Fedorov, Oleg V.; Mitra, Sagar

    2015-01-01

    Designing a new generation of energy-intensive and sustainable electrode materials for batteries to power a variety of applications is an imperative task. The use of biomaterials as a nanosized structural template for these materials has the potential to produce hitherto unachievable structures. In this report, we have used genetically modified flagellar filaments of the extremely halophilic archaea species Halobacterium salinarum to synthesize nanostructured iron oxide composites for use as a lithium-ion battery anode. The electrode demonstrated a superior electrochemical performance compared to existing literature results, with good capacity retention of 1032 mAh g−1 after 50 cycles and with high rate capability, delivering 770 mAh g−1 at 5 A g−1 (~5 C) discharge rate. This unique flagellar filament based template has the potential to provide access to other highly structured advanced energy materials in the future. PMID:25583370

  10. Flagellar filament bio-templated inorganic oxide materials - towards an efficient lithium battery anode.

    Science.gov (United States)

    Beznosov, Sergei N; Veluri, Pavan S; Pyatibratov, Mikhail G; Chatterjee, Abhijit; MacFarlane, Douglas R; Fedorov, Oleg V; Mitra, Sagar

    2015-01-13

    Designing a new generation of energy-intensive and sustainable electrode materials for batteries to power a variety of applications is an imperative task. The use of biomaterials as a nanosized structural template for these materials has the potential to produce hitherto unachievable structures. In this report, we have used genetically modified flagellar filaments of the extremely halophilic archaea species Halobacterium salinarum to synthesize nanostructured iron oxide composites for use as a lithium-ion battery anode. The electrode demonstrated a superior electrochemical performance compared to existing literature results, with good capacity retention of 1032 mAh g(-1) after 50 cycles and with high rate capability, delivering 770 mAh g(-1) at 5 A g(-1) (~5 C) discharge rate. This unique flagellar filament based template has the potential to provide access to other highly structured advanced energy materials in the future.

  11. Synthesis and characterization of cathode, anode and electrolyte materials for rechargeable lithium batteries

    Science.gov (United States)

    Yang, Shoufeng

    Two new classes of cathode materials were studied: iron phosphate/sulfate materials and layered manganese oxides, both of which are low cost and had shown some potential. The first class of materials have poor conductivity and cyclability. I studied a number of methods for increasing the conductivity, and determined that grinding the material with carbon black was as effective as special in-situ coatings. The optimum carbon loading was determined to be between 6 and 15 wt%. Too much carbon reduces the volumetric energy density, whereas too little significantly increased cell polarization (reduced the rate of reaction). The kinetic and thermodynamic stability of LiFePO 4 was also studied and it was determined that over discharge protection will be needed as irreversible Li3PO4 can be formed at low potentials. A novel hydrothermal synthesis method was developed, but the significant level of Fe on the Li site reduces the reaction rate too much. In the case of the layered manganese oxide, cation substitution with Co and Ni is found to be effective in avoiding Jahn-Teller effects and improving electrochemistry. A wide range of tin compounds have been suggested as lithium storage media for advanced anode materials, as tin can store over 4 Li per Sn atom. Lithium hexafluorophosphate, LiPF6, is presently the salt of choice for LiCoO2 batteries, but it is expensive and dissolves some manganese compounds. The lithium bis(oxolato)borate (BOB) salt was recently reported, and I made a study of its use in cells with the LiFePO4 cathode and the tin anode. During its synthesis, it became clear that LiBOB is very reactive with many solvents, and these complexes were characterized to better understand this new material. In LiBOB the lithium is five coordinated, an unstable configuration for the lithium ion so that water and many other solvents rapidly react to make a six coordination. Only in the case of ethylene carbonate was the lithium found to be four coordinated. The Li

  12. Nitrogen doped graphene - Silver nanowire hybrids: An excellent anode material for lithium ion batteries

    Science.gov (United States)

    Nair, Anju K.; Elizabeth, Indu; S, Gopukumar; Thomas, Sabu; M. S, Kala; Kalarikkal, Nandakumar

    2018-01-01

    We present an in-situ polyol assisted synthesis approach for the preparation of silver nanowires (AgNW) over the nitrogen doped graphene (NG) sheets and has been tested as a viable LIBs anode material for the first time. The use of NG serves as nucleation sites, thereby facilitating the growth of AgNWs. The specific material design of the as-prepared NG-AgNW hybrids involves some advantages, including a continuous AgNW-graphene conducting network. Since AgNWs are electrically conductive, it provides an electrical contact with NG sheets which can effectively help the charge transport process and limit the variations in volume during the lithiation/de-lithiation processes. Apart from this, the insertion of metallic Ag nanowires into a percolated NG network increases the interlayer distance of NG sheets and prevent its restacking. Moreover, the more porous nature of the hybrid structure accommodating the large volume changes of AgNWs. As an anode material for LIBs, the NG-AgNW hybrid displays a remarkable initial discharge capacity of 1215 mAh g-1 and attains a stable capacity of 724 mAh g-1 at a current density of 100 mA g-1 after 50 cycles. The electrode exhibits a stable reversible capacity of 714, 634, 550 and 464 mA h g-1 at 0.1, 0.2, 0.5, 1 Ag-1 respectively. The reversible capacity (710 mAh g-1) at 0.1 Ag-1 is recovered after the cycling at various current densities confirming outstanding rate performance of the material. In addition, the coulombic efficiency, the NG-AgNW anode retains nearly 99% after the second cycle, further indicating its excellent reversibility. The hybrid material exhibits better cycling stability, greater rate capability, capacity retention and superior reversible capacity than that of bare AgNW and NG sheets. Our smart design will pave way for the development of efficient electrode materials for high capacity and long cycle life LIBs.

  13. Heat-treated stainless steel felt as scalable anode material for bioelectrochemical systems.

    Science.gov (United States)

    Guo, Kun; Soeriyadi, Alexander H; Feng, Huajun; Prévoteau, Antonin; Patil, Sunil A; Gooding, J Justin; Rabaey, Korneel

    2015-11-01

    This work reports a simple and scalable method to convert stainless steel (SS) felt into an effective anode for bioelectrochemical systems (BESs) by means of heat treatment. X-ray photoelectron spectroscopy and cyclic voltammetry elucidated that the heat treatment generated an iron oxide rich layer on the SS felt surface. The iron oxide layer dramatically enhanced the electroactive biofilm formation on SS felt surface in BESs. Consequently, the sustained current densities achieved on the treated electrodes (1 cm(2)) were around 1.5±0.13 mA/cm(2), which was seven times higher than the untreated electrodes (0.22±0.04 mA/cm(2)). To test the scalability of this material, the heat-treated SS felt was scaled up to 150 cm(2) and similar current density (1.5 mA/cm(2)) was achieved on the larger electrode. The low cost, straightforwardness of the treatment, high conductivity and high bioelectrocatalytic performance make heat-treated SS felt a scalable anodic material for BESs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. First-Principles Study of Phosphorene and Graphene Heterostructure as Anode Materials for Rechargeable Li Batteries.

    Science.gov (United States)

    Guo, Gen-Cai; Wang, Da; Wei, Xiao-Lin; Zhang, Qi; Liu, Hao; Lau, Woon-Ming; Liu, Li-Min

    2015-12-17

    There is a great desire to develop the high-efficient anodes materials for Li batteries, which require not only large capacity but also high stability and mobility. In this work, the phosphorene/graphene heterostructure (P/G) was carefully explored based on first-principles calculations. The binding energy of Li on the pristine phosphorene is relatively weak (within 1.9 eV), whereas the phosphorene/graphene heterostructure (P/G) can greatly improve the binding energy (2.6 eV) without affecting the high mobility of Li within the layers. The electronic structures show that the large Li adsorption energy and fast diffusion ability of the P/G origin from the interfacial synergy effect. Interestingly, the P/G also displays ultrahigh stiffness (Cac = 350 N/m, Czz = 464 N/m), which can effectively avoid the distortion of the pristine phosphorene after the insertion of lithium. Thus, P/G can greatly enhance the cycle life of the battery. Owing to the high capacity, good conductivity, excellent Li mobility, and ultrahigh stiffness, P/G is a very promising anode material in Li-ion batteries (LIBs).

  15. Phosphorene as an anode material for Na-ion batteries: a first-principles study.

    Science.gov (United States)

    Kulish, Vadym V; Malyi, Oleksandr I; Persson, Clas; Wu, Ping

    2015-06-07

    We systematically investigate a novel two-dimensional nanomaterial, phosphorene, as an anode for Na-ion batteries. Using first-principles calculations, we determine the Na adsorption energy, specific capacity and Na diffusion barriers on monolayer phosphorene. We examine the main trends in the electronic structure and mechanical properties as a function of Na concentration. We find a favorable Na-phosphorene interaction with a high theoretical Na storage capacity. We find that Na-phosphorene undergoes semiconductor-metal transition at high Na concentration. Our results show that Na diffusion on phosphorene is fast and anisotropic with an energy barrier of only 0.04 eV. Owing to its high capacity, good stability, excellent electrical conductivity and high Na mobility, monolayer phosphorene is a very promising anode material for Na-ion batteries. The calculated performance in terms of specific capacity and diffusion barriers is compared to other layered 2D electrode materials, such as graphene, MoS2, and polysilane.

  16. Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries.

    Science.gov (United States)

    Zhou, Xiaosi; Wan, Li-Jun; Guo, Yu-Guo

    2013-04-18

    Hybrid anode materials for Li-ion batteries are fabricated by binding SnO2 nanocrystals (NCs) in nitrogen-doped reduced graphene oxide (N-RGO) sheets by means of an in situ hydrazine monohydrate vapor reduction method. The SnO2NCs in the obtained SnO2NC@N-RGO hybrid material exhibit exceptionally high specific capacity and high rate capability. Bonds formed between graphene and SnO2 nanocrystals limit the aggregation of in situ formed Sn nanoparticles, leading to a stable hybrid anode material with long cycle life. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Vacuum arc anode phenomena

    International Nuclear Information System (INIS)

    Miller, H.C.

    1976-01-01

    A brief review of anode phenomena in vacuum arcs is presented. Discussed in succession are: the transition of the arc into the anode spot mode; the temperature of the anode before, during and after the anode spot forms; and anode ions. Characteristically the anode spot has a temperature of the order of the atmospheric boiling point of the anode material and is a copious source of vapor and energetic ions. The dominant mechanism controlling the transition of the vacuum arc into the anode spot mode appears to depend upon the electrode geometry, the electrode material, and the current waveform of the particular vacuum arc being considered. Either magnetic constriction in the gap plasma or gross anode melting can trigger the transition; indeed, a combination of the two is a common cause of anode spot formation

  18. Structures, phase stabilities, and electrical potentials of Li-Si battery anode materials

    KAUST Repository

    Tipton, William W.

    2013-05-28

    The Li-Si materials system holds promise for use as an anode in Li-ion battery applications. For this system, we determine the charge capacity, voltage profiles, and energy storage density solely by ab initio methods without any experimental input. We determine the energetics of the stable and metastable Li-Si phases likely to form during the charging and discharging of a battery. Ab initio molecular dynamics simulations are used to model the structure of amorphous Li-Si as a function of composition, and a genetic algorithm coupled to density-functional theory searches the Li-Si binary phase diagram for small-cell, metastable crystal structures. Calculations of the phonon densities of states using density-functional perturbation theory for selected structures determine the importance of vibrational, including zero-point, contributions to the free energies. The energetics and local structural motifs of these metastable Li-Si phases closely resemble those of the amorphous phases, making these small unit cell crystal phases good approximants of the amorphous phase for use in further studies. The charge capacity is estimated, and the electrical potential profiles and the energy density of Li-Si anodes are predicted. We find, in good agreement with experimental measurements, that the formation of amorphous Li-Si only slightly increases the anode potential. Additionally, the genetic algorithm identifies a previously unreported member of the Li-Si binary phase diagram with composition Li5Si2 which is stable at 0 K with respect to previously known phases. We discuss its relationship to the partially occupied Li7Si3 phase. © 2013 American Physical Society.

  19. Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth

    International Nuclear Information System (INIS)

    Jäckle, Markus; Groß, Axel

    2014-01-01

    Lithium and magnesium exhibit rather different properties as battery anode materials with respect to the phenomenon of dendrite formation which can lead to short-circuits in batteries. Diffusion processes are the key to understanding structure forming processes on surfaces. Therefore, we have determined adsorption energies and barriers for the self-diffusion on Li and Mg using periodic density functional theory calculations and contrasted the results to Na which is also regarded as a promising electrode material in batteries. According to our calculations, magnesium exhibits a tendency towards the growth of smooth surfaces as it exhibits lower diffusion barriers than lithium and sodium, and as an hcp metal it favors higher-coordinated configurations in contrast to the bcc metals Li and Na. These characteristic differences are expected to contribute to the unequal tendencies of these metals with respect to dendrite growth

  20. Novel iron oxyhydroxide lepidocrocite nanosheet as ultrahigh power density anode material for asymmetric supercapacitors.

    Science.gov (United States)

    Chen, Ying-Chu; Lin, Yan-Gu; Hsu, Yu-Kuei; Yen, Shi-Chern; Chen, Kuei-Hsien; Chen, Li-Chyong

    2014-09-24

    A simple one-step electroplating route is proposed for the synthesis of novel iron oxyhydroxide lepidocrocite (γ-FeOOH) nanosheet anodes with distinct layered channels, and the microstructural influence on the pseudocapacitive performance of the obtained γ-FeOOH nanosheets is investigated via in situ X-ray absorption spectroscopy (XAS) and electrochemical measurement. The in situ XAS results regarding charge storage mechanisms of electrodeposited γ-FeOOH nanosheets show that a Li(+) can reversibly insert/desert into/from the 2D channels between the [FeO6 ] octahedral subunits depending on the applied potential. This process charge compensates the Fe(2+) /Fe(3+) redox transition upon charging-discharging and thus contributes to an ideal pseudocapacitive behavior of the γ-FeOOH electrode. Electrochemical results indicate that the γ-FeOOH nanosheet shows the outstanding pseudocapacitive performance, which achieves the extraordinary power density of 9000 W kg(-1) with good rate performance. Most importantly, the asymmetric supercapacitors with excellent electrochemical performance are further realized by using 2D MnO2 and γ-FeOOH nanosheets as cathode and anode materials, respectively. The obtained device can be cycled reversibly at a maximum cell voltage of 1.85 V in a mild aqueous electrolyte, further delivering a maximum power density of 16 000 W kg(-1) at an energy density of 37.4 Wh kg(-1). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Integrated carbon nanospheres arrays as anode materials for boosted sodium ion storage

    Directory of Open Access Journals (Sweden)

    Wangjia Tang

    2018-01-01

    Full Text Available Developing cost-effective advanced carbon anode is critical for innovation of sodium ion batteries. Herein, we develop a powerful combined method for rational synthesis of free-standing binder-free carbon nanospheres arrays via chemical bath plus hydrothermal process. Impressively, carbon spheres with diameters of 150–250 nm are randomly interconnected with each other forming highly porous arrays. Positive advantages including large porosity, high surface and strong mechanical stability are combined in the carbon nanospheres arrays. The obtained carbon nanospheres arrays are tested as anode material for sodium ion batteries (SIBs and deliver a high reversible capacity of 102 mAh g−1 and keep a capacity retention of 95% after 100 cycles at a current density of 0.25 A g−1 and good rate performance (65 mAh g−1 at a high current density of 2 A g−1. The good electrochemical performance is attributed to the stable porous nanosphere structure with fast ion/electron transfer characteristics.

  2. Metallic Sn-Based Anode Materials: Application in High-Performance Lithium-Ion and Sodium-Ion Batteries.

    Science.gov (United States)

    Ying, Hangjun; Han, Wei-Qiang

    2017-11-01

    With the fast-growing demand for green and safe energy sources, rechargeable ion batteries have gradually occupied the major current market of energy storage devices due to their advantages of high capacities, long cycling life, superior rate ability, and so on. Metallic Sn-based anodes are perceived as one of the most promising alternatives to the conventional graphite anode and have attracted great attention due to the high theoretical capacities of Sn in both lithium-ion batteries (LIBs) (994 mA h g -1 ) and sodium-ion batteries (847 mA h g -1 ). Though Sony has used Sn-Co-C nanocomposites as its commercial LIB anodes, to develop even better batteries using metallic Sn-based anodes there are still two main obstacles that must be overcome: poor cycling stability and low coulombic efficiency. In this review, the latest and most outstanding developments in metallic Sn-based anodes for LIBs and SIBs are summarized. And it covers the modification strategies including size control, alloying, and structure design to effectually improve the electrochemical properties. The superiorities and limitations are analyzed and discussed, aiming to provide an in-depth understanding of the theoretical works and practical developments of metallic Sn-based anode materials.

  3. Lithium Storage in Microstructures of Amorphous Mixed-Valence Vanadium Oxide as Anode Materials.

    Science.gov (United States)

    Zhao, Di; Zheng, Lirong; Xiao, Ying; Wang, Xia; Cao, Minhua

    2015-07-08

    Constructing three-dimensional (3 D) nanostructures with excellent structural stability is an important approach for realizing high-rate capability and a high capacity of the electrode materials in lithium-ion batteries (LIBs). Herein, we report the synthesis of hydrangea-like amorphous mixed-valence VOx microspheres (a-VOx MSs) through a facile solvothermal method followed by controlled calcination. The resultant hydrangea-like a-VOx MSs are composed of intercrossed nanosheets and, thus, construct a 3 D network structure. Upon evaluation as an anode material for LIBs, the a-VOx MSs show excellent lithium-storage performance in terms of high capacity, good rate capability, and long-term stability upon extended cycling. Specifically, they exhibit very stable cycling behavior with a highly reversible capacity of 1050 mA h g(-1) at a rate of 0.1 A g(-1) after 140 cycles. They also show excellent rate capability, with a capacity of 390 mA h g(-1) at a rate as high as 10 A g(-1) . Detailed investigations on the morphological and structural changes of the a-VOx MSs upon cycling demonstrated that the a-VOx MSs went through modification of the local VO coordinations accompanied with the formation of a higher oxidation state of V, but still with an amorphous state throughout the whole discharge/charge process. Moreover, the a-VOx MSs can buffer huge volumetric changes during the insertion/extraction process, and at the same time they remain intact even after 200 cycles of the charge/discharge process. Thus, these microspheres may be a promising anode material for LIBs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis and Performance of Tungsten Disulfide/Carbon (WS2/C) Composite as Anode Material

    Science.gov (United States)

    Yuan, Zhengyong; Jiang, Qiang; Feng, Chuanqi; Chen, Xiao; Guo, Zaiping

    2018-01-01

    The precursors of an amorphous WS2/C composite were synthesized by a simple hydrothermal method using Na2WO4·2H2O and CH3CSNH2 as raw materials, polyethylene glycol as dispersant, and glucose as the carbon source. The as-synthesized precursors were further annealed at a low temperature in flowing argon to obtain the final materials (WS2/C composite). The structure and morphology of the WS2/C composite were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, and scanning electron microscopy. The electrochemical properties were tested by galvanostatic charge/discharge testing and alternating current (AC) impedance measurements. The results show that the as-prepared amorphous WS2/C composite features both high specific capacity and good cycling performance at room temperature within the potential window from 3.0 V to 0.01 V (versus Li+/Li) at current density of 100 mAg-1. The achieved initial discharge capacity was 1080 mAhg-1, and 786 mAhg-1 was retained after 170 cycles. Furthermore, the amorphous WS2/C composite exhibited a lower charge/discharge plateau than bare WS2, which is more beneficial for use as an anode. The cyclic voltammetry and AC impedance testing further confirmed the change in the plateau and the decrease in the charge transfer resistance in the WS2/C composite. The chemical formation process and the electrochemical mechanism of the WS2/C composite are also presented. The amorphous WS2/C composite can be used as a new anode material for future applications.

  5. Influence of anode material on the electrochemical oxidation of 2-naphthol Part 1. Cyclic voltammetry and potential step experiments

    Energy Technology Data Exchange (ETDEWEB)

    Panizza, M.; Cerisola, G

    2003-10-15

    The anodic oxidation of 2-naphthol has been studied by cyclic voltammetry and chronoamperometry, using a range of electrode materials such as Ti-Ru-Sn ternary oxide, lead dioxide and boron-doped diamond (BDD) anodes. The results show that polymeric films, which cause electrode fouling, are formed during oxidation in the potential region of supporting electrolyte stability. IR spectroscopy verified the formation of this organic film. While the Ti-Ru-Sn ternary oxide surface cannot be reactivated, PbO{sub 2} and BDD can be restored to their initial activity by simple anodic treatment in the potential region of electrolyte decomposition. In fact, during the polarization in this region, complex oxidation reactions leading to the complete incineration of polymeric materials can take place on these electrodes due to electrogenerated hydroxyl radicals. Moreover, it was found that BDD deactivation was less pronounced and its reactivation was faster than that of the other electrodes.

  6. Influence of anode material on the electrochemical oxidation of 2-naphthol Part 1. Cyclic voltammetry and potential step experiments

    International Nuclear Information System (INIS)

    Panizza, M.; Cerisola, G.

    2003-01-01

    The anodic oxidation of 2-naphthol has been studied by cyclic voltammetry and chronoamperometry, using a range of electrode materials such as Ti-Ru-Sn ternary oxide, lead dioxide and boron-doped diamond (BDD) anodes. The results show that polymeric films, which cause electrode fouling, are formed during oxidation in the potential region of supporting electrolyte stability. IR spectroscopy verified the formation of this organic film. While the Ti-Ru-Sn ternary oxide surface cannot be reactivated, PbO 2 and BDD can be restored to their initial activity by simple anodic treatment in the potential region of electrolyte decomposition. In fact, during the polarization in this region, complex oxidation reactions leading to the complete incineration of polymeric materials can take place on these electrodes due to electrogenerated hydroxyl radicals. Moreover, it was found that BDD deactivation was less pronounced and its reactivation was faster than that of the other electrodes

  7. Electrodeposited gold nanoparticles on carbon nanotube-textile: Anode material for glucose alkaline fuel cells

    KAUST Repository

    Pasta, Mauro; Hu, Liangbing; La Mantia, Fabio; Cui, Yi

    2012-01-01

    In the present paper we propose a new anode material for glucose-gluconate direct oxidation fuel cells prepared by electrodepositing gold nanoparticles onto a conductive textile made by conformally coating single walled carbon nanotubes (SWNT) on a polyester textile substrate. The electrodeposition conditions were optimized in order to achieve a uniform distribution of gold nanoparticles in the 3D porous structure of the textile. On the basis of previously reported studies, the reaction conditions (pH, electrolyte composition and glucose concentration) were tuned in order to achieve the highest oxidation rate, selectively oxidizing glucose to gluconate. The electrochemical characterization was carried out by means of cyclic voltammetry. © 2012 Elsevier B.V. All rights reserved.

  8. Electrodeposited gold nanoparticles on carbon nanotube-textile: Anode material for glucose alkaline fuel cells

    KAUST Repository

    Pasta, Mauro

    2012-06-01

    In the present paper we propose a new anode material for glucose-gluconate direct oxidation fuel cells prepared by electrodepositing gold nanoparticles onto a conductive textile made by conformally coating single walled carbon nanotubes (SWNT) on a polyester textile substrate. The electrodeposition conditions were optimized in order to achieve a uniform distribution of gold nanoparticles in the 3D porous structure of the textile. On the basis of previously reported studies, the reaction conditions (pH, electrolyte composition and glucose concentration) were tuned in order to achieve the highest oxidation rate, selectively oxidizing glucose to gluconate. The electrochemical characterization was carried out by means of cyclic voltammetry. © 2012 Elsevier B.V. All rights reserved.

  9. High capacity Si/DC/MWCNTs nanocomposite anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhou Zhibin; Xu Yunhua; Liu Wengang; Niu Libin

    2010-01-01

    Nanocomposites comprising nanocrystal silicon (Si), disordered carbon (DC), and multi-walled carbon nanotubes (MWCNTs) - denoted as Si/DC/MWCNTs - have been prepared by pyrolyzing the phenol-formaldehyde resin (PFR) mixed with Si and MWCNTs. This nanocomposite anode material showed a discharge capacity of 1216 mAh/g in the first cycle, and a charge capacity of 711 mAh/g after 20 charge-discharge, much higher than that of Si/DC composite. It can be observed that Si particles wrapped in MWCNTs were homogeneously embedded into the matrix of the DC. The improved electrochemical performance is hypothesized to be mainly attributed to the morphology stability of the composite due to the excellent resiliency and distinct electric conductivity of the MWCNTs.

  10. Nb2O5 hollow nanospheres as anode material for enhanced performance in lithium ion batteries

    International Nuclear Information System (INIS)

    Sasidharan, Manickam; Gunawardhana, Nanda; Yoshio, Masaki; Nakashima, Kenichi

    2012-01-01

    Graphical abstract: Nb 2 O 5 hollow nanosphere constructed electrode delivers high capacity of 172 mAh g −1 after 250 cycles and maintains structural integrity and excellent cycling stability. Highlights: ► Nb 2 O 5 hollow nanospheres synthesis was synthesized by soft-template. ► Nb 2 O 5 hollow nanospheres were investigated as anode material in Li-ion battery. ► Nanostructured electrode delivers high capacity of 172 mAh g −1 after 250 cycles. ► The electrode maintains the structural integrity and excellent cycling stability. ► Nanosized shell domain facilitates fast lithium intercalation/deintercalation. -- Abstract: Nb 2 O 5 hollow nanospheres of average diameter ca. ∼29 nm and hollow cavity size ca. 17 nm were synthesized using polymeric micelles with core–shell–corona architecture under mild conditions. The hollow particles were thoroughly characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermal (TG/DTA) and nitrogen adsorption analyses. Thus obtained Nb 2 O 5 hollow nanospheres were investigated as anode materials for lithium ion rechargeable batteries for the first time. The nanostructured electrode delivers high capacity of 172 mAh g −1 after 250 cycles of charge/discharge at a rate of 0.5 C. More importantly, the hollow particles based electrodes maintains the structural integrity and excellent cycling stability even after exposing to high current density 6.25 A g −1 . The enhanced electrochemical behavior is ascribed to hollow cavity coupled with nanosized Nb 2 O 5 shell domain that facilitates fast lithium intercalation/deintercalation kinetics.

  11. Multi-walled carbon nanotube/SnO2 nanocomposite: a novel anode material for microbial fuel cells

    International Nuclear Information System (INIS)

    Mehdinia, Ali; Ziaei, Ehsan; Jabbari, Ali

    2014-01-01

    Nanocomposit of multi-walled carbon nanotubes and tin oxide (MWCNTs/SnO 2 ) was used as an anode material in Microbial fuel cells (MFCs). The anode was constructed by coating of the nanocomposits on the glassy carbon electrode (GCE). The MWCNTs-SnO 2 /GCE showed the highest electrochemical performance as compared to MWCNT/GCE and bare GCE anodes. MWCNTs-SnO 2 /GCE, MWCNT/GCE and bare GCE anodes showed maximum power densities of 1421 mWm −2 , 699 mW m −2 and 457 mW m −2 , respectively. The electrodes were characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The electrochemical properties of the MFC have been investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). High conductivity and large unique surface area extremely enhanced the charge transfer efficiency and the growth of bacterial biofilm on the electrode surface in MFC. Comparison of the power density of the proposed MFC with the other one in the literature showed that the MWCNTs/SnO 2 nanocomposit was a desirable anode material for the MFCs

  12. Characteristics from Recycled of Zinc Anode used as a Corrosion Preventing Material on Board Ship

    Science.gov (United States)

    Barokah, B.; Semin, S.; Kaligis, D. D.; Huwae, J.; Fanani, M. Z.; Rompas, P. T. D.

    2018-02-01

    The objective of this research is to obtain the values of chemical composition, electrochemical potential and electrochemical efficiency. Methods used were experiment with physical tests conducted in metallurgical laboratory and DNV-RP-B401 cathode protection design DNV (Det Norske Veritas) standard. The results showed that the composition of chemical as Zinc (Zn), Aluminium, Cadmium, Plumbumb, Copper and Indium is suitable of standard. The values of electrochemical potential and electrochemical efficiency were respectively. However it can be concluded that the normal meaning of recycled zinc anode with increasing melting temperature can produce zinc anode better than original zinc anode and can be used as cathode protection on board ships. This research can assist in the management of used zinc anode waste, the supply of zinc anodes for consumers at relatively low prices, and recommendations of using zinc anodes for the prevention of corrosion on board ship.

  13. Facile synthesis of SnO2 nanocrystals anchored onto graphene nanosheets as anode materials for lithium-ion batteries.

    Science.gov (United States)

    Zhang, Yanjun; Jiang, Li; Wang, Chunru

    2015-08-21

    A SnO2/graphene nanocomposite was prepared via a facile solvothermal process using stannous octoate as a Sn source. The as-prepared SnO2/graphene nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, a long cycle life and a good rate capability when used as an anode material for lithium-ion batteries.

  14. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Madhumita; Sreena, K.P.; Vinayan, B.P.; Ramaprabhu, S., E-mail: ramp@iitm.ac.in

    2015-01-15

    Graphical abstract: Boron doped graphene (B-G), synthesized by simple hydrogen induced reduction technique using boric acid as boron precursor, have more uneven surface as a result of smaller bonding distance of boron compared to carbon, showed high capacity and high rate capability compared to pristine graphene as an anode material for Li ion battery application. - Abstract: The present work demonstrates a facile route for the large-scale, catalyst free, and green synthesis approach of boron doped graphene (B-G) and its use as high performance anode material for Li ion battery (LIB) application. Boron atoms were doped into graphene framework with an atomic percentage of 5.93% via hydrogen induced thermal reduction technique using graphite oxide and boric acid as precursors. Various characterization techniques were used to confirm the boron doping in graphene sheets. B-G as anode material shows a discharge capacity of 548 mAh g{sup −1} at 100 mA g{sup −1} after 30th cycles. At high current density value of 1 A g{sup −1}, B-G as anode material enhances the specific capacity by about 1.7 times compared to pristine graphene. The present study shows a simplistic way of boron doping in graphene leading to an enhanced Li ion adsorption due to the change in electronic states.

  15. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery

    International Nuclear Information System (INIS)

    Sahoo, Madhumita; Sreena, K.P.; Vinayan, B.P.; Ramaprabhu, S.

    2015-01-01

    Graphical abstract: Boron doped graphene (B-G), synthesized by simple hydrogen induced reduction technique using boric acid as boron precursor, have more uneven surface as a result of smaller bonding distance of boron compared to carbon, showed high capacity and high rate capability compared to pristine graphene as an anode material for Li ion battery application. - Abstract: The present work demonstrates a facile route for the large-scale, catalyst free, and green synthesis approach of boron doped graphene (B-G) and its use as high performance anode material for Li ion battery (LIB) application. Boron atoms were doped into graphene framework with an atomic percentage of 5.93% via hydrogen induced thermal reduction technique using graphite oxide and boric acid as precursors. Various characterization techniques were used to confirm the boron doping in graphene sheets. B-G as anode material shows a discharge capacity of 548 mAh g −1 at 100 mA g −1 after 30th cycles. At high current density value of 1 A g −1 , B-G as anode material enhances the specific capacity by about 1.7 times compared to pristine graphene. The present study shows a simplistic way of boron doping in graphene leading to an enhanced Li ion adsorption due to the change in electronic states

  16. Superior cycle performance of Sn-C/graphene nanocomposite as an anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liang Shuzhao; Zhu Xuefeng; Lian Peichao; Yang Weishen; Wang Haihui

    2011-01-01

    A novel anode material for lithium-ion batteries, tin nanoparticles coated with carbon embedded in graphene (Sn-C/graphene), was fabricated by hydrothermal synthesis and subsequent annealing. The structure and morphology of the nanocomposite were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The size of the Sn-C nanoparticles is about 50-200 nm. The reversible specific capacity of the nanocomposite is ∼662 mAh g -1 at a specific current of 100 mA g -1 after 100 cycles, even ∼417 mAh g -1 at the high current of 1000 mA g -1 . These results indicate that Sn-C/graphene possesses superior cycle performance and high rate capability. The enhanced electrochemical performances can be ascribed to the characteristic structure of the nanocomposite with both of the graphene and carbon shells, which buffer the volume change of the metallic tin and prevent the detachment and agglomeration of pulverized tin. - Graphical abstract: Tin nanoparticles coated with carbon embedded in graphene have been successfully fabricated by hydrothermal synthesis and subsequent annealing. This nanocomposite as an anode material for lithium-ion batteries exhibits superior cycle performance. Highlights: → A novel Sn-C/graphene nanocomposite as an anode material for lithium-ion batteries. → Carbon coating and graphene improve the cycle performance of the Sn anode material. → Possess large capacity, superior cycle performance, and high rate capability.

  17. Nanoparticle Decorated Ultrathin Porous Nanosheets as Hierarchical Co3O4 Nanostructures for Lithium Ion Battery Anode Materials

    DEFF Research Database (Denmark)

    Mujtaba, Jawayria; Sun, Hongyu; Huang, Guoyong

    2016-01-01

    We report a facile synthesis of a novel cobalt oxide (Co3O4) hierarchical nanostructure, in which crystalline core-amorphous shell Co3O4 nanoparticles with a bimodal size distribution are uniformly dispersed on ultrathin Co3O4 nanosheets. When tested as anode materials for lithium ion batteries...

  18. Spongelike Nanosized Mn 3 O 4 as a High-Capacity Anode Material for Rechargeable Lithium Batteries

    KAUST Repository

    Gao, Jie; Lowe, Michael A.; Abruña, Héctor D.

    2011-01-01

    Mn3O4 has been investigated as a high-capacity anode material for rechargeable lithium ion batteries. Spongelike nanosized Mn 3O4 was synthesized by a simple precipitation method and characterized by powder X-ray diffraction, Raman scattering

  19. Synthesis and electrochemical performances of amorphous carbon-coated Sn Sb particles as anode material for lithium-ion batteries

    Science.gov (United States)

    Wang, Zhong; Tian, Wenhuai; Liu, Xiaohe; Yang, Rong; Li, Xingguo

    2007-12-01

    The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use.

  20. The effects of anode material type on the optoelectronic properties of electroplated CdTe thin films and the implications for photovoltaic application

    Science.gov (United States)

    Echendu, O. K.; Dejene, B. F.; Dharmadasa, I. M.

    2018-03-01

    The effects of the type of anode material on the properties of electrodeposited CdTe thin films for photovoltaic application have been studied. Cathodic electrodeposition of two sets of CdTe thin films on glass/fluorine-doped tin oxide (FTO) was carried out in two-electrode configuration using graphite and platinum anodes. Optical absorption spectra of films grown with graphite anode displayed significant spread across the deposition potentials compared to those grown with platinum anode. Photoelectrochemical cell result shows that the CdTe grown with graphite anode became p-type after post-deposition annealing with prior CdCl2 treatment, as a result of carbon incorporation into the films, while those grown with platinum anode remained n-type after annealing. A review of recent photoluminescence characterization of some of these CdTe films reveals the persistence of a defect level at (0.97-0.99) eV below the conduction band in the bandgap of CdTe grown with graphite anode after annealing while films grown with platinum anode showed the absence of this defect level. This confirms the impact of carbon incorporation into CdTe. Solar cell made with CdTe grown with platinum anode produced better conversion efficiency compared to that made with CdTe grown using graphite anode, underlining the impact of anode type in electrodeposition.

  1. Extraction of pulsed ion beams from an anode covered with liquid material

    International Nuclear Information System (INIS)

    Kitamura, Akira; Yano, Syukuro

    1982-01-01

    In order to extend the life of anodes of pulsed ion diodes, a trial was made to extract ions from a plasma created by surface flashover on the oil-covered anode. The diode with this anode worked well as a so-called pinched electron beam diode. Production of proton beams of 10 kA with energies of about 400 keV was confirmed by measurements with biased ion collectors and those of prompt γ-rays from the reaction 19 F(p,γα) 16 O. Substantial reduction of damage and substantial extension of the life of the anode disc were realized. (author)

  2. Electrical and Mechanical Performance of Carbon Fiber-Reinforced Polymer Used as the Impressed Current Anode Material

    Directory of Open Access Journals (Sweden)

    Ji-Hua Zhu

    2014-07-01

    Full Text Available An investigation was performed by using carbon fiber-reinforced polymer (CFRP as the anode material in the impressed current cathodic protection (ICCP system of steel reinforced concrete structures. The service life and performance of CFRP were investigated in simulated ICCP systems with various configurations. Constant current densities were maintained during the tests. No significant degradation in electrical and mechanical properties was found for CFRP subjected to anodic polarization with the selected applied current densities. The service life of the CFRP-based ICCP system was discussed based on the practical reinforced concrete structure layout.

  3. Electrical and Mechanical Performance of Carbon Fiber-Reinforced Polymer Used as the Impressed Current Anode Material.

    Science.gov (United States)

    Zhu, Ji-Hua; Zhu, Miaochang; Han, Ningxu; Liu, Wei; Xing, Feng

    2014-07-24

    An investigation was performed by using carbon fiber-reinforced polymer (CFRP) as the anode material in the impressed current cathodic protection (ICCP) system of steel reinforced concrete structures. The service life and performance of CFRP were investigated in simulated ICCP systems with various configurations. Constant current densities were maintained during the tests. No significant degradation in electrical and mechanical properties was found for CFRP subjected to anodic polarization with the selected applied current densities. The service life of the CFRP-based ICCP system was discussed based on the practical reinforced concrete structure layout.

  4. Electrodeposited Germanium/Carbon Composite as an Anode Material for Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Kim, Sang-Wan; Ngo, Duc Tung; Heo, Jaeyeong; Park, Choong-Nyeon; Park, Chan-Jin

    2017-01-01

    Highlights: • Electrodeposition was applied for the synthesis of Ge/C composite. • High coulombic efficiency of ∼85% in the first cycle was attained for Ge/C composite. • Full cell of Ge/C-LiCoO 2 exhibits excellent electrochemical performance, without pre-lithiation of Ge/C. - Abstract: We demonstrate the synthesis of nano Ge/C composite using a facile and cost-effective electrochemical deposition method, and its application as an anode material in Li-ion batteries. Nano Ge/C composite is electrodeposited directly on Cu foil in ethylene glycol containing GeCl 4 and carbon black. The Ge particles with an average size of ∼20 nm are uniformly covered with carbon. Compared with the pure Ge electrode, the Ge/C electrode exhibits a higher first reversible capacity of 1224 mA g −1 , and maintains a capacity of 1095 mAh g −1 at 0.1C over 50 cycles. Even at the high rate of 2C, the capacity of the Ge/C electrode is still high at 972 mAh g −1 . The presence of carbon black and pores in the Ge/C electrode improves the conductivity of the electrode, and mitigates the stress inside the electrode by supplying buffer volume, leading to the enhanced electrochemical characteristics of the electrode. Further, the full Li-ion cell composed of Ge/C anode and LiCoO 2 cathode exhibits good cyclability, rate capability, and coulombic efficiency.

  5. Tantalum carbide as a novel support material for anode electrocatalysts in polymer electrolyte membrane water electrolysers

    DEFF Research Database (Denmark)

    Polonský, Jakub; Petrushina, Irina; Christensen, Erik

    2012-01-01

    Iridium oxide (IrO2) currently represents a state of the art electrocatalyst for anodic oxygen evolution. Since iridium is both expensive and scarce, the future practical application of this process makes it essential to reduce IrO2 loading on the anodes of PEM water electrolysers. In the present...

  6. Ultrathin Li4Ti5O12 nanosheets as anode materials for lithium and sodium storage

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xuyong; Zou, Hailin; Xiang, Hongfa; Guo, Xin; Zhou, Tianpei; Wu, Yucheng; Xu, Wu; Yan, Pengfei; Wang, Chong M.; Zhang, Jiguang; Yu, Yan

    2016-06-13

    Two-dimensional Li4Ti5O12 (LTO) nanosheets are prepared via a surfactant assisted hydrothermal process. Polyether (P123) was added as the surfactant to modify the surface and control the microstructure of the hydrothermal products and thus affect the electrochemical performance of the as-synthesized LTO anode material. XRD results show that the addition of P123 can restrain the growth of Li2TiO3 during the hydrothermal process, thus affecting the morphology and enhancing the rate performance of the final products. With the addition of P123, the growth of LTO can be restrained and ultrathin LTO nanosheets can be obtained after high temperature sintering, which is beneficial for the charge transfer and Li+ ion diffusion. The rate performance of these two different LTO materials is very different because of their differences in phase composition and fine morphology. The P123-assisted nanostructured LTO sample (P-LTO) shows a much higher rate capability than the LTO sample without P123, with over 130 mAh g-1 capacity retained at the charge-discharge rate of 64C when used in a lithium battery. For intercalation of larger size Na+ ions, the P-LTO still exhibit a capacity of 115 mAh g-1 at a charge (de-sodiation process) rate of 10C and maintains 96% capacity after 400 cycles

  7. Corrosion rate of construction materials in hot phosphoric acid with the contribution of anodic polarization

    Energy Technology Data Exchange (ETDEWEB)

    Kouril, M. [Institute of Chemical Technology, Technicka 5, 166 28 Prague (Czech Republic); Christensen, E. [Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby (Denmark); Eriksen, S.; Gillesberg, B. [Tantaline A/S, Nordborgvej 81, 6430 Nordborg (Denmark)

    2012-04-15

    The paper is focused on selection of a proper material for construction elements of water electrolysers, which make use of a 85% phosphoric acid as an electrolyte at temperature of 150 C and which might be loaded with anodic polarization up to 2.5 V versus a saturated Ag/AgCl electrode (SSCE). Several grades of stainless steels were tested as well as tantalum, niobium, titanium, nickel alloys and silicon carbide. The corrosion rate was evaluated by means of mass loss at free corrosion potential as well as under various levels of polarization. The only corrosion resistant material in 85% phosphoric acid at 150 C and at polarization of 2.5 V/SSCE is tantalum. In that case, even a gentle cathodic polarization is harmful in such an acidic environment. Hydrogen reduction leads to tantalum hydride formation, to loss of mechanical properties and to complete disintegration of the metal. Contrary to tantalum, titanium is free of any corrosion resistance in hot phosphoric acid. Its corrosion rate ranges from tens of millimetres to metres per year depending on temperature of the acid. Alloy bonded tantalum coating was recognized as an effective corrosion protection for both titanium and stainless steel. Its serviceability might be limited by slow dissolution of tantalum that is in order of units of mm/year. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Electrochemical characteristics of bundle-type silicon nanorods as an anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Nguyen, Si Hieu; Lim, Jong Choo; Lee, Joong Kee

    2012-01-01

    Highlights: ► A metal-assisted chemical etching technique was performed on Si thin films. ► The etching process resulted in the formation of bundle-type Si nanorods. ► The morphology of Si electrodes closely relate to electrochemical characteristics. - Abstract: In order to prepare bundle-type silicon nanorods, a silver-assisted chemical etching technique was used to modify a 1.6 μm silicon thin film, which was deposited on Cu foil by Electron Cyclotron Resonance Plasma Enhanced Chemical Vapor Deposition. The bundle-type silicon nanorods on Cu foil were employed as anodes for a lithium secondary battery, without further treatment. The electrochemical characteristics of the pristine silicon thin film anodes and the bundle-type silicon nanorod anodes are different from one another. The electrochemical performance of the bundle-type silicon nanorod anodes exceeded that of the pristine Si thin film anodes. The specific capacity of the bundle-type silicon nanorod anodes is much higher than 3000 mAh g −1 at the first charge (Li insertion) cycle. The coulombic efficiency of bundle-type silicon anodes was stable at more than 97%, and the charge capacity remained at 1420 mAh g −1 , even after 100 cycles of charging and discharging. The results from the differential voltage analysis showed a side reaction at around 0.44–0.5 V, and the specific potential of this side reaction decreased after each cycle. The apparent diffusion coefficients of the two anode types were in the range of 10 −13 –10 −16 cm 2 s −1 in the first cycle. In subsequent charge cycles, these values for the silicon thin film anodes and the silicon nanorod bundle anode were approximately 10 −12 –10 −14 and 10 −13 –10 −15 cm 2 s −1 , respectively.

  9. Porous Silicon–Carbon Composite Materials Engineered by Simultaneous Alkaline Etching for High-Capacity Lithium Storage Anodes

    International Nuclear Information System (INIS)

    Sohn, Myungbeom; Kim, Dae Sik; Park, Hyeong-Il; Kim, Jae-Hun; Kim, Hansu

    2016-01-01

    Highlights: • A porous Si–C anode is obtained by alkaline etching of a non-porous Si–C composite. • The pores in the carbon frame are created by simultaneous etching of Si and carbon. • The cycle life is greatly improved after the alkaline treatment. • The porous Si–C composite electrode shows high dimensional stability during cycling. - Abstract: Porous silicon–carbon (Si–C) composite materials have attracted a great deal of attention as high-performance anode materials for Li-ion batteries (LIBs), but their use suffers from the complex and limited synthetic routes for their preparation. Herein we demonstrate a scalable and nontoxic method to synthesize porous Si–C composite materials by means of simultaneous chemical etching of Si and carbon phases using alkaline solution. The resulting porous Si–C composite material showed greatly improved cycle performance, good rate capability, and high dimensional stability during cycling. Porous Si–C electrode showed an expansion of the height by about 22% after the first lithiation and only 16% after the first cycle. The material synthesis concept and scalable simultaneous etching approach presented here represent a means of improving the electrochemical properties of Si-based porous anode materials for use in commercial LIBs.

  10. Tin-based anode materials with well-designed architectures for next-generation lithium-ion batteries

    Science.gov (United States)

    Liu, Lehao; Xie, Fan; Lyu, Jing; Zhao, Tingkai; Li, Tiehu; Choi, Bong Gill

    2016-07-01

    Tin (Sn) has long been considered to be a promising replacement anode material for graphite in next-generation lithium-ion batteries (LIBs), because of its attractive comprehensive advantages of high gravimetric/volumetric capacities, environmental benignity, low cost, high safety, etc. However, Sn-based anodes suffer from severe capacity fading resulting mainly from their large volume expansions/contractions during lithiation/delithiation and subsequent pulverization, coalescence, delamination from current collectors, and poor Li+/electron transport. To circumvent these issues, a number of extraordinary architectures from nanostructures to anchored, layered/sandwich, core-shell, porous and even integrated structures have been exquisitely constructed to enhance the cycling performance. To cater for the rapid development of Sn-based anodes, we summarize the advances made in structural design principles, fabrication methods, morphological features and battery performance with focus on material structures. In addition, we identify the associated challenges and problems presented by recently-developed anodes and offer suggestions and perspectives for facilitating their practical implementations in next-generation LIBs.

  11. Interweaved Si@C/CNTs and CNFs composites as anode materials for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Miao [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Hou, Xianhua, E-mail: houxh@scnu.edu.cn [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Engineering Research Center of Materials and Technology for Electrochemical Energy Storage Ministry of Education, Guangzhou 510006 (China); Wang, Jie; Li, Min [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Hu, Shejun [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Engineering Research Center of Materials and Technology for Electrochemical Energy Storage Ministry of Education, Guangzhou 510006 (China); Shao, Zongping [Nanjing University of Technology, College of Chemistry and Chemical Engineering, Nanjing 210009 (China); Liu, Xiang [Institute of Advanced Materials, Nanjing University of Technology, Nanjing 210009 (China)

    2014-03-05

    Graphical abstract: In summary, a serious of high-energy wet ball milling, closed spray drying and subsequent chemical vapor deposition methods were introduced successfully to fabricated novel Si@C/CNTs and CNFs composites with carbon nanotubes and carbon nanofibres interweaved with carbon coated silicon spherical composites as superior anodes in lithium-ion batteries. The core-shell structure of Si@C composites can accommodate the volume change of electrode during charge and discharge. Meanwhile, the citric acid pyrolyzed carbon was coated on the surface of the silicon perfectly and constructs the connection network of nano silicon particles. Moreover, the carbon nanotubes and carbon nanofibres, which is interweaved with nano-silicon, also allows high electrical conductivity, improved solid–electrolyte interface formation and structural integrity. Compared with pure silicon and Si@C composites, the novel Si@C/CNTs and CNFs composites had the best combination of reversible capacity and cycleablity, and this anode materials exhibited excellent electrochemical performance. The Si/C composite had a fairly high initial discharge capacity of 2168.7 mA h g{sup −1} with an efficiency of 73%, and the discharge capacity of the 50th cycle maintained surprisingly of 1194.9 mA h g{sup −1}. Meanwhile, spray drying and chemical vapor deposition are environmentally friendly, economical, and relatively high-yield method for the production of the Si@C/CNTs and CNFs composites in large quantities. Consequently, the novel Si@C/CNTs and CNFs composite electrodes may be a potential alternative to graphite for high energy density lithium ion batteries. Highlights: • The core/shell structured silicon/carbon composites were prepared by a facile way. • The as-prepared Si@C/CNTs and CNFs composites shows excellent electrochemical performance. • The preparation method has mild experiment conditions and high production rate. • The structure benefited electronic transfer and

  12. Anthraquinone derivative as high-performance anode material for sodium-ion batteries using ether-based electrolytes

    Directory of Open Access Journals (Sweden)

    Linqin Mu

    2018-01-01

    Full Text Available Organic materials, especially the carbonyl compounds, are promising anode materials for room temperature sodium-ion batteries owing to their high reversible capacity, structural diversity as well as eco-friendly synthesis from bio-mass. Herein, we report a novel anthraquinone derivative, C14H6O4Na2 composited with carbon nanotube (C14H6O4Na2-CNT, used as an anode material for sodium-ion batteries in ether-based electrolyte. The C14H6O4Na2-CNT electrode delivers a reversible capacity of 173 mAh g−1 and an ultra-high initial Coulombic efficiency of 98% at the rate of 0.1 C. The capacity retention is 82% after 50 cycles at 0.2 C and a good rate capability is displayed at 2 C. Furthermore, the average Na insertion voltage of 1.27 V vs. Na+/Na makes it a unique and safety battery material, which would avoid Na plating and formation of solid electrolyte interface. Our contribution provides new insights for designing developed organic anode materials with high initial Coulombic efficiency and improved safety capability for sodium-ion batteries.

  13. Hydroxylamine hydrochloride: A novel anode material for high capacity lithium-ion batteries

    Science.gov (United States)

    Shao, Lianyi; Shu, Jie; Lao, Mengmeng; Lin, Xiaoting; Wu, Kaiqiang; Shui, Miao; Li, Peng; Long, Nengbing; Ren, Yuanlong

    2014-12-01

    H3NOHCl is used for the first time as anode material for lithium-ion batteries. Electrochemical results show that H3NOHCl with particle size of 4-12 μm can deliver an initial charge capacity of 1018.6 mAh g-1, which is much higher than commercial graphite. After 30 cycles, the reversible capacity can be kept at 676.1 mAh g-1 at 50 mA g-1. Up to 50 cycles, H3NOHCl still maintains a lithium storage capacity of 368.9 mAh g-1. Even cycled at 200 mA g-1, H3NOHCl can deliver a charge capacity of 715.7 mAh g-1. It suggests that H3NOHCl has high lithium storage capacity, excellent cycling stability and outstanding rate performance. Besides, the electrochemical reaction between H3NOHCl and Li is also investigated by various ex-situ techniques. It can be found that H3NOHCl irreversibly decomposes into Li3N and LiCl during the initial discharge process and LiNO2 can be formed after a reverse charge process.

  14. Influence of anode material on the electrochemical oxidation of 2-naphthol Part 2. Bulk electrolysis experiments

    Energy Technology Data Exchange (ETDEWEB)

    Panizza, M.; Cerisola, G

    2004-08-15

    The electrochemical oxidation of 2-naphthol has been studied by galvanostatic electrolysis, using a range of electrode materials such as lead dioxide, boron-doped diamond (BDD) and Ti-Ru-Sn ternary oxide anodes. The influence of some operating parameters, such as current density, flow-rate and chloride concentration on naphthol oxidation has been investigated in order to find the optimum experimental conditions. Measurements of chemical oxygen demand, HPLC and total organic carbon have been used to follow the oxidation. The experimental data indicate that on PbO{sub 2} and BDD, naphthol oxidation takes place by reaction with electrogenerated hydroxyl radicals and is favoured by low current density and high flow-rate. On the contrary, on a Ti-Ru-Sn ternary oxide the mineralisation of naphthol occurs only in the presence of chloride ions that act as redox mediators and COD removal is affected by chloride concentration and is not significantly influenced by the current density and mass-transfer coefficient. From a comparison of the results of the three electrodes it has been found that boron-doped diamond gives a faster oxidation rate and better current efficiency.

  15. Influence of anode material on the electrochemical oxidation of 2-naphthol. Pt. 2. Bulk electrolysis experiments

    Energy Technology Data Exchange (ETDEWEB)

    Panizza, M.; Cerisola, G. [Genoa Univ. (Italy). Dept. of Chemical and Process Engineering

    2004-08-15

    The electrochemical oxidation of 2-naphthol has been studied by galvanostatic electrolysis, using a range of electrode materials such as lead dioxide, boron-doped diamond (BDD) and Ti-Ru-Sn ternary oxide anodes. The influence of some operating parameters, such as current density, flow-rate and chloride concentration on naphthol oxidation has been investigated in order to find the optimum experimental conditions. Measurements of chemical oxygen demand, HPLC and total organic carbon have been used to follow the oxidation. The experimental data indicate that on PbO{sub 2} and BDD, naphthol oxidation takes place by reaction with electrogenerated hydroxyl radicals and is favoured by low current density and high flow-rate. On the contrary, on a Ti-Ru-Sn ternary oxide the mineralisation of naphthol occurs only in the presence of chloride ions that act as redox mediators and COD removal is affected by chloride concentration and is not significantly influenced by the current density and mass-transfer coefficient. From a comparison of the results of the three electrodes it has been found that boron-doped diamond gives a faster oxidation rate and better current efficiency. (author)

  16. Influence of anode material on the electrochemical oxidation of 2-naphthol Part 2. Bulk electrolysis experiments

    International Nuclear Information System (INIS)

    Panizza, M.; Cerisola, G.

    2004-01-01

    The electrochemical oxidation of 2-naphthol has been studied by galvanostatic electrolysis, using a range of electrode materials such as lead dioxide, boron-doped diamond (BDD) and Ti-Ru-Sn ternary oxide anodes. The influence of some operating parameters, such as current density, flow-rate and chloride concentration on naphthol oxidation has been investigated in order to find the optimum experimental conditions. Measurements of chemical oxygen demand, HPLC and total organic carbon have been used to follow the oxidation. The experimental data indicate that on PbO 2 and BDD, naphthol oxidation takes place by reaction with electrogenerated hydroxyl radicals and is favoured by low current density and high flow-rate. On the contrary, on a Ti-Ru-Sn ternary oxide the mineralisation of naphthol occurs only in the presence of chloride ions that act as redox mediators and COD removal is affected by chloride concentration and is not significantly influenced by the current density and mass-transfer coefficient. From a comparison of the results of the three electrodes it has been found that boron-doped diamond gives a faster oxidation rate and better current efficiency

  17. Post oxygen treatment characteristics of coke as an anode material for Li-ion batteries.

    Science.gov (United States)

    Kim, Jae-Hun; Park, Min-Sik; Jo, Yong Nam; Yu, Ji-Sang; Jeong, Goojin; Kim, Young-Jun

    2013-05-01

    The effect of a oxygen treatment on the electrochemical characteristics of a soft carbon anode material for Li-ion batteries was investigated. After a coke carbonization process at 1000 degrees C in an argon atmosphere, the samples were treated under a flow of oxygen gas to obtain a mild oxidation effect. After this oxygen treatment, the coke samples exhibited an improved initial coulombic efficiency and cycle performance as compared to the carbonized sample. High-resolution transmission electron microscopy revealed that the carbonized cokes consisted of disordered and nanosized graphene layers and the surface of the modified carbon was significantly changed after the treatment. The chemical state of the cokes was analyzed using X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The enhanced electrochemical properties of the surface modified cokes could be attributed to the mild oxidation effect induced by the oxygen treatment. The mild oxidation process could have led to the elimination of surface imperfections and the reinforcement of a solid electrolyte interphase film, which resulted in the improved electrochemical characteristics.

  18. Electrochemical performance of arc-produced carbon nanotubes as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yang, Shubin; Song, Huaihe; Chen, Xiaohong; Okotrub, A.V.; Bulusheva, L.G.

    2007-01-01

    The effects of etching process on the morphology, structure and electrochemical performance of arc-produced multiwalled carbon nanotubes (CNTs) as anode material for lithium-ion batteries were systematically investigated by TEM and a variety of electrochemical testing techniques. It was found that the etched CNTs exhibited four times higher reversible capacity than that of raw CNTs, and possessed excellent cyclability with almost 100% capacity retention after 30 cycles. The kinetic properties of three kinds of CNTs electrodes involving the pristine (CNTs-1), etched (CNTs-2) as well as etch-carbonized samples (CNTs-3) were characterized via ac impedance measurement. It was indicated that, after 30 cycles the exchange current density i 0 of etched CNTs ((7.6-7.8) x 10 -3 A cm -2 ) was higher than that of the raw CNTs (5.9 x 10 -3 A cm -2 ), suggesting the electrochemical activity of CNTs was enhanced by the etching treatment. The storage characteristics of the CNTs electrodes at room temperature and 50 o C were particularly compared. It was found that the film resistance on CNTs electrode generally tended to become large with the elongation of storage time, especially storage at high temperature. In comparison with CNTs-1 and CNTs-3, CNTs-2 exhibited more distinctly increase of film resistance, which is related with the surface properties

  19. GeO2 decorated reduced graphene oxide as anode material of sodium ion battery

    International Nuclear Information System (INIS)

    Qin, Wei; Chen, Taiqiang; Hu, Bingwen; Sun, Zhuo; Pan, Likun

    2015-01-01

    Graphical abstract: Display Omitted -- Abstract: GeO 2 -reduced graphene oxide (RGO) composites were prepared by a simple freeze-drying method. After thermal annealing in N 2 atmosphere at 450 °C for 2 hours, the composites were examined as anode materials of sodium ion batteries for the first time. Their morphology, structure and electrochemical performance were characterized by field-emission scanning electron microscopy, X-ray diffraction, N 2 adsorption-desorption isotherm, cyclic voltammetry and electrochemical impedance spectroscopy, respectively. A maximum specific capacity of 330 mAh g −1 can be achieved after 50 galvanostatic charge-discharge cycles at a current density of 100 mA g −1 by tuning the RGO content in the composites. Even after 650 cycles at a high current density of 1 A g −1 , the specific capacity can still maintain at 153.7 mAh g −1 , demonstrating the excellent Na ion storage properties of the GeO 2 -RGO composites

  20. Novel synthesis of tin oxide/graphene aerogel nanocomposites as anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Wu, Zheyu; Li, Xifei; Tai, Limin; Song, Haoze; Zhang, Yiyan; Yan, Bo; Fan, Linlin; Shan, Hui; Li, Dejun

    2015-01-01

    A novel method of mechanical exfoliation followed by hydrothermal approach was proposed to synthesize the tin oxide/graphene aerogels (SnO 2 /GAs) nanocomposites. Homogeneous distribution of SnO 2 nanocrystals on GAs was confirmed by SEM, XRD and TEM characterization. It was found that optimized exfoliation of the SnS 2 is the key factor to obtain high electrochemical lithiation/delithiation performance of the anodes. The as-prepared SnO 2 /GA nanocomposites exhibited high reversible capacity (up to 1086.7 mAh g −1 after 100 cycles) and excellent cycling stability. The improved rate capability was also obtained, for instance, the reversible capacity at a current density of 800 mA g −1 is over 447.9 mAh g −1 , and then recovered to as high as 784.4 mAh g −1 at a current density of 100 mA g −1 . - Highlights: • A novel approach was employed to synthesize the SnO 2 /GA nanocomposites. • The designed SnO 2 /GAs exhibited high reversible capacity and excellent cycling stability. • The volume change challenge of SnO 2 was markedly alleviated by the GA matrix. • The novel synthesis method can be extended for other materials in lithium ion batteries

  1. Comparison of Lithium-Ion Anode Materials Using an Experimentally Verified Physics-Based Electrochemical Model

    Directory of Open Access Journals (Sweden)

    Rujian Fu

    2017-12-01

    Full Text Available Researchers are in search of parameters inside Li-ion batteries that can be utilized to control their external behavior. Physics-based electrochemical model could bridge the gap between Li+ transportation and distribution inside battery and battery performance outside. In this paper, two commercially available Li-ion anode materials: graphite and Lithium titanate (Li4Ti5O12 or LTO were selected and a physics-based electrochemical model was developed based on half-cell assembly and testing. It is found that LTO has a smaller diffusion coefficient (Ds than graphite, which causes a larger overpotential, leading to a smaller capacity utilization and, correspondingly, a shorter duration of constant current charge or discharge. However, in large current applications, LTO performs better than graphite because its effective particle radius decreases with increasing current, leading to enhanced diffusion. In addition, LTO has a higher activation overpotential in its side reactions; its degradation rate is expected to be much smaller than graphite, indicating a longer life span.

  2. Innovative anode materials and architectured cells for high temperature steam electrolysis operation

    International Nuclear Information System (INIS)

    Ogier, Tiphaine

    2012-01-01

    In order to improve the electrochemical performances of cells for high temperature steam electrolysis (HTSE), innovative oxygen electrode materials have been studied. The compounds Ln_2NiO_4_+_δ (Ln = La, Pr or Nd), Pr_4Ni_3O_1_0_±_δ and La_0_,_6S_r0_,_4Fe_0_,_8Co_0_,_2O_3_-_δ have been selected for their mixed electronic and ionic conductivity. First, their physical and chemical properties have been investigated. Then, the electrodes were shaped on symmetrical half cells,adding a thin ceria-based interlayer between the electrode and the yttria doped zirconia-based electrolyte. These architectured cells lead to low polarization resistances (RP≤ 0.1 Ω.cm"2 at 800 C) as well as reduced anodic over potentials. An electrochemical model has been developed in order to describe and analyze the experimental polarization curves.The electrode with the lower overpotential, i.e. Pr_2NiO_4_+δ, has been selected and characterized into complete cermet-supported cells. Under HTSE operation, at 800 C, a high current density was measured, close to i = -0.9 A.cm"-"2 for a cell voltage equals to 1.3 V, the conversion rate being about 60%. (author) [fr

  3. The electrochemical performance and mechanism of cobalt (II) fluoride as anode material for lithium and sodium ion batteries

    International Nuclear Information System (INIS)

    Tan, Jinli; Liu, Li; Guo, Shengping; Hu, Hai; Yan, Zichao; Zhou, Qian; Huang, Zhifeng; Shu, Hongbo; Yang, Xiukang; Wang, Xianyou

    2015-01-01

    Highlights: •The as-prepared CoF 2 shows excellent electrochemical performance as anode material for lithium ion batteries. •The Li insertion/extraction mechanism of CoF 2 below 1.2 V was firstly proposed. •The electrochemical performance of CoF 2 as anode material in sodium ion batteries was firstly studied. -- Abstract: Cobalt (II) fluoride begins to enter into the horizons of people along with the research upsurge of metal fluorides. It is very significative and theoretically influential to make certain its electrochemical reaction mechanism. In this work, we discover a new and unrevealed reversible interfacial intercalation mechanism reacting below 1.2 V for cobalt (II) fluoride electrode material, which contributes a combined discharge capacity of about 400 mA h g −1 with the formation of SEI film at the initial discharge process. A highly reversible storage capacity of 120 mA h g −1 is observed when the cell is cycled over the voltage of 0.01-1.2 V at 0.2 C, and the low-potential voltage reaction process has a significant impact for the whole electrochemical process. Electrochemical analyses suggest that pure cobalt (II) fluoride shows better electrochemical performance when it is cycled at 3.2-0.01 V compared to the high range (1.0-4.5 V). So, we hold that cobalt (II) fluoride is more suitable to serve as anode material for lithium ion batteries. In addition, we also try to reveal the relevant performance and reaction mechanism, and realize the possibility of cobalt (II) fluoride as anode material for sodium ion batteries

  4. Enhanced electrochemical properties of vanadium-doped titanium niobate as a new anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wen, Xiaoyan; Ma, Chenxiang; Du, Chenqiang; Liu, Jie; Zhang, Xinhe; Qu, Deyang; Tang, Zhiyuan

    2015-01-01

    The Vanadium-doped TiNb 2 O 7 (TNO) samples have been investigated as novel anode active materials for application in lithium-ion batteries. The samples are characterized by X-ray diffraction patterns (XRD), raman spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM), galvanostatic charge-discharge tests, and cyclic voltammetry (CV) tests. The XRD results indicate that V-doping expands the lattice parameters of TiNb 2 O 7 samples and facilitates the enhanced lithium ion diffusion. SEM and TEM results show that lattice expansion caused by V-doping doesn’t significantly change the particle size distribution of TiNb 2 O 7 samples. The electrochemical measurements indicate that the TiNb 1.98 V 0.02 O 7 anode material displays a highly reversible capacity and excellent cycling stability. The initial discharge capacities of TiNb 1.98 V 0.02 O 7 are 298.48 mAh g −1 and 171.99 mAh g −1 at 0.3C and 10C, respectively, indicating that the TiNb 1.98 V 0.02 O 7 material can be utilized as a promising anode material for lithium-ion batteries.

  5. SiOx/C composite from rice husks as an anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Ju, Yanming; Tang, Joel A.; Zhu, Kai; Meng, Yuan; Wang, Chunzhong; Chen, Gang; Wei, Yingjin; Gao, Yu

    2016-01-01

    Highlights: • Rice husks were utilized to prepare SiO x /C as an anode material for lithium ion battery. • SiO x /C composite was prepared by a two-step fire process. • SiO x /C contains low valence silicon owing to thermal treatment at argon/hydrogen atmosphere. • SiO x /C exhibits a high specific capacity of nearly 600 mAh g −1 at 100 mA g −1 current density after 100 cycles. - Abstract: SiO x /C composite material derived directly from agricultural rice husk byproducts through an economically viable and environmentally benign approach has been explored to be used as an anode for rechargeable lithium batteries. Rice husks were converted into a SiO x /C composite directly by heat treatment under argon/hydrogen atmosphere, at a temperature of 900 °C. The composite contains SiO x surrounded by an amorphous carbon matrix. A steady state reversible capacity of nearly 600 mAh g −1 was delivered at 100 mA g −1 current density after 100 cycles. The improved performance of the SiO x /C composite anode over other agricultural byproduct derived carbon materials is believed to be due to the presence of low valence silicon. The filth-to-wealth conversion of rice husks to battery material is a highly energy efficient process with great economic and environmental benefits.

  6. SnO2/Reduced Graphene Oxide Nanocomposite as Anode Material for Lithium-Ion Batteries with Enhanced Cyclability.

    Science.gov (United States)

    Jiang, Wenjuan; Zhao, Xike; Ma, Zengsheng; Lin, Jianguo; Lu, Chunsheng

    2016-04-01

    SnO2 is considered as one of the most promising anode materials for next generation lithium-ion batteries, however, how to build energetic SnO2-based electrode architectures has still remained a big challenge. In this article, we developed a facile method to prepare SnO2/reduced graphene oxide (RGO) nanocomposite for an anode material of lithium-ion batteries. It is shown that, at the current density of 0.25 A.g-1, SnO2/RGO has a high initial capacity of 1705 mAh.g-1 and a capacity retention of 500 mAh . g-1 after 50 cycles. The total specific capacity of SnO2/RGO is higher than the sum of their pure counterparts, indicating a positive synergistic effect on the electrochemical performance.

  7. Spongelike Nanosized Mn 3 O 4 as a High-Capacity Anode Material for Rechargeable Lithium Batteries

    KAUST Repository

    Gao, Jie

    2011-07-12

    Mn3O4 has been investigated as a high-capacity anode material for rechargeable lithium ion batteries. Spongelike nanosized Mn 3O4 was synthesized by a simple precipitation method and characterized by powder X-ray diffraction, Raman scattering and scanning electron microscopy. Its electrochemical performance, as an anode material, was evaluated by galvanostatic discharge-charge tests. The results indicate that this novel type of nanosized Mn3O4 exhibits a high initial reversible capacity (869 mA h/g) and significantly enhanced first Coulomb efficiency with a stabilized reversible capacity of around 800 mA h/g after over 40 charge/discharge cycles. © 2011 American Chemical Society.

  8. Embedded Si/Graphene Composite Fabricated by Magnesium-Thermal Reduction as Anode Material for Lithium-Ion Batteries.

    Science.gov (United States)

    Zhu, Jiangliu; Ren, Yurong; Yang, Bo; Chen, Wenkai; Ding, Jianning

    2017-12-16

    Embedded Si/graphene composite was fabricated by a novel method, which was in situ generated SiO 2 particles on graphene sheets followed by magnesium-thermal reduction. The tetraethyl orthosilicate (TEOS) and flake graphite was used as original materials. On the one hand, the unique structure of as-obtained composite accommodated the large volume change to some extent. Simultaneously, it enhanced electronic conductivity during Li-ion insertion/extraction. The MR-Si/G composite is used as the anode material for lithium ion batteries, which shows high reversible capacity and ascendant cycling stability reach to 950 mAh·g -1 at a current density of 50 mA·g -1 after 60 cycles. These may be conducive to the further advancement of Si-based composite anode design.

  9. Embedded Si/Graphene Composite Fabricated by Magnesium-Thermal Reduction as Anode Material for Lithium-Ion Batteries

    Science.gov (United States)

    Zhu, Jiangliu; Ren, Yurong; Yang, Bo; Chen, Wenkai; Ding, Jianning

    2017-12-01

    Embedded Si/graphene composite was fabricated by a novel method, which was in situ generated SiO2 particles on graphene sheets followed by magnesium-thermal reduction. The tetraethyl orthosilicate (TEOS) and flake graphite was used as original materials. On the one hand, the unique structure of as-obtained composite accommodated the large volume change to some extent. Simultaneously, it enhanced electronic conductivity during Li-ion insertion/extraction. The MR-Si/G composite is used as the anode material for lithium ion batteries, which shows high reversible capacity and ascendant cycling stability reach to 950 mAh·g-1 at a current density of 50 mA·g-1 after 60 cycles. These may be conducive to the further advancement of Si-based composite anode design.

  10. Graphene-Oxide-Assisted Synthesis of GaN Nanosheets as a New Anode Material for Lithium-Ion Battery.

    Science.gov (United States)

    Sun, Changlong; Yang, Mingzhi; Wang, Tailin; Shao, Yongliang; Wu, Yongzhong; Hao, Xiaopeng

    2017-08-16

    As the most-studied III-nitride, theoretical researches have predicted the presence of gallium nitride (GaN) nanosheets (NSs). Herein, a facile synthesis approach is reported to prepare GaN NSs using graphene oxide (GO) as sacrificial template. As a new anode material of Li-ion battery (LIBs), GaN NSs anodes deliver the reversible discharge capacity above 600 mA h g -1 at 1.0 A g -1 after 1000 cycles, and excellent rate performance at current rates from 0.1 to 10 A g -1 . These results not only extend the family of 2D materials but also facilitate their use in energy storage and other applications.

  11. Reaction mechanisms of MnMoO{sub 4} for high capacity anode material of Li secondary battery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Soo; Ogura, Seiichiro; Ikuta, Hiromasa; Uchimoto, Yoshiharu; Wakihara, Masataka [Department of Applied Chemistry, Tokyo Institute of Techonology, 2-12-1, Ookayama, Tokyo 152-8552 Meguro (Japan)

    2002-02-02

    Crystalline MnMoO{sub 4} was synthesized using a conventional solid reaction method and investigated for its physical and electrochemical properties as an anode material for Li secondary battery. The reversible amount of Li insertion/removal of MnMoO{sub 4} anode during the first cycle was about 800 mA h/g, accompanied by irreversible structural transformation into amorphous material. The amorphization during the first Li insertion was investigated by structural analysis using XRD of electrode. The charge compensation during Li insertion/removal was examined by measurement of X-ray Absorption Near Edge Structure (XANES) spectroscopy. Despite its irreversible structural transformation to amorphous during the first lithiation, subsequent cycles showed a reasonable cyclability. This paper presents the electrochemical properties of MnMoO{sub 4} and discusses the mechanism underlying the Li insertion/removal process.

  12. Electrochemical properties of SnO2/carbon composite materials as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang Jie; Zhao Hailei; Liu Xiaotong; Wang Jing; Wang Chunmei

    2011-01-01

    Highlights: → SnO 2 /carbon powders with a cauliflower-like particle structure were synthesized. → Post-annealing can improve the electrochemical properties of SnO 2 /C composite. → The 500 deg. C-annealed SnO 2 /C shows the best electrochemical performance. → The lithium ion diffusion coefficients of the SnO 2 /C electrodes were calculated. - Abstract: SnO 2 /carbon composite anode materials were synthesized from SnCl 4 .5H 2 O and sucrose via a hydrothermal route and a post heat-treatment. The synthesized spherical SnO 2 /carbon powders show a cauliflower-like micro-sized structure. High annealing temperature results in partial reduction of SnO 2 . Metallic Sn starts to emerge at 500 deg. C. High Sn content in SnO 2 /carbon composite is favorable for the increase of initial coulombic efficiency but not for the cycling stability. The SnO 2 /carbon annealed at 500 deg. C exhibits high specific capacity (∼400 mAh g -1 ), stable cycling performance and good rate capability. The generation of Li 2 O in the first lithiation process can prevent the aggregation of active Sn, while the carbon component can buffer the big volume change caused by lithiation/delithiation of active Sn. Both of them make contribution to the better cycle stability.

  13. Electrochemical properties of SnO{sub 2}/carbon composite materials as anode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jie [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhao Hailei, E-mail: hlzhao@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Key Lab of New Energy Materials and Technologies, Beijing 100083 (China); Liu Xiaotong; Wang Jing; Wang Chunmei [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2011-07-15

    Highlights: > SnO{sub 2}/carbon powders with a cauliflower-like particle structure were synthesized. > Post-annealing can improve the electrochemical properties of SnO{sub 2}/C composite. > The 500 deg. C-annealed SnO{sub 2}/C shows the best electrochemical performance. > The lithium ion diffusion coefficients of the SnO{sub 2}/C electrodes were calculated. - Abstract: SnO{sub 2}/carbon composite anode materials were synthesized from SnCl{sub 4}.5H{sub 2}O and sucrose via a hydrothermal route and a post heat-treatment. The synthesized spherical SnO{sub 2}/carbon powders show a cauliflower-like micro-sized structure. High annealing temperature results in partial reduction of SnO{sub 2}. Metallic Sn starts to emerge at 500 deg. C. High Sn content in SnO{sub 2}/carbon composite is favorable for the increase of initial coulombic efficiency but not for the cycling stability. The SnO{sub 2}/carbon annealed at 500 deg. C exhibits high specific capacity ({approx}400 mAh g{sup -1}), stable cycling performance and good rate capability. The generation of Li{sub 2}O in the first lithiation process can prevent the aggregation of active Sn, while the carbon component can buffer the big volume change caused by lithiation/delithiation of active Sn. Both of them make contribution to the better cycle stability.

  14. Rational design of anode materials based on Group IVA elements (Si, Ge, and Sn) for lithium-ion batteries.

    Science.gov (United States)

    Wu, Xing-Long; Guo, Yu-Guo; Wan, Li-Jun

    2013-09-01

    Lithium-ion batteries (LIBs) represent the state-of-the-art technology in rechargeable energy-storage devices and they currently occupy the prime position in the marketplace for powering an increasingly diverse range of applications. However, the fast development of these applications has led to increasing demands being placed on advanced LIBs in terms of higher energy/power densities and longer life cycles. For LIBs to meet these requirements, researchers have focused on active electrode materials, owing to their crucial roles in the electrochemical performance of batteries. For anode materials, compounds based on Group IVA (Si, Ge, and Sn) elements represent one of the directions in the development of high-capacity anodes. Although these compounds have many significant advantages when used as anode materials for LIBs, there are still some critical problems to be solved before they can meet the high requirements for practical applications. In this Focus Review, we summarize a series of rational designs for Group IVA-based anode materials, in terms of their chemical compositions and structures, that could address these problems, that is, huge volume variations during cycling, unstable surfaces/interfaces, and invalidation of transport pathways for electrons upon cycling. These designs should at least include one of the following structural benefits: 1) Contain a sufficient number of voids to accommodate the volume variations during cycling; 2) adopt a "plum-pudding"-like structure to limit the volume variations during cycling; 3) facilitate an efficient and permanent transport pathway for electrons and lithium ions; or 4) show stable surfaces/interfaces to stabilize the in situ formed SEI layers. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Electrochemical properties of Super P carbon black as an anode active material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Gnanamuthu, RM.; Lee, Chang Woo

    2011-01-01

    Highlights: → A novel attempt of Super P carbon black as an anode active material for lithium-ion batteries. → The first discharge capacity was approximately 1256 mAh g -1 and at the end of 20th cycling the capacity was 610 mAh g -1 at 0.1 C rate. → Coulombic efficiency of Super P carbon black electrode was maintained about 84% at the end of cycling. - Abstract: A new approach to investigate upon the electrochemical properties of Super P carbon black anode material is attempted and compared with conventional mesophase pitch-based carbon fibers (MPCFs) anode material for lithium-ion batteries. The prepared Super P carbon black electrodes are characterized using transmission electron microscope (TEM). The assembled 2032-type coin cells are electrochemically characterized by ac impedance spectroscopic and cyclic voltammetric methods. The electrochemical performance of charge and discharge was analyzed using a battery cycler at 0.1 C rate and cut-off potentials of 1.20 and 0.01 V vs. Li/Li + . The electrochemical test illustrates that the discharge capacity corresponding to Li intercalation into the Super P carbon black electrode is higher and coulombic efficiency is maintained approximately 84% at the end of the 20th cycling at room temperature.

  16. NaLaTi_2O_6 nanosheet as a potential anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Geng, Qiao; Cao, Liyun; Kong, Xingang; Xu, Zhanwei; Huang, Jianfeng; Li, Jiayin; Cheng, Yayi

    2016-01-01

    Highlights: • NaLaTi_2O_6 nanosheet was achieved by a simple one-step hydrothermal method. • NaLaTi_2O_6 was reported for the first time as an anode material. • NaLaTi_2O_6 shown a high discharge capacity of about 180 mAh/g at 100 mA/g. - Abstract: NaLaTi_2O_6 nanosheet was achieved by one-step hydrothermal method and was reported for the first time as an anode material for lithium ion batteries. The phase structure and morphology analysis reveals that pure pervoskite NaLaTi_2O_6 possesses nanosheet morphology with thickness of about 20 nm and length of several hundred nanometers. The electrochemical performances demonstrate that NaLaTi_2O_6 has a good lithium ion insertion/extraction ability with a discharge capacity of about 180 mAh/g, which is slightly larger than Li_4Ti_5O_1_2 theoretical capacity (175 mAh/g). Even more, after 1000 charge-discharge cycles at 100 mA/g, it still maintains a discharge capacity of 165 mAh/g, suggesting that NaLaTi_2O_6 could be explored as a potential anode material for lithium ion batteries.

  17. Kinetics of the electrolytic Fe+2/Fe+3 oxidation on various anode materials

    Directory of Open Access Journals (Sweden)

    Cifuentes, L.

    2003-08-01

    Full Text Available The kinetics of the electrolytic Fe+2/Fe+3 oxidation, relevant to hydro-electrometallurgical processing, have been studied on lead, platinum, ruthenium oxide, iridium oxide and graphite anodes in ferrous sulfate-sulfuric acid solutions. The oxidation rate depends on ferrous sulfate concentration, solution temperature and degree of agitation. Potentiodynamic studies show that: a the highest oxidation rate is obtained on platinum; b lead is unsuitable as anodic material for the said reaction; c the remaining anode materials show a similar and satisfactory performance.

    Se ha estudiado la cinética de la oxidación electrolítica Fe+2/Fe+3 -relevante para el procesamiento hidroelectrometalúrgico- sobre plomo, platino, óxido de rutenio, óxido de iridio y grafito en soluciones de sulfato ferroso en ácido sulfúrico. La velocidad de oxidación depende de la concentración de sulfato ferroso, la temperatura de la solución y el grado de agitación. Estudios potenciodinámicos demuestran que: a las mayores velocidades de oxidación se obtienen sobre platino; b el plomo es inadecuado como material anódico para la reacción mencionada; c los materiales anódicos restantes exhiben un desempeño similar y satisfactorio.

  18. Studies on sulfur poisoning and development of advanced anodic materials for waste-to-energy fuel cells applications

    Science.gov (United States)

    Zaza, Fabio; Paoletti, Claudia; LoPresti, Roberto; Simonetti, Elisabetta; Pasquali, Mauro

    Biomass is the renewable energy source with the most potential penetration in energy market for its positive environmental and socio-economic consequences: biomass live cycles for energy production is carbon neutral; energy crops promote alternative and productive utilizations of rural sites creating new economic opportunities; bioenergy productions promote local energy independence and global energy security defined as availability of energy resource supply. Different technologies are currently available for energy production from biomass, but a key role is played by fuel cells which have both low environmental impacts and high efficiencies. High temperature fuel cells, such as molten carbonate fuel cells (MCFC), are particularly suitable for bioenergy production because it can be directly fed with biogas: in fact, among its principal constituents, methane can be transformed to hydrogen by internal reforming; carbon dioxide is a safe diluent; carbon monoxide is not a poison, but both a fuel, because it can be discharged at the anode, and a hydrogen supplier, because it can produce hydrogen via the water-gas shift reaction. However, the utilization of biomass derived fuels in MCFC presents different problems not yet solved, such as the poisoning of the anode due to byproducts of biofuel chemical processing. The chemical compound with the major negative effects on cell performances is hydrogen sulfide. It reacts with nickel, the main anodic constituent, forming sulfides and blocking catalytic sites for electrode reactions. The aim of this work is to study the hydrogen sulfide effects on MCFC performances for defining the poisoning mechanisms of conventional nickel-based anode, recommending selection criteria of sulfur-tolerant materials, and selecting advanced anodes for MCFC fed with biogas.

  19. Synthesis and electrochemical performance of ruthenium oxide-coated carbon nanofibers as anode materials for lithium secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Yura; Choi, Jin-Yeong [Department of Chemistry, Keimyung University (Korea, Republic of); Park, Heai-Ku [Department of Chemical Engineering, Keimyung University (Korea, Republic of); Lee, Chang-Seop, E-mail: surfkm@kmu.ac.kr [Department of Chemistry, Keimyung University (Korea, Republic of)

    2016-12-01

    Highlights: • Ruthenium oxide (RuO{sub 2}) coated carbon nanofibers (CNFs) on Ni foam were synthesized by chemical vapor deposition method and applied as anode materials of Li secondary batteries. • When RuO{sub 2}/CNFs/Ni foam was used as the anode material, initial capacity was improved from 276 mAh/g to 494 mAh/g with retention rate of 47.4% after 30 cycles. - Abstract: In this study, ruthenium oxide (RuO{sub 2}) coated carbon nanofibers (CNFs) were synthesized and applied as anode materials of Li secondary batteries. The CNFs were grown on Ni foam via chemical vapor deposition (CVD) method after CNFs/Ni foam was put into the 0.01 M RuCl{sub 3} solution. The ruthenium oxide-coated CNFs/Ni foam was dried in a dryer at 80 °C. The morphologies, compositions, and crystal quality of RuO{sub 2}/CNFs/Ni foam were characterized by SEM, EDS, XRD, Raman spectroscopy, and XPS. The electrochemical characteristics of RuO{sub 2}/CNFs/Ni foam as anode of Li secondary batteries were investigated using three-electrode cell. The RuO{sub 2}/CNFs/Ni foam was directly employed as a working electrode without any binder, and lithium foil was used as the counter and reference electrodes. LiClO{sub 4} (1 M) was employed as electrolyte and dissolved in a mixture of propylene carbonate (PC): ethylene carbonate (EC) in a 1:1 volume ratio. The galvanostatic charge/discharge cycling and cyclic voltammetry measurements were carried out at room temperature by using a battery tester. In particular, synthesized RuO{sub 2}/CNFs/Ni foam showed the highest retention rate (47.4%). The initial capacity (494 mAh/g) was reduced to 234 mAh/g after 30 cycles.

  20. Synthesis and electrochemical performance of ruthenium oxide-coated carbon nanofibers as anode materials for lithium secondary batteries

    International Nuclear Information System (INIS)

    Hyun, Yura; Choi, Jin-Yeong; Park, Heai-Ku; Lee, Chang-Seop

    2016-01-01

    Highlights: • Ruthenium oxide (RuO_2) coated carbon nanofibers (CNFs) on Ni foam were synthesized by chemical vapor deposition method and applied as anode materials of Li secondary batteries. • When RuO_2/CNFs/Ni foam was used as the anode material, initial capacity was improved from 276 mAh/g to 494 mAh/g with retention rate of 47.4% after 30 cycles. - Abstract: In this study, ruthenium oxide (RuO_2) coated carbon nanofibers (CNFs) were synthesized and applied as anode materials of Li secondary batteries. The CNFs were grown on Ni foam via chemical vapor deposition (CVD) method after CNFs/Ni foam was put into the 0.01 M RuCl_3 solution. The ruthenium oxide-coated CNFs/Ni foam was dried in a dryer at 80 °C. The morphologies, compositions, and crystal quality of RuO_2/CNFs/Ni foam were characterized by SEM, EDS, XRD, Raman spectroscopy, and XPS. The electrochemical characteristics of RuO_2/CNFs/Ni foam as anode of Li secondary batteries were investigated using three-electrode cell. The RuO_2/CNFs/Ni foam was directly employed as a working electrode without any binder, and lithium foil was used as the counter and reference electrodes. LiClO_4 (1 M) was employed as electrolyte and dissolved in a mixture of propylene carbonate (PC): ethylene carbonate (EC) in a 1:1 volume ratio. The galvanostatic charge/discharge cycling and cyclic voltammetry measurements were carried out at room temperature by using a battery tester. In particular, synthesized RuO_2/CNFs/Ni foam showed the highest retention rate (47.4%). The initial capacity (494 mAh/g) was reduced to 234 mAh/g after 30 cycles.

  1. Silicon anode materials with ultra-low resistivity from the inside out for lithium ion batteries

    Science.gov (United States)

    Xu, Guojun; Jin, Chenxin; Liu, Liekai; Lan, Yu; Yue, Zhihao; Li, Xiaomin; Sun, Fugen; Huang, Haibin; Zhou, Lang

    2017-12-01

    Broken silicon (Si) wafers with electrical resistivity of 1 and 0.001 Ω cm were respectively ball-milled to Si particles with median diameters of less than 1 μm. Both these two types of Si particles were deposited with silver (Ag) nanoparticles by self-selective electroless deposition method. 1-Ω cm-Si particles, 0.001-Ω cm-Si particles, Ag-deposited 1-Ω cm-Si particles and Ag-deposited 0.001-Ω cm-Si particles were, respectively, mixed with graphite particles in weight ratio of 1:9 to form four types of Si-C anode materials and then they were assembled into coin cells. The experimental results indicate that the Ag-deposited 0.001-Ω cm-Si sample shows the higher capacity, better rate and cycle performance than other three samples, due to the high conductivity of Ag-deposited 0.001-Ω cm-Si sample from the inside out. At the current density of 750 mA g-1, the discharge capacity gap of Ag-deposited 0.001-Ω cm-Si sample and 0.001-Ω cm-Si sample is as high as 141.7 mA h g-1, which is almost equal to the discharge capacity of the latter. Besides, the discharge capacity retention ratio of Ag-deposited 0.001-Ω cm-Si sample after 50 cycles is 70%, which is 23.5% higher than that of 0.001-Ω cm-Si sample.

  2. An understanding of anomalous capacity of nano-sized CoO anode materials for advanced Li-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.H.; Venkateswarlu, M.; Cheng, M.Y.; Ragavendran, K.; Hwang, B.J. [Nano-Electrochemistry Lab., Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Rd., Sec. 4, Taipei 106 (China); Weng, J.H. [Department of Chemical and Materials Engineering, Tunghai University, Taichung 407 (China); Santhanam, R. [Solid State and Surface Sciences Lab., Department of Physics, Southern University, Baton Rouge, LA-70808 (United States); Lee, J.F.; Chen, J.M.; Liu, D.G. [National Synchrotron Radiation Research Center (NSRRC), Hsinchu (China)

    2010-03-15

    Nanostructured transition metal oxides are of great interest as a new generation of anode materials for high energy density lithium-ion batteries. In this work, research has been focused on the nano-sized (grain size {proportional_to}7 nm) CoO anode material and this material delivers charge capacity of 900 mAh g{sup -1} that exceeds the theoretical value of 715 mAh g{sup -1}. Possible reason for this unaccounted and unexplained anomalous capacity of the nano-sized CoO material has been suggested by thermogravimetric analysis. A mechanism for this interesting behavior has been systematically evaluated by using X-ray absorption spectroscopy. The anomalous capacity is proposed to be associated with the formation of oxygen-rich CoO material. The results obtained from the nano-sized CoO material have been compared with relatively larger-sized material (grain size {proportional_to}32 nm). (author)

  3. An in situ method of creating metal oxide–carbon composites and their application as anode materials for lithium-ion batteries

    KAUST Repository

    Yang, Zichao; Shen, Jingguo; Archer, Lynden A.

    2011-01-01

    Transition metal oxides are actively investigated as anode materials for lithium-ion batteries (LIBs), and their nanocomposites with carbon frequently show better performance in galvanostatic cycling studies, compared to the pristine metal oxide

  4. Novel synthetic approach for 1, 4-dihydroxyanthraquinone and the development of its Lithiated salts as anode material for aqueous rechargeable Lithium-ion batteries

    KAUST Repository

    Gurukar, Suresh Shivappa; Rajashekara Shetty, Vijeth; Mariappa, Ramaiah; Kittappa, Mahadevan Malavalli; Nagaraju, Doddahalli H.

    2015-01-01

    of active species in the aqueous media, reasonable discharge capacity with 0.9 V average voltages and agreeable cycling performance during charge-discharge process with reproducibility are achieved. For the construction of the full cell, the anode material

  5. Synthesis and performance of cerium oxide as anode materials for lithium ion batteries by a chemical precipitation method

    International Nuclear Information System (INIS)

    Liu, Haowen; Le, Qi

    2016-01-01

    In this present work, chemical precipitation method was employed for preparing cerium oxide. XRD, SEM, TEM, TGA/DTA and BET were used to investigate the structure, shape and formation mechanism, respectively. No impurities were detected. It was found that alcohol had obvious effection on the growth of the final sample. The shape of the precursor was retained after calcined at 500 °C. This result led to the possibility of an easy scale up to a commercial process. EIS and charge–discharge tests were carried out by using the as-prepared CeO_2 as an anode material for lithium ion batteries. Specially, the initial discharge specific capacity of the rhombus CeO_2 was about 529 mAh g"−"1 and stabilized reversibly at about 374 mAh g"−"1 after 50 cycles. It showed a promising usage as anode materials in lithium ion battery. - Highlights: • Chemical precipitation method was employed for the synthesis of cerium oxide. • Alcohol has obvious effection on the growth of the final sample. • The rhombus CeO_2 showed the better electrochemical properties as anode of lithium ion batteries.

  6. Manufacturing and characterization of magnesium alloy foils for use as anode materials in rechargeable magnesium ion batteries

    Science.gov (United States)

    Schloffer, Daniel; Bozorgi, Salar; Sherstnev, Pavel; Lenardt, Christian; Gollas, Bernhard

    2017-11-01

    The fabrication of thin foils of magnesium for use as anode material in rechargeable magnesium ion batteries is described. In order to improve its workability, the magnesium was alloyed by melting metallurgy with zinc and/or gadolinium, producing saturated solid solutions. The material was extruded to thin foils and rolled to a thickness of approximately 100 μm. The electrochemical behavior of Mg-1.63 wt% Zn, Mg-1.55 wt% Gd and Mg-1.02 wt% Zn-1.01 wt% Gd was studied in (PhMgCl)2-AlCl3/THF electrolyte by cyclic voltammetry and galvanostatic cycling in symmetrical cells. Analysis of the current-potential curves in the Tafel region and the linear region close to the equilibrium potential show almost no effect of the alloying elements on the exchange current densities (5-45 μA/cm2) and the transfer coefficients. Chemical analyses of the alloy surfaces and the electrolyte demonstrate that the alloying elements not only dissolve with the magnesium during the anodic half-cycles, but also re-deposit during the cathodic half-cycles together with the magnesium and aluminum from the electrolyte. Given the negligible corrosion rate in aprotic electrolytes under such conditions, no adverse effects of alloying elements are expected for the performance of magnesium anodes in secondary batteries.

  7. Electrochemical performance of SnO{sub 2}/modified graphite composite material as anode of lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Qiang [Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004 (China); Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000 (China); Yang, Guan-Hua; Huang, You-Guo; Zhang, Xiao-Hui; Yan, Zhi-Xiong [Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004 (China); Li, Qing-Yu, E-mail: liqingyu62@126.com [Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004 (China)

    2015-11-01

    In this report, we synthesized SnO{sub 2}/modified graphite anode composite material by a simple reflux method using SnCl{sub 4}·5H{sub 2}O as tin source and modified graphite as carbon source. The as-obtained composite was investigated with the help of X-ray diffraction (XRD), scanning electron microscopy (SEM) and galvanostatic cycling tests. The results show that the composite has a wave-shaped fold structure and the SnO{sub 2} nanoparticles on it have an average size of about 50 nm. Compared to pure modified graphite, the SnO{sub 2}/modified graphite exhibits a better electrochemical performance with a reversible specific capacity of 581.7 mAh g{sup −1} after 80 cycles, owing to high mechanical stress and elasticity of modified graphite could hinder the volume effect of SnO{sub 2} nanoparticles during the Li{sup +} insertion/extraction process. All these favourable characters reveal that the composite is a great potential anode material in high-performance lithium ion batteries. - Highlights: • A simple synthetic method of SnO{sub 2}/modified graphite composite as anode. • The as-prepared composite with layered structure alleviates the huge reunion of SnO{sub 2}. • The composite exhibits a good capacity retention rate of 85.8% after 25 cycles.

  8. Synthesis and performance of cerium oxide as anode materials for lithium ion batteries by a chemical precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Haowen, E-mail: liuhwchem@hotmail.com; Le, Qi

    2016-06-05

    In this present work, chemical precipitation method was employed for preparing cerium oxide. XRD, SEM, TEM, TGA/DTA and BET were used to investigate the structure, shape and formation mechanism, respectively. No impurities were detected. It was found that alcohol had obvious effection on the growth of the final sample. The shape of the precursor was retained after calcined at 500 °C. This result led to the possibility of an easy scale up to a commercial process. EIS and charge–discharge tests were carried out by using the as-prepared CeO{sub 2} as an anode material for lithium ion batteries. Specially, the initial discharge specific capacity of the rhombus CeO{sub 2} was about 529 mAh g{sup −1} and stabilized reversibly at about 374 mAh g{sup −1} after 50 cycles. It showed a promising usage as anode materials in lithium ion battery. - Highlights: • Chemical precipitation method was employed for the synthesis of cerium oxide. • Alcohol has obvious effection on the growth of the final sample. • The rhombus CeO{sub 2} showed the better electrochemical properties as anode of lithium ion batteries.

  9. Novel Mg-Doped SrMoO3 Perovskites Designed as Anode Materials for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Vanessa Cascos

    2016-07-01

    Full Text Available SrMo1−xMxO3−δ (M = Fe and Cr, x = 0.1 and 0.2 oxides have been recently described as excellent anode materials for solid oxide fuel cells at intermediate temperatures (IT-SOFC with LSGM as the electrolyte. In this work, we have improved their properties by doping with aliovalent Mg ions at the B-site of the parent SrMoO3 perovskite. SrMo1−xMgxO3−δ (x = 0.1, 0.2 oxides have been prepared, characterized and tested as anode materials in single solid-oxide fuel cells, yielding output powers near 900 mW/cm−2 at 850 °C using pure H2 as fuel. We have studied its crystal structure with an “in situ” neutron power diffraction (NPD experiment at temperatures as high as 800 °C, emulating the working conditions of an SOFC. Adequately high oxygen deficiencies, observed by NPD, together with elevated disk-shaped anisotropic displacement factors suggest a high ionic conductivity at the working temperatures. Furthermore, thermal expansion measurements, chemical compatibility with the LSGM electrolyte, electronic conductivity and reversibility upon cycling in oxidizing-reducing atmospheres have been carried out to find out the correlation between the excellent performance as an anode and the structural features.

  10. Cryogenic plasma-processed silicon microspikes as a high-performance anode material for lithium ion-batteries

    Science.gov (United States)

    Sakai, Joe; Luais, Erwann; Wolfman, Jérôme; Tillocher, Thomas; Dussart, Rémi; Tran-Van, Francois; Ghamouss, Fouad

    2017-10-01

    Micro- or nano-structuring is essential in order to use Si as an anode material for lithium ion batteries. In the present study, we attempted to use Si wafers with a spiky microstructure (SMS), the so-called black-Si, prepared by a cryogenic reactive ion etching process with an SF6/O2 gas mixture, for Li half-cells. The SMS with various sizes of spikes from 2.0 μm (height) × 0.2 μm (width) to 21 μm × 1.0 μm was etched by varying the SF6/O2 gas flow ratio. An anode of SMS of 11 μm-height in average showed stable charge/discharge capacity and Coulombic efficiency higher than 99% for more than 300 cycles, causing no destruction to any part of the Si wafer. The spiky structure turned columnar after cycles, suggesting graded lithiation levels along the length. The present results suggest a strategy to utilize a wafer-based Si material for an anode of a lithium ion battery durable against repetitive lithiation/delithiation cycles.

  11. Borophane as a Benchmate of Graphene: A Potential 2D Material for Anode of Li and Na-Ion Batteries.

    Science.gov (United States)

    Jena, Naresh K; Araujo, Rafael B; Shukla, Vivekanand; Ahuja, Rajeev

    2017-05-17

    Borophene, single atomic-layer sheet of boron ( Science 2015 , 350 , 1513 ), is a rather new entrant into the burgeoning class of 2D materials. Borophene exhibits anisotropic metallic properties whereas its hydrogenated counterpart borophane is reported to be a gapless Dirac material lying on the same bench with the celebrated graphene. Interestingly, this transition of borophane also rendered stability to it considering the fact that borophene was synthesized under ultrahigh vacuum conditions on a metallic (Ag) substrate. On the basis of first-principles density functional theory computations, we have investigated the possibilities of borophane as a potential Li/Na-ion battery anode material. We obtained a binding energy of -2.58 (-1.08 eV) eV for Li (Na)-adatom on borophane and Bader charge analysis revealed that Li(Na) atom exists in Li + (Na + ) state. Further, on binding with Li/Na, borophane exhibited metallic properties as evidenced by the electronic band structure. We found that diffusion pathways for Li/Na on the borophane surface are anisotropic with x direction being the favorable one with a barrier of 0.27 and 0.09 eV, respectively. While assessing the Li-ion anode performance, we estimated that the maximum Li content is Li 0.445 B 2 H 2 , which gives rises to a material with a maximum theoretical specific capacity of 504 mAh/g together with an average voltage of 0.43 V versus Li/Li + . Likewise, for Na-ion the maximum theoretical capacity and average voltage were estimated to be 504 mAh/g and 0.03 V versus Na/Na + , respectively. These findings unambiguously suggest that borophane can be a potential addition to the map of Li and Na-ion anode materials and can rival some of the recently reported 2D materials including graphene.

  12. Facile route for synthesis of mesoporous Cr2O3 sheet as anode materials for Li-ion batteries

    International Nuclear Information System (INIS)

    Cao, Zhiqin; Qin, Mingli; Jia, Baorui; Zhang, Lin; Wan, Qi; Wang, Mingshan; Volinsky, Alex A.; Qu, Xuanhui

    2014-01-01

    Mesoporous Cr 2 O 3 with a high specific surface area of 162 m 2 g −1 is prepared by the solution combustion method. The mesoporous Cr 2 O 3 has a sheet structure, which consists of nanoparticles with an average size of 20 nm. As an anode electrode material for rechargeable lithium-ion batteries, the mesoporous Cr 2 O 3 nanoparticles display enhanced electrochemical performance. Stable and reversible capacity of 480 mA h g −1 after 55 cycles is demonstrated. The enhanced electrochemical performance of the Cr 2 O 3 can be attributed to the high surface area and morphological characteristics of mesoporous materials

  13. Nb-doped rutile TiO₂: a potential anode material for Na-ion battery.

    Science.gov (United States)

    Usui, Hiroyuki; Yoshioka, Sho; Wasada, Kuniaki; Shimizu, Masahiro; Sakaguchi, Hiroki

    2015-04-01

    The electrochemical properties of the rutile-type TiO2 and Nb-doped TiO2 were investigated for the first time as Na-ion battery anodes. Ti(1-x)Nb(x)O2 thick-film electrodes without a binder and a conductive additive were prepared using a sol-gel method followed by a gas-deposition method. The TiO2 electrode showed reversible reactions of Na insertion/extraction accompanied by expansion/contraction of the TiO2 lattice. Among the Ti(1-x)Nb(x)O2 electrodes with x = 0-0.18, the Ti(0.94)Nb(0.06)O2 electrode exhibited the best cycling performance, with a reversible capacity of 160 mA h g(-1) at the 50th cycle. As the Li-ion battery anode, this electrode also attained an excellent rate capability, with a capacity of 120 mA h g(-1) even at the high current density of 16.75 A g(-1) (50C). The improvements in the performances are attributed to a 3 orders of magnitude higher electronic conductivity of Ti(0.94)Nb(0.06)O2 compared to that of TiO2. This offers the possibility of Nb-doped rutile TiO2 as a Na-ion battery anode as well as a Li-ion battery anode.

  14. Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Dumas, C.; Basseguy, R.; Etcheverry, L.; Bergel, A. [Laboratoire de Genie Chimique, CNRS-INPT, Toulouse Cedex (France); Mollica, A. [CNR-ISMAR, Genoa (Italy); Feron, D. [SCCME, CEA Saclay, Gif-sur-Yvette (France)

    2007-12-01

    Numerous biocorrosion studies have stated that biofilms formed in aerobic seawater induce an efficient catalysis of the oxygen reduction on stainless steels. This property was implemented here for the first time in a marine microbial fuel cell (MFC). A prototype was designed with a stainless steel anode embedded in marine sediments coupled to a stainless steel cathode in the overlying seawater. Recording current/potential curves during the progress of the experiment confirmed that the cathode progressively acquired effective catalytic properties. The maximal power density produced of 4 mW m{sup -2} was lower than those reported previously with marine MFC using graphite electrodes. Decoupling anode and cathode showed that the cathode suffered practical problems related to implementation in the sea, which may found easy technical solutions. A laboratory fuel cell based on the same principle demonstrated that the biofilm-covered stainless steel cathode was able to supply current density up to 140 mA m{sup -2} at +0.05 V versus Ag/AgCl. The power density of 23 mW m{sup -2} was in this case limited by the anode. These first tests presented the biofilm-covered stainless steel cathodes as very promising candidates to be implemented in marine MFC. The suitability of stainless steel as anode has to be further investigated. (author)

  15. Titanium oxynitride thin films as high-capacity and high-rate anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Chiu, Kuo-Feng; Su, Shih-Hsuan; Leu, Hoang-Jyh; Hsia, Chen-Hsien

    2015-01-01

    Titanium oxynitride (TiO_xN_y) was synthesized by reactive magnetron sputtering in a mixed N_2/O_2/Ar gas at ambient temperature. TiO_xN_y thin films with various amounts of nitrogen contents were deposited by varying the N_2/O_2 ratios in the background gas. The synthesized TiO_xN_y films with different compositions (TiO_1_._8_3_7N_0_._0_6_0_, TiO_1_._8_9_0N_0_._0_6_8_, TiO_1_._8_6_5N_0_._0_7_3, and TiO_1_._8_8_2N_0_._1_6_3) all displayed anatase phase, except TiO_1_._8_8_2N_0_._1_6_3. The impedances and grain sizes showed obvious variations with the nitrogen contents. A wide potential window from 3.0 V to 0.05 V, high-rate charge–discharge testing, and long cycle testing were applied to investigate the performances of synthesized TiO_xN_y and pure TiO_2 as anodes for lithium-ion batteries. These TiO_xN_y anodes can be cycled under high rates of 125 μA/cm"2 (10 °C) because of the lower charge–transfer resistance compared with the TiO_2 anode. At 10 °C the discharge capacity of the optimal TiO_xN_y composition is 1.5 times higher than that of pure TiO_2. An unexpectedly large reversible capacity of ~ 300 μAh/cm"2 μm (~ 800 mAh/g) between 1.0 V and 0.05 V was recorded for the TiO_xN_y anodes. The TiO_xN_y anode was cycled (3.0 V to 0.05 V) at 10 °C over 300 times without capacity fading while delivering a capacity of ~ 150 μAh/cm"2 μm (~ 400 mAh/g). - Highlights: • Titanium oxynitride (TiO_xN_y) thin films as anode materials were studied. • TiO_xN_y thin films with various amounts of nitrogen contents were studied_. • High rate capability of TiO_xN_y was studied.

  16. Phase formation in alloy-type anode materials in the quaternary system Li-Sn-Si-C

    Energy Technology Data Exchange (ETDEWEB)

    Druee, Martin; Seyring, Martin [Jena Univ. (Germany). Otto Schott Inst. of Materials Research; Liang, Song-Mao; Kozlov, Artem; Schmid-Fetzer, Rainer [Clausthal Univ. of Technology, Clausthal-Zellerfeld (Germany). Inst. of Metallurgy; Song, Xiaoyan [Beijing Univ. of Technology (China). Key Lab. of Advanced Functional Materials; Rettenmayr, Markus [Jena Univ. (Germany). Otto Schott Inst. of Materials Research; Jena Univ. (Germany). Center for Energy and Environmental

    2017-11-15

    Investigations on the thermodynamics of alloy-type anode materials have been carried out for the quaternary Li-C-Si-Sn system. Phase equilibria and phase stabilities were characterized in the binary subsystems Li-C, Li-Si, Li-Sn. The Calphad method was first used to optimize or completely re-establish all binary subsystems containing Li. For reasons of consistency, the binary subsystem Si-C had to be revisited and its Calphad description was modified. The ternary phase diagrams were then tentatively calculated by extrapolation from the binary subsystems and confirmed by key experiments. No ternary compounds were found. In order to verify the applicability of the anode materials in real batteries, some of the materials were nanostructured by ball milling and spark plasma sintering, the corresponding nanostructures were characterized. Theoretical predictions that nanograined Li{sub 2}C{sub 2} can also be used as cathode material were verified experimentally. The methodologies worked out in the present project (e.g. nanoscale structure transmission electron microscopy analysis, glow discharge optical emission spectroscopy) were also employed in other projects and led to publications concerning other materials such as Mg alloys, carbon nanofibers and an Mn-based antiperovskite.

  17. In situ electrochemical creation of cobalt oxide nanosheets with favorable performance as a high tap density anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Lin, Qian; Sha, Yujing; Zhao, Bote; Chen, Yubo; Tadé, Moses O.; Shao, Zongping

    2015-01-01

    Highlights: • Cobalt oxide nanosheets in situ electrochemical generated from commercial LiCoO_2. • TEM indicates creation of cobalt oxide nanosheets from coarse layered LiCoO_2_. • Coarse-type LiCoO_2 with high tap density shows promising anode performance. • Optimizing weight ratio of LiCoO_2 in electrode, a high capacity was achieved. - Abstract: Cobalt oxides are attractive alternative anode materials for next-generation lithium-ion batteries (LIBs). To improve the performance of conversion-type anode materials such as cobalt oxides, well dispersed and nanosized particulate morphology is typically required. In this study, we describe the in situ electrochemical generation of cobalt oxide nanosheets from commercial micrometer-sized LiCoO_2 oxide as an anode material for LIBs. The electrode material as prepared was analyzed by XRD, FE-SEM and TEM. The electrochemical properties were investigated by cyclic voltammetry and by a constant current galvanostatic discharge–charge test. The material shows a high tap density and promising anode performance in terms of capacity, rate performance and cycling stability. A capacity of 560 mA h g"−"1 is still achieved at a current density of 1000 mA g"−"1 by increasing the amount of additives in the electrode to 40 wt%. This paper provides a new technique for developing a high-performance conversion-type anode for LIBs.

  18. N-type nano-silicon powders with ultra-low electrical resistivity as anode materials in lithium ion batteries

    Science.gov (United States)

    Yue, Zhihao; Zhou, Lang; Jin, Chenxin; Xu, Guojun; Liu, Liekai; Tang, Hao; Li, Xiaomin; Sun, Fugen; Huang, Haibin; Yuan, Jiren

    2017-06-01

    N-type silicon wafers with electrical resistivity of 0.001 Ω cm were ball-milled to powders and part of them was further mechanically crushed by sand-milling to smaller particles of nano-size. Both the sand-milled and ball-milled silicon powders were, respectively, mixed with graphite powder (silicon:graphite = 5:95, weight ratio) as anode materials for lithium ion batteries. Electrochemical measurements, including cycle and rate tests, present that anode using sand-milled silicon powder performed much better. The first discharge capacity of sand-milled silicon anode is 549.7 mAh/g and it is still up to 420.4 mAh/g after 100 cycles. Besides, the D50 of sand-milled silicon powder shows ten times smaller in particle size than that of ball-milled silicon powder, and they are 276 nm and 2.6 μm, respectively. In addition, there exist some amorphous silicon components in the sand-milled silicon powder excepting the multi-crystalline silicon, which is very different from the ball-milled silicon powder made up of multi-crystalline silicon only.

  19. Si-FeSi2/C nanocomposite anode materials produced by two-stage high-energy mechanical milling

    Science.gov (United States)

    Yang, Yun Mo; Loka, Chadrasekhar; Kim, Dong Phil; Joo, Sin Yong; Moon, Sung Whan; Choi, Yi Sik; Park, Jung Han; Lee, Kee-Sun

    2017-05-01

    High capacity retention Silicon-based nanocomposite anode materials have been extensively explored for use in lithium-ion rechargeable batteries. Here we report the preparation of Si-FeSi2/C nanocomposite through scalable a two-stage high-energy mechanical milling process, in which nano-scale Si-FeSi2 powders are besieged by the carbon (graphite/amorphous phase) layer; and investigation of their structure, morphology and electrochemical performance. Raman analysis revealed that the carbon layer structure comprised of graphitic and amorphous phase rather than a single amorphous phase. Anodes fabricated with the Si-FeSi2/C showed excellent electrochemical behavior such as a first discharge capacity of 1082 mAh g-1 and a high capacity retention until the 30th cycle. A remarkable coulombic efficiency of 99.5% was achieved within a few cycles. Differential capacity plots of the Si-FeSi2/C anodes revealed a stable lithium reaction with Si for lithiation/delithiation. The enhanced electrochemical properties of the Si-FeSi2/C nanocomposite are mainly attributed to the nano-size Si and stable solid electrolyte interface formation and highly conductive path driven by the carbon layer.

  20. Morphology-controlled graphene nanosheets as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Ahn, Wook; Song, Hoon Sub; Park, Sang-Hoon; Kim, Kwang-Bum; Shin, Kyoung-Hee; Lim, Sung Nam; Yeon, Sun-Hwa

    2014-01-01

    Highlights: • Graphene nanosheets was manufactured using a simple modified version of a previously improved Hummers method. • The wrinkle-free graphene was easily manufactured from prepared graphene by post-process treatment. • Morphology-controlled graphene nanosheets showed excellent discharge performance. • Morphology-controlled graphene has the potential to be easily applied to graphene-wrapped composite. - Abstract: Morphology-controlled graphene nanosheets can be easily synthesized as anode material for application in high-capacity lithium-ion batteries. A modified version of an improved method for higher degree of oxidation of graphite oxide (GO) has been developed and characterized. X-ray diffraction analysis shows that GO prepared using this method has a higher degree of oxidation than that of using the improved method. The interlayer d-spacing increases from 0.87 nm (using the improved method) to 0.92 nm (using the modified-improved method). Also, it is confirmed by XPS analysis that the O/C ratio in GO increases from 2.51 (improved method) to 8.27 (modified-improved method). It is hypothesized that GO, which has a higher degree of oxidation, is more reducible to graphene. The more reduced graphene has a larger amount of free π-bonds and fewer layers, and it can be easily altered to morphology-controlled graphene. Graphene nanosheets prepared using the modified-improved method exhibits discharge capacities of 1079 mAh g −1 (at a constant current of 40 mA g −1 ) and 1002 mAh g −1 after 50 cycles. The capacity retention of the synthesized graphene nanosheets is 1070 mAh g −1 at a current of 40 mA g −1 after the rate capability test, and their rate capability is 463 mAh g −1 at a current of 400 mA g −1 . The morphology-controlled graphene nanosheets prepared by the modified-improved method shows better discharge performance compared to graphene prepared by the improved method

  1. Fabrication of electrospun ZnMn2O4 nanofibers as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Luo, Lei; Qiao, Hui; Chen, Ke; Fei, Yaqian; Wei, Qufu

    2015-01-01

    Highlights: • ZnMn 2 O 4 nanofibers were successfully synthesized by a facile electrospinning and calcination method for lithium-ion batteries. • The as-prepared ZnMn 2 O 4 nanofibers, containing PVP and PAN with ratio of 1:9, exhibited a high initial discharge capacity of 1274 mAh g −1 , and the stabilized capacity was as high as 603 mAh g −1 after 60 cycles at a current density of 50 mA g −1 . • The as-prepared ZnMn 2 O 4 anode material showed good lithium storage performances and excellent rate capability and can be a promising electrode material for lithium-ion batteries in the future. - Abstract: In this paper, ZnMn 2 O 4 nanofibers were synthesized by a facile electrospinning and calcination method. Electrochemical properties of the nanofiber anode material for lithium-ion batteries were investigated. The as-prepared ZnMn 2 O 4 nanofibers, containing PVP and PAN with ratio of 1:9, exhibited a high initial discharge capacity of 1274 mAh g −1 , and the stabilized capacity was as high as 603 mAh g −1 after 60 cycles at a current density of 50 mA g −1 . Besides the high specific capacity and good cyclability, the electrode also showed good rate capability. Even at 2000 mA g −1 , the electrode could deliver a capacity of as high as 352 mAh g −1 . The results suggest a promising application of the electrospun ZnMn 2 O 4 nanofibers as anode material for lithium-ion batteries

  2. Electrochemical Impedance Spectroscopy Illuminating Performance Evolution of Porous Core–Shell Structured Nickel/Nickel Oxide Anode Materials

    International Nuclear Information System (INIS)

    Yan, Bo; Li, Minsi; Li, Xifei; Bai, Zhimin; Dong, Lei; Li, Dejun

    2015-01-01

    Highlights: • The electrochemical reaction kinetics of the Ni/NiO anode was studied for the first time. • Charge transfer resistance is main contribution to total resistance during discharge process. • The slow growth of the SEI film is responsible for the capacity fading upon cycling. • Some promising strategies to optimize NiO anode performance were summarized. - Abstract: The electrochemical reaction kinetics of the porous core–shell structured Ni/NiO anode for Li ion battery application is systematically investigated by monitoring the electrochemical impedance evolution for the first time. The electrochemical impedance under prescribed condition is measured by using impedance spectroscopy in equilibrium conditions at various depths of discharge (DOD) during charge–discharge cycles. The Nyquist plots of the binder-free porous Ni/NiO electrode are interpreted with a selective equivalent circuit composed of solution resistance, solid electrolyte interphase (SEI) film, charge transfer and solid state diffusion. The impedance analysis shows that the change of charge transfer resistance is the main contribution to the total resistance change during discharge, and the surface configuration of the obtained electrode may experience significant change during the first two cycles. Meanwhile, the increase of internal resistance reduced the utilization efficiency of the active material may be another convincing factor to increase the irreversible capacity. In addition, the impedance evolution of the as-prepared electrode during charge–discharge cycles reveals that the slow growth of the SEI film is responsible for the capacity fading after long term cycling. As a result, several strategies are summarized to optimize the electrochemical performances of transition metal oxide anodes for lithium ion batteries

  3. Gallium oxide nanorods as novel, safe and durable anode material for Li- and Na-ion batteries

    International Nuclear Information System (INIS)

    Meligrana, Giuseppina; Lueangchaichaweng, Warunee; Colò, Francesca; Destro, Matteo; Fiorilli, Sonia; Pescarmona, Paolo P.; Gerbaldi, Claudio

    2017-01-01

    Highlights: • Gallium oxide nanorods applied for the first time as anode material for Li-/Na-ion batteries. • Durable ambient temperature cycling (400 cycles) was observed in Li-based cells. • Stable reversible cycling (> 200 mAh g"−"1) was achieved for the first time in Na-based cells. - Abstract: Gallium oxide nanorods prepared by template-free synthesis are reported for the first time as safe and durable anode material for lithium- and sodium-ion batteries. The ambient temperature electrochemical response of the nanorods, tested by cyclic voltammetry and constant-current reversible cycling, is highly satisfying in terms of remarkable stability and capacity retention upon long-term operation (400 cycles), even at high current densities. The newly proposed application of gallium oxide nanorods as electrode material is notable also because this material can preserve the electrical pathway without the need of any “buffer matrix” to compensate for the expansion upon lithium or sodium reversible storage. The highly promising electrochemical performance is attributed to the high aspect ratio and high surface area that stem from the nanorod morphology and which can lead to short diffusion path and fast kinetics of both cations (Li"+ or Na"+) and electrons.

  4. Lignin-based active anode materials synthesized from low-cost renewable resources

    Science.gov (United States)

    Rios, Orlando; Tenhaeff, Wyatt Evan; Daniel, Claus; Dudney, Nancy Johnston; Johs, Alexander; Nunnery, Grady Alexander; Baker, Frederick Stanley

    2016-06-07

    A method of making an anode includes the steps of providing fibers from a carbonaceous precursor, the carbon fibers having a glass transition temperature T.sub.g. In one aspect the carbonaceous precursor is lignin. The carbonaceous fibers are placed into a layered fiber mat. The fiber mat is fused by heating the fiber mat in the presence of oxygen to above the T.sub.g but no more than 20% above the T.sub.g to fuse fibers together at fiber to fiber contact points and without melting the bulk fiber mat to create a fused fiber mat through oxidative stabilization. The fused fiber mat is carbonized by heating the fused fiber mat to at least 650.degree. C. under an inert atmosphere to create a carbonized fused fiber mat. A battery anode formed from carbonaceous precursor fibers is also disclosed.

  5. MnO-carbon hybrid nanofiber composites as superior anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Jian-Gan; Yang, Ying; Huang, Zheng-Hong; Kang, Feiyu

    2015-01-01

    MnO-carbon hybrid nanofiber composites are fabricated by electrospinning polyimide/manganese acetylacetonate precursor and a subsequent carbonization process. The composition, phase structure and morphology of the composites are characterized by scanning and transmission electron microscopy, X-ray diffraction and thermogravimetric analysis. The results indicate that the composites exhibit good nanofibrous morphology with MnO nanoparticles uniformly encapsulated by carbon nanofibers. The hybrid nanofiber composites are used directly as freestanding anodes for lithium-ion batteries to evaluate their electrochemical properties. It is found that the optimized MnO-carbon nanofiber composite can deliver a high reversible capacity of 663 mAh g −1 , along with excellent cycling stability and good rate capability. The superior performance enables the composites to be promising candidates as an anode alternative for high-performance lithium-ion batteries

  6. 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors.

    Science.gov (United States)

    Qu, Qunting; Yang, Shubin; Feng, Xinliang

    2011-12-08

    2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors are prepared from the direct growth of FeOOH nanorods on the surface of graphene and the subsequent electrochemical transformation of FeOOH to Fe(3)O(4). The Fe(3)O(4) @RGO nanocomposites exhibit superior capacitance (326 F g(-1)), high energy density (85 Wh kg(-1)), large power, and good cycling performance in 1 mol L(-1) LiOH solution. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Structural and electrochemical properties of SnO nanoflowers as an anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Iqbal, M. Zubair; Wang, Fengping; Zhao, Hailei; Rafique, M. Yasir; Wang, Jie; Li, Quanshui

    2012-01-01

    Graphical abstract: -- Novel self-assembled highly hierarchical SnO nanoflowers with acute edge petals have been successfully synthesized by a template-free hydrothermal growth method using SnCl 2 ·2H 2 O and KOH as precursors. Field emission scanning electron microscopy results show that the flower-like SnO architectureis in the range 4–7 μm. Furthermore, Raman modes at A 1g = 212 and B 1g = 114 cm −1 further testify to the existence of nanotetragonal phase SnO. The electrochemical results suggest that synthesized SnO nanoflowers are a promising anode material for lithium ion batteries.

  8. Effect of Carbon Coating on Li4TiO12 of Anode Material for Hybrid Capacitor.

    Science.gov (United States)

    Lee, Jong-Kyu; Lee, Byung-Gwan; Yoon, Jung-Rag

    2015-11-01

    The carbon-coated Li4Ti5O12 of anode material for hybrid capacitor was prepared by controlling carbonization time at 700 degrees C in nitrogen. With increasing of carbonization time, the discharge capacity and capacitance were decreased, while the equivalent series resistance was not changed remarkably. The rate capability and cycle performance of carbon-coated Li4Ti5O12 were larger than that of Li4Ti5O12. Carbon coating improved conductivity as well as Li-ion diffusion, and thus also resulted in good rate capabilities and cycle stability. The effects of carbon coating on the gas generation of hybrid capacitor were also discussed.

  9. Evidence for nano-Si clusters in amorphous SiO anode materials for rechargeable Li-ion batteries

    International Nuclear Information System (INIS)

    Sepehri-Amin, H.; Ohkubo, T.; Kodzuka, M.; Yamamura, H.; Saito, T.; Iba, H.; Hono, K.

    2013-01-01

    Atom probe tomography and high resolution transmission electron microscopy have shown the presence of nano-sized amorphous Si clusters in non-disproportionated amorphous SiO powders are under consideration for anode materials in Li-ion batteries. After Li insertion/extraction, no change was found in the chemistry and structure of the Si clusters. However, Li atoms were found to be trapped at the amorphous SiO phase after Li insertion/extraction, which may be attributed to the large capacity fade after the first charge/discharge cycle

  10. Shape Modification and Size Classification of Microcrystalline Graphite Powder as Anode Material for Lithium-Ion Batteries

    Science.gov (United States)

    Wang, Cong; Gai, Guosheng; Yang, Yufen

    2018-03-01

    Natural microcrystalline graphite (MCG) composed of many crystallites is a promising new anode material for lithium-ion batteries (LiBs) and has received considerable attention from researchers. MCG with narrow particle size distribution and high sphericity exhibits excellent electrochemical performance. A nonaddition process to prepare natural MCG as a high-performance LiB anode material is described. First, raw MCG was broken into smaller particles using a pulverization system. Then, the particles were modified into near-spherical shape using a particle shape modification system. Finally, the particle size distribution was narrowed using a centrifugal rotor classification system. The products with uniform hemispherical shape and narrow size distribution had mean particle size of approximately 9 μm, 10 μm, 15 μm, and 20 μm. Additionally, the innovative pilot experimental process increased the product yield of the raw material. Finally, the electrochemical performance of the prepared MCG was tested, revealing high reversible capacity and good cyclability.

  11. Facile Preparation of Graphene/SnO₂ Xerogel Hybrids as the Anode Material in Li-Ion Batteries.

    Science.gov (United States)

    Li, Zhe-Fei; Liu, Qi; Liu, Yadong; Yang, Fan; Xin, Le; Zhou, Yun; Zhang, Hangyu; Stanciu, Lia; Xie, Jian

    2015-12-16

    SnO2 has been considered as one of the most promising anode materials for Li-ion batteries due to its theoretical ability to store up to 8.4 Li(+). However, it suffers from poor rate performance and short cycle life due to the low intrinsic electrical conductivity and particle pulverization caused by the large volume change upon lithiation/delithiation. Here, we report a facile synthesis of graphene/SnO2 xerogel hybrids as anode materials using epoxide-initiated gelation method. The synthesized hybrid materials (19% graphene/SnO2 xerogel) exhibit excellent electrochemical performance: high specific capacity, stable cyclability, and good rate capability. Even cycled at a high current density of 1 A/g for 300 cycles, the hybrid electrode can still deliver a specific capacity of about 380 mAh/g, corresponding to more than 60% capacity retention. The incorporation of graphene sheets provides fast electron transfer between the interfaces of the graphene nanosheets and the SnO2 and a short lithium ion diffusion path. The porous structure of graphene/xerogel and the strong interaction between SnO2 and graphene can effectively accommodate the volume change and tightly confine the formed Li2O and Sn nanoparticles, thus preventing the irreversible capacity degradation.

  12. Encapsulated Vanadium-Based Hybrids in Amorphous N-Doped Carbon Matrix as Anode Materials for Lithium-Ion Batteries.

    Science.gov (United States)

    Long, Bei; Balogun, Muhammad-Sadeeq; Luo, Lei; Luo, Yang; Qiu, Weitao; Song, Shuqin; Zhang, Lei; Tong, Yexiang

    2017-11-01

    Recently, researchers have made significant advancement in employing transition metal compound hybrids as anode material for lithium-ion batteries and developing simple preparation of these hybrids. To this end, this study reports a facile and scalable method for fabricating a vanadium oxide-nitride composite encapsulated in amorphous carbon matrix by simply mixing ammonium metavanadate and melamine as anode materials for lithium-ion batteries. By tuning the annealing temperature of the mixture, different hybrids of vanadium oxide-nitride compounds are synthesized. The electrode material prepared at 700 °C, i.e., VM-700, exhibits excellent cyclic stability retaining 92% of its reversible capacity after 200 cycles at a current density of 0.5 A g -1 and attractive rate performance (220 mAh g -1 ) under the current density of up to 2 A g -1 . The outstanding electrochemical properties can be attributed to the synergistic effect from heterojunction form by the vanadium compound hybrids, the improved ability of the excellent conductive carbon for electron transfer, and restraining the expansion and aggregation of vanadium oxide-nitride in cycling. These interesting findings will provide a reference for the preparation of transition metal oxide and nitride composites as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Stannous sulfide/multi-walled carbon nanotube hybrids as high-performance anode materials of lithium-ion batteries

    International Nuclear Information System (INIS)

    Li, Shuankui; Zuo, Shiyong; Wu, Zhiguo; Liu, Ying; Zhuo, Renfu; Feng, Juanjuan; Yan, De; Wang, Jun; Yan, Pengxun

    2014-01-01

    A hybrid of multi-walled carbon nanotubes (MWCNTs) anchored with SnS nanosheets is synthesized through a simple solvothermal method for the first time. Interestingly, SnS can be controllably deposited onto the MWCNTs backbone in the shape of nanosheets or nanoparticles to form two types of SnS/MWCNTs hybrids, SnS NSs/MWCNTs and SnS NPs/MWCNTs. When evaluated as an anode material for lithium-ion batteries, the hybrids exhibit higher lithium storage capacities and better cycling performance compared to pure SnS. It is found that the SnS NSs/MWCNTs hybrid exhibits a large reversible capacity of 620mAhg −1 at a current of 100mAg −1 as an anode material for lithium-ion batteries, which is better than SnS NPs/MWCNTs. The improved performance may be attributed to the ultrathin nanosheet subunits possess short distance for Li + ions diffusion and large electrode-electrolyte contact area for high Li + ions flux across the interface. It is believed that the structural design of electrodes demonstrated in this work will have important implications on the fabrication of high-performance electrode materials for lithium-ion batteries

  14. Preparation of Advanced CuO Nanowires/Functionalized Graphene Composite Anode Material for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jin Zhang

    2017-01-01

    Full Text Available The copper oxide (CuO nanowires/functionalized graphene (f-graphene composite material was successfully composed by a one-pot synthesis method. The f-graphene synthesized through the Birch reduction chemistry method was modified with functional group “–(CH25COOH”, and the CuO nanowires (NWs were well dispersed in the f-graphene sheets. When used as anode materials in lithium-ion batteries, the composite exhibited good cyclic stability and decent specific capacity of 677 mA·h·g−1 after 50 cycles. CuO NWs can enhance the lithium-ion storage of the composites while the f-graphene effectively resists the volume expansion of the CuO NWs during the galvanostatic charge/discharge cyclic process, and provide a conductive paths for charge transportation. The good electrochemical performance of the synthesized CuO/f-graphene composite suggests great potential of the composite materials for lithium-ion batteries anodes.

  15. Improving domestic wastewater treatment efficiency with constructed wetland microbial fuel cells: Influence of anode material and external resistance.

    Science.gov (United States)

    Corbella, Clara; Puigagut, Jaume

    2018-08-01

    For the past few years, there has been an increasing interest in the operation of constructed wetlands as microbial fuel cells (CW-MFCs) for both the improvement of wastewater treatment efficiency and the production of energy. However, there is still scarce information on design and operation aspects to maximize CW-MFCs efficiency, especially for the treatment of real domestic wastewater. The aim of this study was to quantify the extent of treatment efficiency improvement carried out by membrane-less MFCs simulating a core of a shallow un-planted horizontal subsurface flow constructed wetland. The influence of the external resistance (50, 220, 402, 604 and 1000Ω) and the anode material (graphite and gravel) on treatment efficiency improvement were addressed. To this purpose, 6 lab-scale membrane-less MFCs were set-up and loaded in batch mode with domestic wastewater for 13weeks. Results showed that 220Ω was the best operation condition for maximising MFCs treatment efficiency, regardless the anode material employed. Gravel-based anode MFCs operated at closed circuit showed ca. 18%, 15%, 31% and 25% lower effluent concentration than unconnected MFCs to the COD, TOC, PO 4 -3 and NH 4 + -N, respectively. Main conclusion of the present work is that constructed wetlands operated as MFCs is a promising strategy to improve domestic wastewater treatment efficiency. However, further studies at pilot scale under more realistic conditions (such as planted systems operated under continuous mode) shall be performed to confirm the findings here reported. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Development of materials for use in solid oxid fuel cells anodes using renewable fuels in direct operation

    International Nuclear Information System (INIS)

    Lima, D.B.P.L. de; Florio, D.Z. de; Bezerra, M.E.O.

    2016-01-01

    Fuel cells produce electrical current from the electrochemical combustion of a gas or liquid (H2, CH4, C2H5OH, CH3OH, etc.) inserted into the anode cell. An important class of fuel cells is the SOFC (Solid Oxide Cell Fuel). It has a ceramic electrolyte that transports protons (H +) or O-2 ions and operating at high temperatures (500-1000 °C) and mixed conductive electrodes (ionic and electronic) ceramics or cermets. This work aims to develop anodes for fuel cells of solid oxide (SOFC) in order to direct operations with renewable fuels and strategic for the country (such as bioethanol and biogas). In this context, it becomes important to study in relation to the ceramic materials, especially those that must be used in high temperatures. Some types of double perovskites such as Sr2MgMoO6 (or simply SMMO) have been used as anodes in SOFC. In this study were synthesized by the polymeric precursor method, analyzed and characterized different ceramic samples of families SMMO, doped with Nb, this is: Sr2 (MgMo)1-xNbxO6 with 0 ≤ x ≤ 0.2. The materials produced were characterized by various techniques such as, thermal analysis, X-ray diffraction and scanning electron microscopy, and electrical properties determined by dc and ac measurements in a wide range of temperature, frequency and partial pressure of oxygen. The results of this work will contribute to a better understanding of advanced ceramic properties with mixed driving (electronic and ionic) and contribute to the advancement of SOFC technology operating directly with renewable fuels. (author)

  17. Ultrahigh capacity anode material for lithium ion battery based on rod gold nanoparticles decorated reduced graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Atar, Necip, E-mail: necipatar@gmail.com [Department of Chemical Engineering, Pamukkale University, Denizli (Turkey); Eren, Tanju [Department of Chemical Engineering, Pamukkale University, Denizli (Turkey); Yola, Mehmet Lütfi [Department of Metallurgical and Materials Engineering, Sinop University, Sinop (Turkey)

    2015-09-01

    In this study, we report the synthesis of rod shaped gold nanoparticles/2-aminoethanethiol functionalized reduced graphene oxide composite (rdAuNPs/AETrGO) and its application as an anode material for lithium-ion batteries. The structure of the rdAuNPs/AETrGO composite was characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. The electrochemical performance was investigated at different current rates by using a coin-type cell. It was found that the rod shaped gold nanoparticles were highly dispersed on the reduced graphene oxide sheets. Moreover, the rdAuNPs/AETrGO composite showed a high specific gravimetric capacity of about 1320 mAh g{sup −1} and a long-term cycle stability. - Highlights: • We prepared rod shaped gold nanoparticles functionalized reduced graphene oxide. • The nanocomposite was used as an anode material for lithium-ion batteries. • The nanocomposite showed a high specific gravimetric capacity of about 1320 mAh g{sup −1}. • The nanocomposite exhibited a long-term cycle stability.

  18. Ultrahigh capacity anode material for lithium ion battery based on rod gold nanoparticles decorated reduced graphene oxide

    International Nuclear Information System (INIS)

    Atar, Necip; Eren, Tanju; Yola, Mehmet Lütfi

    2015-01-01

    In this study, we report the synthesis of rod shaped gold nanoparticles/2-aminoethanethiol functionalized reduced graphene oxide composite (rdAuNPs/AETrGO) and its application as an anode material for lithium-ion batteries. The structure of the rdAuNPs/AETrGO composite was characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. The electrochemical performance was investigated at different current rates by using a coin-type cell. It was found that the rod shaped gold nanoparticles were highly dispersed on the reduced graphene oxide sheets. Moreover, the rdAuNPs/AETrGO composite showed a high specific gravimetric capacity of about 1320 mAh g −1 and a long-term cycle stability. - Highlights: • We prepared rod shaped gold nanoparticles functionalized reduced graphene oxide. • The nanocomposite was used as an anode material for lithium-ion batteries. • The nanocomposite showed a high specific gravimetric capacity of about 1320 mAh g −1 . • The nanocomposite exhibited a long-term cycle stability

  19. Synthesis And Electrochemical Characteristics Of Mechanically Alloyed Anode Materials SnS2 For Li/SnS2 Cells

    Directory of Open Access Journals (Sweden)

    Hong J.H.

    2015-06-01

    Full Text Available With the increasing demand for efficient and economic energy storage, tin disulfide (SnS2, as one of the most attractive anode candidates for the next generation high-energy rechargeable Li-ion battery, have been paid more and more attention because of its high theoretical energy density and cost effectiveness. In this study, a new, simple and effective process, mechanical alloying (MA, has been developed for preparing fine anode material tin disulfides, in which ammonium chloride (AC, referred to as process control agents (PCAs, were used to prevent excessive cold-welding and accelerate the synthesis rates to some extent. Meanwhile, in order to decrease the mean size of SnS2 powder particles and improve the contact areas between the active materials, wet milling process was also conducted with normal hexane (NH as a solvent PCA. The prepared powders were both characterized by X-ray diffraction, Field emission-scanning electron microscopeand particle size analyzer. Finally, electrochemical measurements for Li/SnS2 cells were takenat room temperature, using a two-electrode cell assembled in an argon-filled glove box and the electrolyte of 1M LiPF6 in a mixture of ethylene carbonate(EC/dimethylcarbonate (DMC/ethylene methyl carbonate (EMC (volume ratio of 1:1:1.

  20. Three-Dimensional SnS Decorated Carbon Nano-Networks as Anode Materials for Lithium and Sodium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Yanli Zhou

    2018-02-01

    Full Text Available The three-dimensional (3D SnS decorated carbon nano-networks (SnS@C were synthesized via a facile two-step method of freeze-drying combined with post-heat treatment. The lithium and sodium storage performances of above composites acting as anode materials were investigated. As anode materials for lithium ion batteries, a high reversible capacity of 780 mAh·g−1 for SnS@C composites can be obtained at 100 mA·g−1 after 100 cycles. Even cycled at a high current density of 2 A·g−1, the reversible capacity of this composite can be maintained at 610 mAh·g−1 after 1000 cycles. The initial charge capacity for sodium ion batteries can reach 333 mAh·g−1, and it retains a reversible capacity of 186 mAh·g−1 at 100 mA·g−1 after 100 cycles. The good lithium or sodium storage performances are likely attributed to the synergistic effects of the conductive carbon nano-networks and small SnS nanoparticles.

  1. Preparation of a porous Sn@C nanocomposite as a high-performance anode material for lithium-ion batteries

    Science.gov (United States)

    Zhang, Yanjun; Jiang, Li; Wang, Chunru

    2015-07-01

    A porous Sn@C nanocomposite was prepared via a facile hydrothermal method combined with a simple post-calcination process, using stannous octoate as the Sn source and glucose as the C source. The as-prepared Sn@C nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, long cycle life and good rate capability when used as an anode material for lithium ion batteries.A porous Sn@C nanocomposite was prepared via a facile hydrothermal method combined with a simple post-calcination process, using stannous octoate as the Sn source and glucose as the C source. The as-prepared Sn@C nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, long cycle life and good rate capability when used as an anode material for lithium ion batteries. Electronic supplementary information (ESI) available: Detailed experimental procedure and additional characterization, including a Raman spectrum, TGA curve, N2 adsorption-desorption isotherm, TEM images and SEM images. See DOI: 10.1039/c5nr03093e

  2. Effect of wrinkles on electrochemical performance of multiwalled carbon nanotubes as anode material for Li ion battery

    International Nuclear Information System (INIS)

    Sahoo, Madhumita; Ramaprabhu, S.

    2015-01-01

    Highlights: • Wrinkly surfaced gC is employed as anode material for Li ion battery. • Temperature controlled protrusions were uniformly distributed over the nanotubes. • gC shows superior performance of 373 mAh g −1 at 100 mA g −1 after 150 cycle. • Synergistic effect of defects and conductivity gives higher Li storage over MWNTs. - Abstract: A 1-D monohybrid of multiwalled carbon nanotubes and graphene sheets, graphene wrapped multiwalled carbon nanotubes (gC) structure, synthesized in a template-free simple chemical vapor deposition technique without any chemical functionalization, was employed as efficient anode material for Li ion battery. Graphene nanosheets affixed to the multiwalled carbon nanotubes (MWNTs) surface by van der Waal's attraction gives a wrinkled surface to the final 1-D gC configuration. The protrusions on the surface of the tube enhances the porosity of the system and also acts as defects, enhancing lithium adsorption sites while the inner MWNT core gives high electrical conductivity, resulting enhanced electrochemical performance of 373 mAh g −1 at 100 mA g −1 current density after 150 cycles.

  3. Anodic Materials for Lithium-ion Batteries: TiO2-rGO Composites for High Power Applications

    International Nuclear Information System (INIS)

    Minella, M.; Versaci, D.; Casino, S.; Di Lupo, F.; Minero, C.; Battiato, A.; Penazzi, N.; Bodoardo, S.

    2017-01-01

    Titanium dioxide/reduced graphene oxide (TiO 2 -rGO) composites were synthesized at different loadings of carbonaceous phase, characterized and used as anode materials in Lithium-ion cells, focusing not only on the high rate capability but also on the simplicity and low cost of the electrode production. It was therefore chosen to use commercial TiO 2 , GO was synthesized from graphite, adsorbed onto TiO 2 and reduced to rGO following a chemical, a photocatalytic and an in situ photocatalytic procedure. The synthesized materials were in-depth characterized with a multi-technique approach and the electrochemical performances were correlated i) to an effective reduction of the GO oxidized moieties and ii) to the maintenance of the 2D geometry of the final graphenic structure observed. TiO 2 -rGO obtained with the first two procedures showed good cycle stability, high capacity and impressive rate capability particularly at 10% GO loading. The photocatalytic reduction applied in situ on preassembled electrodes showed similarly good results reaching the goal of a further simplification of the anode production.

  4. An Amorphous Carbon Nitride Composite Derived from ZIF-8 as Anode Material for Sodium-Ion Batteries.

    Science.gov (United States)

    Fan, Jing-Min; Chen, Jia-Jia; Zhang, Qian; Chen, Bin-Bin; Zang, Jun; Zheng, Ming-Sen; Dong, Quan-Feng

    2015-06-08

    An composite comprising amorphous carbon nitride (ACN) and zinc oxide is derived from ZIF-8 by pyrolysis. The composite is a promising anode material for sodium-ion batteries. The nitrogen content of the ACN composite is as high as 20.4 %, and the bonding state of nitrogen is mostly pyridinic, as determined by X-ray photoelectron spectroscopy (XPS). The composite exhibits an excellent Na(+) storage performance with a reversible capacity of 430 mA h g(-1) and 146 mA h g(-1) at current densities of 83 mA g(-1) and 8.33 A g(-1) , respectively. A specific capacity of 175 mA h g(-1) was maintained after 2000 cycles at 1.67 A g(-1) , with only 0.016 % capacity degradation per cycle. Moreover, an accelerating rate calorimetry (ARC) test demonstrates the excellent thermal stability of the composite, with a low self heating rate and high onset temperature (210 °C). These results shows its promise as a candidate material for high-capacity, high-rate anodes for sodium-ion batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Trace analysis of Cd, Cu, Pb and Zn in various materials using differential pulse anodic stripping voltammetry

    International Nuclear Information System (INIS)

    Ahmed, R.; Viqar-un-Nisa; Tanwir, R.

    1988-09-01

    Sampling and sample preparation methods have been described. Digestion methods for different types of materials and acid purification systems have been developed. For trace analysis purposes cleaning methods for glassware etc. have been described. Differential pulse anodic stripping voltametric (DPASV) method has been worked out for the trace analysis of zn, cd, pb and Cu in different types of materials. Linearity of the method has been checked by drawing concentration versus currents (peak height) curves. Precision of the method has been checked by analysing a number of actual samples. of the method has been verified by analysing standards of U.S.A. Comparative studies have been done between Differential pulse anodic stripping voltammetric method and Atomic Absorption spectroscopic method. Problems of contamination and systematic errors during trace and ultra-trace analysis have been discussed. A variety of samples including soil, spinach, wheat flour, rice flour, dry milk, coriander, kidney stones, bladder stones etc. have been analysed and preliminary results have been reported. (author)

  6. Synthesis and characterisation of Co-Co(OH)2 composite anode material on Cu current collector for energy storage devices

    Science.gov (United States)

    Yavuz, Abdulcabbar; Yakup Hacıibrahimoğlu, M.; Bedir, Metin

    2017-04-01

    A Co-Co(OH)2 modified electrode on inexpensive Cu substrate was synthesized at room temperature and demonstrated to be a promising anode material for energy storage devices. A modified Co film was obtained potentiostatically and was then potentiodynamically treated with KOH solution to form Co(OH)2. Co-Co(OH)2 coatings were obtained and were dominated by Co(OH)2 at the oxidized side, whereas Co dominant Co-Co(OH)2 occurred at the reduced side (-1.1 V). As OH- ions were able to diffuse into (out of) the film during oxidation (reduction) and did not react with the Cu current collector, the Co-Co(OH)2 electrode can be used as an anode material in energy storage devices. Although the specific capacitance of the electrodes varied depending on thickness, the redox reaction between the modified electrode and KOH electrolyte remained the same consisting of a surface-controlled and diffusion-controlled mechanism which had a desirable fast charge and discharge property. Capacity values remained constant after 250 cycles as the film evolved. Overall capacity retention was 84% for the film after 450 scans. A specific capacitance of 549 F g-1 was obtained for the Co-Co(OH)2 composite electrode in 6 M KOH at a scan rate of 5 mV s-1 and 73% of capacitance was retained when the scan rate was increased to 100 mV s-1.

  7. Electrocatalytic Materials and Techniques for the Anodic Oxidation of Various Organic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Treimer, Stephen Everett [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    The focus of this thesis was first to characterize and improve the applicability of Fe(III) and Bi(V) doped PbO2 film electrodes for use in anodic O-transfer reactions of toxic and waste organic compounds, e.g. phenol, aniline, benzene, and naphthalene. Further, they investigated the use of alternative solution/electrode interfacial excitation techniques to enhance the performance of these electrodes for remediation and electrosynthetic applications. Finally, they have attempted to identify a less toxic metal oxide film that may hold promise for future studies in the electrocatalysis and photoelectrocatalysis of O-transfer reactions using metal oxide film electrodes.

  8. Electrospun fibers for high performance anodes in microbial fuel cells. Optimizing materials and architecture

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shuiliang

    2010-04-15

    A novel porous conducting nanofiber mat (PCNM) with nanostructured polyaniline (nanoPANi) on the fiber surface was successfully prepared by simple oxidative polymerization. The composite PCNM displayed a core/shell structure with highly rough surface. The thickness and the morphology of PANi layer on the electrospun polyamide (PA) fiber surface could be controlled by varying aniline concentration and temperature. The combination of the advantages of electrospinning technique and nanostructured PANi, let the PA/PANi composite PCNM possess more than five good properties, i.e. high conductivity of 6.759 S.m{sup -1}, high specific surface area of 160 m2.g{sup -1}, good strength of 82.88 MPa for mat and 161.75 MPa for highly aligned belts, good thermal properties with 5% weight loss temperature up to 415 C and excellent biocompatibility. In the PA/PANi composite PCNM, PANi is the only conducting component, its conductivity of 6.759 S.m{sup -1} which is measured in dry-state, is not enough for electrode. Moreover, the conductivity decreases in neutral pH environment due to the de-doping of proton. However, the method of spontaneous growth of nanostructured PANi on electrospun fiber mats provides an effective method to produce porous electrically conducting electrospun fiber mats. The combination advantages of nanostructured PANi with the electrospun fiber mats, extends the applications of PANi and electrospun nanofibers, such as chemical- and bio-sensors, actuators, catalysis, electromagnetic shielding, corrosion protection, separation membranes, electro-optic devices, electrochromic devices, tissue engineering and many others. The electrical conductivity of electrospun PCNM with PANi as the only conducting component is too low for application of as anode in microbial fuel cells (MFCs). So, we turn to electrospun carbon fiber due to its high electrical conductivity and environmental stability. The current density is greatly dependent on the microorganism density of anode

  9. WS_2-Super P nanocomposites anode material with enhanced cycling stability for lithium ion batteries

    International Nuclear Information System (INIS)

    Huang, Jianfeng; Wang, Xin; Li, Jiayin; Cao, Liyun; Xu, Zhanwei; Wei, Hao

    2016-01-01

    WS_2-Super P nanocomposites are prepared for lithium battery anodes by a simple two-step process consisting of hydrothermal and sulfide reduction reactions. The addition of Super P (50 nm) as a conductive addictive is beneficial for decreasing the size of nanocomposites and improving their dispersibility, which could accelerate the insertion/extraction reaction between WS_2-Super P nanocomposite electrode and electrolyte. Compared to the pure WS_2, the WS_2-Super P nanocomposites exhibit highly improved electrochemical performance with initial discharge capacity of 421 mAh g"−"1, high initial Coulombic efficiency (81%), low charge transfer impedance (53 Ω) and good retentive capacity of 389 mAh g"−"1 after 200th cycles. The much improved electrochemical performance can be attributed to the incorporation of Super P, which facilitates the interface charge transfer and Li"+ diffusion. - Graphical abstract: The addition of Super P (50 nm) is beneficial for decreasing the size of WS_2-Super P nanocomposites, improving their dispersibility, accelerating the Li"+ transportation and the insertion/extraction reaction. The WS_2-Super P nanocomposites show higher cycling stability and rate performances than pure WS_2. - Highlights: • WS_2-Super P nanocomposites are prepared for LIBs anodes with good performances. • Super P as a conductive addictive is added into the WS_2 nanosheets. • The incorporation of Super P is beneficial for decreasing the size of composites. • Super P were embedded in WS_2 nanosheets for improving their dispersibility.

  10. TiO{sub 2} nanoparticles on nitrogen-doped graphene as anode material for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li Dan; Shi Dongqi [Institute for Superconducting and Electronic Materials, University of Wollongong (Australia); Liu Zongwen [University of Sydney, School of Chemical and Biomolecular Engineering (Australia); Liu Huakun; Guo Zaiping, E-mail: zguo@uow.edu.au [Institute for Superconducting and Electronic Materials, University of Wollongong (Australia)

    2013-05-15

    Anatase TiO{sub 2} nanoparticles in situ grown on nitrogen-doped, reduced graphene oxide (rGO) have been successfully synthesized as an anode material for the lithium ion battery. The nanosized TiO{sub 2} particles were homogeneously distributed on the reduced graphene oxide to inhibit the restacking of the neighbouring graphene sheets. The obtained TiO{sub 2}/N-rGO composite exhibits improved cycling performance and rate capability, indicating the important role of reduced graphene oxide, which not only facilitates the formation of uniformly distributed TiO{sub 2} nanocrystals, but also increases the electrical conductivity of the composite material. The introduction of nitrogen on the reduced graphene oxide has been proved to increase the conductivity of the reduced graphene oxide and leads to more defects. A disordered structure is thus formed to accommodate more lithium ions, thereby further improving the electrochemical performance.

  11. Electrospinning synthesis of 3D porous NiO nanorods as anode material for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Wei Kong Xiang

    2016-06-01

    Full Text Available Three-dimensional NiO nanorods were synthesized as anode material by electrospinning method. X-ray diffraction results revealed that the product sintered at 400 °C had impure metallic nickel phase which, however, became pure NiO phase as the sintering temperature rose. Nevertheless, the nanorods sintered at 400, 500 and 600 °C had similar diameters (∼200 nm.The NiO nanorod material sintered at 500 °C was chip-shaped with a diameter of 200 nm and it exhibited a porous 3D structure. The nanorod sintered at 500 °C had the optimal electrochemical performance. Its discharge specific capacity was 1127 mAh·g−1 initially and remained as high as 400 mAh·g−1 at a current density of 55 mA·g−1 after 50 cycles.

  12. Titanium oxynitride thin films as high-capacity and high-rate anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Kuo-Feng [Department of Materials Science and Engineering, Feng Chia University, 100 Wenhwa Rd., Taichung 40724, Taiwan (China); Su, Shih-Hsuan, E-mail: minimono42@gmail.com [Department of Materials Science and Engineering, Feng Chia University, 100 Wenhwa Rd., Taichung 40724, Taiwan (China); Leu, Hoang-Jyh [Master' s Program of Green Energy Science and Technology, Feng Chia University, 100 Wenhwa Rd., Taichung 40724, Taiwan (China); Hsia, Chen-Hsien [Department of Materials Science and Engineering, Feng Chia University, 100 Wenhwa Rd., Taichung 40724, Taiwan (China)

    2015-12-01

    Titanium oxynitride (TiO{sub x}N{sub y}) was synthesized by reactive magnetron sputtering in a mixed N{sub 2}/O{sub 2}/Ar gas at ambient temperature. TiO{sub x}N{sub y} thin films with various amounts of nitrogen contents were deposited by varying the N{sub 2}/O{sub 2} ratios in the background gas. The synthesized TiO{sub x}N{sub y} films with different compositions (TiO{sub 1.837}N{sub 0.060,} TiO{sub 1.890}N{sub 0.068,} TiO{sub 1.865}N{sub 0.073}, and TiO{sub 1.882}N{sub 0.163}) all displayed anatase phase, except TiO{sub 1.882}N{sub 0.163}. The impedances and grain sizes showed obvious variations with the nitrogen contents. A wide potential window from 3.0 V to 0.05 V, high-rate charge–discharge testing, and long cycle testing were applied to investigate the performances of synthesized TiO{sub x}N{sub y} and pure TiO{sub 2} as anodes for lithium-ion batteries. These TiO{sub x}N{sub y} anodes can be cycled under high rates of 125 μA/cm{sup 2} (10 °C) because of the lower charge–transfer resistance compared with the TiO{sub 2} anode. At 10 °C the discharge capacity of the optimal TiO{sub x}N{sub y} composition is 1.5 times higher than that of pure TiO{sub 2}. An unexpectedly large reversible capacity of ~ 300 μAh/cm{sup 2} μm (~ 800 mAh/g) between 1.0 V and 0.05 V was recorded for the TiO{sub x}N{sub y} anodes. The TiO{sub x}N{sub y} anode was cycled (3.0 V to 0.05 V) at 10 °C over 300 times without capacity fading while delivering a capacity of ~ 150 μAh/cm{sup 2} μm (~ 400 mAh/g). - Highlights: • Titanium oxynitride (TiO{sub x}N{sub y}) thin films as anode materials were studied. • TiO{sub x}N{sub y} thin films with various amounts of nitrogen contents were studied{sub .} • High rate capability of TiO{sub x}N{sub y} was studied.

  13. Hydrothermal growth of Cobalt germanate/reduced graphene oxide nanocomposite as superior anode materials for Lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Fan; Zhang, Ruihan; Zhang, Zhen; Wang, Hongkuan; Feng, Jinkui; Xiong, Shenglin; Qian, Yitai

    2014-01-01

    Highlights: • The nanosized Co 2 GeO 4 and Co 2 GeO 4 /RGO nanocomposites were prepared by a facile one pot hydrothermal route. • The Co 2 GeO 4 and Co 2 GeO 4 /RGO nanocomposites could be used as novel high capacity anodes with both alloying and conversion reactions. • The RGO incorporation can improve the electrochemical performance of Co 2 GeO 4 by buffering the volume changes and enhancing the conductivity of the electrodes. • The CGO/RGO nanocomposites exhibit a large reversible capacity of 1250 mAh g −1 for the first cycle and a capacity retention of 1085 mAh g −1 after 100 cycles. Remarkable rate performance was also recorded. - Abstract: Well dispersed Co 2 GeO 4 (CGO) nanoplates and CGO/reduced graphene oxide (RGO) nanocomposites are prepared via hydrothermal method and characterized as novel lithium anode materials for the first time. Electrochemical measurements demonstrate that the CGO/RGO nanocomposites exhibit a large reversible capacity of 1250 mAh g −1 for the first cycle and a capacity retention of 1085 mAh g −1 after 100 cycles. Remarkable rate performance was also recorded. The superior electrochemical performance of the CGO/RGO nanocomposites electrode compared to the pure CGO electrode can be attributed to the well dispersed RGO which enhances the electronic conductivity and accommodate the volume change during the conversion reactions

  14. Synthesis of nitrided MoO{sub 2} and its application as anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sukeun, E-mail: skyoon@kier.re.kr [New and Renewable Energy Research Division, Korea Institute of Energy Research, Daejeon 305-343 (Korea, Republic of); Jung, Kyu-Nam; Jin, Chang Soo; Shin, Kyung-Hee [New and Renewable Energy Research Division, Korea Institute of Energy Research, Daejeon 305-343 (Korea, Republic of)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Synthesis of nitrided molybdenum oxide by nitridation. Black-Right-Pointing-Pointer Superior cyclability for nitrided molybdenum oxide anodes. Black-Right-Pointing-Pointer Electrochemical reaction behavior of nitrided molybdenum oxide with lithium. - Abstract: Nitrided MoO{sub 2} has been synthesized by hydrothermal processing followed by post-nitridation with NH{sub 3} and investigated as alternative anode materials for rechargeable lithium batteries. Characterization data reveal the presence of molybdenum nitride ({gamma}-Mo{sub 2}N and {delta}-MoN) and molybdenum oxynitride (MoO{sub x}N{sub y}). The nitrided MoO{sub 2} exhibits a capacity of >420 mAh/g after 100 cycles and good rate capability. The improved electrochemical performance of the nitrided MoO{sub 2} compared to that of molybdenum oxide (MoO{sub 2}) is attributed to high electrical conductivity provided by nitrogen doping/or substitution in the oxygen octahedral site of MoO{sub 2} structure.

  15. Catalytic properties of new anode materials for solid oxide fuel cells operated under methane at intermediary temperature

    Science.gov (United States)

    Sauvet, A.-L.; Fouletier, J.

    The recent trend in solid oxide fuel cell concerns the use of natural gas as fuel. Steam reforming of methane is a well-established process for producing hydrogen directly at the anode side. In order to develop new anode materials, the catalytic activities of several oxides for the steam reforming of methane were characterized by gas chromatography. We studied the catalytic activity as a function of steam/carbon ratios r. The methane and the steam content were varied between 5 and 30% and between 1.5 and 3.5%, respectively, corresponding to r-values between 0.07 and 0.7. Catalyst (ruthenium and vanadium)-doped lanthanum chromites substituted with strontium, gadolinium-doped ceria (Ce 0.9Gd 0.1O 2) referred as to CeGdO 2, praseodymium oxide, molybdenum oxide and copper oxide were tested. The working temperature was fixed at 850°C, except for 5% ruthenium-doped La 1- xSr xCrO 3 where the temperature was varied between 700 and 850°C. Two types of behavior were observed as a function of the activity of the catalyst. The higher steam reforming efficiency was observed with 5% of ruthenium above 750°C.

  16. Corrosion and Discharge Behaviors of Mg-Al-Zn and Mg-Al-Zn-In Alloys as Anode Materials

    Directory of Open Access Journals (Sweden)

    Jiarun Li

    2016-03-01

    Full Text Available The Mg-6%Al-3%Zn and Mg-6%Al-3%Zn-(1%, 1.5%, 2%In alloys were prepared by melting and casting. Their microstructures were investigated via metallographic and energy-dispersive X-ray spectroscopy (EDS analysis. Moreover, hydrogen evolution and electrochemical tests were carried out in 3.5 wt% NaCl solution aiming at identifying their corrosion mechanisms and discharge behaviors. The results suggested that indium exerts an improvement on both the corrosion rate and the discharge activity of Mg-Al-Zn alloy via the effects of grain refining, β-Mg17Al12 precipitation, dissolving-reprecipitation, and self-peeling. The Mg-6%Al-3%Zn-1.5%In alloy with the highest corrosion rate at free corrosion potential did not perform desirable discharge activity indicating that the barrier effect caused by the β-Mg17Al12 phase would have been enhanced under the conditions of anodic polarization. The Mg-6%Al-3%Zn-1.0%In alloy with a relative low corrosion rate and a high discharge activity is a promising anode material for both cathodic protection and chemical power source applications.

  17. Electrochemistry of carbonaceous materials; 2. Anodic electroactivity of coal slurries in 85% phosphoric acid media

    Energy Technology Data Exchange (ETDEWEB)

    Tomat, R.; Salmaso, R.; Zecchin, S. (CNR-Instituto di Polarografia ed Elettrochimica Preparative, Padova (Italy))

    1992-04-01

    Current-potential curves of suspended coal (Sulcis basin, Sardinia, Italy) in 85% H{sub 3}PO{sub 4} were taken on a platinum electrode at 100{degree}C. Anodic current in the potential range of 0-1.5 V versus saturated calomel electrode was due to some humic acid-type substances released by coal in the electrolyte. The leaching of organic matter increased with the lowering of the particle dimensions, and the related oxidation currents attained stable values even during slurry formation. Current-potential curves were still unchanged when coal was filtered off from the suspension. Previous washing of ground coal with diluted mineral acids, including H{sub 3}PO{sub 4}, did not dissolve any significant amount of the substances responsible for the electrochemical activity of the coal sample examined. 14 refs., 6 figs.

  18. The prospects of phosphorene as an anode material for high-performance lithium-ion batteries: a fundamental study.

    Science.gov (United States)

    Zhang, Congyan; Yu, Ming; Anderson, George; Dharmasena, Ruchira Ravinath; Sumanasekera, Gamini

    2017-02-17

    To completely understand lithium adsorption, diffusion, and capacity on the surface of phosphorene and, therefore, the prospects of phosphorene as an anode material for high-performance lithium-ion batteries (LIBs), we carried out density-functional-theory calculations and studied the lithium adsorption energy landscape, the lithium diffusion mobility, the lithium intercalation, and the lithium capacity of phosphorene. We also carried out, for the very first time, experimental measurement of the lithium capacity of phosphorene. Our calculations show that the lithium diffusion mobility along the zigzag direction in the valley of phosphorene was about 7 to 11 orders of magnitude faster than that along the other directions, indicating its ultrafast and anisotropic diffusivity. The lithium intercalation in phosphorene was studied by considering various Li n P 16 configurations (n = 1-16) including single-side and double-side adsorptions. We found that phosphorene could accommodate up to a ratio of one Li per P atom (i.e. Li 16 P 16 ). In particular, we found that, even at a high Li concentration (e.g. x = 1 in Li x P), there was no lithium clustering, and the structure of phosphorene (when fractured) is reversible during lithium intercalation. The theoretical value of the lithium capacity for a monolayer phosphorene is predicted to be above 433 mAh g -1 , depending on whether Li atoms are adsorbed on the single side or the double side of phosphorene. Our experimental measurement of the lithium capacity for few-layer phosphorene networks shows a reversible stable value of ∼453 mAh g -1 even after 50 cycles. Our results clearly show that phosphorene, compared to graphene and other two-dimensional materials, has great promise as a novel anode material for high-performance LIBs.

  19. Rational design of Sn/SnO{sub 2}/porous carbon nanocomposites as anode materials for sodium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaojia [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Li, Xifei, E-mail: xfli2011@hotmail.com [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Center for Advanced Energy Materials and Devices, Xi’an University of Technology, Xi’an 710048 (China); Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071 (China); Fan, Linlin; Yu, Zhuxin; Yan, Bo; Xiong, Dongbin; Song, Xiaosheng; Li, Shiyu [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Adair, Keegan R. [Nanomaterials and Energy Lab., Department of Mechanical and Materials Engineering, Western University, London, Ontario N6A 5B9 (Canada); Li, Dejun, E-mail: dejunli@mail.tjnu.edu.cn [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Sun, Xueliang, E-mail: xsun9@uwo.ca [Nanomaterials and Energy Lab., Department of Mechanical and Materials Engineering, Western University, London, Ontario N6A 5B9 (Canada); Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China)

    2017-08-01

    Highlights: • Sn/SnO{sub 2}/porous carbon nanocomposites are rationally designed via a facile strategy. • The porous carbon mitigates the volume change and poor conductivity of Sn/SnO{sub 2}. • The nanocomposites exhibit the enhanced sodium storage performance. - Abstract: Sodium-ion batteries (SIBs) have successfully attracted considerable attention for application in energy storage, and have been proposed as an alternative to lithium ion batteries (LIBs) due to the abundance of sodium resources and low price. Sn has been deemed as a promising anode material in SIBs which holds high theoretical specific capacity of 845 mAh g{sup −1}. In this work we design nanocomposite materials consisting of porous carbon (PC) with SnO{sub 2} and Sn (Sn/SnO{sub 2}/PC) via a facile reflux method. Served as an anode material for SIBs, the Sn/SnO{sub 2}/PC nanocomposite delivers the primary discharge and charge capacities of 1148.1 and 303.0 mAh g{sup −1}, respectively. Meanwhile, it can preserve the discharge capacity approximately of 265.4 mAh g{sup −1} after 50 cycles, which is much higher than those of SnO{sub 2}/PC (138.5 mAh g{sup −1}) and PC (92.2 mAh g{sup −1}). Furthermore, the Sn/SnO{sub 2}/PC nanocomposite possesses better cycling stability with 77.8% capacity retention compared to that of SnO{sub 2}/PC (61.88%) over 50 cycles. Obviously, the Sn/SnO{sub 2}/PC composite with excellent electrochemical performance shows the great possibility of application in SIBs.

  20. 3D Flower-Like Hierarchitectures Constructed by SnS/SnS2 Heterostructure Nanosheets for High-Performance Anode Material in Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Zhiguo Wu

    2015-01-01

    Full Text Available Sn chalcogenides, including SnS, Sn2S3, and SnS2, have been extensively studied as anode materials for lithium batteries. In order to obtain one kind of high capacity, long cycle life lithium batteries anode materials, three-dimensional (3D flower-like hierarchitectures constructed by SnS/SnS2 heterostructure nanosheets with thickness of ~20 nm have been synthesized via a simple one-pot solvothermal method. The obtained samples exhibit excellent electrochemical performance as anode for Li-ion batteries (LIBs, which deliver a first discharge capacity of 1277 mAhg−1 and remain a reversible capacity up to 500 mAhg−1 after 50 cycles at a current of 100 mAg−1.

  1. Assembly of core–shell structured porous carbon–graphene composites as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Guo, Rong; Zhao, Li; Yue, Wenbo

    2015-01-01

    As potential anode materials for lithium-ion batteries, mesoporous carbons such as CMK-3 and CMK-8 usually show stable cycling performances but only slightly higher reversible capacities than commercial graphite. Graphene has much higher theoretical capacity than that of graphite in theory. However, its electrochemical behavior is not as good as expected due to the aggregation of graphene nanosheets. Herein we describe a novel strategy for the preparation of core–shell structured porous carbon–graphene composites. Compared to pure porous carbons or pure graphene nanosheets, these novel composites exhibit superior electrochemical performances including higher reversible capacities and better cycle/rate performances. This core–shell structure can avoid the aggregation of graphene nanosheets as well as may stabilize the mesostructure of porous carbon, which is beneficial to improving the electrochemical performances of the composites

  2. A novel ZnO@Ag@Polypyrrole hybrid composite evaluated as anode material for zinc-based secondary cell

    Science.gov (United States)

    Huang, Jianhang; Yang, Zhanhong; Feng, Zhaobin; Xie, Xiaoe; Wen, Xing

    2016-04-01

    A novel ZnO@Ag@Polypyrrole nano-hybrid composite has been synthesized with a one-step approach, in which silver-ammonia complex ion serves as oxidant to polymerize the pyrrole monomer. X-ray diffraction (XRD) and infrared spectroscopy (IR) show the existence of metallic silver and polypyrrole. The structure of nano-hybrid composites are characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), which demonstrates that the surface of ZnO is decorated with nano silver grain coated with polypyrrole. When evaluated as anode material, the silver grain and polypyrrole layer not only suppress the dissolution of discharge product, but also helps to uniform electrodeposition due to substrate effect and its good conductivity, thus shows better cycling performance than bare ZnO electrode does.

  3. 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Qunting; Feng, Xinliang [College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (China); Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Yang, Shubin [Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany)

    2011-12-08

    2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors are prepared from the direct growth of FeOOH nanorods on the surface of graphene and the subsequent electrochemical transformation of FeOOH to Fe{sub 3}O{sub 4}. The Fe{sub 3}O{sub 4} rate at RGO nanocomposites exhibit superior capacitance (326 F g{sup -1}), high energy density (85 Wh kg{sup -1}), large power, and good cycling performance in 1 mol L{sup -1} LiOH solution. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Efficient preparation of highly hydrogenated graphene and its application as a high-performance anode material for lithium ion batteries

    Science.gov (United States)

    Chen, Wufeng; Zhu, Zhiye; Li, Sirong; Chen, Chunhua; Yan, Lifeng

    2012-03-01

    A novel method has been developed to prepare hydrogenated graphene (HG) via a direct synchronized reduction and hydrogenation of graphene oxide (GO) in an aqueous suspension under 60Co gamma ray irradiation at room temperature. GO can be reduced by the aqueous electrons (eaq-) while the hydrogenation takes place due to the hydrogen radicals formed in situ under irradiation. The maximum hydrogen content of the as-prepared highly hydrogenated graphene (HHG) is found to be 5.27 wt% with H/C = 0.76. The yield of the target product is on the gram scale. The as-prepared HHG also shows high performance as an anode material for lithium ion batteries.

  5. Nanoparticle Decorated Ultrathin Porous Nanosheets as Hierarchical Co3O4 Nanostructures for Lithium Ion Battery Anode Materials

    Science.gov (United States)

    Mujtaba, Jawayria; Sun, Hongyu; Huang, Guoyong; Mølhave, Kristian; Liu, Yanguo; Zhao, Yanyan; Wang, Xun; Xu, Shengming; Zhu, Jing

    2016-01-01

    We report a facile synthesis of a novel cobalt oxide (Co3O4) hierarchical nanostructure, in which crystalline core-amorphous shell Co3O4 nanoparticles with a bimodal size distribution are uniformly dispersed on ultrathin Co3O4 nanosheets. When tested as anode materials for lithium ion batteries, the as-prepared Co3O4 hierarchical electrodes delivered high lithium storage properties comparing to the other Co3O4 nanostructures, including a high reversible capacity of 1053.1 mAhg−1 after 50 cycles at a current density of 0.2 C (1 C = 890 mAg−1), good cycling stability and rate capability. PMID:26846434

  6. Nb{sub 2}O{sub 5} hollow nanospheres as anode material for enhanced performance in lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sasidharan, Manickam [Department of Chemistry, Faculty of Science and Engineering, Saga University, 1 Honjo-machi, Saga 840-8502 (Japan); Gunawardhana, Nanda [Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan); Yoshio, Masaki, E-mail: yoshio@cc.saga-u.ac.jp [Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan); Nakashima, Kenichi, E-mail: nakashik@cc.saga-u.ac.jp [Department of Chemistry, Faculty of Science and Engineering, Saga University, 1 Honjo-machi, Saga 840-8502 (Japan)

    2012-09-15

    Graphical abstract: Nb{sub 2}O{sub 5} hollow nanosphere constructed electrode delivers high capacity of 172 mAh g{sup −1} after 250 cycles and maintains structural integrity and excellent cycling stability. Highlights: ► Nb{sub 2}O{sub 5} hollow nanospheres synthesis was synthesized by soft-template. ► Nb{sub 2}O{sub 5} hollow nanospheres were investigated as anode material in Li-ion battery. ► Nanostructured electrode delivers high capacity of 172 mAh g{sup −1} after 250 cycles. ► The electrode maintains the structural integrity and excellent cycling stability. ► Nanosized shell domain facilitates fast lithium intercalation/deintercalation. -- Abstract: Nb{sub 2}O{sub 5} hollow nanospheres of average diameter ca. ∼29 nm and hollow cavity size ca. 17 nm were synthesized using polymeric micelles with core–shell–corona architecture under mild conditions. The hollow particles were thoroughly characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermal (TG/DTA) and nitrogen adsorption analyses. Thus obtained Nb{sub 2}O{sub 5} hollow nanospheres were investigated as anode materials for lithium ion rechargeable batteries for the first time. The nanostructured electrode delivers high capacity of 172 mAh g{sup −1} after 250 cycles of charge/discharge at a rate of 0.5 C. More importantly, the hollow particles based electrodes maintains the structural integrity and excellent cycling stability even after exposing to high current density 6.25 A g{sup −1}. The enhanced electrochemical behavior is ascribed to hollow cavity coupled with nanosized Nb{sub 2}O{sub 5} shell domain that facilitates fast lithium intercalation/deintercalation kinetics.

  7. Li4 Ti5 O12 Anode: Structural Design from Material to Electrode and the Construction of Energy Storage Devices.

    Science.gov (United States)

    Chen, Zhijie; Li, Honsen; Wu, Langyuan; Lu, Xiaoxia; Zhang, Xiaogang

    2018-03-01

    Spinel Li 4 Ti 5 O 12 , known as a zero-strain material, is capable to be a competent anode material for promising applications in state-of-art electrochemical energy storage devices (EESDs). Compared with commercial graphite, spinel Li 4 Ti 5 O 12 offers a high operating potential of ∼1.55 V vs Li/Li + , negligible volume expansion during Li + intercalation process and excellent thermal stability, leading to high safety and favorable cyclability. Despite the merits of Li 4 Ti 5 O 12 been presented, there still remains the issue of Li 4 Ti 5 O 12 suffering from poor electronic conductivity, manifesting disadvantageous rate performance. Typically, a material modification process of Li 4 Ti 5 O 12 will be proposed to overcome such an issue. However, the previous reports have made few investigations and achievements to analyze the subsequent processes after a material modification process. In this review, we attempt to put considerable interest in complete device design and assembly process with its material structure design (or modification process), electrode structure design and device construction design. Moreover, we have systematically concluded a series of representative design schemes, which can be divided into three major categories involving: (1) nanostructures design, conductive material coating process and doping process on material level; (2) self-supporting or flexible electrode structure design on electrode level; (3) rational assembling of lithium ion full cell or lithium ion capacitor on device level. We believe that these rational designs can give an advanced performance for Li 4 Ti 5 O 12 -based energy storage device and deliver a deep inspiration. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Low temperature molten salt synthesis of Y(sub2)Sn(sub2)O(sub7) anode material for lithium ion batteries

    CSIR Research Space (South Africa)

    Nithyadharseni, P

    2015-10-01

    Full Text Available Acta 182 (2015) 1060–1069 Low temperature molten salt synthesis of Y2Sn2O7 anode material for lithium ion batteries P. Nithyadharsenia,b, M.V. Reddya,c,*, Kenneth I. Ozoemenab,d, R. Geetha Balakrishnae, B.V.R. Chowdaria a Advanced Batteries...

  9. In situ preparation of Fe3O4 in a carbon hybrid of graphene nanoscrolls and carbon nanotubes as high performance anode material for lithium-ion batteries

    Science.gov (United States)

    Liu, Yuewen; Hassan Siddique, Ahmad; Huang, Heran; Fang, Qile; Deng, Wei; Zhou, Xufeng; Lu, Huanming; Liu, Zhaoping

    2017-11-01

    A new conductive carbon hybrid combining both reduced graphene nanoscrolls and carbon nanotubes (rGNSs-CNTs) is prepared, and used to host Fe3O4 nanoparticles through an in situ synthesis method. As an anode material for LIBs, the obtained Fe3O4@rGNSs-CNTs shows good electrochemical performance. At a current density of 0.1 A g-1, the anode material shows a high reversible capacity of 1232.9 mAh g-1 after 100 cycles. Even at a current density of 1 A g-1, it still achieves a high reversible capacity of 812.3 mAh g-1 after 200 cycles. Comparing with bare Fe3O4 and Fe3O4/rGO composite anode materials without nanoscroll structure, Fe3O4@rGNSs-CNTs shows much better rate capability with a reversible capacity of 605.0 and 500.0 mAh g-1 at 3 and 5 A g-1, respectively. The excellent electrochemical performance of the Fe3O4@rGNSs-CNTs anode material can be ascribed to the hybrid structure of rGNSs-CNTs, and their strong interaction with Fe3O4 nanoparticles, which on one hand provides more pathways for lithium ions and electrons, on the other hand effectively relieves the volume change of Fe3O4 during the charge-discharge process.

  10. Uniform Fe3O4 microflowers hierarchical structures assembled with porous nanoplates as superior anode materials for lithium-ion batteries

    DEFF Research Database (Denmark)

    Wang, Xiaoliang; Liu, Yanguo; Arandiyan, Hamidreza

    2016-01-01

    as anode material for lithium-ion batteries, the as-prepared Fe3O4 microflowers electrodes delivered superior capacity, better cycling stability and rate capability than that of Fe3O4 microspheres electrodes. The improved electrochemical performance was attributed to the microscale flowerlike architecture...

  11. Graphene encapsulated Fe3O4 nanorods assembled into a mesoporous hybrid composite used as a high-performance lithium-ion battery anode material

    DEFF Research Database (Denmark)

    Huang, Wei; Xiao, Xinxin; Engelbrekt, Christian

    2017-01-01

    The discovery of new anode materials and engineering their fine structures are the core elements in the development of new-generation lithium ion batteries (LIBs). To this end, we herein report a novel nanostructured composite consisting of approximately 75% Fe3O4 nanorods and 25% reduced graphene...

  12. Facile fabrication of composited Mn_3O_4/Fe_3O_4 nanoflowers with high electrochemical performance as anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhao, Dianyun; Hao, Qin; Xu, Caixia

    2015-01-01

    Graphical abstract: Mn_3O_4/Fe_3O_4 nanoflowers are successfully prepared through one step dealloying of Mn_5Fe_5Al_9_0 alloy at room temperature. This hierarchical flower-like structure with consists of a packed array of uniform regular hexagon-like nanoslices. Combined with the specific hierarchical flower-like architecture and the synergistic effect exerted by Mn_3O_4 and Fe_3O_4, the nanocomposite exhibits enhanced performance as anode material for lithium ion batteries than pure Mn_3O_4 and Fe_3O_4 anode. - Highlights: • Mn_3O_4/Fe_3O_4 nanoflowers are easily prepared by one step dealloying method. • The nanoflowers consist of packed regular nanoslices with interconnected voids. • Mn_3O_4/Fe_3O_4 nanoflowers deliver higher discharge capacity than Mn_3O_4 and Fe_3O_4. • Mn_3O_4/Fe_3O_4 nanoflowers show lower initial irreversible loss than Mn_3O_4 anode. - Abstract: Mn_3O_4/Fe_3O_4 nanoflowers with controllable components are simply fabricated through one step etching of the Mn_5Fe_5Al_9_0 ternary alloy. The as-made hierarchical flower-like structure with interconnected voids consists of a packed array of uniform regular hexagon-like nanoslices. Based on the simple dealloying strategy the target metals are directly converted to uniform nanocomposite composed of Mn_3O_4 and Fe_3O_4 species. With the unique hierarchical flower-like structure and the synergistic effects between Mn_3O_4 and Fe_3O_4, the nanocomposite exhibits higher performance as anode material for lithium ion batteries than that of pure Mn_3O_4 and Fe_3O_4 anodes. The Mn_3O_4/Fe_3O_4 nanocomposite deliver much higher discharge capacity and lower initial irreversible loss than Mn_3O_4 anode. The Mn_3O_4/Fe_3O_4 anode material also shows an excellent cycling stability at the high rate of 1500 mA g"−"1 with outstanding rate capability. With the advantages of simple preparation and excellent electrochemical performance, Mn_3O_4/Fe_3O_4 nanoflowers manifest great application potential as

  13. Nanoporous anodic aluminum oxide as a promising material for the electrostatically-controlled thin film interference filter

    International Nuclear Information System (INIS)

    Lo, Pei-Hsuan; Lee, Chih-Chun; Fang, Weileun; Luo, Guo-Lun

    2015-01-01

    This study presents the approach to implement the electrostatically-controlled thin film optical filter by using a nanoporous anodic aluminum oxide (np-AAO) layer as the key suspended micro structure. The bi-stable optical filter operates in the visible spectral range. In this work, the presented bi-stable optical filter has averaged reflectivity of 60%, and the central wavelengths are 580 and 690 nm respectively for on and off states. The presented np-AAO layer offers the following merits for the thin film optical filter: (1) material properties of np-AAO film, such as refractive index, elastic modulus and dielectric constant, can be easily changed by a low temperature pore-widening process, (2) in-use stiction of the suspended np-AAO structure can be reduced by the small contact area of nanoporous textures, (3) driving (pull-in) voltage can be reduced due to a large dielectric constant (ε AAO is 7.05) and small stiffness of np-AAO film and (4) dielectric charging can be reduced by the np-AAO material; thus the offset voltage is small. The study reports the design, fabrication and experimental results of the bi-stable optical filter to demonstrate the advantages of the presented device. The np-AAO material also has the potential for applications of other electrostatic drive micro devices. (paper)

  14. Preparation and electrochemical performance of bramble-like ZnO array as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yan, Junfeng; Wang, Gang; Wang, Hui; Zhang, Zhiyong; Ruan, Xiongfei; Zhao, Wu; Yun, Jiangni; Xu, Manzhang

    2015-01-01

    A bramble-like ZnO array with a special three-dimensional (3D) nanostructure was successfully fabricated on Zn foil through a facile two-step hydrothermal process. A possible growth mechanism of the bramble-like ZnO array was proposed. In the first step of hydrothermal process, the crystal nucleus of Zn(OH) 4 2− generated by the zinc atoms and OH − ions fold together preferentially along the positive polar (0001) to form the needle-like ZnO array. In the second step of hydrothermal process, the crystal nuclei of Zn(OH) 4 2− adjust their posture to keep their c-axes vertical to the perching sites due to the sufficient environmental force and further grow preferentially along the (0001) direction so as to form bramble-like ZnO array. The electrochemical properties of the needle- and bramble-like ZnO arrays as anode materials for lithium-ion batteries were investigated and compared. The results show that the bramble-like ZnO material exhibits much better lithium storage properties than the needle-like ZnO sample. Reasons for the enhanced electrochemical performance of the bramble-like ZnO material were investigated

  15. Mn 3 O 4 −Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries

    KAUST Repository

    Wang, Hailiang

    2010-10-13

    We developed two-step solution-phase reactions to form hybrid materials of Mn3O4 nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery applications. Selective growth of Mn3O 4 nanoparticles on RGO sheets, in contrast to free particle growth in solution, allowed for the electrically insulating Mn3O4 nanoparticles to be wired up to a current collector through the underlying conducting graphene network. The Mn3O4 nanoparticles formed on RGO show a high specific capacity up to ∼900 mAh/g, near their theoretical capacity, with good rate capability and cycling stability, owing to the intimate interactions between the graphene substrates and the Mn 3O4 nanoparticles grown atop. The Mn3O 4/RGO hybrid could be a promising candidate material for a high-capacity, low-cost, and environmentally friendly anode for lithium ion batteries. Our growth-on-graphene approach should offer a new technique for the design and synthesis of battery electrodes based on highly insulating materials. © 2010 American Chemical Society.

  16. Porous polyhedral and fusiform Co3O4 anode materials for high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Huang, Guoyong; Xu, Shengming; Lu, Shasha; Li, Linyan; Sun, Hongyu

    2014-01-01

    Graphical abstract: - Abstract: Co 3 O 4 is commonly used as a potential anode material for Li-ion batteries (LIBs). In this study, novel porous polyhedral and fusiform Co 3 O 4 powders have been synthesized successfully through the hydrothermal method with different solvents followed by thermal treatment. It is shown that both of the polyhedrons (1.0-3.0 μm in side length) and the spindles (2.0-5.0 μm in length, 0.5-2.0 μm in width) are composed of similar irregular nanoparticles (20-200 nm in diameter, 20-40 nm in thickness) bonded to each other. Evaluated by electrochemical measurements, both of them have high initial discharge capacities (1374.4 mAhg −1 and 1326.3 mAhg −1 ) and enhanced cycling stabilities at the low rate (the capacity retention ratios at 0.1 C after 70 cycles are 91.6% and 92.2%, respectively). However, the rate capability of the spindles (93.8%, 90.1% and 98.9% of the second discharge capacities after 70 cycles at 0.5 C, 1 C and 2 C, respectively) is better than the polyhedrons’ (only 76.2%, 42.1% and 59.3% under the same conditions). Remarkable, the unique morphologies and special structures may be extended to synthesize other similar transition metal oxides (NiO, Fe 3 O 4 , et al.) as high performance anodes for LIBs

  17. Anodized dental implant surface

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Mishra

    2017-01-01

    Full Text Available Purpose: Anodized implants with moderately rough surface were introduced around 2000. Whether these implants enhanced biologic effect to improve the environment for better osseointegration was unclear. The purpose of this article was to review the literature available on anodized surface in terms of their clinical success rate and bone response in patients till now. Materials and Methods: A broad electronic search of MEDLINE and PubMed databases was performed. A focus was made on peer-reviewed dental journals. Only articles related to anodized implants were included. Both animal and human studies were included. Results: The initial search of articles resulted in 581 articles on anodized implants. The initial screening of titles and abstracts resulted in 112 full-text papers; 40 animal studies, 16 studies on cell adhesion and bacterial adhesion onto anodized surfaced implants, and 47 human studies were included. Nine studies, which do not fulfill the inclusion criteria, were excluded. Conclusions: The long-term studies on anodized surface implants do favor the surface, but in most of the studies, anodized surface is compared with that of machined surface, but not with other surfaces commercially available. Anodized surface in terms of clinical success rate in cases of compromised bone and immediately extracted sockets has shown favorable success.

  18. Synthesis of Octahedral-Shaped NiO and Approaches to an Anode Material of Manufactured Solid Oxide Fuel Cells Using the Decalcomania Method

    Directory of Open Access Journals (Sweden)

    Haeran Cho

    2013-01-01

    Full Text Available Micrometer-sized and octahedral-shaped NiO particles were synthesized by microwave thermal treatment at 300 watt power for 15 min in a microwave chamber to be used as an anode material in solid oxide fuel cells. SEM image and particle size distribution revealed near-perfect octahedral NiO microparticle with sizes ranging from 4.0~11.0 μm. The anode functional layer (AFL, 60 wt% NiO synthesized: commercial 40 wt% YSZ, electrolyte (commercial Yttria-stabilized zirconia, YSZ, and cathode (commercial La0.8Sr0.2MnO3, LSM layers were manufactured using the decalcomania method on a porous anode support, sequentially. The sintered electrolyte at 1450°C for 2 h using the decalcomania method was dense and had a thickness of about 10 μm. The cathode was sintered at 1250°C for 2 h, and it was porous. Using humidified hydrogen as a fuel, a coin cell with a 15 μm thick anode functional layer exhibited maximum power densities of 0.28, 0.38, and 0.65 W/cm2 at 700, 750, and 800°C, respectively. Otherwise, when a commercial YSZ anode functional layer was used, the maximum power density was 0.55 W/cm2 at 800°C.

  19. Unique reduced graphene oxide as efficient anode material in Li ion ...

    Indian Academy of Sciences (India)

    2018-03-29

    Mar 29, 2018 ... as an electrode material in dye-sensitized solar cell [1], super- capacitor [2] and Li ion battery ... Ar-filled glove box. In each of the coin cell, ... Li reacts with suitable materials' defects at low potential and as they charge, bonds ...

  20. Influence of the conditions of a solid-state synthesis anode material ...

    Indian Academy of Sciences (India)

    2018-02-02

    Feb 2, 2018 ... Abstract. Lithium–titanium spinel is a promising electrode material for high power and environmentally friendly batteries. .... electrolyte and increases the availability of Li4Ti5O12 towards lithium ions. ... container. The milling ...

  1. Solid-solution-like ZnO/C composites as excellent anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Guanhua; Zhang, Hang; Zhang, Xiang; Zeng, Wei; Su, Qingmei; Du, Gaohui; Duan, Huigao

    2015-01-01

    Exploring advanced anode materials to maximize the capacity of lithium ion batteries has been an active research area for decades. Constructing composites materials has been proved to be one of the most effective methods to achieve higher capacity due to the synergistic effect. In this work, we proposed and demonstrated a concept of solid-solution-like ZnO/C composites to approach the largest possible synergistic effect by introducing the most interfaces and minimizing the pulverization. The solid-solution-like ZnO/C electrode could achieve a high reversible capacity of 813.3 mAh g −1 at a current density of 100 mA g −1 after 100 cycles with a decrease rate of only 0.4% per cycle. Moreover, the discharge capacity still maintained 53.5% of the original value even when the current density increased to 40 times as much as the original, showing a distinguished rate performance. In addition, such solid-solution-like nanofibers can be easily prepared because of their compatibility with the existing industrial PAN-based spinning process. This may pave the way to mass produce lithium ion batteries with significantly enhanced performance using existing low-cost commercial facilities and recipes.

  2. Hierarchical structured graphene/metal oxide/porous carbon composites as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Guo, Rong; Yue, Wenbo; Ren, Yu; Zhou, Wuzong

    2016-01-01

    Highlights: • CeO 2 and Co 3 O 4 nanoparticles display different behavior within CMK-3. • CMK-3-CeO 2 and Co 3 O 4 show various electrochemical properties • CMK-3-CeO 2 and Co 3 O 4 are further wrapped by graphene nanosheets. • Graphene-encapsulated composites show better electrochemical performances. - Abstract: As a novel anode material for lithium-ion batteries, CeO 2 displays imperceptible volumetric and morphological changes during the lithium insertion and extraction processes, and thereby exhibits good cycling stability. However, the low theoretical capacity and poor electronic conductivity of CeO 2 hinder its practical application. In contrast, Co 3 O 4 possesses high theoretical capacity, but undergoes huge volume change during cycling. To overcome these issues, CeO 2 and Co 3 O 4 nanoparticles are formed inside the pores of CMK-3 and display various electrochemical behaviors due to the different morphological structures of CeO 2 and Co 3 O 4 within CMK-3. Moreover, the graphene/metal oxide/CMK-3 composites with a hierarchical structure are then prepared and exhibit better electrochemical performances than metal oxides with or without CMK-3. This novel synthesis strategy is hopefully employed in the electrode materials design for Li-ion batteries or other energy conversion and storage devices.

  3. Structural and electrical properties of Li4Ti5O12 anode material for lithium-ion batteries

    Science.gov (United States)

    Vikram Babu, B.; Vijaya Babu, K.; Tewodros Aregai, G.; Seeta Devi, L.; Madhavi Latha, B.; Sushma Reddi, M.; Samatha, K.; Veeraiah, V.

    2018-06-01

    In this work we investigate Li4Ti5O12 (LTO) anode material synthesized by conventional solid state reaction method calcined at 850 °C for 16 h. Thermal analysis reveals the temperature dependence of the material properties. The phase composition, micro-morphology and elemental analysis of the compound are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectra (EDS) respectively. The results of XRD pattern possessed cubic spinel structure with space group Fd-3m. The morphological features of the powder sample are in the range of 1.1 μm. The EDS spectra confirm the constituent elemental composition of the sample. Electrical conductivity measurement at different frequencies and temperatures had been carried out; and at room temperature it is found to be 5.96 × 10-7 S/cm. Besides, for the different frequencies applied, the activation energies were calculated and obtained to be in the range of 0.2-0.4 eV.

  4. Stannic oxide spherical nanoparticles: an anode material with long-term cyclability for Li-ion rechargeable batteries

    Science.gov (United States)

    Kalubarme, Ramchandra S.; Kale, Bharat B.; Gosavi, Suresh W.

    2017-08-01

    Transition metal oxides are widely used in energy storage applications. Stannic oxide nanostructures are prepared using a controlled, NaOH assisted, simple precipitation method. The morphology of the prepared material confirms the formation of fine nanoparticles having a rutile stannic oxide (SnO2) phase, with cassiterite structure, and size distribution ~20 nm. On testing, as an anode material for a Li-ion battery, stannic oxide delivers a reversible charge capacity of 957 mAh g-1 at an applied current rate of C/10. The stannic oxide shows excellent rate performance displaying capacity of 577 mAh g-1 at 10 C and capacity of 919 mAh g-1 retained after 200 cycles at an applied current rate of C/2. The super performance of stannic oxide fine particles stem from both the effective diffusion of Li-ions to reaction sites through porous channels and weaker stress/strain during Li insertion/desertion owing to its fine size.

  5. Double-shelled silicon anode nanocomposite materials: A facile approach for stabilizing electrochemical performance via interface construction

    Science.gov (United States)

    Du, Lulu; Wen, Zhongsheng; Wang, Guanqin; Yang, Yan-E.

    2018-04-01

    The rapid capacity fading induced by volumetric changes is the main issue that hinders the widespread application of silicon anode materials. Thus, double-shelled silicon composite materials where lithium silicate was located between an Nb2O5 coating layer and a silicon active core were configured to overcome the chemical compatibility issues related to silicon and oxides. The proposed composites were prepared via a facile co-precipitation method combined with calcination. Transmission electron microscopy and X-ray photoelectron spectroscopy analysis demonstrated that a transition layer of lithium silicate was constructed successfully, which effectively hindered the thermal inter-diffusion between the silicon and oxide coating layers during heat treatment. The electrochemical performance of the double-shelled silicon composites was enhanced dramatically with a retained specific capacity of 1030 mAh g-1 after 200 cycles at a current density of 200 mA g-1 compared with 598 mAh g-1 for a core-shell Si@Nb2O5 composite that lacked the interface. The lithium silicate transition layer was shown to play an important role in maintaining the high electrochemical stability.

  6. Electrochemical characterization of carbon coated bundle-type silicon nanorod for anode material in lithium ion secondary batteries

    International Nuclear Information System (INIS)

    Halim, Martin; Kim, Jung Sub; Choi, Jeong-Gil; Lee, Joong Kee

    2015-01-01

    Highlights: • Bundle-type silicon nanorods (BSNR) were synthesized by metal assisted chemical etching. • Novel bundle-type nanorods electrode showed self-relaxant characteristics. • The self-relaxant property was enhanced by increasing the silver concentration. • PAA binder enhanced the self-relaxant property of the silicon material. • Carbon coated BSNR (BSNR@C) has evidently provided better cycle performance. - Abstract: Nanostructured silicon synthesis by surface modification of commercial micro-powder silicon was investigated in order to reduce the maximum volume change over cycle. The surface of micro-powder silicon was modified using an Ag metal-assisted chemical etching technique to produce nanostructured material in the form of bundle-type silicon nanorods. The volume change of the electrode using the nanostructured silicon during cycle was investigated using an in-situ dilatometer. Our result shows that nanostructured silicon synthesized using this method showed a self-relaxant characteristic as an anode material for lithium ion battery application. Moreover, binder selection plays a role in enhancing self-relaxant properties during delithiation via strong hydrogen interaction on the surface of the silicon material. The nanostructured silicon was then coated with carbon from propylene gas and showed higher capacity retention with the use of polyacrylic acid (PAA) binder. While the nano-size of the pore diameter control may significantly affect the capacity fading of nanostructured silicon, it can be mitigated via carbon coating, probably due to the prevention of Li ion penetration into 10 nano-meter sized pores

  7. Electrochemical characterization of carbon coated bundle-type silicon nanorod for anode material in lithium ion secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Halim, Martin [Center for Energy Convergence, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Energy and Environmental Engineering, Korea University of Science and Technology, Gwahangno, Yuseong-gu, Daejeon, 305-333 (Korea, Republic of); Kim, Jung Sub [Center for Energy Convergence, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Material Science & Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Choi, Jeong-Gil [Department of Chemical Engineering, Hannam University, 461-1 Junmin-dong, Yusung-gu, Taejon 305-811 (Korea, Republic of); Lee, Joong Kee, E-mail: leejk@kist.re.kr [Center for Energy Convergence, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Energy and Environmental Engineering, Korea University of Science and Technology, Gwahangno, Yuseong-gu, Daejeon, 305-333 (Korea, Republic of)

    2015-04-15

    Highlights: • Bundle-type silicon nanorods (BSNR) were synthesized by metal assisted chemical etching. • Novel bundle-type nanorods electrode showed self-relaxant characteristics. • The self-relaxant property was enhanced by increasing the silver concentration. • PAA binder enhanced the self-relaxant property of the silicon material. • Carbon coated BSNR (BSNR@C) has evidently provided better cycle performance. - Abstract: Nanostructured silicon synthesis by surface modification of commercial micro-powder silicon was investigated in order to reduce the maximum volume change over cycle. The surface of micro-powder silicon was modified using an Ag metal-assisted chemical etching technique to produce nanostructured material in the form of bundle-type silicon nanorods. The volume change of the electrode using the nanostructured silicon during cycle was investigated using an in-situ dilatometer. Our result shows that nanostructured silicon synthesized using this method showed a self-relaxant characteristic as an anode material for lithium ion battery application. Moreover, binder selection plays a role in enhancing self-relaxant properties during delithiation via strong hydrogen interaction on the surface of the silicon material. The nanostructured silicon was then coated with carbon from propylene gas and showed higher capacity retention with the use of polyacrylic acid (PAA) binder. While the nano-size of the pore diameter control may significantly affect the capacity fading of nanostructured silicon, it can be mitigated via carbon coating, probably due to the prevention of Li ion penetration into 10 nano-meter sized pores.

  8. Ternary SnO2@PANI/rGO nanohybrids as excellent anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Ding, Hongmei; Jiang, Hao; Zhu, Zhengju; Hu, Yanjie; Gu, Feng; Li, Chunzhong

    2015-01-01

    Highlights: • A three-dimensional ternary SnO 2 @PANI/rGO nanohybrids has been synthesized via dip-coating method. • PANI acts as the conductive matrix as well as a good binding agent of SnO 2 nanoparticles and graphene sheets, greatly improving the electrochemical performance. • The nanohybtrids, when applied as LIBs,exhibit a high reversible specific capacity of 772 mA h g −1 at 100 mA g −1 with excellent rate capability and high cycling stability. - Abstract: A three-dimensional (3D) nanostructure composed of ternary polyaniline/SnO 2 /graphene (SnO 2 @PANI/rGO) nanohybrids were successfully developed and prepared as anode materials for lithium ion batteries (LIBs) by a simple dip-coating of SnO 2 @polyaniline (SnO 2 @PANI) and graphene dispersion on Cu foam. In such smart nanostructures, polyaniline (PANI) acts as the conductive matrix as well as a good binding agent of SnO 2 nanoparticles and graphene sheets, greatly improving the rate performance to a great extent. The as-prepared ternary nanohybrids exhibit a high reversible specific capacity of 772 mA h g −1 at 100 mA g −1 with excellent rate capability (268 mA h g −1 at 1000 mA g −1 ), more significantly, after 100 cycles at 100 mA g −1 , our ternary nanohybrids still maintain a high specific capacity of 749 mA h g −1 , which is much better than SnO 2 /rGO(458 mA h g −1 at 100 mA g −1 ), SnO 2 @PANI (480 mA h g −1 at 100 mA g −1 ) and pure SnO 2 nanoparticles (300 mA h g −1 at 100 mA g −1 ). Such intriguing electrochemical performance is mainly attributed to the strong synergistic effects among SnO 2 , polyaniline and graphene. It is reckoned that the present 3D SnO 2 @PANI/rGO nanohybrids can serve as a promising anode material for LIBs

  9. Towards deriving Ni-rich cathode and oxide-based anode materials from hydroxides by sharing a facile co-precipitation method.

    Science.gov (United States)

    Qiu, Haifa; Du, Tengfei; Wu, Junfeng; Wang, Yonglong; Liu, Jian; Ye, Shihai; Liu, Sheng

    2018-05-22

    Although intensive studies have been conducted on layered transition metal oxide(TMO)-based cathode materials and metal oxide-based anode materials for Li-ion batteries, their precursors generally follow different or even complex synthesis routes. To share one route for preparing precursors of the cathode and anode materials, herein, we demonstrate a facile co-precipitation method to fabricate Ni-rich hydroxide precursors of Ni0.8Co0.1Mn0.1(OH)2. Ni-rich layered oxide of LiNi0.8Co0.1Mn0.1O2 is obtained by lithiation of the precursor in air. An NiO-based anode material is prepared by calcining the precursor or multi-walled carbon nanotubes (MWCNTs) incorporated precursors. The pre-addition of ammonia solution can simplify the co-precipitation procedures and the use of an air atmosphere can also make the heat treatment facile. LiNi0.8Co0.1Mn0.1O2 as the cathode material delivers a reversible capacity of 194 mA h g-1 at 40 mA g-1 and a notable cycling retention of 88.8% after 100 cycles at 200 mA g-1. This noticeable performance of the cathode arises from a decent particle morphology and high crystallinity of the layered oxides. As the anode material, the MWCNTs-incorporated oxides deliver a much higher reversible capacity of 811.1 mA h g-1 after 200 cycles compared to the pristine oxides without MWCNTs. The improvement on electrochemical performance can be attributed to synergistic effects from MWCNTs incorporation, including reinforced electronic conductivity, rich meso-pores and an alleviated volume effect. This facile and sharing method may offer an integrated and economical approach for commercial production of Ni-rich electrode materials for Li-ion batteries.

  10. Three-dimensionally interconnected Si frameworks derived from natural halloysite clay: a high-capacity anode material for lithium-ion batteries.

    Science.gov (United States)

    Wan, Hao; Xiong, Hao; Liu, Xiaohe; Chen, Gen; Zhang, Ning; Wang, Haidong; Ma, Renzhi; Qiu, Guanzhou

    2018-05-23

    On account of its high theoretical capacity, silicon (Si) has been regarded as a promising anode material for Li-ion batteries. Extracting Si content from earth-abundant and low-cost aluminosilicate minerals, rather than from artificial silica (SiO2) precursors, is a more favorable and practical method for the large-scale application of Si anodes. In this work, three-dimensionally interconnected (3D-interconnected) Si frameworks with a branch diameter of ∼15 nm are prepared by the reduction of amorphous SiO2 nanotubes derived from natural halloysite clay. Benefiting from their nanostructure, the as-prepared 3D-interconnected Si frameworks yield high reversible capacities of 2.54 A h g-1 at 0.1 A g-1 after 50 cycles, 1.87 A h g-1 at 0.5 A g-1 after 200 cycles, and 0.97 A h g-1 at 2 A g-1 after a long-term charge-discharge process of 500 cycles, remarkably outperforming the commercial Si material. Further, when the as-prepared Si frameworks and commercial LiCoO2 cathodes are paired in full cells, a high anode capacity of 0.98 A h g-1 is achieved after 100 cycles of rapid charge/discharge at 2 A g-1. This work provides a new strategy for the synthesis of high-capacity Si anodes derived from natural aluminosilicate clay.

  11. Synthesis and Characterization of Silicon Nanoparticles Inserted into Graphene Sheets as High Performance Anode Material for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2014-01-01

    Full Text Available Silicon nanoparticles have been successfully inserted into graphene sheets via a novel method combining freeze-drying and thermal reduction. The structure, electrochemical performance, and cycling stability of this anode material were characterized by SEM, X-ray diffraction (XRD, charge/discharge cycling, and cyclic voltammetry (CV. CV showed that the Si/graphene nanocomposite exhibits remarkably enhanced cycling performance and rate performance compared with bare Si nanoparticles for lithium ion batteries. XRD and SEM showed that silicon nanoparticles inserted into graphene sheets were homogeneous and had better layered structure than the bare silicon nanoparticles. Graphene sheets improved high rate discharge capacity and long cycle-life performance. The initial capacity of the Si nanoparticles/graphene keeps above 850 mAhg−1 after 100 cycles at a rate of 100 mAg−1. The excellent cycle performances are caused by the good structure of the composites, which ensured uniform electronic conducting sheet and intensified the cohesion force of binder and collector, respectively.

  12. Facile synthesis of uniform MWCNT@Si nanocomposites as high-performance anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yifan; Du, Ning, E-mail: dna1122@zju.edu.cn; Zhang, Hui; Yang, Deren

    2015-02-15

    Highlights: • A uniform SiO{sub 2} layer was deposited on multi-walled carbon nanotube. • Synthesis of uniform (MWCNT)@Si nanocomposites via the magnesiothermic reduction. • The MWCNT@Si nanocomposites show high reversible capacity and good cyclability. • Enhanced performance is attributed to porous nanostructure, introduction of MWCNTs. - Abstract: We demonstrate the synthesis of uniform multi-walled carbon nanotube (MWCNT)@Si nanocomposites via the magnesiothermic reduction of pre-synthesized MWCNT@SiO{sub 2} nanocables. At first, the acid vapor steaming is used to treat the surface, which can facilitate the uniform deposition of SiO{sub 2} layer via the TEOS hydrolysis. Then, the uniform MWCNT@Si nanocomposites are obtained on the basis of MWCNT@SiO{sub 2} nanocables via a simple magnesiothermic reduction. When used as an anode material for lithium-ion batteries, the as-synthesized MWCNT@Si nanocomposites show high reversible capacity and good cycling performance, which is better than bulk Si and bare MWCNTs. It is believed that the good electrochemical performance can be attributed to the novel porous nanostructure and the introduction of MWCNTs that can buffer the volume change, maintain the electrical conductive network, and enhance the electronic conductivity and lithium-ion transport.

  13. Rapid synthesis of tin oxide decorated carbon nanotube nanocomposities as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Lin, Jeng-Yu; Chou, Ming-Hung; Kuo, Yi-Chen

    2014-01-01

    Highlights: • SnO 2 –CNTs nanocomposite was synthesized by microwave-assisted hydrothermal route. • Adding glucose assisted SnO 2 nanoclusters uniformly grow on the surfaces of CNTs. • SnO 2 –CNTs nanocomposite shows improved electrochemical properties. -- Abstract: In this study, the tin oxide decorated carbon nanotubes (SnO 2 –CNTs) nanocomposites have been successfully synthesized using an ultrafast and environmentally friendly microwave-assisted hydrothermal method. According to X-ray diffraction pattern, field emission scanning electron microscopy and transmission electron microscopy, the SnO 2 nanoclusters can directly grow on the surfaces of CNTs with uniform coverage along the longitudinal axis by using glucose as a binding agent. The electrochemical properties of the SnO 2 –CNTs nanocomposite electrode have been further characterized by galvanostatic discharge/charge cycling tests, cyclic voltammetry and electrochemical impedance spectroscopy. Results demonstrate that the SnO 2 –CNTs nanocomposite electrode exhibited a superior reversible discharge capacity, cycling stability and rate capability as an anode material for Li-ion batteries compared to the pristine SnO 2 electrode. Such synergic improvements can be attributed to combining the SnO 2 nanoclusters onto the conductive CNTs matrix by taking advantage of the relatively high specific capacity of SnO 2 nanoclusters and the excellent cycling capability of the CNTs

  14. Preparation and electrochemical performances of cubic shape Cu2O as anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, C.Q.; Tu, J.P.; Huang, X.H.; Yuan, Y.F.; Chen, X.T.; Mao, F.

    2007-01-01

    Cubic and star-shaped crystalline Cu 2 O particles were synthesized by reducing the copper citrate complex solution with glucose. The microstructure and morphology of the Cu 2 O were characterized by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties of the Cu 2 O as anode materials for lithium ion batteries were measured by galvanostatic charge-discharge tests. The as-synthesized Cu 2 O particles were 1-2 μm with narrow distribution and the shape of Cu 2 O particles had an effect on the electrochemical properties. The cubic Cu 2 O particles delivered a higher reversible discharge capacity (390 mAh g -1 ) than the star-shaped Cu 2 O, and also exhibited good cyclability. The star-shaped Cu 2 O particles presented poor cyclability due to pulverization and deterioration after cycling, but the morphology of the cubic Cu 2 O particles was stable even after 50 cycles

  15. Fabrication of flower-like tin/carbon composite microspheres as long-lasting anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Tae-Woo [Department of Chemical Engineering, College of Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Lim, Hyung-Seok [Department of WCU Engineering, College of Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Park, Seong-Jin [Department of Chemical Engineering, College of Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Sun, Yang-Kook [Department of WCU Engineering, College of Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Suh, Kyung-Do, E-mail: kdsuh@hanyang.ac.kr [Department of Chemical Engineering, College of Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2017-01-01

    In this work, we report the fabrication of the flower-like tin/carbon (Sn/C) composite microspheres using sulfonated semi-interpenetrating polystyrene (SPS) microspheres as a carbon precursor. The sulfonation degree of SPS has great effects on the resulting particle size, morphology, amount of introduced Sn, and the carbonization yield of the microspheres after heat treatment. The obtained Sn/C composite microspheres were characterized by scanning electron microscopy (SEM), focused-ion beam SEM, and X-ray diffraction. The flower-like Sn/C composite electrodes exhibited higher charge-discharge capacities than those of graphite as an anode material for a lithium ion battery. In addition, they show a long lasting cyclability, even through 400 cycles. - Highlights: • Tin nanocrystals are introduced in flower-like carbon spheres with many ripples. • Long lasting cyclability is exhibited at 1 C rate up to 400 cycles. • Tin content of composite spheres depends on chemical treatment of polymer microspheres.

  16. MoO2-ordered mesoporous carbon nanocomposite as an anode material for lithium-ion batteries.

    Science.gov (United States)

    Zeng, Lingxing; Zheng, Cheng; Deng, Cuilin; Ding, Xiaokun; Wei, Mingdeng

    2013-03-01

    In the present work, the nanocomposite of MoO2-ordered mesoporous carbon (MoO2-OMC) was synthesized for the first time using a carbon thermal reduction route and the mesoporous carbon as the nanoreactor. The synthesized nanocomposite was characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), N2 adsorption-desorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) measurements. Furthermore, this nanocomposite was used as an anode material for Li-ion intercalation and exhibited large reversible capacity, high rate performance, and good cycling stability. For instance, a high reversible capacity of 689 mAh g(-1) can remain after 50 cycles at a current density of 50 mA g(-1). It is worth mentioning that the MoO2-OMC nanocomposite electrode can attain a high reversible capacity of 401 mAh g(-1) at a current density as high as 2 A g(-1). These results might be due to the intrinsic characteristics of nanocomposite, which offered a better accommodation of the strain and volume changes and a shorter path for Li-ion and electron transport, leading to the improved capacity and enhanced rate capability.

  17. Controlled synthesis of uniform ultrafine CuO nanowires as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang Fei; Tao Weizhe; Zhao Mingshu; Xu Minwei; Yang Shengchun; Sun Zhanbo; Wang Liqun; Song Xiaoping

    2011-01-01

    Highlights: → The ultrafine CuO nanowires were controlled synthesized by a simple solution route. → CuO nanowires exhibit high capacity, superior cyclability and improved rate capability. → Voltage-capacity curves show larger extra reversible reactions at low potentials in CuO nanowires. → CV curves show lower over-potential in CuO nanowires. - Abstract: A simple solution route is used to synthesize ultrafine Cu(OH) 2 nanowires by restraining the morphology transformation of early formed 1D nanostructure. The obtained ultrafine nanowires can be well preserved at a low temperature structure transformation in solid state. As anode material for lithium-ion batteries, the ultrafine CuO nanowires exhibit high reversible capacity, superior cycling performance and improved rate capability. The improved electrochemical properties of CuO nanowires are ascribed to their ultrafine size which lead to the reduced over-potential, extra reversible reactions at low potentials and improved interface performance between the electrode and electrolyte.

  18. Hollow carbon spheres with encapsulation of Co3O4 nanoparticles as anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhan Liang; Wang Yanli; Qiao Wenming; Ling, Licheng; Yang Shubin

    2012-01-01

    Graphical abstract: Hollow carbon spheres with encapsulation of Co 3 O 4 nanoparticles were synthesized. As anode materials for lithium ion battery, the reversible capacity of obtained electrode is as high as 732 mAh g −1 at 74 mA g −1 and 500 mAh g −1 at 744 mA g −1 . - Abstract: Based on the high theoretical capacity of Co 3 O 4 for lithium storage, a noval type of monodisperse hollow carbon spheres with encapsulation of Co 3 O 4 nanoparticles (HCSE-Co 3 O 4 ) were designed and synthesized. The monodisperse hollow carbon spheres not only can provide enough void volume to accommodate the volume change of encapsulated Co 3 O 4 nanoparicles, but also can prevent the formation of solid electrolyte interface (SEI) films on the surface of Co 3 O 4 nanoparticles and following direct contact of Co and SEI films upon lithium extraction. The HCSE-Co 3 O 4 electrode exhibit highly reversible capacity, excellent cycle performance and rate capability attributed to the unique structure. The reversible capacity of HCSE-Co 3 O 4 electrode is as high as 500 mAh g −1 at a current density of 744 mA g −1 , while that of bare Co 3 O 4 electrode is only around 80 mAh g −1 .

  19. Aerosol assisted synthesis of hierarchical tin–carbon composites and their application as lithium battery anode materials

    KAUST Repository

    Guo, Juchen

    2013-01-01

    We report a method for synthesizing hierarchically structured tin-carbon (Sn-C) composites via aerosol spray pyrolysis. In this method, an aqueous precursor solution containing tin(ii) chloride and sucrose is atomized, and the resultant aerosol droplets carried by an inert gas are pyrolyzed in a high-temperature tubular furnace. Owing to the unique combination of high reaction temperature and short reaction time, this method is able to achieve a hetero-structure in which small Sn particles (15 nm) are uniformly embedded in a secondary carbon particle. This procedure allows the size and size distribution of the primary Sn particles to be tuned, as well as control over the size of the secondary carbon particles by addition of polymeric surfactant in the precursor solution. When evaluated as anode materials for lithium-ion batteries, the resultant Sn-C composites demonstrate attractive electrochemical performance in terms of overall capacity, electrochemical stability, and coulombic efficiency. © 2013 The Royal Society of Chemistry.

  20. Superior performance of nanoscaled Fe3O4 as anode material promoted by mosaicking into porous carbon framework

    Science.gov (United States)

    Wan, Wang; Wang, Chao; Zhang, Weidong; Chen, Jitao; Zhou, Henghui; Zhang, Xinxiang

    2014-01-01

    A nanoscale Fe3O4/porous carbon-multiwalled carbon nanotubes (MWCNTs) composite is synthesized through a simple hard-template method by using Fe2O3 nanoparticles as the precursor and SiO2 nanoparticles as the template. The composite shows good cycle performance (941 mAh g-1 for the first cycle at 0.1 C, with 106% capacity retention at the 80th cycle) and high rate capability (71% capacity retained at 5 C rate). Its excellent electrical properties can be attributed to the porous carbon framework structure, which is composed of carbon and MWCNTs. In this composite, the porous structure provides space for the change in Fe3O4 volume during cycling and shortens the lithium ion diffusion distance, the MWCNTs increase the electron conductivity, and the carbon coating reduces the risk of side reactions. The results provide clear evidences for the utility of porous carbon framework to improve the electrochemical performances of nanosized transition-metal oxides as anode materials for lithium-ion batteries.

  1. Si@SiOx/Graphene nanosheet anode materials for lithium-ion batteries synthesized by ball milling process

    Science.gov (United States)

    Tie, Xiaoyong; Han, Qianyan; Liang, Chunyan; Li, Bo; Zai, Jiantao; Qian, Xuefeng

    2017-12-01

    Si@SiOx/Graphene nanosheet (GNS) nanocomposites as high performance anode materials for lithium-ion batteries are synthesized by mechanically blending the mixture of expanded graphite with Si nanoparticles, and characterized by X-ray diffraction, Raman spectrum, field emission scanning electron microscopy and transmission electron microscopy. During the ball milling process, the size of Si nanoparticles will decrease, and the layer of expanded graphite can be peeled off to thin multilayers. Electrochemical performances reveal that the obtained Si@SiOx/GNS nanocomposites exhibit improved cycling stability, high reversible lithium storage capacity and superior rate capability, e.g. the discharge capacity is kept as high as 1055 mAh g-1 within 50 cycles at a current density of 200 mA g-1, retaining 63.6% of the initial value. The high performance of the obtained nanocomposites can be ascribed to GNS prepared through heat-treat and ball-milling methods, the decrease in the size of Si nanoparticles and SiOx layer on Si surface, which enhance the interactions between Si and GNS.

  2. Hollow reduced graphene oxide microspheres as a high-performance anode material for Li-ion batteries

    International Nuclear Information System (INIS)

    Mei, Riguo; Song, Xiaorui; Hu, Yan; Yang, Yanfeng; Zhang, Jingjie

    2015-01-01

    Hollow reduced graphene oxide (RGO) microspheres are successfully synthesized in large quantities through spray-drying suspension of graphene oxide (GO) nanosheets and subsequent carbothermal reduction. With this new procedure, blighted-microspherical GO precursor is synthesized through the process of spray drying, afterwards the GO precursor is subsequently calcined at 800 °C for 5 h to obtain hollow RGO microspheres. A series of analyses, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectroscopy (FTIR) are performed to characterize the structure and morphology of intermediates and as-obtained product. The as-obtained hollow RGO microspheres provide a high specific surface area (175.5 m 2 g −1 ) and excellent electronic conductivity (6.3 S cm −1 ), and facilitated high electrochemical performance as anode material for Li-ion batteries (LIBs). Compared with the RGO nanosheets, the as-obtained hollow RGO microspheres exhibit superior specific capacity and outstanding cyclability. In addition, this spray drying and carbothermal reduction (SDCTR) method provided a facile route to prepare hollow RGO microspheres in large quantities

  3. Relationship between anode material, supporting electrolyte and current density during electrochemical degradation of organic compounds in water

    Energy Technology Data Exchange (ETDEWEB)

    Guzmán-Duque, Fernando L. [Grupo de diagnóstico y control de la contaminación, Facultad de ingeniería, Universidad de Antioquia, A.A. 1226, Medellín (Colombia); Palma-Goyes, Ricardo E. [Grupo de Investigación en Remediación Ambiental y Biocatálisis, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquía Udea, A.A. 1226, Medellín (Colombia); González, Ignacio [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Química, Av. San Rafael Atlixco No 186, C.P 09340, México D.F (Mexico); Peñuela, Gustavo [Grupo de diagnóstico y control de la contaminación, Facultad de ingeniería, Universidad de Antioquia, A.A. 1226, Medellín (Colombia); Torres-Palma, Ricardo A., E-mail: rtorres@matematicas.udea.edu.co [Grupo de Investigación en Remediación Ambiental y Biocatálisis, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquía Udea, A.A. 1226, Medellín (Colombia)

    2014-08-15

    Highlights: • Pathway and efficiency are linked to the current-electrode–electrolyte interaction. • Unlike BDD, IrO{sub 2} route was independent of current but dependent on the electrolyte. • IrO{sub 2}/SO{sub 4}{sup 2−} and IrO{sub 2}/Cl{sup −} routes were via IrO{sub 3} and chlorine species, respectively. • BDD/SO{sub 4}{sup 2−} and IrO{sub 2}/Cl{sup −} systems were favored at low and high currents, respectively. - Abstract: Taking crystal violet (CV) dye as pollutant model, the electrode, electrolyte and current density (i) relationship for electro-degrading organic molecules is discussed. Boron-doped diamond (BDD) or Iridium dioxide (IrO{sub 2}) used as anode materials were tested with Na{sub 2}SO{sub 4} or NaCl as electrolytes. CV degradation and generated oxidants showed that degradation pathways and efficiency are strongly linked to the current density-electrode–electrolyte interaction. With BDD, the degradation pathway depends on i: If i < the limiting current density (i{sub lim}), CV is mainly degraded by ·OH radicals, whereas if i > i{sub lim}, generated oxidants play a major role in the CV elimination. When IrO{sub 2} was used, CV removal was not dependent on i, but on the electrolyte. Pollutant degradation in Na{sub 2}SO{sub 4} on IrO{sub 2} seems to occur via IrO{sub 3}; however, in the presence of NaCl, degradation was dependent on the chlorinated oxidative species generated. In terms of efficiency, the Na{sub 2}SO{sub 4} electrolyte showed better results than NaCl when BDD anodes were employed. On the contrary, NaCl was superior when combined with IrO{sub 2}. Thus, the IrO{sub 2}/Cl{sup −} and BDD/SO{sub 4}{sup 2−} systems were better at removing the pollutant, being the former the most effective. On the other hand, pollutant degradation with the BDD/SO{sub 4}{sup 2−} and IrO{sub 2}/Cl{sup −} systems is favored at low and high current densities, respectively.

  4. Process and electrolyte for applying barrier layer anodic coatings

    International Nuclear Information System (INIS)

    Dosch, R.G.; Prevender, T.S.

    1975-01-01

    Various metals may be anodized, and preferably barrier anodized, by anodizing the metal in an electrolyte comprising quaternary ammonium compound having a complex metal anion in a solvent containing water and a polar, water soluble organic material. (U.S.)

  5. 3D Fe{sub 2}(MoO{sub 4}){sub 3} microspheres with nanosheet constituents as high-capacity anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Hao; Wang, Shiqiang [Hubei University, Key Laboratory for Synthesis and Applications of Organic Functional Molecules (China); Wang, Jiazhao; Wang, Jun [University of Wollongong, Institute for Superconducting and Electronic Materials (Australia); Li, Lin; Yang, Yun; Feng, Chuanqi, E-mail: cfeng@hubu.edu.cn [Hubei University, Key Laboratory for Synthesis and Applications of Organic Functional Molecules (China); Sun, Ziqi, E-mail: ziqi.sun@qut.edu.au [Queensland University of Technology, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (Australia)

    2015-11-15

    Three-dimensional (3D) Fe{sub 2}(MoO{sub 4}){sub 3} microspheres with ultrathin nanosheet constituents are first synthesized as anode materials for the lithium-ion battery. It is interesting that the single-crystalline nanosheets allow rapid electron/ion transport on the inside, and the high porosity ensures fast diffusion of liquid electrolyte in energy storage applications. The electrochemical properties of Fe{sub 2}(MoO{sub 4}){sub 3} as anode demonstrates that 3D Fe{sub 2}(MoO{sub 4}){sub 3} microspheres deliver an initial capacity of 1855 mAh/g at a current density of 100 mA/g. Particularly, when the current density is increased to 800 mA/g, the reversible capacity of Fe{sub 2}(MoO{sub 4}){sub 3} anode still arrived at 456 mAh/g over 50 cycles. The large and reversible capacities and stable charge–discharge cycling performance indicate that Fe{sub 2}(MoO{sub 4}){sub 3} is a promising anode material for lithium battery applications.Graphical abstractThe electrochemical properties of Fe{sub 2}(MoO{sub 4}){sub 3} as anode demonstrates that 3D Fe{sub 2}(MoO{sub 4}){sub 3} microspheres delivered an initial capacity of 1855 mAh/g at a current density of 100 mA/g. When the current density was increased to 800 mA/g, the Fe{sub 2}(MoO{sub 4}){sub 3} still behaved high reversible capacity and good cycle performance.

  6. SnSe/carbon nanocomposite synthesized by high energy ball milling as an anode material for sodium-ion and lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Zhian; Zhao, Xingxing; Li, Jie

    2015-01-01

    Graphical abstract: A homogeneous nanocomposite of SnSe and carbon black was synthesised by high energy ball milling and empolyed as an anode material for sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs). The nanocomposite anode exhibits excellent electrochemical performances in both SIBs and LIBs. - Highlights: • A homogeneous nanocomposite of SnSe and carbon black was fabricated by high energy ball milling. • SnSe and carbon black are homogeneously mixed at the nanoscale level. • The SnSe/C anode exhibits excellent electrochemical performances in both SIBs and LIBs. - Abstract: A homogeneous nanocomposite of SnSe and carbon black, denoted as SnSe/C nanocomposite, was fabricated by high energy ball milling and empolyed as a high performance anode material for both sodium-ion batteries and lithium-ion batteries. The X-ray diffraction patterns, scanning electron microscopy and transmission electron microscopy observations confirmed that SnSe in SnSe/C nanocomposite was homogeneously distributed within carbon black. The nanocomposite anode exhibited enhanced electrochemical performances including a high capacity, long cycling behavior and good rate performance in both sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs). In SIBs, an initial capacitiy of 748.5 mAh g −1 was obtained and was maintained well on cycling (324.9 mAh g −1 at a high current density of 500 mA g −1 in the 200 th cycle) with 72.5% retention of second cycle capacity (447.7 mAh g −1 ). In LIBs, high initial capacities of approximately 1097.6 mAh g −1 was obtained, and this reduced to 633.1 mAh g −1 after 100 cycles at 500 mA g −1

  7. One-pot synthesis of nitrogen and sulfur co-doped graphene supported MoS2 as high performance anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liu, Qiuhong; Wu, Zhenjun; Ma, Zhaoling; Dou, Shuo; Wu, Jianghong; Tao, Li; Wang, Xin; Ouyang, Canbing; Shen, Anli; Wang, Shuangyin

    2015-01-01

    Highlights: • Nitrogen and sulfur co-doped graphene supported MoS 2 nanosheets were successfully prepared and used as anode materials for Li-ion batteries. • The as-prepared anode materials show excellent stability in Li-ion batteries. • The materials show high reversible capacity for lithium ion batteries. - Abstract: Nitrogen and sulfur co-doped graphene supported MoS 2 (MoS 2 /NS-G) nanosheets were prepared through a one-pot thermal annealing method. The as prepared samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectra and electrochemical techniques. The MoS 2 /NS-G shows high reversible capacity about 1200 mAh/g at current density of 150 mA/g and excellent stability in Li-ion batteries. It was demonstrated the co-doping of graphene by N and S could significantly enhance the durability of MoS 2 as anode materials for Li-ion batteries

  8. Vanadium nitride as a novel thin film anode material for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Sun Qian; Fu Zhengwen

    2008-01-01

    Vanadium mononitride (VN) thin films have been successfully fabricated by magnetron sputtering. Its electrochemical behaviour with lithium was examined by galvanostatic cell cycling and cyclic voltammetry. The capacity of VN was found to be stable above 800 mAh g -1 after 50 cycles. By using ex situ X-ray diffraction, high-resolution transmission electron microscopy and selected area electron diffraction as well as in situ spectroelectrochemical measurements, the electrochemical reaction mechanism of VN with lithium was investigated. The reversible conversion reaction of VN into metal V and Li 3 N was revealed. The high reversible capacity and good stable cycle of VN thin film electrode made it a new promising lithium-ion storage material for future rechargeable lithium batteries

  9. Pyrolitic carbon from biomass precursors as anode materials for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Stephan, A. Manuel [School of Chemical Engineering and Technology, Chonbuk National University, Chonju 561-756 (Korea, Republic of); Central Electrochemical Research Institute, Karaikudi 630006 (India); Kumar, T. Prem [Central Electrochemical Research Institute, Karaikudi 630006 (India); Ramesh, R. [Central Electrochemical Research Institute, Karaikudi 630006 (India); Thomas, Sabu [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560 (India); Jeong, Soo Kyung [School of Chemical Engineering and Technology, Chonbuk National University, Chonju 561-756 (Korea, Republic of); Nahm, Kee Suk [School of Chemical Engineering and Technology, Chonbuk National University, Chonju 561-756 (Korea, Republic of)]. E-mail: nahmks@chonbuk.ac.kr

    2006-08-25

    Disordered carbonaceous materials were synthesized by the pyrolysis of banana fibers treated with pore-forming substances such as ZnCl{sub 2} and KOH. X-ray diffraction studies indicated a carbon structure with a large number of disorganized single layer carbon sheets. Addition of porogenic agent led to remarkable changes in the structure and morphology of the carbonaceous products. The product obtained with ZnCl{sub 2} treatment gave first-cycle lithium insertion and de-insertion capacities of 3325 and 400 mAh g{sup -1}, respectively. Lower capacities only could be realized in the subsequent cycles, although the coulombic efficiency increased upon cycling, which in the 10th cycle was 95%.

  10. Pyrolitic carbon from biomass precursors as anode materials for lithium batteries

    International Nuclear Information System (INIS)

    Stephan, A. Manuel; Kumar, T. Prem; Ramesh, R.; Thomas, Sabu; Jeong, Soo Kyung; Nahm, Kee Suk

    2006-01-01

    Disordered carbonaceous materials were synthesized by the pyrolysis of banana fibers treated with pore-forming substances such as ZnCl 2 and KOH. X-ray diffraction studies indicated a carbon structure with a large number of disorganized single layer carbon sheets. Addition of porogenic agent led to remarkable changes in the structure and morphology of the carbonaceous products. The product obtained with ZnCl 2 treatment gave first-cycle lithium insertion and de-insertion capacities of 3325 and 400 mAh g -1 , respectively. Lower capacities only could be realized in the subsequent cycles, although the coulombic efficiency increased upon cycling, which in the 10th cycle was 95%

  11. Hierarchical structured graphene/metal oxide/porous carbon composites as anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Rong [Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875 (China); Yue, Wenbo, E-mail: wbyue@bnu.edu.cn [Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875 (China); Ren, Yu [National Institute of Clean-and-Low-Carbon Energy, Beijing 102209 (China); Zhou, Wuzong [School of Chemistry, University of St. Andrews, St. Andrews, Fite KY16 9ST (United Kingdom)

    2016-01-15

    Highlights: • CeO{sub 2} and Co{sub 3}O{sub 4} nanoparticles display different behavior within CMK-3. • CMK-3-CeO{sub 2} and Co{sub 3}O{sub 4} show various electrochemical properties • CMK-3-CeO{sub 2} and Co{sub 3}O{sub 4} are further wrapped by graphene nanosheets. • Graphene-encapsulated composites show better electrochemical performances. - Abstract: As a novel anode material for lithium-ion batteries, CeO{sub 2} displays imperceptible volumetric and morphological changes during the lithium insertion and extraction processes, and thereby exhibits good cycling stability. However, the low theoretical capacity and poor electronic conductivity of CeO{sub 2} hinder its practical application. In contrast, Co{sub 3}O{sub 4} possesses high theoretical capacity, but undergoes huge volume change during cycling. To overcome these issues, CeO{sub 2} and Co{sub 3}O{sub 4} nanoparticles are formed inside the pores of CMK-3 and display various electrochemical behaviors due to the different morphological structures of CeO{sub 2} and Co{sub 3}O{sub 4} within CMK-3. Moreover, the graphene/metal oxide/CMK-3 composites with a hierarchical structure are then prepared and exhibit better electrochemical performances than metal oxides with or without CMK-3. This novel synthesis strategy is hopefully employed in the electrode materials design for Li-ion batteries or other energy conversion and storage devices.

  12. SnS2 nanoflakes decorated multiwalled carbon nanotubes as high performance anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Sun, Hongyu; Ahmad, Mashkoor; Luo, Jun; Shi, Yingying; Shen, Wanci; Zhu, Jing

    2014-01-01

    Graphical abstract: The synthesized SnS 2 nanoflakes decorated multiwalled carbon nanotubes hybrid structures exhibit large reversible capacity, superior cycling performance, and good rate capability as compared to pure SnS 2 nanoflakes. - Highlights: • Synthesis of SnS 2 nanoflakes decorated multiwalled carbon nanotubes hybrid structures. • Simple solution-phase approach. • Morphology feature of SnS 2 . • Enhanced performance as Li-ion batteries. - Abstract: SnS 2 nanoflakes decorated multiwalled carbon nanotubes (MWCNTs) hybrid structures are directly synthesized via a simple solution-phase approach. The as-prepared SnS 2 /MWCNTs structures are investigated as anode materials for Li-ion batteries as compared with SnS 2 nanoflakes. It has been found that the composite structure exhibit excellent lithium storage performance with a large reversible capacity, superior cycling performance, and good rate capability as compared to pure SnS 2 nanoflakes. The first discharge and charge capacities have been found to be 1416 and 518 mA h g −1 for SnS 2 /MWCNTs composite electrodes at a current density of 100 mA g −1 between 5 mV and 1.15 V versus Li/Li + . A stable reversible capacity of ∼510 mA h g −1 is obtained for 50 cycles. The improved electrochemical performance may be attributed to the flake-morphology feature of SnS 2 and the addition of MWCNTs that can hinder the agglomeration of the active materials and improve the conductivity of the composite electrode simultaneously

  13. SnS{sub 2} nanoflakes decorated multiwalled carbon nanotubes as high performance anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hongyu [Beijing National Center for Electron Microscopy, The State Key Laboratory of New Ceramics and Fine Processing, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China); Ahmad, Mashkoor, E-mail: mashkoorahmad2003@yahoo.com [Nanomaterials Research Group (NRG), Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); Luo, Jun [Beijing National Center for Electron Microscopy, The State Key Laboratory of New Ceramics and Fine Processing, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China); Shi, Yingying; Shen, Wanci [Laboratory of Advanced Materials, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China); Zhu, Jing, E-mail: jzhu@mail.tsinghua.edu.cn [Beijing National Center for Electron Microscopy, The State Key Laboratory of New Ceramics and Fine Processing, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2014-01-01

    Graphical abstract: The synthesized SnS{sub 2} nanoflakes decorated multiwalled carbon nanotubes hybrid structures exhibit large reversible capacity, superior cycling performance, and good rate capability as compared to pure SnS{sub 2} nanoflakes. - Highlights: • Synthesis of SnS{sub 2} nanoflakes decorated multiwalled carbon nanotubes hybrid structures. • Simple solution-phase approach. • Morphology feature of SnS{sub 2}. • Enhanced performance as Li-ion batteries. - Abstract: SnS{sub 2} nanoflakes decorated multiwalled carbon nanotubes (MWCNTs) hybrid structures are directly synthesized via a simple solution-phase approach. The as-prepared SnS{sub 2}/MWCNTs structures are investigated as anode materials for Li-ion batteries as compared with SnS{sub 2} nanoflakes. It has been found that the composite structure exhibit excellent lithium storage performance with a large reversible capacity, superior cycling performance, and good rate capability as compared to pure SnS{sub 2} nanoflakes. The first discharge and charge capacities have been found to be 1416 and 518 mA h g{sup −1} for SnS{sub 2}/MWCNTs composite electrodes at a current density of 100 mA g{sup −1} between 5 mV and 1.15 V versus Li/Li{sup +}. A stable reversible capacity of ∼510 mA h g{sup −1} is obtained for 50 cycles. The improved electrochemical performance may be attributed to the flake-morphology feature of SnS{sub 2} and the addition of MWCNTs that can hinder the agglomeration of the active materials and improve the conductivity of the composite electrode simultaneously.

  14. Facile crystal-structure-controlled synthesis of iron oxides for adsorbents and anode materials of lithium batteries

    International Nuclear Information System (INIS)

    Luo, Yao; Liu, Lihu; Qiao, Wencan; Liu, Fan; Zhang, Yashan; Tan, Wenfeng; Qiu, Guohong

    2016-01-01

    Iron oxides exhibit excellent physicochemical properties as functional materials because of the diversity of crystal structure. Nano-sized iron oxides, including akaganite (β-FeOOH), maghemite (γ-Fe_2O_3), ferrihydrite (Fe_5HO_8∙4H_2O) and hematite (α-Fe_2O_3), were prepared by a facile reflux treatment of iron powder in NaClO solution at 50 °C for 12 h. The crystal structures were controlled by adjusting the pH values of reaction systems. Akaganite, maghemite, ferrihydrite, and hematite were formed when pHs were adjusted to 2–4, 6, 8, and 10, respectively. They showed excellent adsorption performance for As(III), and the adsorption capacity was affected by crystal structure as well as specific surface area. The maximum adsorption capacity for akaganite, maghemite, ferrihydrite, and hematite reached 89.8, 79.1, 78.4, and 63.4 mg g"−"1, respectively. Hematite showed lithium storage capacity of 2043 mAh g"−"1 for the first cycle and then kept stable after twenty cycles at a current density of 100 mA g"−"1. The discharge specific capacity stabilized at 639 mAh g"−"1 after 100 cycles. The as-prepared iron oxides might be applied as potential adsorbents and anode materials for rechargeable lithium-ion battery. - Highlights: • Nano-sized ferric oxides were fabricated by refluxing iron powder in NaClO solutions. • Crystal structures were controlled by adjusting pHs from 2.0 to 10.0 in systems. • Akaganite exhibited the largest As(III) adsorption capacity of 89.8 mg g"−"1. • Hematite had lithium storage capacity of 639 mAh g"−"1 after 100 cycles.

  15. MnO/N–C anode materials for lithium-ion batteries prepared by cotton-templated combustion synthesis

    Directory of Open Access Journals (Sweden)

    Cheng-Gong Han

    2017-10-01

    Full Text Available We herein report a facile one-pot synthesis of MnO/N-doped carbon (N–C composites via a sustainable cotton-template glycine–nitrate combustion synthesis to yield superior anode materials for Li ion batteries. MnO nanoparticles with several nanometers were well-embedded in a porous N-doped carbon matrix. It displays the unique characteristics, including the shortened Li+-ion transport path, increased contact areas with the electrolyte solution, inhibited volume changes and agglomeration of nanoparticles, as well as good conductivity and structural stability during the cycling process, thereby benefiting the superior cycling performance and rate capability. This favorable electrochemical performance of obtained MnO/N–C composites via a one-pot biomass-templated glycine/nitrate combustion synthesis renders the suitability as anode materials for Li-ion batteries. Keywords: Biomass, Cotton, Manganese oxide, Lithium ion battery, Porous carbon

  16. Correlations among structure, composition and electrochemical performances of WO3 anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Li, Pu; Li, Xing; Zhao, Ziyan; Wang, Mingshan; Fox, Thomas; Zhang, Qian; Zhou, Ying

    2016-01-01

    Highlights: • The residual precursor ions affect the charge/discharge performances of WO 3 . • Lithiated monoclinic WO 3 reveals the best discharge capacity. • Lithiation can enhance the conductivity of WO 3 . - Abstract: Suitable host structure for lithium insertion and extraction is crucial for lithium-ion batteries. Tungsten trioxides (WO 3 ) are particularly interesting materials for this purpose. In this work, the influences of structure and composition of WO 3 on the charge/discharge performances of Li-ion batteries are systematically investigated. Firstly, lithiated tungsten trioxides (Li-WO 3 ) are successfully synthesized by a hydrothermal method followed by annealing at different temperatures (200–600 °C). It is found that the hexagonal framework collapses and gradually transforms to the monoclinic phase due to the release of NH 4 + and NH 3 molecules. Unexpectedly, monoclinic WO 3 reveals better performances than that of hexagonal WO 3 . Among all the investigated samples, the lithiated WO 3 annealed at 500 °C exhibits the highest discharge capacity and cycle performance (703 mAh g −1 after 10 cycles). We believe that the Li + remained in the solid structure of WO 3 can lead to a more stable structure. In addition, Li + could inhibit the oxidation of W 5+ during the heat treatment process, which increases the electron conductivity of WO 3 . Our results indicate that the electrochemical properties of WO 3 are strongly related to the residual precursor and crystal structure.

  17. An in situ method of creating metal oxide–carbon composites and their application as anode materials for lithium-ion batteries

    KAUST Repository

    Yang, Zichao

    2011-01-01

    Transition metal oxides are actively investigated as anode materials for lithium-ion batteries (LIBs), and their nanocomposites with carbon frequently show better performance in galvanostatic cycling studies, compared to the pristine metal oxide. An in situ, scalable method for creating a variety of transition metal oxide-carbon nanocomposites has been developed based on free-radical polymerization and cross-linking of poly(acrylonitrile) in the presence of the metal oxide precursor containing vinyl groups. The approach yields a cross-linked polymer network, which uniformly incorporates nanometre-sized transition metal oxide particles. Thermal treatment of the organic-inorganic hybrid material produces nearly monodisperse metal oxide nanoparticles uniformly embedded in a porous carbon matrix. Cyclic voltammetry and galvanostatic cycling electrochemical measurements in a lithium half-cell are used to evaluate the electrochemical properties of a Fe3O 4-carbon composite created using this approach. These measurements reveal that when used as the anode in a lithium battery, the material exhibits stable cycling performance at both low and high current densities. We further show that the polymer/nanoparticle copolymerization approach can be readily adapted to synthesize metal oxide/carbon nanocomposites based on different particle chemistries for applications in both the anode and cathode of LIBs. © 2011 The Royal Society of Chemistry.

  18. Facile synthesis of one-dimensional hollow Sb2O3@TiO2 composites as anode materials for lithium ion batteries

    Science.gov (United States)

    Wang, Zhaomin; Cheng, Yong; Li, Qian; Chang, Limin; Wang, Limin

    2018-06-01

    Metallic Sb is deemed as a promising anode material for lithium ion batteries (LIBs) due to its flat voltage platform and high security. Nevertheless, the limited capacity restricts its large-scale application. Therefore, a simple and effective method to explore novel antimony trioxide with high capacity used as anode material for LIBs is imperative. In this work, we report a facile and efficient strategy to fabricate 1D hollow Sb2O3@TiO2 composites by using the Kirkendall effect. When used as an anode material for LIBs, the optimal Sb2O3@TiO2 composite displays a high reversible discharge capacity of 593 mAh g-1 at a current density of 100 mA g-1 after 100 cycles and a relatively superior discharge capacity of 439 mAh g-1 at a current density of 500 mA g-1 even after 600 cycles. In addition, a reversible discharge capacity of 334 mAh g-1 can also be obtained even at a current density of 2000 mA g-1. The excellent cycling stability and rate performance of the Sb2O3@TiO2 composite can be attributed to the synergistic effect of TiO2 shell and hollow structure of Sb2O3, both of which can effectively buffer the volume expansion and maintain the integrity of the electrode during the repeated charge-discharge cycles.

  19. Ultra-small Fe3O4 nanocrystals decorated on 2D graphene nanosheets with excellent cycling stability as anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Ren, Manman; Yang, Mingzhi; Liu, Weiliang; Li, Mei; Su, Liwei; Qiao, Congde; Wu, Xianbin; Ma, Houyi

    2016-01-01

    Graphical abstract: Ultra-small Fe 3 O 4 nanocrystals decorated on 2D graphene nanosheets with excellent cycling stability as anode materials for lithium ion batteries Manman Ren, Mingzhi Yang, Weiliang Liu, Mei Li, Liwei Su, Congde Qiao, Xianbin Wu, Houyi Ma Ultra-small Fe 3 O 4 nanocrystals/graphene nanosheets composites demonstrate excellent long-term cycling stability at high-rate. - Abstract: Ultra-small Fe 3 O 4 nanocrystals (NCs)/garphene nanosheets (GNSs) composites have been synthesized through a facile gel-like film (GF) assisted method in this work. Fe 3 O 4 NCs with particle size ∼10 nm homogeneously dispersed on 2D GNSs. Profiting from the ultra-small Fe 3 O 4 NCs and GNSs, the composites demonstrate superior long-term and high-rate performance as anode materials for lithium ion batteries. Even at the current density of 5 A g −1 , the reversible capacity still maintains 323.4 mAh g −1 after 700 cycles. This work might enlighten us on exploring preferable strategies to develop advanced metal oxides NCs/GNSs composites anode materials for lithium ion batteries or other energy storage devices.

  20. Three-Dimensional Porous Si and SiO2 with In Situ Decorated Carbon Nanotubes As Anode Materials for Li-ion Batteries.

    Science.gov (United States)

    Su, Junming; Zhao, Jiayue; Li, Liangyu; Zhang, Congcong; Chen, Chunguang; Huang, Tao; Yu, Aishui

    2017-05-31

    A high-capacity Si anode is always accompanied by very large volume expansion and structural collapse during the lithium-ion insertion/extraction process. To stabilize the structure of the Si anode, magnesium vapor thermal reduction has been used to synthesize porous Si and SiO 2 (pSS) particles, followed by in situ growth of carbon nanotubes (CNTs) in pSS pores through a chemical vapor deposition (CVD) process. Field-emission scanning electron microscopy and high-resolution transmission electron microscopy have shown that the final product (pSS/CNTs) possesses adequate void space intertwined by uniformly distributed CNTs and inactive silica in particle form. pSS/CNTs with such an elaborate structural design deliver improved electrochemical performance, with better coulombic efficiency (70% at the first cycle), cycling capability (1200 mAh g -1 at 0.5 A g -1 after 200 cycles), and rate capability (1984, 1654, 1385, 1072, and 800 mAh g -1 at current densities of 0.1, 0.2, 0.5, 1, and 2 A g -1 , respectively), compared to pSS and porous Si/CNTs. These merits of pSS/CNTs are attributed to the capability of void space to absorb the volume changes and that of the silica to confine the excessive lithiation expansion of the Si anode. In addition, CNTs have interwound the particles, leading to significant enhancement of electronic conductivity before and after Si-anode pulverization. This simple and scalable strategy makes it easy to expand the application to manufacturing other alloy anode materials.

  1. A Novel 2D Porous Print Fabric-like α-Fe_2O_3 Sheet with High Performance as the Anode Material for Lithium-ion Battery

    International Nuclear Information System (INIS)

    Zhang, Suyue; Zhang, Peigen; Xie, Anjian; Li, Shikuo; Huang, Fangzhi; Shen, Yuhua

    2016-01-01

    Anode materials are very crucial in lithium ion batteries. Exploring the simple and low cost production of anodes with excellent electrochemical performance remains a great challenge. Here, we used natural flower spikes of Typha orientalis as the bio-templates and organizers to prepare a novel two-dimensional (2D) porous print fabric-like α-Fe_2O_3 sheet with thickness of about 30 nm. The prepared large-area sheets were orderly assembled by many nanosheets or nanoparticles, and two kinds of pore structures, such as pores with average diameter of about 50 nm or pore channels with aspect ratio of ca. 4, presented between adjacent nanosheets. The pre-treatment by ammonium for flower spikes has a great effect on the microstructure and electrochemical performance of the products. As the anode material for lithium ion battery (LIB), the as-obtained porous print fabric-like α-Fe_2O_3 sheets show an initial discharge capacity of 2264 mA h g"−"1 and the specific capacity of 1028 mA h g"−"1 after 100 cycles at a current density of 500 mA g"−"1, which is higher than the theoretical capacity of α-Fe_2O_3 (1007 mA h g"−"1). This highly reversible capacity is attributed to the very thin large-area sheet structure, and many pores or pore channels among the interconnected nanosheets, which could increase lithium-ion mobility, facilitate the transport of electrons and shorten the distance for Li"+ diffusion, and also buffer large volume changes of the anodes during lithium insertion and extraction at the same time. The synthesis process is very simple, providing a low-cost production approach toward high-performance energy storage materials.

  2. New anode material for lithium-ion cells produced by catalytic graphitization of glassy carbon at 1000 degrees C

    Energy Technology Data Exchange (ETDEWEB)

    Skowronski, J.M. [Poznan Univ. of Technology, Poznan (Poland). Inst. of Chemistry and Technical Electrochemistry; Central Lab. of Batteries and Cells, Poznan (Poland); Knofczynski, K. [Central Lab. of Batteries and Cells, Poznan (Poland)

    2006-10-15

    This study investigated the conversion of glassy carbon into graphite at relatively low temperature of 1000 degrees C under ambient pressure using iron powder as the catalyst. The composite product of reaction was a graphite and turbostratic carbon whose use was then examined in terms of application in lithium-ion cells. Glassy, hard carbon spheres of 10 to 15 {iota}m were prepared from phenolic resin in a nitrogen atmosphere and then subjected to heat treatment with an iron powder mixture. After cooling down to ambient temperature, the carbon/iron mixture was treated with diluted HCl solution to remove metallic additives. The modified carbon was then washed with distilled water until chloride ions disappeared in a filtrate. All samples were characterized using XRD analysis. Working electrodes for electrochemical measurements were made by mixing carbons with PVDF. Cyclic voltammograms recorded for unmodified and modified carbons were consistent with XRD measurements. SEM analysis revealed that the process of graphitization begins at the external regions of glassy carbon spheres where erosion occurs when the carbon reacts with iron particles. The surface destruction of carbon spheres progresses into the interior of the spheres, resulting in their collapse followed by the transformation into pallets resembling a stack of graphite sheets. It was noted that not all unorganized carbon was conversed to graphite. Rather, only 50 per cent of turbostratic carbon existed in the product of heat treatment. The product of graphitization appeared to be a promising material for the preparation of anodes for lithium-ion cells. The discharge capacity for carbon produced by catalytic treatment was found to be approximately 5 times higher, while the discharge/charge reversibility was 23 per cent higher than values obtained for untreated carbon. The study showed that the uptake of lithium ions by the original carbon depends on the insertion/deinsertion mechanism of hard carbon as well

  3. One-pot synthesis of NiO/C composite nanoparticles as anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lipeng, E-mail: lipeng.zhang@jcu.edu.au [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China); College of Science, Technology and Engineering, James Cook University, Douglas, Queensland 4811 (Australia); Mu, Jiechen; Wang, Zhao; Li, Guomin; Zhang, Yanling [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China); He, Yinghe, E-mail: yinghe.he@jcu.edu.au [College of Science, Technology and Engineering, James Cook University, Douglas, Queensland 4811 (Australia)

    2016-06-25

    Nanostructured NiO/C composite particles with controlled carbon content for lithium-ion battery anode were prepared via a one-pot hydrothermal approach and subsequent calcination in a high purity nitrogen atmosphere. The composites were composed of amorphous carbon and nanocrystalline NiO. The structure of the NiO crystals was determined with X-ray diffraction (XRD) analysis and the content of carbon was calculated from the energy dispersive spectroscopy (EDS) results. Scanning electron microscopy (SEM) images showed a relatively narrow distribution of particle size for both the neat NiO and NiO/C nanoparticles. Electrochemical performance measurements demonstrated that, after 50 cycles, NiO/C nanocomposites maintained a high reversible capacity of 585.9 mAh g{sup −1}, much higher than that of 356.1 mAh g{sup −1} of the neat NiO nanoparticles without carbon. The NiO/C nanoparticles also exhibited a remarkable discharge capacity, a high charge/discharge rate and an excellent cycle stability. The improvements can be attributed to the even carbon coating on the NiO particles, which significantly enhances the conductivity and improves the structural stability of the electrode. - Highlights: • NiO/C nanocomposite material is prepared via a one-pot hydrothermal approach. • Both NiO and NiO/C composite have a narrow particle size distribution. • Carbon in the NiO/C enhanced the conductivity and suppressed particle aggregation. • NiO/C composites maintained a reversible capacity of 585.9 mAh g{sup −1} after 50 cycles.

  4. Synthesis and electrochemical performances of amorphous carbon-coated Sn-Sb particles as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang Zhong; Tian Wenhuai; Liu Xiaohe; Yang Rong; Li Xingguo

    2007-01-01

    The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use. - Graphical abstract: The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles

  5. Anodic oxidation

    CERN Document Server

    Ross, Sidney D; Rudd, Eric J; Blomquist, Alfred T; Wasserman, Harry H

    2013-01-01

    Anodic Oxidation covers the application of the concept, principles, and methods of electrochemistry to organic reactions. This book is composed of two parts encompassing 12 chapters that consider the mechanism of anodic oxidation. Part I surveys the theory and methods of electrochemistry as applied to organic reactions. These parts also present the mathematical equations to describe the kinetics of electrode reactions using both polarographic and steady-state conditions. Part II examines the anodic oxidation of organic substrates by the functional group initially attacked. This part particular

  6. Three-dimensional sponge-like architectured cupric oxides as high-power and long-life anode material for lithium rechargeable batteries

    International Nuclear Information System (INIS)

    Choi, Chung Seok; Park, Young-Uk; Kim, Hyungsub; Kim, Na Rae; Kang, Kisuk; Lee, Hyuck Mo

    2012-01-01

    Cupric oxide (CuO) nanoparticles (NPs) with three-dimensional (3D) sponge structure are obtained through the sintering of Cu NPs at 360 °C. Their morphology is analyzed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), and their crystal structure is checked by X-ray diffraction. CuO NPs have a 3D porous structure. The NPs are assembled to form larger secondary particles with many empty spaces among them, and they have a CuO phase after the heat treatment. CuO NPs with this novel architecture exhibit good electrochemical performance as anode material. The anode material with a sponge-like structure is prepared at 360 °C, as the Li-ion battery exhibits a high electrochemical capacity of 674 mAh g −1 . When the sample is sintered at 360 °C, the charge/discharge capacities increase gradually and cycle up to 50 cycles at a C/10 rate, exhibiting excellent rate capability compared with earlier reported CuO/CuO-composite anodes. Electrochemical impedance spectroscopy (EIS) measurements suggest that the superior electrical conductivity of the sample sintered at 360 °C is the main factor responsible for the improved power capability.

  7. Sandwich-like C@SnO2/Sn/void@C hollow spheres as improved anode materials for lithium ion batteries

    Science.gov (United States)

    Wang, Huijun; Jiang, Xinya; Chai, Yaqin; Yang, Xia; Yuan, Ruo

    2018-03-01

    As lithium ion batteries (LIBs) anode, SnO2 suffers fast capacity fading due to its large volume expansion during discharge/charge process. To overcome the problem, sandwich-like C@SnO2/Sn/void@C hollow spheres (referred as C@SnO2/Sn/void@C HSs) are prepared by in-situ polymerization and carbonization, using hollow SnO2 as self-template and dopamine as carbon source. The C@SnO2/Sn/void@C HSs possesses the merits of hollow and core/void/shell structure, so that they can accommodate the volume change under discharge/charge process, shorten the transmission distance of Li ions, own more contact area for the electrolyte. Thanks to these advantages, C@SnO2/Sn/void@C HSs display excellent electrochemical performance as anode materials for LIBs, which deliver a high capacity of 786.7 mAh g-1 at the current density of 0.5 A g-1 after 60 cycles. The simple synthesis method for C@SnO2/Sn/void@C HSs with special structure will provide a promising method for preparing other anode materials for LIBs.

  8. High conductive and long-term phase stable anode materials for SOFCs: A2FeMoO6 (A = Ca, Sr, Ba)

    Science.gov (United States)

    Huan, Yu; Li, Yining; Yin, Baoyi; Ding, Dong; Wei, Tao

    2017-08-01

    In this work, the mixed oxide-ion/electron conductor (MIEC) double-perovskite compounds A2FeMoO6 (AFMO, A = Ca, Sr, Ba) are investigated as anode materials for O2--ion conducting solid-oxide fuel cells (SOFCs). Several advantages are outlined here; 1) under H2 atmosphere, the conductivities of Ba2FeMoO6 (BFMO), Sr2FeMoO6 (SFMO) and Ca2FeMoO6 (CFMO) reach as high as 243, 302 and 561 S cm-1, respectively, which can be comparable with the commercial NiO-electrolyte anode; 2) excellent structure and phase stability at high temperature and in H2 atmosphere; 3) matched thermodynamic compatibility (such as TECs) with electrolyte materials; 4) fast oxidization for fuel with O2- ions accepted by oxygen vacancies from the electrolyte. Moreover, with H2 as fuel gas, the cell power output, cell's long-term stabilities and the structural parameter are also been examined to evaluate the AFMO anode.

  9. Surface morphology and surface energy of anode materials influence power outputs in a multi-channel mediatorless bio-photovoltaic (BPV) system.

    Science.gov (United States)

    Bombelli, Paolo; Zarrouati, Marie; Thorne, Rebecca J; Schneider, Kenneth; Rowden, Stephen J L; Ali, Akin; Yunus, Kamran; Cameron, Petra J; Fisher, Adrian C; Ian Wilson, D; Howe, Christopher J; McCormick, Alistair J

    2012-09-21

    Bio-photovoltaic cells (BPVs) are a new photo-bio-electrochemical technology for harnessing solar energy using the photosynthetic activity of autotrophic organisms. Currently power outputs from BPVs are generally low and suffer from low efficiencies. However, a better understanding of the electrochemical interactions between the microbes and conductive materials will be likely to lead to increased power yields. In the current study, the fresh-water, filamentous cyanobacterium Pseudanabaena limnetica (also known as Oscillatoria limnetica) was investigated for exoelectrogenic activity. Biofilms of P. limnetica showed a significant photo response during light-dark cycling in BPVs under mediatorless conditions. A multi-channel BPV device was developed to compare quantitatively the performance of photosynthetic biofilms of this species using a variety of different anodic conductive materials: indium tin oxide-coated polyethylene terephthalate (ITO), stainless steel (SS), glass coated with a conductive polymer (PANI), and carbon paper (CP). Although biofilm growth rates were generally comparable on all materials tested, the amplitude of the photo response and achievable maximum power outputs were significantly different. ITO and SS demonstrated the largest photo responses, whereas CP showed the lowest power outputs under both light and dark conditions. Furthermore, differences in the ratios of light : dark power outputs indicated that the electrochemical interactions between photosynthetic microbes and the anode may differ under light and dark conditions depending on the anodic material used. Comparisons between BPV performances and material characteristics revealed that surface roughness and surface energy, particularly the ratio of non-polar to polar interactions (the CQ ratio), may be more important than available surface area in determining biocompatibility and maximum power outputs in microbial electrochemical systems. Notably, CP was readily outperformed by all

  10. Facile and large-scale preparation of sandwich-structured graphene-metal oxide composites as anode materials for Li-ion batteries

    International Nuclear Information System (INIS)

    Fang, Hongmei; Zhao, Li; Yue, Wenbo; Wang, Yuan; Jiang, Yang; Zhang, Yuan

    2015-01-01

    Graphene-based metal oxides are desirable as potential anode materials for lithium-ion batteries (LIBs) owing to their superior electrochemical properties. In this work, sandwich-structured graphene-metal oxide (ZnO, NiO) composites are facilely synthesized on a large scale through self-assembly of graphene oxide nanosheets and metal ammine complexes, and then thermal decomposition of the self-assembled products. ZnO or NiO nanoparticles with diameters of 5∼10 nm are immobilized between the layers of graphene nanosheets, which may provide the space for accommodating the volume change of metal oxides during cycles, and highly improve the electronic conductivity of the composites. Accordingly, these sandwich-structured composites exhibit enhanced electrochemical performances compared to metal oxide particles or stacked graphene nanosheets. This facile synthesis method is very suitable for the large-scale production of three-dimensional graphene-based composites as high-performance anodes for LIBs.

  11. Micro-sized organometallic compound of ferrocene as high-performance anode material for advanced lithium-ion batteries

    Science.gov (United States)

    Liu, Zhen; Feng, Li; Su, Xiaoru; Qin, Chenyang; Zhao, Kun; Hu, Fang; Zhou, Mingjiong; Xia, Yongyao

    2018-01-01

    An organometallic compound of ferrocene is first investigated as a promising anode for lithium-ion batteries. The electrochemical properties of ferrocene are conducted by galvanostatic charge and discharge. The ferrocene anode exhibits a high reversible capacity and great cycling stability, as well as superior rate capability. The electrochemical reaction of ferrocene is semi-reversible and some metallic Fe remains in the electrode even after delithiation. The metallic Fe formed in electrode and the stable solid electrolyte interphase should be responsible for its excellent electrochemical performance.

  12. Preparation and electrochemical properties of core-shell carbon coated Mn-Sn complex metal oxide as anode materials for lithium-ion batteries

    Science.gov (United States)

    Zhang, Ruixue; Fang, Guoqing; Liu, Weiwei; Xia, Bingbo; Sun, Hongdan; Zheng, Junwei; Li, Decheng

    2014-02-01

    In this study, we synthesized a carbon coated Mn-Sn metal oxide composite with core-shell structure (MTO@C) via a simple glucose hydrothermal reaction and subsequent carbonization approach. When the MTO@C composite was applied as an anode material for lithium-ion batteries, it maintained a reversible capacity of 409 mA h g-1 after 200 cycles at a current density of 100 mA g-1. The uniformed and continuous carbon layer formed on the MTO nanoparticles, effectively buffered the volumetric change of the active material and increased electronic conductivity, which thus prolonged the cycling performance of the MTO@C electrode.

  13. Facile crystal-structure-controlled synthesis of iron oxides for adsorbents and anode materials of lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yao; Liu, Lihu; Qiao, Wencan; Liu, Fan [College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070 (China); Zhang, Yashan [Department of Chemistry, University of Connecticut, Storrs, 55 North Eagleville Road, Storrs, CT, 06269 (United States); Tan, Wenfeng [College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070 (China); Qiu, Guohong, E-mail: qiugh@mail.hzau.edu.cn [College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070 (China)

    2016-02-15

    Iron oxides exhibit excellent physicochemical properties as functional materials because of the diversity of crystal structure. Nano-sized iron oxides, including akaganite (β-FeOOH), maghemite (γ-Fe{sub 2}O{sub 3}), ferrihydrite (Fe{sub 5}HO{sub 8}∙4H{sub 2}O) and hematite (α-Fe{sub 2}O{sub 3}), were prepared by a facile reflux treatment of iron powder in NaClO solution at 50 °C for 12 h. The crystal structures were controlled by adjusting the pH values of reaction systems. Akaganite, maghemite, ferrihydrite, and hematite were formed when pHs were adjusted to 2–4, 6, 8, and 10, respectively. They showed excellent adsorption performance for As(III), and the adsorption capacity was affected by crystal structure as well as specific surface area. The maximum adsorption capacity for akaganite, maghemite, ferrihydrite, and hematite reached 89.8, 79.1, 78.4, and 63.4 mg g{sup −1}, respectively. Hematite showed lithium storage capacity of 2043 mAh g{sup −1} for the first cycle and then kept stable after twenty cycles at a current density of 100 mA g{sup −1}. The discharge specific capacity stabilized at 639 mAh g{sup −1} after 100 cycles. The as-prepared iron oxides might be applied as potential adsorbents and anode materials for rechargeable lithium-ion battery. - Highlights: • Nano-sized ferric oxides were fabricated by refluxing iron powder in NaClO solutions. • Crystal structures were controlled by adjusting pHs from 2.0 to 10.0 in systems. • Akaganite exhibited the largest As(III) adsorption capacity of 89.8 mg g{sup −1}. • Hematite had lithium storage capacity of 639 mAh g{sup −1} after 100 cycles.

  14. Multi-walled carbon nanotube-reinforced porous iron oxide as a superior anode material for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Xin-Jing; Zhang, Juan; Qi, Gong-Wei; Dai, Xiao-Hui; Zhou, Jun-Ping [School of Chemistry and Chemical Engineering, Shandong University, No. 27, Shanda Nan Rd., Jinan 250100 (China); Zhang, Shu-Yong, E-mail: syzhang@sdu.edu.cn [School of Chemistry and Chemical Engineering, Shandong University, No. 27, Shanda Nan Rd., Jinan 250100 (China); National Key Lab of Crystal, Shandong University, No. 27, Shanda Nan Rd., Jinan 250100 (China)

    2015-08-15

    Highlights: • Electrochemical performance of Fe{sub 3}O{sub 4} is improved by combining different approaches. • Porous Cu substrate is used to enlarge surface area and improve conductivity. • MWCNT is used to reinforce the electrode structure and change morphology of Fe{sub 3}O{sub 4}. • Reversible capacity, capacity retention and high-rate performance are improved. - Abstract: Multi-walled carbon nanotube-reinforced porous iron oxide (Fe{sub 3}O{sub 4}/MWCNT) is synthesized by a two-step approach with porous Cu substrate serving as current collector. Porous Cu substrate is prepared through electroless deposition with hydrogen bubble serving as template. Fe{sub 3}O{sub 4}/MWCNT composites are prepared by the electrodeposition of Fe{sub 3}O{sub 4} in the presence of dispersed MWCNTs from a Fe{sub 2}(SO{sub 4}){sub 3} solution with MWCNT suspension. Results showed that Fe{sub 3}O{sub 4} forms granular nanoparticles on the porous Cu substrate with several MWCNTs embedded in it. Adding MWCNTs changes the morphology of Fe{sub 3}O{sub 4}. Smooth Fe{sub 3}O{sub 4}, smooth Fe{sub 3}O{sub 4}/MWCNT, and porous Fe{sub 3}O{sub 4} composites are also prepared for comparison. When used as anode materials, porous Fe{sub 3}O{sub 4}/MWCNT composites have a reversible capacity of approximately 601 mA h g{sup −1} at the 60th cycle at a cycling rate of 100 mA g{sup −1}. This value is higher than that of the other materials. The reversible capacity at a cycling rate of 10,000 mA g{sup −1} is approximately 50% of that at 100 mA g{sup −1}. Therefore, the MWCNT-reinforced porous Fe{sub 3}O{sub 4} composite exhibits much better reversible capacity, capacity retention, and high-rate performance than the other samples. This finding can be ascribed to the porous structure of Fe{sub 3}O{sub 4}, better conductivity of porous Cu substrate and MWCNTs, and the morphology change of Fe{sub 3}O{sub 4} nanoparticles upon the addition of MWCNTs.

  15. Synthesis and electrochemical properties of Li{sub 2}ZnTi{sub 3}O{sub 8} fibers as an anode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang Li; Wu Lijuan; Li Zhaohui; Lei Gangtie [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China); Xiao Qizhen, E-mail: qizhenxiao2004@yahoo.com.cn [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China); College of Civil Engineering and Mechanics, Xiangtan University, Hunan 411105 (China); Zhang Ping [College of Civil Engineering and Mechanics, Xiangtan University, Hunan 411105 (China)

    2011-06-01

    Highlights: > A simple electrospinning method has been developed to fabricate Li{sub 2}ZnTi{sub 3}O{sub 8} fibers. > Li{sub 2}ZnTi{sub 3}O{sub 8} fibers as anode material for lithium-ion batteries. > A stable and reversible capacity of over 227 mAh g{sup -1} is achieved at a rate of 0.1 C. > Li{sub 2}ZnTi{sub 3}O{sub 8} anode exhibits good cycle performance and high rate capability. - Abstract: Li{sub 2}ZnTi{sub 3}O{sub 8} fibers are synthesized by thermally treating electrospun Zn(CH{sub 3}COO){sub 2}/LiOAc/TBT/PVP fibers and utilized as an energy storage material for rechargeable lithium-ion batteries. The material is characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and thermal analysis. Scanning electron microscopy results show that the Li{sub 2}ZnTi{sub 3}O{sub 8} fibers have an average diameter of 200 nm. Electrochemical properties of the material are evaluated using cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy. The results show that as-prepared Li{sub 2}ZnTi{sub 3}O{sub 8} has a high specific discharge capacity of 227.6 mAh g{sup -1} at the 2nd cycle. Its electrochemical performance at subsequent cycles shows good cycling capacity and rate capability. The obtained results thus strongly support that the electrospinning method is an effective method to prepare Li{sub 2}ZnTi{sub 3}O{sub 8} anode material with higher capacity and rate capability.

  16. A Core-Shell Fe/Fe2 O3 Nanowire as a High-Performance Anode Material for Lithium-Ion Batteries.

    Science.gov (United States)

    Na, Zhaolin; Huang, Gang; Liang, Fei; Yin, Dongming; Wang, Limin

    2016-08-16

    The preparation of novel one-dimensional core-shell Fe/Fe2 O3 nanowires as anodes for high-performance lithium-ion batteries (LIBs) is reported. The nanowires are prepared in a facile synthetic process in aqueous solution under ambient conditions with subsequent annealing treatment that could tune the capacity for lithium storage. When this hybrid is used as an anode material for LIBs, the outer Fe2 O3 shell can act as an electrochemically active material to store and release lithium ions, whereas the highly conductive and inactive Fe core functions as nothing more than an efficient electrical conducting pathway and a remarkable buffer to tolerate volume changes of the electrode materials during the insertion and extraction of lithium ions. The core-shell Fe/Fe2 O3 nanowire maintains an excellent reversible capacity of over 767 mA h g(-1) at 500 mA g(-1) after 200 cycles with a high average Coulombic efficiency of 98.6 %. Even at 2000 mA g(-1) , a stable capacity as high as 538 mA h g(-1) could be obtained. The unique composition and nanostructure of this electrode material contribute to this enhanced electrochemical performance. Due to the ease of large-scale fabrication and superior electrochemical performance, these hybrid nanowires are promising anode materials for the next generation of high-performance LIBs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Nano-sized Li4Ti5O12 anode material with excellent performance prepared by solid state reaction: The effect of precursor size and morphology

    International Nuclear Information System (INIS)

    Li, Xiangru; Hu, Hao; Huang, Sheng; Yu, Gaige; Gao, Lin; Liu, Haowen; Yu, Ying

    2013-01-01

    Graphical abstract: - Highlights: • Nano-sized Li 4 Ti 5 O 12 has been prepared through solid state reaction by using axiolitic TiO 2 as precursor. • The prepared nano-sized Li 4 Ti 5 O 12 anode material shows excellent electrochemical performance. • The utilization of precursor with special morphology and size is one of the useful ways to prepare more active electrode materials. - Abstract: Spinel nano-sized Li 4 Ti 5 O 12 anode material of secondary lithium-ion battery has been successfully prepared by solid state reaction using axiolitic TiO 2 assembled by 10–20 nm nanoparticles and Li 2 CO 3 as precursors. The synthesis condition, grain size effect and corresponding electrochemical performance of the special Li 4 Ti 5 O 12 have been studied in comparison with those of the normal Li 4 Ti 5 O 12 originated from commercial TiO 2 . We also propose the mechanism that using the nano-scaled TiO 2 with special structure and unexcess Li 2 CO 3 as precursors can synthesize pure phase nano-sized Li 4 Ti 5 O 12 at 800 °C through solid state reaction. The prepared nano-sized Li 4 Ti 5 O 12 anode material for Li-ion batteries shows excellent capacity performance with rate capacity of 174.2, 164.0, 157.4, 146.4 and 129.6 mA h g −1 at 0.5, 1, 2, 5 and 10 C, respectively, and capacity retention of 95.1% after 100 cycles at 1 C. In addition, the specific capacity fade for the cell with the different Li 4 Ti 5 O 12 active materials resulted from the increase of internal resistance after 100 cycles is compared

  18. Facile synthesis and lithium storage properties of a porous NiSi2/Si/carbon composite anode material for lithium-ion batteries.

    Science.gov (United States)

    Jia, Haiping; Stock, Christoph; Kloepsch, Richard; He, Xin; Badillo, Juan Pablo; Fromm, Olga; Vortmann, Britta; Winter, Martin; Placke, Tobias

    2015-01-28

    In this work, a novel, porous structured NiSi2/Si composite material with a core-shell morphology was successfully prepared using a facile ball-milling method. Furthermore, the chemical vapor deposition (CVD) method is deployed to coat the NiSi2/Si phase with a thin carbon layer to further enhance the surface electronic conductivity and to mechanically stabilize the whole composite structure. The morphology and porosity of the composite material was evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption measurements (BJH analysis). The as-prepared composite material consists of NiSi2, silicon, and carbon phases, in which the NiSi2 phase is embedded in a silicon matrix having homogeneously distributed pores, while the surface of this composite is coated with a carbon layer. The electrochemical characterization shows that the porous and core-shell structure of the composite anode material can effectively absorb and buffer the immense volume changes of silicon during the lithiation/delithiation process. The obtained NiSi2/Si/carbon composite anode material displays an outstanding electrochemical performance, which gives a stable capacity of 1272 mAh g(-1) for 200 cycles at a charge/discharge rate of 1C and a good rate capability with a reversible capacity of 740 mAh g(-1) at a rate of 5C.

  19. Multiwalled carbon nanotube@a-C@Co9S8 nanocomposites: a high-capacity and long-life anode material for advanced lithium ion batteries

    Science.gov (United States)

    Zhou, Yanli; Yan, Dong; Xu, Huayun; Liu, Shuo; Yang, Jian; Qian, Yitai

    2015-02-01

    A one-dimensional MWCNT@a-C@Co9S8 nanocomposite has been prepared via a facile solvothermal reaction followed by a calcination process. The amorphous carbon layer between Co9S8 and MWCNT acts as a linker to increase the loading of sulfides on MWCNT. When evaluated as anode materials for lithium ion batteries, the MWCNT@a-C@Co9S8 nanocomposite shows the advantages of high capacity and long life, superior to Co9S8 nanoparticles and MWCNT@Co9S8 nanocomposites. The reversible capacity could be retained at 662 mA h g-1 after 120 cycles at 1 A g-1. The efficient synthesis and excellent performances of this nanocomposite offer numerous opportunities for other sulfides as a new anode for lithium ion batteries.A one-dimensional MWCNT@a-C@Co9S8 nanocomposite has been prepared via a facile solvothermal reaction followed by a calcination process. The amorphous carbon layer between Co9S8 and MWCNT acts as a linker to increase the loading of sulfides on MWCNT. When evaluated as anode materials for lithium ion batteries, the MWCNT@a-C@Co9S8 nanocomposite shows the advantages of high capacity and long life, superior to Co9S8 nanoparticles and MWCNT@Co9S8 nanocomposites. The reversible capacity could be retained at 662 mA h g-1 after 120 cycles at 1 A g-1. The efficient synthesis and excellent performances of this nanocomposite offer numerous opportunities for other sulfides as a new anode for lithium ion batteries. Electronic supplementary information (ESI) available: Infrared spectrogram (IR) of glucose treated MWCNT; TEM images of MWCNT@a-C treated by different concentrations of glucose; SEM and TEM images of the intermediate product obtained from the solvothermal reaction between thiourea and Co(Ac)2; EDS spectrum of MWCNT@a-C@Co9S8 composites; SEM and TEM images of MWCNT@Co9S8 nanocomposites obtained without the hydrothermal treatment by glucose; SEM and TEM images of Co9S8 nanoparticles; Galvanostatic discharge-charge profiles and cycling performance of MWCNT@a-C; TEM images

  20. Synthesis of novel spherical Fe_3O_4@Ni_3S_2 composite as improved anode material for rechargeable nickel-iron batteries

    International Nuclear Information System (INIS)

    Li, Jing; Guo, Litan; Shangguan, Enbo; Yue, Mingzhu; Xu, Min; Wang, Dong; Chang, Zhaorong; Li, Quanmin

    2017-01-01

    Highlights: • Fe_3O_4@Ni_3S_2 microspheres are fabricated through a facile method for the first time. • Fe_3O_4@Ni_3S_2 is firstly proposed as alkaline anode materials for Ni/Fe batteries. • Fe_3O_4@Ni_3S_2 shows enhanced high-rate capability and improved cycle stability. • Ni_3S_2 can suppress the passivation and hydrogen evolution behavior of the iron anode. - Abstract: Fe_3O_4@Ni_3S_2 microspheres as a novel alkaline anode material have been successfully fabricated through a four-step process for the first time. In this composite, Ni_3S_2 nanoparticles are coated tightly on the surface of Fe_3O_4 microspheres. Compared with the pure Fe_3O_4 and Fe_3O_4@NiO microspheres, the proposed Fe_3O_4@Ni_3S_2 delivers a significantly improved high-rate performance and enhanced cycling stability. At a high discharge rate of 1200 mA g"−"1, the specific capacity of the Fe_3O_4@Ni_3S_2 is ∼481.2 mAh g"−"1 in comparison with ∼83.7 mAh g"−"1 for the pure Fe_3O_4. After 100 cycles at 120 mA g"−"1, the Fe_3O_4@Ni_3S_2 can achieve a capacity retention of 95.1%, while the value for the pure Fe_3O_4 electrode is only 52.5%. The favorable electrochemical performance of the Fe_3O_4@Ni_3S_2 is mainly attributed to the beneficial impact of Ni_3S_2. The Ni_3S_2 layer as a useful additive is significantly conducive to lessening the formation of Fe(OH)_2 passivation layer, enhancing the electronic conductivity, improving the reaction reversibility and suppressing the hydrogen evolution reaction of the alkaline iron anode. Owing to its outstanding electrochemical properties, we believe that the novel Fe_3O_4@Ni_3S_2 composite is potentially a promising candidate for anode material of alkaline iron-based batteries.

  1. Synthesis of nickel oxide nanospheres by a facile spray drying method and their application as anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Anguo, E-mail: hixiaoanguo@126.com; Zhou, Shibiao; Zuo, Chenggang; Zhuan, Yongbing; Ding, Xiang

    2015-10-15

    Graphical abstract: NiO nanospheres prepared by a facile spray drying method show high lithium ion storage performance as anode of lithium ion battery. - Highlights: • NiO nanospheres are prepared by a spray drying method. • NiO nanospheres are composed of interconnected nanoparticles. • NiO nanospheres show good lithium ion storage properties. - Abstract: Fabrication of advanced anode materials is indispensable for construction of high-performance lithium ion batteries. In this work, nickel oxide (NiO) nanospheres are fabricated by a facial one-step spray drying method. The as-prepared NiO nanospheres show diameters ranging from 100 to 600 nm and are composed of nanoparticles of 30–50 nm. As an anode for lithium ion batteries, the electrochemical properties of the NiO nanospheres are investigated by cyclic voltammetry (CV) and galvanostatic charge/discharge tests. The specific reversible capacity of NiO nanospheres is 656 mA h g{sup −1} at 0.1 C, and 476 mA h g{sup −1} at 1 C. The improvement of electrochemical properties is attributed to nanosphere structure with large surface area and short ion/electron transfer path.

  2. Facile Synthesis of ZnO Nanoparticles on Nitrogen-Doped Carbon Nanotubes as High-Performance Anode Material for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Haipeng Li

    2017-09-01

    Full Text Available ZnO/nitrogen-doped carbon nanotube (ZnO/NCNT composite, prepared though a simple one-step sol-gel synthetic technique, has been explored for the first time as an anode material. The as-prepared ZnO/NCNT nanocomposite preserves a good dispersity and homogeneity of the ZnO nanoparticles (~6 nm which deposited on the surface of NCNT. Transmission electron microscopy (TEM reveals the formation of ZnO nanoparticles with an average size of 6 nm homogeneously deposited on the surface of NCNT. ZnO/NCNT composite, when evaluated as an anode for lithium-ion batteries (LIBs, exhibits remarkably enhanced cycling ability and rate capability compared with the ZnO/CNT counterpart. A relatively large reversible capacity of 1013 mAh·g−1 is manifested at the second cycle and a capacity of 664 mAh·g−1 is retained after 100 cycles. Furthermore, the ZnO/NCNT system displays a reversible capacity of 308 mAh·g−1 even at a high current density of 1600 mA·g−1. These electrochemical performance enhancements are ascribed to the reinforced accumulative effects of the well-dispersed ZnO nanoparticles and doping nitrogen atoms, which can not only suppress the volumetric expansion of ZnO nanoparticles during the cycling performance but also provide a highly conductive NCNT network for ZnO anode.

  3. Electrochemical synthesis of SnCo alloy shells on orderly rod-shaped Cu current collectors as anode materials for lithium-ion batteries with enhanced performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Fangwei; Zhang, Hui, E-mail: meszhanghui@zju.edu.cn; Qi, Yue; Wang, Jiazheng; Du, Ning; Yang, Deren

    2013-09-05

    Highlights: •Nanostructured SnCo/Cu electrodes have been successfully fabricated. •A simple electrodeposition approach was employed. •The Cu arrays offer large surface area and improve electronic/ionic conductivity. •The electrodes show improved performance as anode for Li-ion batteries. •The improved performance was attributed to the nanostructured current collectors. -- Abstract: In this article, we report a two-step electrodeposition method for the synthesis of Cu/SnCo core–shell rod-shaped arrays as anodes of lithium-ion batteries. Firstly, the arrayed Cu nanorods with diameters of 200 nm were fabricated on a Cu foil through an electrodeposition method with alumina oxide membrane (AAO) as the template. Secondly, the SnCo alloy shells were subsequently electrodeposited on the surface of the rod-shaped Cu arrays to form the hybrid nanostructures. These hybrid electrodes delivered the enhanced cyclic performance and high rate capability serving as the anode materials for lithium-ion batteries. The improved electrochemical performance might be attributed to the large surface-to-volume area, sufficient buffering space, and high electronic conductivity associated with these 3-dimensional (3D) nanostructures.

  4. Synthesis of nickel oxide nanospheres by a facile spray drying method and their application as anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Xiao, Anguo; Zhou, Shibiao; Zuo, Chenggang; Zhuan, Yongbing; Ding, Xiang

    2015-01-01

    Graphical abstract: NiO nanospheres prepared by a facile spray drying method show high lithium ion storage performance as anode of lithium ion battery. - Highlights: • NiO nanospheres are prepared by a spray drying method. • NiO nanospheres are composed of interconnected nanoparticles. • NiO nanospheres show good lithium ion storage properties. - Abstract: Fabrication of advanced anode materials is indispensable for construction of high-performance lithium ion batteries. In this work, nickel oxide (NiO) nanospheres are fabricated by a facial one-step spray drying method. The as-prepared NiO nanospheres show diameters ranging from 100 to 600 nm and are composed of nanoparticles of 30–50 nm. As an anode for lithium ion batteries, the electrochemical properties of the NiO nanospheres are investigated by cyclic voltammetry (CV) and galvanostatic charge/discharge tests. The specific reversible capacity of NiO nanospheres is 656 mA h g −1 at 0.1 C, and 476 mA h g −1 at 1 C. The improvement of electrochemical properties is attributed to nanosphere structure with large surface area and short ion/electron transfer path

  5. Peak position differences observed during XPS sputter depth profiling of the SEI on lithiated and delithiated carbon-based anode material for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Oswald, S., E-mail: s.oswald@ifw-dresden.de; Hoffmann, M.; Zier, M.

    2017-04-15

    Highlights: • In XPS measurements at graphite anodes for Li-ion batteries specific binding energy variations are observed for the SEI species. • The binding energy variations depend on the charging state of the graphite and not on surface charging effects. • Obviously the presence of elemental Li leads to a potential surface gradient in contact with surface layers. • The energy position of implanted Ar can be used as characteristic feature during sputter depth profiling experiments. - Abstract: The ability of delivering chemical information from peak shift phenomena has ever since made X-ray photoelectron spectroscopy (XPS) an ideal tool for material characterization in Li-ion batteries (LIB). Upon investigation, charging is inevitable as most of the chemical species involved are non-conducting. Thus, the binding energy (BE) scale must be corrected to allow an accurate interpretation of the results. This is usually done using the peak position of the ubiquitous surface carbon contamination detectable for all Li-ion battery relevant materials. We herein report on the occurrence of peak shift phenomena that can be observed when investigating surface layers on graphite anodes using sputter depth-profiling. These shifts, however, are not related to classical static electric charging, but are depending on the state of charge (lithiation) of the anode material. The observations presented are in agreement with previous findings on other Li-containing materials and are obviously caused by the presence of Li in its elemental state. As aging and failure mechanisms in LIBs are closely linked to electrolyte reaction products on electrode surfaces it is of high importance to draw the correct conclusions on their chemical origin from XP spectra. In order to avoid misinterpretation of the BE positions, implanted Ar can be used for identification of relevant peak positions and species involved in the phenomena observed.

  6. Synthesis and electrochemical performance of mesoporous SiO{sub 2}–carbon nanofibers composite as anode materials for lithium secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Yura; Choi, Jin-Yeong [Department of Chemistry, Keimyung University (Korea, Republic of); Park, Heai-Ku [Department of Chemical Engineering, Keimyung University (Korea, Republic of); Bae, Jae Young [Department of Chemistry, Keimyung University (Korea, Republic of); Lee, Chang-Seop, E-mail: surfkm@kmu.ac.kr [Department of Chemistry, Keimyung University (Korea, Republic of)

    2016-10-15

    Highlights: • Mesoporous SiO{sub 2}–carbon nanofibers composite synthesized on Ni foam without any binder. • This composite was directly applied as anode material of Li secondary batteries. • Showed the highest initial (2420 mAh/g) and discharging (2092 mAh/g) capacity. • This material achieved a retention rate of 86.4% after 30 cycles. - Abstract: In this study, carbon nanofibers (CNFs) and mesoporous SiO{sub 2}–carbon nanofibers composite were synthesized and applied as the anode materials in lithium secondary batteries. CNFs and mesoporous SiO{sub 2}–CNFs composite were grown via chemical vapor deposition method with iron-copper catalysts. Mesoporous SiO{sub 2} materials were prepared by sol–gel method using tetraethylorthosilicate as the silica source and cetyltrimethylammoniumchloride as the template. Ethylene was used as the carbon source and passes into a quartz reactor of a tube furnace heated to 600 °C, and the temperature was maintained at 600 °C for 10 min to synthesize CNFs and mesoporous SiO{sub 2}–CNFs composite. The electrochemical characteristics of the as-prepared CNFs and mesoporous SiO{sub 2}–CNFs composite as the anode of lithium secondary batteries were investigated using a three-electrode cell. In particular, the mesoporous SiO{sub 2}–CNFs composites synthesized without binder after depositing mesoporous SiO{sub 2} on Ni foam showed the highest charging and discharging capacity and retention rate. The initial capacity (2420 mAh/g) of mesoporous SiO{sub 2}–CNFs composites decreased to 2092 mAh/g after 30 cycles at a retention rate of 86.4%.

  7. Solid state cathode materials for secondary magnesium-ion batteries that are compatible with magnesium metal anodes in water-free electrolyte

    International Nuclear Information System (INIS)

    Crowe, Adam J.; Bartlett, Bart M.

    2016-01-01

    With high elemental abundance, large volumetric capacity, and dendrite-free metal deposition, magnesium metal anodes offer promise in beyond-lithium-ion batteries. However, the increased charge density associated with the divalent magnesium-ion (Mg 2+ ), relative to lithium-ion (Li + ) hinders the ion-insertion and extraction processes within many materials and structures known for lithium-ion cathodes. As a result, many recent investigations incorporate known amounts of water within the electrolyte to provide temporary solvation of the Mg 2+ , improving diffusion kinetics. Unfortunately with the addition of water, compatibility with magnesium metal anodes disappears due to forming an ion-insulating passivating layer. In this short review, recent advances in solid state cathode materials for rechargeable magnesium-ion batteries are highlighted, with a focus on cathode materials that do not require water contaminated electrolyte solutions for ion insertion and extraction processes. - Graphical abstract: In this short review, we present candidate materials for reversible Mg-battery cathodes that are compatible with magnesium metal in water-free electrolytes. The data suggest that soft, polarizable anions are required for reversible cycling.

  8. New In Situ Synthesis Method for Fe3O4/Flake Graphite Nanosheet Composite Structure and Its Application in Anode Materials of Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Chenhao Qian

    2018-01-01

    Full Text Available High-pressure torsion (HPT, a severe plastic deformation (SPD method, is rarely used in the manufacturing process of functional materials. In the present work, the authors creatively proposed using HPT as an alternative method an approach for high energy ball-milling in the preparation of an Fe3O4 and lamellar graphite nanosheet (GNS composite material. The corresponding electrochemical experiments verified that the in situ synthesized Fe3O4/GNS composite material has good lithium-storage performance and that it can retain good capacity (548.2 mA h g−1 even after several hundred cycles with high current density (8 C. Meanwhile, this performance has directly confirmed that SPD technique has great potential for the preparation of anode materials of lithium-ion batteries, especially in manufacturing metallic functional nanomaterials.

  9. Potassium vanadate K0.23V2O5 as anode materials for lithium-ion and potassium-ion batteries

    Science.gov (United States)

    Liu, Cailing; Luo, Shaohua; Huang, Hongbo; Wang, Zhiyuan; Wang, Qing; Zhang, Yahui; Liu, Yanguo; Zhai, Yuchun; Wang, Zhaowen

    2018-06-01

    A layered potassium vanadate K0.23V2O5 has been successfully prepared by the hydrothermal method and evaluated as an anode material for lithium-ion and potassium-ion batteries. High structural stability is demonstrated by the ex situ X-ray diffraction (XRD) and ex situ scanning electron microscopy (SEM). When used as an anode material for lithium-ion batteries, the K0.23V2O5 exhibits a reversible capacity of 480.4 mAh g-1 at 20 mA g-1 after 100 cycles and 439.7 mAh g-1 at 200 mA g-1 after 300 cycles as well as good cycling stability. Even at a high current density of 800 mA g-1, a high reversible capacity of 202.5 mAh g-1 can be retained, indicating excellent rate performance. Whereas in potassium-ion batteries, it retains a capacity of 121.6 mAh g-1 after 150 cycles at 20 mA g-1 and 97.6 mAh g-1 at 100 mA g-1 after 100 cycles. Such superior electrochemical performance of K0.23V2O5 can be ascribed to the special flower-like morphology and structure. Overall, the results highlight the great potential of K0.23V2O5 as an anode material for both lithium-ion and potassium-ion batteries.

  10. Enhanced cycle stability of micro-sized Si/C anode material with low carbon content fabricated via spray drying and in situ carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dingsheng; Gao, Mingxia, E-mail: gaomx@zju.edu.cn; Pan, Hongge; Liu, Yongfeng; Wang, Junhua; Li, Shouquan; Ge, Hongwei

    2014-08-01

    Highlights: • Micro-sized Si/C composites were fabricated via. spray drying and carbonization. • Multi-morphology carbon was formed in the Si/C composites. • Si/C composite with 5.6 wt.% C provides significant improved cycling stability. • Multi-morphology carbon plays effective role in improving the electrochemical property. • The method provides potential for mass production of superior Si-based anode materials. - Abstract: Micro-sized Si/C composites with in situ introduced carbon of multi-morphology were fabricated via spray drying a suspension of commercial micro-sized Si and citric acid followed by a carbonization. Different ratios of Si to citric acid were used to optimize the composition and structure of the composites and thus the electrochemical performance. Carbon flakes including crooked and flat ones were well dispersed in between the Si particles, forming Si/C composites. Floc-like carbon layers and carbon fragments were also found to cover partially the Si particles. The Si/C composite with a low carbon content of 5.6 wt.% provides an initial reversible capacity of 2700 mA h/g and a capacity of 1860 mA h/g after 60 cycles at a current density of 100 mA/g as anode material for lithium-ion batteries (LIBs), which are much higher than those of pristine Si and the Si/C composites with higher carbon content. The mechanism of the enhancement of electrochemical performance of the micro-sized Si/C composite is discussed. The fabrication method and the structure design of the composites offer valuable potential in developing adaptable Si-based anode materials for industrial applications.

  11. Core-shell structure of polypyrrole grown on V{sub 2}O{sub 5} nanoribbon as high performance anode material for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Qunting [New Energy and Materials Laboratory (NEML), Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai (China); School of Energy, Soochow University, Suzhou, Jiangsu (China); Zhu, Yusong; Gao, Xiangwen; Wu, Yuping [New Energy and Materials Laboratory (NEML), Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai (China)

    2012-08-15

    A core-shell structure of polypyrrole grown on V{sub 2}O{sub 5} nanoribbons as a high performance anode material for supercapacitors is fabricated using anionic dodecylbenzenesulfonate (DBS{sup -}) as surfactant. Benefiting from the nanoribbon morphology of V{sub 2}O{sub 5}, the improved charge-transfer and polymeric coating effect of PPy, PPy rate at V{sub 2}O{sub 5} nanocomposites exhibits high energy density, and excellent cycling and rate capability in K{sub 2}SO{sub 4} aqueous electrolyte. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. N-doped graphene/graphite composite as a conductive agent-free anode material for lithium ion batteries with greatly enhanced electrochemical performance

    International Nuclear Information System (INIS)

    Guanghui, Wu; Ruiyi, Li; Zaijun, Li; Junkang, Liu; Zhiguo, Gu; Guangli, Wang

    2015-01-01

    Graphical abstract: The study reported a novel N-doped graphene/graphite anode material for lithium ion batteries. The composite exhibits a largely enhanced electrochemical performance. The study also provides an attractive approach for the fabrication of various graphite-based materials for high power batteries. Display Omitted -- Highlights: • The paper developed a new N-doped graphene/graphite composite for lithium ion battery • The composite contains a three-dimensional graphene framework with rich of open pores • The hybrid offers a higher electrical conductivity when compared with pristine graphite • The hybrid electrode provides a greatly enhanced electrochemical performance • The study provides a prominent approach for fabrication of graphite-based materials -- ABSTRACT: Present graphite anode cannot meet the increasing requirement of electronic devices and electric vehicles due to its low specific capacity, poor cycle stability and low rate capability. The study reported a promising N-doped graphene/graphite composite as a conductive agent-free anode material for lithium ion batteries. Herein, graphite oxide and urea were dispersed in ultrapure water and partly reduced by ascorbic acid. Followed by mixing with graphite and hydrothermal treatment to produce graphene oxide/graphite hydrogel. The hydrogel was dried and finally annealed in Ar/H 2 to obtain N-doped graphene/graphite composite. The result shows that all of graphite particles was dispersed in three-dimensional graphene framework with a rich of open pores. The open pore accelerates the electrolyte transport. The graphene framework works as a conductive agent and graphite particle connector and improves the electron transfer. Electrical conductivity of the composite reaches 5912 S m −1 , which is much better than that of the pristine graphite (4018 S m −1 ). The graphene framework also acts as an expansion absorber in the anodes of lithium ion battery to relieve the large strains

  13. Insight into effects of graphene in Li4Ti5O12/carbon composite with high rate capability as anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Ding, Y.; Li, G.R.; Xiao, C.W.; Gao, X.P.

    2013-01-01

    Li 4 Ti 5 O 12 /carbon composites have shown promising high rate capability as anode materials for lithium ion batteries. In this paper, unique effects of graphene in Li 4 Ti 5 O 12 /carbon composites on electrochemical performances are focused by means of comparing Li 4 Ti 5 O 12 /graphene with Li 4 Ti 5 O 12 /conductive carbon black (CCB) and Li 4 Ti 5 O 12 . The investigated anode materials are synthesized by a facile hydrothermal method. The amount of graphene or CCB in the Li 4 Ti 5 O 12 /carbon composites is about 3 wt% measured by thermogravimetric (TG) analysis. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that Li 4 Ti 5 O 12 /graphene consists of small sized Li 4 Ti 5 O 12 nanocrystals supported on graphene nanosheets, while Li 4 Ti 5 O 12 /CCB comprises Li 4 Ti 5 O 12 nanocrystal aggregates coated nearly by graphited carbon. The electrochemical performances of these samples as anode materials for lithium ion batteries are investigated by galvanostatic charge–discharge method. Li 4 Ti 5 O 12 /graphene provides a superior rate capability. At the high current density of 1600 mA g −1 , the reversible capacity after 200 cycles is still more than 120 mAh g −1 , which is about 40% higher than that of Li 4 Ti 5 O 12 /CCB. Cyclic voltammetry (CV) demonstrates that stronger pseudocapacitive effect occurs on Li 4 Ti 5 O 12 /graphene than on Li 4 Ti 5 O 12 /CCB. This derived from the structure features that graphene-supported small Li 4 Ti 5 O 12 nanocrystals provide more surface active sites for the lithium ion insertion/extraction. The strong pseudocapacitive effect is responsible for the improvements of capacity and high-rate capability. Further, electrochemical impedance spectra (EIS) show that Li 4 Ti 5 O 12 /graphene electrode have lower charge transfer resistance and smaller diffusion impedance, indicating the obvious advantages in electrode kinetics over Li 4 Ti 5 O 12 and Li 4 Ti 5 O 12

  14. Discharge modes at the anode of a vacuum arc

    International Nuclear Information System (INIS)

    Miller, H.C.

    1982-01-01

    The two most common anode modes in a vacuum arc are the low current mode, where the anode is basically inert; and the high current mode with a fully developed anode spot. This anode spot is very bright, has a temperature near the boiling point of the anode material, and is a copious source of vapor and energetic ions. However, other anode modes can exist. A low current vacuum arc with electrodes of readily sputterable material will emit a flux of sputtered atoms from the anode. An intermediate currents an anode footpoint can form. This footpoint is luminous, but much cooler than a true anode spot. Finally, a high current mode can exist where several small anode spots are present instead of a single large anode spot

  15. Construction of reduced graphene oxide supported molybdenum carbides composite electrode as high-performance anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Minghua; Zhang, Jiawei [Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), and School of Applied Science, Harbin University of Science and Technology, Harbin 150080 (China); Chen, Qingguo, E-mail: qgchen@263.net [Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), and School of Applied Science, Harbin University of Science and Technology, Harbin 150080 (China); Qi, Meili [Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), and School of Applied Science, Harbin University of Science and Technology, Harbin 150080 (China); Xia, Xinhui, E-mail: helloxxh@zju.edu.cn [State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2016-01-15

    Highlights: • Reduced graphene oxide supported molybdenum carbides are prepared by two-step strategy. • A unique sheet-on-sheet integrated nanostructure is favorable for fast ion/electron transfer. • The integrated electrode shows excellent Li ion storage performance. - Abstract: Metal carbides are emerging as promising anodes for advanced lithium ion batteries (LIBs). Herein we report reduced graphene oxide (RGO) supported molybdenum carbides (Mo{sub 2}C) integrated electrode by the combination of solution and carbothermal methods. In the designed integrated electrode, Mo{sub 2}C nanoparticles are uniformly dispersed among graphene nanosheets, forming a unique sheet-on-sheet integrated nanostructure. As anode of LIBs, the as-prepared Mo{sub 2}C-RGO integrated electrode exhibits noticeable electrochemical performances with a high reversible capacity of 850 mAh g{sup −1} at 100 mA g{sup −1}, and 456 mAh g{sup −1} at 1000 mA g{sup −1}, respectively. Moreover, the Mo{sub 2}C-RGO integrated electrode shows excellent cycling life with a capacity of ∼98.6 % at 1000 mA g{sup −1} after 400 cycles. Our research may pave the way for construction of high-performance metal carbides anodes of LIBs.

  16. Ternary CNTs@TiO₂/CoO Nanotube Composites: Improved Anode Materials for High Performance Lithium Ion Batteries.

    Science.gov (United States)

    Madian, Mahmoud; Ummethala, Raghunandan; Naga, Ahmed Osama Abo El; Ismail, Nahla; Rümmeli, Mark Hermann; Eychmüller, Alexander; Giebeler, Lars

    2017-06-20

    TiO₂ nanotubes (NTs) synthesized by electrochemical anodization are discussed as very promising anodes for lithium ion batteries, owing to their high structural stability, high surface area, safety, and low production cost. However, their poor electronic conductivity and low Li⁺ ion diffusivity are the main drawbacks that prevent them from achieving high electrochemical performance. Herein, we report the fabrication of a novel ternary carbon nanotubes (CNTs)@TiO₂/CoO nanotubes composite by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO₂/CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO₂ and TiO₂/CoO NTs, without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li⁺ ion diffusivity, promoting a strongly favored lithium insertion into the TiO₂/CoO NT framework, and hence resulting in high capacity and an extremely reproducible high rate capability.

  17. Ternary CNTs@TiO2/CoO Nanotube Composites: Improved Anode Materials for High Performance Lithium Ion Batteries

    Science.gov (United States)

    Madian, Mahmoud; Ummethala, Raghunandan; Abo El Naga, Ahmed Osama; Ismail, Nahla; Rümmeli, Mark Hermann; Eychmüller, Alexander; Giebeler, Lars

    2017-01-01

    TiO2 nanotubes (NTs) synthesized by electrochemical anodization are discussed as very promising anodes for lithium ion batteries, owing to their high structural stability, high surface area, safety, and low production cost. However, their poor electronic conductivity and low Li+ ion diffusivity are the main drawbacks that prevent them from achieving high electrochemical performance. Herein, we report the fabrication of a novel ternary carbon nanotubes (CNTs)@TiO2/CoO nanotubes composite by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO2/CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO2 and TiO2/CoO NTs, without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li+ ion diffusivity, promoting a strongly favored lithium insertion into the TiO2/CoO NT framework, and hence resulting in high capacity and an extremely reproducible high rate capability. PMID:28773032

  18. Ternary CNTs@TiO2/CoO Nanotube Composites: Improved Anode Materials for High Performance Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Mahmoud Madian

    2017-06-01

    Full Text Available TiO2 nanotubes (NTs synthesized by electrochemical anodization are discussed as very promising anodes for lithium ion batteries, owing to their high structural stability, high surface area, safety, and low production cost. However, their poor electronic conductivity and low Li+ ion diffusivity are the main drawbacks that prevent them from achieving high electrochemical performance. Herein, we report the fabrication of a novel ternary carbon nanotubes (CNTs@TiO2/CoO nanotubes composite by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO2/CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO2 and TiO2/CoO NTs, without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li+ ion diffusivity, promoting a strongly favored lithium insertion into the TiO2/CoO NT framework, and hence resulting in high capacity and an extremely reproducible high rate capability.

  19. Preparation and electrochemical properties of nanocable-like Nb2O5/surface-modified carbon nanotubes composites for anode materials in lithium ion batteries

    International Nuclear Information System (INIS)

    Shi, Chongfu; Xiang, Kaixiong; Zhu, Yirong; Chen, Xianhong; Zhou, Wei; Chen, Han

    2017-01-01

    Highlights: •The acid pretreatment for CNTs is a key factor to fabricate nanocable-like Nb 2 O 5 /SMCNTs composites. •The polar functional groups can induce the symmetrical growth of Nb 2 O 5 nanoparticitles on the surface of SMCNTs. •SMCNTs can provide sufficient conductive contacts for composites and abundant active sites for electrochemical reaction. -- Abstract: Uniform nanocable-like Nb 2 O 5 /surface-modified carbon nanotubes (SMCNTs) composites for anode materials in lithium ion batteries were synthesized by hydrothermal method. It was indicated that Nb 2 O 5 nanoparticles were tightly and uniformly cultivated on carbon nanotubes when CNTs were pretreated with concentrated H 2 SO 4 . As a result, Nb 2 O 5 /SMCNTs composite materials showed remarkable electrochemical performance as anode materials for lithium-ion batteries. It delivered a high reversible capacity of 441 mA h g −1 cycled at the current density of 40 mA g −1 after 100 cycles and an excellent rate capacity of 185 mA h g −1 at the high current density of 5000 mA g −1 after 200 cycles.

  20. Co{sub 3}O{sub 4} nanoparticles embedded in ordered mesoporous carbon with enhanced performance as an anode material for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junsu; Kim, Gil-Pyo [Seoul National University (SNU), World Class University (WCU) Program of Chemical Convergence for Energy and Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Processes (Korea, Republic of); Umh, Ha Nee [Kwangwoon University, Department of Chemical Engineering (Korea, Republic of); Nam, Inho; Park, Soomin [Seoul National University (SNU), World Class University (WCU) Program of Chemical Convergence for Energy and Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Processes (Korea, Republic of); Kim, Younghun [Kwangwoon University, Department of Chemical Engineering (Korea, Republic of); Yi, Jongheop, E-mail: jyi@snu.ac.kr [Seoul National University (SNU), World Class University (WCU) Program of Chemical Convergence for Energy and Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Processes (Korea, Republic of)

    2013-09-15

    A Co{sub 3}O{sub 4}/ordered mesoporous carbon (OMC) nanocomposite, in which Co{sub 3}O{sub 4} nanoparticles (NPs), with an average size of about 10 nm homogeneously embedded in the OMC framework, are prepared for use as an anode material in Li-ion batteries. The composite is prepared by a one-pot synthesis based on the solvent evaporation-induced co-self-assembly of a phenolic resol, a triblock copolymer F127, and Co(NO{sub 3}){sub 2}{center_dot}6H{sub 2}O, followed by carbonization and oxidation. The resulting material has a high reversible capacity of {approx}1,025 mA h g{sup -1} after 100 cycles at a current density of 0.1 A g{sup -1}. The enhanced cycling stability and rate capability of the composite can be attributed to the combined mesoporous nanostructure which provides efficient pathways for Li-ion transport and the homogeneous distribution of the Co{sub 3}O{sub 4} NPs in the pore wall of the OMC, which prevents aggregation. These findings suggest that the OMC has promise for use as a carbon metric for metals and metal oxides as an anode material in high performance Li-ion batteries.

  1. Fe3O4/C composite with hollow spheres in porous 3D-nanostructure as anode material for the lithium-ion batteries

    Science.gov (United States)

    Yang, Zhao; Su, Danyang; Yang, Jinping; Wang, Jing

    2017-09-01

    3d transition-metal oxides, especially Fe3O4, as anode materials for the lithium-ion batteries have been attracting intensive attentions in recent years due to their high energy capacity and low toxicity. A new Fe3O4/C composite with hollow spheres in porous three-dimensional (3D) nanostructure, which was synthesized by a facile solvothermal method using FeCl3·6H2O and porous spongy carbon as raw materials. The specific surface area and microstructures of composite were characterized by nitrogen adsorption-desorption isotherm method, FE-SEM and HR-TEM. A homogeneous distribution of hollow Fe3O4 spheres (diameter ranges from 120 nm to 150 nm) in the spongy carbon (pore size > 200 nm) conductive 3D-network significantly reduced the lithium-ion diffusion length and increased the electrochemical reaction area, and further more enhanced the lithium ion battery performance, such as discharge capacity and cycle life. As an anode material for the lithium-ion battery, the title composite exhibit excellent electrochemical properties. The Fe3O4/C composite electrode achieved a relatively high reversible specific capacity of 1450.1 mA h g-1 in the first cycle at 100 mA g-1, and excellent rate capability (69% retention at 1000 mA g-1) with good cycle stability (only 10% loss after 100 cycles).

  2. Anode sheath transition in an anodic arc for synthesis of nanomaterials

    Science.gov (United States)

    Nemchinsky, V. A.; Raitses, Y.

    2016-06-01

    The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium.

  3. Anode sheath transition in an anodic arc for synthesis of nanomaterials

    International Nuclear Information System (INIS)

    Nemchinsky, V A; Raitses, Y

    2016-01-01

    The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium. (paper)

  4. Elaborate strategy for preparing Li4Ti5O12-based anode materials with significantly improved lithium storage: TiO2 nanodots in-situ decoration and hierarchical structure construction

    Science.gov (United States)

    Xu, Hui; Tian, Qinghua; Huang, Jun; Bao, Dongmei; Zhang, Zhengxi; Yang, Li

    2017-11-01

    Spinel Li4Ti5O12 (LTO) has attracted extensive attention as potential anode materials for power lithium-ion batteries due to its outstanding structural stability and remarkable safety. However, it's practical application yet be limited by such disadvantages of dissatisfied specific capacity, poor electron conductivity and low lithium-ion diffusion coefficient. Thus, design and preparation of LTO anodes with desirable performance is still a challenge. Herein, we have successfully and greatly improved the performance of LTO anodes, in terms of rate capability, life and specific capacity in particular via dot-to-face anatase TiO2in-situ decoration and hierarchical structure construction under a facile approach (directly using the tetrabutyl titanate as titanium source instead of specially prepared titanium oxide precursors). The as-prepared LTO-based anode (denoted as T-LTO) delivers an ultra-high reversible specific capacity of 196.5 mAh g-1 after 300 cycles at 20 mA g-1, and superior rate performance and even ultra-long life of more than 145.8 mAh g-1 at 28.5C between 1.0 and 3.0 V. The achieved outstanding electrochemical performance largely surpasses that of reportedly state-of-the-art LTO-based anode materials. This work may open up a broader vision into developing advanced LTO-based anode materials for lithium-ion batteries.

  5. Investigation of electronic band structure and charge transfer mechanism of oxidized three-dimensional graphene as metal-free anodes material for dye sensitized solar cell application

    Science.gov (United States)

    Loeblein, Manuela; Bruno, Annalisa; Loh, G. C.; Bolker, Asaf; Saguy, Cecile; Antila, Liisa; Tsang, Siu Hon; Teo, Edwin Hang Tong

    2017-10-01

    Dye-sensitized solar cells (DSSCs) offer an optimal trade-off between conversion-efficiency and low-cost fabrication. However, since all its electrodes need to fulfill stringent work-function requirements, its materials have remained unchanged since DSSC's first report early-90s. Here we describe a new material, oxidized-three-dimensional-graphene (o-3D-C), with a band gap of 0.2 eV and suitable electronic band-structure as alternative metal-free material for DSSCs-anodes. o-3D-C/dye-complex has a strong chemical bonding via carboxylic-group chemisorption with full saturation after 12 sec at capacity of ∼450 mg/g (600x faster and 7x higher than optimized metal surfaces). Furthermore, fluorescence quenching of life-time by 28-35% was measured demonstrating charge-transfer from dye to o-3D-C.

  6. Fe3O4 nanoparticles decorated on the biochar derived from pomelo pericarp as excellent anode materials for Li-ion batteries

    International Nuclear Information System (INIS)

    Li, Tao; Bai, Xue; Qi, Yong-Xin; Lun, Ning; Bai, Yu-Jun

    2016-01-01

    Fe 3 O 4 has been regarded as one of the sustainable alternatives for anode materials of Li-ion batteries (LIBs), but the severe volume expansion and agglomeration of Fe 3 O 4 nanoparticles pose limitations to the lithium storage capability. In this paper, Fe 3 O 4 nanoparticles are loaded on the carbon derived from inner pomelo pericarp to form Fe 3 O 4 /C composite. Benefiting from the synergistic effect of the good electronic conductivity of the biochar and the high capacity of Fe 3 O 4 nanoparticles, the composite delivers a pronounced reversible capacity of 1003.3 mAh g −1 after 200 cycles at 100 mA g −1 , and reveals an impressive high rate capacity of 634.6 mAh g −1 at 500 mA g −1 with the capacity fading of 0.074% per cycle, suggesting the great potential as anode materials for LIBs. The mineral substances of uniformly distributed KCl and CaCO 3 in the biochar play an important role in enhancing the electrochemical performance of the composite.

  7. Highly-crystalline ultrathin Li4Ti5O12 nanosheets decorated with silver nanocrystals as a high-performance anode material for lithium ion batteries

    Science.gov (United States)

    Xu, G. B.; Li, W.; Yang, L. W.; Wei, X. L.; Ding, J. W.; Zhong, J. X.; Chu, Paul K.

    2015-02-01

    A novel composite of highly-crystalline ultrathin Li4Ti5O12 (LTO) nanosheets and Ag nanocrystals (denoted as LTO NSs/Ag) as an anode material for Li-ion batteries (LIBs) is prepared by hydrothermal synthesis, post calcination and electroless deposition. The characterizations of structure and morphology reveal that the LTO nanosheets have single-crystal nature with a thickness of about 10 nm and highly dispersed Ag nanocrystals have an average diameter of 5.8 nm. The designed LTO NSs/Ag composite takes advantage of both components, thereby providing large contact area between the electrolyte and electrode, low polarization of voltage difference, high electrical conductivity and lithium ion diffusion coefficient during electrochemical processes. The evaluation of its electrochemical performance demonstrates that the prepared LTO NSs/Ag composite has superior lithium storage performance. More importantly, this unique composite has an ability to deliver high reversible capacities with superlative cyclic capacity retention at different current rates, and exhibit excellent high-rate performance at a current rate as high as 30 C. Our results improve the current performance of LTO based anode material for LIBs.

  8. Integrating 3D Flower-Like Hierarchical Cu2NiSnS4 with Reduced Graphene Oxide as Advanced Anode Materials for Na-Ion Batteries.

    Science.gov (United States)

    Yuan, Shuang; Wang, Sai; Li, Lin; Zhu, Yun-hai; Zhang, Xin-bo; Yan, Jun-min

    2016-04-13

    Development of an anode material with high performance and low cost is crucial for implementation of next-generation Na-ion batteries (NIBs) electrode, which is proposed to meet the challenges of large scale renewable energy storage. Metal chalcogenides are considered as promising anode materials for NIBs due to their high theoretical capacity, low cost, and abundant sources. Unfortunately, their practical application in NIBs is still hindered because of low conductivity and morphological collapse caused by their volume expansion and shrinkage during Na(+) intercalation/deintercalation. To solve the daunting challenges, herein, we fabricated novel three-dimensional (3D) Cu2NiSnS4 nanoflowers (CNTSNs) as a proof-of-concept experiment using a facile and low-cost method. Furthermore, homogeneous integration with reduced graphene oxide nanosheets (RGNs) endows intrinsically insulated CNTSNs with superior electrochemical performances, including high specific capacity (up to 837 mAh g(-1)), good rate capability, and long cycling stability, which could be attributed to the unique 3D hierarchical structure providing fast ion diffusion pathway and high contact area at the electrode/electrolyte interface.

  9. Electrochemical performance of 2D polyaniline anchored CuS/Graphene nano-active composite as anode material for lithium-ion battery.

    Science.gov (United States)

    Iqbal, Shahid; Bahadur, Ali; Saeed, Aamer; Zhou, Kebin; Shoaib, Muhammad; Waqas, Muhammad

    2017-09-15

    Lithium-ion battery (LIB) is a revolutionary step in the electric energy storage technology for making green environment. In the present communication, a LIB anode material was constructed by using graphene/polyaniline/CuS nanocomposite (GR/PANI/CuS NC) as a high-performance electrode. Initially, pure covellite CuS nanoplates (NPs) of the hexagonal structure were synthesized by hydrothermal route and then GR/PANI/CuS NC was fabricated by in-situ polymerization of aniline in the presence of CuS NPs and graphene nanosheets (GR NSs) as host matrix. GR/PANI/CuS NC-based LIB has shown the superior reversible current capacity of 1255mAhg -1 , a high cycling stability with more than 99% coulombic efficiency over 250 cycles even at a high current density of 5Ag -1 , low volume expansion, and excellent power capabilities. Galvanostatic charge/discharge tests and cyclic voltammetry analysis were used to investigate electrochemical properties. The electrochemical test proves that GR/PANI/CuS NC is promising anode material for LIB. The crystal phases and purity of the GR/PANI/CuS NC were confirmed by X-ray diffraction (XRD). Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) were employed to examine the morphology, size, chemical composition, and phase structure of the synthesized GR/PANI/CuS NC. Copyright © 2017. Published by Elsevier Inc.

  10. Assembly of MnCO3 nanoplatelets synthesized at low temperature on graphene to achieve anode materials with high rate performance for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Kang; Shi, Yan-Hong; Li, Huan-Huan; Wang, Hai-Feng; Li, Xiao-Ying; Sun, Hai-Zhu; Wu, Xing-Long; Xie, Hai-Ming; Zhang, Jing-Ping; Wang, Jia-Wei

    2016-01-01

    Graphical abstract: A novel kind of MnCO 3 nanoplatelets-reduced graphene oxide (RGO) composite was prepared by a simple low temperature reaction route which presented improved rate performance. - Abstract: A novel kind of MnCO 3 nanoplatelets-reduced graphene oxide (RGO) composites, as an anode material in rechargeable Li-ion battery, was prepared by a simple low temperature reaction route. The graphene not only provided an avenue for the transport of Li-ion, but also buffered the volume expansion of MnCO 3 nanoplatelets during charge and discharge. Compared to pure MnCO 3 nanoplatelets, MnCO 3 -RGO composites presented the improved electrochemical performances. At a low current density of 100 mA g −1 , MnCO 3 -RGO composites delivered a desired performance of 849.1 mAh g −1 after 200 cycles. When at a high current density of 500 mA g −1 , the discharge capacity still maintained at 810.9 mAh g −1 after 700 cycles. Our experimental results suggest that this composite will be a candidate as a novel anode material for the power batteries of electric vehicles and the energy storage batteries of smart grids in the future.

  11. In situ synthesis of α-MoO3/graphene composites as anode materials for lithium ion battery

    International Nuclear Information System (INIS)

    Liu, Chun-Ling; Wang, Yan; Zhang, Chen; Li, Xiao-Shan; Dong, Wen-Sheng

    2014-01-01

    The α-MoO 3 /graphene composites (MoO 3 /G) were prepared via an in situ hydrothermal synthesis. The composites were characterized using various characterization techniques including powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and the electrochemical performance test. The results show that these MoO 3 /G composites exhibit high capacity and good cycle stability when used as the lithium-ion battery anode. Among all the samples, the MoO 3 /G-27 reveals the best electrochemical performance with an initial charge capacity of 977.7 mAh g −1 at a current density of 50 mA g −1 , the first coulombic efficiency of 69.5%. After eighty cycles the electrode still maintains a capacity of 869.2 mAh g −1 , giving high capacity retention of 88.9%. The good electrochemical performance of the composite anode is close related to its structure, in which the MoO 3 nanobelts are not only homogeneously anchored on the surface but also embedded in the interlayer of the graphene sheets; hence the volume change and aggregation of the MoO 3 nanobelts during lithium ion insertion/extraction process can be effectively hindered. On the other hand, graphene itself is an electronic conductor; the graphene and MoO 3 nanobelts connect closely, which offers large electrode/electrolyte contacting area, short path length for Li + transporting during lithium insertion and extraction. - Highlights: • The α-MoO 3 /graphene composites were prepared via an in situ hydrothermal synthesis. • The MoO 3 /G-27 anode delivers an initial reversible capacity of 977.7 mAh g −1 . • After 80 cycles it has a reversible capacity of 869.2 mAh g −1 at 50 mA g −1

  12. Li3-xNaxV2(PO4)3 (0≤x≤3): Possible anode materials for rechargeable lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Pengfei; Shao, Lianyi; Qian, Shangshu; Yi, Ting-Feng; Yu, Haoxiang; Yan, Lei; Li, Peng; Lin, Xiaoting; Shui, Miao; Shu, Jie

    2016-01-01

    Highlights: • Li 3-x Na x V 2 (PO 4 ) 3 (0 ≤ x ≤ 3) series are firstly evaluated as anode materials. • Li 3-x Na x V 2 (PO 4 ) 3 anodes show lithium storage activity in 1.0–3.0 V. • The lithium storage capability of different Li 3-x Na x V 2 (PO 4 ) 3 is compared. • Structural reversibility of Li 3-x Na x V 2 (PO 4 ) 3 is studied by in-situ XRD. - Abstract: In this paper, a series of Li 3-x Na x V 2 (PO 4 ) 3 (0 ≤ x ≤ 3) are prepared by a solid state reaction and systematically evaluated as anode materials for lithium-ion batteries. Structural analysis shows that the phase structure of Li 3-x Na x V 2 (PO 4 ) 3 changes along with the evolution of Na content. Charge-discharge tests exhibit that Li 3 V 2 (PO 4 ) 3 shows the highest initial charge specific capacity as high as 88.3 mAh g −1 among all the seven samples, and the reversible capacity is kept at 68.3 mAh g −1 after 45 cycles, corresponding to 77.3% of the initial charge capacity. With increasing of Na content in Li 3-x Na x V 2 (PO 4 ) 3 , the as-obtained sample show poorer lithium storage capability than Li 3 V 2 (PO 4 ) 3 . As a result, Na 3 V 2 (PO 4 ) 3 shows the inferior cycling performance than other Li 3-x Na x V 2 (PO 4 ) 3 . It can only deliver a reversible capacity of 20.9 mAh g −1 after 45 cycles, corresponding to 45.9% of the initial charge capacity. In-situ X-ray diffraction observations demonstrate that the poor electrochemical property of Na 3 V 2 (PO 4 ) 3 anode is due to the irreversible structural evolution during charge-discharge process. Therefore, reducing the Na 3 V 2 (PO 4 ) 3 phase in as-obtained sample is a feasible route to improve the lithium storage capability of Li 3-x Na x V 2 (PO 4 ) 3 .

  13. On the selection of the anode material for the electrochemical removal of methylparaben from different aqueous media

    International Nuclear Information System (INIS)

    Steter, Juliana R.; Brillas, Enric; Sirés, Ignasi

    2016-01-01

    Highlights: • Comparative performance of EO-H 2 O 2 , EF and PEF with BDD, Pt and DSA as anodes. • Poor effect of anode on methylparaben mineralization by PEF but large effect in EO-H 2 O 2 . • Pseudo-first-order decay kinetics in EO-H 2 O 2 and much quicker complex kinetics in PEF. • Beneficial effect of Cl − in EO-H 2 O 2 but slightly or significantly detrimental in EF and PEF. • Quickest degradation in PEF with BDD, yielding chlorinated and non-chlorinated by-products. - Abstract: Parabens are widely used industrial preservatives, routinely found in wastewater along with major inorganic ions like sulfate and chloride. This work investigates the oxidation ability of three electrochemical processes in tank reactors equipped with an air-diffusion cathode to electrogenerate H 2 O 2 on site, namely electro-oxidation (EO-H 2 O 2 ), electro-Fenton (EF) and UVA photoelectro-Fenton (PEF), to degrade aqueous solutions of methylparaben (MeP) at pH 3.0. Their performance using boron-doped diamond (BDD), Pt or two kinds of dimensionally stable anodes (DSA ® ) has been compared from the analysis of mineralization profiles and decay kinetics in the presence of sulfate and/or chloride ions. The use of BDD ensured the overall mineralization in all three processes according to the sequence: PEF > EF > EO-H 2 O 2 , thanks to the contribution of BDD(·OH), ·OH and UVA light. Pt and DSA ® became an interesting alternative in PEF, with slower organic matter removal but similar final mineralization percentages, being much less powerful than BDD in EO-H 2 O 2 . The presence of Cl − was beneficial in the latter process, due to the formation of active chlorine as an additional oxidant that caused a much faster decay of MeP. Conversely, it became significantly detrimental in EF due to the partial destruction of H 2 O 2 and ·OH in the bulk by active chlorine and Cl − , respectively. The oxidation power of PEF was so high that similar fast, complex decay kinetics was

  14. A novel material Li{sub 2}NiFe{sub 2}O{sub 4}: Preparation and performance as anode of lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Keqiang, E-mail: dkeqiang@263.net [College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 (China); Zhao, Jing [College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 (China); Zhou, Jinming, E-mail: zhoujm@iccas.ac.cn [College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 (China); Zhao, Yongbo; Chen, Yuying; Liu, Likun [College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 (China); Wang, Li [Institute of Nuclear & New Energy Technology, Beijing Key Lab of Fine Ceramics, Tsinghua University, Beijing, 100084 (China); He, Xiangming, E-mail: hexm@tsinghua.edu.cn [Institute of Nuclear & New Energy Technology, Beijing Key Lab of Fine Ceramics, Tsinghua University, Beijing, 100084 (China); Guo, Zhanhu, E-mail: zguo10@utk.edu [Integrated Composites Laboratory (ICL), Chemical and Biomolecular Engineering Department, University of Tennessee Knoxville, Knoxville, NT, 37996 (United States)

    2016-07-01

    For the first time, the preparation and characterization of a novel anode material Li{sub 2}NiFe{sub 2}O{sub 4} are reported in this work. The preparation of Li{sub 2}NiFe{sub 2}O{sub 4} is conducted under the air conditions by using a subsection calcination method. The influence of annealing periods on the properties of the resultant materials is thoroughly explored. The characteristics of the materials are mainly examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), galvanostatic charge-discharge tests and electrochemical impedance spectroscopy (EIS). The results of the XRD patterns effectively demonstrate the formation of crystalline Li{sub 2}NiFe{sub 2}O{sub 4}, and the SEM images indicate that particles with octahedron crystal morphology are prepared and the 9 h-annealed sample has the smallest particle size among all the prepared samples. The results of electrochemical measurements reveal that 9 h-calcined sample delivers a high specific capacity of 203 mAh g{sup −1} after 20 cycles at a current density of 100 mA g{sup −1}. The successful preparation of Li{sub 2}NiFe{sub 2}O{sub 4} is believed to be able to trigger the research work concerning the novel group of Li{sub 2}MFe{sub 2}O{sub 4} materials. - Highlights: • A novel anode material Li{sub 2}NiFe{sub 2}O{sub 4} was prepared under the air conditions. • Li{sub 2}NiFe{sub 2}O{sub 4} showed well-defined octahedron crystal morphology. • 9 h-annealed Li{sub 2}NiFe{sub 2}O{sub 4} delivered a capacity of 203 mAh g{sup −1}.

  15. Convenient and high-yielding strategy for preparing nano-ZnMn_2O_4 as anode material in lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Tong; Gao, Yu; Yue, Huijuan; Qiu, Hailong; Guo, Zhendong; Wei, Yingjin; Wang, Chunzhong; Chen, Gang; Zhang, Dong

    2016-01-01

    Graphical abstract: A convenient combustion assist coprecipitation approach to synthesis nano-ZnMn2O4 anode material with excellent electrochemical performance. - Highlights: • ZnMn_2O_4 material has been gained from a novel combustion approach. • The ZnMn_2O_4 generated at 800 °C exhibits the best electrochemical performance. • This convenient method enables scale-up production of transition metal oxides. - Abstract: Time and energy saving synthesis method is crucial to the scale up applications of energy conversion and storage materials. In this report, we demonstrate a convenient and novel approach to fabricate the highly crystalline ZnMn_2O_4 nanoparticles as anode materials for Li rechargeable batteries. Pure phase ZnMn_2O_4 samples can be feasibly obtained under different calcination temperature from the precursor via combustion assisted coprecipitation method. Various techniques are used to characterize the structure and morphology of the products. Sample gained at 800 °C exhibits the best electrochemical property for lithium ion batteries. A reversible specific capacity of 716 mAh g"−"1 can be retained under a current density of 100 mA g"−"1 after 90 circles. Even the current density elevated up to 1000 mA g"−"1, the reversible capacity of the material still can be kept as high as 500 mAh g"−"1 after 1200 cycles. The outstanding performance compared to the other samples benefits from its good crystallinity and uniform dispersion with appropriate particle size.

  16. Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries

    International Nuclear Information System (INIS)

    Jiang, Qiang; Zhang, Zhenghao; Yin, Shengyu; Guo, Zaiping; Wang, Shiquan; Feng, Chuanqi

    2016-01-01

    Highlights: • Ramie fibers and corncobs are used as precursors to prepare the biomass carbons. • The ramie fiber carbon (RFC) took on morphology of 3D micro-rods. • The corncob carbon (CC) possessed a 2D nanosheets structure. • Both RFC and CC exhibited outstanding electrochemical performances in LIBs and SIBs systems. - Abstract: Three-dimensional (3D) rod-like carbon micro-structures derived from natural ramie fibers and two-dimensional (2D) carbon nanosheets derived from corncobs have been fabricated by heat treatment at 700 °C under argon atomsphere. The structure and morphology of the as-obtained ramie fiber carbon (RFC) and corncob carbon (CC) were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) technique. The electrochemical performances of the biomass carbon-based anode in lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) were investigated. When tested as anode material for lithium ion batteries, both the RFC microrods and CC nanosheets exhibited high capacity, excellent rate capability, and stable cyclability. The specific capacity were still as high as 489 and 606 mAhg −1 after 180 cycles when cycled at room temperature in a 3.0–0.01 V potential (vs. Li/Li + ) window at current density of 100 mAg −1 , respectively, which are much higher than that of graphite (375 mAhg −1 ) under the same current density. Although the anodes in sodium ion batteries showed poorer specific capability than that in lithium-ion batteries, they still achieve a reversible sodium intercalation capacity of 122 and 139 mAhg −1 with similar cycling stability. The feature of stable cycling performance makes the biomass carbon derived from natural ramie fibers and corncobs to be promising candidates as electrodes in rechargeable sodium-ion batteries and lithium-ion batteries.

  17. Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Qiang; Zhang, Zhenghao [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China); Yin, Shengyu [College of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan 430065 (China); Guo, Zaiping [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China); Institute for Superconducting & Electronic Materials, University of Wollongong, NSW 2522 (Australia); Wang, Shiquan [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China); Feng, Chuanqi, E-mail: cfeng@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China)

    2016-08-30

    Highlights: • Ramie fibers and corncobs are used as precursors to prepare the biomass carbons. • The ramie fiber carbon (RFC) took on morphology of 3D micro-rods. • The corncob carbon (CC) possessed a 2D nanosheets structure. • Both RFC and CC exhibited outstanding electrochemical performances in LIBs and SIBs systems. - Abstract: Three-dimensional (3D) rod-like carbon micro-structures derived from natural ramie fibers and two-dimensional (2D) carbon nanosheets derived from corncobs have been fabricated by heat treatment at 700 °C under argon atomsphere. The structure and morphology of the as-obtained ramie fiber carbon (RFC) and corncob carbon (CC) were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) technique. The electrochemical performances of the biomass carbon-based anode in lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) were investigated. When tested as anode material for lithium ion batteries, both the RFC microrods and CC nanosheets exhibited high capacity, excellent rate capability, and stable cyclability. The specific capacity were still as high as 489 and 606 mAhg{sup −1} after 180 cycles when cycled at room temperature in a 3.0–0.01 V potential (vs. Li/Li{sup +}) window at current density of 100 mAg{sup −1}, respectively, which are much higher than that of graphite (375 mAhg{sup −1}) under the same current density. Although the anodes in sodium ion batteries showed poorer specific capability than that in lithium-ion batteries, they still achieve a reversible sodium intercalation capacity of 122 and 139 mAhg{sup −1} with similar cycling stability. The feature of stable cycling performance makes the biomass carbon derived from natural ramie fibers and corncobs to be promising candidates as electrodes in rechargeable sodium-ion batteries and lithium-ion batteries.

  18. N/S Co-doped Carbon Derived From Cotton as High Performance Anode Materials for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jiawen Xiong

    2018-04-01

    Full Text Available Highly porous carbon with large surface areas is prepared using cotton as carbon sources which derived from discard cotton balls. Subsequently, the sulfur-nitrogen co-doped carbon was obtained by heat treatment the carbon in presence of thiourea and evaluated as Lithium-ion batteries anode. Benefiting from the S, N co-doping, the obtained S, N co-doped carbon exhibits excellent electrochemical performance. As a result, the as-prepared S, N co-doped carbon can deliver a high reversible capacity of 1,101.1 mA h g−1 after 150 cycles at 0.2 A g−1, and a high capacity of 531.2 mA h g−1 can be observed even after 5,000 cycles at 10.0 A g−1. Moreover, excellently rate capability also can be observed, a high capacity of 689 mA h g−1 can be obtained at 5.0 A g−1. This superior lithium storage performance of S, N co-doped carbon make it as a promising low-cost and sustainable anode for high performance lithium ion batteries.

  19. Preparation and electrochemical properties of core-shell carbon coated Mn–Sn complex metal oxide as anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ruixue [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); Fang, Guoqing; Liu, Weiwei [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); Changzhou Institute of Energy Storage Materials and Devices, Changzhou 213000 (China); Xia, Bingbo; Sun, Hongdan; Zheng, Junwei [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); Li, Decheng, E-mail: lidecheng@suda.edu.cn [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China)

    2014-02-15

    In this study, we synthesized a carbon coated Mn–Sn metal oxide composite with core-shell structure (MTO@C) via a simple glucose hydrothermal reaction and subsequent carbonization approach. When the MTO@C composite was applied as an anode material for lithium-ion batteries, it maintained a reversible capacity of 409 mA h g{sup −1} after 200 cycles at a current density of 100 mA g{sup −1}. The uniformed and continuous carbon layer formed on the MTO nanoparticles, effectively buffered the volumetric change of the active material and increased electronic conductivity, which thus prolonged the cycling performance of the MTO@C electrode.

  20. Preparation and electrochemical properties of core-shell carbon coated Mn–Sn complex metal oxide as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Ruixue; Fang, Guoqing; Liu, Weiwei; Xia, Bingbo; Sun, Hongdan; Zheng, Junwei; Li, Decheng

    2014-01-01

    In this study, we synthesized a carbon coated Mn–Sn metal oxide composite with core-shell structure (MTO@C) via a simple glucose hydrothermal reaction and subsequent carbonization approach. When the MTO@C composite was applied as an anode material for lithium-ion batteries, it maintained a reversible capacity of 409 mA h g −1 after 200 cycles at a current density of 100 mA g −1 . The uniformed and continuous carbon layer formed on the MTO nanoparticles, effectively buffered the volumetric change of the active material and increased electronic conductivity, which thus prolonged the cycling performance of the MTO@C electrode.

  1. Facile synthesis and stable cycling ability of hollow submicron silicon oxide–carbon composite anode material for Li-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joong-Yeon; Nguyen, Dan Thien [Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kang, Joon-Sup [Department of Energy Science and Technology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Song, Seung-Wan, E-mail: swsong@cnu.ac.kr [Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Department of Energy Science and Technology, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2015-06-05

    Highlights: • Hollow submicron SiO{sub 2}–carbon composite material was synthesized using Si{sup 4+}-citrate chelation. • Composite material possessed a homogeneous distribution of SiO{sub 2} and carbon. • Composite electrode delivered ⩾600 mAh/g with a stable cycling stability. • This materials design and synthesis provides a useful platform for scalable production. - Abstract: Advanced SiO{sub 2}–carbon composite anode active material for lithium-ion battery has been synthesized through a simple chelation of silicon cation with citrate in a glyme-based solvent. The resultant composite material demonstrates a homogeneous distribution of constituents over the submicron particles and a unique hollow spherical microstructure, which provides an enhanced electrical conductivity and better accommodation of volume change of silicon during electrochemical charge–discharge cycling, respectively. As a result, the composite electrode exhibits a high cycling stability delivering the capacity retention of 91% at the 100th cycle and discharge capacities of 662–602 mAh/g and coulombic efficiencies of 99.8%. This material synthesis is scalable and cost-effective in preparing various submicron or micron composite electrode materials.

  2. Anode Fall Formation in a Hall Thruster

    International Nuclear Information System (INIS)

    Dorf, Leonid A.; Raitses, Yevgeny F.; Smirnov, Artem N.; Fisch, Nathaniel J.

    2004-01-01

    As was reported in our previous work, accurate, nondisturbing near-anode measurements of the plasma density, electron temperature, and plasma potential performed with biased and emissive probes allowed the first experimental identification of both electron-repelling (negative anode fall) and electron-attracting (positive anode fall) anode sheaths in Hall thrusters. An interesting new phenomenon revealed by the probe measurements is that the anode fall changes from positive to negative upon removal of the dielectric coating, which appears on the anode surface during the course of Hall thruster operation. As reported in the present work, energy dispersion spectroscopy analysis of the chemical composition of the anode dielectric coating indicates that the coating layer consists essentially of an oxide of the anode material (stainless steel). However, it is still unclear how oxygen gets into the thruster channel. Most importantly, possible mechanisms of anode fall formation in a Hall thruster with a clean and a coated anodes are analyzed in this work; practical implication of understanding the general structure of the electron-attracting anode sheath in the case of a coated anode is also discussed

  3. Bioelectricity Production and Comparative Evaluation of Electrode Materials in Microbial Fuel Cells Using Indigenous Anode-Reducing Bacterial Community from Wastewater of Rice-Based Industries

    Directory of Open Access Journals (Sweden)

    Shailesh Kumar Jadhav

    2017-03-01

    Full Text Available Microbial fuel cells (MFCs are the electrochemical systems that harness the electricity production capacity of certain microbes from the reduction of biodegradable compounds. The present study aimed to develop mediator-less MFC without using expensive proton exchange membrane. In the present study, a triplicate of dual-chamber, mediator-less MFCs was operated with two local rice based industrial wastewater to explore the potential of this wastewater as a fuel option in these electrochemical systems. 30 combinations of 6 electrodes viz. Carbon (14 cm × 1.5 cm, Zn (14.9 cm × 4.9 cm, Cu (14.9 cm × 4.9 cm, Sn (14.1cm × 4.5cm, Fe (14cm × 4cm and Al (14cm × 4.5 cm were evaluated for each of the wastewater samples. Zn-C as anode-cathode combination produced a maximum voltage that was 1.084±0.016V and 1.086±0.028 and current of 1.777±0.115mA and 1.503±0.120 for KRM and SSR, respectively. In the present study, thick biofilm has been observed growing in MFC anode. Total 14 bacterial isolates growing in anode were obtained from two of the wastewater. The dual chambered, membrane-less and mediator-less MFCs were employed successfully to improve the economic feasibility of these electrochemical systems to generate bioelectricity and wastewater treatment simultaneously. Keywords: Membrane-less, Microbial Fuel Cells, Biofilm, Wastewater, Electrogenic. Article History: Received June 25th 2016; Received in revised form Dec 15th 2016; Accepted January 5th 2017; Available online How to Cite This Article: Reena, M. and Jadhav, S. K. (2017 Bioelectricity production and Comparative Evaluation of Electrode Materials in Microbial Fuel Cells using Indigenous Anode-reducing Bacterial Community from Wastewater of Rice-based Industries. International Journal of Renewable Energy Develeopment, 6(1, 83-92. http://dx.doi.org/10.14710/ijred.6.1.83-92

  4. Carbon-covered Fe{sub 3}O{sub 4} hollow cubic hierarchical porous composite as the anode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shouhui, E-mail: csh2k@jxnu.edu.cn; Zhou, Rihui; Chen, Yaqin; Fu, Yuanyuan; Li, Ping; Song, Yonghai; Wang, Li, E-mail: lwanggroup@aliyun.com [Jiangxi Normal University, College of Chemistry and Chemical Engineering (China)

    2017-04-15

    In this work, Prussian blue nanocrystals, a kind of cubic metal-organic frameworks, was firstly covered by a uniform layer of resorcinol-formaldehyde (RF) resin, and then followed with heat treatment at different pyrolysis temperatures. The effects of pyrolysis temperature on the morphologies, phase, pore size, and electrochemical performance of the pyrolysis products were studied in this work. The composite generated at 600 {sup ∘}C, FexC600, was a hollow cubic composite of Fe{sub 3}O{sub 4} covered by a thin RF-derived carbon layer. The carbon layer on FexC600 was a robust and conductive protective layer, which can accommodate Fe{sub 3}O{sub 4} NPs and withstand the huge volume change of Fe{sub 3}O{sub 4} during the process of discharge and charge. When used as anodes for lithium-ion batteries, FexC600 showed excellent electrochemical performance. It delivered a discharge capacity of 1126 mAh g{sup −1} with a coulombic efficiency of 98.8% at the current density of 100 mA g{sup −1} after 100 times discharge/charge cycling. It even delivered a capacity of 492 mAh g{sup −1} at the current density of 500 mA g{sup −1}. This cubic hollow composite would be a promising alternative anode material for lithium-ion batteries.

  5. There-dimensional porous carbon network encapsulated SnO2 quantum dots as anode materials for high-rate lithium ion batteries

    International Nuclear Information System (INIS)

    Yang, Juan; Xi, Lihua; Tang, Jingjing; Chen, Feng; Wu, Lili; Zhou, Xiangyang

    2016-01-01

    SnO 2 quantum dots have attracted enormous interest, since they have been shown to effectively minimize the volume change stress, improve the anode kinetic and shorten the lithium ion migration distance when used as anode materials for lithium ion battery. In this work, we report a facile strategy to fabricate nanostructure with homogenous SnO 2 quantum dots anchored on three-dimensional (3D) nitrogen and sulfur dual-doped porous carbon (NSGC@SnO 2 ). Characterization results show that the obtained SnO 2 quantum dots have an average critical size of 3–5 nm and uniformly encapsulated in the porous of NSGC matrix. The as-designed nanostructure can effectively avoid the aggregation of SnO 2 quantum dots as well as accommodate the mechanical stress induced by the volume change of SnO 2 quantum dots and thus maintain the structure integrity of the electrode. As a result, the obtained NSGC@SnO 2 composite exhibits a specific reversible capacity as high as 1118 mAh g −1 at a current of 200 mA g −1 after 100 cycles along with a high coulombic efficiency of 98% and excellent rate capability.

  6. Carbon-covered Fe_3O_4 hollow cubic hierarchical porous composite as the anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Chen, Shouhui; Zhou, Rihui; Chen, Yaqin; Fu, Yuanyuan; Li, Ping; Song, Yonghai; Wang, Li

    2017-01-01

    In this work, Prussian blue nanocrystals, a kind of cubic metal-organic frameworks, was firstly covered by a uniform layer of resorcinol-formaldehyde (RF) resin, and then followed with heat treatment at different pyrolysis temperatures. The effects of pyrolysis temperature on the morphologies, phase, pore size, and electrochemical performance of the pyrolysis products were studied in this work. The composite generated at 600 "∘C, FexC600, was a hollow cubic composite of Fe_3O_4 covered by a thin RF-derived carbon layer. The carbon layer on FexC600 was a robust and conductive protective layer, which can accommodate Fe_3O_4 NPs and withstand the huge volume change of Fe_3O_4 during the process of discharge and charge. When used as anodes for lithium-ion batteries, FexC600 showed excellent electrochemical performance. It delivered a discharge capacity of 1126 mAh g"−"1 with a coulombic efficiency of 98.8% at the current density of 100 mA g"−"1 after 100 times discharge/charge cycling. It even delivered a capacity of 492 mAh g"−"1 at the current density of 500 mA g"−"1. This cubic hollow composite would be a promising alternative anode material for lithium-ion batteries.

  7. Coaxial MoS2@Carbon Hybrid Fibers: A Low-Cost Anode Material for High-Performance Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Rui Zhou

    2017-02-01

    Full Text Available A low-cost bio-mass-derived carbon substrate has been employed to synthesize MoS2@carbon composites through a hydrothermal method. Carbon fibers derived from natural cotton provide a three-dimensional and open framework for the uniform growth of MoS2 nanosheets, thus hierarchically constructing coaxial architecture. The unique structure could synergistically benefit fast Li-ion and electron transport from the conductive carbon scaffold and porous MoS2 nanostructures. As a result, the MoS2@carbon composites—when serving as anodes for Li-ion batteries—exhibit a high reversible specific capacity of 820 mAh·g−1, high-rate capability (457 mAh·g−1 at 2 A·g−1, and excellent cycling stability. The use of bio-mass-derived carbon makes the MoS2@carbon composites low-cost and promising anode materials for high-performance Li-ion batteries.

  8. Monodisperse SnO2 nanocrystals functionalized multiwalled carbon nanotubes for large rate and long lifespan anode materials in lithium ion batteries

    International Nuclear Information System (INIS)

    Song, Huawei; Li, Na; Cui, Hao; Wang, Chengxin

    2014-01-01

    A facile way towards high rate and long lifespan anode materials based on SnO 2 and commercial multiwalled carbon nanotubes (MWCNTs) is readily achieved through a combination of activation and hydrothermal treatment. The former endows the MWCNTs with abundant hydrophilic radicals, while the latter guarantees intimate connection between SnO 2 and MWCNTs; eventually, monodisperse SnO 2 nanocrystals ca. 3 nm are firmly anchored on the MWCNTs without agglomeration. When used for lithium ion batteries (LIBs) anodes, the hybrid composite exhibits excellent cycling capability with high reversible capacity about 700 mAh g −1 (based on total weight of the composite) for 150 cycles at 0.1 A g −1 superior to both components involved. Besides large rates of 5 A g −1 with recoverable initial reversible capacity, it also last for more than 1000 cycles with little capacity decay, outperforming most SnO 2 based carbon nanotubes composites (SnO 2 /CNTs) so far. Insights into the electrochemical processes reveal the hybrid composite exhibits enhanced redox capacitance and interfacial capacitance in comparison with SnO 2 nanocrystals which indicate the perfect interfaces and robust structure of the hybrid composite

  9. Synthesis and electrochemical characterization of nano-sized Ag_4Sn particles as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Schmuelling, Guido; Oehl, Nikolas; Fromm, Olga; Knipper, Martin; Kolny-Olesiak, Joanna; Plaggenborg, Thorsten; Parisi, Jürgen; Winter, Martin; Placke, Tobias

    2016-01-01

    For the first time, sub 10 nm sized intermetallic Ag_4Sn particles are prepared via an aqueous synthesis route in order to improve the electrochemical performance of pure Sn nanoparticles. High-resolution transmission electron microscopy, X-ray diffraction and thermogravimetric analysis are used to investigate the morphology, crystal structure and particle surface of the as prepared Ag_4Sn nanoparticles. In addition, galvanostatic cycling and cyclic voltammetry measurements are carried out to characterize the electrochemical behavior of the particles. Upon lithiation and de-lithiation a phase transformation from Ag_4Sn to Ag_3Sn is observed, which has not been reported so far. The intermetallic nanoparticle-based anode delivers a specific de-lithiation capacity of 460 mAhg"−"1 for more than 150 cycles.

  10. Monodispersed macroporous architecture of nickel-oxide film as an anode material for thin-film lithium-ion batteries

    International Nuclear Information System (INIS)

    Wu, Mao-Sung; Lin, Ya-Ping

    2011-01-01

    A nickel-oxide film with monodispersed open macropores was prepared on a stainless-steel substrate by electrophoretic deposition of a polystyrene-sphere monolayer followed by anodic electrodeposition of nickel oxy-hydroxide. The deposited films convert to cubic nickel oxide after annealing at 400 o C for 1 h. Galvanostatic charge and discharge results indicate that the nickel-oxide film with monodispersed open macropores is capable of delivering a higher capacity than the bare nickel-oxide film, especially in high-rate charge and discharge processes. The lithiation capacity of macroporous nickel oxide reaches 1620 mA h g -1 at 1 C current discharge and decreases to 990 mA h g -1 at 15 C current discharge. The presence of monodispersed open macropores in the nickel-oxide film might facilitate the electrolyte penetration, diffusion, and migration. Electrochemical reactions between nickel oxide and lithium ions are therefore markedly improved by this tailored film architecture.

  11. Amorphous MoS3 Infiltrated with Carbon Nanotubes as an Advanced Anode Material of Sodium-Ion Batteries with Large Gravimetric, Areal, and Volumetric Capacities

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Hualin [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Wang, Lu [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Deng, Shuo [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Zeng, Xiaoqiao [Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont IL 60439 USA; Nie, Kaiqi [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Duchesne, Paul N. [Department of Chemistry, Dalhousie University, Halifax NS B3H 4R2 Canada; Wang, Bo [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Liu, Simon [Department of Chemical Engineering, University of Waterloo, Ontario N2L 3G1 Canada; Zhou, Junhua [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Zhao, Feipeng [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Han, Na [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Zhang, Peng [Department of Chemistry, Dalhousie University, Halifax NS B3H 4R2 Canada; Zhong, Jun [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Sun, Xuhui [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Li, Youyong [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Li, Yanguang [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Lu, Jun [Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont IL 60439 USA

    2016-11-17

    The search for earth-abundant and high-performance electrode materials for sodium-ion batteries represents an important challenge to current battery research. 2D transition metal dichalcogenides, particularly MoS2, have attracted increasing attention recently, but few of them so far have been able to meet expectations. In this study, it is demonstrated that another phase of molybdenum sulfide—amorphous chain-like MoS3—can be a better choice as the anode material of sodium-ion batteries. Highly compact MoS3 particles infiltrated with carbon nanotubes are prepared via the facile acid precipitation method in ethylene glycol. Compared to crystalline MoS2, the resultant amorphous MoS3 not only exhibits impressive gravimetric performance—featuring excellent specific capacity (≈615 mA h g-1), rate capability (235 mA h g-1 at 20 A g-1), and cycling stability but also shows exceptional volumetric capacity of ≈1000 mA h cm-3 and an areal capacity of >6.0 mA h cm-2 at very high areal loadings of active materials (up to 12 mg cm-2). The experimental results are supported by density functional theory simulations showing that the 1D chains of MoS3 can facilitate the adsorption and diffusion of Na+ ions. At last, it is demonstrated that the MoS3 anode can be paired with an Na3V2(PO4)3 cathode to afford full cells with great capacity and cycling performance.

  12. Highly uniform Co{sub 9}S{sub 8} nanoparticles grown on graphene nanosheets as advanced anode materials for improved Li-storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shumin [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun 130022 (China); School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Wang, Jinxian, E-mail: wjx87@sina.com [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun 130022 (China); School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Wang, Jianwei; Zhang, Feifei [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun 130022 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Limin, E-mail: lmwang@ciac.ac.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun 130022 (China)

    2016-12-30

    Highlights: • Co{sub 9}S{sub 8}/graphene nanocomposites were synthesized via a facile solvothermal method followed by thermal treatment in N{sub 2} at 500 °C. • Highly uniform Co{sub 9}S{sub 8} nanoparticles with a size of about 80–90 nm are evenly grafted on the surface of GNS. • Such unique Co{sub 9}S{sub 8}/GNS structure exhibits great electrochemical property, showing great potential as anode materials for LIB. - Abstract: A Co{sub 9}S{sub 8}/GNS (graphene nanosheets) nanocomposites has been synthesized via a facile solvothermal approach followed by thermal treatment in nitrogen at 500 °C using graphite oxide sheets, CoCl{sub 2}·6H{sub 2}O and thiourea as the starting materials. Highly uniform Co{sub 9}S{sub 8} nanoparticles with a size of about 80–90 nm are evenly grafted on the surface of GNS, forming a unique Co{sub 9}S{sub 8}/GNS hybrid nanostructure. When evaluated as anode materials for lithium ion batteries, impressive electrochemical performances of the as-prepared nanocomposites are achieved compared to that of pure bulk Co{sub 9}S{sub 8}, with an high reversible capacity of 1480 mAh g{sup −1}. Moreover, the as-synthesized nanocomposites present excellent cycling durability and high-rate capability. The improvement in the electrochemical properties could be attributed to the well-designed structure of the Co{sub 9}S{sub 8}/GNS nanocomposite which possesses large number of accessible active sites for lithium-ion insertion, fast ion diffusion rate and good electronic conductivity.

  13. Porous Nano-Si/Carbon Derived from Zeolitic Imidazolate Frameworks@Nano-Si as Anode Materials for Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Song, Yonghai; Zuo, Li; Chen, Shouhui; Wu, Jiafeng; Hou, Haoqing; Wang, Li

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: •The porous cage-like carbon/Si nanocomposites were synthesized based on nano-Si@ZIF-8-templatedmethod. •The nano-Si was uniformly embedded in porous amorphous carbon matrices. •The porous dodecahedral carbon framework effectively accommodates the volume variation of Si during the discharge/charge process. •The Si/C nanocomposites exhibit superior reversible capacity of 1168 mA h g −1 after 100 cycles. -- Abstract: Novel porous cage-like carbon (C)/nano-Si nanocomposites as anode materials for lithium-ion batteries (LIBs) was prepared based on nano-Si@zeolitic imidazolate frameworks (ZIF-8)-templated method. In this strategy, p-aminobenzoic acid was initially grafted onto nano-Si to form benzoic acid-functionalized nano-Si, and then nano-Si@ZIF-8 was constructed by alternately growing Zn(NO 3 ) 2 ·6H 2 O and 2-methylimidazolate on benzoic acid-functionalized nano-Si under ultrasound. The novel porous cage-like nano-Si/C nanocomposites were fabricated by pyrolyzing the resulted nano-Si@ZIF-8 and washing with HCl to remove off ZnO. Scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, Raman spectra and N 2 adsorption/desorption isotherms were employed to characterize the porous cage-like nano-Si/C nanocomposites. The resulted nano-Si/C nanocomposites as anode materials for LIBs showed a high reversible capacity of ∼1168 mA h g −1 at 100 mA g −1 after 100 cycles, which was higher than many previously reported Si/C nanocomposites. The porous nanostructure, high specific surface area and good electrical conductivity of the cage-like nano-Si/C nanocomposites contributed together to the good performance for LIBs. It might open up a new way for application of silicon materials

  14. Synthesis of One Dimensional Li2MoO4 Nanostructures and Their Electrochemical Performance as Anode Materials for Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Liu, Xudong; Zhao, Yanming; Dong, Youzhong; Fan, Qinghua; Kuang, Quan; Liang, Zhiyong; Lin, Xinghao; Han, Wei; Li, Qidong; Wen, Mingming

    2015-01-01

    Highlights: • One dimensional Li 2 MoO 4 nanostructures including nanorods and nanotubes have been successfully fabricated via a simple sol-gel method firstly. • Possible crystal formation mechanisms are proposed for these one dimensional Li 2 MoO 4 nanostructures. • These one dimensional Li 2 MoO 4 nanostructure electrode materials present outstanding rate abilities and cycle capabilities in electrochemical performance compared to the carbon-free powder sample when evaluated as anode materials for Lithium-ion batteries. • The carbon-coated Li 2 MoO 4 nanotube electrode improves the charging/discharging capacities of graphite even after applying 60 cycles at very high current density. - Abstract: One dimensional Li 2 MoO 4 nanostructures including nanorods and nanotubes have been successfully fabricated via a simple sol-gel method adding Li 2 CO 3 and MoO 3 powders into distilled water with citric acid as an assistant agent and carbon source. Our experimental results show that the formation of the one dimensional nanostructure morphology is evaporation and crystallization process with self-adjusting into a rod-like hexagonal cross-section structure, while the citric acid played an important role during the formation of Li 2 MoO 4 nanotubes under the acidic environment by capping, stabilizing the {1010} facet of Li 2 MoO 4 structure and controlling the concentration of H + (pH value) of the aqueous solution. Finally, basic electrochemical performance of these one dimensional Li 2 MoO 4 nanostructures including nanorods and nanotubes evaluated as anode materials for lithium-ion batteries (LIBs) are discussed, for comparison, the properties of carbon-free powder sample synthesized by solid-state reaction are also displayed. Experimental results show that different morphology and carbon-coating on the surface have an important influence on electrochemical performance

  15. Hierarchical carambola-like Li4Ti5O12-TiO2 composites as advanced anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Yu; Zhang, Yun; Huang, Ling; Zhou, Zhongfu; Wang, Jingfeng; Liu, Heng; Wu, Hao

    2016-01-01

    Hierarchically structured Li 4 Ti 5 O 12 -TiO 2 (LTO-TiO 2 ) composites are synthesized using a facile hydrothermal approach upon reaction time control. With control over the time of hydrothermal reaction at 18 h, a hierarchical dual-phase LTO-TiO 2 composite with appropriate amount of anatase TiO 2 can be obtained, and it possesses a uniform carambola-like framework assembled by numerous ultrathin nanosheets, which enable a relatively large specific surface area, along with abundant interlayer channels to favor electrolyte penetration. When used as anode materials for lithium-ion batteries, such carambola-like LTO-TiO 2 composite exhibits remarkably improved capacity, high-rate capability, and cycling stability over other LTO-TiO 2 samples, which are synthesized at different time of hydrothermal reaction. Specifically, it deliveries a discharge capacity as high as 115.1 and 91.2 mAh g −1 at a very high current rate of 20 and 40C, respectively, while a stable reversible capacity of 171.7 mAh g −1 can be retained after 200 charge-discharge cycles at 1C, corresponding to 88.6% capacity retention. The excellent electrochemical performances benefit from the unique hierarchical carambola-like structure together with the mutually complementary intrinsic advantages between LTO and TiO 2 . The robust and porous nanosheets-assembled LTO-TiO 2 framework not only offers a shorter transport pathway for electron and Li-ion migration within this composite material, but also is able to alleviate the structure distortion during the fast Li-ion insertion/extraction process. The work described here shows that the hierarchical carambola-like LTO-TiO 2 composite is a promising anode material for high-power and long-life lithium-ion batteries.

  16. A comparative study of electrochemical performance of graphene sheets, expanded graphite and natural graphite as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Bai, Li-Zhong; Zhao, Dong-Lin; Zhang, Tai-Ming; Xie, Wei-Gang; Zhang, Ji-Ming; Shen, Zeng-Min

    2013-01-01

    Highlights: • Graphene sheets (GSs), expanded graphite (EG) and natural graphite (NG) were comparatively investigated as anode materials for lithium-ion batteries. • The reversible capacity of GS electrode was almost twice that of EG electrode and three times that of NG electrode. • The first-cycle coulombic efficiency and capacity retention of NG were much bigger than those of GSs and EG. • GS and EG electrodes exhibited higher electrochemical activity and more favorable kinetic properties. -- Abstract: Three kinds of carbon materials, i.e., graphene sheets (GSs), expanded graphite (EG) and natural graphite (NG) were comparatively investigated as anode materials for lithium-ion batteries via scanning electron microscope, high-resolution transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy and a variety of electrochemical testing techniques. The test results showed that the reversible capacities of GS electrode were 1130 and 636 mA h g −1 at the current densities of 0.2 and 1 mA cm −2 , respectively, which were almost twice those of EG electrode and three times those of NG electrode. The first-cycle coulombic efficiency and capacity retention of NG were much bigger than those of GSs and EG. The notable capacity fading observed in GSs and EG may be ascribed to the disorder-induced structure instability. The larger voltage hysteresis in GS and EG electrodes was not only related to the surface functional groups, but also to the active defects in GSs and EG, which results in greater hindrance and higher overvoltage during lithium extraction from electrode. The kinetics properties of GSs, EG and NG electrodes were compared by AC impedance measurements. GS and EG electrodes exhibited higher electrochemical activity and more favorable kinetic properties during charge and discharge process

  17. Highly uniform Co_9S_8 nanoparticles grown on graphene nanosheets as advanced anode materials for improved Li-storage performance

    International Nuclear Information System (INIS)

    Liu, Shumin; Wang, Jinxian; Wang, Jianwei; Zhang, Feifei; Wang, Limin

    2016-01-01

    Highlights: • Co_9S_8/graphene nanocomposites were synthesized via a facile solvothermal method followed by thermal treatment in N_2 at 500 °C. • Highly uniform Co_9S_8 nanoparticles with a size of about 80–90 nm are evenly grafted on the surface of GNS. • Such unique Co_9S_8/GNS structure exhibits great electrochemical property, showing great potential as anode materials for LIB. - Abstract: A Co_9S_8/GNS (graphene nanosheets) nanocomposites has been synthesized via a facile solvothermal approach followed by thermal treatment in nitrogen at 500 °C using graphite oxide sheets, CoCl_2·6H_2O and thiourea as the starting materials. Highly uniform Co_9S_8 nanoparticles with a size of about 80–90 nm are evenly grafted on the surface of GNS, forming a unique Co_9S_8/GNS hybrid nanostructure. When evaluated as anode materials for lithium ion batteries, impressive electrochemical performances of the as-prepared nanocomposites are achieved compared to that of pure bulk Co_9S_8, with an high reversible capacity of 1480 mAh g"−"1. Moreover, the as-synthesized nanocomposites present excellent cycling durability and high-rate capability. The improvement in the electrochemical properties could be attributed to the well-designed structure of the Co_9S_8/GNS nanocomposite which possesses large number of accessible active sites for lithium-ion insertion, fast ion diffusion rate and good electronic conductivity.

  18. Liquid Silicon Pouch Anode

    Science.gov (United States)

    2017-09-06

    Number 15/696,426 Filing Date 6 September 2017 Inventor Charles J. Patrissi et al Address any questions concerning this matter to the...silicon-based anodes during cycling, lithium insertion and deinsertion. Mitigation of this problem has long been sought and will result in improved...design shown. [0032] It will be understood that many additional changes in the details, materials, steps and arrangement of parts, which have been

  19. Infrared radiation properties of anodized aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Kohara, S. [Science Univ. of Tokyo, Noda, Chiba (Japan). Dept. of Materials Science and Technology; Niimi, Y. [Science Univ. of Tokyo, Noda, Chiba (Japan). Dept. of Materials Science and Technology

    1996-12-31

    The infrared radiation heating is an efficient and energy saving heating method. Ceramics have been used as an infrared radiant material, because the emissivity of metals is lower than that of ceramics. However, anodized aluminum could be used as the infrared radiant material since an aluminum oxide film is formed on the surface. In the present study, the infrared radiation properties of anodized aluminum have been investigated by determining the spectral emissivity curve. The spectral emissivity curve of anodized aluminum changed with the anodizing time. The spectral emissivity curve shifted to the higher level after anodizing for 10 min, but little changed afterwards. The infrared radiant material with high level spectral emissivity curve can be achieved by making an oxide film thicker than about 15 {mu}m on the surface of aluminum. Thus, anodized aluminum is applicable for the infrared radiation heating. (orig.)

  20. Novel synthetic approach for 1, 4-dihydroxyanthraquinone and the development of its Lithiated salts as anode material for aqueous rechargeable Lithium-ion batteries

    KAUST Repository

    Gurukar, Suresh Shivappa

    2015-08-17

    The influence of organic electrode materials in the field of lithium ion battery is becoming a keen interest for the present generation scientists. Here we are reporting a novel method of synthesis of electrode material by the combination of sono-chemical and thermal methods. The advantages of organic active material towards lithium ion battery are of core interest of this study. The structural confirmations are by FT-IR, 1H NMR, MALDI-TOF Mass Spectroscopy and powder XRD data. The electrochemical properties of Lithiated-1,4-dihydroxyanthraquinone were studied using electrochemical-techniques such as Cyclic Voltammetry, Galvanostatic Cyclic Potential Limitation and Potentiostatic Electrochemical Impedance Spectroscopy. The satisfactory results towards stability of active species in the aqueous media, reasonable discharge capacity with 0.9 V average voltages and agreeable cycling performance during charge-discharge process with reproducibility are achieved. For the construction of the full cell, the anode material was coupled with the LiNi1/3Co1/3Mn1/3O2 as a cathode material.

  1. Persistent cyclestability of carbon coated Zn–Sn metal oxide/carbon microspheres as highly reversible anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Fang, Guoqing; Kaneko, Shingo; Liu, Weiwei; Xia, Bingbo; Sun, Hongdan; Zhang, Ruixue; Zheng, Junwei; Li, Decheng

    2013-01-01

    Development of high-capacity anode materials equipped with strong cyclestability is a great challenge for use as practical electrode for high-performance lithium-ion rechargeable battery. In this study, we synthesized a carbon coated Zn–Sn metal nanocomposite oxide and carbon spheres (ZTO@C/CSs) via a simple glucose hydrothermal reaction and subsequent carbonization approach. The carbon coated ZTO/carbon microspheres composite maintained a reversible capacity of 680 mAh g −1 after 345 cycles at a current density of 100 mA g −1 , and furthermore the cell based on the composite exhibited an excellent rate capability of 470 mAh g −1 even when the cell was cycled at 2000 mA g –1 . The thick carbon layer formed on the ZTO nanoparticles and carbon spheres effectively buffered the volumetric change of the particles, which thus prolonged the cycling performance of the electrodes

  2. Soft template strategy to synthesize iron oxide-titania yolk-shell nanoparticles as high-performance anode materials for lithium-ion battery applications.

    Science.gov (United States)

    Lim, Joohyun; Um, Ji Hyun; Ahn, Jihoon; Yu, Seung-Ho; Sung, Yung-Eun; Lee, Jin-Kyu

    2015-05-18

    Yolk-shell-structured nanoparticles with iron oxide core, void, and a titania shell configuration are prepared by a simple soft template method and used as the anode material for lithium ion batteries. The iron oxide-titania yolk-shell nanoparticles (IO@void@TNPs) exhibit a higher and more stable capacity than simply mixed nanoparticles of iron oxide and hollow titania because of the unique structure obtained by the perfect separation between iron oxide nanoparticles, in combination with the adequate internal void space provided by stable titania shells. Moreover, the structural effect of IO@void@TNPs clearly demonstrates that the capacity retention value after 50 cycles is approximately 4 times that for IONPs under harsh operating conditions, that is, when the temperature is increased to 80 °C. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Composite of K-doped (NH4)2V3O8/graphene as an anode material for sodium-ion batteries.

    Science.gov (United States)

    Liu, Xin; Li, Zhiwei; Fei, Hailong; Wei, Mingdeng

    2015-11-21

    A layer structured K-doped (NH4)2V3O8/graphene (K-NVG) was prepared via a hydrothermal route and then used as an anode material for sodium-ion batteries for the first time. The K-NVG nanosheets have a diameter in the range of 200-500 nm. The K-NVG electrode exhibited stable cycling and a good rate performance with a reversible capacity of 235.4 mA h g(-1), which is much higher than the 90.5 mA h g(-1) value of the (NH4)2V3O8/graphene electrode after 100 cycles at a current density of 100 mA g(-1). Simultaneously, the retention rate was maintained at 82% even after 250 cycles at the current density of 300 mA g(-1). Such good electrochemical properties may be attributed to the K-NVG's stable layered structure.

  4. Zr doping effect with low-cost solid-state reaction method to synthesize submicron Li4Ti5O12 anode material

    Science.gov (United States)

    Seo, Inseok; Lee, Cheul-Ro; Kim, Jae-Kwang

    2017-09-01

    To improve the electrochemical properties, fine Zr-doping Li4Ti5O12 anode materials for rechargeable lithium batteries with a uniform particle size distribution were synthesized by a modified solid-state reaction using fine Li2CO3 and TiO2 (anatase) powders as precursors with a Li:Ti molar ratio of 4:5. The use of fine Li2CO3 and TiO2 (anatase) powders as precursors prevented the formation of ZrO2 at 0.1 mol Zr-doping. XRD analysis revealed that the substitution of Zr for Ti leads to the increase of lattice parameters, allowing improved Li diffusion. The discharge capacity retention increased slightly with Zr-doping and the 0.1 mol Zr-doped Li4Ti5O12 electrode achieved 99% retention of discharge capacity.

  5. Li and Na storage behavior of bowl-like hollow Co3O4 microspheres as an anode material for lithium-ion and sodium-ion batteries

    International Nuclear Information System (INIS)

    Wen, Jian-Wu; Zhang, Da-Wei; Zang, Yong; Sun, Xin; Cheng, Bin; Ding, Chu-Xiong; Yu, Yan; Chen, Chun-Hua

    2014-01-01

    Highlights: • A unique bowl-like hollow spherical Co 3 O 4 structure is prepared through a simple, low-cost and mass-yield method. • Such a bowl-like hollow Co 3 O 4 microsphere demonstrates extraordinary rate and cycling performance for Li-storage. • The sodium-storage behavior of Co 3 O 4 is investigated for the first time. - Abstract: Bowl-like hollow Co 3 O 4 microspheres are prepared via a simple and low-cost route by thermally treating Co-containing resorcinol-formaldehyde composites gel in air. Scanning electron microscopy, transmission electron microscope and N 2 adsorption-desorption measurements demonstrate that these bowl-like hollow Co 3 O 4 microspheres are composed of hollow inner cavities and outer shell walls (70 nm thickness), on which a considerable amount of mesopores centered around 5-17 nm size are distributed. When employed as the anode material for lithium-ion batteries, these bowl-like hollow Co 3 O 4 microspheres exhibit extraordinary cycling performance (111% retention after 50 cycles owing to capacity rise), fairly high rate capacity (650 mAh g −1 at 5 C) and enhanced lithium storage capacity. Meanwhile, the Na-storage behavior of Co 3 O 4 as an anode material of Na-ion batteries is initially investigated based on such a hollow structure and it exhibits similar feature of discharge/charge profiles and a high initial discharge capacity but relatively moderate capacity retention compared with the Li-storage performance

  6. Designed hybrid nanostructure with catalytic effect: beyond the theoretical capacity of SnO2 anode material for lithium ion batteries.

    Science.gov (United States)

    Wang, Ye; Huang, Zhi Xiang; Shi, Yumeng; Wong, Jen It; Ding, Meng; Yang, Hui Ying

    2015-03-17

    Transition metal cobalt (Co) nanoparticle was designed as catalyst to promote the conversion reaction of Sn to SnO2 during the delithiation process which is deemed as an irreversible reaction. The designed nanocomposite, named as SnO2/Co3O4/reduced-graphene-oxide (rGO), was synthesized by a simple two-step method composed of hydrothermal (1(st) step) and solvothermal (2(nd) step) synthesis processes. Compared to the pristine SnO2/rGO and SnO2/Co3O4 electrodes, SnO2/Co3O4/rGO nanocomposites exhibit significantly enhanced electrochemical performance as the anode material of lithium-ion batteries (LIBs). The SnO2/Co3O4/rGO nanocomposites can deliver high specific capacities of 1038 and 712 mAh g(-1) at the current densities of 100 and 1000 mA g(-1), respectively. In addition, the SnO2/Co3O4/rGO nanocomposites also exhibit 641 mAh g(-1) at a high current density of 1000 mA g(-1) after 900 cycles, indicating an ultra-long cycling stability under high current density. Through ex-situ TEM analysis, the excellent electrochemical performance was attributed to the catalytic effect of Co nanoparticles to promote the conversion of Sn to SnO2 and the decomposition of Li2O during the delithiation process. Based on the results, herein we propose a new method in employing the catalyst to increase the capacity of alloying-dealloying type anode material to beyond its theoretical value and enhance the electrochemical performance.

  7. Synthesis of SnO2 pillared carbon using long chain alkylamine grafted graphene oxide: an efficient anode material for lithium ion batteries.

    Science.gov (United States)

    Reddy, M Jeevan Kumar; Ryu, Sung Hun; Shanmugharaj, A M

    2016-01-07

    With the objective of developing new advanced composite materials that can be used as anodes for lithium ion batteries (LIBs), herein we describe the synthesis of SnO2 pillared carbon using various alkylamine (hexylamine; dodecylamine and octadecylamine) grafted graphene oxides and butyl trichlorotin precursors followed by its calcination at 500 °C for 2 h. While the grafted alkylamine induces crystalline growth of SnO2 pillars, thermal annealing of alkylamine grafted graphene oxide results in the formation of amorphous carbon coated graphene. Field emission scanning electron microscopy (FE-SEM) results reveal the successful formation of SnO2 pillared carbon on the graphene surface. X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy characterization corroborates the formation of rutile SnO2 crystals on the graphene surface. A significant rise in the BET surface area is observed for SnO2 pillared carbon, when compared to pristine GO. Electrochemical characterization studies of SnO2 pillared carbon based anode materials showed an enhanced lithium storage capacity and fine cyclic performance in comparison with pristine GO. The initial specific capacities of SnO2 pillared carbon are observed to be 1379 mA h g(-1), 1255 mA h g(-1) and 1360 mA h g(-1) that decrease to 750 mA h g(-1), 643 mA h g(-1) and 560 mA h g(-1) depending upon the chain length of grafted alkylamine on the graphene surface respectively. Electrochemical impedance spectral analysis reveals that the exchange current density of SnO2 pillared carbon based electrodes is higher, corroborating its enhanced electrochemical activity in comparison with GO based electrodes.

  8. Enhanced electrochemical performance of CoMoO4 nanorods/reduced graphene oxide as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yang, Ting; Zhang, Haonan; Luo, Yazi; Mei, Lin; Guo, Di; Li, Qiuhong; Wang, Taihong

    2015-01-01

    Highlights: • Facile, green and large scale synthesis method. • CoMoO 4 nanorods possess small diameter (about 40∼60 nm in width and 1.5∼2 μm in length) and uniformly distributed on reduced graphene oxide. • CoMoO 4 nanorods/reduced graphene oxide composite delivered high initial discharge capacity (1496 mA h g −1 at a current density of 100 mA g −1 ), and good cycling (628 mA h g −1 after 100 cycles) and rate performance (a reversible capacity of 372 mA h g −1 at the rate of 5 A g −1 ). - Abstract: CoMoO 4 nanorods with small diameter (about 40∼60 nm in width and 1.5∼2 μm in length) uniformly distributed on reduced graphene oxide (rGO) nanosheets were synthesized via a facile, green wet chemical method. The as-prepared CoMoO 4 /rGO composite was studied as anode material for lithium-ion batteries. It delivered an initial discharge capacity of 1496 mA h g −1 at a current density of 100 mA g −1 , and good cycling (628 mA h g −1 after 100 cycles) and rate performance (a reversible capacity of 372 mA h g −1 at the rate of 5 A g −1 ). The excellent electrochemical performance can be attributed to the small diameter of the synthesized CoMoO 4 nanorods and the presence of rGO nanosheets, making it a promising candidate for next generation anode material of rechargeable lithium ion batteries

  9. Effect of Acetylene Black Content in Li4Ti5O12 Xerogel Solid-State Anode Materials on Half-Cell Li-ion Batteries Performance

    Science.gov (United States)

    Abdurrahman, N. M.; Priyono, B.; Syahrial, A. Z.; Subhan, A.

    2017-07-01

    The effect of Acetylene Black (AB) additive contents in lithium titanate/Li4Ti5O12 (LTO) anode on Li-ion Batteries performance is studied in this work. The LTO active material for Li-ion batteries anode was successfully synthesized using sol-gel method to form TiO2 xerogel continued by mixing process with LiOH in ball-mill and then sintered to obtain spinel LTO. The LTO powder is characterized by X-Ray Diffraction (XRD), scanning electron microscopy-Energy Dispersive Spectroscopy (SEM-EDS), and Brunauer-Emmett-Teller (BET). The spinel LTO and TiO2 rutile were detected by XRD diffractogram. The LTO powder is in the form of agglomerates structure. This powder then was mixed with PVDF binder (10%wt) and AB additives with various amount from 10%wt (LTO2 Ac-1), 12%wt (LTO2 Ac-2), and 15%wt (LTO2 Ac-3) of total weight solid content to form electrode sheet. Half-cell coin battery was made with lithium metal foil as a counter electrode. Cyclic voltammetry (CV), Electrochemical-impedance spectroscopy (EIS), and charge discharge (CD) test used to examine the battery performance. The highest resistance value is obtained in LTO2 Ac-3 sample with 15%wt of AB. It might be caused by the formation of side reaction product on electrode surface at initial cycle due to high reactivity of LTO2 Ac-3 electrode. The highest initial capacity at CV test and CD test was obtained in LTO2 Ac-1 (10%wt AB) sample, due to the best proportion of active material content in the compound. While, in the charge-discharge test at high current rate, the best sample rate-capability performance belongs to LTO2 Ac-3 sample (15%wt AB), which still have 24.12 mAh/g of discharge capacity at 10 C with 71.34% capacity loss.

  10. Anatase-TiO{sub 2}/CNTs nanocomposite as a superior high-rate anode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinlong [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Feng, Haibo; Jiang, Jianbo [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Qian, Dong, E-mail: qiandong6@vip.sina.com [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Li, Junhua; Peng, Sanjun [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Liu, Youcai, E-mail: liuyoucai@126.com [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2014-08-01

    Highlights: • Anatase-TiO{sub 2}/CNTs nanocomposite was prepared by a facile and scalable hydrolysis route. • The composite exhibits super-high rate capability and excellent cycling stability for LIBs. • The nanocomposite shows great potential as a superior anode material for LIBs. - Abstract: Anatase-TiO{sub 2}/carbon nanotubes (CNTs) with robust nanostructure is fabricated via a facile two-step synthesis by ammonia water assisted hydrolysis and subsequent calcination. The as-synthesized nanocomposite was characterized employing X-ray powder diffraction, Fourier transform infrared spectrophotometry, Raman spectrophotometry, thermal gravimetric analysis, transmission electron microscopy, high-resolution transmission electron microscopy and selected area electronic diffraction, and its electrochemical properties as an anode material for lithium-ion batteries (LIBs) were investigated by cyclic voltammetry, galvanostatic discharge/charge test and electrochemical impendence spectroscopy. The results show that the pure anatase TiO{sub 2} nanoparticles with diameters of about 10 nm are uniformly distributed on/among the CNTs conducting network. The as-synthesized nanocomposite exhibits remarkably improved performances in LIBs, especially super-high rate capability and excellent cycling stability. Specifically, a reversible capacity as high as 92 mA h g{sup −1} is achieved even at a current density of 10 A g{sup −1} (60 C). After 100 cycles at 0.1 A g{sup −1}, it shows good capacity retention of 185 mA h g{sup −1} with an outstanding coulombic efficiency up to 99%. Such superior Li{sup +} storage properties demonstrate the reinforced synergistic effects between the nano-sized TiO{sub 2} and the interweaved CNTs network, endowing the nanocomposite with great application potential in high-power LIBs.

  11. Designed hybrid nanostructure with catalytic effect: beyond the theoretical capacity of SnO2 anode material for lithium ion batteries

    Science.gov (United States)

    Wang, Ye; Huang, Zhi Xiang; Shi, Yumeng; Wong, Jen It; Ding, Meng; Yang, Hui Ying

    2015-01-01

    Transition metal cobalt (Co) nanoparticle was designed as catalyst to promote the conversion reaction of Sn to SnO2 during the delithiation process which is deemed as an irreversible reaction. The designed nanocomposite, named as SnO2/Co3O4/reduced-graphene-oxide (rGO), was synthesized by a simple two-step method composed of hydrothermal (1st step) and solvothermal (2nd step) synthesis processes. Compared to the pristine SnO2/rGO and SnO2/Co3O4 electrodes, SnO2/Co3O4/rGO nanocomposites exhibit significantly enhanced electrochemical performance as the anode material of lithium-ion batteries (LIBs). The SnO2/Co3O4/rGO nanocomposites can deliver high specific capacities of 1038 and 712 mAh g−1 at the current densities of 100 and 1000 mA g−1, respectively. In addition, the SnO2/Co3O4/rGO nanocomposites also exhibit 641 mAh g−1 at a high current density of 1000 mA g−1 after 900 cycles, indicating an ultra-long cycling stability under high current density. Through ex-situ TEM analysis, the excellent electrochemical performance was attributed to the catalytic effect of Co nanoparticles to promote the conversion of Sn to SnO2 and the decomposition of Li2O during the delithiation process. Based on the results, herein we propose a new method in employing the catalyst to increase the capacity of alloying-dealloying type anode material to beyond its theoretical value and enhance the electrochemical performance. PMID:25776280

  12. One-step solution combustion synthesis of Fe{sub 2}O{sub 3}/C nano-composites as anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peiyang; Deng, Jiachun; Li, Ying [Nano-Energy Inorganic Materials Laboratory, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Liang, Wei, E-mail: liangwei@tyut.edu.cn [Nano-Energy Inorganic Materials Laboratory, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Kun [Nano-Energy Inorganic Materials Laboratory, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Kang, Litao, E-mail: kangltxy@gmail.com [Nano-Energy Inorganic Materials Laboratory, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zeng, Shaozhong; Yin, Shanhui; Zhao, Zhigang [Chery Automobile Co. Ltd., Wuhu 241006 (China); Liu, Xuguang; Yang, Yongzhen [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Gao, Feng [State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China)

    2014-03-25

    Highlights: • Fe{sub 2}O{sub 3}/C composite anode materials were prepared by a solution combustion process. • The carbon content could be adjusted by regulating the ratio of oxidizer/fuel. • The Fe{sub 2}O{sub 3}/C composite showed capacity 470 mA h g{sup −1} at the 80th cycle at 125 mA g{sup −1}. -- Abstract: This article describes a one-step solution combustion route (within 30 min at 350 °C in air) to prepare Fe{sub 2}O{sub 3} anode materials for lithium ion batteries (LIBs) from Fe(NO{sub 3}){sub 3}⋅9H{sub 2}O solution with citric acid. XRD, SEM-EDX and TEM showed that the product consisted a mixture of nano-sized α-Fe{sub 2}O{sub 3} and γ-Fe{sub 2}O{sub 3} crystals that agglomerated into porous particles. Significantly, in situ formed carbon could be introduced into the product (i.e., Fe{sub 2}O{sub 3}/C nano-composites) by simply increasing the dosage of citric acid in the precursor solution. The as-prepared Fe{sub 2}O{sub 3}/C nano-composite exhibited high reversible capacities of 470 and 419 mA h g{sup −1} at the 80th and 200th cycles with a current density of 125 mA g{sup −1}, which are much higher than those of counterparts without carbon (i.e., Fe{sub 2}O{sub 3} nano-particles). Comparison experiments correlated with the performance improvement of Fe{sub 2}O{sub 3}/C nano-composites with in situ formed carbon, well-developed mesopores and relatively high specific surface areas.

  13. Improved capacity and rate capability of Ru-doped and carbon-coated Li4Ti5O12 anode material

    International Nuclear Information System (INIS)

    Lin, Chih-Yuan; Jhan, Yi-Ruei; Duh, Jenq-Gong

    2011-01-01

    Highlights: → By using a simple one-step solid-state reactions method synthesizes Li 4 Ru 0.01 Ti 4.99 O 12 /C anode material. → Combining the Ru-doped and carbon-coated techniques to fabricate Li 4 Ru 0.01 Ti 4.99 O 12 /C effectively enhance the diffusion rate of Li + and significantly reduce surface electronic resistance of Li 4 Ti 5 O 12 . → Li 4 Ru 0.01 Ti 4.99 O 12 /C delivers 120 and 110 mAh g -1 at 5 and 10 C charge/discharge rate, respectively, after 100 charge/discharge cycles. - Abstract: Pure Li 4 Ti 5 O 12 , modified Li 4 Ti 5 O 12 /C, Li 4 Ru 0.01 Ti 4.99 O 12 and Li 4 Ru 0.01 Ti 4.99 O 12 /C were successfully prepared by a modified solid-state method and its electrochemical properties were investigated. From the XRD patterns, the added sugar or doped Ru did not affect the spinel structure. The results of electrochemical properties revealed that Li 4 Ru 0.01 Ti 4.99 O 12 /C showed 120 and 110 mAh/g at 5 and 10 C rate after 100 charge/discharge cycles. Li 4 Ru 0.01 Ti 4.99 O 12 /C exhibited the best rate capability and the highest capacity at 5 and 10 C charge/discharge rate owing to the increase of electronic conductivity and the reduction of interface resistance between particles of Li 4 Ti 5 O 12 .It is expected that the Li 4 Ru 0.01 Ti 4.99 O 12 /C will be a promising anode material to be used in high-rate lithium ion battery.

  14. Ultrathin mesoporous Co_3O_4 nanosheets-constructed hierarchical clusters as high rate capability and long life anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wu, Shengming; Xia, Tian; Wang, Jingping; Lu, Feifei; Xu, Chunbo; Zhang, Xianfa; Huo, Lihua; Zhao, Hui

    2017-01-01

    Graphical abstract: Ultrathin mesoporous Co_3O_4 nanosheets-constructed hierarchical clusters (UMCN-HCs) have been successfully synthesized via a facile hydrothermal method followed by a subsequent thermolysis treatment. When tested as anode materials for LIBs, UMCN-HCs achieve high reversible capacity, good long cycling life, and rate capability. - Highlights: • UMCN-HCs show high capacity, excellent stability, and good rate capability. • UMCN-HCs retain a capacity of 1067 mAh g"−"1 after 100 cycles at 100 mA g"−"1. • UMCN-HCs deliver a capacity of 507 mAh g"−"1 after 500 cycles at 2 A g"−"1. - Abstract: Herein, Ultrathin mesoporous Co_3O_4 nanosheets-constructed hierarchical clusters (UMCN-HCs) have been successfully synthesized via a facile hydrothermal method followed by a subsequent thermolysis treatment at 600 °C in air. The products consist of cluster-like Co_3O_4 microarchitectures, which are assembled by numerous ultrathin mesoporous Co_3O_4 nanosheets. When tested as anode materials for lithium-ion batteries, UMCN-HCs deliver a high reversible capacity of 1067 mAh g"−"1 at a current density of 100 mA g"−"1 after 100 cycles. Even at 2 A g"−"1, a stable capacity as high as 507 mAh g"−"1 can be achieved after 500 cycles. The high reversible capacity, excellent cycling stability, and good rate capability of UMCN-HCs may be attributed to their mesoporous sheet-like nanostructure. The sheet-layered structure of UMCN-HCs may buffer the volume change during the lithiation-delithiation process, and the mesoporous characteristic make lithium-ion transfer more easily at the interface between the active electrode and the electrolyte.

  15. Preparation of Carbon-Encapsulated ZnO Tetrahedron as an Anode Material for Ultralong Cycle Life Performance Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Ren, Zhimin; Wang, Zhiyu; Chen, Chao; Wang, Jia; Fu, Xinxin; Fan, Chenyao; Qian, Guodong

    2014-01-01

    Highlights: • A novel architecture of 3D carbon framework to encapsulate ZnO nanocrystals was prepared. • The ZnO@C exhibits ultralong cycle life and high specific capacity when was used as anode. • The in situ carbonization leads to a strong connection between the carbon and ZnO. - ABSTRACT: In this paper we report a novel architecture of three-dimension (3D) carbon framework to encapsulate tetrahedron ZnO nanocrystals that serves as an anode material for lithium-ion batteries (LIBs). The ZnO@C composites are prepared via a simple internal-reflux method combined with subsequent calcination in argon. The amorphous carbon is formed on the surface of the ZnO crystals by in situ carbonization of the surfactant, which leads to a strong connection between the carbon framework and the active materials and guarantees faster charge transfer on the electrode. The ZnO crystal calcined at 500°C (ZnO@C-5) possesses regular tetrahedron shape with a side length of 150-200 nm and all of them are uniformly anchored among the network of amorphous carbon. The developed ZnO@C structures not only improve the electronic conductivity of the electrode, but they also offer a larger volume expansion of ZnO during cycling. As a result, the ZnO@C-5 demonstrates a higher reversible capacity, ultralong cycle life and better rate capability than that of the ZnO@C-7 and pure ZnO crystals. After 300 cycles, the ZnO@C-5 demonstrates a high capacity of 518 mAhg −1 at a current density of 110.7 mAg −1 . Moreover, this simple approach prepared the 3D composites architecture could shed light on the design and synthesis of other transition metal oxides for energy storage

  16. Large scale synthesis of TiO{sub 2}–carbon nanocomposites using cheap raw materials as anode for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Tao, E-mail: taotao@nxu.edu.cn [Key Laboratory of Ningxia for Photovoltaic Materials, Ningxia University, Yinchuan 750021 (China); He, Lijun [Key Laboratory of Ningxia for Photovoltaic Materials, Ningxia University, Yinchuan 750021 (China); Li, Jin, E-mail: li-jin@163.com [Key Laboratory of Ningxia for Photovoltaic Materials, Ningxia University, Yinchuan 750021 (China); Zhang, Yanhua [Research Institute of New Materials Technology, Chongqing University of Arts and Sciences, Chongqing, Yongchuan 402160 (China)

    2014-12-05

    Highlights: • Natural ilmenite is used as raw materials for preparing TiO{sub 2}–carbon nanocomposites. • TiO{sub 2}–carbon nanocomposite is a spherical material. • TiO{sub 2}–carbon nanocomposite anode shows excellent lithium storage properties. - Abstract: Low cost and abundant natural ilmenite (FeTiO{sub 3}) is used as raw materials for preparing TiO{sub 2}–carbon nanocomposites. A new method combining several traditional techniques (ball milling, high-temperature annealing and chemical leaching) is proposed in this paper. The resulting composite is a spherical material, consisting of nanosized TiO{sub 2} particles (with a size range of 5–80 nm) homogeneously distributed in carbon (amorphous) matrix. Its electrochemical performance is evaluated by using coin-type cells versus metallic lithium in an enlarged potential window of 0.01–3.0 V. A high specific charge capacity of 722 mA h g{sup −1} is obtained at a current density of 33.6 mA g{sup −1}. Moreover, the TiO{sub 2}–carbon nanocomposite exhibits excellent rate capability, even at a high current density of 10.8 A g{sup −1}, the specific charge capacity is 41 mA h g{sup −1}.

  17. Scalable synthesis of NiMoO4 microspheres with numerous empty nanovoids as an advanced anode material for Li-ion batteries

    Science.gov (United States)

    Park, Jin-Sung; Cho, Jung Sang; Kang, Yun Chan

    2018-03-01

    Closely in line with advances in next-generation energy storage materials, anode materials for lithium-ion batteries (LIBs) with high capacity and long cycle life have been widely explored. As part of the current effort, nickel molybdate (NiMoO4) microspheres with empty nanovoids are synthesized via spray drying process and subsequent one-step calcination in air. Dextrin in the atomized droplet is phase segregated during the spray drying process and calcined in air atmosphere, resulting in numerous empty nanovoids well-distributed within a microsphere. The empty nanovoids alleviate volume expansion during cycling, shorten lithium-ion diffusion length, and facilitate contact between electrode and electrolyte materials. Along with the high discharge capacity of NiMoO4 material, as high as 1240 mA h g-1 for the 2nd cycle at a high current density of 1 A g-1, uniquity of the structure enables longer cycle life and higher quality performances. The discharge capacity corresponding to the 500th cycle is 1020 mA h g-1 and the capacity retention calculated from the 2nd cycle is 82%. In addition, a discharge capacity of 413 mA g-1 is obtained at an extremely high current density of 10 A g-1.

  18. High quality NMP exfoliated graphene nanosheet-SnO2 composite anode material for lithium ion battery.

    Science.gov (United States)

    Ravikumar, Raman; Gopukumar, Sukumaran

    2013-03-21

    A graphene nanosheet-SnO(2) (GNS-SnO(2)) composite is prepared using N-methylpyrrolidone as a solvent to exfoliate graphene from graphite bar with the aid of CTAB by single phase co-precipitation method. The synthesized composites has been characterised physically by powder XRD which confirms the formation of the composite tetragonal SnO(2) crystal system with the low intense broad 002 plane for GNS. The sandwiched morphology of GNS-SnO(2) and the formation of nanosized particles (around 20 nm) have been confirmed by SEM and TEM images. The presence of sp(2) carbon in the GNS is clear by the highly intense G than D band in laser Raman spectroscopy analysis; furthermore, a single chemical shift has been observed at 132.14 ppm from solid-state (13)C NMR analysis. The synthesized composite has been electrochemically characterized using charge-discharge and EIS analysis. The capacity retentions at the end of the first 10 cycles is 57% (100 mA g(-1) rate), the second 10 cycles is 77.83% (200 mA g(-1)), and the final 10 cycles (300 mA g(-1)) is 81.5%. Moreover the impedance analysis clearly explains the low resistance pathway for Li(+) insertion after 30 cycles when compared with the initial cycle. This superior characteristic of GNS-SnO(2) composite suggests that it is a promising candidate for lithium ion battery anode.

  19. A rechargeable solid-state proton battery with an intercalating cathode and an anode containing a hydrogen-storage material

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, K.; Lakshmi, N.; Chandra, S. [Banaras Hindu Univ., Varanasi (India). Dept. of Physics

    1998-11-01

    Rechargeable proton batteries have been fabricated with the configuration Zn+ZnSO{sub 4} x 7H{sub 2}O//solid-state proton conductor//C+electrolyte+intercalating PbO{sub 2}+V{sub 2}O{sub 5}. The solid-state proton conductor is phosphotungstic acid (H{sub 3}PW{sub 12}O{sub 40} x nH{sub 2}O) or a H{sub 3}PW{sub 12}O{sub 40} x nH{sub 2}O+Al{sub 2}(SO{sub 4}){sub 2} x 16H{sub 2}O composite. The maximum cell voltage is {proportional_to}1.8 V at full charge. The cell can run for more than 300 h at low current drain (2.5 {mu}A cm{sup -2}). Further, the cell can withstand 20 to 30 cycles. The addition of a metal hydride in the anode side enhances the rechargeability and the addition of a small amount of Al{sub 2}(SO{sub 4}){sub 3} x 16H{sub 2}O in the H{sub 3}PW{sub 12}O{sub 40} x nH{sub 2}O electrolyte improves the performance of the battery. (orig.)

  20. A rechargeable solid-state proton battery with an intercalating cathode and an anode containing a hydrogen-storage material

    Science.gov (United States)

    Pandey, Kamlesh; Lakshmi, N.; Chandra, S.

    Rechargeable proton batteries have been fabricated with the configuration Zn+ZnSO 4·7H 2O//solid-state proton conductor//C+electrolyte+intercalating PbO 2+V 2O 5. The solid-state proton conductor is phosphotungstic acid (H 3PW 12O 40· nH 2O) or a H 3PW 12O 40· nH 2O+Al 2(SO 4) 3·16H 2O composite. The maximum cell voltage is ˜1.8 V at full charge. The cell can run for more than 300 h at low current drain (2.5 μA cm -2). Further, the cell can withstand 20 to 30 cycles. The addition of a metal hydride in the anode side enhances the rechargeability and the addition of a small amount of Al 2(SO 4) 3·16H 2O in the H 3PW 12O 40· nH 2O electrolyte improves the performance of the battery.

  1. The electrical and electrochemical properties of graphene nanoplatelets modified 75V2O5e25P2O5 glass as a promising anode material for lithium ion battery

    CSIR Research Space (South Africa)

    Kebede, Mesfin A

    2018-02-01

    Full Text Available A V2O5 anode material significantly challenged on its further development to be used in lithium ion batteries in-terms of its structural degradation, poor cyclability and low conductivity. Thus researchers started to work on composite matrix...

  2. Morphology-controlled synthesis and electrochemical performance of NiCo{sub 2}O{sub 4} as anode material in lithium-ion battery application

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shan; Lu, Lin; Zhang, Qing; Zheng, Hao; Liu, Lian; Yin, Shengyu; Wang, Shiquan, E-mail: wsqhao@126.com; Li, Guohua; Feng, Chuanqi [Hubei University, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules (China)

    2015-09-15

    Mixed-valence oxide precursors were synthesized by a solvothermal method using NiSO{sub 4}, CoSO{sub 4}, and NH{sub 4}HCO{sub 3} as raw materials. The precursors were heat-treated in a muffle furnace at 500 °C to obtain the products (NiCo{sub 2}O{sub 4}). The samples were characterized by X-ray diffractometer, thermogravimetric, energy-dispersive spectroscopy, scanning electron microscopy, and transmission electron microscopy. The results show that dumbbells, microspheres, and particle-like NiCo{sub 2}O{sub 4} were successfully synthesized by changing the volume of solvent and solvothermal temperature. The NiCo{sub 2}O{sub 4} microspheres (prepared at 180 °C with 30 ml solvent) as anode material for lithium-ion battery, exhibit a reversible discharge capacity of 1160 mAh g{sup −1} and good cycling stability (729 mAh g{sup −1} after 50 cycles) at a constant current of 100 mA g{sup −1} in the voltage range of 0.01–3.0 V due to its high crystallinity and uniform porous morphology. Hence, the synthetic method could be extended to other high-capacity ternary metal oxide materials for lithium-ion battery application.

  3. Alkali-Metal-Ion-Functionalized Graphene Oxide as a Superior Anode Material for Sodium-Ion Batteries.

    Science.gov (United States)

    Wan, Fang; Li, Yu-Han; Liu, Dai-Huo; Guo, Jin-Zhi; Sun, Hai-Zhu; Zhang, Jing-Ping; Wu, Xing-Long

    2016-06-06

    Although graphene oxide (GO) has large interlayer spacing, it is still inappropriate to use it as an anode for sodium-ion batteries (SIBs) because of the existence of H-bonding between the layers and ultralow electrical conductivity which impedes the Na(+) and e(-) transformation. To solve these issues, chemical, thermal, and electrochemical procedures are traditionally employed to reduce GO nanosheets. However, these strategies are still unscalable, consume high amounts of energy, and are expensive for practical application. Here, for the first time, we describe the superior Na storage of unreduced GO by a simple and scalable alkali-metal-ion (Li(+) , Na(+) , K(+) )-functionalized process. The various alkali metals ions, connecting with the oxygen on GO, have played different effects on morphology, porosity, degree of disorder, and electrical conductivity, which are crucial for Na-storage capabilities. Electrochemical tests demonstrated that sodium-ion-functionalized GO (GNa) has shown outstanding Na-storage performance in terms of excellent rate capability and long-term cycle life (110 mAh g(-1) after 600 cycles at 1 A g(-1) ) owing to its high BET area, appropriate mesopore, high degree of disorder, and improved electrical conductivity. Theoretical calculations were performed using the generalized gradient approximation (GGA) to further study the Na-storage capabilities of functionalized GO. These calculations have indicated that the Na-O bond has the lowest binding energy, which is beneficial to insertion/extraction of the sodium ion, hence the GNa has shown the best Na-storage properties among all comparatives functionalized by other alkali metal ions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. SiO{sub 2}@SnO{sub 2}/graphene composite with a coating and hierarchical structure as high performance anode material for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xingfa; Zhang, Haiyan, E-mail: hyzhang@gdut.edu.cn; Chen, Yiming; Li, Na; Li, Yunyong; Liu, Liying

    2016-08-25

    In order to ease the agglomeration and huge volume change of SnO{sub 2} particles, SnO{sub 2} nanoparticles were usually anchored on reduced graphene oxide (rGO) and used as anode materials for lithium ion batteries. Unfortunately, graphene sheets tended to overlap with adjacent ones and SnO{sub 2} nanoparticles still suffered from agglomeration and huge volume changes to some extent. In this paper, a composite SiO{sub 2}@SnO{sub 2}/rGO with coating and hierarchical structure was synthesized by a facile hydrothermal method. SnO{sub 2} nanoparticles mono-dispersed on the surface of rGO sheets and SiO{sub 2} spheres, while the SiO{sub 2}@SnO{sub 2} spheres were imbedded in the layers of rGO, which was in favor of alleviating the overlapping of graphene sheets and could make large spacious room to accommodate the huge volume changes of SnO{sub 2} nanoparticles. SiO{sub 2}@SnO{sub 2}/rGO composite also displayed good electrochemical performance. In the first charge/discharge cycle, the SiO{sub 2}@SnO{sub 2}/rGO electrode exhibited a large discharge capacity of 1548 mA h g{sup −1} at a current density of 100 mA g{sup −1} and it still retained a discharge capacity of about 600 mA h g{sup −1} after 100 cycles. - Highlights: • Anodes fabricated by using activated carbon have the highest fracture strength. • SnO{sub 2} nanoparticles are mono-dispersed on the surface of rGO sheets and SiO{sub 2} spheres. • The hierarchical structure SiO{sub 2}@SnO{sub 2}/rGO shows a good electrochemical performance.

  5. Synthesis of TiO2 by electrochemical method from TiCl4 solution as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Nur, Adrian; Purwanto, Agus; Jumari, Arif; Dyartanti, Endah R.; Sari, Sifa Dian Permata; Hanifah, Ita Nur

    2016-01-01

    Metal oxide combined with graphite becomes interesting composition. TiO 2 is a good candidate for Li ion battery anode because of cost, availability of sufficient materials, and environmentally friendly. TiO 2 gravimetric capacity varied within a fairly wide range. TiO 2 crystals form highly depends on the synthesis method used. The electrochemical method is beginning to emerge as a valuable option for preparing TiO 2 powders. Using the electrochemical method, the particle can easily be controlled by simply adjusting the imposed current or potential to the system. In this work, the effects of some key parameters of the electrosynthesis on the formation of TiO 2 have been investigated. The combination of graphite and TiO 2 particle has also been studied for lithium-ion batteries. The homogeneous solution for the electrosynthesis of TiO 2 powders was TiCl 4 in ethanol solution. The electrolysis was carried out in an electrochemical cell consisting of two carbon electrodes with dimensions of (5 × 2) cm. The electrodes were set parallel with a distance of 2.6 cm between the electrodes and immersed in the electrolytic solution at a depth of 2 cm. The electrodes were connected to the positive and negative terminals of a DC power supply. The electrosynthesis was performed galvanostatically at 0.5 to 2.5 hours and voltages were varied from 8 to 12 V under constant stirring at room temperature. The resulted suspension was aged at 48 hrs, filtered, dried directly in an oven at 150°C for 2 hrs, washed 2 times, and dried again 60 °C for 6 hrs. The particle product has been used to lithium-ion battery as anode. Synthesis of TiO 2 particle by electrochemical method at 10 V for 1 to 2.5 hrs resulted anatase and rutile phase

  6. A first-principles study of NbSe2 monolayer as anode materials for rechargeable lithium-ion and sodium-ion batteries

    Science.gov (United States)

    Lv, Xingshuai; Wei, Wei; Sun, Qilong; Huang, Baibiao; Dai, Ying

    2017-06-01

    There is a great desire to search for suitable anodes with good performance for rechargeable metal-ion batteries, which require not only large capacity but excellent rate performance and cycling stability. In this work, the electronic properties of NbSe2 monolayer were explored based on first-principles calculations. We performed a full geometry optimization for Li/Na-adsorbed structures and obtained favorable adsorption sites. The metallic character for both pristine NbSe2 monolayer and the Li/Na-adsorbed NbSe2 ensures good electrical conduction. In addition, we find that NbSe2 monolayer is more inclined to adsorb Li and Na atoms with smaller adsorption energy under Li/Na-rich condition, indicating the superiority of NbSe2 monolayer as an electrode. Then, we obtained a relatively low diffusion barrier of approximately 0.205 eV for Li and, in particular, a significantly small diffusion barrier of about 0.086 eV for Na, which ensures excellent cycling performance of NbSe2 monolayer as a battery electrode. Most importantly, the Li and Na adsorption density in NbSe2 monolayer can be as high as Li2NbSe2 and Na4NbSe2, corresponding to theoretical specific capacities of 203 and 312 mAh·g-1, respectively. And the average electrode potentials were predicted to be 0.51 V for the chemical stoichiometry of Li2NbSe2 and 0.22 V for Na4NbSe2. In view of these excellent properties, our work predicts that NbSe2 monolayer can be a promising anode material for the development of low-cost high-performance Li- and Na-ion batteries.

  7. Development of mats composed by TiO{sub 2} and carbon dual electrospun nanofibers: A possible anode material in microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Gomez, Nora A.; Balderas-Renteria, Isaias [Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Cd. Universitaria San Nicolás de los Garza Nuevo León, C.P. 66451 México (Mexico); Garcia-Gutierrez, Domingo I. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Av. Universidad S/N Cd. Universitaria San Nicolás de los Garza Nuevo León, C.P. 66451 México (Mexico); Universidad Autónoma de Nuevo León, Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología, PIIT, Av. Universidad S/N Cd. Universitaria San Nicolás de los Garza Nuevo León, C.P. 66451 México (Mexico); Mosqueda, Hugo A. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Av. Universidad S/N Cd. Universitaria San Nicolás de los Garza Nuevo León, C.P. 66451 México (Mexico); and others

    2015-03-15

    Highlights: • Dual nanofiber of TiO{sub 2}–C/C showed excellent electrical performance. • TiO{sub 2}–C/C dual nanofiber can host a dense biofilm of electroactivated Escherichia coli. • Dual nanofibers can be applied as anode to obtain electricity in microbial fuel cells. - Abstract: A new material based on TiO{sub 2(rutile)}–C{sub (semi-graphitic)}/C{sub (semi-graphitic)} dual nanofiber mats is presented, whose composition and synthesis methodology are fundamental factors for the development of exoelectrogenic biofilms on its surface. Therefore, this material shows the required characteristics for possible applications in the bioconversion process of an organic substrate to electricity in a microbial fuel cell. Chronoamperometry, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and electrical conductivity analyses showed excellent electrical performance of the material for the application intended; a resistance as low as 3.149 Ω was able to be measured on this material. Furthermore, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies confirmed the morphology sought on the material for the application intended, dual nanofibres TiO{sub 2(rutile)}–C{sub (semi-graphitic)}/C{sub (semi-graphitic)} with a side by side configuration. The difference in composition of the fibers forming the dual nanofibers was clearly observed and confirmed by energy dispersive X-ray spectroscopy (EDXS), and their crystal structure was evident in the results obtained from selected area electron diffraction (SAED) studies. This nanostructured material presented a high surface area and is biocompatible, given that it can host a dense biofilm of electroactivated Escherichia coli. In this study, the maximum current density obtained in a half microbial fuel cell was 8 A/m{sup 2} (0.8 mA/cm{sup 2})

  8. 3D Hollow Sn@Carbon-Graphene Hybrid Material as Promising Anode for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Xiaoyu Zheng

    2014-01-01

    Full Text Available A 3D hollow Sn@C-graphene hybrid material (HSCG with high capacity and excellent cyclic and rate performance is fabricated by a one-pot assembly method. Due to the fast electron and ion transfer as well as the efficient carbon buffer structure, the hybrid material is promising in high-performance lithium-ion battery.

  9. Reactions on carbon anodes in aluminium electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Eidet, Trygve

    1997-12-31

    The consumption of carbon anodes and energy in aluminium electrolysis is higher than what is required theoretically. This thesis studies the most important of the reactions that consume anode materials. These reactions are the electrochemical anode reaction and the airburn and carboxy reactions. The first part of the thesis deals with the kinetics and mechanism of the electrochemical anode reaction using electrochemical impedance spectroscopy. The second part deals with air and carboxy reactivity of carbon anodes and studies the effects of inorganic impurities on the reactivity of carbon anodes in the aluminium industry. Special attention is given to sulphur since its effect on the carbon gasification is not well understood. Sulphur is always present in anodes, and it is expected that the sulphur content of available anode cokes will increase in the future. It has also been suggested that sulphur poisons catalyzing impurities in the anodes. Other impurities that were investigated are iron, nickel and vanadium, which are common impurities in anodes which have been reported to catalyze carbon gasification. 88 refs., 92 figs., 24 tabs.

  10. Uniform hollow Fe3O4 spheres prepared by template-free solvothermal method as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang Jingjing; Yao Yu; Huang Tao; Yu Aishui

    2012-01-01

    Graphical abstract: Unique hollow Fe 3 O 4 spheres assembled by Fe 3 O 4 nanoparticles prepared by a simple template-free solvothermal reaction are tested as anode material for lithium-ion batteries. The results show that the material delivers reversible specific capacities of 870 mA h g −1 even after 50 cycles at 100 mA g −1 and 836 mA h g −1 at 500 mA g −1 . The excellent electrochemical performance can be attributed to their hollow nanostructure and excellent structural stability. Highlights: ► Uniform hollow Fe 3 O 4 spheres were prepared by a template-free solvothermal method. ► The hollow Fe 3 O 4 spheres have the capacity of 870 mA h g −1 at 50th cycle. ► The specific capacity can be well maintained at a large current density. ► The hollow Fe 3 O 4 spheres exhibit enhanced rate capability. ► Electrochemical performance of hollow Fe 3 O 4 spheres is better than Fe 3 O 4 powders. - Abstract: Unique hollow Fe 3 O 4 spheres are prepared by a simple template-free solvothermal reaction. In the reaction, ethylene glycol (EG) and polyvinylpyrrolidone (PVP) serve as the reducing agent and surface stabilizer, respectively. NH 4 Ac plays the role of the structure-directing agent, which combines with the Ostwald ripening process, resulting in the favored formation of hollow structures. The morphologies and structures are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The hollow Fe 3 O 4 spheres exhibit excellent cycling and rate performance as anode material for lithium-ion batteries, delivering reversible specific capacities of 870 mA h g −1 even after 50 cycles at 100 mA g −1 and 836 mA h g −1 at 500 mA g −1 . The excellent electrochemical performance can be attributed to their hollow nanostructure and excellent structural stability.

  11. Comparison of LiVPO4F to Li4Ti5O12 as anode materials for lithium-ion batteries.

    Science.gov (United States)

    Ma, Rui; Shao, Lianyi; Wu, Kaiqiang; Shui, Miao; Wang, Dongjie; Pan, Jianguo; Long, Nengbing; Ren, Yuanlong; Shu, Jie

    2013-09-11

    In this paper, we reported on a comparison of LiVPO4F to Li4Ti5O12 as anode materials for lithium-ion batteries. Combined with powder X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, galvanostatic discharge/charge tests and in situ X-ray diffraction technologies, we explore and compare the insertion/extraction mechanisms of LiVPO4F based on the V3+/V2+/V+ redox couples and Li4Ti5O12 based on the Ti4+/Ti3+ redox couple cycled in 1.0-3.0 V and 0.0-3.0 V. The electrochemical results indicate that both LiVPO4F and Li4Ti5O12 are solid electrolyte interphase free materials in 1.0-3.0 V. The insertion/extraction mechanisms of LiVPO4F and Li4Ti5O12 are similar with each other in 1.0-3.0 V as proved by in situ X-ray diffraction. It also demonstrates that both samples possess stable structure in 0.0-3.0 V. Additionally, the electrochemical performance tests of LiVPO4F and Li4Ti5O12 indicate that both samples cycled in 0.0-3.0 V exhibit much higher capacities than those cycled in 1.0-3.0 V but display worse cycle performance. The rate performance of Li4Ti5O12 far exceeds that of LiVPO4F in the same electrochemical potential window. In particular, the capacity retention of Li4Ti5O12 cycled in 1.0-3.0 V is as high as 98.2% after 20 cycles. By contrast, Li4Ti5O12 is expected to be a candidate anode material considering its high working potential, structural zero-strain property, and excellent cycle stability and rate performance.

  12. Electrically Conductive Anodized Aluminum Surfaces

    Science.gov (United States)

    Nguyen, Trung Hung

    2006-01-01

    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to anodized surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic, electrostaticdischarge- suppressing finishes: examples include silver impregnated anodized, black electroless nickel, black chrome, and black copper. In

  13. SnO and SnO·CoO nanocomposite as high capacity anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Das, B., E-mail: bijoy822000@gmail.com; Reddy, M.V.; Chowdari, B.V.R, E-mail: phychowd@nus.edu.sg

    2016-02-15

    Highlights: • The preparation methods are simple, low cost and can be scaled up for large production. • SnO is cheap, non-toxic and eco-friendly. • SnO shows high reversible capacity (Theoretical reversible capacity: 875 mA h g{sup −1}). • We showed high reversible capacity and columbic efficiency for SnO and SnO based composites. • We addressed the capacity degradation by introducing secondary phase (CoO and CNT etc.) - Abstract: We prepared SnO nanoparticles (SnO–S) and SnO·CoO nanocomposites (SnO·CoO–B) as anodes for lithium ion batteries (LIBs) by chemical and ball-milling approaches, respectively. They are characterized by X-ray diffraction and TEM techniques. The Li- storage performance are evaluated by galvanostatic cycling and cyclic voltammetry. The SnO–S and SnO·CoO–B showed improved cycling performance due to their finite particle size (i.e. nano-size) and presence of secondary phase (CoO). Better cycling stability is noticed for SnO·CoO–B with the expense of their reversible capacity. Also, addition of carbon nanotubes (CNT) to SnO–S further improved the cycling performance of SnO–S. When cycled at 60 mA g{sup −1}, the first-cycle reversible capacities of 635, 590 and 460 (±10) mA h g{sup −1} are noticed for SnO–S, SnO@CNT and SnO·CoO–B, respectively. The capacity fading observed are 3.7 and 1.8 mA h g{sup −1} per cycle for SnO–S and SnO@CNT, respectively; whereas 1–1.2 mA h g{sup −1} per cycle for SnO·CoO–B. All the samples show high coulombic efficiency, 96–98% in the range of 5–50 cycles.

  14. Columbia/Willamette Skill Builders Consortium. Final Performance Report. Appendix 5B Anodizing Inc. (Aluminum Extrusion Manufacturing). Basic Measurement Math. Instructors' Reports and Sample Curriculum Materials.

    Science.gov (United States)

    Taylor, Marjorie; And Others

    Anodizing, Inc., Teamsters Local 162, and Mt. Hood Community College (Oregon) developed a workplace literacy program for workers at Anodizing. These workers did not have the basic skill competencies to benefit from company training efforts in statistical process control and quality assurance and were not able to advance to lead and supervisory…

  15. The effect of Co-Co3O4 coating on the electrochemical properties of Si as an anode material for Li ion battery

    International Nuclear Information System (INIS)

    Kang, Yong-Mook; Lee, Sang-Min; Sung, Min-Seok; Jeong, Goo-Jin; Kim, Joon-Sup; Kim, Sung-Soo

    2006-01-01

    In order to improve the electrochemical performance of Si as an anode material for Li ion secondary batteries, a biphasic layer composed of Co and Co 3 O 4 was coated on Si particles by sol-gel method. Compared to Si, Co-Co 3 O 4 coated Si showed the drastic improvement in several electrochemical properties, such as initial coulombic efficiency (55% → 88%), cyclic efficiency and cycle life. The comparison between Co-Co 3 O 4 coated Si and heat-treated Si without the coating let us know that the improvement of electrochemical properties only results from Co-Co 3 O 4 coating layer. Little changed cyclic properties (cyclic efficiency and cycle life) of Co-Co 3 O 4 coated Si even at a higher charge-discharge rate insinuated that Co-Co 3 O 4 coating layer plays a crucial role in maintaining the electronic contacts between particles and conducting parts. When trying to measure a thickness variation of the electrodes each containing Si and Co-Co 3 O 4 coated Si as active materials, it was notified that Co-Co 3 O 4 coating layer can accommodate the volume expansion of Si during Li + insertion, which has its original thickness almost recovered after Li + extraction

  16. Synthesis and Electrochemical Performance of Graphene Wrapped SnxTi1−xO2 Nanoparticles as an Anode Material for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Xing Xin

    2015-01-01

    Full Text Available Ever-growing development of Li-ion battery has urged the exploitation of new materials as electrodes. Here, SnxTi1-xO2 solid-solution nanomaterials were prepared by aqueous solution method. The morphology, structures, and electrochemical performance of SnxTi1-xO2 nanoparticles were systematically investigated. The results indicate that Ti atom can replace the Sn atom to enter the lattice of SnO2 to form substitutional solid-solution compounds. The capacity of the solid solution decreases while the stability is improved with the increasing of the Ti content. Solid solution with x of 0.7 exhibits the optimal electrochemical performance. The Sn0.7Ti0.3O2 was further modified by highly conductive graphene to enhance its relatively low electrical conductivity. The Sn0.7Ti0.3O2/graphene composite exhibits much improved rate performance, indicating that the SnxTi1-xO2 solid solution can be used as a potential anode material for Li-ion batteries.

  17. Co_3V_2O_8 Hexagonal Pyramid with Tunable Inner Structure as High Performance Anode Materials for Lithium Ion Battery

    International Nuclear Information System (INIS)

    Zhang, Qiang; Pei, Jian; Chen, Gang; Bie, Changfeng; Chen, Dahong; Jiao, Yang; Rao, Jiancun

    2017-01-01

    Co_3V_2O_8 hexagonal pyramid was successfully fabricated via a simple hydrothermal process and subsequent heat treatment. The inner structure of the hexagonal pyramid was further adjusted by controlling the size of Co_7V_4O_1_6(OH)_2(H_2O) precursors. Hierarchical Co_3V_2O_8 hexagonal pyramid with height of 1 μm were orderly constructed from 60–80 nm inter-connected particles, showing numerous interval voids. Benefiting from its unique structure, the as-prepared sample showed higher electrochemical performance as an anode material for lithium-ion batteries than that of another bulk sample with height of 5 μm and adhesive inner structure. When tested at a current density of 500 mA g"−"1, the hierarchical Co_3V_2O_8 hexagonal pyramid exhibited good rate capacity, high cycling stability, and excellent discharge capacity up to 712 mA h g"−"1, making it promising electrode materials for lithium-ion batteries.

  18. Porous Hollow Superlattice NiMn2O4/NiCo2O4 Mesocrystals as a Highly Reversible Anode Material for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Lingjun Li

    2018-05-01

    Full Text Available As a promising high-capacity anode material for Li-ion batteries, NiMn2O4 always suffers from the poor intrinsic conductivity and the architectural collapse originating from the volume expansion during cycle. Herein, a combined structure and architecture modulation is proposed to tackle concurrently the two handicaps, via a facile and well-controlled solvothermal approach to synthesize NiMn2O4/NiCo2O4 mesocrystals with superlattice structure and hollow multi-porous architecture. It is demonstrated that the obtained NiCo1.5Mn0.5O4 sample is made up of a new mixed-phase NiMn2O4/NiCo2O4 compound system, with a high charge capacity of 532.2 mAh g−1 with 90.4% capacity retention after 100 cycles at a current density of 1 A g−1. The enhanced electrochemical performance can be attributed to the synergistic effects of the superlattice structure and the hollow multi-porous architecture of the NiMn2O4/NiCo2O4 compound. The superlattice structure can improve ionic conductivity to enhance charge transport kinetics of the bulk material, while the hollow multi-porous architecture can provide enough void spaces to alleviate the architectural change during cycling, and shorten the lithium ions diffusion and electron-transportation distances.

  19. Ca-doped LTO using waste eggshells as Ca source to improve the discharge capacity of anode material for lithium-ion battery

    Science.gov (United States)

    Setiawan, D.; Subhan, A.; Saptari, S. A.

    2017-07-01

    The necessity of high charge-discharge capacity lithium-ion battery becomes very urgent due to its applications demand. Several researches have been done to meet the demand including Ca doping on Li4Ti5O12 for anode material of lithium-ion batteries. Ca-doped Li4Ti5O12 (LTO) in the form of Li4-xCaxTi5O12 (x = 0, 0.05, 0.075, and 0.1) have been synthesized using simple solid state reaction. The materials preparation involved waste eggshells in the form of CaCO3 as Ca source. The structure and capacity of as-prepared samples were characterized using X-Ray Diffractometer and Cyclic Voltametry. X-Ray Diffractometer characterization revealed that all amount of dopant had entered the lattice structure of LTO successfully. The crystalline sizes were obtained by using Scherrer equation. No significant differences are detected in lattice parameters (˜8.35 Å) and crystalline sizes (˜27 nm) between all samples. Cyclic Voltametry characterization shows that Li4-xCaxTi5O12 (x = 0.05) has highest charge-discharge capacity of 177.14 mAh/g and 181.92 mAh/g, respectively. Redox-potentials of samples show no significant differences with the average of 1.589 V.

  20. One-Pot Synthesis of CoSex -rGO Composite Powders by Spray Pyrolysis and Their Application as Anode Material for Sodium-Ion Batteries.

    Science.gov (United States)

    Park, Gi Dae; Kang, Yun Chan

    2016-03-14

    A simple one-pot synthesis of metal selenide/reduced graphene oxide (rGO) composite powders for application as anode materials in sodium-ion batteries was developed. The detailed mechanism of formation of the CoSe(x)-rGO composite powders that were selected as the first target material in the spray pyrolysis process was studied. The crumple-structured CoSe(x)-rGO composite powders prepared by spray pyrolysis at 800 °C had a crystal structure consisting mainly of Co0.85 Se with a minor phase of CoSe2. The bare CoSe(x) powders prepared for comparison had a spherical shape and hollow structure. The discharge capacities of the CoSe(x)-rGO composite and bare CoSe(x) powders in the 50th cycle at a constant current density of 0.3 A g(-1) were 420 and 215 mA h g(-1), respectively, and their capacity retentions measured from the second cycle were 80 and 46%, respectively. The high structural stability of the CoSe(x)-rGO composite powders for repeated sodium-ion charge and discharge processes resulted in superior sodium-ion storage properties compared to those of the bare CoSe(x) powders. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Carbon-Coated Fe3O4/VOx Hollow Microboxes Derived from Metal-Organic Frameworks as a High-Performance Anode Material for Lithium-Ion Batteries.

    Science.gov (United States)

    Zhao, Zhi-Wei; Wen, Tao; Liang, Kuang; Jiang, Yi-Fan; Zhou, Xiao; Shen, Cong-Cong; Xu, An-Wu

    2017-02-01

    As the ever-growing demand for high-performance power sources, lithium-ion batteries with high storage capacities and outstanding rate performance have been widely considered as a promising storage device. In this work, starting with metal-organic frameworks, we have developed a facile approach to the synthesis of hybrid Fe 3 O 4 /VO x hollow microboxes via the process of hydrolysis and ion exchange and subsequent calcination. In the constructed architecture, the hollow structure provides an efficient lithium ion diffusion pathway and extra space to accommodate the volume expansion during the insertion and extraction of Li + . With the assistance of carbon coating, the obtained Fe 3 O 4 /VO x @C microboxes exhibit excellent cyclability and enhanced rate performance when employed as an anode material for lithium-ion batteries. As a result, the obtained Fe 3 O 4 /VO x @C delivers a high Coulombic efficiency (near 100%) and outstanding reversible specific capacity of 742 mAh g -1 after 400 cycles at a current density of 0.5 A g -1 . Moreover, a remarkable reversible capacity of 556 mAh g -1 could be retained even at a current density of 2 A g -1 . This study provides a fundamental understanding for the rational design of other composite oxides as high-performance electrode materials for lithium-ion batteries.

  2. Structure Interlacing and Pore Engineering of Zn2GeO4 Nanofibers for Achieving High Capacity and Rate Capability as an Anode Material of Lithium Ion Batteries.

    Science.gov (United States)

    Wang, Wei; Qin, Jinwen; Cao, Minhua

    2016-01-20

    An interlaced Zn2GeO4 nanofiber network with continuous and interpenetrated mesoporous structure was prepared using a facile electrospinning method followed by a thermal treatment. The mesoporous structure in Zn2GeO4 nanofibers is directly in situ constructed by the decomposition of polyvinylpyrolidone (PVP), while the interlaced nanofiber network is achieved by the mutual fusion of the junctions between nanofibers in higher calcination temperatures. When used as an anode material in lithium ion batteries (LIBs), it exhibits superior lithium storage performance in terms of specific capacity, cycling stability, and rate capability. The pore engineering and the interlaced network structure are believed to be responsible for the excellent lithium storage performance. The pore structure allows for easy diffusion of electrolyte, shortens the pathway of Li(+) transport, and alleviates large volume variation during repeated Li(+) extraction/insertion. Moreover, the interlaced network structure can provide continuous electron/ion pathways and effectively accommodate the strain induced by the volume change during the electrochemical reaction, thus maintaining structural stability and mechanical integrity of electrode materials during lithiation/delithiation process. This strategy in current work offers a new perspective in designing high-performance electrodes for LIBs.

  3. Flexible free-standing TiO2/graphene/PVdF films as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Ren, H.M.; Ding, Y.H.; Chang, F.H.; He, X.; Feng, J.Q.; Wang, C.F.; Jiang, Y.; Zhang, P.

    2012-01-01

    Highlights: ► Flexible TiO 2 /graphene electrode was prepared by a solvent evaporation technique. ► PVdF was used as substance to support the TiO 2 /graphene active materials. ► The flexible films can be employed as anode materials for Li-ion battery. - Abstract: Graphene composites were prepared by hydrothermal method using titanium dioxide (TiO 2 ) adsorbed graphene oxide (GO) sheets as precursors. Free-standing hybrid films for lithium-ion batteries were prepared by adding TiO 2 /graphene composites to the polyvinylidene fluoride (PVdF)/N-methyl-2-pyrrolidone (NMP) solution, followed by a solvent evaporation technique. These films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and various electrochemical techniques. Flexible films show an excellent cycling performance, which was attributed to the interconnected graphene conducting network, which depressed the increasing of electric resistance during the cycling.

  4. Facile mechanochemical synthesis of nano SnO2/graphene composite from coarse metallic Sn and graphite oxide: an outstanding anode material for lithium-ion batteries.

    Science.gov (United States)

    Ye, Fei; Zhao, Bote; Ran, Ran; Shao, Zongping

    2014-04-01

    A facile method for the large-scale synthesis of SnO2 nanocrystal/graphene composites by using coarse metallic Sn particles and cheap graphite oxide (GO) as raw materials is demonstrated. This method uses simple ball milling to realize a mechanochemical reaction between Sn particles and GO. After the reaction, the initial coarse Sn particles with sizes of 3-30 μm are converted to SnO2 nanocrystals (approximately 4 nm) while GO is reduced to graphene. Composite with different grinding times (1 h 20 min, 2 h 20 min or 8 h 20 min, abbreviated to 1, 2 or 8 h below) and raw material ratios (Sn:GO, 1:2, 1:1, 2:1, w/w) are investigated by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy and transmission electron microscopy. The as-prepared SnO2 /graphene composite with a grinding time of 8 h and raw material ratio of 1:1 forms micrometer-sized architected chips composed of composite sheets, and demonstrates a high tap density of 1.53 g cm(-3). By using such composites as anode material for LIBs, a high specific capacity of 891 mA h g(-1) is achieved even after 50 cycles at 100 mA g(-1). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Structure-dependent performance of TiO2/C as anode material for Na-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    He, Hanna; Gan, Qingmeng; Wang, Haiyan; Xu, Gui-Liang; Zhang, Xiaoyi; Huang, Dan; Fu, Fang; Tang, Yougen; Amine, Khalil; Shao, Minhua

    2018-02-01

    The performance of energy storage materials is highly dependent on their nanostructures. Herein, hierarchical rod-in-tube TiO2 with a uniform carbon coating is synthesized as the anode material for sodium-ion batteries by a facile solvothermal method. This unique structure consists of a tunable nanorod core, interstitial hollow spaces, and a functional nanotube shell assembled from two-dimensional nanosheets. By adjusting the types of solvents used and reaction time, the morphologies of TiO2/C composites can be tuned to nanoparticles, microrods, rod-in-tube structures, or microtubes. Among these materials, rod-in-tube TiO2 with a uniform carbon coating shows the highest electronic conductivity, specific surface area (336.4 m(2) g(-1)), and porosity, and these factors lead to the best sodium storage capability. Benefiting from the unique structural features and improved electronic/ionic conductivity, the as-obtained rod-in-tube TiO2/C in coin cell tests exhibits a high discharge capacity of 277.5 and 153.9 mAh g(-1) at 50 and 5000 mA g(-1), respectively, and almost 100% capacity retention over 14,000 cycles at 5000 mA g(-1). In operando high-energy X-ray diffraction further confirms the stable crystal structure of the rod-in-tube TiO2/C during Na+ insertion/extraction. This work highlights that nanostructure design is an effective strategy to achieve advanced energy storage materials.

  6. Polymer-derived-SiCN ceramic/graphite composite as anode material with enhanced rate capability for lithium ion batteries

    Science.gov (United States)

    Graczyk-Zajac, M.; Fasel, C.; Riedel, R.

    2011-08-01

    We report on a new composite material in view of its application as a negative electrode in lithium-ion batteries. A commercial preceramic polysilazane mixed with graphite in 1:1 weight ratio was transformed into a SiCN/graphite composite material through a pyrolytic polymer-to-ceramic conversion at three different temperatures, namely 950 °C, 1100 °C and 1300 °C. By means of Raman spectroscopy we found successive ordering of carbon clusters into nano-crystalline graphitic regions with increasing pyrolysis temperature. The reversible capacity of about 350 mAh g-1 was measured with constant current charging/discharging for the composite prepared at 1300 °C. For comparison pure graphite and pure polysilazane-derived SiCN ceramic were examined as reference materials. During fast charging and discharging the composite material demonstrates enhanced capacity and stability. Charging and discharging in half an hour lead to about 200 and 10 mAh g-1, for the composite annealed at 1300 °C and pure graphite, respectively. A clear dependence between the final material capacity and pyrolysis temperature is found and discussed with respect to possible application in batteries, i.e. practical discharging potential limit. The best results in terms of capacity recovered under 1 V and high rate capability were also obtained for samples synthesized at 1300 °C.

  7. Porous TiNb24O62 microspheres as high-performance anode materials for lithium-ion batteries of electric vehicles.

    Science.gov (United States)

    Yang, Chao; Deng, Shengjue; Lin, Chunfu; Lin, Shiwei; Chen, Yongjun; Li, Jianbao; Wu, Hui

    2016-11-10

    TiNb 24 O 62 is explored as a new anode material for lithium-ion batteries. Microsized TiNb 24 O 62 particles (M-TiNb 24 O 62 ) are fabricated through a simple solid-state reaction method and porous TiNb 24 O 62 microspheres (P-TiNb 24 O 62 ) are synthesized through a facile solvothermal method for the first time. TiNb 24 O 62 exhibits a Wadsley-Roth shear structure with a structural unit composed of a 3 × 4 octahedron-block and a 0.5 tetrahedron at the block-corner. P-TiNb 24 O 62 with an average sphere size of ∼2 μm is constructed by nanoparticles with an average size of ∼100 nm, forming inter-particle pores with a size of ∼8 nm and inter-sphere pores with a size of ∼55 nm. Such desirable porous microspheres are an ideal architecture for enhancing the electrochemical performances by shortening the transport distance of electrons/Li + -ions and increasing the reaction area. Consequently, P-TiNb 24 O 62 presents outstanding electrochemical performances in terms of specific capacity, rate capability and cyclic stability. The reversible capacities of P-TiNb 24 O 62 are, respectively, as large as 296, 277, 261, 245, 222, 202 and 181 mA h g -1 at 0.1, 0.5, 1, 2, 5, 10 and 20 C, which are obviously larger than those of M-TiNb 24 O 62 (258, 226, 210, 191, 166, 147 and 121 mA h g -1 ). At 10 C, the capacity of P-TiNb 24 O 62 still remains at 183 mA h g -1 over 500 cycles with a decay of only 0.02% per cycle, whereas the corresponding values of M-TiNb 24 O 62 are 119 mA h g -1 and 0.04%. These impressive results indicate that P-TiNb 24 O 62 can be a promising anode material for lithium-ion batteries of electric vehicles.

  8. Enhanced ablation of small anodes in a carbon nanotube arc discharge

    Science.gov (United States)

    Raitses, Yevgeny; Fetterman, Abraham; Keidar, Michael

    2008-11-01

    An atmospheric pressure helium arc discharge is used for carbon nanotube synthesis. The arc discharge operates in an anodic mode with the ablating anode made from a graphite material. For such conditions, models predict the electron-repelling (negative) anode sheath. In the present experiments, the anode ablation rate is investigated as a function of the anode diameter. It is found that anomalously high ablation occurs for small anode diameters (Fetterman, Y. Raitses and M. Keidar, Carbon (2008).

  9. Effect of the Side Chains and Anode Material on Thermal Stability and Performance of Bulk-Heterojunction Solar Cells Using DPP(TBFu2 Derivatives as Donor Materials

    Directory of Open Access Journals (Sweden)

    Alexander Kovalenko

    2015-01-01

    Full Text Available An optimized fabrication of bulk-heterojunction solar cells (BHJ SCs based on previously reported diketopyrrolopyrrole donor, ethyl-hexylated DPP(TBFu2, as well as two new DPP(TBFu2 derivatives with ethyl-hexyl acetate and diethyl acetal solubilizing side-chains and PC60BM as an acceptor is demonstrated. Slow gradual annealing of the solar cell causing the effective donor-acceptor reorganization, and as a result higher power conversion efficiency (PCE, is described. By replacing a hole transporting layer PEDOT:PSS with MoO3 we obtained higher PCE values as well as higher thermal stability of the anode contact interface. DPP(TBFu2 derivative containing ethyl-hexyl acetate solubilizing side-chains possessed the best as-cast self-assembly and high crystallinity. However, the presence of ethyl-hexyl acetate and diethyl acetal electrophilic side-chains stabilizes HOMO energy of isolated DPP(TBFu2 donors with respect to the ethyl-hexylated one, according to cyclic voltammetry.

  10. Mn 3 O 4 −Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries

    KAUST Repository

    Wang, Hailiang; Cui, Li-Feng; Yang, Yuan; Sanchez Casalongue, Hernan; Robinson, Joshua Tucker; Liang, Yongye; Cui, Yi; Dai, Hongjie

    2010-01-01

    We developed two-step solution-phase reactions to form hybrid materials of Mn3O4 nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery applications. Selective growth of Mn3O 4 nanoparticles on RGO sheets, in contrast to free

  11. Self-assembly of novel hierarchical flowers-like Sn{sub 3}O{sub 4} decorated on 2D graphene nanosheets hybrid as high-performance anode materials for LIBs

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xuefang, E-mail: 1021633952@qq.com [Department of Applied Chemistry and The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, School of Science, Northwestern Polytechnical University, Xi’an 710072 (China); Huang, Ying, E-mail: yingh@nwpu.edu.cn [Department of Applied Chemistry and The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, School of Science, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Tianpeng [Shijiazhuang Mechanical Engineering College, Shi Jia Zhuang 050003 (China); Wei, Chao; Yan, Jing; Feng, Xuansheng [Department of Applied Chemistry and The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, School of Science, Northwestern Polytechnical University, Xi’an 710072 (China)

    2017-05-31

    Highlights: • Novel hierarchical Sn{sub 3}O{sub 4} decorated on graphene nanosheets has been synthesized. • As the anode materials, the composite has not been investigated. • An insight into the common discharging behavior of the composite. • The composite displayed high capacity and good cycling stability. - Abstract: Novel hierarchical flower-like Sn{sub 3}O{sub 4} assembled by thin Sn{sub 3}O{sub 4} nanosheets{sub ,} as a kind of mixed-valence tin oxide, decorated on two-dimensional graphene nanosheets has been synthesized via a hydrothermal route and a step solution deoxidization technique. More importantly, as the anode materials for lithium ion batteries, the flower-like Sn{sub 3}O{sub 4}/graphene composite has not been investigated in detail. Noticeably, the nanosheets stemming from flower-like Sn{sub 3}O{sub 4} and graphene have been linked together to form a specials three dimensional structure, possessing high active surface area and large enough inner spaces, which is benefit to the diffusion of liquid electrolyte into the electrode materials. In addition, the special structure could provide sufficient free volume to buffer the volume expansion appeared in the process of discharging and charging. The as-prepared flowers-like Sn{sub 3}O{sub 4}/graphene displayed excellent electrochemical performance with high capacity and good cycling stability as anode materials for lithium ion batteries. The discharge capacity is 1727 mAh/g in the first cycle at the current density of 60 mA/g. The obtained reversible capacity is 631mAh/g with a coulomb efficiency of 97.04% after 50 cycles. With its better electrochemical properties, the as-prepared flowers-like Sn{sub 3}O{sub 4}/graphene has the potential to be the next generation materials as an environmentally benign, abundant, cheap anode materials for lithium ion batteries.

  12. Enhanced apatite-forming ability and antibacterial activity of porous anodic alumina embedded with CaO-SiO2-Ag2O bioactive materials.

    Science.gov (United States)

    Ni, Siyu; Li, Xiaohong; Yang, Pengan; Ni, Shirong; Hong, Feng; Webster, Thomas J

    2016-01-01

    In this study, to provide porous anodic alumina (PAA) with bioactivity and anti-bacterial properties, sol-gel derived bioactive CaO-SiO2-Ag2O materials were loaded onto and into PAA nano-pores (termed CaO-SiO2-Ag2O/PAA) by a sol-dipping method and subsequent calcination of the gel-glasses. The in vitro apatite-forming ability of the CaO-SiO2-Ag2O/PAA specimens was evaluated by soaking them in simulated body fluid (SBF). The surface microstructure and chemical property before and after soaking in SBF were characterized. Release of ions into the SBF was also measured. In addition, the antibacterial properties of the samples were tested against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The results showed that CaO-SiO2-Ag2O bioactive materials were successfully decorated onto and into PAA nano-pores. In vitro SBF experiments revealed that the CaO-SiO2-Ag2O/PAA specimens dramatically enhanced the apatite-forming ability of PAA in SBF and Ca, Si and Ag ions were released from the samples in a sustained and slow manner. Importantly, E. coli and S. aureus were both killed on the CaO-SiO2-Ag2O/PAA (by 100%) samples compared to PAA controls after 3 days of culture. In summary, this study demonstrated that the CaO-SiO2-Ag2O/PAA samples possess good apatite-forming ability and high antibacterial activity causing it to be a promising bioactive coating candidate for implant materials for orthopedic applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Antimony Anchored with Nitrogen-Doping Porous Carbon as a High-Performance Anode Material for Na-Ion Batteries.

    Science.gov (United States)

    Wu, Tianjing; Hou, Hongshuai; Zhang, Chenyang; Ge, Peng; Huang, Zhaodong; Jing, Mingjun; Qiu, Xiaoqing; Ji, Xiaobo

    2017-08-09

    Antimony represents a class of unique functional materials in sodium-ion batteries with high theoretical capacity (660 mA h g -1 ). The utilization of carbonaceous materials as a buffer layer has been considered an effective approach to alleviate rapid capacity fading. Herein, the antimony/nitrogen-doping porous carbon (Sb/NPC) composite with polyaniline nanosheets as a carbon source has been successfully achieved. In addition, our strategy involves three processes, a tunable organic polyreaction, a thermal annealing process, and a cost-effective reduction reaction. The as-prepared Sb/NPC electrode demonstrates a great reversible capacity of 529.6 mA h g -1 and an outstanding cycling stability with 97.2% capacity retention after 100 cycles at 100 mA g -1 . Even at 1600 mA g -1 , a superior rate capacity of 357 mA h g -1 can be retained. Those remarkable electrochemical performances can be ascribed to the introduction of a hierarchical porous NPC material to which tiny Sb nanoparticles of about 30 nm were well-wrapped to buffer volume expansion and improve conductivity.

  14. Methods for making anodes for lithium ion batteries

    Science.gov (United States)

    Xu, Wu; Canfield, Nathan L.; Zhang, Ji-Guang; Liu, Wei; Xiao, Jie; Wang, Deyu; Yang, Z. Gary

    2015-05-26

    Methods for making composite anodes, such as macroporous composite anodes, are disclosed. Embodiments of the methods may include forming a tape from a slurry including a substrate metal precursor, an anode active material, a pore-forming agent, a binder, and a solvent. A laminated structure may be prepared from the tape and sintered to produce a porous structure, such as a macroporous structure. The macroporous structure may be heated to reduce a substrate metal precursor and/or anode active material. Macroporous composite anodes formed by some embodiments of the disclosed methods comprise a porous metal and an anode active material, wherein the anode active material is both externally and internally incorporated throughout and on the surface of the macroporous structure.

  15. A novel radial anode layer ion source for inner wall pipe coating and materials modification--hydrogenated diamond-like carbon coatings from butane gas.

    Science.gov (United States)

    Murmu, Peter P; Markwitz, Andreas; Suschke, Konrad; Futter, John

    2014-08-01

    We report a new ion source development for inner wall pipe coating and materials modification. The ion source deposits coatings simultaneously in a 360° radial geometry and can be used to coat inner walls of pipelines by simply moving the ion source in the pipe. Rotating parts are not required, making the source ideal for rough environments and minimizing maintenance and replacements of parts. First results are reported for diamond-like carbon (DLC) coatings on Si and stainless steel substrates deposited using a novel 360° ion source design. The ion source operates with permanent magnets and uses a single power supply for the anode voltage and ion acceleration up to 10 kV. Butane (C4H10) gas is used to coat the inner wall of pipes with smooth and homogeneous DLC coatings with thicknesses up to 5 μm in a short time using a deposition rate of 70 ± 10 nm min(-1). Rutherford backscattering spectrometry results showed that DLC coatings contain hydrogen up to 30 ± 3% indicating deposition of hydrogenated DLC (a-C:H) coatings. Coatings with good adhesion are achieved when using a multiple energy implantation regime. Raman spectroscopy results suggest slightly larger disordered DLC layers when using low ion energy, indicating higher sp(3) bonds in DLC coatings. The results show that commercially interesting coatings can be achieved in short time.

  16. Large-scale synthesis of macroporous SnO2 with/without carbon and their application as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang Fei; Yao Gang; Xu Minwei; Zhao Mingshu; Sun Zhanbo; Song Xiaoping

    2011-01-01

    Highlights: → A new hard template prepared from glucose was used to synthesize macroporous SnO 2 . → SnO 2 and SnO 2 /C were prepared in a simple and large-scale synthetic method. → Combining the nanostructure design and active/inactive nanocomposite concept. → The obtained SnO 2 /C composite exhibited superior cycling performance. - Abstract: The macroporous SnO 2 is prepared using close packed carbonaceous sphere template which synthesized from glucose by hydrothermal method. The structure and morphology of the macroporous SnO 2 are evaluated by XRD and FE-SEM. The average pore size of the macroporous SnO 2 is about 190 nm and its wall thickness is less than 10 nm. When the macroporous SnO 2 filled with carbon is used as an anode material for lithium-ion battery, the capacity is about 380 mAh g -1 after 70 cycles. The improved cyclability is attributed to the carbon matrix which is used as an effective physical buffer to prevent the collapse of the well dispersed macroporous SnO 2 .

  17. Large-scale synthesis of macroporous SnO{sub 2} with/without carbon and their application as anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fei; Yao Gang; Xu Minwei [MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi' an Jiaotong University, Shaan Xi 710049 (China); Zhao Mingshu, E-mail: zhaomshu@mail.xjtu.edu.cn [MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi' an Jiaotong University, Shaan Xi 710049 (China); Sun Zhanbo [MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi' an Jiaotong University, Shaan Xi 710049 (China); Song Xiaoping, E-mail: xpsong@mail.xjtu.edu.cn [MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi' an Jiaotong University, Shaan Xi 710049 (China)

    2011-05-19

    Highlights: > A new hard template prepared from glucose was used to synthesize macroporous SnO{sub 2}. > SnO{sub 2} and SnO{sub 2}/C were prepared in a simple and large-scale synthetic method. > Combining the nanostructure design and active/inactive nanocomposite concept. > The obtained SnO{sub 2}/C composite exhibited superior cycling performance. - Abstract: The macroporous SnO{sub 2} is prepared using close packed carbonaceous sphere template which synthesized from glucose by hydrothermal method. The structure and morphology of the macroporous SnO{sub 2} are evaluated by XRD and FE-SEM. The average pore size of the macroporous SnO{sub 2} is about 190 nm and its wall thickness is less than 10 nm. When the macroporous SnO{sub 2} filled with carbon is used as an anode material for lithium-ion battery, the capacity is about 380 mAh g{sup -1} after 70 cycles. The improved cyclability is attributed to the carbon matrix which is used as an effective physical buffer to prevent the collapse of the well dispersed macroporous SnO{sub 2}.

  18. Anchoring ZnO Nanoparticles in Nitrogen-Doped Graphene Sheets as a High-Performance Anode Material for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Guanghui Yuan

    2018-01-01

    Full Text Available A novel binary nanocomposite, ZnO/nitrogen-doped graphene (ZnO/NG, is synthesized via a facile solution method. In this prepared ZnO/NG composite, highly-crystalline ZnO nanoparticles with a size of about 10 nm are anchored uniformly on the N-doped graphene nanosheets. Electrochemical properties of the ZnO/NG composite as anode materials are systematically investigated in lithium-ion batteries. Specifically, the ZnO/NG composite can maintain the reversible specific discharge capacity at 870 mAh g−1 after 200 cycles at 100 mA g−1. Besides the enhanced electronic conductivity provided by interlaced N-doped graphene nanosheets, the excellent lithium storage properties of the ZnO/NG composite can be due to nanosized structure of ZnO particles, shortening the Li+ diffusion distance, increasing reaction sites, and buffering the ZnO volume change during the charge/discharge process.

  19. The effect of hydrogenation on the growth of carbon nanospheres and their performance as anode materials for rechargeable lithium-ion batteries

    Science.gov (United States)

    Zhao, Shijia; Fan, Yunxia; Zhu, Kai; Zhang, Dong; Zhang, Weiwei; Chen, Shuanglong; Liu, Ran; Yao, Mingguang; Liu, Bingbing

    2015-01-01

    Hydrogenated carbon nanomaterials exhibit many advantages in both mechanical and electrochemical properties, and thus have a wide range of potential applications. However, methods to control the hydrogenation and the effect of hydrogenation on the microstructure and properties of the produced nanomaterials have rarely been studied. Here we report the synthesis of hydrogenated carbon nanospheres (HCNSs) with different degrees of hydrogenation by a facile solvothermal method, in which C2H3Cl3/C2H4Cl2 was used as the carbon precursor and potassium as the reductant. The hydrogenation level of the obtained nanospheres depends on the reaction temperature and higher temperature leads to lower hydrogenation due to the fact that the breaking of C-H bonds requires more external energy. The reaction temperature also affects the diameter of the HCNSs and larger spheres are produced at higher temperatures. More importantly, the size and the degree of hydrogenation are both critical factors for determining the electrochemical properties of the HCNSs. The nanospheres synthesized at 100 °C have a smaller size and a higher hydrogenation degree and show a capacity of 821 mA h g-1 after 50 cycles, which is significantly higher than that of the HCNSs produced at 150 °C (450 mA h g-1). Our study opens a possible way for obtaining high-performance anode materials for rechargeable lithium-ion batteries.

  20. CuLi2Sn and Cu2LiSn: Characterization by single crystal XRD and structural discussion towards new anode materials for Li-ion batteries.

    Science.gov (United States)

    Fürtauer, Siegfried; Effenberger, Herta S; Flandorfer, Hans

    2014-12-01

    The stannides CuLi 2 Sn (CSD-427095) and Cu 2 LiSn (CSD-427096) were synthesized by induction melting of the pure elements and annealing at 400 °C. The phases were reinvestigated by X-ray powder and single-crystal X-ray diffractometry. Within both crystal structures the ordered CuSn and Cu 2 Sn lattices form channels which host Cu and Li atoms at partly mixed occupied positions exhibiting extensive vacancies. For CuLi 2 Sn, the space group F-43m. was verified (structure type CuHg 2 Ti; a =6.295(2) Å; wR 2 ( F ²)=0.0355 for 78 unique reflections). The 4( c ) and 4( d ) positions are occupied by Cu atoms and Cu+Li atoms, respectively. For Cu 2 LiSn, the space group P 6 3 / mmc was confirmed (structure type InPt 2 Gd; a =4.3022(15) Å, c =7.618(3) Å; wR 2 ( F ²)=0.060 for 199 unique reflections). The Cu and Li atoms exhibit extensive disorder; they are distributed over the partly occupied positions 2( a ), 2( b ) and 4( e ). Both phases seem to be interesting in terms of application of Cu-Sn alloys as anode materials for Li-ion batteries.

  1. Uniform Fe{sub 3}O{sub 4} microflowers hierarchical structures assembled with porous nanoplates as superior anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoliang [Institute of Electrostatic & Electromagnetic Protection, Mechanical Engineering College, Shijiazhuang 050003 (China); Liu, Yanguo [School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China); Arandiyan, Hamidreza [Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052 (Australia); Yang, Hongping; Bai, Lu; Mujtaba, Jawayria [Beijing National Center for Electron Microscopy, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Wang, Qingguo; Liu, Shanghe [Institute of Electrostatic & Electromagnetic Protection, Mechanical Engineering College, Shijiazhuang 050003 (China); Sun, Hongyu, E-mail: hyltsun@gmail.com [Beijing National Center for Electron Microscopy, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Department of Micro- and Nanotechnology, Technical University of Denmark, 2800 Kongens Lyngby (Denmark)

    2016-12-15

    Highlights: • Uniform Fe{sub 3}O{sub 4} microflowers hierarchical structures were successfully prepared. • The Fe{sub 3}O{sub 4} microflowers are assembled with porous nanoplates. • Hollow Fe{sub 3}O{sub 4} microspheres exhibit better lithium storage properties than Fe{sub 3}O{sub 4} microspheres. • The good lithium storage properties are attributed to the special structural nature. - Abstract: Uniform Fe{sub 3}O{sub 4} microflowers assembled with porous nanoplates were successfully synthesized by a solvothermal method and subsequent annealing process. The structural and compositional analysis of the Fe{sub 3}O{sub 4} microflowers were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The Bruauer–Emmett–Teller (BET) specific surface area was calculated by the nitrogen isotherm curve and pore size distribution of Fe{sub 3}O{sub 4} microflowers was determined by the Barret–Joyner–Halenda (BJH) method. When evaluated as anode material for lithium-ion batteries, the as-prepared Fe{sub 3}O{sub 4} microflowers electrodes delivered superior capacity, better cycling stability and rate capability than that of Fe{sub 3}O{sub 4} microspheres electrodes. The improved electrochemical performance was attributed to the microscale flowerlike architecture and the porous sheet structural nature.

  2. Synthesis and electrochemical properties of porous double-shelled Mn2O3 hollow microspheres as a superior anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Qiao, Yu; Yu, Yan; Jin, Yi; Guan, Yi-Biao; Chen, Chun-Hua

    2014-01-01

    Highlights: • Double-shelled Mn 2 O 3 hollow microspheres are prepared by a multi-step. • synthesis procedure. • Solid, hollow and yolk-structured Mn 2 O 3 spheres are prepared for comparison. • The double-shelled hollow Mn 2 O 3 is superior in electrochemical properties. - Abstract: By means of a specially designed multi-step synthesis procedure involving steps of precipitation, controlled oxidation, selective etching and calcination, porous double-shelled Mn 2 O 3 hollow microspheres are synthesized. Solid, hollow and yolk-structured Mn 2 O 3 are also similarly synthesized for comparison. X-ray diffraction, scanning and transmission electron microscopies, IR spectroscopy, thermogravimetry, and Brunauer-Emmett-Teller measurements are employed to investigate their structures and compositions. Galvanostatic cell cycling and impedance spectroscopy are used to characterize the electrochemical properties of Mn 2 O 3 /Li cells. The results show that the hierarchical hollow structured (double-shelled, hollow and yolk-structured) Mn 2 O 3 anode materials deliver higher reversible capacities and excellent cycling stabilities than the solid Mn 2 O 3 . Moreover, among the three hierarchical hollow structured samples, the double shelled sample possesses the best cycling performance, especially at a high current density

  3. Electrosynthesized Ni-Al Layered Double Hydroxide-Pt Nanoparticles as an Inorganic Nanocomposite and Potentate Anodic Material for Methanol Electrooxidation in Alkaline Media

    Directory of Open Access Journals (Sweden)

    Biuck Habibi

    2017-04-01

    Full Text Available In this study, Ni-Al layered double hydroxide (LDH-Pt nanoparticles (PtNPs as an inorganic nano-composite was electrosynthesized on the glassy carbon electrode (GCE by a facile and fast two-step electrochemical process. Structure and physicochemical properties of PtNPs/Ni-Al LDH/GCE were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry and electrochemical methods. Then, electrocatalytic and stability characterizations of the PtNPs/Ni-Al LDH/GCE for methanol oxidation in alkaline media were investigated in detail by cyclic voltammetry, chronoamperometry, and chronopotentiometry measurements. PtNPs/Ni-Al LDH/GCE exhibited higher electrocatalytic activity than PtNPs/GCE and Ni-Al LDH/GCE. Also, the resulted chronoam-perograms indicated that the PtNPs/Ni-Al LDH/GCE has a better stability. Copyright © 2017 BCREC GROUP. All rights reserved Received: 30th March 2016; Revised: 29th July 2016; Accepted: 9th September 2016 How to Cite: Habibi, B., Ghaderi, S. (2017. Electro Synthesized Ni-Al Layered Double Hydroxide-Pt Nanoparticles as an Inorganic Nanocomposite and Potentate Anodic Material for Methanol Electro-Oxidation in Alkaline Media. Bulletin of Chemical Reaction Engineering & Catalysis, 12(1: 1-13 (doi:10.9767/bcrec.12.1.460.1-13 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.460.1-13

  4. Carbon nanofibers with highly dispersed tin and tin antimonide nanoparticles: Preparation via electrospinning and application as the anode materials for lithium-ion batteries

    Science.gov (United States)

    Li, Zhi; Zhang, Jiwei; Shu, Jie; Chen, Jianping; Gong, Chunhong; Guo, Jianhui; Yu, Laigui; Zhang, Jingwei

    2018-03-01

    One-dimensional carbon nanofibers with highly dispersed tin (Sn) and tin antimonide (SnSb) nanoparticles are prepared by electrospinning in the presence of antimony-doped tin oxide (denoted as ATO) wet gel as the precursor. The effect of ATO dosage on the microstructure and electrochemical properties of the as-fabricated Sn-SnSb/C composite nanofibers is investigated. Results indicate that ATO wet gel as the precursor can effectively improve the dispersion of Sn nanoparticles in carbon fiber and prevent them from segregation during the electrospinning and subsequent calcination processes. The as-prepared Sn-SnSb/C nanofibers as the anode materials for lithium-ion batteries exhibit high reversible capacity and stable cycle performance. Particularly, the electrode made from Sn-SnSb/C composite nanofibers obtained with 0.9 g of ATO gel has a high specific capacity of 779 mAh·g-1 and 378 mAh·g-1 at the current density of 50 mA·g-1 and 5 A·g-1, respectively, and it exhibits a capacity retention of 97% after 1200 cycles under the current density of 1 A·g-1. This is because the carbon nanofibers can form a continuous conductive network to buffer the volume change of the electrodes while Sn and Sn-SnSb nanoparticles uniformly distributed in the carbon nanofibers are free of segregation, thereby contributing to electrochemical performances of the electrodes.

  5. One-pot solvothermal synthesis of graphene wrapped rice-like ferrous carbonate nanoparticles as anode materials for high energy lithium-ion batteries

    Science.gov (United States)

    Zhang, Fan; Zhang, Ruihan; Feng, Jinkui; Ci, Lijie; Xiong, Shenglin; Yang, Jian; Qian, Yitai; Li, Lifei

    2014-11-01

    Well dispersed rice-like FeCO3 nanoparticles were produced and combined with reduced graphene oxide (RGO) via a one-pot solvothermal route. SEM characterization shows that rice-like FeCO3 nanoparticles are homogeneously anchored on the surface of the graphene nanosheets; the addition of RGO is helpful to form a uniform morphology and reduce the particle size of FeCO3 to nano-grade. As anode materials for lithium-ion batteries, the FeCO3/RGO nanocomposites exhibit significantly improved lithium storage properties with a large reversible capacity of 1345 mA h g-1 for the first cycle and a capacity retention of 1224 mA h g-1 after 50 cycles with a good rate capability compared with pure FeCO3 particles. The superior electrochemical performance of the FeCO3/RGO nanocomposite electrode compared to the pure FeCO3 electrode can be attributed to the well dispersed RGO which enhances the electronic conductivity and accommodates the volume change during the conversion reactions. Our study shows that the FeCO3/RGO nanocomposite could be a suitable candidate for high capacity lithium-ion batteries.

  6. Porous MnCo2O4 as superior anode material over MnCo2O4 nanoparticles for rechargeable lithium ion batteries

    Science.gov (United States)

    Baji, Dona Susan; Jadhav, Harsharaj S.; Nair, Shantikumar V.; Rai, Alok Kumar

    2018-06-01

    Pyro synthesis is a method to coat nanoparticles by uniform layer of carbon without using any conventional carbon source. The resultant carbon coating can be evaporated in the form of CO or CO2 at high temperature with the creation of large number of nanopores on the sample surface. Hence, a porous MnCo2O4 is successfully synthesized here with the same above strategy. It is believed that the electrolyte can easily permeate through these nanopores into the bulk of the sample and allow rapid access of Li+ ions during charge/discharge cycling. In order to compare the superiority of the porous sample synthesized by pyro synthesis method, MnCo2O4 nanoparticles are also synthesized by sol-gel synthesis method at the same parameters. When tested as anode materials for lithium ion battery application, porous MnCo2O4 electrode shows high capacity with long lifespan at all the investigated current rates in comparison to MnCo2O4 nanoparticles electrode.

  7. Ascorbic Acid-Assisted Eco-friendly Synthesis of NiCo2O4 Nanoparticles as an Anode Material for High-Performance Lithium-Ion Batteries

    Science.gov (United States)

    Karunakaran, Gopalu; Maduraiveeran, Govindhan; Kolesnikov, Evgeny; Balasingam, Suresh Kannan; Viktorovich, Lysov Dmitry; Ilinyh, Igor; Gorshenkov, Mikhail V.; Sasidharan, Manickam; Kuznetsov, Denis; Kundu, Manab

    2018-05-01

    We have synthesized NiCo2O4 nanoparticles (NCO NPs) using an ascorbic acid-assisted co-precipitation method for the first time. When NCO NPs are used as an anode material for lithium-ion batteries, the cell exhibits superior lithium storage properties, such as high capacity (700 mA h g-1 after 300 cycles at 200 mA g-1), excellent rate capabilities (applied current density range 100-1200 mA g-1), and impressive cycling stability (at 1200 mA g-1 up to 650 cycles). The enhanced electrochemical properties of NCO NPs are due to the nanometer dimensions which not only offers a smooth charge-transport pathway and short diffusion paths of the lithium ions but also adequate spaces for volume expansion during Li storage. Hence, this eco-friendly synthesis approach will provide a new strategy for the synthesis of various nanostructured metal oxide compounds, for energy conversion and storage systems applications.

  8. Porous Hierarchical Nitrogen-doped Carbon Coated ZnFe_2O_4 Composites as High Performance Anode Materials for Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Yue, Hongyun; Wang, Qiuxian; Shi, Zhenpu; Ma, Chao; Ding, Yanmin; Huo, Ningning; Zhang, Jun; Yang, Shuting

    2015-01-01

    Porous hierarchical and nitrogen-doped carbon coated ZnFe_2O_4 (ZnFe_2O_4@NC) was obtained by combustion method and unique carbon coating technology. Gum Arabic was firstly introduced in the carbon coating process as an additive, which played an important role to control the uniformity of carbon coating layer. The nitrogen-doped carbon layer was obtained through the pyrolysis of glycine. The elemental composition and content of the nitrogen-doped carbon in composites were characterized by X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS) and thermal gravimetric analysis (TGA). The galvanostatic charge/discharge cycling was used to test the electrochemical performance of ZnFe_2O_4@NC and pure ZnFe_2O_4. The sub-micro size ZnFe_2O_4@NC with unique porous structure showed an excellent electrochemical performance as an anode material, which was higher than that of pure ZnFe_2O_4. ZnFe_2O_4@NC could maintain the specific discharge capacity of 1477 mAh g"−"1 at 0.1 A g"−"1 after 100 cycles and 705 mAh g"−"1 at 1 A g"−"1 after 1000 cycles, respectively.

  9. Self-assembled 3D ZnSnO3 hollow cubes@reduced graphene oxide aerogels as high capacity anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Yankun; Li, Dan; Liu, Yushan; Zhang, Jianmin

    2016-01-01

    Highlights: • 3D ZnSnO 3 hollow cubes@reducedgrapheneoxideaerogels(ZGAs) were fabricated. • The electrochemical properties of ZGAs were investigated for LIBs. • ZGAs demonstrated superior lithium storage performance. - Abstract: 3D ZnSnO 3 hollow cubes@reduced graphene oxide aerogels (ZGAs) were fabricated via a colloid electrostatic self-assembly method between the graphene oxide (GO) nanosheets and poly(diallyldimethylammonium chloride) (PDDA) modified ZnSnO 3 hollow cubes colloid, followed by hydrothermal and freeze-drying treatments. The unique porous architecture of ZnSnO 3 hollow cubes encapsulated by flexible reduced graphene oxide (rGO) sheets not only effectively retarded the huge volume expansion during repeated charge-discharge cycles, but also facilitated fast lithium ion and electron transport through 3D networks. The ZGAs exhibited significantly enhanced cycling stability (745.4 mAh g −1 after 100 cycles at a current of 100 mA g −1 ) and superior rate capability (as high as 552.6 mAh g −1 at 1200 mA g −1 ). The results indicate that the ZGAs are promising anode materials for high-performance lithium-ion batteries.

  10. Si- and Sn-containing SiOCN-based nanocomposites as anode materials for lithium ion batteries. Synthesis, thermodynamic characterization and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, Jochen; Albe, Karsten [Technische Univ. Darmstadt (Germany). Materialmodellierung; Vrankovic, Dragoljub; Riedel, Ralf; Graczyk-Zajac, Magdalena [Technische Univ. Darmstadt (Germany). Disperse Feststoffe; Cupid, Damian; Seifert, Hans J. [Karlsruher Institut fuer Technologie, Eggenstein-Leopoldshafen (Germany). IAM - Angewandte Werkstoffphysik

    2017-11-15

    Novel nanocomposites consisting of silicon/tin nanoparticles (n-Si/n-Sn) embedded in silicon carbonitride (SiCN) or silicon oxycarbide (SiOC) ceramic matrices are investigated as possible anode materials for Li-ion batteries. The goal of our study is to exploit the large mass specific capacity of Si/Sn (3 579 mAh g{sup -1}/994 mAh g{sup -1}), while avoiding rapid capacity fading due to the large volume changes of Si/Sn during Li insertion. We show that a large amount (∝30-40 wt.%) of disordered carbon phase is dispersed within the SiOC/SiCN matrix and stabilizes the Si/Sn nanoparticles with respect to extended reversible lithium ion storage. Silicon nanocomposites are prepared by mixing of a polymeric precursor with commercial and ''home-synthesized'' crystalline and amorphous silicon. Tin nanocomposites, in contrast, are prepared using a single precursor approach, which allows the in-situ generation of Sn nanoparticles homogeneously dispersed within the SiOC host. The best electrochemical stability along with capacities of 600 - 700 mAh g{sup -1} is obtained when amorphous/porous silicon is used. Mechanisms contributing to the increase of storage capacity and the cycle stability are clarified by analyzing elemental composition, local solid-state structures, intercalation hosts and Li-ion mobility. Our work is supplemented by first-principles based atomistic modeling and thermochemical measurements.

  11. Template-Free Synthesis of Sb2S3 Hollow Microspheres as Anode Materials for Lithium-Ion and Sodium-Ion Batteries

    Science.gov (United States)

    Xie, Jianjun; Liu, Li; Xia, Jing; Zhang, Yue; Li, Min; Ouyang, Yan; Nie, Su; Wang, Xianyou

    2018-03-01

    Hierarchical Sb2S3 hollow microspheres assembled by nanowires have been successfully synthesized by a simple and practical hydrothermal reaction. The possible formation process of this architecture was investigated by X-ray diffraction, focused-ion beam-scanning electron microscopy dual-beam system, and transmission electron microscopy. When used as the anode material for lithium-ion batteries, Sb2S3 hollow microspheres manifest excellent rate property and enhanced lithium-storage capability and can deliver a discharge capacity of 674 mAh g-1 at a current density of 200 mA g-1 after 50 cycles. Even at a high current density of 5000 mA g-1, a discharge capacity of 541 mAh g-1 is achieved. Sb2S3 hollow microspheres also display a prominent sodium-storage capacity and maintain a reversible discharge capacity of 384 mAh g-1 at a current density of 200 mA g-1 after 50 cycles. The remarkable lithium/sodium-storage property may be attributed to the synergetic effect of its nanometer size and three-dimensional hierarchical architecture, and the outstanding stability property is attributed to the sufficient interior void space, which can buffer the volume expansion. [Figure not available: see fulltext.

  12. Mesoporous MFe{sub 2}O{sub 4} (M = Mn, Co, and Ni) for anode materials of lithium-ion batteries: Synthesis and electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Lianfeng, E-mail: duanlf@mail.ccut.edu.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Key Laboratory of Advanced Structural Materials, Ministry of Education, and Department of Materials Science and Engineering, Changchun University of Technology, Changchun 130012 (China); Wang, Yuanxin; Wang, Linan [Key Laboratory of Advanced Structural Materials, Ministry of Education, and Department of Materials Science and Engineering, Changchun University of Technology, Changchun 130012 (China); Zhang, Feifei [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Limin [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2015-01-15

    Highlights: • MFe{sub 2}O{sub 4} (M = Mn, Co, and Ni) are synthesized by a template-free hydrothermal method. • The mesoporous morphology is formed by self-assembly of crystal nucleus. • The mesporous MnFe{sub 2}O{sub 4} have the active phase and the synergy for Li-ion storage. - Abstract: The MFe{sub 2}O{sub 4} (M = Mn, Co, and Ni) mesoporous spheres with an average diameter of 250 nm were synthesized through a template-free hydrothermal method. The mesoporous MnFe{sub 2}O{sub 4} with a large surface area of 87.5 m{sup 2}/g and an average pore size of 27.52 nm were obtained. As the anode materials for Li-ion batteries, the mesoporous MnFe{sub 2}O{sub 4} exhibits excellent initial charge and discharge capacities of 1010 and 642.5 mA h/g. After 50 cycles, the discharge capacity could still remain at 379 mA h/g. The results showed that the active phase and the synergy between different metal oxides greatly improved the electrochemical performance, and the mesoporous composite could stabilize the structure of the electrodes.

  13. A general approach for MFe2O4 (M = Zn, Co, Ni) nanorods and their high performance as anode materials for lithium ion batteries

    Science.gov (United States)

    Wang, Nana; Xu, Huayun; Chen, Liang; Gu, Xin; Yang, Jian; Qian, Yitai

    2014-02-01

    MFe2O4 (M = Zn, Co, Ni) nanorods are synthesized by a template-engaged reaction, with β-FeOOH nanorods as precursors which are prepared by a hydrothermal method. The final products are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM). The electrochemical properties of the MFe2O4 (M = Zn, Co, Ni) nanorods are tested as the anode materials for lithium ion batteries. The reversible capacities of 800, 625 and 520 mAh g-1 are obtained for CoFe2O4, ZnFe2O4 and NiFe2O4, respectively, at the high current density of 1000 mA g-1 even after 300 cycles. The superior lithium-storage performances of MFe2O4 (M = Zn, Co, Ni) nanorods can be attributed to the one-dimensional (1D) nanostructure, which can shorten the diffusion paths of lithium ions and relax the strain generated during electrochemical cycling. These results indicate that this method is an effective, simple and general way to prepare good electrochemical properties of 1D spinel Fe-based binary transition metal oxides. In addition, the impact of different reaction temperatures on the electrochemical properties of MFe2O4 nanorods is also investigated.

  14. Effect of nitrogen on the electrochemical performance of core–shell structured Si/C nanocomposites as anode materials for Li-ion batteries

    International Nuclear Information System (INIS)

    Tao, Hua-Chao; Huang, Mian; Fan, Li-Zhen; Qu, Xuanhui

    2013-01-01

    Highlights: ► N-containing core–shell structured Si/C nanocomposites are prepared via two steps. ► The N-containing Si/C nanocomposites exhibit high capacity and excellent cycling stability. ► The appropriate nitrogen has a beneficial effect on the electrochemical performance. -- Abstract: Core–shell structured Si/C nanocomposites with different nitrogen contents are prepared by in situ polymerization of aniline in the suspension of silicon nanoparticles followed by carbonization of Si/polyaniline (PANI) nanocomposites at different temperatures. The nitrogen contents of Si/C nanocomposites decrease gradually with increasing carbonization temperatures. The effect of nitrogen contents on the electrochemical performance of Si/C nanocomposites as anode materials for lithium ion batteries is investigated. It is found that the Si/C nanocomposites with 4.75 wt.% nitrogen exhibit the high specific capacity of 795 mAh g −1 after 50 cycles at a current density of 100 mA g −1 and excellent cycling stability. The appropriate nitrogen in Si/C nanocomposites plays a beneficial role in the improvement of electrochemical performance. The nitrogen in Si/C nanocomposites increases the reversible capacity, which may be due to the formation of vacancies and dangling bonds around the nitrogen sites

  15. Synthesis of TiO{sub 2} by electrochemical method from TiCl{sub 4} solution as anode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Nur, Adrian, E-mail: adriannur@staff.uns.ac.id; Purwanto, Agus; Jumari, Arif; Dyartanti, Endah R.; Sari, Sifa Dian Permata; Hanifah, Ita Nur [Research Group of Advanced Material, Department of Chemical Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A Kentingan, Surakarta Indonesia 57126 (Indonesia)

    2016-02-08

    Metal oxide combined with graphite becomes interesting composition. TiO{sub 2} is a good candidate for Li ion battery anode because of cost, availability of sufficient materials, and environmentally friendly. TiO{sub 2} gravimetric capacity varied within a fairly wide range. TiO{sub 2} crystals form highly depends on the synthesis method used. The electrochemical method is beginning to emerge as a valuable option for preparing TiO{sub 2} powders. Using the electrochemical method, the particle can easily be controlled by simply adjusting the imposed current or potential to the system. In this work, the effects of some key parameters of the electrosynthesis on the formation of TiO{sub 2} have been investigated. The combination of graphite and TiO{sub 2} particle has also been studied for lithium-ion batteries. The homogeneous solution for the electrosynthesis of TiO{sub 2} powders was TiCl{sub 4} in ethanol solution. The electrolysis was carried out in an electrochemical cell consisting of two carbon electrodes with dimensions of (5 × 2) cm. The electrodes were set parallel with a distance of 2.6 cm between the electrodes and immersed in the electrolytic solution at a depth of 2 cm. The electrodes were connected to the positive and negative terminals of a DC power supply. The electrosynthesis was performed galvanostatically at 0.5 to 2.5 hours and voltages were varied from 8 to 12 V under constant stirring at room temperature. The resulted suspension was aged at 48 hrs, filtered, dried directly in an oven at 150°C for 2 hrs, washed 2 times, and dried again 60 °C for 6 hrs. The particle product has been used to lithium-ion battery as anode. Synthesis of TiO{sub 2} particle by electrochemical method at 10 V for 1 to 2.5 hrs resulted anatase and rutile phase.

  16. Solvothermal preparation of ZnO nanorods as anode material for improved cycle life Zn/AgO batteries.

    Directory of Open Access Journals (Sweden)

    Shafiq Ullah

    Full Text Available Nano materials with high surface area increase the kinetics and extent of the redox reactions, thus resulting in high power and energy densities. In this study high surface area zinc oxide nanorods have been synthesized by surfactant free ethylene glycol assisted solvothermal method. The nanorods thus prepared have diameters in the submicron range (300 ~ 500 nm with high aspect ratio. They have uniform geometry and well aligned direction. These nanorods are characterized by XRD, SEM, Specific Surface Area Analysis, solubility in alkaline medium, EDX analysis and galvanostatic charge/discharge studies in Zn/AgO batteries. The prepared zinc oxide nanorods have low solubility in alkaline medium with higher structural stability, which imparts the improved cycle life stability to Zn/AgO cells.

  17. Efficient reduced graphene oxide grafted porous Fe3O4 composite as a high performance anode material for Li-ion batteries.

    Science.gov (United States)

    Bhuvaneswari, Subramani; Pratheeksha, Parakandy Muzhikara; Anandan, Srinivasan; Rangappa, Dinesh; Gopalan, Raghavan; Rao, Tata Narasinga

    2014-03-21

    Here, we report facile fabrication of Fe3O4-reduced graphene oxide (Fe3O4-RGO) composite by a novel approach, i.e., microwave assisted combustion synthesis of porous Fe3O4 particles followed by decoration of Fe3O4 by RGO. The characterization studies of Fe3O4-RGO composite demonstrate formation of face centered cubic hexagonal crystalline Fe3O4, and homogeneous grafting of Fe3O4 particles by RGO. The nitrogen adsorption-desorption isotherm shows presence of a porous structure with a surface area and a pore volume of 81.67 m(2) g(-1), and 0.106 cm(3) g(-1) respectively. Raman spectroscopic studies of Fe3O4-RGO composite confirm the existence of graphitic carbon. Electrochemical studies reveal that the composite exhibits high reversible Li-ion storage capacity with enhanced cycle life and high coulombic efficiency. The Fe3O4-RGO composite showed a reversible capacity ∼612, 543, and ∼446 mA h g(-1) at current rates of 1 C, 3 C and 5 C, respectively, with a coulombic efficiency of 98% after 50 cycles, which is higher than graphite, and Fe3O4-carbon composite. The cyclic voltammetry experiment reveals the irreversible and reversible Li-ion storage in Fe3O4-RGO composite during the starting and subsequent cycles. The results emphasize the importance of our strategy which exhibited promising electrochemical performance in terms of high capacity retention and good cycling stability. The synergistic properties, (i) improved ionic diffusion by porous Fe3O4 particles with a high surface area and pore volume, and (ii) increased electronic conductivity by RGO grafting attributed to the excellent electrochemical performance of Fe3O4, which make this material attractive to use as anode materials for lithium ion storage.

  18. Masking of aluminum surface against anodizing

    Science.gov (United States)

    Crawford, G. B.; Thompson, R. E.

    1969-01-01

    Masking material and a thickening agent preserve limited unanodized areas when aluminum surfaces are anodized with chromic acid. For protection of large areas it combines well with a certain self-adhesive plastic tape.

  19. Octahedral Tin Dioxide Nanocrystals Anchored on Vertically Aligned Carbon Aerogels as High Capacity Anode Materials for Lithium-Ion Batteries

    Science.gov (United States)

    Liu, Mingkai; Liu, Yuqing; Zhang, Yuting; Li, Yiliao; Zhang, Peng; Yan, Yan; Liu, Tianxi

    2016-01-01

    A novel binder-free graphene - carbon nanotubes - SnO2 (GCNT-SnO2) aerogel with vertically aligned pores was prepared via a simple and efficient directional freezing method. SnO2 octahedrons exposed of {221} high energy facets were uniformly distributed and tightly anchored on multidimensional graphene/carbon nanotube (GCNT) composites. Vertically aligned pores can effectively prevent the emersion of “closed” pores which cannot load the active SnO2 nanoparticles, further ensure quick immersion of electrolyte throughout the aerogel, and can largely shorten the transport distance between lithium ions and active sites of SnO2. Especially, excellent electrical conductivity of GCNT-SnO2 aerogel was achieved as a result of good interconnected networks of graphene and CNTs. Furthermore, meso- and macroporous structures with large surface area created by the vertically aligned pores can provide great benefit to the favorable transport kinetics for both lithium ion and electrons and afford sufficient space for volume expansion of SnO2. Due to the well-designed architecture of GCNT-SnO2 aerogel, a high specific capacity of 1190 mAh/g with good long-term cycling stability up to 1000 times was achieved. This work provides a promising strategy for preparing free-standing and binder-free active electrode materials with high performance for lithium ion batteries and other energy storage devices. PMID:27510357

  20. Measurement of concentration profile during charging of Li battery anode materials in LiClO4-PC electrolyte

    International Nuclear Information System (INIS)

    Nishikawa, K.; Fukunaka, Y.; Sakka, T.; Ogata, Y.H.; Selman, J.R.

    2007-01-01

    Li metal was galvanostatically electrodeposited on a horizontally positioned, downward-facing Li metal cathode in 0.5 M LiClO 4 -PC electrolyte. The refractive index profile corresponding to the transient Li + ion concentration profile formed in the electrolyte solution upon applying a current step was measured in-situ by holographic interferometry. The configuration of the electrolytic cell was such that mass transfer was governed only by transient diffusion and migration, in the absence of convection. Between the moment of closing the current circuit and the time at which the interference fringes started to shift, an incubation period was observed. Such an incubation period had earlier been observed in lithium electrodeposition at a vertical planar Li metal cathode. The incubation period for the horizontal Li cathode was roughly half that for a vertical one. To study the effect of the electrode material on the incubation period, interferometry measurements were also made at an electrodeposited Ni-Sn alloy electrode. The concentration profile formed near the Ni-Sn alloy electrode during lithiation (alloying or intercalation of Li + into the electrode) agrees well with predictions made by means of the one-dimensional diffusion equation. Only very short incubation period was detected, but the magnitude was negligibly smaller than that of Li metal electrodeposition. The incubation period therefore appears to be characteristic for Li metal electrode only

  1. Scalable preparation of porous micron-SnO2/C composites as high performance anode material for lithium ion battery

    Science.gov (United States)

    Wang, Ming-Shan; Lei, Ming; Wang, Zhi-Qiang; Zhao, Xing; Xu, Jun; Yang, Wei; Huang, Yun; Li, Xing

    2016-03-01

    Nano tin dioxide-carbon (SnO2/C) composites prepared by various carbon materials, such as carbon nanotubes, porous carbon, and graphene, have attracted extensive attention in wide fields. However, undesirable concerns of nanoparticles, including in higher surface area, low tap density, and self-agglomeration, greatly restricted their large-scale practical applications. In this study, novel porous micron-SnO2/C (p-SnO2/C) composites are scalable prepared by a simple hydrothermal approach using glucose as a carbon source and Pluronic F127 as a pore forming agent/soft template. The SnO2 nanoparticles were homogeneously dispersed in micron carbon spheres by assembly with F127/glucose. The continuous three-dimensional porous carbon networks have effectively provided strain relaxation for SnO2 volume expansion/shrinkage during lithium insertion/extraction. In addition, the carbon matrix could largely minimize the direct exposure of SnO2 to the electrolyte, thus ensure formation of stable solid electrolyte interface films. Moreover, the porous structure could also create efficient channels for the fast transport of lithium ions. As a consequence, the p-SnO2/C composites exhibit stable cycle performance, such as a high capacity retention of over 96% for 100 cycles at a current density of 200 mA g-1 and a long cycle life up to 800 times at a higher current density of 1000 mA g-1.

  2. Preparation and characterization of flake graphite/silicon/carbon spherical composite as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Lai Jun; Guo Huajun; Wang Zhixing; Li Xinhai; Zhang Xiaoping; Wu Feixiang; Yue Peng

    2012-01-01

    Highlights: ► Flake graphite/silicon/carbon composite is synthesized via spray drying. ► Flake graphite of ∼0.5 μm and glucose are used to prepare the composite. ► The as-prepared composite shows spherical and porous appearance. ► The composite shows nearly the same cycleability as commercial graphite in 20 cycles. ► The composite shows a reversible capacity of 552 mAh/g at the 20th cycle. - Abstract: Using nano-Si, glucose and flake graphite of ∼0.5 μm as raw materials, flake graphite/silicon/carbon composite is successfully synthesized via spray drying and subsequent pyrolysis. The samples are characterized by XRD, SEM, TEM and electrochemical measurements. The composite is composed of flake graphite, nano-Si and amorphous glucose-pyrolyzed carbon and presents good spherical appearance. Some micron pores arising from the decomposition of glucose exist on the surface of the composite particles. The composite has a high reversible capacity of 602.7 mAh/g with an initial coulombic efficiency of 69.71%, and shows nearly the same cycleability as the commercial graphite in 20 cycles. Both the glucose-pyrolyzed carbon and the micron pores play important roles in improving the cycleability of the composite. The flake graphite/silicon/carbon composite electrode is a potential alternative to graphite for high energy-density lithium ion batteries.

  3. Borophene as an anode material for Ca, Mg, Na or Li ion storage: A first-principle study

    Science.gov (United States)

    Mortazavi, Bohayra; Dianat, Arezoo; Rahaman, Obaidur; Cuniberti, Gianaurelio; Rabczuk, Timon

    2016-10-01

    Borophene, the boron atom analogue to graphene, being atomic thick have been just recently experimentally fabricated. In this work, we employ first-principles density functional theory calculations to investigate the interaction of Ca, Mg, Na or Li atoms with single-layer and free-standing borophene. We first identified the most stable binding sites and their corresponding binding energies as well and then we gradually increased the ions concentration. Our calculations predict strong binding energies of around 4.03 eV, 2.09 eV, 2.92 eV and 3.28 eV between the borophene substrate and Ca, Mg, Na or Li ions, respectively. We found that the binding energy generally decreases by increasing the ions content. Using the Bader charge analysis, we evaluate the charge transfer between the adatoms and the borophene sheet. Our investigation proposes the borophene as a 2D material with a remarkably high capacity of around 800 mA h/g, 1960 mA h/g, 1380 mA h/g and 1720 mA h/g for Ca, Mg, Na or Li ions storage, respectively. This study can be useful for the possible application of borophene for the rechargeable ion batteries.

  4. Atomistic Origins of High Capacity and High Structural Stability of Polymer-Derived SiOC Anode Materials.

    Science.gov (United States)

    Sun, Hong; Zhao, Kejie

    2017-10-11

    Capacity and structural stability are often mutually exclusive properties of electrodes in Li-ion batteries (LIBs): a gain in capacity is usually accompanied by the undesired large volumetric change of the host material upon lithiation. Polymer-derived ceramics, such as silicon oxycarbide (SiOC) of hybrid Si-O-C bonds, show an exceptional combination of high capacity and superior structural stability. We investigate the atomistic origins of the unique chemomechanical performance of carbon-rich SiOC using the first-principles theoretical approach. The atomic model of SiOC is composed of continuous Si-O-C units caged by a graphene-like cellular network and percolated nanovoids. The segregated sp 2 carbon network serves as the backbone to maintain the structural stability of the lattice. Li insertion is first absorbed at the nanovoid sites, and then it is accommodated by the SiOC tetrahedral units, excess C atoms, and topological defects at the edge of or within the segregated carbon network. SiOC expands up to 22% in volumetric strain at the fully lithiated capacity of 1230 mA h/g. We examine in great detail the evolution of the microscopic features of the SiOC molecule in the course of Li reactions. The first-principles modeling provides a fundamental understanding of the physicochemical properties of Si-based glass ceramics for their application in LIBs.

  5. A novel pineapple-structured Si/TiO{sub 2} composite as anode material for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Dong; Bai, Ying; Yu, Caiyan; Li, Xiaoge; Zhang, Weifeng, E-mail: wfzhang6@163.com

    2014-10-01

    Highlights: • Pineapple-structured Si/TiO{sub 2} composite was firstly synthesized by a simple sol–gel method. • Pineapple-structured Si/TiO{sub 2} composite exhibits the best cycling stability. • TiO{sub 2} layer not only effectively inhibits the volume change of Si, but also contributes its electrochemical activity. - Abstract: Nanoscaled Si is successfully wrapped with different contents of nano-TiO{sub 2} (the molar ratios of Si/TiO{sub 2} composites are 1:1, 1:2, 1:3, 1:4 and 1:5, respectively) to form a novel pineapple structure. X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) are utilized to characterize the structure, component, chemical environment and morphology of the composite. The investigation in cycling performances demonstrates that Si/TiO{sub 2} with molar ratio of 1:4 exhibits the best cycling stability, with specific capacity of 593 mA h g{sup −1} after 50 cycles at 0.1 C, much higher than those of the other composites and the pristine material. Cyclic voltammetry (CV) profiles are also measured and compared. It is believed that the outside TiO{sub 2} particles act as buffer against the huge volume change of Si during repeated alloying and de-alloying, which explains the improved electrochemical performances.

  6. A novel pineapple-structured Si/TiO2 composite as anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Yan, Dong; Bai, Ying; Yu, Caiyan; Li, Xiaoge; Zhang, Weifeng

    2014-01-01

    Highlights: • Pineapple-structured Si/TiO 2 composite was firstly synthesized by a simple sol–gel method. • Pineapple-structured Si/TiO 2 composite exhibits the best cycling stability. • TiO 2 layer not only effectively inhibits the volume change of Si, but also contributes its electrochemical activity. - Abstract: Nanoscaled Si is successfully wrapped with different contents of nano-TiO 2 (the molar ratios of Si/TiO 2 composites are 1:1, 1:2, 1:3, 1:4 and 1:5, respectively) to form a novel pineapple structure. X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) are utilized to characterize the structure, component, chemical environment and morphology of the composite. The investigation in cycling performances demonstrates that Si/TiO 2 with molar ratio of 1:4 exhibits the best cycling stability, with specific capacity of 593 mA h g −1 after 50 cycles at 0.1 C, much higher than those of the other composites and the pristine material. Cyclic voltammetry (CV) profiles are also measured and compared. It is believed that the outside TiO 2 particles act as buffer against the huge volume change of Si during repeated alloying and de-alloying, which explains the improved electrochemical performances

  7. Interconnected α-Fe2O3 nanosheet arrays as high-performance anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Cai, Dandan; Li, Dongdong; Ding, Liang-Xin; Wang, Suqing; Wang, Haihui

    2016-01-01

    The electrode materials with structure stability and binder-free are urgently required for improving the electrochemical performance of lithium-ion batteries. In this work, interconnected α-Fe 2 O 3 nanosheet arrays directly grown on Ti foil were fabricated via a facile galvanostatic electrodeposition method followed by thermal treatment. The as-prepared α-Fe 2 O 3 has an open network structure constituted of interconnected nanosheets and can be directly used as integrated electrodes for lithium-ion batteries. The α-Fe 2 O 3 nanosheet arrays exhibit a high reversible capacity of 986.3 mAh g −1 at a current density of 100 mA g −1 . Moreover, a reversible capacity of ca. 425.9 mAh g −1 is achieved even at a superhigh current density of 10 A g −1 , which is higher than the theoretical capacity of commercially used graphite. The excellent performance could be attributed to the efficient electron transport, the large electrode/electrolyte interfaces and the good accommodations for volume expansion from the interconnected nanosheet arrays structure.

  8. Advances in aluminum anodizing

    Science.gov (United States)

    Dale, K. H.

    1969-01-01

    White anodize is applied to aluminum alloy surfaces by specific surface preparation, anodizing, pigmentation, and sealing techniques. The development techniques resulted in alloys, which are used in space vehicles, with good reflectance values and excellent corrosive resistance.

  9. Preparation and characterization of flake graphite/silicon/carbon spherical composite as anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lai Jun [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Guo Huajun, E-mail: Lai_jun_@126.com [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Wang Zhixing; Li Xinhai; Zhang Xiaoping; Wu Feixiang; Yue Peng [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Flake graphite/silicon/carbon composite is synthesized via spray drying. Black-Right-Pointing-Pointer Flake graphite of {approx}0.5 {mu}m and glucose are used to prepare the composite. Black-Right-Pointing-Pointer The as-prepared composite shows spherical and porous appearance. Black-Right-Pointing-Pointer The composite shows nearly the same cycleability as commercial graphite in 20 cycles. Black-Right-Pointing-Pointer The composite shows a reversible capacity of 552 mAh/g at the 20th cycle. - Abstract: Using nano-Si, glucose and flake graphite of {approx}0.5 {mu}m as raw materials, flake graphite/silicon/carbon composite is successfully synthesized via spray drying and subsequent pyrolysis. The samples are characterized by XRD, SEM, TEM and electrochemical measurements. The composite is composed of flake graphite, nano-Si and amorphous glucose-pyrolyzed carbon and presents good spherical appearance. Some micron pores arising from the decomposition of glucose exist on the surface of the composite particles. The composite has a high reversible capacity of 602.7 mAh/g with an initial coulombic efficiency of 69.71%, and shows nearly the same cycleability as the commercial graphite in 20 cycles. Both the glucose-pyrolyzed carbon and the micron pores play important roles in improving the cycleability of the composite. The flake graphite/silicon/carbon composite electrode is a potential alternative to graphite for high energy-density lithium ion batteries.

  10. Si clusters/defective graphene composites as Li-ion batteries anode materials: A density functional study

    International Nuclear Information System (INIS)

    Li, Meng; Liu, Yue-Jie; Zhao, Jing-xiang; Wang, Xiao-guang

    2015-01-01

    Highlights: • We study the interaction between Si clusters with pristine and defective graphene. • We find that the binding strength of Si clusters on graphene can be enhanced to different degrees after introducing various defects. • It is found that both graphene and Si cluster in the Si/graphene composites can preserve their Li uptake ability. - Abstract: Recently, the Si/graphene hybrid composites have attracted considerable attention due to their potential application for Li-ion batteries. How to effectively anchor Si clusters to graphene substrates to ensure their stability is an important factor to determine their performance for Li-ion batteries. In the present work, we have performed comprehensive density functional theory (DFT) calculations to investigate the geometric structures, stability, and electronic properties of the deposited Si clusters on defective graphenes as well as their potential applications for Li-ion batteries. The results indicate that the interfacial bonding between these Si clusters with the pristine graphene is quietly weak with a small adsorption energy (<−0.21 eV). Due to the presence of vacancy site, the binding strength of Si clusters on defective graphene is much stronger than that of pristine one, accompanying with a certain amount of charge transfer from Si clusters to graphene substrates. Moreover, the ability of Si/graphene hybrids for Li uptake is studied by calculating the adsorption of Li atoms. We find that both graphenes and Si clusters in the Si/graphene composites preserve their Li uptake ability, indicating that graphenes not only server as buffer materials for accommodating the expansion of Si cluster, but also provide additional intercalation sites for Li

  11. An Insoluble Titanium-Lead Anode for Sulfate Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ferdman, Alla

    2005-05-11

    The project is devoted to the development of novel insoluble anodes for copper electrowinning and electrolytic manganese dioxide (EMD) production. The anodes are made of titanium-lead composite material produced by techniques of powder metallurgy, compaction of titanium powder, sintering and subsequent lead infiltration. The titanium-lead anode combines beneficial electrochemical behavior of a lead anode with high mechanical properties and corrosion resistance of a titanium anode. In the titanium-lead anode, the titanium stabilizes the lead, preventing it from spalling, and the lead sheathes the titanium, protecting it from passivation. Interconnections between manufacturing process, structure, composition and properties of the titanium-lead composite material were investigated. The material containing 20-30 vol.% of lead had optimal combination of mechanical and electrochemical properties. Optimal process parameters to manufacture the anodes were identified. Prototypes having optimized composition and structure were produced for testing in operating conditions of copper electrowinning and EMD production. Bench-scale, mini-pilot scale and pilot scale tests were performed. The test anodes were of both a plate design and a flow-through cylindrical design. The cylindrical anodes were composed of cylinders containing titanium inner rods and fitting over titanium-lead bushings. The cylindrical design allows the electrolyte to flow through the anode, which enhances diffusion of the electrolyte reactants. The cylindrical anodes demonstrate higher mass transport capabilities and increased electrical efficiency compared to the plate anodes. Copper electrowinning represents the primary target market for the titanium-lead anode. A full-size cylindrical anode performance in copper electrowinning conditions was monitored over a year. The test anode to cathode voltage was stable in the 1.8 to 2.0 volt range. Copper cathode morphology was very smooth and uniform. There was no

  12. Synthesis and electrochemical performances of ZnO/MnO2 sea urchin-like sleeve array as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Fang, J.; Yuan, Y.F.; Wang, L.K.; Ni, H.L.; Zhu, H.L.; Yang, J.L.; Gui, J.S.; Chen, Y.B.; Guo, S.Y.

    2013-01-01

    MnO 2 is electrodeposited onto ZnO nanorod array grown on Ni foil, forming a binder-free ZnO/MnO 2 composited electrode. XRD, EDS, SEM and TEM are used to analyze the phase and microstructure of this composite. Burr-like MnO 2 nanoflakes grows on ZnO nanorod array, the top of the composite is hollow and at the bottom exists ZnO large block core as an internal support, forming ZnO/MnO 2 sea urchin-like sleeve array. As anode material for lithium ion batteries, ZnO/MnO 2 sleeve array exhibits higher discharge capacity and coulombic efficiency, better rate performance and cycling stability than single ZnO nanorod array or directly electrodepsited MnO 2 , and the composite effect is very remarkable. After 100 cycles, the discharge capacity of ZnO/MnO 2 still reaches 1259 mA h g −1 , and coulombic efficiency surpasses 98%, higher than those of ZnO nanorod array (111 mA h g −1 ) and directly electrodeposited MnO 2 (507 mA h g −1 ). The improvement of the electrochemical performances is due to the unique sea urchin-like sleeve array architecture. MnO 2 burr tube shell structure leads to high electrochemical activity while the internal ZnO core support ensures good structure stability. The gradually opening of sea urchin-like sleeve during the cycling further enhances the electrochemical activity of MnO 2 , stabilizing and increasing electrochemical performances of the ZnO/MnO 2 composite

  13. A graphene–SnO{sub 2}–TiO{sub 2} ternary nanocomposite electrode as a high stability lithium-ion anode material

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jicai [Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun, 130025 (China); Roll Forging Research Institute, Jilin University, Changchun, 130025, Jilin (China); Wang, Juan; Zhou, Meixin; Li, Yi [Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun, 130025 (China); Wang, Xiaofeng [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 (China); Yu, Kaifeng, E-mail: yukf@jlu.edu.cn [Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun, 130025 (China)

    2016-07-15

    In this work, a solvothermal method combined with a hydrothermal two-step method is developed to synthesize graphene–SnO{sub 2}–TiO{sub 2} ternary nanocomposite, in which the nanometer-sized TiO{sub 2} and SnO{sub 2} nanoparticles form in situ uniformly anchored on the surface of graphene sheets, as high stability and capacity lithium-ion anode materials. Compared to graphene–TiO{sub 2}, bulk TiO{sub 2} and grapheme–SnO{sub 2} composites, the as-prepared nanocomposite delivers a superior rate performance of 499.3 mAhg{sup −1} at 0.2 C and an outstanding stability cycling capability (1073.4 mAhg{sup −1} at 0.2 C after 50 cycles), due to the synergistic effects contributed from individual components, for example, high specific capacity of SnO{sub 2}, excellent conductivity of 3D graphene networks. - Graphical abstract: Graphene–SnO{sub 2}–TiO{sub 2} nanocomposite is synthesized by a hydrothermal two-step method. The composite exhibits higher reversible capacity and better cycle/rate performance due to the unique structure. - Highlights: • We have synthesized a graphene–SnO{sub 2}–TiO{sub 2} nanocomposite by a two-step method to improve the cycling performance. • Graphene–SnO{sub 2}–TiO{sub 2} nanocomposite is synthesized by a hydrothermal two-step method. • The composite exhibits higher reversible capacity and better cycle/rate performance due to the unique structure.

  14. MnO{sub 2} nanorods/3D-rGO composite as high performance anode materials for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongdong; Hu, Zhongli; Su, Yongyao; Ruan, Haibo; Hu, Rong [Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160 (China); Zhang, Lei, E-mail: leizhang0215@126.com [College of Life Science, Chongqing Normal University, Chongqing 401331 (China)

    2017-01-15

    Highlights: • MnO{sub 2} nanorods/3D-rGO composite has been synthesized by a simple in situ hydrothermal methord. • MnO{sub 2} nanorods/3D-rGO composite exhibits high reversible capacity, outstanding rate capacity and excellent cyclic stability. • Building metal oxides/3D-rGO composite is an effective way for improving the electrochemical performance of Li-ion batteries. - Abstract: MnO{sub 2} nanorods/three-dimensional reduced graphene oxide (3D-rGO) composite has been synthesized by a simple in situ hydrothermal methord. The X-ray diffraction (XRD) pattern of the as-prepared composite reveals tetragonal structure of α-MnO{sub 2.} Raman spectroscopic and X-ray photoelectron spectroscopy (XPS) of the samples confirm the coexistence of MnO{sub 2} and graphene. The Brunauer-Emmett-Teller (BET) analysis shows the large surface area of the composite. The electron microscopy images of the as-synthesized products reveals the MnO{sub 2} nanorods are homogeneously grown on 3D-rGO matrix. Electrochemical characterization exhibits the MnO{sub 2} nanorods/3D-rGO composite with large reversible capacity (595 mA h g{sup −1} over 60 cycles at 100 mA g{sup −1}), high coulombic efficiency (above 99%), excellent rate capability and good cyclic stability. The superior electrochemical performance can be attributed to the turf-like nanostructure of composite, high capacity of MnO{sub 2} and superior electrical conductivity of 3D-rGO. It suggests that MnO{sub 2} nanorods/3D-rGO composite will be a promising anode material for Li-ion batteries.

  15. High rate capability of TiO{sub 2}/nitrogen-doped graphene nanocomposite as an anode material for lithium–ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Dandan; Li, Dongdong; Wang, Suqing [School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road, Guangzhou (China); Zhu, Xuefeng; Yang, Weishen [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian (China); Zhang, Shanqing [Centre for Clean Environment and Energy, Environmental Futures Centre and Griffith School of Environment, Gold Coast Campus, Griffith University, QLD 4222 (Australia); Wang, Haihui, E-mail: hhwang@scut.edu.cn [School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road, Guangzhou (China)

    2013-06-05

    Highlights: ► TiO{sub 2}/N-doped graphene composite was synthesized by a gas/liquid interfacial method. ► The nanocomposite was used to fabricate lithium-ion batteries. ► Its electrochemical performance was evaluated for the first time. ► The anode material exhibits a good cycling performance and rate capability. -- Abstract: TiO{sub 2}/nitrogen-doped graphene nanocomposite was synthesized by a facile gas/liquid interface reaction. The structure and morphology of the sample were analyzed by X-ray diffraction analysis, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. The results indicate that nitrogen atoms were successfully doped into graphene sheets. The TiO{sub 2} nanoparticles (8–13 nm in size) were homogenously anchored on the nitrogen-doped graphene sheets through gas/liquid interface reaction. The as-prepared TiO{sub 2}/nitrogen-doped graphene nanocomposite shows a better electrochemical performance than the TiO{sub 2}/graphene nanocomposite and the bare TiO{sub 2} nanoparticles. TiO{sub 2}/nitrogen-doped graphene nanocomposite exhibits excellent cycling stability and shows high capacity of 136 mAh g{sup −1} (at a current density of 1000 mA g{sup −1}) after 80 cycles. More importantly, a high reversible capacity of 109 mAh g{sup −1} can still be obtained even at a super high current density of 5000 mA g{sup −1}. The superior electrochemical performance is attributed to the good electronic conductivity introduced by the nitrogen-doped graphene sheets and the positive synergistic effect between nitrogen-doped graphene sheets and TiO{sub 2} nanoparticles.

  16. Carbon-coated ZnO mat passivation by atomic-layer-deposited HfO2 as an anode material for lithium-ion batteries.

    Science.gov (United States)

    Jung, Mi-Hee

    2017-11-01

    ZnO has had little consideration as an anode material in lithium-ion batteries compared with other transition-metal oxides due to its inherent poor electrical conductivity and large volume expansion upon cycling and pulverization of ZnO-based electrodes. A logical design and facile synthesis of ZnO with well-controlled particle sizes and a specific morphology is essential to improving the performance of ZnO in lithium-ion batteries. In this paper, a simple approach is reported that uses a cation surfactant and a chelating agent to synthesize three-dimensional hierarchical nanostructured carbon-coated ZnO mats, in which the ZnO mats are composed of stacked individual ZnO nanowires and form well-defined nanoporous structures with high surface areas. In order to improve the performance of lithium-ion batteries, HfO 2 is deposited on the carbon-coated ZnO mat electrode via atomic layer deposition. Lithium-ion battery devices based on the carbon-coated ZnO mat passivation by atomic layer deposited HfO 2 exhibit an excellent initial discharge and charge capacities of 2684.01 and 963.21mAhg -1 , respectively, at a current density of 100mAg -1 in the voltage range of 0.01-3V. They also exhibit cycle stability after 125 cycles with a capacity of 740mAhg -1 and a remarkable rate capability. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Potassium-doped copper oxide nanoparticles synthesized by a solvothermal method as an anode material for high-performance lithium ion secondary battery

    Energy Technology Data Exchange (ETDEWEB)

    Thi, Trang Vu; Rai, Alok Kumar; Gim, Jihyeon; Kim, Jaekook, E-mail: jaekook@chonnam.ac.kr

    2014-06-01

    A simple and efficient approach was developed to synthesize CuO nanoparticles with improved electrochemical performance. Potassium (K{sup +})-doped CuO nanoparticles were synthesized by a simple and cost-effective solvothermal method followed by annealing at 500 °C for 5 h under air atmosphere. For comparison, an undoped CuO sample was also synthesized under the same conditions. X-ray diffraction analysis demonstrates that the K{sup +} ion doping caused no change in the phase structure, and highly crystalline K{sub x}Cu{sub 1−x}O{sub 1−δ} (x = 0.10) powder without any impurity was obtained. As an anode material for a lithium ion battery, the K{sup +}-doped CuO nanoparticle electrode exhibited better capacity retention with a reversible capacity of over 354.6 mA h g{sup −1} for up to 30 cycles at 0.1 C, as well as a high charge capacity of 162.3 mA h g{sup −1} at a high current rate of 3.2 C, in comparison to an undoped CuO electrode (275.9 mA h g{sup −1} at 0.1 C and 68.9 mA h g{sup −1} at 3.2 C). The high rate capability and better cycleability of the doped electrode can be attributed to the influence of the K{sup +} ion nanostructure on the increased electronic conductivity, diffusion efficiency, and kinetic properties of CuO during the lithiation and delithiation process.

  18. Potassium-doped copper oxide nanoparticles synthesized by a solvothermal method as an anode material for high-performance lithium ion secondary battery

    International Nuclear Information System (INIS)

    Thi, Trang Vu; Rai, Alok Kumar; Gim, Jihyeon; Kim, Jaekook

    2014-01-01

    A simple and efficient approach was developed to synthesize CuO nanoparticles with improved electrochemical performance. Potassium (K + )-doped CuO nanoparticles were synthesized by a simple and cost-effective solvothermal method followed by annealing at 500 °C for 5 h under air atmosphere. For comparison, an undoped CuO sample was also synthesized under the same conditions. X-ray diffraction analysis demonstrates that the K + ion doping caused no change in the phase structure, and highly crystalline K x Cu 1−x O 1−δ (x = 0.10) powder without any impurity was obtained. As an anode material for a lithium ion battery, the K + -doped CuO nanoparticle electrode exhibited better capacity retention with a reversible capacity of over 354.6 mA h g −1 for up to 30 cycles at 0.1 C, as well as a high charge capacity of 162.3 mA h g −1 at a high current rate of 3.2 C, in comparison to an undoped CuO electrode (275.9 mA h g −1 at 0.1 C and 68.9 mA h g −1 at 3.2 C). The high rate capability and better cycleability of the doped electrode can be attributed to the influence of the K + ion nanostructure on the increased electronic conductivity, diffusion efficiency, and kinetic properties of CuO during the lithiation and delithiation process.

  19. Potassium-doped copper oxide nanoparticles synthesized by a solvothermal method as an anode material for high-performance lithium ion secondary battery

    Science.gov (United States)

    Thi, Trang Vu; Rai, Alok Kumar; Gim, Jihyeon; Kim, Jaekook

    2014-06-01

    A simple and efficient approach was developed to synthesize CuO nanoparticles with improved electrochemical performance. Potassium (K+)-doped CuO nanoparticles were synthesized by a simple and cost-effective solvothermal method followed by annealing at 500 °C for 5 h under air atmosphere. For comparison, an undoped CuO sample was also synthesized under the same conditions. X-ray diffraction analysis demonstrates that the K+ ion doping caused no change in the phase structure, and highly crystalline KxCu1-xO1-δ (x = 0.10) powder without any impurity was obtained. As an anode material for a lithium ion battery, the K+-doped CuO nanoparticle electrode exhibited better capacity retention with a reversible capacity of over 354.6 mA h g-1 for up to 30 cycles at 0.1 C, as well as a high charge capacity of 162.3 mA h g-1 at a high current rate of 3.2 C, in comparison to an undoped CuO electrode (275.9 mA h g-1 at 0.1 C and 68.9 mA h g-1 at 3.2 C). The high rate capability and better cycleability of the doped electrode can be attributed to the influence of the K+ ion nanostructure on the increased electronic conductivity, diffusion efficiency, and kinetic properties of CuO during the lithiation and delithiation process.

  20. SnS{sub 2} nanoplates embedded in 3D interconnected graphene network as anode material with superior lithium storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Hongli [Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronics, Xiangtan University, Hunan 411105 (China); Qi, Xiang, E-mail: xqi@xtu.edu.cn [Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronics, Xiangtan University, Hunan 411105 (China); Han, Weijia; Ren, Long; Liu, Yundan [Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronics, Xiangtan University, Hunan 411105 (China); Wang, Xingyan, E-mail: xywangxtu@163.com [Department of Environmental Science and Engineering, College of Chemical Engineering, Xiangtan University, Xiangtan 411105 (China); Zhong, Jianxin [Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronics, Xiangtan University, Hunan 411105 (China)

    2015-11-15

    Graphical abstract: Schematic formation process of 3D interconnected SnS{sub 2}/graphene composite, and its superior lithium storage performance. - Highlights: • 3D graphene network embedded with SnS{sub 2} is synthesized by a facile two-step method. • This structure produces a synergistic effect between graphene and SnS{sub 2} nanoplates. • High capacity, excellent cycle performance and good rate capability are achieved. - Abstract: Three-dimensional (3D) interconnected graphene network embedded with uniformly distributed tin disulfide (SnS{sub 2}) nanoplates was prepared by a facile two-step method. The microstructures and morphologies of the SnS{sub 2}/graphene nanocomposite (SSG) are experimentally confirmed by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Using the as-prepared SSG as an anode material for lithium batteries, its electrochemical performances were investigated by cyclic voltammograms (CV), charge/discharge tests, galvanostatic cycling performance and AC impedance spectroscopy. The results demonstrate that the as-prepared SSG exhibits excellent cycling performance with a capacity of 1060 mAh g{sup −1} retained after 200 charge/discharge cycles at a current density of 100 mA g{sup −1}, also a superior rate capability of 670 mAh g{sup −1} even at such a high current density of 2000 mA g{sup −1}. This favorable performance can be attributed to the unique 3D interconnected architecture with great electro-conductivity and its intimate contact with SnS{sub 2}. Our results indicate a potential application of this novel 3D SnS{sub 2}/graphene nanocomposite in lithium-ion battery.

  1. A graphene–SnO_2–TiO_2 ternary nanocomposite electrode as a high stability lithium-ion anode material

    International Nuclear Information System (INIS)

    Liang, Jicai; Wang, Juan; Zhou, Meixin; Li, Yi; Wang, Xiaofeng; Yu, Kaifeng

    2016-01-01

    In this work, a solvothermal method combined with a hydrothermal two-step method is developed to synthesize graphene–SnO_2–TiO_2 ternary nanocomposite, in which the nanometer-sized TiO_2 and SnO_2 nanoparticles form in situ uniformly anchored on the surface of graphene sheets, as high stability and capacity lithium-ion anode materials. Compared to graphene–TiO_2, bulk TiO_2 and grapheme–SnO_2 composites, the as-prepared nanocomposite delivers a superior rate performance of 499.3 mAhg"−"1 at 0.2 C and an outstanding stability cycling capability (1073.4 mAhg"−"1 at 0.2 C after 50 cycles), due to the synergistic effects contributed from individual components, for example, high specific capacity of SnO_2, excellent conductivity of 3D graphene networks. - Graphical abstract: Graphene–SnO_2–TiO_2 nanocomposite is synthesized by a hydrothermal two-step method. The composite exhibits higher reversible capacity and better cycle/rate performance due to the unique structure. - Highlights: • We have synthesized a graphene–SnO_2–TiO_2 nanocomposite by a two-step method to improve the cycling performance. • Graphene–SnO_2–TiO_2 nanocomposite is synthesized by a hydrothermal two-step method. • The composite exhibits higher reversible capacity and better cycle/rate performance due to the unique structure.

  2. Co-reduction self-assembly of reduced graphene oxide nanosheets coated Cu2O sub-microspheres core-shell composites as lithium ion battery anode materials

    International Nuclear Information System (INIS)

    Xu, Yi-Tao; Guo, Ying; Song, Le-Xin; Zhang, Kai; Yuen, Matthew M.F.; Xu, Jian-Bin; Fu, Xian-Zhu; Sun, Rong; Wong, Ching-Ping

    2015-01-01

    Cuprous oxide (Cu 2 O) sub-microspheres @ reduced graphene oxide (rGO) nanosheets core-shell composites with 3D architecture are successfully fabricated by a one-step method through co-reduction of irregular cupric citrate and graphene oxide nanosheets at room temperature. Comparing to the bare Cu 2 O sub-microspheres and the simple physical mixture of Cu 2 O and rGO (Cu 2 O-rGO-M), the Cu 2 O@rGO electrodes demonstrate dramatically improved capacity, cyclic stability and rate capability as anode materials for lithium ion batteries. At a low current density of 100 mA∙g −1 , Cu 2 O@rGO electrodes deliver a discharge capacity of 534 mAh∙g −1 after 50 cycles, retaining 94% of the initial capacity. Under a higher current density of 1000 mA∙g −1 , Cu 2 O@rGO electrodes exhibit a discharge capacity of 181 mAh∙g −1 after 200 cycles, approximately 4 times larger than that of bare Cu 2 O sub-microsphere electrodes. The rate capacity retention of Cu 2 O@rGO electrode is 74% at 200 mA∙g −1 and 38% at 1000 mA∙g −1 relative to 100 mA∙g −1 , much better than that for Cu 2 O-rGO-M (52% and 34%) and bare Cu 2 O electrodes (13% and 3%,). The enhanced electrochemical performance for Cu 2 O@rGO might be ascribed to the rGO coating and 3D architecture. The outer coated rGO nanosheets could provide additional 3D conductive networks as well as serve as the buffer layers for accommodating the large volume change of the inner Cu 2 O sub-microspheres during the charge-discharge cycling

  3. Ti2Nb10O29-x mesoporous microspheres as promising anode materials for high-performance lithium-ion batteries

    Science.gov (United States)

    Deng, Shengjue; Luo, Zhibin; Liu, Yating; Lou, Xiaoming; Lin, Chunfu; Yang, Chao; Zhao, Hua; Zheng, Peng; Sun, Zhongliang; Li, Jianbao; Wang, Ning; Wu, Hui

    2017-09-01

    Ti2Nb10O29 has recently been reported as a promising anode material for lithium-ion batteries. However, its poor electronic conductivity and insufficient Li+-ion diffusion coefficient significantly limit its rate capability. To tackle this issue, a strategy combining nanosizing and crystal-structure modification is employed. Ti2Nb10O29-x mesoporous microspheres with a sphere-size range of 0.5-4 μm are prepared by a one-step solvothermal method followed by thermal treatment in N2. These Ti2Nb10O29-x mesoporous microspheres exhibit primary nanoparticles, a large specific surface area (22.9 m2 g-1) and suitable pore sizes, leading to easy electron/Li+-ion transport and good interfacial reactivity. Ti2Nb10O29-x shows a defective shear ReO3 crystal structure with O2- vacancies and an increased unit cell volume, resulting in its increased Li+-ion diffusion coefficient. Besides Ti4+ and Nb5+ ions, Ti2Nb10O29-x comprises Nb4+ ions with unpaired 4d electrons, which significantly increase its electronic conductivity. As a result of these improvements, the Ti2Nb10O29-x mesoporous microspheres reveal superior electrochemical performances in term of large reversible specific capacity (309 mAh g-1 at 0.1 C), outstanding rate capability (235 mAh g-1 at 40 C) and durable cyclic stability (capacity retention of 92.1% over 100 cycles at 10 C).

  4. Facile synthesis of low-dimensional SnO2 nanostructures: An investigation of their performance and mechanism of action as anode materials for lithium-ion batteries

    Science.gov (United States)

    Usman Hameed, Muhammad; Ullah Dar, Sami; Ali, Shafqat; Liu, Sitong; Akram, Raheel; Wu, Zhanpeng; Butler, Ian S.

    2017-07-01

    Owing to high-energy density of rechargeable lithium-ion batteries (LIBs), they have been investigated as an efficient electrochemical power sources for various energy applications. High theoretical capacities of tin oxide (SnO2) anodes have led us a path to meet the ever-growing demands in the development of high-performance electrode materials for LIBs. In this paper, a facile approach is described for the synthesis of porous low-dimensional nanoparticles and nanorods of SnO2 for application in LIBs with the help of Tween-80 as a surfactant. The SnO2 samples synthesized at different reaction temperatures produced porous nanoparticles and nanorods with average diameters of 7-10 nm and 70-110 nm, respectively. The SnO2 nanoparticle electrodes exhibit a high reversible charge capacity of 641.1 mAh/g at 200 mA/g after 50 cycles, and a capacity of 340 mAh/g even at a high current density of 1000 mA/g during the rate tests, whereas the porous nanorod electrodes delivers only 526.3 mAh/g at 200 mA/g after 50 cycles and 309.4 mAh/g at 1000 mA/g. It is believed that finer sized SnO2 nanoparticles are much more favorable to trap more Li+ ion during electrochemical cycling, resulting in a large irreversible capacity. In contrast, rapid capacity fading was observed for the porous nanorods, which is the result of their pulverization resulting from repeated cycling.

  5. Cobalt-phthalocyanine-derived ultrafine Co{sub 3}O{sub 4} nanoparticles as high-performance anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Heng-guo, E-mail: wanghengguo@cust.edu.cn; Zhu, Yanjie; Yuan, Chenpei; Li, Yanhui; Duan, Qian, E-mail: duanqian88@hotmail.com

    2017-08-31

    Highlights: • Transition-metal oxides nanoparticles are prepared by deriving from metal-phthalocyanine. • Co{sub 3}O{sub 4}, Fe{sub 2}O{sub 3}, and CuO nanoparticles can be prepared due to the adjustability of central metals. • This present strategy is simple, general, effective yet mass-production. • The Co{sub 3}O{sub 4} nanoparticles exhibit good lithium storage performances. - Abstract: In this work, we present a simple, general, effective yet mass-production strategy to prepare transition-metal oxides (TMOs) nanoparticles using the metal-phthalocyanine as both the precursor and the starting self-sacrificial template. As the central metals of metal-phthalocyanine are easily tunable, various TMOs nanoparticles including Co{sub 3}O{sub 4}, Fe{sub 2}O{sub 3}, and CuO have been successfully prepared by deriving from the corresponding metal-phthalocyanine. As a proof-of-concept demonstration of the application of such nanostructured TMOs, Co{sub 3}O{sub 4} nanoparticles were evaluated as anode materials for LIBs, which show high initial capacity (1132.9 mAh g{sup −1} at 0.05 A g{sup −1}), improved cycling stability (585.6 mAh g{sup −1} after 200 cycles at 0.05 A g{sup −1}), and good rate capability (238.1 mAh g{sup −1} at 2 A g{sup −1}) due to the unique properties of the ultrafine Co{sub 3}O{sub 4} nanoparticles. This present strategy might open new avenues for the design of a series of transition metal oxides using organometallic compounds for a range of applications.

  6. Low voltage aluminium anodes. Optimization of the insert-anode bond

    Energy Technology Data Exchange (ETDEWEB)

    Le Guyader, Herve; Debout, Valerie; Grolleau, Anne-Marie [DCN Cherbourg, Departement 2EI, Place Bruat, BP 440, 50104 Cherbourg-Octeville (France); Pautasso, Jean-Pierre [DGA/CTA 16 bis, avenue Prieur de la Cote D' Or, 94 114 Arcueil Cedex (France)

    2004-07-01

    Zinc or Al/Zn/In sacrificial anodes are widely used to protect submerged marine structures from corrosion. Their Open Circuit Potential range from - 1 V vs. Ag/AgCl for Zn anodes to -1.1 V vs. Ag/AgCl for Al/Zn/In. These potentials are sufficiently electronegative as to reduce the threshold for stress corrosion cracking and/or hydrogen embrittlement, KISCC, especially in the presence of high strength alloys. In the 90's, an extensive research programme was initiated by DGA/DCN to implement a new low voltage material. Laboratory and full scale marine tests performed on industrial castings, as previously reported, led to the development of a new patented Al- 0.1%Ga alloy having a working potential of - 0.80 to - 0.83 V vs. Ag/AgCl. This alloy was also evaluated at full scale at the Naval Research Laboratory anode qualification site in Key West, Fl, and gave satisfactory results. Around 500 cylindrical AlGa anodes were then installed on a submerged marine structure replacing the classical zinc anode. A first inspection, carried out after a few months of service, showed that some of the anodes had not operated as expected, which led to further investigations. The examinations performed indicated that the problem was due to a bad metallurgical compatibility between the insert and the sacrificial materials inducing a poor bond between the anode and the plain rod insert. Progressive loss of contact between the anode and the structure to be protected was then induced by penetration of sea water and corrosion at the anode-insert interface. This phenomenon was aggravated by seawater pressure. Additional studies were therefore launched with two aims: (1) find temporary remedies for the anodes already installed on the structure; (2) correct the anode original design and/or manufacturing process to achieve the maximum performance on new anodes lots. This paper describes the various solutions investigated to improve the insert-anode bond: design of the anode, rugosity and

  7. Releasing metal catalysts via phase transition: (NiO)0.05-(SrTi0.8Nb0.2O3)0.95 as a redox stable anode material for solid oxide fuel cells.

    Science.gov (United States)

    Xiao, Guoliang; Wang, Siwei; Lin, Ye; Zhang, Yanxiang; An, Ke; Chen, Fanglin

    2014-11-26

    Donor-doped perovskite-type SrTiO3 experiences stoichiometric changes at high temperatures in different Po2 involving the formation of Sr or Ti-rich impurities. NiO is incorporated into the stoichiometric strontium titanate, SrTi0.8Nb0.2O3-δ (STN), to form an A-site deficient perovskite material, (NiO)0.05-(SrTi0.8Nb0.2O3)0.95 (Ni-STN), for balancing the phase transition. Metallic Ni nanoparticles can be released upon reduction instead of forming undesired secondary phases. This material design introduces a simple catalytic modification method with good compositional control of the ceramic backbones, by which transport property and durability of solid oxide fuel cell anodes are largely determined. Using Ni-STN as anodes for solid oxide fuel cells, enhanced catalytic activity and remarkable stability in redox cycling have been achieved. Electrolyte-supported cells with the cell configuration of Ni-STN-SDC anode, La0.8Sr0.2Ga0.87Mg0.13O3 (LSGM) electrolyte, and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode produce peak power densities of 612, 794, and 922 mW cm(-2) at 800, 850, and 900 °C, respectively, using H2 as the fuel and air as the oxidant. Minor degradation in fuel cell performance resulted from redox cycling can be recovered upon operating the fuel cells in H2. Such property makes Ni-STN a promising regenerative anode candidate for solid oxide fuel cells.

  8. International comparison of Cd content in a quality control material of Navajuelas (Tagelus dombeii) determined by anodic stripping voltammetry, atomic absorption spectrometry and neutron activation analysis

    International Nuclear Information System (INIS)

    Queirolo, F.; Forschungszentrum Juelich GmbH; Universidad de Extremadura, Badajoz; Ostapczuk, P.; Valenta, P.; Stegen, S.; Universidad de Extremadura, Badajoz; Marin, C.; Vinagre, F.; Sanchez, A.

    1991-01-01

    The determination of Cd was performed by neutron activation analysis (NAA), atomic absorption spectrometry (AAS) with flame or in the electrothermal mode and anodic stripping voltammetry in the differential pulse mode (DPASV) and the square wave mode (SWASV). (orig./EF)

  9. Robust Strategy for Crafting Li5Cr7Ti6O25@CeO2 Composites as High-Performance Anode Material for Lithium-Ion Battery.

    Science.gov (United States)

    Mei, Jie; Yi, Ting-Feng; Li, Xin-Yuan; Zhu, Yan-Rong; Xie, Ying; Zhang, Chao-Feng

    2017-07-19

    A facile strategy was developed to prepare Li 5 Cr 7 Ti 6 O 25 @CeO 2 composites as a high-performance anode material. X-ray diffraction (XRD) and Rietveld refinement results show that the CeO 2 coating does not alter the structure of Li 5 Cr 7 Ti 6 O 25 but increases the lattice parameter. Scanning electron microscopy (SEM) indicates that all samples have similar morphologies with a homogeneous particle distribution in the range of 100-500 nm. Energy-dispersive spectroscopy (EDS) mapping and high-resolution transmission electron microscopy (HRTEM) prove that CeO 2 layer successfully formed a coating layer on a surface of Li 5 Cr 7 Ti 6 O 25 particles and supplied a good conductive connection between the Li 5 Cr 7 Ti 6 O 25 particles. The electrochemical characterization reveals that Li 5 Cr 7 Ti 6 O 25 @CeO 2 (3 wt %) electrode shows the highest reversibility of the insertion and deinsertion behavior of Li ion, the smallest electrochemical polarization, the best lithium-ion mobility among all electrodes, and a better electrochemical activity than the pristine one. Therefore, Li 5 Cr 7 Ti 6 O 25 @CeO 2 (3 wt %) electrode indicates the highest delithiation and lithiation capacities at each rate. At 5 C charge-discharge rate, the pristine Li 5 Cr 7 Ti 6 O 25 only delivers an initial delithiation capacity of ∼94.7 mAh g -1 , and the delithiation capacity merely achieves 87.4 mAh g -1 even after 100 cycles. However, Li 5 Cr 7 Ti 6 O 25 @CeO 2 (3 wt %) delivers an initial delithiation capacity of 107.5 mAh·g -1 , and the delithiation capacity also reaches 100.5 mAh g -1 even after 100 cycles. The cerium dioxide modification is a direct and efficient approach to improve the delithiation and lithiation capacities and cycle property of Li 5 Cr 7 Ti 6 O 25 at large current densities.

  10. Lithium Ion Battery Anode Aging Mechanisms

    Science.gov (United States)

    Agubra, Victor; Fergus, Jeffrey

    2013-01-01

    Degradation mechanisms such as lithium plating, growth of the passivated surface film layer on the electrodes and loss of both recyclable lithium ions and electrode material adversely affect the longevity of the lithium ion battery. The anode electrode is very vulnerable to these degradation mechanisms. In this paper, the most common aging mechanisms occurring at the anode during the operation of the lithium battery, as well as some approaches for minimizing the degradation are reviewed. PMID:28809211

  11. Carbonate fuel cell anodes

    Science.gov (United States)

    Donado, Rafael A.; Hrdina, Kenneth E.; Remick, Robert J.

    1993-01-01

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process for production of the lithium ferrite containing anode by slipcasting.

  12. Microscopical characterization of carbon materials derived from coal and petroleum and their interaction phenomena in making steel electrodes, anodes and cathode blocks for the Microscopy of Carbon Materials Working Group of the ICCP

    Science.gov (United States)

    Predeanu, G.; Panaitescu, C.; Bălănescu, M.; Bieg, G.; Borrego, A.G.; Diez, M. A.; Hackley, Paul C.; Kwiecińska, B.; Marques, M.; Mastalerz, Maria; Misz-Kennan, M.; Pusz, S.; Suarez-Ruiz, I.; Rodrigues, S.; Singh, A. K.; Varma, A. K.; Zdravkov, A.; Zivotić, D.

    2015-01-01

    This paper describes the evaluation of petrographic textures representing the structural organization of the organic matter derived from coal and petroleum and their interaction phenomena in the making of steel electrodes, anodes and cathode blocks.This work represents the results of the Microscopy of Carbon Materials Working Group in Commission III of the International Committee for Coal and Organic Petrology between the years 2009 and 2013. The round robin exercises were run on photomicrograph samples. For textural characterization of carbon materials the existing ASTM classification system for metallurgical coke was applied.These round robin exercises involved 15 active participants from 12 laboratories who were asked to assess the coal and petroleum based carbons and to identify the morphological differences, as optical texture (isotropic/anisotropic), optical type (punctiform, mosaic, fibre, ribbon, domain), and size. Four sets of digital black and white microphotographs comprising 151 photos containing 372 fields of different types of organic matter were examined. Based on the unique ability of carbon to form a wide range of textures, the results showed an increased number of carbon occurrences which have crucial role in the chosen industrial applications.The statistical method used to evaluate the results was based on the “raw agreement indices”. It gave a new and original view on the analysts' opinion by not only counting the correct answers, but also all of the knowledge and experience of the participants. Comparative analyses of the average values of the level of overall agreement performed by each analyst in the exercises during 2009–2013 showed a great homogeneity in the results, the mean value being 90.36%, with a minimum value of 83% and a maximum value of 95%.

  13. Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions

    Directory of Open Access Journals (Sweden)

    Webster TJ

    2013-01-01

    Full Text Available Alexandra P Ross, Thomas J WebsterSchool of Engineering and Department of Orthopedics, Brown University, Providence, RI, USAAbstract: Current titanium-based implants are often anodized in sulfuric acid (H2SO4 for color coding purposes. However, a crucial parameter in selecting the material for an orthopedic implant is the degree to which it will integrate into the surrounding bone. Loosening at the bone–implant interface can cause catastrophic failure when motion occurs between the implant and the surrounding bone. Recently, a different anodization process using hydrofluoric acid has been shown to increase bone growth on commercially pure titanium and titanium alloys through the creation of nanotubes. The objective of this study was to compare, for the first time, the influence of anodizing a titanium alloy medical device in sulfuric acid for color coding purposes, as is done in the orthopedic implant industry, followed by anodizing the device in hydrofluoric acid to implement nanotubes. Specifically, Ti6Al4V model implant samples were anodized first with sulfuric acid to create color-coding features, and then with hydrofluoric acid to implement surface features to enhance osteoblast functions. The material surfaces were characterized by visual inspection, scanning electron microscopy, contact angle measurements, and energy dispersive spectroscopy. Human osteoblasts were seeded onto the samples for a series of time points and were measured for adhesion and proliferation. After 1 and 2 weeks, the levels of alkaline phosphatase activity and calcium deposition were measured to assess the long-term differentiation of osteoblasts into the calcium depositing cells. The results showed that anodizing in hydrofluoric acid after anodizing in sulfuric acid partially retains color coding and creates unique surface features to increase osteoblast adhesion, proliferation, alkaline phosphatase activity, and calcium deposition. In this manner, this study

  14. Anodizing Aluminum with Frills.

    Science.gov (United States)

    Doeltz, Anne E.; And Others

    1983-01-01

    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are…

  15. Anodized aluminum on LDEF

    Science.gov (United States)

    Golden, Johnny L.

    1993-01-01

    A compilation of reported analyses and results obtained for anodized aluminum flown on the Long Duration Exposure Facility (LDEF) was prepared. Chromic acid, sulfuric acid, and dyed sulfuric acid anodized surfaces were exposed to the space environment. The vast majority of the anodized surface on LDEF was chromic acid anodize because of its selection as a thermal control coating for use on the spacecraft primary structure, trays, tray clamps, and space end thermal covers. Reports indicate that the chromic acid anodize was stable in solar absorptance and thermal emittance, but that contamination effects caused increases in absorptance on surfaces exposed to low atomic oxygen fluences. There were some discrepancies, however, in that some chromic acid anodized specimens exhibited significant increases in absorptance. Sulfuric acid anodized surfaces also appeared stable, although very little surface area was available for evaluation. One type of dyed sulfuric acid anodize was assessed as an optical baffle coating and was observed to have improved infrared absorptance characteristics with exposure on LDEF.

  16. Development of materials for use in solid oxid fuel cells anodes using renewable fuels in direct operation; Desenvolvimento de materiais ceramicos aplicados em anodos de celulas a combustivel de oxidos solidos para operacao direta com combustiveis renovaveis

    Energy Technology Data Exchange (ETDEWEB)

    Lima, D.B.P.L. de [Instituto Federal do Parana (IFPR), PR (Brazil); Florio, D.Z. de; Bezerra, M.E.O., E-mail: daniela.bianchi@ifpr.edu.br [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2016-07-01

    Fuel cells produce electrical current from the electrochemical combustion of a gas or liquid (H2, CH4, C2H5OH, CH3OH, etc.) inserted into the anode cell. An important class of fuel cells is the SOFC (Solid Oxide Cell Fuel). It has a ceramic electrolyte that transports protons (H +) or O-2 ions and operating at high temperatures (500-1000 °C) and mixed conductive electrodes (ionic and electronic) ceramics or cermets. This work aims to develop anodes for fuel cells of solid oxide (SOFC) in order to direct operations with renewable fuels and strategic for the country (such as bioethanol and biogas). In this context, it becomes important to study in relation to the ceramic materials, especially those that must be used in high temperatures. Some types of double perovskites such as Sr2MgMoO6 (or simply SMMO) have been used as anodes in SOFC. In this study were synthesized by the polymeric precursor method, analyzed and characterized different ceramic samples of families SMMO, doped with Nb, this is: Sr2 (MgMo)1-xNbxO6 with 0 ≤ x ≤ 0.2. The materials produced were characterized by various techniques such as, thermal analysis, X-ray diffraction and scanning electron microscopy, and electrical properties determined by dc and ac measurements in a wide range of temperature, frequency and partial pressure of oxygen. The results of this work will contribute to a better understanding of advanced ceramic properties with mixed driving (electronic and ionic) and contribute to the advancement of SOFC technology operating directly with renewable fuels. (author)

  17. Graphene–sponges as high-performance low-cost anodes for microbial fuel cells

    KAUST Repository

    Xie, Xing; Yu, Guihua; Liu, Nian; Bao, Zhenan; Criddle, Craig S.; Cui, Yi

    2012-01-01

    A high-performance microbial fuel cell (MFC) anode was constructed from inexpensive materials. Key components were a graphene-sponge (G-S) composite and a stainless-steel (SS) current collector. Anode fabrication is simple, scalable

  18. Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions.

    Science.gov (United States)

    Ross, Alexandra P; Webster, Thomas J

    2013-01-01

    Current titanium-based implants are often anodized in sulfuric acid (H(2)SO(4)) for color coding purposes. However, a crucial parameter in selecting the material for an orthopedic implant is the degree to which it will integrate into the surrounding bone. Loosening at the bone-implant interface can cause catastrophic failure when motion occurs between the implant and the surrounding bone. Recently, a different anodization process using hydrofluoric acid has been shown to increase bone growth on commercially pure titanium and titanium alloys through the creation of nanotubes. The objective of this study was to compare, for the first time, the influence of anodizing a titanium alloy medical device in sulfuric acid for color coding purposes, as is done in the orthopedic implant industry, followed by anodizing the device in hydrofluoric acid to implement nanotubes. Specifically, Ti6Al4V model implant samples were anodized first with sulfuric acid to create color-coding features, and then with hydrofluoric acid to implement surface features to enhance osteoblast functions. The material surfaces were characterized by visual inspection, scanning electron microscopy, contact angle measurements, and energy dispersive spectroscopy. Human osteoblasts were seeded onto the samples for a series of time points and were measured for adhesion and proliferation. After 1 and 2 weeks, the levels of alkaline phosphatase activity and calcium deposition were measured to assess the long-term differentiation of osteoblasts into the calcium depositing cells. The results showed that anodizing in hydrofluoric acid after anodizing in sulfuric acid partially retains color coding and creates unique surface features to increase osteoblast adhesion, proliferation, alkaline phosphatase activity, and calcium deposition. In this manner, this study provides a viable method to anodize an already color coded, anodized titanium alloy to potentially increase bone growth for numerous implant applications.

  19. Honeycomb-inspired design of ultrafine SnO2@C nanospheres embedded in carbon film as anode materials for high performance lithium- and sodium-ion battery

    Science.gov (United States)

    Ao, Xiang; Jiang, Jianjun; Ruan, Yunjun; Li, Zhishan; Zhang, Yi; Sun, Jianwu; Wang, Chundong

    2017-08-01

    Tin oxide (SnO2) has been considered as one of the most promising anodes for advanced rechargeable batteries due to its advantages such as high energy density, earth abundance and environmental friendly. However, its large volume change during the Li-Sn/Na-Sn alloying and de-alloying processes will result in a fast capacity degradation over a long term cycling. To solve this issue, in this work we design and synthesize a novel honeycomb-like composite composing of carbon encapsulated SnO2 nanospheres embedded in carbon film by using dual templates of SiO2 and NaCl. Using these composites as anodes both in lithium ion batteries and sodium-ion batteries, no discernable capacity degradation is observed over hundreds of long term cycles at both low current density (100 mA g-1) and high current density (500 mA g-1). Such a good cyclic stability and high delivered capacity have been attributed to the high conductivity of the supported carbon film and hollow encapsulated carbon shells, which not only provide enough space to accommodate the volume expansion but also prevent further aggregation of SnO2 nanoparticles upon cycling. By engineering electrodes of accommodating high volume expansion, we demonstrate a prototype to achieve high performance batteries, especially high-power batteries.

  20. Carbon-wrapped MnO nanodendrites interspersed on reduced graphene oxide sheets as anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Boli; Li, Dan; Liu, Zhengjiao; Gu, Lili; Xie, Wenhe; Li, Qun; Guo, Pengqian; Liu, Dequan; He, Deyan, E-mail: hedy@lzu.edu.cn

    2017-02-01

    Highlights: • The C-MnO/rGO composites were anchored on nickel foam by a facile vacuum filtration and a subsequent thermal treatment. • The novel architecture of anodes effectively improved the electrochemical performance of lithium ion battery. • The active MnO nanodendrites became smaller nanoparticles still wrapped in graphene sheets after cycles. - Abstract: Carbon-wrapped MnO nanodendrites interspersed on reduced graphene oxide sheets (C-MnO/rGO) were prepared on nickel foam by a facile vacuum filtration and a subsequent thermal treatment. As a binder-free anode of lithium-ion battery, the nanodendritic structure of C-MnO accommodates the huge volume expansion and shortens the diffusion length for lithium ion and electron, rGO sheets prevent C-MnO nanodendites from aggregation and offer a good electronic conduction. As a result, the electrode with such a novel architecture delivers superior electrochemical properties including high reversible capacity, excellent rate capability and cycle stability. Moreover, MnO nanodendrites change to nanoparticles wrapped in graphene sheets during the lithiation/delithiation process, which is a more beneficial microstructure to further increase the specific capacity and cycle life of the electrode.

  1. Enhanced Rate Capability of Polymer-Derived SiCN Anode Material for Electrochemical Storage of Lithium with 3-D Carbon Nanotube Network Dispersed in Nanoscale.

    Science.gov (United States)

    Zhang, Junwei; Xu, Caihong; Liu, Zhaoping; Wang, Wei; Xin, Xing; Shen, Lu; Zhou, Xiaobing; Zhou, Jie; Huang, Qing

    2015-04-01

    Electrochemical performances of multi-walled carbon nanotubes (CNT)-SiCN composite have been investigated. The sample was synthesized by a simple ultrasonication assisted method combined with high-temperature pyrolysis and characterized by Fourier transform infrared spectra, Raman spectra, X-ray diffraction, field emission scanning electron microscopy and transmission electronic microscopy. In this composite, CNT were uniformly distributed in the SiCN ceramic matrix, it retained the structural integrity during the polymer-ceramic conversion and had a relatively strong bonding with the SiCN ceramic matrix. When tested as anode in the half cell, the obtained composite exhibited enhanced rate capability and cyclic capacity than that of pristine SiCN powder, CNT and graphite, it could supply a capacity of 222.7 mA h/g when charged at 2000 mA/g, while the SiCN anode showed nearly no capacity even at the low current density of 200 mA/g. It is expected that the CNT-SiCN composite, perhaps the series of CNT-PDC composites, may be prospective candidate for high power applications.

  2. Facile Synthesis of SiO2@C Nanoparticles Anchored on MWNT as High-Performance Anode Materials for Li-ion Batteries

    Science.gov (United States)

    Zhao, Yan; Liu, Zhengjun; Zhang, Yongguang; Mentbayeva, Almagul; Wang, Xin; Maximov, M. Yu.; Liu, Baoxi; Bakenov, Zhumabay; Yin, Fuxing

    2017-07-01

    Carbon-coated silica nanoparticles anchored on multi-walled carbon nanotubes (SiO2@C/MWNT composite) were synthesized via a simple and facile sol-gel method followed by heat treatment. Scanning and transmission electron microscopy (SEM and TEM) studies confirmed densely anchoring the carbon-coated SiO2 nanoparticles onto a flexible MWNT conductive network, which facilitated fast electron and lithium-ion transport and improved structural stability of the composite. As prepared, ternary composite anode showed superior cyclability and rate capability compared to a carbon-coated silica counterpart without MWNT (SiO2@C). The SiO2@C/MWNT composite exhibited a high reversible discharge capacity of 744 mAh g-1 at the second discharge cycle conducted at a current density of 100 mA g-1 as well as an excellent rate capability, delivering a capacity of 475 mAh g-1 even at 1000 mA g-1. This enhanced electrochemical performance of SiO2@C/MWNT ternary composite anode was associated with its unique core-shell and networking structure and a strong mutual synergistic effect among the individual components.

  3. Electrically conductive anodized aluminum coatings

    Science.gov (United States)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  4. Disodium terephthalate (Na{sub 2}C{sub 8}H{sub 4}O{sub 4}) as high performance anode material for low-cost room-temperature sodium-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Liang; Hu, Yong-Sheng; Li, Hong; Armand, Michel; Chen, Liquan [Key Laboratory for Renewable Energy, Beijing Key Laboratory for New, Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing (China); Zhao, Junmei [Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing (China); Zhou, Zhibin [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan (China)

    2012-08-15

    In this contribution, a cheap organic material, disodium terephthalate, Na{sub 2}C{sub 8}H{sub 4}O{sub 4}, has been firstly evaluated as a novel anode for room-temperature Na-ion batteries. The material exhibits a high reversible capacity of 250 mAh/g with excellent cycleability. The average Na storage voltage is approximately 0.43 V vs. Na{sup +}/Na. A thin layer of Al{sub 2}O{sub 3} coating on the electrode surface derived from the atomic layer deposition technique is effective in further enhancing Na storage performance. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Redox Stable Anodes for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Guoliang eXiao

    2014-06-01

    Full Text Available Solid oxide fuel cells (SOFCs can convert chemical energy from the fuel directly to electrical energy with high efficiency and fuel flexibility. Ni-based cermets have been the most widely adopted anode for SOFCs. However, the conventional Ni-based anode has low tolerance to sulfur-contamination, is vulnerable to deactivation by carbon build-up (coking from direct oxidation of hydrocarbon fuels, and suffers volume instability upon redox cycling. Among these limitations, the redox instability of the anode is particularly important and has been intensively studied since the SOFC anode may experience redox cycling during fuel cell operations even with the ideal pure hydrogen as the fuel. This review aims to highlight recent progresses on improving redox stability of the conventional Ni-based anode through microstructure optimization and exploration of alternative ceramic-based anode materials.

  6. Anode Support Creep

    DEFF Research Database (Denmark)

    2015-01-01

    Initial reduction temperature of an SOC is kept higher than the highest intended operation temperature of the SOC to keep the electrolyte under compression by the Anode Support at all temperatures equal to and below the maximum intended operation temperature....

  7. Planar metal-supported SOFC with novel cermet anode

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Hjelm, Johan; Klemensø, Trine

    2011-01-01

    Metal-supported solid oxide fuel cells are expected to offer several potential advantages over conventional anode (Ni-YSZ) supported cells. For example, increased resistance against mechanical and thermal stresses and a reduction in material costs. When Ni-YSZ based anodes are used in metal suppo...

  8. Development of Planar Metal Supported SOFC with Novel Cermet Anode

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Hjelm, Johan; Klemensø, Trine

    2009-01-01

    Metal-supported solid oxide fuel cells are expected to offer several potential advantages over conventional anode (Ni-YSZ) supported cells, such as increased resistance against mechanical and thermal stresses and a reduction in materials cost. When Ni-YSZ based anodes are used in metal supported ...

  9. Battery, especially for portable devices, has an anode containing silicon

    NARCIS (Netherlands)

    Kan, S.Y.

    2002-01-01

    The anode (2) contains silicon. A battery with a silicon-containing anode is claimed. An Independent claim is also included for a method used to make the battery, comprising the doping of a silicon substrate (1) with charge capacity-increasing material (preferably boron, phosphorous or arsenic),

  10. Low cost fuel cell diffusion layer configured for optimized anode water management

    Science.gov (United States)

    Owejan, Jon P; Nicotera, Paul D; Mench, Matthew M; Evans, Robert E

    2013-08-27

    A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel is higher than the diffusion resistance of the cathode gas diffusion layer. The anode gas diffusion layer may comprise filler particles having in-plane platelet geometries and be made of lower cost materials and manufacturing processes than currently available commercial carbon fiber substrates. The diffusion resistance difference between the anode gas diffusion layer and the cathode gas diffusion layer may allow for passive water balance control.

  11. Design, synthesis, thin film deposition and characterization of new indium tin oxide anode functionalization/hole transport organic materials and their application to high performance organic light-emitting diodes

    Science.gov (United States)

    Huang, Qinglan

    The primary goals of this dissertation were to understand the physical and chemical aspects of organic light-emitting diode (OLED) fundamentals, develop new materials as well as device structures, and enhance OLED electroluminescent (EL) response. Accordingly, this dissertation analyzes the relative effects of indium tin oxide (ITO) anode-hole transporting layer (HTL) contact vs. the intrinsic HTL material properties on OLED EL response. Two siloxane-based HTL materials, 4,4'-bis[(4″ -trichlorosilylpropyl-1″-naphthylphenylamino)biphenyl (NPB-Si2) and 4,4'-bis[(p-trichlorosilylpropylphenyl)phenylamino]biphenyl (TPD-Si2) have thereby been designed, synthesized and covalently bound to ITO surface. They afford a 250% increase in luminance and ˜50% reduction in turn-on voltage vs. comparable 4,4'-bis(1-naphthylphenylamino)biphenyl (NPB) HTL-based devices. These results suggest new strategies for developing OLED HTL structures, with focus on the anode-HTL contact. Furthermore, archetypical OLED device structures have been refined by simultaneously incorporating the TPD-Si2 layer and a hole- and exciton-blocking/electron transport layer (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) in tris(8-hydroxyquinolato)aluminum(III) and tetrakis(2-methyl-8-hydroxyquinolinato)borate-based OLEDs. The refined device structures lead to high performance OLEDs such as green-emitting OLEDs with maximum luminance (Lmax) ˜ 85,000 cd/m2, power and forward external quantum efficiencies (eta p and etaext) as high as 15.2 lm/W and 4.4 +/- 0.5%, respectively, and blue-emitting OLEDs with Lmax 30,000 cd/m 2, and ˜5.0 lm/W and 1.6 +/- 0.2% etap and eta ext, respectively. The high performance is attributed to synergistically enhanced hole/electron injection and recombination efficiency. In addition, molecule-scale structure effects at ITO anode-HTL interfaces have been systematically probed via a self-assembly approach. A series of silyltriarylamine precursors differing in aryl group and

  12. Fabrication of hierarchically porous TiO2 nanofibers by microemulsion electrospinning and their application as anode material for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Jin Zhang

    2017-06-01

    Full Text Available Titanium dioxide (TiO2 nanofibers have been widely applied in various fields including photocatalysis, energy storage and solar cells due to the advantages of low cost, high abundance and nontoxicity. However, the low conductivity of ions and bulk electrons hinder its rapid development in lithium-ion batteries (LIB. In order to improve the electrochemical performances of TiO2 nanomaterials as anode for LIB, hierarchically porous TiO2 nanofibers with different tetrabutyl titanate (TBT/paraffin oil ratios were prepared as anode for LIB via a versatile single-nozzle microemulsion electrospinning (ME-ES method followed by calcining. The experimental results indicated that TiO2 nanofibers with the higher TBT/paraffin oil ratio demonstrated more axially aligned channels and a larger specific surface area. Furthermore, they presented superior lithium-ion storage properties in terms of specific capacity, rate capability and cycling performance compared with solid TiO2 nanofibers for LIB. The initial discharge and charge capacity of porous TiO2 nanofibers with a TBT/paraffin oil ratio of 2.25 reached up to 634.72 and 390.42 mAh·g−1, thus resulting in a coulombic efficiency of 61.51%; and the discharge capacity maintained 264.56 mAh·g−1 after 100 cycles, which was much higher than that of solid TiO2 nanofibers. TiO2 nanofibers with TBT/paraffin oil ratio of 2.25 still obtained a high reversible capacity of 204.53 mAh·g−1 when current density returned back to 40 mA·g−1 after 60 cycles at increasing stepwise current density from 40 mA·g−1 to 800 mA·g−1. Herein, hierarchically porous TiO2 nanofibers have the potential to be applied as anode for lithium-ion batteries in practical applications.

  13. Free-standing Hierarchical Porous Assemblies of Commercial TiO_2 Nanocrystals and Multi-walled Carbon Nanotubes as High-performance Anode Materials for Sodium Ion Batteries

    International Nuclear Information System (INIS)

    Liu, Xiong; Xu, Guobao; Xiao, Huaping; Wei, Xiaolin; Yang, Liwen

    2017-01-01

    Highlights: • Utilization of commercial nanomaterials to freestanding sodium electrode is demonstrated. • Free-standing electrodes composed of TiO_2 and MWCNTs are hierarchically porous. • Hierarchical porous architecture benefits charge transport and interfacial Na"+ adsorption. • Free-standing hierarchical porous electrodes exhibit superior Na storage performance. - Abstract: Freestanding hierarchical porous assemblies of commercial TiO_2 nanocrystals and multi-wall carbon nanotubes (MWCNTs) as electrode materials for sodium ion batteries (SIBs) are prepared via modified vacuum filtration, free-drying and annealing. Microstructure characterizations reveal that TiO_2 nanocrystals are confined in hierarchically porous, highly electrically conductive and mechanically robust MWCNTs networks with cross-linking of thermally-treated bovine serum albumin. The hierarchical porous architecture not only enables rapid charge transportation and sufficient interaction between electrode and electrolyte, but also guarantees abundant interfacial sites for Na"+ adsorption, which benefits substantial contribution from pseudocapacitive Na storage. When it is used directly as an anode for sodium-ion batteries, the prepared electrode delivers high specific capacity of 100 mA h g"−"1 at a current density of 3000 mA g"−"1, and 150 mA h g"−"1 after 500 cycles at a current density of 500 mA g"−"1. The low-cost TiO_2-based freestanding anode has large potential application in high-performance SIBs for portable, flexible and wearable electronics.

  14. Tailored synthesis of monodispersed nano/submicron porous silicon oxycarbide (SiOC) spheres with improved Li-storage performance as an anode material for Li-ion batteries

    Science.gov (United States)

    Shi, Huimin; Yuan, Anbao; Xu, Jiaqiang

    2017-10-01

    A spherical silicon oxycarbide (SiOC) material (monodispersed nano/submicron porous SiOC spheres) is successfully synthesized via a specially designed synthetic strategy involving pyrolysis of phenyltriethoxysilane derived pre-ceramic polymer spheres at 900 °C. In order to prevent sintering of the pre-ceramic polymer spheres upon heating, a given amount of hollow porous SiO2 nanobelts which are separately prepared from tetraethyl orthosilicate with CuO nanobelts as templates are introduced into the pre-ceramic polymer spheres before pyrolysis. This material is investigated as an anode for lithium-ion batteries in comparison with the large-size bulk SiOC material synthesized under the similar conditions but without hollow SiO2 nanobelts. The maximum reversible specific capacity of ca. 900 mAh g-1 is delivered at the current density of 100 mA g-1 and ca. 98% of the initial capacity is remained after 100 cycles at 100 mA g-1 for the SiOC spheres material, which are much superior to the bulk SiOC material. The improved lithium storage performance in terms of specific capacity and cyclability is attributed to its particular morphology of monodisperse nano/submicron porous spheres as well as its modified composition and microstructure. This SiOC material has higher Li-storage activity and better stability against volume expansion during repeated lithiation and delithiation cycling.

  15. Anodic oxidation of benzoquinone using diamond anode.

    Science.gov (United States)

    Panizza, Marco

    2014-01-01

    The anodic degradation of 1,4-benzoquinone (BQ), one of the most toxic xenobiotic, was investigated by electrochemical oxidation at boron-doped diamond anode. The electrolyses have been performed in a single-compartment flow cell in galvanostatic conditions. The influence of applied current (0.5-2 A), BQ concentration (1-2 g dm(-3)), temperature (20-45 °C) and flow rate (100-300 dm(3) h(-1)) has been studied. BQ decay kinetic, the evolution of its oxidation intermediates and the mineralization of the aqueous solutions were monitored during the electrolysis by high-performance liquid chromatograph (HPLC) and chemical oxygen demand (COD) measurements. The results obtained show that the use of diamond anode leads to total mineralization of BQ in any experimental conditions due to the production of oxidant hydroxyl radicals electrogenerated from water discharge. The decay kinetics of BQ removal follows a pseudo-first-order reaction, and the rate constant increases with rising current density. The COD removal rate was favoured by increasing of applied current, recirculating flow rate and it is almost unaffected by solution temperature.

  16. Optimal Conditions for Fast Charging and Long Cycling Stability of Silicon Microwire Anodes for Lithium Ion Batteries, and Comparison with the Performance of Other Si Anode Concepts

    Directory of Open Access Journals (Sweden)

    Enrique Quiroga-González

    2013-10-01

    Full Text Available Cycling tests under various conditions have been performed for lithium ion battery anodes made from free-standing silicon microwires embedded at one end in a copper current collector. Optimum charging/discharging conditions have been found for which the anode shows negligible fading (< 0.001% over 80 cycles; an outstanding result for this kind of anodes. Several performance parameters of the anode have been compared to the ones of other Si anode concepts, showing that especially the capacity as well as the rates of charge flow per nominal area of anode are the highest for the present anode. With regard to applications, the specific parameters per area are more important than the specific gravimetric parameters like the gravimetric capacity, which is good for comparing the capacity between materials but not enough for comparing between anodes.

  17. The effect of zinc on the aluminum anode of the aluminum-air battery

    Science.gov (United States)

    Tang, Yougen; Lu, Lingbin; Roesky, Herbert W.; Wang, Laiwen; Huang, Baiyun

    Aluminum is an ideal material for batteries, due to its excellent electrochemical performance. Herein, the effect of zinc on the aluminum anode of the aluminum-air battery, as an additive for aluminum alloy and electrolytes, has been studied. The results show that zinc can decrease the anodic polarization, restrain the hydrogen evolution and increase the anodic utilization rate.

  18. Applications of Carbon Nanotubes for Lithium Ion Battery Anodes

    Directory of Open Access Journals (Sweden)

    Hyoung-Joon Jin

    2013-03-01

    Full Text Available Carbon nanotubes (CNTs have displayed great potential as anode materials for lithium ion batteries (LIBs due to their unique structural, mechanical, and electrical properties. The measured reversible lithium ion capacities of CNT-based anodes are considerably improved compared to the conventional graphite-based anodes. Additionally, the opened structure and enriched chirality of CNTs can help to improve the capacity and electrical transport in CNT-based LIBs. Therefore, the modification of CNTs and design of CNT structure provide strategies for improving the performance of CNT-based anodes. CNTs could also be assembled into free-standing electrodes without any binder or current collector, which will lead to increased specific energy density for the overall battery design. In this review, we discuss the mechanism of lithium ion intercalation and diffusion in CNTs, and the influence of different structures and morphologies on their performance as anode materials for LIBs.

  19. SnO2/carbon nanotube nanocomposites synthesized in supercritical fluids: highly efficient materials for use as a chemical sensor and as the anode of a lithium-ion battery

    International Nuclear Information System (INIS)

    An Guimin; Na Na; Zhang Xinrong; Miao Zhenjiang; Miao Shiding; Ding Kunlun; Liu Zhimin

    2007-01-01

    SnO 2 /multi-walled carbon nanotube (MWCNT) nanocomposites were prepared via oxidation of SnCl 2 in a supercritical CO 2 -methanol mixture containing MWCNTs. The as-prepared nanocomposites were characterized by means of x-ray diffraction, x-ray photoelectron spectroscopy, and transmission electron microscopy. It was indicated that SnO 2 nanoparticles with size of 3-5 nm were uniformly and tightly decorated on the MWCNTs. The chemiluminescence characteristic to H 2 S and electrochemical performance of the as-prepared SnO 2 /MWCNT composites were investigated. The SnO 2 /MWCNT composites exhibited extremely high efficiency for detecting H 2 S, and also displayed good electrochemical performance as the anode material in a lithium-ion battery

  20. Hydrothermal synthesis of Li4-xNaxTi5O12 and Li4-xNaxTi5O12/graphene composites as anode materials for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Zhu Jiping

    2016-01-01

    Full Text Available A potential Lithium-ion battery anode material Li4-xNaxTi5O12 (0≤x≤0.15 has been synthesized via a facile hydrothermal method with short processing time and low temperature. The XRD and FE-SEM results indicate that samples with Na-doped are well-crystallized and have more homogeneous particle distributions with smaller overall particle size in the range of 300-600nm. Electrochemical tests reveal that Na-doped samples exhibit impressive specific capacity and cycle stability compared to pristine Li4Ti5O12 at high rate. The Li3.9Na0.1Ti5O12 electrode deliver an initial specific discharge capacity of 169mAh/g at 0.5C and maintained at 150.4mAh/g even after 40 cycles with the reversible retention of 88.99%. Finally, a simple solvothermal reduction method was used to fabricate Li3.9Na0.1Ti5O12/graphene(Li3.9Na0.1Ti5O12/G composite. Galvanostatic charge-discharge tests demonstrate that this sample has remarkable capacities of 197.4mAh/g and 175.5mAh/g at 0.2C and 0.5C rate, respectively. This indicates that the Li3.9Na0.1Ti5O12/G composite is a promising anode material for using in lithium-ion batteries.