WorldWideScience

Sample records for anode-supported solid oxide

  1. Highly durable anode supported solid oxide fuel cell with an infiltrated cathode

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Hjalmarsson, Per; Søgaard, Martin;

    2012-01-01

    An anode supported solid oxide fuel cell with an La0.6Sr0.4Co1.05O3_δ (LSC) infiltrated-Ce0.9Gd0.1O1.95 (CGO) cathode that shows a stable performance has been developed. The cathode was prepared by screen printing a porous CGO backbone on top of a laminated and co-fired anode supported half cell......, consisting of a Nieyttria stabilized zirconia (YSZ) anode support, a Niescandia-doped yttria-stabilized zirconia (ScYSZ) anode, a ScYSZ electrolyte, and a CGO barrier layer. LSC was introduced into the CGO backbone by multiple infiltrations of an aqueous nitrate solution followed by firing. The cell...... in the resistance from the recorded impedance was observed during long term testing. The power density reached 0.79Wcm-2 at a cell voltage of 0.6 V at 750 deg. C. Post test analysis of the LSC infiltrated-CGO cathode by scanning electron microscopy revealed no significant micro-structural difference...

  2. Accelerated creep in solid oxide fuel cell anode supports during reduction

    Science.gov (United States)

    Frandsen, H. L.; Makowska, M.; Greco, F.; Chatzichristodoulou, C.; Ni, D. W.; Curran, D. J.; Strobl, M.; Kuhn, L. T.; Hendriksen, P. V.

    2016-08-01

    To evaluate the reliability of solid oxide fuel cell (SOFC) stacks during operation, the stress field in the stack must be known. During operation the stress field will depend on time as creep processes relax stresses. The creep of reduced Ni-YSZ anode support at operating conditions has been studied previously. In this work a newly discovered creep phenomenon taking place during the reduction is reported. This relaxes stresses at a much higher rate (∼×104) than creep during operation. The phenomenon was studied both in three-point bending and uniaxial tension. Differences between the two measurements could be explained by newly observed stress promoted reduction. Finally, samples exposed to a small tensile stress (∼0.004 MPa) were observed to expand during reduction, which is in contradiction to previous literature. These observations suggest that release of internal residual stresses between the NiO and the YSZ phases occurs during reduction. The accelerated creep should practically eliminate any residual stress in the anode support in an SOFC stack, as has previously been indirectly observed. This phenomenon has to be taken into account both in the production of stacks and in the simulation of the stress field in a stack based on anode supported SOFCs.

  3. Accelerated creep in solid oxide fuel cell anode supports during reduction

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Makowska, Malgorzata Grazyna; Greco, Fabio;

    2016-01-01

    To evaluate the reliability of solid oxide fuel cell (SOFC) stacks during operation, the stress field in the stack must be known. During operation the stress field will depend on time as creep processes relax stresses. The creep of reduced Ni-YSZ anode support at operating conditions has been...... studied previously. In this work a newly discovered creep phenomenon taking place during the reduction is reported. This relaxes stresses at a much higher rate (∼ x104) than creep during operation. The phenomenon was studied both in three-point bending and uniaxial tension. Differences between the two...

  4. Sulfur Poisoning of the Water Gas Shift Reaction on Anode Supported Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Hagen, Anke

    2013-01-01

    Investigation of fuels containing sulfur impurities is important regarding durability of solid oxide fuel cells (SOFC) because they are present in various potential fuels for SOFC applications. The effect of H2S in the ppm range on the performance of state-of-the-art anode supported SOFC at 850...... and 750°C is evaluated in either hydrogen/steam or hydrogen/steam/CO fuel. It was found that the poisoning effect is more severe in H2/H2O/CO vs. H2/H2O fuel. Only ∼8 ppm H2S can be allowed in the CO containing fuel without risking damage to the anode, whereas 90 ppm (or even more) is possible in H2/H2O...

  5. Microstructure, mechanical and electrical properties of Ni-YSZ anode supported solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    G. Matula

    2008-07-01

    Full Text Available Purpose: Investigation of the Ni-YSZ cermets for anode supported solid oxide fuel cells (SOFC prepared byuniaxial pressure, sintered and reduced pellets of NiO-YSZ.Design/methodology/approach: Density examination, shrinkage examination, transverse rupture strengthtests, microstructure examination.Findings: Basing on the investigations of the anode Ni-YSZ type fabricated with powder metallurgy it wasfound of that density of sintered samples depends on NiO portion, temperature of sintering and reducing. Increaseof sintering temperature causes increase of density. Moreover increase of NiO portion and reducing temperaturecauses decrease of density and linear contraction of anode.Practical implications: The Ni-YSZ cermets fabricated using of powder metallurgy are characterized by verygood properties and can be used as SOFC anode. Powder metallurgy gives the possibility to manufacturing cermetused as an anode for SOFC on the basis of Ni-YSZ.Originality/value: Investigations of compacted, sintered and reduced samples with different amount of NiOgives information about optimal manufacturing conditions and volume fraction of NiO/YSZ components. Thisinformation is especially important at production process of extruded tubes.

  6. High-performance anode-supported solid oxide fuel cell with impregnated electrodes

    Science.gov (United States)

    Osinkin, D. A.; Bogdanovich, N. M.; Beresnev, S. M.; Zhuravlev, V. D.

    2015-08-01

    The 61%NiO + 39%Zr0.84Y0.16O1.92 (NiO-YSZ) and 56%NiO + 44%Zr0.83Sc0.16Ce0.01O1.92 (NiO-CeSSZ) composite powders have been prepared using two-steps and one-step combustion synthesis, respectively. The Ni-YSZ anode substrate with a low level of electrical resistance (less than 1 mOhm cm) and porosity of about 53% in the reduced state was fabricated. The functional layer of the anode with the high level of electrochemical activity was made of NiO-CeSSZ. The single anode-supported solid oxide fuel cell with the bi-layer Ni-cermet anode, Zr0.84Sc0.16O1.92 film electrolyte and the Pt + 3% Zr0.84Y0.16O1.92 cathode was fabricated. The power density and the U-I curves of the fuel cell at initial state and after impregnation of the cathode and anode by praseodymium and cerium oxides, respectively, have been measured at different temperatures. The maximum of power density of the initial fuel cell was 0.35 W cm-2 at conditions of wet hydrogen (air) supply to the anode (cathode) at 900 °C. After the electrodes were impregnated, the value of power density increased by seven times and was approximately 2.4 W cm-2 at 0.6 V. It was suggested that after the electrodes impregnation the polarization resistance of the fuel cell was determined by the gas diffusion in the supported anode.

  7. Production of planar copper-based anode supported intermediate temperature solid oxide fuel cells cosintered at 950 °C

    Science.gov (United States)

    De Marco, Vincenzo; Grazioli, Alberto; Sglavo, Vincenzo M.

    2016-10-01

    Copper-based anode supported planar Intermediate Temperature Solid Oxide Fuel Cells are produced and characterized in the present work. The most important advancement is related to the use of copper within the anodic layer, this giving promising results for feeding Intermediate Temperature Solid Oxide Fuel Cells with carbon and sulphur containing fuels. Both anode and Li2O containing-Gadolinia Doped Ceria based electrolyte are produced by water based tape casting process. The supporting anode is coupled to the electrolyte by thermopressing, the cathode being obtained by screen printing. A 3 h isotherm at 950 °C allows to obtain the cosintering of the three layers. The electrochemical test performed on such cells reveals a 0.8 V open circuit voltage and a power density higher than 26 mW cm-2 at 650 °C.

  8. Assessment of the cathode contribution to the degradation of anode-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Hagen, Anke; Liu, Yi-Lin; Barfod, Rasmus;

    2008-01-01

    The degradation of anode-supported cells was studied over 1500 h as a function of cell polarization either in air or oxygen on the cathode side. Based on impedance analysis, contributions of the anode and cathode to the increase of total resistance were assigned. Accordingly, the degradation rate......-stabilized zirconia electrolyte and consequently a reduced three-phase boundary length. (C) 2008 The Electrochemical Society....

  9. Degradation behavior of anode-supported solid oxide fuel cell using LNF cathode as function of current load

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Takeshi; Yoshida, Yoshiteru; Watanabe, Kimitaka; Chiba, Reiichi; Taguchi, Hiroaki; Orui, Himeko; Arai, Hajime [NTT Energy and Environment Systems Laboratories, Atsugi-shi, Kanagawa 243-0198 (Japan)

    2010-09-01

    We investigated the effect of current loading on the degradation behavior of an anode-supported solid oxide fuel cell (SOFC). The cell consisted of LaNi{sub 0.6}Fe{sub 0.4}O{sub 3} (LNF), alumina-doped scandia stabilized zirconia (SASZ), and a Ni-SASZ cermet as the cathode, electrolyte, and anode, respectively. The test was carried out at 1073 K with constant loads of 0.3, 1.0, 1.5, and 2.3 A cm{sup -2}. The degradation rate, defined by the voltage loss during a fixed period (about 1000 h), was faster at higher current densities. From an impedance analysis, the degradation depended mainly on increases in the cathodic resistance, while the anodic and ohmic resistances contributed very little. The cathode microstructures were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). (author)

  10. Fabrication and Characterization of Graded Anodes for Anode-Supported Solid Oxide Fuel Cells by Tape Casting and Lamination

    DEFF Research Database (Denmark)

    Beltran-Lopez, J.F.; Laguna-Bercero, M.A.; Gurauskis, Jonas;

    2014-01-01

    Graded anodes for anode-supported solid oxide fuel cells (SOFCs) are fabricated by tape casting and subsequent cold lamination of plates using different compositions. Rheological parameters are adjusted to obtain stable suspensions for tape casting. The conditions for the tape casting...... and homogeneous distribution of nickel, zirconia, and pores. The laminated samples showed a total porosity of 18.7%(in vol%) and a bimodal pore size distribution centered in 20 and 150 nm, and the measured electrical resistivity of this sample was 120±12 μΩ cm. The novelty of the present work is the lamination...... of tapes at room temperature without using plasticizers. This is made by the combination of two different binders with varying Tg (glass transition temperature) which resulted in plastic deformation at room temperature. Those results indicate that the proposed process is a cost-effective method...

  11. Micromechanical Modeling of Solid Oxide Fuel Cell Anode Supports based on Three-dimensional Reconstructions

    DEFF Research Database (Denmark)

    Kwok, Kawai; Jørgensen, Peter Stanley; Frandsen, Henrik Lund

    2014-01-01

    The efficiency and lifetime of solid oxide fuel cells (SOFCs) is compromised by mechanical failure of cells in the system. Improving the mechanical reliability is a major step in ensuring feasibility of the technology. To quantify the stress in a cell, mechanical properties of the different layers....... The purpose of this work is to provide such a link. State-of-the-art SOFCs are supported by a porous layer of Ni-3YSZ which has a complex microstructure and a drastic difference in behaviors between their phases. This work investigates the microscopic stress distribution and macroscopic creep rate of porous...

  12. The potential and challenges of thin-film electrolyte and nanostructured electrode for yttria-stabilized zirconia-base anode-supported solid oxide fuel cells

    Science.gov (United States)

    Noh, Ho-Sung; Yoon, Kyung Joong; Kim, Byung-Kook; Je, Hae-June; Lee, Hae-Weon; Lee, Jong-Ho; Son, Ji-Won

    2014-02-01

    Thin-film electrolytes and nanostructured electrodes are essential components for lowering the operation temperature of solid oxide fuel cells (SOFCs); however, reliably implementing thin-film electrolytes and nano-structure electrodes over a realistic SOFC platform, such as a porous anode-support, has been extremely difficult. If these components can be created reliably and reproducibly on porous substrates as anode supports, a more precise assessment of their impact on realistic SOFCs would be possible. In this work, structurally sound thin-film and nano-structured SOFC components consisting of a nano-composite NiO-yttria-stabilized zirconia (YSZ) anode interlayer, a thin YSZ and gadolinia-doped ceria (GDC) bi-layer electrolyte, and a nano-structure lanthanum strontium cobaltite (LSC)-base cathode, are sequentially fabricated on a porous NiO-YSZ anode support using thin-film technology. Using an optimized cell testing setup makes possible a more exact investigation of the potential and challenges of thin-film electrolyte and nanostructured electrode-based anode-supported SOFCs. Peak power densities obtained at 500 °C surpass 500 mW cm-2, which is an unprecedented low-temperature performance for the YSZ-based anode-supported SOFC. It is found that this critical, low-temperature performance for the anode-supported SOFC depends more on the electrode performance than the resistance of the thin-film electrolyte during lower temperature operation.

  13. Direct ceramic inkjet printing of yttria-stabilized zirconia electrolyte layers for anode-supported solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Tomov, R.I.; Hopkins, S.C. [Applied Superconductivity and Cryoscience Group, Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB4 3QZ (United Kingdom); Krauz, M.; Kluczowski, J.R. [Institute of Power Engineering, Ceramic Department CEREL, 36-040 Boguchwala (Poland); Jewulski, J. [Institute of Power Engineering, Fuel Cells Department, 02-981 Warsaw (Poland); Glowacka, D.M. [Detector Physics Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Glowacki, B.A. [Applied Superconductivity and Cryoscience Group, Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB4 3QZ (United Kingdom); Institute of Power Engineering, Fuel Cells Department, 02-981 Warsaw (Poland)

    2010-11-01

    Electromagnetic drop-on-demand direct ceramic inkjet printing (EM/DCIJP) was employed to fabricate dense yttria-stabilized zirconia (YSZ) electrolyte layers on a porous NiO-YSZ anode support from ceramic suspensions. Printing parameters including pressure, nozzle opening time and droplet overlapping were studied in order to optimize the surface quality of the YSZ coating. It was found that moderate overlapping and multiple coatings produce the desired membrane quality. A single fuel cell with a NiO-YSZ/YSZ ({proportional_to}6 {mu}m)/LSM + YSZ/LSM architecture was successfully prepared. The cell was tested using humidified hydrogen as the fuel and ambient air as the oxidant. The cell provided a power density of 170 mW cm{sup -2} at 800 C. Scanning electron microscopy (SEM) revealed a highly coherent dense YSZ electrolyte layer with no open porosity. These results suggest that the EM/DCIJP inkjet printing technique can be successfully implemented to fabricate electrolyte coatings for SOFC thinner than 10 {mu}m and comparable in quality to those fabricated by more conventional ceramic processing methods. (author)

  14. Influence of temperature and atmosphere on the strength and elastic modulus of solid oxide fuel cell anode supports

    DEFF Research Database (Denmark)

    Ni, De Wei; Charlas, Benoit; Kwok, Kawai;

    2016-01-01

    for both the unreduced and reduced Ni(O)-YSZ anode supports. With increasing temperature, the strength and elastic modulus of the reduced Ni-YSZ specimens drop almost linearly. In contrast, the strength and elastic modulus of the unreduced NiO-YSZ remain almost constant over the investigated temperature...... need to be characterized to ensure reliable operation. In this study, the effect of reduction temperature on microstructural stability, high temperature strength and elastic modulus of Ni-YSZ anode supports were investigated. The statistical distribution of strength was determined from a large number...... of samples (∼30) at each condition to ensure high statistical validity. It is revealed that the microstructure and mechanical properties of the Ni-YSZ strongly depend on the reduction temperature. Further studies were conducted to investigate the temperature dependence of the strength and elastic modulus...

  15. Design and processing parameters of La2NiO4+δ-based cathode for anode-supported planar solid oxide fuel cells (SOFCs)

    Science.gov (United States)

    Jeong, Changwoo; Lee, Jong-Heun; Park, Mansoo; Hong, Jongsup; Kim, Hyoungchul; Son, Ji-Won; Lee, Jong-Ho; Kim, Byung-Kook; Yoon, Kyung Joong

    2015-11-01

    The Ruddlesden-Popper phase lanthanum nickelate, La2NiO4+δ (LNO), is successfully implemented as a strontium- and cobalt-free cathode in anode-supported planar solid oxide fuel cells (SOFCs) through systematic optimization of materials, processing and structural parameters. Chemical interaction between LNO and gadolinia-doped ceria (GDC), which leads to phase decomposition of composite cathode and significant deterioration of the electrochemical performance, is prevented by lowering the processing temperature below 1000 °C. For low-temperature fabrication process, the thermo-mechanical stability at the interface is secured by modifying the powder characteristics and inserting the adhesive interlayer. The issues associated with the electrical contact and current distribution are resolved by incorporating the perovskite La0.6Sr0.4CoO3-δ (LSC) as a current collecting layer, and the thermal stresses at the interface are relieved by constructing a gradient electrode structure. Consequently, the optimized anode-supported planar cell with an LNO-based cathode exhibits superior performance compared to the reference cell with a conventional cathode in the intermediate-temperature range, which is attributed to the enhanced interfacial process and surface reaction kinetics based on impedance analysis.

  16. Impact of nanostructured anode on low-temperature performance of thin-film-based anode-supported solid oxide fuel cells

    Science.gov (United States)

    Park, Jung Hoon; Han, Seung Min; Yoon, Kyung Joong; Kim, Hyoungchul; Hong, Jongsup; Kim, Byung-Kook; Lee, Jong-Ho; Son, Ji-Won

    2016-05-01

    The impact of a nanostructured Ni-yttria-stabilized zirconia (Ni-YSZ) anode on low-temperature solid oxide fuel cell (LT-SOFC) performance is investigated. By modifying processing techniques for the anode support, anode-supported SOFCs based on thin-film (∼1 μm) electrolytes (TF-SOFCs) with and without the nanostructured Ni-YSZ (grain size ∼100 nm) anode are fabricated and a direct comparison of the TF-SOFCs to reveal the role of the nanostructured anode at low temperature is made. The cell performance of the nanostructured Ni-YSZ anode significantly increases as compared to that of the cell without it, especially at low temperatures (500 °C). The electrochemical analyses confirm that increasing the triple-phase boundary (TPB) density near the electrolyte and anode interface by the particle-size reduction of the anode increases the number of sites available for charge transfer. Thus, the nanostructured anode not only secures the structural integrity of the thin-film components over it, it is also essential for lowering the operating temperature of the TF-SOFC. Although it is widely considered that the cathode is the main factor that determines the performance of LT-SOFCs, this study directly proves that anode performance also significantly affects the low-temperature performance.

  17. Performance improvement of anode-supported electrolytes for planar solid oxide fuel cells via a tape-casting/lamination/co-firing technique

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae-Gu; Moon, Hwan; Park, Sung-Chul; Lee, Jong-Jin; Yoon, Daeil; Hyun, Sang-Hoon [School of Advanced Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea); Kim, Do-Heyoung [Research Institute of Industrial Science and Technology, Kyuongpook 790-600 (Korea)

    2010-05-01

    Recently, solid oxide fuel cells (SOFCs) have attracted considerable attention because of their low emissions, high-energy conversion efficiency, and flexible usage of various fuels. One of the key problems of applying flat-type SOFCs to large-scale power generation is that unit cells of large area and with a high degree of flatness cannot be manufactured satisfactorily. In this study, the effects of tape-casting, laminating, and co-firing conditions on the flatness of anode-supported electrolyte unit cells have been investigated to improve the cell performance of unit cells. The cells are composed of a Ni-yttria-stabilized zirconia (YSZ) anode, a Ni-YSZ anode functional layer (AFL), a YSZ electrolyte, and a lanthanum strontium manganate (LSM)-YSZ cathode. The flatness of the anode-supported electrolyte is optimized by controlling the firing schedule, the lamination method, and the applied load during firing. A 5 cm x 5 cm (active area 4 cm x 4 cm) unit cell having a reasonable flatness of 55 {mu}m/5 cm shows a higher power output of 11.4 W as compared with 7.7 W a unit cell with a flatness of 200 {mu}m/5 cm, when operating at 800 C with humidified hydrogen fuel. (author)

  18. The effect of porosity gradient in a Nickel/Yttria Stabilized Zirconia anode for an anode-supported planar solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    An, Chung Min; Sammes, Nigel [Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO (United States); Song, Jung-Hoon [RIST, Pohang (Korea); Kang, Inyong [Department of Chemical Engineering, Colorado School of Mines, Golden, CO (United States)

    2010-02-01

    In this paper, a graded Ni/YSZ cermet anode, an 8 mol.%YSZ electrolyte, and a lanthanum strontium manganite (LSM) cathode were used to fabricate a solid oxide fuel cell (SOFC) unit. An anode-supported cell was prepared using a tape casting technique followed by hot pressing lamination and a single step co-firing process, allowing for the creation of a thin layer of dense electrolyte on a porous anode support. To reduce activation and concentration overpotential in the unit cell, a porosity gradient was developed in the anode using different percentages of pore former to a number of different tape-slurries, followed by tape casting and lamination of the tapes. The unit cell demonstrated that a concentration distribution of porosity in the anode increases the power in the unit cell from 76 mW cm{sup -2} to 101 mW cm{sup -2} at 600 C in humidified hydrogen. Although the results have not been optimized for good performance, the effect of the porosity gradient is quite apparent and has potential in developing superior anode systems. (author)

  19. Tailoring the Microstructure of a Solid Oxide Fuel Cell Anode Support by Calcination and Milling of YSZ.

    Science.gov (United States)

    Hanifi, Amir Reza; Laguna-Bercero, Miguel A; Sandhu, Navjot Kaur; Etsell, Thomas H; Sarkar, Partha

    2016-01-01

    In this study, the effects of calcination and milling of 8YSZ (8 mol% yttria stabilized zirconia) used in the nickel-YSZ anode on the performance of anode supported tubular fuel cells were investigated. For this purpose, two different types of cells were prepared based on a Ni-YSZ/YSZ/Nd2NiO4+δ-YSZ configuration. For the anode preparation, a suspension was prepared by mixing NiO and YSZ in a ratio of 65:35 wt% (Ni:YSZ 50:50 vol.%) with 30 vol.% graphite as the pore former. As received Tosoh YSZ or its calcined form (heated at 1500 °C for 3 hours) was used in the anode support as the YSZ source. Electrochemical results showed that optimization of the fuel electrode microstructure is essential for the optimal distribution of gas within the support of the cell, especially under electrolysis operation where the performance for an optimized cell (calcined YSZ) was enhanced by a factor of two. In comparison with a standard cell (containing as received YSZ), at 1.5 V and 800 °C the measured current density was -1380 mA cm(-2) and -690 mA cm(-2) for the cells containing calcined and as received YSZ, respectively. The present study suggests that the anode porosity for improved cell performance under SOEC is more critical than SOFC mode due to more complex gas diffusion under electrolysis mode where large amount of steam needs to be transfered into the cell. PMID:27270152

  20. Tailoring the Microstructure of a Solid Oxide Fuel Cell Anode Support by Calcination and Milling of YSZ

    Science.gov (United States)

    Hanifi, Amir Reza; Laguna-Bercero, Miguel A.; Sandhu, Navjot Kaur; Etsell, Thomas H.; Sarkar, Partha

    2016-06-01

    In this study, the effects of calcination and milling of 8YSZ (8 mol% yttria stabilized zirconia) used in the nickel-YSZ anode on the performance of anode supported tubular fuel cells were investigated. For this purpose, two different types of cells were prepared based on a Ni-YSZ/YSZ/Nd2NiO4+δ-YSZ configuration. For the anode preparation, a suspension was prepared by mixing NiO and YSZ in a ratio of 65:35 wt% (Ni:YSZ 50:50 vol.%) with 30 vol.% graphite as the pore former. As received Tosoh YSZ or its calcined form (heated at 1500 °C for 3 hours) was used in the anode support as the YSZ source. Electrochemical results showed that optimization of the fuel electrode microstructure is essential for the optimal distribution of gas within the support of the cell, especially under electrolysis operation where the performance for an optimized cell (calcined YSZ) was enhanced by a factor of two. In comparison with a standard cell (containing as received YSZ), at 1.5 V and 800 °C the measured current density was ‑1380 mA cm‑2 and ‑690 mA cm‑2 for the cells containing calcined and as received YSZ, respectively. The present study suggests that the anode porosity for improved cell performance under SOEC is more critical than SOFC mode due to more complex gas diffusion under electrolysis mode where large amount of steam needs to be transfered into the cell.

  1. High performance anode-supported tubular solid oxide fuel cells fabricated by a novel slurry-casting method

    Science.gov (United States)

    Duan, Nan-Qi; Yan, Dong; Chi, Bo; Pu, Jian; Jian, Li

    2015-02-01

    Tubular solid oxide fuel cells were fabricated and evaluated for their microstructure and electrochemical performance. The tubular substrate was prepared by casting NiO-Y2O3 stabilized ZrO2 (YSZ) slurry on the inner wall of a plastic mold (tube). The wall thickness and uniformity were controlled by slurry viscosity and rotation speed of the tube. The cells consisted of Ni-YSZ functional anode, YSZ electrolyte and (La0.8Sr0.2)0.95MnO3-δ (LSM)-YSZ cathode prepared in sequence on the substrate by dip-coating and sintering. Their dimension was 50 mm in length, 0.8 mm in thickness and 10.5 mm in outside diameter. The peak power density of the cell at temperatures between 650 and 850°C was in the range from 85 to 522 mW cm-2 and was greatly enhanced to the range from 308 to 1220 mW cm-2 by impregnating PdO into LSM-YSZ cathode. During a cell testing at 0.7 A cm-2 and 750°C for 282 h, the impregnated PdO particles grew by coalescence, which increased the cathode polarization resistance and so that decreased the cell performance. According to the degradation tendency, the cell performance will be stabilized in a longer run.

  2. Development and manufacturing of tape casted, anode-supported solid oxide fuel cells; Entwicklung und Herstellung von foliengegossenen, anodengestuetzten Festoxidbrennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Schafbauer, Wolfgang

    2010-07-01

    Solid oxide fuel cells offer high potential in transforming the chemical energy of hydrogen or natural gas into electrical energy. Due to the high efficiency of fuel cells, lots of effort has been made in the improvement of net efficiency and in materials development during the last years. Recently, the introduction of high performance, low-cost production technologies become more and more important. At the Institute of Energy Research IEF-1 of Forschungszentrum Julich, standard SOFCs were processed by time and work consuming methods. On the way to market entrance, product costs have to be reduced drastically. The aim of this thesis is the introduction of a high efficient low-cost processing route for the SOFC manufacturing. Therefore, the well-known and well established shaping technology tape casting was used for generating the anode substrates. As the first goal of this approach, two different tape casting slurries were developed in order to get substrates in the thickness range from 300 to 500 {mu}m after sintering. After shaping of the substrates, sinter regimes for the different necessary coatings were adapted to the novel substrate types in order to obtain cells with high performance and strength. Therefore, the different coating technologies like screen printing and vacuum slip casting were used for cell manufacturing. The optimization of the different coating steps during cell manufacturing led to high performance SOFCs with a 10% higher power output compared to the Julich state-of-the-art SOFC. Additional experiments verified the workability of the novel tape cast substrates for the manufacturing of near-net-shape SOFC. Finally, the novel cell types based on tape cast substrates were assembled to stacks with up to ten repeating units. Stack tests showed identical performance and degradation compared to stacks containing state-of-the-art SOFCs. Thus, the complete lifetime circle of a SOFC starting from powder preparation to stack assembly has been

  3. Fabrication and tests of anode supported solid oxide fuel cell; Fabricacao e testes de celula a combustivel de oxido solido suportada no anodo

    Energy Technology Data Exchange (ETDEWEB)

    Florio, D.Z. de [UNESP, Araraquara, SP (Brazil)], e-mail: dzflorio@ipen.br; Fonseca, F.C.; Franca, Y.V.; Muccillo, E.N.S.; Muccillo, R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Berton, M.A.C.; Garcia, C.M. [LACTEC - Instituto de Tecnologia para o Desenvolvimento, Curitiba, PR (Brazil)

    2006-07-01

    A laboratory setup was designed and put into operation for the development of solid oxide fuel cells (SOFCs). Ceramic single cells were fabricated by low-cost methods, and emphasis was given to the use of ready available raw materials. The whole project consisted of the preparation of the component materials - anode, cathode, and electrolyte - and the buildup of a hydrogen leaking-free sample chamber with platinum leads and current collectors for measuring the electrochemical properties of single SOFCs. Anode-supported single SOFCs of the type (ZrO{sub 2}:Y{sub 2}O{sub 3} + NiO) anode / (ZrO{sub 2}:Y{sub 2}O{sub 3}) electrolyte / (La{sub 0.65}Sr{sub 0.35}MnO{sub 3} + ZrO{sub 2}:Y{sub 2}O{sub 3}) cathode have been prepared and tested at 700 deg C and 800 deg C after in situ H{sub 2} anode reduction. The main results show that the slurry coating method resulted in single-cells with good reproducibility and reasonable performance, suggesting that this method can be considered for fabrication of SOFCs. (author)

  4. Performance of Ni-Fe/gadolinium-doped CeO{sub2} anode supported tubular solid oxide fuel cells using steam reforming of methane

    Energy Technology Data Exchange (ETDEWEB)

    Liang, B.; Suzuki, T.; Hamamoto, K.; Yamaguchi, T.; Sumi, H.; Fujishiro, Y.; Ingram, B. J.; Carter, J. D. (Chemical Sciences and Engineering Division); (National Institute of Advanced Industrial Science and Technology)

    2012-03-15

    Iron nanoparticles (Fe{sub 2}O{sub 3}) were added to NiO/gadolinium-doped CeO{sub 2} (GDC) anode supported solid oxide fuel cell (SOFC) for the direct methane-water fuel operation. The cell was co-sintered at 1400 C, and the anode porosity is 31.8%. The main size corresponding to peak volume is around 1.5 {mu}m. When steam and methane directly fed to the cell, the power density is about 0.57 W cm{sup -2} at 650 C. It is the familiar performance for H{sub 2} operation (4 times of flow rate) with same fuel utilization. Compare with the testing temperature of 600 and 650 C, there is almost no carbon fiber deposition at 700 C with steam/methane (S/C) of 5. At the same time, fuel operation of high value of S/C (=3.3) resulted in fiber-like deposition and degradation of power performance based on loading test results.

  5. A long-term degradation study of power generation characteristics of anode-supported solid oxide fuel cells using LaNi(Fe)O{sub 3} electrode

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Takeshi; Watanabe, Kimitaka; Arakawa, Masayasu; Arai, Hajime [NTT Corporation, NTT Energy and Environment Systems Laboratories, Morinosato-Wakamiya 3-1, Atsugi-shi, Kanagawa 243-0198 (Japan)

    2009-09-05

    The long-term operation of an anode-supported solid oxide fuel cell was examined to study the degradation factor. The cell was constructed using LaNi{sub 0.6}Fe{sub 0.4}O{sub 3} (LNF), alumina-doped scandia stabilized zirconia (SASZ), and NiO-SASZ as the cathode, electrolyte, and anode respectively. The cell had Pt current collectors and was operated for 6500 h. The test was carried out at 1073 K with a constant load of 0.4 A cm{sup -2} and included thermal cycling. The cell voltage degradation rate was below 0.86%/1000 h when the cell was operated for up to 5200 h. Changes in the resistance of the cells during the experiments were analyzed by impedance spectroscopy. The cathode polarization resistance and ohmic resistance increased with time. The elements (Si and B) contained in the water condensed from the cathode exhaust gas were identified using inductively coupled plasma (ICP). (author)

  6. Small stack performance of intermediate temperature-operating solid oxide fuel cells using stainless steel interconnects and anode-supported single cell

    Science.gov (United States)

    Bae, Joongmyeon; Lim, Sungkwang; Jee, Hyunjin; Kim, Jung Hyun; Yoo, Young-Sung; Lee, Taehee

    We are developing 1 kW class solid oxide fuel cell (SOFC) system for residential power generation (RPG) application supported by Korean Government. Anode-supported single cells with thin electrolyte layer of YSZ (yttria-stabilized zirconia) or ScSZ (scandia-stabilized zirconia) for intermediate temperature operation (650-750 °C), respectively, were fabricated and small stacks were built and evaluated. The LSCF/ScSZ/Ni-YSZ single cell showed performance of 543 mW cm -2 at 650 °C and 1680 mW cm -2 at 750 °C. The voltage of 15-cell stack based on 5 cm × 5 cm single cell (LSM/YSZ/Ni-YSZ) at 150 mW was 12.5 V in hydrogen as fuel of 120 sccm per cell at 750 °C and decreased to about 10.9 V at 500 h operation time. A 5-cell stack based on the LSCF/YSZ/FL/Ni-YSZ showed the maximum power density of 30 W, 25 W and 20 W at 750 °C, 700 °C and 650 °C, respectively. LSCF/ScSZ/Ni-YSZ-based stack showed better performance than LSCF/YSZ/Ni-YSZ stack from the experiment temperature range. I- V characteristics by using hydrogen gas and reformate gas of methane as fuel were investigated at 750 °C in LSCF/ScSZ/FL/Ni-YSZ-based 5-cell stack.

  7. Anode regeneration following carbon depositions in an industrial-sized anode supported solid oxide fuel cell operating on synthetic diesel reformate

    Science.gov (United States)

    Subotić, Vanja; Schluckner, Christoph; Mathe, Jörg; Rechberger, Jürgen; Schroettner, Hartmuth; Hochenauer, Christoph

    2015-11-01

    Carbon deposition is a primary concern during operation of solid oxide fuel cells (SOFCs) fueled with carbon-containing fuels. It leads to cell degradation and thus reduces SOFC sustained operation and durability. This paper reports on an experimental investigation of carbon formation on the nickel/yttria-stabilized zirconia (Ni/YSZ) anode of an anode-supported SOFC and its regeneration. The cell was fueled with a synthetically produced diesel reformate to investigate and simulate the cell behavior under real operating conditions. For this purpose the cell was operated under load to determine the critical operating time. Rapid carbon generation, such as at open circuit voltage (OCV), can be prevented when the cell is under load. Carbon depositions were detected using scanning electron microscopy (SEM) and further analyzed by Raman spectroscopy. Industrial-size cells suitable for commercial applications were studied. This study proves the reversibility of carbon formation and the reproducibility of the regeneration process. It shows that carbon formations can be recognized and effectively, fully and cell-protecting regenerated. It indicates the excellent possibility of using SOFCs in the automotive industry as an auxiliary power unit (APU) or combined power-heat unit, operated with diesel reformate, without danger from cell degradation caused by carbon-containing fuels.

  8. Simulation and experimental measurement of local performance of anode supported solid oxide fuel cell%SOFC单电池局部性能的评价与测试

    Institute of Scientific and Technical Information of China (English)

    汪杰; 颜冬; 朱彬; 池波; 蒲健; 张宜生; 李箭

    2011-01-01

    为了制备高性能大面积固体氧化物燃料电池(SOFC)单电池,解决由于面积过大而导致的单电池上气体分配不均匀及各部分温度差异,通过实验设计测试了单电池的各个区域的性能,包括局部电性能和局部温度.实验在1片10cm×10cm(有效反应面积9cm×9cm)的阳极支撑SOFC单电池上进行,电池的阴极以及空气气体分配板和集流器都被分成电绝缘的9个分块单元.每个分块单元的面积是2.8cm×2.8cm,均布置有独立的电流电压监测及温度监测系统.同时,利用计算流体力学模拟计算阴极侧的气体流场分布,并将计算的结果与实验测量结果进行了比较.模拟计算和实验测量的结果均显示大面积单电池存在局部的气体分布不均匀及其导致的性能不均匀,这为大面积SOFC电池的性能优化及电堆模块的设计提供依据.%In order to prepare for high performance large size anode-supported planar solid oxide fuel cell (SOFC) and avoid the gas distribution difference during the test, in this research single cell with dimension of 10cm× 10cm (active reaction area of 9cm× 9cm) was divided into 9 galvanically separated segments (each segment with dimension of .8cm× 2.8cm) to measure the local performance and temperature. Each segment was measured independently about the current-voltage curve and the local temperature. For comparison, computational fluid dynamics (CFD) was used to simulate the gas distribution in the cathode side. Both the simulation and experimental results show an inhomogeneous distribution of gas during the test. This work is crucial to design large size SOFC single cell with optimization of the gas distribution layer.

  9. Application of wet powder spraying for anode supported solid oxide fuel cell with a perovskite SrTi{sub 0.98}Nb{sub 0.02}O{sub 3-{delta}} anode

    Energy Technology Data Exchange (ETDEWEB)

    Gdaniec, Pawel; Karczewski, Jakub; Bochentyn, Beata; Gazda, Maria; Kusz, Boguslaw [Faculty of Applied Physics and Mathematics, Gdansk University of Technology, ul. Narutowicza 11/12, Gdansk, 80-233 (Poland); Molin, Sebastian; Jasinski, Piotr [Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, ul. Narutowicza 11/12, Gdansk, 80-233 (Poland); Krupa, Andrzej [Institute of Fluid Flow Machinery, Polish Academy of Sciences, ul. Fiszera 14, Gdansk, 80-231 (Poland)

    2013-12-15

    Anode-supported solid oxide fuel cell with SrTi{sub 0.98}Nb{sub 0.02}O{sub 3-{delta}}anode, yttria-stabilized zirconia electrolyte and La(Ni{sub 0.6}Fe{sub 0.4})O{sub 3{+-}{delta}} cathode has been successfully fabricated and evaluated. Process of anode support fabrication has been presented. Wet powder spraying and high temperature sintering method have been studied and applied to deposit the thin electrolyte layer.In order to improve catalytic properties of the anode, it has been impregnated with Ni. Electrical properties of fuel cells have been measured to determine their performance. The open cell voltage of 1.08 V and maximum power density at the level of 160 mWcm {sup -2} were observed at 800 C. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. High throughput measurement of high temperature strength of ceramics in controlled atmosphere and its use on solid oxide fuel cell anode supports

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Curran, Declan; Rasmussen, Steffen;

    2014-01-01

    In the development of structural and functional ceramics for high temperature electrochemical conversion devices such as solid oxide fuel cells, their mechanical properties must be tested at operational conditions, i.e. at high temperature and controlled atmospheres. Furthermore, characterization...

  11. Research progress of anode-supported micro-tubular solid oxide fuel cells%阳极支撑微管式固体氧化物燃料电池的研究进展

    Institute of Scientific and Technical Information of China (English)

    孙旺; 毛雅春; 张乃庆; 孙克宁

    2013-01-01

    Micro-tubular solid oxide fuel cells (MT-SOFCs) have been research focus in recent years, with the advantages of simple sealing, high volume energy density, good thermal shock resistance and rapid set-up. This paper introduces the advantages of MT-SOFCs and overviews the progress of anode-supported MT-SOFC, focusing on fabrication methods, research status and future development directions. The progress of anode-supported MT-SOFCs prepared by plastic extrusion and phase-inversion is reviewed. Besides, the design concepts of anode-supported MT-SOFC stack are introduced, and the future development directions of MT-SOFCs are also presented.%近些年来,微管式固体氧化物燃料电池(SOFC)由于其具有密封简单、体积能量密度高、抗热震性好、启动时间快等优点备受关注.本文主要介绍了微管式SOFC的优势,并重点概述了阳极支撑型微管式SOFC的制备方法、研究现状和未来的发展方向.分别对采用塑性挤出法和相转化法制备的阳极支撑微管式SOFC的技术进展进行了综述.介绍了阳极支撑微管式SOFC电池堆的设计理念,并对未来微管式SOFC的发展方向进行了展望.

  12. Fabrication of anode-supported zirconia thin film electrolyte based core-shell particle structure for intermediate temperature solid oxide fuel cells

    Institute of Scientific and Technical Information of China (English)

    Peng Li; John T.S.Irvinen

    2013-01-01

    With a view to produce intermediate temperature SOFCs, yttria and scandia doped zirconia with a core-shell structure was prepared, then an anode supported fuel cell was fabricated by a spray method. The influences of the scandia content in the electrolyte and atmosphere conditions used in the testing experiments on phase composition, microstructure and fuel cell performance were investigated. The electrolyte was composed of cubic and tetragonal phases and SEM pictures revealed very fine grain sizes and a smooth surface of the electrolyte film, though some defects were observed in samples with high Scandia content. Coating scandia on partially stabilized zirconium particles improves both ionic conductivity of the electrolyte and power density of the fuel cell distinctly below 750 1C. Anodes were pre-sintered at 1200 1C before co-sintering with the electrolyte film to ensure that the shrinkage percentage was close to that of the electrolyte during co-sintering, avoiding warping of cell.

  13. Fabrication and Performance Study of Anode-Supported Planar Solid Oxide Fuel Cells (SOFCs)%阳极支撑的平板固体氧化物燃料电池的制备及其性能研究

    Institute of Scientific and Technical Information of China (English)

    肖进; 陈磊; 袁洪春; 熊超; 赵宇; 杜文汉; 马金祥

    2015-01-01

    通过相转换流延结合浆料涂覆的方法制备了基于YSZ(氧化钇稳定的氧化锆)电解质的阳极支撑的平板固体氧化物燃料电池,电池阳极具有良好的非对称结构,包括较厚的指状大孔层和较薄的海绵状小孔层。以La0.8Sr0.2MnO3-δ-YSZ为阴极,电解质厚度为19μm的单电池获得了良好的性能输出,在600oC,650oC和700oC的最大功率密度分别为52MW/cm2,116MW/cm2和204MW/cm2,对应的开路电压分别为1.04V,1.02V和1.0V。结果表明:相转换流延结合浆料涂覆技术是一种非常有前景的阳极支撑的平板状SOFC制备方法。%Anode-supported planar solid oxide fuel cells (SOFCs) based on yttria-stabilized zirconia (YSZ) electro⁃lytes were prepared using phase inversion tape-casting and slurry coating techniques. The anodes of the cells have a good asymmetrical structure consisting of a thick layer with finger-like pores and a thin layer with small sponge-like pores. With La0.8Sr0.2MnO3-δ-YSZ (LSM-YSZ) as a cathode, the maximum power densities of the cell with a 19-μm-thick YSZ electrolyte film reached 52MW/cm2, 116MW/cm2, 206MW/cm2 at 600, 650℃ and 700℃ respectively with a good performance output, and the corresponding open-circuit voltages (OCVs) were 1.04V, 1.02V and 1 V. The results indicate that phase inversion tape-casing combined with slurry coating technique can be considered as a quite promising approach for cost-effective fabrication of anode-supported planar SOFCs.

  14. Tubular Anode-Supported Solid Oxide Fuel Cells by Extrusion Method%挤出成型法制备阳极支撑型固体氧化物燃料电池

    Institute of Scientific and Technical Information of China (English)

    王涵多; 刘江; 丁姣

    2011-01-01

    Anode-supported solid oxide fuel cells were fabricated by an extrusion method with corn powder, starch and graphite as a pore formation agent, respectively. The YSZ electrolyte layer was dip-coated on a NiO-YSZ anode substrate. The LSM cathode was prepared by a slurry method. The single cell was examined with humidified hydrogen as fuel and air as oxidant at 600-800 ℃. The microstructure of the anode substrates was analyzed by scanning electron microscope. The results show that well-distributed porous anode is obtained after sintered with graphite as a pore formation agent, and the corresponding cells give the superior performance, compared to the cells with other pore formation agents. The maximum power density of a single cell with graphite as a pore formation agent reached 241 mW/cm2 at 800 ℃, and the Ohmic impedance was 0.7 Ω·cm2.%采用挤出成型法制备了添加石墨、淀粉、玉米粉3种不同阳极造孔剂的NiO-YSZ阳极支撑型管式固体氧化物燃料电池阳极基体,并用浸渍法制备了YSZ (yttria-stabilized zirconia)膜电解质,以LSM(La0.85Sr0.15MnO3)为阴极制备成单电池.以空气为氧化剂,加湿氢气(约含有体积分数为3%的水)为燃料,测试了单电池在600~800℃的交流阻抗和输出性能,并采用扫描电镜对电池的微观结构进行了表征.结果表明:采用石墨为造孔剂时阳极基体微观结构较好,孔分布最均匀,且电池性能最好;单电池阳极管长度为5 cm,阴极有效面积为9.2cm2时,在800℃进行电池性能测试,其开路电压为1.02V,最大功率密度241 mW/cm2,单电池输出功率达到2.2w.此时电池的总面积比电阻为1.6Ω·cm2,Ohm面积比电阻仅为0.7 Ω·cm2.

  15. 进气温度对Ni-YSZ阳极支撑型平板式SOFC工作特性的影响%Effect of Inlet Temperature on the Performance of Ni-YSZ Anode Supported Planar Solid Oxide Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    于建国; 王玉璋; 翁史烈

    2011-01-01

    The performance of planar electrode supported solid oxide fuel cell (PES-SOFC) fueled with hydrogen was investigated at various inlet temperatures. The results showed that, the distribution of species did not vary with the temperature under the constant total current. The output voltage decreased with the decrement of inlet temperature from 1 273.15 K to 1 023.15 K. In addition, when the inlet temperature was <973.15 K, the Nernst potential was almost exhausted by ohmic overpotential and activation overpotential in the inlet region of planar SOFC. Thus, the planar SOFC for hydrogen as fuel and Ni-YSZ (yttria stabilized zirconia)/YSZ as anode/electrolyte could not be recommended to perform at the inlet temperature of < 973.15 K.%评估了进气温度对以氢气为燃料的平板式电极支撑固体氧化物燃料电池(planar electrode supported solid oxide fuel cell,PES-SOFC)工作特性的影响,结果表明:在设定总电流情况下,组分分布随进气温度变化不明显;随着进气温度从1 273.15K下降到1 023.15K,输出电压逐渐减小,且减小趋势增加;当进气温度低于973.15K时,平板式SOFC入口段Nernst电动势几乎被Ohm过电势和活化过电势抵消;因此,对于以氢气为燃料、镍掺杂氧化钇稳定氧化锆(yttria stabilized zirconia,YSZ)Ni-YSZ/YSZ为阳极和电解质层的平板式SOFC,不建议在低于973.15 K的进气温度下运行.

  16. Preparation of highly porous NiO–gadolinium-doped ceria nano-composite powders by one-pot glycine nitrate process for anode-supported tubular solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    Seung-Young Park

    2014-12-01

    Full Text Available Highly porous NiO–gadolinium-doped ceria (GDC nano-composite powders are synthesized by a one-pot glycine nitrate process and applied to the fabrication of Ni–YSZ (yttria-stabilized zirconia-supported tubular solid oxide fuel cells (SOFCs with a cell configuration of Ni–YSZ/Ni/Ni–GDC/GDC/LSCF (La0.6Sr0.4Co0.2Fe0.8O3−δ–GDC/LSCF. The power density of the cell is as high as 413 mW cm−2 at 600 °C, which is 1.37 times higher than that of an identically configured cell fabricated using ball milling-derived NiO–GDC powders (301 mW cm−2. The high porosity of the powders and the good mixing between the NiO and GDC primary nanoparticles due to the abrupt combustion of the precursors effectively suppress the densification, coarsening, and agglomeration of NiO and GDC particles during sintering, resulting in a highly porous Ni–GDC anode layer with good dispersion of Ni and GDC particles and a cell with significantly enhanced power density.

  17. Gadolinia-doped ceria barrier layer produced by sputtering and annealing for anode-supported solid oxide fuel cells%通过溅射与退火制备的用于固体氧化物燃料电池的氧化钆掺杂氧化铈电解质隔层

    Institute of Scientific and Technical Information of China (English)

    武卫明; 刘中波; 赵哲; 张小敏; 区定容; 涂宝峰; 崔大安; 程谟杰

    2014-01-01

    采用溅射或溅射与退火相结合的方法制备了一系列氧化钆掺杂的氧化铈(GDC)隔层,并考察了其对固体氧化燃料电池性能的影响。结果表明,200°C下溅射获得了立方结构氧化钆掺杂的氧化铈均匀薄膜,在900-1100°C范围内的退火处理使得GDC薄膜致密,从而有效阻止了氧化钇掺杂的氧化锆电解质与阴极材料之间的反应,大幅度提高了电池的电化学性能。%We prepared gadolinia-doped ceria (GDC) barrier layers by sputtering and annealing at various temperatures. We then investigated the effects of the GDC barrier layers on the performance of anode-supported solid oxide fuel cells. Sputtering at 200 °C readily produced a uniform, thin layer of cubic GDC. Sputtering and annealing at 900-1100 °C formed uniform, thin, dense films, which effec-tively prevented the reaction between the yttria-stabilized zirconia electrolyte and the Ba0.5Sr0.5Co0.8Fe0.2O3-δcathode. The single cells assembled with the thin, dense GDC barrier layers sputtered at 200 °C and annealed at 900-1000 °C exhibited excellent electrochemical performance.

  18. Electrode design for low temperature direct-hydrocarbon solid oxide fuel cells

    Science.gov (United States)

    Chen, Fanglin; Zhao, Fei; Liu, Qiang

    2015-10-06

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  19. Electrode Design for Low Temperature Direct-Hydrocarbon Solid Oxide Fuel Cells

    Science.gov (United States)

    Chen, Fanglin (Inventor); Zhao, Fei (Inventor); Liu, Qiang (Inventor)

    2015-01-01

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  20. Strength of Anode‐Supported Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Faes, A.; Frandsen, Henrik Lund; Kaiser, Andreas;

    2011-01-01

    Nickel oxide and yttria doped zirconia composite strength is crucial for anode‐supported solid oxide fuel cells, especially during transient operation, but also for the initial stacking process, where cell curvature after sintering can cause problems. This work first compares tensile and ball......‐on‐ring strength measurements of as‐sintered anodes support. Secondly, the strength of anode support sintered alone is compared to the strength of a co‐sintered anode support with anode and electrolyte layers. Finally, the orientation of the specimens to the bending axis of a co‐sintered half‐cell is investigated...

  1. Advanced manufacturing of intermediate temperature, direct methane oxidation membrane electrode assemblies for durable solid oxide fuel cell Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ITN proposes to create an innovative anode supported membrane electrode assembly (MEA) for solid oxide fuel cells (SOFCs) that is capable of long-term operation at...

  2. Optimization of the strength of SOFC anode supports

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Ramos, Tania; Faes, A.;

    2012-01-01

    During operation solid oxide fuel cells are stressed by temperature gradients and various internal and external mechanical loads, which must be withstood. This work deals with the optimization of the strength of as-sintered anode supported half-cells by imposing changes to production parameters......, such as powder milling and sintering temperature. The strength was measured with the ball-on-ring method, and analyzed with a large displacement finite element model. Weibull statistics were used to describe the distribution of strengths. The influence on the Weibull strength of the many different processing...

  3. Ni-CGO阳极支撑ScSZ/CGO复合电解质电池的制备及性能%PREPARATION AND ELECTROCHEMICAL PROPERTIES OF NiO-CGO ANODE SUPPORT SOLID OXIDE FUEL CELL WITH ScSZ/CGO COMPOSITE ELECTROLYTE

    Institute of Scientific and Technical Information of China (English)

    由宏新; 陈刚; 刘瑞瑞; 周一卉; 阿布理提·阿布都拉; 丁信伟

    2009-01-01

    用柠檬酸溶胶-凝胶法合成了Ce0.85Gd0.15O2-δ(CGO),用共沉淀法合成了掺摩尔分数为11%Sc2O3稳定的ZrO2(scandium oxide-stabilized zirconia,ScSZ)电解质材料.通过X射线衍射和透射电镜对电解质材料的物相、形貌和成分进行表征.结果表明:CGO和ScSZ在各自的煅烧温度下均形成了单-的立方萤石结构晶态;ScSZ颗粒的粒径约为20nm.用共压法分别制备了以NiO-CGO阳极支撑的CGO单层电解质和ScSZ/CGO复合电解质的基体,并在基体上涂覆阴极制作单电池.在650~800℃范围内测试单电池的电性能.结果表明:ScSZ/CGO双层电解质电池的开路电压和最大功率密度均高于单层CGO电解质电池;在800℃电流密度和功率密度达到最大值,分别为677.5 mA/cm2和197.3 mW/cm2.说明SeSZ/CGO双层电解质有效地提高了电池的性能.

  4. Anode Supported Solid Oxide Fuel Cells - Deconvolution of Degradation into Cathode and Anode Contributions

    DEFF Research Database (Denmark)

    Hagen, Anke; Liu, Yi-Lin; Barfod, Rasmus;

    2007-01-01

    of the cathode were strongly dependent on the pO(2); they were significantly smaller when testing in oxygen compared to air. Microstructural analysis of the cathode/electrolyte interface of a not-tested reference cell carried out after removal of the cathode showed sharp craters on the electrolyte surface where...... the LSM particles had been located. After testing in air, these craters flattened out and decreased in size, indicating the decrease of three phase boundary length. In contrast, they remained almost unchanged after testing in oxygen giving an explanation for the observed smaller - mainly anode related...

  5. In situ Reduction and Oxidation of Nickel from Solid Oxide Fuel Cells in a Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Faes, Antonin; Jeangros, Quentin; Wagner, Jakob Birkedal;

    2009-01-01

    Environmental transmission electron microscopy was used to characterize in situ the reduction and oxidation of nickel from a Ni/YSZ solid oxide fuel cell anode support between 300-500{degree sign}C. The reduction is done under low hydrogen pressure. The reduction initiates at the NiO/YSZ interface...

  6. Direct Coal Oxidation in Modified Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Gil, Vanesa; Ippolito, Davide;

    2015-01-01

    -carbonate slurry or anode layer. The nature of the coal affects both open circuit voltage and power output. Highest OCV and power densities were observed for bituminous coal and by adding manganese oxide or praseodymium-doped ceria to the carbon/carbonate mixture. Comparing the carbon black fueled performance...... of an anode supported (315 µm anodes) and cathode supported cell (15 µm anode) indicates a superior performance of the latter. Using un-catalyzed biomass (charcoal) as fuel results in an OCV of 941 mV and a maximum power density of 78 mW/cm2 at 755ºC similar to the power output of manganese oxide catalyzed......Hybrid direct carbon fuel cells employ a classical solid oxide fuel cell together with carbon dispersed in a carbonate melt on the anode side. In a European project, the utilization of various coals has been investigated with and without addition of an oxidation catalyst to the carbon...

  7. Effect of cathode gas humidification on performance and durability of Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Hagen, Anke; Liu, Yi-Lin

    2010-01-01

    The effect of cathode inlet gas humidification was studied on single anode supported Solid Oxide Fuel Cells (SOFC's). The studied cells were Risø 2 G and 2.5 G. The former consists of a LSM:YSZ composite cathode, while the latter consists of a LSCF:CGO composite cathode on a CGO protection layer...

  8. Development of a Novel Ceramic Support Layer for Planar Solid Oxide Cells

    DEFF Research Database (Denmark)

    Klemensø, Trine; Boccaccini, Dino; Brodersen, Karen;

    2014-01-01

    The conventional solid oxide cell is based on a Ni–YSZ support layer, placed on the fuel side of the cell, also known as the anode supported SOFC. An alternative design, based on a support of porous 3YSZ (3 mol.% Y2O3–doped ZrO2), placed on the oxygen electrode side of the cell, is proposed. Elec...

  9. Catalytic Enhancement of Solid Carbon Oxidation in HDCFCs

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Ippolito, Davide; Kammer Hansen, Kent

    2014-01-01

    was investigated using current-potential-power density curves. In the anode chamber, catalysts are mixed with the carbon-carbonate mixture. These catalysts include various manganese oxides (MnO2, Mn2O3, and Mn3O4) and dopedceria (CeO2, Ce1-xGdxO2-x/2, Ce1-xRExO2-delta (RE = Pr, Sm)), the effectiveness......Hybrid direct carbon fuel cells consisting of a solid carbon (carbon black)-molten carbonate ((62-38 wt% Li-K)(2)CO3) mixtures in the anode chamber of an anode-supported solid oxide fuel cell type full-cell are tested for their electrochemical performance between 700 and 800 degrees C. Performance...

  10. Effect of stress on NiO reduction in solid oxide fuel cells: A new application of energy-resolved neutron imaging

    DEFF Research Database (Denmark)

    Makowska, Malgorzata; Strobl, Markus; Lauridsen, Erik Mejdal;

    2015-01-01

    Recently, two new phenomena linking stress field and reduction rates in anode-supported solid oxide fuel cells (SOFCs) have been demonstrated, so-called accelerated creep during reduction and reduction rate enhancement and nucleation due to stress (Frandsen et al., 2014). These complex phenomena ...

  11. Preparation and Characterization of Anode-Supported YSZ Thin Film Electrolyte by Co-Tape Casting and Co-Sintering Process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Q L; Fu, C J; Chan, S H [School of Mechanical and Aerospace Engineering, Nanyang Technological University (Singapore); Pasciak, G, E-mail: qlliu@ntu.edu.s [Electrotechnical Institute Division of Electrotechnology and Materials Science (Poland)

    2011-06-15

    In this study, a co-tape casting and co-sintering process has been developed to prepare yttria-stabilized zirconia (YSZ) electrolyte films supported on Ni-YSZ anode substrates in order to substantially reduce the fabrication cost of solid oxide fuel cells (SOFC). Through proper control of the process, the anode/electrolyte bilayer structures with a size of 7.8cm x 7.8cm were achieved with good flatness. Scanning electron microscopy (SEM) observation indicated that the YSZ electrolyte film was about 16 {mu}m in thickness, highly dense, crack free and well-bonded to the anode support. The electrochemical properties of the prepared anode-supported electrolyte film was evaluated in a button cell mode incorporating a (LaSr)MnO{sub 3}-YSZ composite cathode. With humidified hydrogen as the fuel and stationary air as the oxidant, the cell demonstrated an open-circuit voltage of 1.081 V and a maximum power density of 1.01 W/cm{sup 2} at 800 deg. C. The obtained results represent the important progress in the development of anode-supported intermediate temperature SOFC with reduced fabrication cost.

  12. Solid Oxide Fuel Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The solid oxide fuel cell comprising a metallic support material, an active anode layer consisting of a good hydrocarbon cracking catalyst, an electrolyte layer, an active cathode layer, and a transition layer consisting of preferably a mixture of LSM and a ferrite to the cathode current collector...

  13. Thin Solid Oxide Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material, at least one metal and a catalyst...... material, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same. The present invention also relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous...... cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material and a catalyst material, wherein the electrolyte material is doper zirconia, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same...

  14. Cathodes for Solid Oxide Fuel Cells Operating at Low Temperatures

    DEFF Research Database (Denmark)

    Samson, Alfred Junio

    This dissertation focuses on the development of nanostructured cathodes for solid oxide fuel cells (SOFCs) and their performance at low operating temperatures. Cathodes were mainly fabricated by the infiltration method, whereby electrocatalysts are introduced onto porous, ionic conducting backbones......degreeC. The most promising cathode was integrated onto an anode supported cell and it was found that the cell exhibits electrochemical stability with no measureable degradation during 1500 h operation at 700degreeC. LaCoO3 and Co3O4 infiltrated - CGO cathodes were also investigated and revealed...... that these nanoparticulate infiltrates have good oxygen reduction capabilities. The significance of the choice of ionic conducting backbone was also addressed by replacing the CGO with Bi2V0.9Cu0.1O5.35 (BICUVOX). Cathodes with a BICUVOX backbone exhibit performance degradation not observed in LSC infiltrated - CGO cathodes...

  15. Process flow model of solid oxide fuel cell system supplied with sewage biogas

    OpenAIRE

    Van herle, Jan; Favrat, Daniel; Maréchal, François; Bucheli, Olivier; Leuenberger, Sacha; Membrez, Yves

    2004-01-01

    A model for a 1000 kW class solid oxide fuel cell (SOFC) system running on biogas from a sewage sludge digestion plant was implemented in a process flow scheme using external steam reforming. The model stack consisted of planar anode supported cells operated at 800 degreesC displaying state-of- the-art electrochemical performance (0.15 W/cm(2) at 80% fuel utilisation). Real annual data from an existing sewage plant were used as input to the model. From the input of 43 m(3)/h biogas (63% ...

  16. Complete relaxation of residual stresses during reduction of solid oxide fuel cells

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Chatzichristodoulou, Christodoulos; Hendriksen, Peter Vang

    2015-01-01

    To asses the reliability of solid oxide fuel cell (SOFC) stacks during operation, the stress field in the stack must be known. During operation the stress field will depend on time as creep processes relax stresses. This work reports further details on a newly discovered creep phenomenon...... reduce significantly over minutes. In this work the stresses are measured in-situ before and after the reduction by use of XRD. The phenomenon of accelerated creep has to be considered both in the production of stacks and in the analysis of the stress field in a stack based on anode supported SOFCs....

  17. Solid Oxide Electrolyser Cell

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard

    Solid oxide fuel cells (SOFCs) produced at Risø National Laboratory was tested as steam electrolysers under various current densities, operating temperatures and steam partial pressures. At 950 °C and a cell voltage of 1.48V the current density was -3.6A/cm2 with app. 30% H2 + 70% H2O in the inlet...... it is possible to achieve a production price of 0.7 US$/kg H2 with an electricity price of 1.3 US¢/kWh. The cell voltage was measured as function of time. In test ofabout two month of duration a long-term degradation was observed. At 850 °C, -0.5 A/cm2 with 50 vol% H2 the degradation rate was app. 20 mV/1000h...

  18. Catalytic Enhancement of Solid Carbon Oxidation in HDCFCs

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Ippolito, Davide; Kammer Hansen, Kent

    2014-01-01

    data as a function of temperature, anode and cathode atmospheres, and their flow rates are discussed. In the anode chamber, catalysts are mixed with the carbon-carbonate mixture. These catalysts include various manganese oxides (MnO2, Mn2O3, and Mn3O4, Fig. 1) and doped-ceria (CeO2, Ce1-xGdxO2, Ce1-x......RExO2 (RE = Pr, Gd, Sm, etc.)), the effectiveness of these families of catalysts are discussed with respect to electrochemical, chemical and post-mortem analysis. Fig. 1. Current-potential-power density curves acquired for a blank (SiC) and manganese oxide (MnO2, Mn2O3, Mn3O4) catalysts suspended......Hybrid direct carbon fuel cells (HDCFCs) consisting of a solid carbon (carbon black)-molten carbonate ((62-38 wt% Li-K)2CO3) mixtures in the anode chamber of an anode-supported solid oxide fuel cell (SOFC)-type full-cell (NiO-yttria-stablized zirconia (YSZ)|YSZ|lanthanum strontium manganite (LSM...

  19. A Stability Study of Ni/Yttria-Stabilized Zirconia Anode for Direct Ammonia Solid Oxide Fuel Cells.

    Science.gov (United States)

    Yang, Jun; Molouk, Ahmed Fathi Salem; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2015-12-30

    In recent years, solid oxide fuel cells fueled with ammonia have been attracting intensive attention. In this work, ammonia fuel was supplied to the Ni/yttria-stabilized zirconia (YSZ) cermet anode at 600 and 700 °C, and the change of electrochemical performance and microstructure under the open-circuit state was studied in detail. The influence of ammonia exposure on the microstructure of Ni was also investigated by using Ni/YSZ powder and Ni film deposited on a YSZ disk. The obtained results demonstrated that Ni in the cermet anode was partially nitrided under an ammonia atmosphere, which considerably roughened the Ni surface. Moreover, the destruction of the anode support layer was confirmed for the anode-supported cell upon the temperature cycling test between 600 and 700 °C because of the nitriding phenomenon of Ni, resulting in severe performance degradation.

  20. Perspectives on the metallic interconnects for solid oxide fuel cells

    Institute of Scientific and Technical Information of China (English)

    ZHU Wei-zhong; YAN Mi

    2004-01-01

    The various stages and progress in the development of interconnect materials for solid oxide fuel cells (SOFCs) over the last two decades are reviewed. The criteria for the application of materials as interconnects are highlighted. Interconnects based on lanthanum chromite ceramics demonstrate many inherent drawbacks and therefore are only useful for SOFCs operating around 1000 ℃. The advance in the research of anode-supported flat SOFCs facilitates the replacement of ceramic interconnects with metallic ones due to their significantly lowered working temperature. Besides, interconnects made of metals or alloys offer many advantages as compared to their ceramic counterpart. The oxidation response and thermal expansion behaviors of various prospective metallic interconnects are examined and evaluated. The minimization of contact resistance to achieve desired and reliable stack performance during their projected lifetime still remains a highly challenging issue with metallic interconnects. Inexpensive coating materials and techniques may play a key role in pro moting the commercialization of SOFC stack whose interconnects are constructed of some current commercially available alloys. Alternatively, development of new metallic materials that are capable of forming stable oxide scales with sluggish growth rate and sufficient electrical conductivity is called for.

  1. Detailed characterization of anode-supported SOFCs by impedance spectroscopy

    DEFF Research Database (Denmark)

    Barfod, R.; Mogensen, Mogens Bjerg; Klemensø, Trine;

    2007-01-01

    Anode-supported thin electrolyte cells are studied by electrochemical impedance spectroscopy (EIS). The aim is to describe how the losses of this type of cells are distributed at low current density (around open-circuit voltage) as a function of temperature. An equivalent circuit consisting...

  2. Solid oxide electrolyser cell

    Energy Technology Data Exchange (ETDEWEB)

    Hoejgaard Jensen, S.

    2006-12-15

    Solid oxide fuel cells (SOFCs) produced at Riso National Laboratory was tested as steam electrolysers under various current densities, operating temperatures and steam partial pressures. At 950 deg. C and a cell voltage of 1.48V the current density was -3.6 A/cm{sup 2} with app. 30% H{sub 2} + 70% H{sub 2}O in the inlet gas and a H{sub 2}O utilization of app. 40%. The tested SOECs were also used for CO{sub 2} electrolysis. Economy studies of CO and H2 production show that especially H{sub 2} production can be competitive in areas with cheap electricity. Assuming the above described initial performance and a lifetime of 10 years it is possible to achieve a production price of 0.7 US dollar/kg H{sub 2} with an electricity price of 1.3 US cent/kWh. The cell voltage was measured as function of time. In test of about two month of duration a long-term degradation was observed. At 850 deg. C, -0.5 A/cm{sup 2} with 50 vol% H{sub 2} the degradation rate was app. 20 mV/1000h. It was shown that the degradation happens at Ni/YSZ-electrode. The long term degradation is probably caused by coarsening of the Ni-particles. After onset of electrolysis operation a transient passivation/reactivation phenomena with duration of several days was observed. It was shown that the phenomenon is attributed to the SiO{sub 2} contamination at the Ni/YSZ electrode-electrolyte interface. The SiO{sub 2} arises from the albite glass sealing (NaAlSi{sub 3}O{sub 8}) that surrounds the electrode. Si may enter the Ni/YSZ electrode via the reaction Si(OH){sub 4}(g) {r_reversible} SiO{sub 2}(l)+H{sub 2}O(g). At the active sites of the Ni/YSZ electrode steam is reduced via the reaction H{sub 2}O - 2e {yields} H{sub 2}+O{sup 2-} . This shifts the equilibrium of the first reaction to form SiO{sub 2}(l) at the active sites. After a certain time the sealing crystallizes and the SiO{sub 2}(l) evaporates from the active sites and the cell reactivates. The passivation is shown to relate to a build up of a

  3. Electrochemical, structural and surface characterization of nickel/zirconia solid oxide fuel cell anodes in coal gas containing antimony

    Science.gov (United States)

    Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Thomsen, Edwin C.; Nachimuthu, Ponnusamy; Edwards, Danny J.

    The interactions of antimony with the nickel-zirconia anode in solid oxide fuel cells (SOFCs) have been investigated. Tests with both anode-supported and electrolyte-supported button cells were performed at 700 and 800 °C in synthetic coal gas containing 100 ppb to 9 ppm antimony. Minor performance loss was observed immediately after Sb introduction to coal gas resulting in ca. 5% power output drop. While no further degradation was observed during the following several hundred hours of testing, cells abruptly and irreversibly failed after 800-1600 h depending on Sb concentration and test temperature. Antimony was found to interact strongly with nickel resulting in extensive alteration phase formation, consistent with expectations based on thermodynamic properties. Nickel antimonide phases, NiSb and Ni 5Sb 2, were partially coalesced into large grains and eventually affected electronic percolation through the anode support. Initial degradation was attributed to diffusion of antimony to the active anode/electrolyte interface to form an adsorption layer, while the late stage degradation was due the Ni-Sb phase formation. Assuming an average Sb concentration in coal gas of 0.07 ppmv, a 500 μm thick Ni/zirconia anode-supported cell is not expected to fail within 7 years when operated at a power output of 0.5 W cm -2 and fuel utilization above 50%.

  4. Solid oxide electrochemical reactor science.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea; Key, Robert J. (Colorado School of Mines, Golden, CO)

    2010-09-01

    Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

  5. A Review of RedOx Cycling of Solid Oxide Fuel Cells Anode

    Directory of Open Access Journals (Sweden)

    Jan Van herle

    2012-08-01

    Full Text Available Solid oxide fuel cells are able to convert fuels, including hydrocarbons, to electricity with an unbeatable efficiency even for small systems. One of the main limitations for long-term utilization is the reduction-oxidation cycling (RedOx cycles of the nickel-based anodes. This paper will review the effects and parameters influencing RedOx cycles of the Ni-ceramic anode. Second, solutions for RedOx instability are reviewed in the patent and open scientific literature. The solutions are described from the point of view of the system, stack design, cell design, new materials and microstructure optimization. Finally, a brief synthesis on RedOx cycling of Ni-based anode supports for standard and optimized microstructures is depicted.

  6. A Reversible Planar Solid Oxide Fuel-Fed Electrolysis Cell and Solid Oxide Fuel Cell for Hydrogen and Electricity Production Operating on Natural Gas/Biomass Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Greg, G.

    2007-03-31

    A solid oxide fuel-assisted electrolysis technique was developed to co-generate hydrogen and electricity directly from a fuel at a reduced cost of electricity. Solid oxide fuel-assisted electrolysis cells (SOFECs), which were comprised of 8YSZ electrolytes sandwiched between thick anode supports and thin cathodes, were constructed and experimentally evaluated at various operation conditions on lab-level button cells with 2 cm2 per-cell active areas as well as on bench-scale stacks with 30 cm2 and 100 cm2 per-cell active areas. To reduce the concentration overpotentials, pore former systems were developed and engineered to optimize the microstructure and morphology of the Ni+8YSZ-based anodes. Chemically stable cathode materials, which possess good electronic and ionic conductivity and exhibit good electrocatalytic properties in both oxidizing and reducing gas atmospheres, were developed and materials properties were investigated. In order to increase the specific hydrogen production rate and thereby reduce the system volume and capital cost for commercial applications, a hybrid system that integrates the technologies of the SOFEC and the solid-oxide fuel cell (SOFC), was developed and successfully demonstrated at a 1kW scale, co-generating hydrogen and electricity directly from chemical fuels.

  7. Solid oxide fuel cell performance under severe operating conditions

    DEFF Research Database (Denmark)

    Koch, Søren; Hendriksen, P.V.; Mogensen, Mogens Bjerg;

    2006-01-01

    The performance and degradation of Solid Oxide Fuel Cells (SOFC) were studied under severe operating conditions. The cells studied were manufactured in a small series by ECN, in the framework of the EU funded CORE-SOFC project. The cells were of the anode-supported type with a double layer LSM...... cathode. They were operated at 750 °C or 850 °C in hydrogen with 5% or 50% water at current densities ranging from 0.25 A cm–2 to 1 A cm–2 for periods of 300 hours or more. The area specific cell resistance, corrected for fuel utilisation, ranged between 0.20 Ω cm2 and 0.34 Ω cm2 at 850 °C and 520 m......V, and between 0.51 Ω cm2 and 0.92 Ω cm2 at 750 °C and 520 mV. The degradation of cell performance was found to be low (ranging from 0 to 8%/1,000 hours) at regular operating conditions. Voltage degradation rates of 20 to 40%/1,000 hours were observed under severe operating conditions, depending on the test...

  8. Solid oxide fuel cell material research in SICCAS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.; Ye, X.; Zen, F.; Li, J.; Shi, J.; Wen, T. [Chinese Academy of Sciences, Shanghai Inst. of Ceramics, Shanghai (China). CAS Key Laboratory of Materials for Energy Conversion

    2010-07-01

    A fuel cell is a device that transfers the chemical energy of fuels directly to electricity. Because its high operating temperature enables the further application of the co-generated heat, the solid oxide fuel cell (SOFC) has the highest efficiency in different types of fuel cells. SICCAS has almost 15 years of experience in the research, development and manufacture of planar type SOFCs. In order to reduce the cost, extend the life time, and propel the commercialization of SOFCs, the company is now focusing on intermediate temperature SOFCs following an international tendency in this direction. Two options for reducing the operating temperatures involve decreasing the thickness of the electrolyte or adopting new materials with higher conductivity. This paper presented a study that used both these methods to make nickel (Ni)/yttria stabilized zirconia (YSZ) anode supported scandia-stabilized zirconia electrolyte composite membranes, using an astrocyte-derived extracellullar matrix (ASECM) with the tape casting technique. In order to evaluate various cathodes, single cells were also constructed on the ASECM. It was concluded that a cell with LBSM-GDC cathode could exhibit good activity, and the output power density reached 0.738W/cm2 at 750 degrees Celsius.

  9. Solid Oxide Fuel Cell Experimental Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s Solid Oxide Fuel Cell Experimental Laboratory in Morgantown, WV, gives researchers access to models and simulations that predict how solid oxide fuel cells...

  10. Manufacturing of anode supported SOFCs: Processing parameters and their influence

    DEFF Research Database (Denmark)

    Ramousse, Severine; Menon, Mohan; Brodersen, Karen;

    2007-01-01

    The establishment of low cost, highly reliable and reproducible manufacturing processes has been focused for commercialization of SOFC technology. A major challenge in the production chain is the manufacture of anode-supported planar SOFC's single cells in which each layer in a layered structure...... contains a complex microstructure. In order to improve the cell performance as well as reducing the processing costs, it has been found necessary to consider the process chain holistically, because successful manufacture of such a cell and the achievement of optimal final properties depend on each...

  11. Durability of Solid Oxide Cells

    DEFF Research Database (Denmark)

    Knibbe, Ruth; Hauch, Anne; Hjelm, Johan;

    2011-01-01

    In recent years extended focus has been placed on monitoring and understanding degradation mechanisms in both solid oxide fuel cells and solid oxide electrolysis cells. The time-consuming nature of degradation experiments and the disparate conclusions from experiment reproductions indicates...... that not all degradation mechanisms are fully understood. Traditionally, cell degradation has been attributed to the materials, processing and cell operating conditions. More recently, focus has been placed on the effect of raw material and gas impurities and their long-term effect on cell degradation. Minor...... impurities have been found to play a significant role in degradation and in some cases can overshadow the cell operation condition related degradation phenomenon. In this review, several degradation diagnostic tools are discussed, a benchmark for a desirable degradation rate is proposed and degradation...

  12. Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration

    Directory of Open Access Journals (Sweden)

    D. Mogensen

    2014-01-01

    Full Text Available The kinetics of catalytic steam reforming of methane over an Ni-YSZ anode of a solid oxide fuel cell (SOFC have been investigated with the cell placed in a stack configuration. In order to decrease the degree of conversion, a single cell stack with reduced area was used. Measurements were performed in the temperature range 600–800°C and the partial pressures of all reactants and products were varied. The obtained rates could be well fitted with a power law expression (r ∝PCH40.7. A simple model is presented which is capable of predicting the methane conversion in a stack configuration from intrinsic kinetics of the anode support material. The predictions are compared with the stack measurements presented here, and good agreement is observed.

  13. In-situ quantification of solid oxide fuel cell electrode microstructure by electrochemical impedance spectroscopy

    Science.gov (United States)

    Zhang, Yanxiang; Chen, Yu; Chen, Fanglin

    2015-03-01

    Three-dimensional (3D) microstructure of solid oxide fuel cell electrodes plays critical roles in determining fuel cell performance. The state-of-the-art quantification technique such as X-ray computed tomography enables direct calculation of geometric factors by 3D microstructure reconstruction. Taking advantages of in-situ, fast-responding and low cost, electrochemical impedance spectroscopy represented by distribution of relaxation time (DRT) is a novel technique to estimate geometric properties of fuel cell electrodes. In this study, we employed the anode supported cells with the cell configuration of Ni-YSZ || YSZ || LSM-YSZ as an example and compared the tortuosity factor of pores of the anode substrate layer by X-ray computed tomography and DRT analysis. Good agreement was found, validating the feasibility of in-situ microstructural quantification by using the DRT technique.

  14. Biogas from the organic fraction of municipal solid waste: dealing with contaminants for a solid oxide fuel cell energy generator.

    Science.gov (United States)

    Papurello, Davide; Lanzini, Andrea; Leone, Pierluigi; Santarelli, Massimo; Silvestri, Silvia

    2014-11-01

    The present work investigates electricity production using a high efficiency electrochemical generator that employs as fuel a biogas from the dry anaerobic digestion of the organic fraction of municipal solid waste (OFMSW). The as-produced biogas contains several contaminants (sulfur, halogen, organic silicon and aromatic compounds) that can be harmful for the fuel cell: these were monitored via an innovative mass spectrometry technique that enables for in-line and real-time quantification. A cleaning trap with activated carbons for the removal of sulfur and other VOCs contained in the biogas was also tested and monitored by observing the different breakthrough times of studied contaminants. The electrochemical generator was a commercial Ni anode-supported planar Solid Oxide Fuel Cell (SOFC), tested for more than 300 h with a simulated biogas mixture (CH4 60 vol.%, CO2 40 vol.%), directly fed to the anode electrode. Air was added to promote the direct internal conversion of CH4 to H2 and CO via partial oxidation (POx). The initial breakthrough of H2S from the cleaning section was also simulated and tested by adding ∼1 ppm(v) of sulfur in the anode feed; a full recovery of the fuel cell performance after 24h of sulfur exposure (∼1 ppm(v)) was observed upon its removal, indicating the reliable time of anode exposure to sulfur in case of exhausted guard bed.

  15. Solid-oxide fuel cell electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, I.D.; Hash, M.C.; Krumpelt, M.

    1991-12-31

    This invention is comprised of a solid-oxide electrolyte operable at between 600{degrees}C and 800{degrees}C and a method of producing the solid-oxide electrolyte. The solid-oxide electrolyte comprises a combination of a compound having a weak metal-oxygen interactions with a compound having stronger metal-oxygen interactions whereby the resulting combination has both strong and weak metal-oxygen interaction properties.

  16. Sulfated binary and trinary oxide solid superacids

    Institute of Scientific and Technical Information of China (English)

    缪长喜; 华伟明; 陈建民; 高滋

    1996-01-01

    A series of sulfated binary and trinary oxide solid superacids were prepared, and their catalytic activities for n-butane isomerization at low temperature were measured. The incorporation of different metal oxides into ZrO2 may produce a positive or negative effect on the acid strength and catalytic activity of the solid superacids. Sulfated oxides of Cr-Zr, Fe-Cr-Zr and Fe-V-Zr are 2 - 3 times more active than the reported sulfated Fe-Mn-Zr oxide. The enhancement in the superacidity and catalytic activity of these new solid superacids has been discussed on account of the results of various characteriation techniques.

  17. High performance single step co-fired solid oxide fuel cells (SOFC): Polarization measurements and analysis

    Science.gov (United States)

    Yoon, Kyung Joong

    At present, one of the major obstacles for the commercialization of solid oxide fuel cell (SOFC) power systems is their high manufacturing costs expressed in terms of SOFC system cost per unit power ($/kW). In this work, anode-supported planar SOFCs were fabricated by a cost-competitive single step co-firing process. The cells were comprised of a porous Ni + yittria-stabilized zirconia (YSZ) anode support, a porous-fine-grained Ni + YSZ anode active layer for some experiments, a dense YSZ electrolyte, a porous-fine-grained Ca-doped LaMnO3 (LCM) + YSZ cathode active layer, and a porous LCM cathode current collector layer. The fabrication process involved tape casting or high shear compaction (HSC) of the anode support followed by screen printing of the remaining component layers. The cells were then co-fired at 1300˜1340°C for 2 hours. The performance of the cell fabricated with the tape casting anode was improved by minimizing various polarization losses through experimental and theoretical modeling approaches, and the maximum power density of 1.5 W/cm 2 was obtained at 800°C with humidified hydrogen (3% H2O) and air. The cells were also tested with various compositions of humidified hydrogen (3˜70% H2O) to simulate the effect of practical fuel utilization on the cell performance. Based on these measurements, an analytical model describing anodic reactions was developed to understand reaction kinetics and rate limiting steps. The cell performance at high fuel utilization was significantly improved by increasing the number of the reaction sites near the anode-electrolyte interface. For anode substrate fabrication, the HSC process offers many advantages such as low fabrication costs, high production throughput, and good control of shrinkage and thickness over the conventional tape casting process. HSC process was successfully employed in single step co-firing process, and SOFCs fabricated with HSC anodes showed adequate performance both at low and high fuel

  18. High performance metal-supported solid oxide fuel cells with Gd-doped ceria barrier layers

    DEFF Research Database (Denmark)

    Klemensø, Trine; Nielsen, Jimmi; Blennow Tullmar, Peter;

    2011-01-01

    , and an electrochemical performance beyond the state-of-the-art anode-supported SOFC is demonstrated possible, by introducing a CGO barrier layer in combination with Sr-doped lanthanum cobalt oxide (LSC) cathode. Area specific resistances (ASR) down to 0.27 Ω cm2, corresponding to a maximum power density of 1.14 W cm−2...

  19. MATERIAL AND PROCESS DEVELOPMENT LEADING TO ECONOMICAL HIGH-PERFORMANCE THIN-FILM SOLID OXIDE FUEL CELLS. Final Technical Report (October 2000 - December 2003)

    International Nuclear Information System (INIS)

    This report summarizes the results of the work conducted under the program: ''Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells'' under contract number DE-AC26-00NT40711. The program goal is to advance materials and processes that can be used to produce economical, high-performance solid oxide fuel cells (SOFC) capable of achieving extraordinary high power densities at reduced temperatures. Under this program, anode-supported thin electrolyte based on lanthanum gallate (LSMGF) has been developed using tape-calendering process. The fabrication parameters such as raw materials characteristics, tape formulations and sintering conditions have been evaluated. Dense anode supported LSGMF electrolytes with thickness range of 10-50 micron have been fabricated. High performance cathode based on Sr0.5Sm0.5CoO3 (SSC) has been developed. Polarization of ∼0.23 ohm-cm2 has been achieved at 600 C with Sr0.5Sm0.5CoO3cathode. The high-performance SSC cathode and thin gallate electrolyte have been integrated into single cells and cell performance has been characterized. Tested cells to date generally showed low performance because of low cell OCVs and material interactions between NiO in the anode and lanthanum gallate electrolyte

  20. Review: Perspectives on the metallic interconnects for solid oxide fuel cells

    Institute of Scientific and Technical Information of China (English)

    ZHUWei-zhong; YANMi

    2004-01-01

    The various stages and progress in the development of interconnect materials for solid oxide fuel cells (SOFCs )over the last two decades are reviewed. The criteria for the application of materials as interconnects are highlighted. Interconnects based on lanthanum chromite ceramics demonstrate many inherent drawbacks and therefore are only useful for SOFCs operating around 1000℃. The advance in the research of anode-supported flat SOFCs facilitates the replacement of ceramic interconnects with metallic ones due to their significantly lowered working temperature. Besides, interconnects made of metals or alloys offer many advantages as compared to their ceramic counterpart. The oxidation response and thermal expansion behaviors of various prospective metallic interconnects are examined and evaluated. The minimization of contact resistance to achieve desired and reliable stack performance during their projected lifetime still remains a highly challenging issue with metallic interconnects. Inexpensive coating materials and techniques may play a key role in promoting the commercialization of SOFC stack whose interconnects are constructed of some current commercially available alloys. Alternatively, development of new metallic materials that are capable of forming stable oxide scales with sluggish growth rate and sufficient electrical conductivity is called for.

  1. Solid oxide materials research accelerated electrochemical testing

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, C.; Arey, B.

    1995-08-01

    The objectives of this work were to develop methods for accelerated testing of cathode materials for solid oxide fuel cells under selected operating conditions. The methods would be used to evaluate the performance of LSM cathode material.

  2. Effect of samarium doped ceria nanoparticles impregnation on the performance of anode supported SOFC with(Pr_(0.7)Ca_(0.3))_(0.9)MnO_(3-δ) cathode

    Institute of Scientific and Technical Information of China (English)

    熊麟; 王绍荣; 王振荣; 温珽琏

    2010-01-01

    Solid oxide fuel cell(SOFC) electrodes,after a high temperature sintering,may be impregnated to deposit nanoparticles within their pores to enhance the catalytic function.Samarium doped CeO2(SDC) nanoparticles were infiltrated into(Pr0.7Ca0.3)0.9MnO3-δ(PCM) cathode of anode supported SOFC cells.The cell with 2.6 mg/cm2 SDC impregnated in cathode showed the maximum power density of 580 mW/cm2 compared with 310 mW/cm2 of the cell without impregnation at 850 °C.The cells were also characterized with the impeda...

  3. Methane-free biogas for direct feeding of solid oxide fuel cells

    Science.gov (United States)

    Leone, P.; Lanzini, A.; Santarelli, M.; Calì, M.; Sagnelli, F.; Boulanger, A.; Scaletta, A.; Zitella, P.

    This paper deals with the experimental analysis of the performance and degradation issues of a Ni-based anode-supported solid oxide fuel cell fed by a methane-free biogas from dark-anaerobic digestion of wastes by pastry and fruit shops. The biogas is produced by means of an innovative process where the biomass is fermented with a pre-treated bacteria inoculum (Clostridia) able to completely inhibit the methanization step during the fermentation process and to produce a H 2/CO 2 mixture instead of conventional CH 4/CO 2 anaerobic digested gas (bio-methane). The proposed biogas production route leads to a biogas composition which avoids the need of introducing a reformer agent into or before the SOFC anode in order to reformate it. In order to analyse the complete behaviour of a SOFC with the bio-hydrogen fuel, an experimental session with several H 2/CO 2 synthetic mixtures was performed on an anode-supported solid oxide fuel cell with a Ni-based anode. It was found that side reactions occur with such mixtures in the typical thermodynamic conditions of SOFCs (650-800 °C), which have an effect especially at high currents, due to the shift to a mixture consisting of hydrogen, carbon monoxide, carbon dioxide and water. However, cells operated with acceptable performance and carbon deposits (typical of a traditional hydrocarbon-containing biogas) were avoided after 50 h of cell operation even at 650 °C. Experiments were also performed with traditional bio-methane from anaerobic digestion with 60/40 vol% of composition. It was found that the cell performance dropped after few hours of operation due to the formation of carbon deposits. A short-term test with the real as-produced biogas was also successfully performed. The cell showed an acceptable power output (at 800 °C, 0.35 W cm -2 with biogas, versus 0.55 W cm -2 with H 2) although a huge quantity of sulphur was present in the feeding fuel (hydrogen sulphide at 103 ppm and mercaptans up to 10 ppm). Therefore, it

  4. Microstructural and chemical changes after high temperature electrolysis in solid oxide electrolysis cell

    Energy Technology Data Exchange (ETDEWEB)

    Mahata, Arup; Datta, Pradyot; Basu, Rajendra N., E-mail: rnbasu@cgcri.res.in

    2015-04-05

    Highlights: • Hydrogen production by running SOEC single cell. • Delamination of anode layer from the electrolyte. • Lanthanum zirconate formation due to high partial pressure of oxygen at the anode. • Formation of yttrium silicate due to diffusion of silica at the cathode side. - Abstract: Degradation of solid oxide electrolysis cell is probably the main problem in the field of high temperature steam electrolysis. In this study two anode-supported solid oxide fuel cells were tested as a solid oxide electrolysis cell operating from 875 °C to 950 °C at the applied voltage of 1.5 V and 1.7 V respectively. Microstructural and chemical changes of the cell components were studied by field emission scanning electron microscope (FESEM), and X-ray diffraction (XRD) analysis before and after the electrolysis. FESEM analysis shows a delamination of anode layer from the electrolyte. Furthermore, formation of impurities like yttrium silicate at the cathode–electrolyte interface and lanthanum zirconate (LZ) at the anode–electrolyte interface were observed after electrolysis. It also reveals that lanthanum zicronate is formed only at the interfaces between anode functional layer La{sub 0.65}Sr{sub 0.3}MnO{sub 3−δ} (LSM)/8 mol% yttria stabilized zirconia (YSZ) and electrolyte layer (YSZ) but not at the whole anode layer. Formation of LZ is attributed to the high partial pressure of oxygen at the anode–electrolyte interface while yttrium silicate is formed due to the diffusion of silica from glass sealant into the cathode layer.

  5. DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

    2004-06-12

    This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

  6. Supercritical water oxidation - Microgravity solids separation

    Science.gov (United States)

    Killilea, William R.; Hong, Glenn T.; Swallow, Kathleen C.; Thomason, Terry B.

    1988-01-01

    This paper discusses the application of supercritical water oxidation (SCWO) waste treatment and water recycling technology to the problem of waste disposal in-long term manned space missions. As inorganic constituents present in the waste are not soluble in supercritical water, they must be removed from the organic-free supercritical fluid reactor effluent. Supercritical water reactor/solids separator designs capable of removing precipitated solids from the process' supercritical fluid in zero- and low- gravity environments are developed and evaluated. Preliminary experiments are then conducted to test the concepts. Feed materials for the experiments are urine, feces, and wipes with the addition of reverse osmosis brine, the rejected portion of processed hygiene water. The solid properties and their influence on the design of several oxidation-reactor/solids-separator configurations under study are presented.

  7. Durable and Robust Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Hjalmarsson, Per; Knibbe, Ruth; Hauch, Anne;

    The solid oxide fuel cell (SOFC) is an attractive technology for the generation of electricity with high efficiency and low emissions. Risø DTU (now DTU Energy Conversion) works closely together with Topsoe Fuel Cell A/S in their effort to bring competitive SOFC systems to the market. This 2-year...... project had as one of its’ overarching goals to improve durability and robustness of the Danish solid oxide fuel cells. The project focus was on cells and cell components suitable for SOFC operation in the temperature range 600 – 750 °C. The cells developed and/or studied in this project are intended...

  8. Stability of solid oxide fuel cell materials

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, T.R.; Bates, J.L.; Chick, L.A. [Pacific Northwest Lab., Richland, WA (United States)

    1996-04-01

    Interconnection materials in a solid oxide fuel cell are exposed to both highly oxidizing conditions at the cathode and to highly reducing conditions at the anode. The thermal expansion characteristics of substituted lanthanum and yttrium chromite interconnect materials were evaluated by dilatometry as a function of oxygen partial pressures from 1 atm to 10{sup -18} atm, controlled using a carbon dioxide/hydrogen buffer.

  9. Insights into CO poisoning in high performance proton-conducting solid oxide fuel cells

    Science.gov (United States)

    Yan, Ning; Fu, Xian-Zhu; Chuang, Karl T.; Luo, Jing-Li

    2014-05-01

    High performance anode supported proton-conducting solid oxide fuel cells (PC-SOFC) were fabricated and their performance in syngas was studied. PC-SOFC button cells produced a maximum power density of 812 mW cm-2 in H2 at 750 °C. It was found that the CO-containing feed streams could drastically degrade the performance of PC-SOFC. Based on the experimental results and the theoretical analysis, the detailed process of the CO-induced Ni catalyst deactivation was identified. This process could be divided into three distinguishable stages during the continuous exposure of the Ni catalyst in the CO-containing environment. The first stage could be described using the CO surface active site blocking mechanism, which was further confirmed by CO/H2 competitive adsorption model. The second stage deactivation was proposed to be related to the carbon deposition at TPB (Triple-phase Boundary). The deactivation during this stage was accelerated by the electrochemical conversion of H2. The last stage was attributed to the coking of Ni catalyst and the resulted metal dusting effect.

  10. Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Technology for Auxiliary Aerospace Power

    Science.gov (United States)

    Steffen, Christopher J., Jr.; Freeh, Joshua E.; Larosiliere, Louis M.

    2005-01-01

    A notional 440 kW auxiliary power unit has been developed for 300 passenger commercial transport aircraft in 2015AD. A hybrid engine using solid-oxide fuel cell stacks and a gas turbine bottoming cycle has been considered. Steady-state performance analysis during cruise operation has been presented. Trades between performance efficiency and system mass were conducted with system specific energy as the discriminator. Fuel cell performance was examined with an area specific resistance. The ratio of fuel cell versus turbine power was explored through variable fuel utilization. Area specific resistance, fuel utilization, and mission length had interacting effects upon system specific energy. During cruise operation, the simple cycle fuel cell/gas turbine hybrid was not able to outperform current turbine-driven generators for system specific energy, despite a significant improvement in system efficiency. This was due in part to the increased mass of the hybrid engine, and the increased water flow required for on-board fuel reformation. Two planar, anode-supported cell design concepts were considered. Designs that seek to minimize the metallic interconnect layer mass were seen to have a large effect upon the system mass estimates.

  11. Experimental investigations and modeling of direct internal reforming of biogases in tubular solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lanzini, A.; Leone, P.; Pieroni, M.; Santarelli, M. [Dipartimento di Energetica, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10129, Torino (Italy); Beretta, D.; Ginocchio, S. [Centro Ricerca e Sviluppo, Edison S.p.a, Via La Pira 2, IT-10028 Trofarello, Torino (Italy)

    2011-10-15

    Biogas-fed Solid Oxide Fuel Cell (SOFC) systems can be considered as interesting integrated systems in the framework of distributed power generation. In particular, bio-methane and bio-hydrogen produced from anaerobic digestion of organic wastes represent renewable carbon-neutral fuels for high efficiency electrochemical generators. With such non-conventional mixtures fed to the anode of the SOFC, the interest lies in understanding the multi-physics phenomena there occurring and optimizing the geometric and operation parameters of the SOFC, while avoiding operating and fuel conditions that can lead to or accelerate degradation processes. In this study, an anode-supported (Ni-YSZ) tubular SOFC was considered; the tubular geometry enables a relatively easy separation of the air and fuel reactants and it allows one to evaluate the temperature field of the fuel gas inside the tube, which is strictly related to the electrochemical and heterogeneous chemical reactions occurring within the anode volume. The experiments have been designed to analyze the behavior of the cell under different load and fuel utilization (FU) conditions, providing efficiency maps for both fuels. The experimental results were used to validate a multi-physics model of the tubular cell. The model showed to be in good agreement with the experimental data, and was used to study the sensitive of some selected geometrical parameters modification over the cell performances. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Optimization of the Interconnect Ribs for a Cathode-Supported Solid Oxide Fuel Cell

    Directory of Open Access Journals (Sweden)

    Wei Kong

    2014-01-01

    Full Text Available A comprehensive mathematical model of the performance of the cathode-supported solid oxide fuel cell (SOFC with syngas fuel is presented. The model couples the intricate interdependency between the ionic conduction, electronic conduction, gas transport, the electrochemical reaction processes in the functional layers and on the electrode/electrolyte interfaces, methane steam reforming (MSR and the water gas shift reaction (WGSR. The validity of the mathematical model is demonstrated by the excellent agreement between the numerical and experimental I-V curves. The effect of anode rib width and cathode rib width on gas diffusion and cell performance is examined. The results show conclusively that the cell performance is strongly influenced by the rib width. Furthermore, the anode optimal rib width is smaller than that for cathode, which is contrary to anode-supported SOFC. Finally, the formulae for the anode and cathode optimal rib width are given, which provide an easy to use guidance for the broad SOFC engineering community.

  13. In situ catalyzed Boudouard reaction of coal char for solid oxide-based carbon fuel cells with improved performance

    International Nuclear Information System (INIS)

    Highlights: • Industrial coal char was used as a fuel for solid oxide-based carbon fuel cells. • The Boudouard reactivity of coal char is higher than that of a commercial activated carbon. • The mineral matter in coal char has a catalytic effect on the Boudouard reaction. • Added catalysts and the inherent catalysts synergetically improved cell output. - Abstract: The use of industrial coal char as a fuel source for an anode-supported solid oxide-based carbon fuel cell (SO-CFC) with a yttrium-stabilized zirconia electrolyte and La0.8Sr0.2MnO3 cathode was investigated. Both the Boudouard reactivity and electrochemical performance of the coal char samples are higher than those of activated carbon samples under the same conditions. The inherent catalytic activity of the metal species (FemOn, CaO, etc.) in the coal char mineral matter leads to good cell performance, even in the absence of an external catalyst. For example, the peak power density of a cell fueled with pure coal char is 100 mW cm−2 at 850 °C, and that of a cell fueled with coal char impregnated with an FemOn-alkaline metal oxide catalyst is 204 mW cm−2. These results suggest that using coal char as the fuel in SO-CFCs might be an attractive way to utilize abundant coal resources cleanly and efficiently, providing an alternative for future power generation

  14. Nanocrystalline cerium oxide materials for solid fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, Kyle S

    2015-05-05

    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.

  15. Solid oxide MEMS-based fuel cells

    Science.gov (United States)

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2007-03-13

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  16. Three-dimensional Modeling of Anode-supported Planar SOFC with Direct Internal Reforming

    NARCIS (Netherlands)

    Qu, Z.; Aravind, P.V.; Ye, H.; Dekker, N.J.J.; Woudstra, N.; Verkooijen, A.H.M.

    2009-01-01

    This paper presents a three-dimensional model of an anode-supported planar SOFC with corrugated bipolar plates serving as gas channels and current collector above the active area of the cell, based on the direct internal reforming reaction of methane and the electrochemical reaction of hydrogen. A c

  17. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    Energy Technology Data Exchange (ETDEWEB)

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; John Noetzel; Larry Chick

    2003-12-08

    The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from January 1, 2003 to June 30, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; and Task 9 Stack Testing with Coal-Based Reformate.

  18. Solid oxide cell stack and method for preparing same

    DEFF Research Database (Denmark)

    2012-01-01

    A method for producing and reactivating a solid oxide cell stack structure by providing a catalyst precursor in at least one of the electrode layers by impregnation and subsequent drying after the stack has been assembled and initiated. Due to a significantly improved performance and an unexpecte...... voltage improvement this solid oxide cell stack structure is particularly suitable for use in solid oxide fuel cell (SOFC) and solid oxide electrolysing cell (SOEC) applications....

  19. Reviews on Solid Oxide Fuel Cell Technology

    OpenAIRE

    Apinan Soottitantawat; Arnornchai Arpornwichanop; Worapon Kiatkittipong; Wisitsree Wiyaratn; Navadol Laosiripojana; Suttichai Assabumrungrat

    2009-01-01

    Solid Oxide Fuel Cell (SOFC) is one type of high temperature fuel cell that appears to be one of the most promising technology to provide the efficient and clean energy production for wide range of applications (from small units to large scale power plants). This paper reviews the current status and related researches on SOFC technologies. In details, the research trend for the development of SOFC components(i.e. anode, electrolyte, cathode, and interconnect) are presented. Later, the current...

  20. Ni-Based Solid Oxide Cell Electrodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Holtappels, Peter

    2013-01-01

    . The main emphasis will be on the following subjects: (a) electronic conductivity of cermets, (b) dimensional and thermodynamic stability including redox cycling, © thermal expansion coefficient matching, (d) chemical compatibility with stack components and gaseous reactants and (e) electrode reaction......This paper is a critical review of the literature on nickel-based electrodes for application in solid oxide cells at temperature from 500 to 1000 _C. The applications may be fuel cells or electrolyser cells. The reviewed literature is that of experimental results on both model electrodes...... and practical composite cermet electrodes. A substantially longer three-phase boundary (TPB) can be obtained per unit area of cell in such a composite of nickel and electrolyte material, provided that two interwoven solid networks of the two solid and one gaseous phases are obtained to provide a three...

  1. Fabrication of lanthanum strontium cobalt ferrite (LSCF) cathodes for high performance solid oxide fuel cells using a low price commercial inkjet printer

    Science.gov (United States)

    Han, Gwon Deok; Neoh, Ke Chean; Bae, Kiho; Choi, Hyung Jong; Park, Suk Won; Son, Ji-Won; Shim, Joon Hyung

    2016-02-01

    In this study, we investigate a method to fabricate high quality lanthanum strontium cobalt ferrite (LSCF) cathodes for solid oxide fuel cells (SOFCs) using a commercial low price inkjet printer. The ink source is synthesized by dissolving the LSCF nanopowder in a water-based solvent with a proper amount of surfactants. Microstructures of the LSCF layer, including porosity and thickness per printing scan cycle, are adjusted by grayscale in the printing image. It is successfully demonstrated that anode-supported SOFCs with optimally printed LSCF cathodes can produce decent power output, i.e., a maximum peak power density of 377 mW cm-2 at 600 °C, in our experiment. We expect that this approach can support the quick and easy prototyping and evaluating of a variety of cathode materials in SOFC research.

  2. Process flow model of solid oxide fuel cell system supplied with sewage biogas

    Science.gov (United States)

    Van herle, J.; Maréchal, F.; Leuenberger, S.; Membrez, Y.; Bucheli, O.; Favrat, D.

    A model for a 100 kW class solid oxide fuel cell (SOFC) system running on biogas from a sewage sludge digestion plant was implemented in a process flow scheme using external steam reforming. The model stack consisted of planar anode supported cells operated at 800 °C displaying state-of-the-art electrochemical performance (0.15 W/cm 2 at 80% fuel utilisation). Real annual data from an existing sewage plant were used as input to the model. From the input of 43 m 3/h biogas (63% CH 4), equivalent to 269 kW (higher heating value, HHV), the SOFC stack was calculated to deliver 131 kW el electricity (48.7%) using a steam-to-carbon ratio of 0.5. This would allow the sewage site to more than cover its own electrical needs, hence to depollute the waste stream at negative energy cost. In its current exploitation using a low efficient gas engine (130 kW), the site is only ≈50% self-sufficient. Special attention was given to the thermal balance of the stack. The stack developed heat (143 kW) could be balanced by endothermal reforming (78 kW) and by cathode excess air λ (=3), allowing a temperature difference between stack inlet and outlet of 200 K. The case was compared to other fuel scenarios. Steam-added biogas behaves basically identically to steam-reformed methane. For partial oxidation of biogas or pure hydrogen feeding, electrical efficiency drops to under 43% while λ needs to be raised to 4.5 to maintain the 200 K thermal gradient over the stack.

  3. Metallic materials in solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    Willem Joseph Quadakkers

    2004-03-01

    Full Text Available Fe-Cr alloys with variations in chromium content and additions of different elements were studied for potential application in intermediate temperature Solid Oxide Fuel Cell (SOFC. Recently, a new type of FeCrMn(Ti/La based ferritic steels has been developed to be used as construction material for SOFC interconnects. In the present paper, the long term oxidation resistance of this class of steels in both air and simulated anode gas will be discussed and compared with the behaviour of a number of commercial available ferritic steels. Besides, in-situ studies were carried out to characterize the high temperature conductivity of the oxide scales formed under these conditions. Main emphasis will be put on the growth and adherence of the oxide scales formed during exposure, their contact resistance at service temperature as well as their interaction with various perovskite type contact materials. Additionally, parameters and protection methods in respect to the volatilization of chromia based oxide scales will be illustrated.

  4. Graphene oxide film as solid lubricant.

    Science.gov (United States)

    Liang, Hongyu; Bu, Yongfeng; Zhang, Junyan; Cao, Zhongyue; Liang, Aimin

    2013-07-10

    As a layered material, graphene oxide (GO) film is a good candidate for improving friction and antiwear performance of silicon-based MEMS devices. Via a green electrophoretic deposition (EPD) approach, GO films with tunable thickness in nanoscale are fabricated onto silicon wafer in a water solution. The morphology, microstructure, and mechanical properties as well as the friction coefficient and wear resistance of the films were investigated. The results indicated that the friction coefficient of silicon wafer was reduced to 1/6 its value, and the wear volume was reduced to 1/24 when using GO film as solid lubricant. These distinguished tribology performances suggest that GO films are expected to be good solid lubricants for silicon-based MEMS/NEMS devices. PMID:23786494

  5. Modeling mass transfer in solid oxide fuel cell anode: II. H2/CO co-oxidation and surface diffusion in synthesis-gas operation

    Science.gov (United States)

    Bao, Cheng; Jiang, Zeyi; Zhang, Xinxin

    2016-08-01

    Following the previous work on comparing performance of Fickian, Stefan-Maxwell and dusty-gas model for mass transfer in single fuel system, this article is focused on the electrochemistry and transport in the anode of solid oxide fuel cell using H2sbnd H2Osbnd COsbnd CO2sbnd N2 hybrid fuel. Under the standard framework of the dusty-gas model combined with the Butler-Volmer equation, it carries out a macroscopic area-specific modeling work. More specifically, two variables of hydrogen current fraction and enhancement factor are well defined and solved for the electrochemical co-oxidation of H2 and CO, and the diffusion equivalent circuit model is introduced to describe more comprehensively the resistance of mass transfer including molecular/Knudsen diffusion and surface diffusion. The model has been validated well in full region of Vsbnd I performance of an experimental anode-supported button cell. An approximate analytical solution of the hydrogen current fraction is also presented for explicit computation. Comparison between the results by different approaches for the effective diffusivity shows the importance of right mass-transfer modeling.

  6. Grain Boundary Effects in Solid Oxide Electrolytes

    Science.gov (United States)

    Ng, Mai

    Ion conducting ceramics are essential in applications such as solid oxide fuel cells and oxygen sensors. Traditional 8 mol% yttria-stabilized zirconia (8YSZ) solid oxide electrolytes operate at high temperatures (850°C-1000°C) to achieve high ionic conductivity (> 0.1 Scm-1 at 1000°C) by oxygen ion diffusion via vacancies. Operation at such temperatures requires high temperature electrode materials and shortens device lifetime due to interdiffusion and reactions at electrode/electrolyte interfaces. These concerns drive research in current systems and alternative materials to improve ionic conductivity at reduced operating temperatures. This research considers how grain size and grain boundary phases affect three electrolyte materials with different ion diffusion mechanisms. First, the conductivity of ultra-fine grained two-step sintered and large grained conventional sintered 8YSZ are compared to determine if enhanced ionic conductivity occurs supporting the theory that ion blocking impurities in grain boundaries are diluted with decreasing grain size. Second, apatite-type lanthanide silicates (Ln9.33(SiO4)6O2) which exhibit anisotropic interstitial oxygen diffusion at intermediate temperatures (400°C-800°C) are studied to determine whether grain boundaries detrimentally affect conductivity. Lastly, proton conducting La-monazite (LaPO4) is evaluated to determine the role of Sr-doping (up to 10% substitution of La with Sr) on grain size and conductivity as well as the effect of sintering in air or water vapor on the formation of intergranular phases rich in Sr and P. This research investigates grain boundary effects in three solid oxide electrolyte materials with the goal of understanding how grain boundaries affect ionic conductivity and the atomistic behavior governing these different diffusion mechanisms.

  7. Tubular solid oxide fuel cell current collector

    Science.gov (United States)

    Bischoff, Brian L.; Sutton, Theodore G.; Armstrong, Timothy R.

    2010-07-20

    An internal current collector for use inside a tubular solid oxide fuel cell (TSOFC) electrode comprises a tubular coil spring disposed concentrically within a TSOFC electrode and in firm uniform tangential electrical contact with the electrode inner surface. The current collector maximizes the contact area between the current collector and the electrode. The current collector is made of a metal that is electrically conductive and able to survive under the operational conditions of the fuel cell, i.e., the cathode in air, and the anode in fuel such as hydrogen, CO, CO.sub.2, H.sub.2O or H.sub.2S.

  8. Sealant materials for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Krumpelt, M.

    1995-08-01

    The objective of this work is to complete the development of soft glass-ceramic sealants for the solid oxide fuel cell (SOFC). Among other requirements, the materials must soften at the operation temperature of the fuel cell (600-1000{degrees}C) to relieve stresses between stack components, and their thermal expansions must be tailored to match those of the stack materials. Specific objectives included addressing the needs of industrial fuel cell developers, based on their evaluation of samples we supply, as well as working with commercial glass producers to achieve scaled-up production of the materials without changing their properties.

  9. Tubular solid oxide fuel cell development program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This paper presents an overview of the Westinghouse Solid Oxide Fuel Cell (SOFC) development activities and current program status. The Westinghouse goal is to develop a cost effective cell that can operate for 50,000 to 100,000 hours. Progress toward this goal will be discussed and test results presented for multiple single cell tests which have now successfully exceeded 56,000 hours of continuous power operation at temperature. Results of development efforts to reduce cost and increase power output of tubular SOFCs are described.

  10. Solid Oxide Fuel Cell Auxiliary Power Unit

    International Nuclear Information System (INIS)

    Solid Oxide Fuel Cell (SOFC) is an attractive, efficient, clean source of power for transportation, military, and stationary applications. Delphi has pioneered its application as an auxiliary Power Unit (APU) for transportation. Delphi is also interested in marketing this technology for stationary applications. Its key advantages are high efficiency and compatibility with gasoline, natural gas and diesel fuel. It's consistent with mechanizations that support the trend to low emissions. Delphi is committed to working with customers and partners to bring this novel technology to market

  11. Towards the next generation of solid oxide fuel cells operating below 600 c with chemically stable proton-conducting electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, Emiliana; Bi, Lei; Pergolesi, Daniele; Traversa, Enrico [International Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2012-01-10

    The need for reducing the solid oxide fuel cell (SOFC) operating temperature below 600 C is imposed by cost reduction, which is essential for widespread SOFC use, but might also disclose new applications. To this aim, high-temperature proton-conducting (HTPC) oxides have gained widespread interest as electrolyte materials alternative to oxygen-ion conductors. This Progress Report describes recent developments in electrolyte, anode, and cathode materials for protonic SOFCs, addressing the issue of chemical stability, processability, and good power performance below 600 C. Different fabrication methods are reported for anode-supported SOFCs, obtained using state-of-the-art, chemically stable proton-conducting electrolyte films. Recent findings show significant improvements in the power density output of cells based on doped barium zirconate electrolytes, pointing out towards the feasibility of the next generation of protonic SOFCs, including a good potential for the development of miniaturized SOFCs as portable power supplies. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. The Eff ect of Fabrication Conditions for GDC Buff er Layer on Electro chemical Performance of Solid Oxide Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    Jung-Hoon Song; Myung Geun Jung; Hye Won Park; Hyung-Tae Lim

    2013-01-01

    A Gd-doped ceria (GDC) buff er layer is required between a conventional yttria-stabilized zirconia (YSZ) electrolyte and a La-Sr-Co-Fe-O3 (LSCF) cathode to prevent their chemical reaction. In this study, the eff ect of varying the conditions for fabricating the GDC buff er layer, such as sintering temperature and amount of sintering aid, on the solid oxide fuel cell (SOFC) performance was investigated. A finer GDC powder (i.e., ultra-high surface area), a higher sintering temperature (∼1290℃), and a larger amount of sintering aid (∼12%) resulted in improved densification of the buff er layer; however, the electrochemical performance of an anode-supported cell containing this GDC buff er layer was poor. These conflicting results are attributed to the formation of (Zr, Ce)O2 and/or excess cobalt grain boundaries (GBs) at higher sintering temperatures with a large amount of sintering aid (i.e., cobalt oxide). A cell comprising of a cobalt-free GDC buff er layer, which was fabricated using a low-temperature process, had lower cell resistance and higher stability. The results indicate that electrochemical performance and stability of SOFCs strongly depend on fabrication conditions for the GDC buff er layer.

  13. Detailed dynamic Solid Oxide Fuel Cell modeling for electrochemical impedance spectra simulation

    Science.gov (United States)

    Hofmann, Ph.; Panopoulos, K. D.

    This paper presents a detailed flexible mathematical model for planar solid oxide fuel cells (SOFCs), which allows the simulation of steady-state performance characteristics, i.e. voltage-current density (V- j) curves, and dynamic operation behavior, with a special capability of simulating electrochemical impedance spectroscopy (EIS). The model is based on physico-chemical governing equations coupled with a detailed multi-component gas diffusion mechanism (Dusty-Gas Model (DGM)) and a multi-step heterogeneous reaction mechanism implicitly accounting for the water-gas-shift (WGS), methane reforming and Boudouard reactions. Spatial discretization can be applied for 1D (button-cell approximation) up to quasi-3D (full size anode supported cell in cross-flow configuration) geometries and is resolved with the finite difference method (FDM). The model is built and implemented on the commercially available modeling and simulations platform gPROMS™. Different fuels based on hydrogen, methane and syngas with inert diluents are run. The model is applied to demonstrate a detailed analysis of the SOFC inherent losses and their attribution to the EIS. This is achieved by means of a step-by-step analysis of the involved transient processes such as gas conversion in the main gas chambers/channels, gas diffusion through the porous electrodes together with the heterogeneous reactions on the nickel catalyst, and the double-layer current within the electrochemical reaction zone. The model is an important tool for analyzing SOFC performance fundamentals as well as for design and optimization of materials' and operational parameters.

  14. Detailed dynamic solid oxide fuel cell modeling for electrochemical impedance spectra simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Ph. [Laboratory of Steam Boilers and Thermal Plants, School of Mechanical Engineering, Thermal Engineering Section, National Technical University of Athens, Heroon Polytechniou 9, 15780 Athens (Greece); Panopoulos, K.D. [Institute for Solid Fuels Technology and Applications, Centre for Research and Technology Hellas, 4th km. Ptolemais-Mpodosakeio Hospital, Region of Kouri, P.O. Box 95, GR 502, 50200 Ptolemais (Greece)

    2010-08-15

    This paper presents a detailed flexible mathematical model for planar solid oxide fuel cells (SOFCs), which allows the simulation of steady-state performance characteristics, i.e. voltage-current density (V-j) curves, and dynamic operation behavior, with a special capability of simulating electrochemical impedance spectroscopy (EIS). The model is based on physico-chemical governing equations coupled with a detailed multi-component gas diffusion mechanism (Dusty-Gas Model (DGM)) and a multi-step heterogeneous reaction mechanism implicitly accounting for the water-gas-shift (WGS), methane reforming and Boudouard reactions. Spatial discretization can be applied for 1D (button-cell approximation) up to quasi-3D (full size anode supported cell in cross-flow configuration) geometries and is resolved with the finite difference method (FDM). The model is built and implemented on the commercially available modeling and simulations platform gPROMS trademark. Different fuels based on hydrogen, methane and syngas with inert diluents are run. The model is applied to demonstrate a detailed analysis of the SOFC inherent losses and their attribution to the EIS. This is achieved by means of a step-by-step analysis of the involved transient processes such as gas conversion in the main gas chambers/channels, gas diffusion through the porous electrodes together with the heterogeneous reactions on the nickel catalyst, and the double-layer current within the electrochemical reaction zone. The model is an important tool for analyzing SOFC performance fundamentals as well as for design and optimization of materials' and operational parameters. (author)

  15. Solid Oxide Electrolysis for Oxygen Production in an ARS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Paragon Space Development Corporation proposes an innovative, efficient and practical concept that utilizes Solid Oxide Electrolysis for regenerative air...

  16. Inkjet Impregnation for Tailoring Air Electrode Microstructure to Improve Solid Oxide Cells Performance

    KAUST Repository

    Da’as, Eman H.

    2015-09-30

    , further reduction of SOFC operating temperatures below 700°C was achieved using high temperature proton conducting (HTPC) oxides like Y-doped barium zirconate (BZY20). Anode supported solid oxide fuel cell (SOFC) of configuration NiO-BZY20/BZY20/LSM-BZY20 was fabricated by co-pressing and inkjet impregnation. The cell exhibited at 600°C maximum power density, ohmic resistance and polarization resistance of 200 mW/cm2, 0.41 Ω.cm2 and 0.65 Ω.cm2, respectively.

  17. Stability of solid oxide fuel cell materials

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, T.R.; Bates, J.L.; Coffey, G.W.; Pederson, L.R. [Pacific Northwest National Lab., Richland, WA (United States)] [and others

    1996-08-01

    Chromite interconnection materials in an SOFC are exposed to both highly oxidizing conditions at the cathode and to highly reducing conditions at the anode. Because such conditions could lead to component failure, the authors have evaluated thermal, electrical, chemical, and structural stabilities of these materials as a function of temperature and oxygen partial pressure. The crystal lattice of the chromites was shown to expand for oxygen partial pressures smaller than 10{sup {minus}10} atm, which could lead to cracking and debonding in an SOFC. Highly substituted lanthanum chromite compositions were the most susceptible to lattice expansion; yttrium chromites showed better dimensional stability by more than a factor of two. New chromite compositions were developed that showed little tendency for lattice expansion under strongly reducing conditions, yet provided a good thermal expansion match to other fuel cell components. Use of these new chromite interconnect compositions should improve long-term SOFC performance, particularly for planar cell configurations. Thermodynamic properties of substituted lanthanum manganite cathode compositions have been determined through measurement of electromotive force as a function of temperature. Critical oxygen decomposition pressures for Sr and Ca-substituted lanthanum manganites were established using cells based on a zirconia electrolyte. Strontium oxide and calcium oxide activities in a lanthanum manganite matrix were determined using cells based on strontium fluoride and calcium fluoride electrolytes, respectively. The compositional range of single-phase behavior of these ABO{sub 3}-type perovskites was established as a function of A/B cation ratios and the extent of acceptor doping. Before this work, very little thermodynamic information was in existence for substituted manganite compositions. Such information is needed to predict the long-term stability of solid oxide fuel cell assemblies.

  18. Tubular solid oxide fuel cell demonstration activities

    Energy Technology Data Exchange (ETDEWEB)

    Veyo, S.E.

    1995-08-01

    The development of a viable fuel cell driven electrical power generation system involves not only the development of cell and stack technology, but also the development of the overall system concept, the strategy for control, and the ancillary subsystems. The design requirements used to guide system development must reflect a customer focus in order to evolve a commercial product. In order to obtain useful customer feedback, Westinghouse has practiced the deployment with customers of fully integrated, automatically controlled, packaged solid oxide fuel cell power generation systems. These field units have served to demonstrate to customers first hand the beneficial attributes of the SOFC, to expose deficiencies through experience in order to guide continued development, and to garner real world feedback and data concerning not only cell and stack parameters, but also transportation, installation, permitting and licensing, start-up and shutdown, system alarming, fault detection, fault response, and operator interaction.

  19. Interconnection of bundled solid oxide fuel cells

    Science.gov (United States)

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  20. Nanotubular array solid oxide fuel cell.

    Science.gov (United States)

    Motoyama, Munekazu; Chao, Cheng-Chieh; An, Jihwan; Jung, Hee Joon; Gür, Turgut M; Prinz, Friedrich B

    2014-01-28

    This report presents a demonstration and characterization of a nanotubular array of solid oxide fuel cells (SOFCs) made of one-end-closed hollow tube Ni/yttria-stabilized zirconia/Pt membrane electrode assemblies (MEAs). The tubular MEAs are nominally ∼5 μm long and have up to 660 mV (vs air) and power densities up to 1.3 μW cm(-2) were measured at 550 °C using H2 as fuel. The paper also introduces a fabrication methodology primarily based on a template process involving atomic layer deposition and electrodeposition for building the nanotubular MEA architecture as an important step toward achieving high surface area ultrathin SOFCs operating in the intermediate to low-temperature regime. A fabricated nanotubular SOFC theoretically attains a 20-fold increase in the effective surface, while projections indicate the possibility of achieving up to 40-fold. PMID:24266776

  1. Solid Oxide Fuel Cells: Technology Status

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Prabhakar; Minh, Nguyen Q.

    2004-08-01

    In its most common configuration, solid oxide fuel cell (SOFC) uses an oxygen ion conducting ceramic electrolyte membrane, perovskite cathode and nickel cermet anode electrode. Cells operate in the 600-1000 C temperature range and utilize metallic or ceramic current collectors for cell-to-cell interconnection. Recent development in engineered electrode architectures, component materials chemistry, cell and stack designs and fabrication processes have led to significant improvement in the electrical performance and performance stability as well as reduction in the operating temperature of such cells. Large kW-size power generation systems have been designed and field demonstrated. This paper reviews the status of SOFC power generation systems with emphasis on cell and stack component materials, electrode reactions, materials reactions and corrosion processes

  2. Solid oxide fuel cell power system development

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, Rick [Delphi Automotive Systems, LLC., Troy, MI (United States); Wall, Mark [Independent Energy Partners Technology, LLC., Parker, CO (United States); Sullivan, Neal [Colorado School of Mines, Golden, CO (United States)

    2015-06-26

    This report summarizes the progress made during this contractual period in achieving the goal of developing the solid oxide fuel cell (SOFC) cell and stack technology to be suitable for use in highly-efficient, economically-competitive, commercially deployed electrical power systems. Progress was made in further understanding cell and stack degradation mechanisms in order to increase stack reliability toward achieving a 4+ year lifetime, in cost reduction developments to meet the SECA stack cost target of $175/kW (in 2007 dollars), and in operating the SOFC technology in a multi-stack system in a real-world environment to understand the requirements for reliably designing and operating a large, stationary power system.

  3. Advanced materials for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, T.R.; Stevenson, J.

    1995-08-01

    The purpose of this research is to improve the properties of the current state-of-the-art materials used for solid oxide fuel cells (SOFCs). The objectives are to: (1) develop materials based on modifications of the state-of-the-art materials; (2) minimize or eliminate stability problems in the cathode, anode, and interconnect; (3) Electrochemically evaluate (in reproducible and controlled laboratory tests) the current state-of-the-art air electrode materials and cathode/electrolyte interfacial properties; (4) Develop accelerated electrochemical test methods to evaluate the performance of SOFCs under controlled and reproducible conditions; and (5) Develop and test materials for use in low-temperature SOFCs. The goal is to modify and improve the current state-of-the-art materials and minimize the total number of cations in each material to avoid negative effects on the materials properties. Materials to reduce potential deleterious interactions, (3) improve thermal, electrical, and electrochemical properties, (4) develop methods to synthesize both state-of-the-art and alternative materials for the simultaneous fabricatoin and consolidation in air of the interconnections and electrodes with the solid electrolyte, and (5) understand electrochemical reactions at materials interfaces and the effects of component composition and processing on those reactions.

  4. Solid oxide fuel cell anode degradation by the effect of hydrogen chloride in stack and single cell environments

    Science.gov (United States)

    Madi, Hossein; Lanzini, Andrea; Papurello, Davide; Diethelm, Stefan; Ludwig, Christian; Santarelli, Massimo; Van herle, Jan

    2016-09-01

    The poisoning effect by hydrogen chloride (HCl) on state-of-the-art Ni anode-supported solid oxide fuel cells (SOFCs) at 750 °C is evaluated in either hydrogen or syngas fuel. Experiments are performed on single cells and short stacks and HCl concentration in the fuel gas is increased from 1 ppm(v) up to 1000 ppm(v) at different current densities. Characterization methods such as cell voltage monitoring vs. time and electrochemical impedance response analysis (distribution of relaxation times (DRT), equivalent electrical circuit) are used to identify the prevailing degradation mechanism. Single cell experiments revealed that the poisoning is more severe when feeding with hydrogen than with syngas. Performance loss is attributed to the effects of HCl adsorption onto nickel surfaces, which lowered the catalyst activity. Interestingly, in syngas HCl does not affect stack performance even at concentrations up to 500 ppm(v), even when causing severe corrosion of the anode exhaust pipe. Furthermore, post-test analysis suggests that chlorine is present on the nickel particles in the form of adsorbed chlorine, rather than forming a secondary phase of nickel chlorine.

  5. The effect of H2S on the performance of Ni-YSZ anodes in solid oxide fuel cells

    DEFF Research Database (Denmark)

    Rasmussen, Jens Foldager Bregnballe; Hagen, Anke

    2009-01-01

    Biomass-derived fuel, e.g. biogas, is a potential fuel for solid oxide fuel cells (SOFCs). At operating temperature (850 °C) reforming of the carbon-containing biogas takes place over the Ni-containing anode. However, impurities in the biogas, e.g. H2S, can poison both the reforming...... and the electrochemical activity of the anode. Tests of single anode-supported planar SOFCs were carried out in the presence of H2S under current load at 850 °C. The cell voltage dropped as we periodically added 2–100 ppm H2S to an H2-containing fuel in 24 h intervals, but it regenerated to the initial value after we...... turned off the H2S. Evaluation of the changes of the cell voltage suggests that saturation coverage was reached at approximately 40 ppm H2S. A front-like movement of S-poisoning over the anode was seen by monitoring the in-plane voltage in the anode. Furthermore, impedance spectra showed that mainly...

  6. Nano Ru Impregnated Ni-YSZ Anode as Carbon Resistance Layer for Direct Ethanol Solid Oxide Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    SUN Liangliang; ZHENG Tao; HU Zhimin; LUO Linghong; WU Yefan; XU Xu; CHENG Liang; SHI Jijun

    2015-01-01

    Carbon formation on conventional Ni and Y2O3stabilized zirconia (Ni/YSZ) anodes is a major problem for direct ethanol solid oxide fuel cells (DE-SOFC). A nanostructure Ru layer was grown in Ni/YSZ anodes through wet impregnation method with RuCl3solvent at pH=4. Anode-supported Ni-YSZ/YSZ/(La0.8Sr0.2)0.98MnO3±δ(LSM) and Ru-Ni-YSZ/YSZ/LSM fuel cells were compared in terms of the performance and carbon formation with ethanol fuel. X-ray diffraction, scanning electron microscopy,energy disperse spectroscopy and electrochemical workstation were used to study the morphology and fuel cell performance. The results indicate that a nano structured and pearl like Ru layer was well dispersed on the surface of Ni-YSZ materials. The single cell with Ru-impregnated Ni/YSZ showed a maximum power density of 369 mW/cmat 750°C, which was higher than Ni-YSZ/YSZ/LSM. Specifically, no carbon was formed in the anode after 1000 min operation. Fuel cell performance and carbon resistance were enhanced with the addition of the Ru layer.

  7. Kinetics of (reversible) internal reforming of methane in solid oxide fuel cells under stationary and APU conditions

    Science.gov (United States)

    Timmermann, H.; Sawady, W.; Reimert, R.; Ivers-Tiffée, E.

    The internal reforming of methane in a solid oxide fuel cell (SOFC) is investigated and modeled for flow conditions relevant to operation. To this end, measurements are performed on anode-supported cells (ASC), thereby varying gas composition (y CO = 4-15%, yH2 = 5 - 17 % , yCO2 = 6 - 18 % , yH2O = 2 - 30 % , yCH4 = 0.1 - 20 %) and temperature (600-850 °C). In this way, operating conditions for both stationary applications (methane-rich pre-reformate) as well as for auxiliary power unit (APU) applications (diesel-POX reformate) are represented. The reforming reaction is monitored in five different positions alongside the anodic gas channel by means of gas chromatography. It is shown that methane is converted in the flow field for methane-rich gas compositions, whereas under operation with diesel reformate the direction of the reaction is reversed for temperatures below 675 °C, i.e. (exothermic) methanation occurs along the anode. Using a reaction model, a rate equation for reforming could be derived which is also valid in the case of methanation. By introducing this equation into the reaction model the methane conversion along a catalytically active Ni-YSZ cermet SOFC anode can be simulated for the operating conditions specified above.

  8. Kinetic Studies on State of the Art Solid Oxide Cells

    DEFF Research Database (Denmark)

    Njodzefon, Jean-Claude; Graves, Christopher R.; Hjelm, Johan;

    2014-01-01

    Introduction The Solid Oxide Fuel Cell (SOFC), which converts hydrogen as well as hydrocarbon fuels directly into electricity, has demonstrated almost comparable performance when operated reversely as Solid Oxide Electrolyser Cell (SOEC) for electrical energy storage as fuels. In both application...

  9. Degradation in Solid Oxide Cells During High Temperature Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Manohar Sohal

    2009-05-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells. One goal of that project is to address the technical and degradation issues associated with solid oxide electrolysis cells. This report covers a variety of these degradation issues, which were discussed during a workshop on “Degradation in Solid Oxide Electrolysis Cells and Strategies for its Mitigation,” held in Phoenix, AZ on October 27, 2008. Three major degradation issues related to solid oxide electrolysis cells discussed at the workshop are: • Delamination of O2-electrode and bond layer on steam/O2-electrode side • Contaminants (Ni, Cr, Si, etc.) on reaction sites (triple-phase boundary) • Loss of electrical/ionic conductivity of electrolyte. This list is not all inclusive, but the workshop summary can be useful in providing a direction for future research related to the degradation of solid oxide electrolysis cells.

  10. Solid Oxide Fuel Cell Systems PVL Line

    Energy Technology Data Exchange (ETDEWEB)

    Susan Shearer - Stark State College; Gregory Rush - Rolls-Royce Fuel Cell Systems

    2012-05-01

    In July 2010, Stark State College (SSC), received Grant DE-EE0003229 from the U.S. Department of Energy (DOE), Golden Field Office, for the development of the electrical and control systems, and mechanical commissioning of a unique 20kW scale high-pressure, high temperature, natural gas fueled Stack Block Test System (SBTS). SSC worked closely with subcontractor, Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) over a 13 month period to successfully complete the project activities. This system will be utilized by RRFCS for pre-commercial technology development and training of SSC student interns. In the longer term, when RRFCS is producing commercial products, SSC will utilize the equipment for workforce training. In addition to DOE Hydrogen, Fuel Cells, and Infrastructure Technologies program funding, RRFCS internal funds, funds from the state of Ohio, and funding from the DOE Solid State Energy Conversion Alliance (SECA) program have been utilized to design, develop and commission this equipment. Construction of the SBTS (mechanical components) was performed under a Grant from the State of Ohio through Ohio's Third Frontier program (Grant TECH 08-053). This Ohio program supported development of a system that uses natural gas as a fuel. Funding was provided under the Department of Energy (DOE) Solid-state Energy Conversion Alliance (SECA) program for modifications required to test on coal synthesis gas. The subject DOE program provided funding for the electrical build, control system development and mechanical commissioning. Performance testing, which includes electrical commissioning, was subsequently performed under the DOE SECA program. Rolls-Royce Fuel Cell Systems is developing a megawatt-scale solid oxide fuel cell (SOFC) stationary power generation system. This system, based on RRFCS proprietary technology, is fueled with natural gas, and operates at elevated pressure. A critical success factor for development of the full scale system is the capability

  11. Modeling Degradation in Solid Oxide Electrolysis Cells

    Energy Technology Data Exchange (ETDEWEB)

    Manohar S. Sohal; Anil V. Virkar; Sergey N. Rashkeev; Michael V. Glazoff

    2010-09-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells (SOECs). To accomplish this, technical and degradation issues associated with the SOECs will need to be addressed. This report covers various approaches being pursued to model degradation issues in SOECs. An electrochemical model for degradation of SOECs is presented. The model is based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic no equilibrium. It is shown that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, , within the electrolyte. The within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just near the oxygen electrode/electrolyte interface, leading to oxygen electrode delamination. These predictions are in accordance with the reported literature on the subject. Development of high pressures may be avoided by introducing some electronic conduction in the electrolyte. By combining equilibrium thermodynamics, no equilibrium (diffusion) modeling, and first-principles, atomic scale calculations were performed to understand the degradation mechanisms and provide practical recommendations on how to inhibit and/or completely mitigate them.

  12. Environmental analysis of solid oxide fuel cells

    Science.gov (United States)

    Zapp, P.

    Nowadays, for a new technology to be succesfully introduced, it should compete not only in terms of economy, but also in terms of ecology. Therefore, end-of-pipe treatments are no longer sufficient, but precautionary environmental protection is also necessary. The aim of the present work is an environmental analysis of the solid oxide fuel cell (SOFC) technology using the 'Environmental Precaution Study'. Constituent materials, energy and emission flows are determined and evaluated throughout the entire life cycle. Cradle to grave considerations embrace the production of raw materials and technical equipment, respectively, operation and dismantling. A reference SOFC cell of the planar cell type, based on the current fuel cell programme of the Research Centre Jülich, has been compared with a conventional technology in the form of a 10 MW gas turbine. The latter has been chosen as the competitive conventional technology, because the power output is similar to the expected SOFC power output and the use of the same fuel, natural gas, facilitates the comparison.

  13. Nanostructured Solid Oxide Fuel Cell Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sholklapper, Tal Zvi [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    The ability of Solid Oxide Fuel Cells (SOFC) to directly and efficiently convert the chemical energy in hydrocarbon fuels to electricity places the technology in a unique and exciting position to play a significant role in the clean energy revolution. In order to make SOFC technology cost competitive with existing technologies, the operating temperatures have been decreased to the range where costly ceramic components may be substituted with inexpensive metal components within the cell and stack design. However, a number of issues have arisen due to this decrease in temperature: decreased electrolyte ionic conductivity, cathode reaction rate limitations, and a decrease in anode contaminant tolerance. While the decrease in electrolyte ionic conductivities has been countered by decreasing the electrolyte thickness, the electrode limitations have remained a more difficult problem. Nanostructuring SOFC electrodes addresses the major electrode issues. The infiltration method used in this dissertation to produce nanostructure SOFC electrodes creates a connected network of nanoparticles; since the method allows for the incorporation of the nanoparticles after electrode backbone formation, previously incompatible advanced electrocatalysts can be infiltrated providing electronic conductivity and electrocatalysis within well-formed electrolyte backbones. Furthermore, the method is used to significantly enhance the conventional electrode design by adding secondary electrocatalysts. Performance enhancement and improved anode contamination tolerance are demonstrated in each of the electrodes. Additionally, cell processing and the infiltration method developed in conjunction with this dissertation are reviewed.

  14. Learning curves for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Rivera-Tinoco, R.; Schoots, K. [Energy research Centre of the Netherlands (Netherlands). Policy Studies; Zwaan, B.C.C. van der [Energy research Centre of the Netherlands (Netherlands). Policy Studies; Columbia Univ., New York City, NY (United States). Lenfest Center for Sustainable Energy

    2010-07-01

    We present learning curves for solid oxide fuel cells (SOFCs) and combined heat and power (CHP) SOFC systems with an electric capacity between 1 and 250 kW. On the basis of the cost breakdown of production cost data from fuel cell manufacturers, we developed a bottom-up model that allows for determining overall manufacturing costs from their respective cost components, among which material, energy, labor, and capital charges. The results obtained from our model prove to deviate by at most 13% from total cost figures quoted in the literature. For the early pilot stage of development, we find for SOFC manufacturing a learning rate between 14% and 17%, and for total SOFC system fabrication between 16% and 19%. We argue that the corresponding cost reductions result largely from learning-by-searching effects (R and D) rather than learning-by-doing. When considering a longer time frame that includes the early commercial production stage, we find learning rates between 14% and 39%, which represent a mix of phenomena such as learning-by-doing, learning-by-searching, economies-of-scale and automation. (orig.)

  15. Sealing materials for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, P.H.

    1999-02-01

    A major obstacle in the achievement of high electrical efficiency for planar solid oxide fuel cell stacks (SOFC) is the need for long term stable seals at the operational temperature between 850 and 1000 deg. C. In the present work the formation and properties of sealing materials for SOFC stacks that fulfil the necessary requirements were investigated. The work comprises analysis of sealing material properties independently, in simple systems as well as tests in real SOFC stacks. The analysed sealing materials were based on pure glasses or glass-ceramic composites having B{sub 2}O{sub 3}, P{sub 2}O{sub 5} or siO{sub 2} as glass formers, and the following four glass systems were investigated: MgO/caO/Cr{sub 2}O{sub 3}-Al{sub 2}O{sub 3}B{sub 2}O{sub 3}-P{sub 2}O{sub 5}, MgO-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}, MgO-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}-SiO{sub 2} and BaO/Na{sub 2}O-Al{sub 2}O{sub 3}-SiO{sub 2}. (au) 32 tabs., 106 ills., 107 refs.

  16. Solid oxide electrolysis cells - Performance and durability

    Energy Technology Data Exchange (ETDEWEB)

    Hauch, A.

    2007-10-15

    In this work H2 electrode supported solid oxide cells (SOC) produced at Risoe National Laboratory, DTU, have been used for steam electrolysis. Electrolysis tests have been performed at temperatures from 650AeC to 950AeC, p(H2O)/p(H2) from 0.99/0.01 to 0.30/0.70 and current densities from -0.25 A/cm2 to -2 A/cm2. The solid oxide electrolysis cells (SOEC) have been characterised by iV curves and electrochemical impedance spectroscopy (EIS) at start and end of tests and by EIS under current load during electrolysis testing. The tested SOCs have shown the best initial electrolysis performance reported in literature to date. Area specific resistances of 0.26 Oecm2 at 850AeC and 0.17 Oecm2 at 950AeC were obtained from electrolysis iV curves. The general trend for the SOEC tests was: 1) a short-term passivation in first few hundred hours, 2) then an activation and 3) a subsequent and underlying long-term degradation. The transient phenomenon (passivation/activation) was shown to be a set-up dependent artefact caused by the albite glass sealing with a p(Si(OH)4) of 1.10-7 atm, leading to silica contamination of the triple-phase boundaries (TPBs) of the electrode. The long-term degradation for the SOECs was more pronounced than for fuel cell testing of similar cells. Long-term degradation of 2%/1000 h was obtained at 850AeC, p(H2O)/p(H2) = 0.5/0.5 and -0.5 A/cm2, whereas the degradation rate increased to 6%/1000h at 950AeC, p(H2O)/p(H2) = 0.9/0.1 and -1.0 A/cm2. Both the short-term passivation and the long-term degradation appear mainly to be related to processes in the H2 electrode. Scanning electron microscopy micrographs show that only limited changes occur in the Ni particle size distribution and these are not the main degradation mechanism for the SOECs. Micro and nano analysis using energy dispersive spectroscopy in combination with transmission electron microscopy (TEM) and scanning TEM reveals that glassy phase impurities have accumulated at the TPBs as a result of

  17. Intermediate Temperature Solid Oxide Fuel Cell Development

    Energy Technology Data Exchange (ETDEWEB)

    S. Elangovan; Scott Barnett; Sossina Haile

    2008-06-30

    Solid oxide fuel cells (SOFCs) are high efficiency energy conversion devices. Present materials set, using yttria stabilized zirconia (YSZ) electrolyte, limit the cell operating temperatures to 800 C or higher. It has become increasingly evident however that lowering the operating temperature would provide a more expeditious route to commercialization. The advantages of intermediate temperature (600 to 800 C) operation are related to both economic and materials issues. Lower operating temperature allows the use of low cost materials for the balance of plant and limits degradation arising from materials interactions. When the SOFC operating temperature is in the range of 600 to 700 C, it is also possible to partially reform hydrocarbon fuels within the stack providing additional system cost savings by reducing the air preheat heat-exchanger and blower size. The promise of Sr and Mg doped lanthanum gallate (LSGM) electrolyte materials, based on their high ionic conductivity and oxygen transference number at the intermediate temperature is well recognized. The focus of the present project was two-fold: (a) Identify a cell fabrication technique to achieve the benefits of lanthanum gallate material, and (b) Investigate alternative cathode materials that demonstrate low cathode polarization losses at the intermediate temperature. A porous matrix supported, thin film cell configuration was fabricated. The electrode material precursor was infiltrated into the porous matrix and the counter electrode was screen printed. Both anode and cathode infiltration produced high performance cells. Comparison of the two approaches showed that an infiltrated cathode cells may have advantages in high fuel utilization operations. Two new cathode materials were evaluated. Northwestern University investigated LSGM-ceria composite cathode while Caltech evaluated Ba-Sr-Co-Fe (BSCF) based pervoskite cathode. Both cathode materials showed lower polarization losses at temperatures as low as 600

  18. Glass/BNNT Composite for Sealing Solid Oxide Fuel Cells

    Science.gov (United States)

    Bansal, Narottam P.; Hurst, Janet B.; Choi, Sung R.

    2007-01-01

    A material consisting of a barium calcium aluminosilicate glass reinforced with 4 weight percent of boron nitride nanotubes (BNNTs) has shown promise for use as a sealant in planar solid oxide fuel cells (SOFCs).

  19. Symmetrical, bi-electrode supported solid oxide fuel cell

    Science.gov (United States)

    Cable, Thomas L. (Inventor); Sofie, Stephen W. (Inventor)

    2009-01-01

    The present invention is a symmetrical bi-electrode supported solid oxide fuel cell comprising a sintered monolithic framework having graded pore electrode scaffolds that, upon treatment with metal solutions and heat subsequent to sintering, acquire respective anodic and cathodic catalytic activity. The invention is also a method for making such a solid oxide fuel cell. The graded pore structure of the graded pore electrode scaffolds in achieved by a novel freeze casting for YSZ tape.

  20. Materials for Intermediate-Temperature Solid-Oxide Fuel Cells

    Science.gov (United States)

    Kilner, John A.; Burriel, Mónica

    2014-07-01

    Solid-oxide fuel cells are devices for the efficient conversion of chemical energy to electrical energy and heat. Research efforts are currently addressed toward the optimization of cells operating at temperatures in the region of 600°C, known as intermediate-temperature solid-oxide fuel cells, for which materials requirements are very stringent. In addition to the requirements of mechanical and chemical compatibility, the materials must show a high degree of oxide ion mobility and electrochemical activity at this low temperature. Here we mainly examine the criteria for the development of two key components of intermediate-temperature solid-oxide fuel cells: the electrolyte and the cathode. We limit the discussion to novel approaches to materials optimization and focus on the fluorite oxide for electrolytes, principally those based on ceria and zirconia, and on perovskites and perovskite-related families in the case of cathodes.

  1. Effects of Humidity on Solid Oxide Fuel Cell Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, John S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stevenson, Jeffry W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Singh, Prabhakar [Univ. of Connecticut, Storrs, CT (United States); Mahapatra, Manoj K. [Univ. of Connecticut, Storrs, CT (United States); Wachsman, E. D. [Univ. of Maryland, College Park, MD (United States); Liu, Meilin [Georgia Inst. of Technology, Atlanta, GA (United States); Gerdes, Kirk R. [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2015-03-17

    This report summarizes results from experimental studies performed by a team of researchers assembled on behalf of the Solid-state Energy Conversion Alliance (SECA) Core Technology Program. Team participants employed a variety of techniques to evaluate and mitigate the effects of humidity in solid oxide fuel cell (SOFC) cathode air streams on cathode chemistry, microstructure, and electrochemical performance.

  2. A review of liquid metal anode solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    ALIYA TOLEUOVA

    2013-06-01

    Full Text Available This review discusses recent advances in a solid oxide fuel cell (SOFC variant that uses liquid metal electrodes (anodes with the advantage of greater fuel tolerance and the ability to operate on solid fuel. Key features of the approach are discussed along with the technological and research challenges that need to be overcome for scale-up and commercialisation.

  3. Layered perovskite oxide Y0.8Ca0.2BaCoFeO5+δas a novel cathode material for intermediate-temperature solid oxide fuel cells

    Institute of Scientific and Technical Information of China (English)

    余良浩; 陈永红; 顾庆文; 田冬; 卢肖永; 孟广耀; 林彬

    2015-01-01

    A layered perovskite oxide Y0.8Ca0.2BaCoFeO5+δ(YCBCF) was synthesized as a novel cathode material for intermedi-ate-temperature solid oxide fuel cells (IT-SOFCs) by citric acid-nitrates self-propagating combustion method. The phase and micro-structure of YCBCF were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The aver-age thermal expansion coefficient (TEC) of YCBCF was 14.6×10–6 K–1, which was close to other materials of SOFC at the range of RT–1000 ºC. An open-circuit potential of 0.75 V and a maximum output power density of 426 mW/cm2 were obtained at 650 ºC in a Sm0.2Ce0.8O1.9 (SDC)-based anode-supported SOFC by using humidified (~3%H2O) hydrogen as fuel and static air as oxidant. The results indicated that the YCBCF was a promising cathode candidate for IT-SOFCs.

  4. Promotion of Oxygen Reduction by Exsolved Silver Nanoparticles on a Perovskite Scaffold for Low-Temperature Solid Oxide Fuel Cells.

    Science.gov (United States)

    Zhu, Yinlong; Zhou, Wei; Ran, Ran; Chen, Yubo; Shao, Zongping; Liu, Meilin

    2016-01-13

    Solid oxide fuel cells (SOFCs) have potential to be the cleanest and most efficient electrochemical energy conversion devices with excellent fuel flexibility. To make SOFC systems more durable and economically competitive, however, the operation temperature must be significantly reduced, which depends sensitively on the development of highly active electrocatalysts for oxygen reduction reaction (ORR) at low temperatures. Here we report a novel silver nanoparticle-decorated perovskite oxide, prepared via a facile exsolution process from a Sr0.95Ag0.05Nb0.1Co0.9O3-δ (SANC) perovskite precursor, as a highly active and robust ORR electrocatalyst for low-temperature SOFCs. The exsolved Sr0.95Ag0.05Nb0.1Co0.9O3-δ (denoted as e-SANC) electrode is very active for ORR, achieving a very low area specific resistance (∼0.214 Ω cm(2) at 500 °C). An anode-supported cell with the new heterostructured cathode demonstrates very high peak power density (1116 mW cm(-2) at 500 °C) and stable operation for 140 h at a current density of 625 mA cm(-2). The superior ORR activity and stability are attributed to the fast oxygen surface exchange kinetics and the firm adhesion of the Ag nanoparticles to the Sr0.95Nb0.1Co0.9O3-δ (SNC0.95) support. Moreover, the e-SANC cathode displays improved tolerance to CO2. These unique features make the new heterostructured material a highly promising cathode for low-temperature SOFCs.

  5. High performance fuel electrode for a solid oxide electrochemical cell

    DEFF Research Database (Denmark)

    2013-01-01

    A high performance anode (fuel electrode) for use in a solid oxide electrochemical cell is obtained by a process comprising the steps of (a) providing a suitably doped, stabilized zirconium oxide electrolyte, such as YSZ,ScYSZ, with an anode side having a coating of electronically conductive...

  6. High performance fuel electrode for a solid oxide electrochemical cell

    OpenAIRE

    Jabbar, Mohammad; Høgh, Jens Valdemar Thorvald; Bonanos, Nikolaos

    2013-01-01

    A high performance anode (fuel electrode) for use in a solid oxide electrochemical cell is obtained by a process comprising the steps of (a) providing a suitably doped, stabilized zirconium oxide electrolyte, such as YSZ,ScYSZ, with an anode side having a coating of electronically conductive perovskite oxides selected from the group consisting of niobium-doped strontium titanate, vanadium-doped strontium titanate, tantalum-doped strontium titanate and mixtures thereof, thereby obtaining a por...

  7. Thermal-oxidative desulfurization of solid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kalandadze, N.D. (INKhEhL AN SSSR (USSR))

    1990-01-01

    Evaluates effects of coal oxidation in fluidized beds at increased temperatures on sulfur content. Coal from the Podmoskovnyi basin with a sulfur content of 6.28% (of which 4.68% is pyrites, 0.86% is organic sulfur) was heated in a fluidized bed to 450 C. Temperature effects on sulfur content in coal were analyzed. Oxidation removed up to 96% of pyritic sulfur from coal. Maximum desulfurization effects were produced by coal treatment at 380 C for 15 min. Use of oxidation of pyritic sulfur at 360-400 C with subsequent coal combustion with limestone and other additives is recommended for reducing sulfur emission from furnaces. 9 refs.

  8. Technoeconomy of different solid oxide fuel cell based hybrid cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    Gas turbine, steam turbine and heat engine (Stirling engine) is used as bottoming cycle for a solid oxide fuel cell plant to compare different plants efficiencies, CO2 emissionsand plants cost in terms of $/kW. Each plant is then integrated with biomass gasification and finally six plants configu...... with these hybrid cycles then integrated biomass gasification with solid oxide fuel cell and steam cycle will have the highest plant efficiency. The cost of solid oxide fuel cell with steam plant is found to be the lowest one with a value of about 1030$/kW.......Gas turbine, steam turbine and heat engine (Stirling engine) is used as bottoming cycle for a solid oxide fuel cell plant to compare different plants efficiencies, CO2 emissionsand plants cost in terms of $/kW. Each plant is then integrated with biomass gasification and finally six plants...... configurations are compared with each other. Technoeconomy is used when calculating the cost if the plants. It is found that when a solid oxide fuel cell plant is combined with a gas turbine cycle then the plant efficiency will be the highest one while if a biomass gasification plant is integrated...

  9. Fatigue cracking at anode support brackets in an offshore jacket structure

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, D. [Shell Research and Technology Centre, Amsterdam (Netherlands); Stap, A. van der; Abdullah, K.

    1996-12-01

    The paper describes an investigation into the cause of the cracking discovered in anode support brackets in an offshore structure, and to determine which brackets required repair or future inspection. Metallurgical examination of a damaged bracket to investigate the nature of the failure, and finite element fracture mechanics analysis was used to simulate the causes of the damage and to predict the remaining life under normal structural loading. Investigation of the most heavily cracked bracket removed from the structure showed that the initial welding was sound and that the cracking was due to fatigue. Analysis of fatigue cracking measured in the brackets has shown that the environmental loads on the anodes are too small to have produced the observed damage. It was therefore concluded that the damage was produced by piling loads during installation. Simulation of the observed crack growth using finite element fracture mechanics modelling of a typical joint showed the observed pattern of cracking to be consistent with large out of plane bending loads on the anode brackets. Remaining lives of the joints, predicted using finite element fracture mechanics modelling, were very long due to the damage being oriented parallel to the primary stresses in the member. Repair was not carried out, but selected joints will be included in future routine inspections. Simultaneously, design details for future structures have been changed to minimize the risk of recurrence.

  10. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: Thermal cycle stability and chemical compatibility

    Science.gov (United States)

    Chou, Yeong-Shyung; Thomsen, E. C.; Williams, R. T.; Choi, J.-P.; Canfield, N. L.; Bonnett, J. F.; Stevenson, J. W.; Shyam, A.; Lara-Curzio, E.

    2011-03-01

    An alkali silicate glass (SCN-1) is currently being evaluated as a candidate sealing glass for solid oxide fuel cell (SOFC) applications. The glass containing ∼17 mole% alkalis (K2O and Na2O) remains vitreous and compliant during SOFC operation, unlike conventional SOFC sealing glasses, which experience substantial devitrification after the sealing process. The non-crystallizing compliant sealing glass has lower glass transition and softening temperatures since the microstructure remains glassy without significant crystallite formation, and hence can relieve or reduce residual stresses and also has the potential for crack healing. Sealing approaches based on compliant glass will also need to satisfy all the mechanical, thermal, chemical, physical, and electrical requirements for SOFC applications, not only in bulk properties but also at sealing interfaces. In this first of a series of papers we will report the thermal cycle stability of the glass when sealed between two SOFC components, i.e., a NiO/YSZ anode supported YSZ bilayer and a coated ferritic stainless steel interconnect material. High temperature leak rates were monitored versus thermal cycles between 700 and 850 °C using back pressures ranging from 1.4 to 6.8 kPa (0.2-1.0 psi). Isothermal stability was also evaluated in a dual environment consisting of flowing dilute H2 fuel versus ambient air. In addition, chemical compatibility at the alumina and YSZ interfaces was examined with scanning electron microscopy and energy dispersive spectroscopy. The results shed new light on the topic of SOFC glass seal development.

  11. Pr4Ni3O10+δ: A new promising oxygen electrode material for solid oxide fuel cells

    Science.gov (United States)

    Vibhu, Vaibhav; Rougier, Aline; Nicollet, Clément; Flura, Aurélien; Fourcade, Sébastien; Penin, Nicolas; Grenier, Jean-Claude; Bassat, Jean-Marc

    2016-06-01

    The present work is focused on the study of Pr4Ni3O10+δ as a new cathode material for Solid Oxide Fuel Cells (SOFCs). The structural study leads to an indexation in orthorhombic structure with Fmmm space group, this structure being thermally stable throughout the temperature range up to 1000 °C under air and oxygen. The variation of oxygen content (10+δ) as a function of temperature under different atmospheres show that Pr4Ni3O10+δ is always oxygen over-stoichiometric, which further suggests its MIEC properties. The polarization resistance (Rp) of Pr4Ni3O10+δ electrode is measured for GDC/co-sintered and two-step sintered half cells. The Rp for co-sintered sample is found to be 0.16 Ω cm2 at 600 °C under air, which is as low as the one of highest performing Pr2NiO4+δ nickelate (Rp = 0.15 Ω cm2 at 600 °C). Moreover, an anode supported (Ni-YSZ//YSZ) single cell including GDC//Pr4Ni3O10+δ co-sintered electrode shows a maximum power density of 1.60 W cm-2 at 800 °C and 0.68 W cm-2 at 700 °C. Here, the work is emphasized on the very close electrochemical performance of Pr4Ni3O10+δ compared to the one of Pr2NiO4+δ with higher chemical stability, which gives great interests to consider this material as a very interesting oxygen-electrode for SOFCs.

  12. Fluoride-conversion synthesis of homogeneous actinide oxide solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Silva, G W Chinthaka M [ORNL; Hunn, John D [ORNL; Yeamans, Charles B. [University of California, Berkeley; Cerefice, Gary S. [University of Nevada, Las Vegas; Czerwinski, Ken R. [University of Nevada, Las Vegas

    2011-01-01

    Here, a novel route to synthesize (U, Th)O2 solid solutions at a relatively low temperature of 1100 C is demonstrated. First, the separate actinide oxides reacted with ammonium bifluoride to form ammonium actinide fluorides at room temperature. Subsequently, this mixture was converted to the actinide oxide solid solution using a two-phased heat treatment, first at 610 C in static air, then at 1100 C in flowing argon. Solid solutions obeying Vegard s Law were synthesized for ThO2 content from 10 to 90 wt%. Microscopy showed that the (U, Th)O2 solid solutions synthesized with this method to have considerably high crystallinity and homogeneity, suggesting the suitability of material thus synthesized for sintering into nuclear fuel pellets at low temperatures.

  13. Stack configurations for tubular solid oxide fuel cells

    Science.gov (United States)

    Armstrong, Timothy R.; Trammell, Michael P.; Marasco, Joseph A.

    2010-08-31

    A fuel cell unit includes an array of solid oxide fuel cell tubes having porous metallic exterior surfaces, interior fuel cell layers, and interior surfaces, each of the tubes having at least one open end; and, at least one header in operable communication with the array of solid oxide fuel cell tubes for directing a first reactive gas into contact with the porous metallic exterior surfaces and for directing a second reactive gas into contact with the interior surfaces, the header further including at least one busbar disposed in electrical contact with at least one surface selected from the group consisting of the porous metallic exterior surfaces and the interior surfaces.

  14. Status and prospects of intermediate temperature solid oxide fuel cells

    Institute of Scientific and Technical Information of China (English)

    Bangwu Liu; Yue Zhang

    2008-01-01

    Compared with conventional electric power generation systems, the solid oxide fuel cell (SOFC) has many advantages because of its unique features. High temperature SOFC has been successfully developed to its commercial applications, but it still faces many problems which hamper large-scale commercial applications of SOFC. To reduce the cost of SOFC, intermediate tem-perature solid oxide fuel cell (IT-SOFC) is presently under rapid development. The status of IT-SOFC was reviewed with emphasis on discussion of their component materials.

  15. Advanced methods of solid oxide fuel cell modeling

    CERN Document Server

    Milewski, Jaroslaw; Santarelli, Massimo; Leone, Pierluigi

    2011-01-01

    Fuel cells are widely regarded as the future of the power and transportation industries. Intensive research in this area now requires new methods of fuel cell operation modeling and cell design. Typical mathematical models are based on the physical process description of fuel cells and require a detailed knowledge of the microscopic properties that govern both chemical and electrochemical reactions. ""Advanced Methods of Solid Oxide Fuel Cell Modeling"" proposes the alternative methodology of generalized artificial neural networks (ANN) solid oxide fuel cell (SOFC) modeling. ""Advanced Methods

  16. Impedance Spectra of Activating/Passivating Solid Oxide Electrodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Sun, Xiufu; Koch, Søren;

    2014-01-01

    The aim of this paper is to show that the inductive arcs seen in electrochemical impedance spectra of solid oxide cells (SOCs) are real electrochemical features that in several cases can be qualitatively explained by passivation/activation processes. Several degradation processes of Solid Oxide...... Fuel Cells (SOFC) and Electrolyser Cells (SOEC) exist. Not all of them are irreversible, especially not over short periods. A reversible degradation is termed “passivation” and the reverse is then “activation”. These processes may exhibit themselves in the Electrochemical Impedance Spectra (EIS...

  17. Synthesis, Characterization, and Optimization of Novel Solid Oxide Fuel Cell Anodes

    Science.gov (United States)

    Miller, Elizabeth C.

    This dissertation presents research on the development of novel materials and fabrication procedures for solid oxide fuel cell (SOFC) anodes. The work discussed here is divided into three main categories: all-oxide anodes, catalyst exsolution oxide anodes, and Ni-infiltrated anodes. The all-oxide and catalyst exsolution anodes presented here are further classi?ed as Ni-free anodes operating at the standard 700-800°C SOFC temperature while the Ni-infiltrated anodes operate at intermediate temperatures (≤650°C). Compared with the current state-of-the-art Ni-based cermets, all-oxide, Ni-free SOFC anodes offer fewer coking issues in carbon-containing fuels, reduced degradation due to fuel contaminants, and improved stability during redox cycling. However, electrochemical performance has proven inferior to Ni-based anodes. The perovskite oxide Fe-substituted strontium titanate (STF) has shown potential as an anode material both as a single phase electrode and when combined with Gd-doped ceria (GDC) in a composite electrode. In this work, STF is synthesized using a modified Pechini processes with the aim of reducing STF particle size and increasing the electrochemically active area in the anode. The Pechini method produced particles ? 750 nm in diameter, which is signi°Cantly smaller than the typically micron-sized solid state reaction powder. In the first iteration of anode fabrication with the Pechini powder, issues with over-sintering of the small STF particles limited gas di?usion in the anode. However, after modifying the anode firing temperature, the Pechini cells produced power density comparable to solid state reaction based cells from previous work by Cho et al. Catalyst exsolution anodes, in which metal cations exsolve out of the lattice under reducing conditions and form nanoparticles on the oxide surface, are another Ni-free option for standard operating temperature SOFCs. Little information is known about the onset of nanoparticle formation, which

  18. Low temperature ozone oxidation of solid waste surrogates

    Science.gov (United States)

    Nabity, James A.; Lee, Jeffrey M.

    2015-09-01

    Solid waste management presents a significant challenge to human spaceflight and especially, long-term missions beyond Earth orbit. A six-month mission will generate over 300 kg of solid wastes per crewmember that must be dealt with to eliminate the need for storage and prevent it from becoming a biological hazard to the crew. There are several methods for the treatment of wastes that include oxidation via ozone, incineration, microbial oxidation or pyrolysis and physical methods such as microwave drying and compaction. In recent years, a low temperature oxidation process using ozonated water has been developed for the chemical conversion of organic wastes to CO2 and H2O. Experiments were conducted to evaluate the rate and effectiveness with which ozone oxidized several different waste materials. Increasing the surface area by chopping or shredding the solids into small pieces more than doubled the rate of oxidation. A greater flow of ozone and agitation of the ozonated water system also increased processing rates. Of the materials investigated, plastics have proven the most difficult to oxidize. The processing of plastics above the glass transition temperatures caused the plastics to clump together which reduced the exposed surface area, while processing at lower temperatures reduced surface reaction kinetics.

  19. Conversion of hydrocarbons in solid oxide fuel cells

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Kammer Hansen, K.

    2003-01-01

    Recently, a number of papers about direct oxidation of methane and hydrocarbon in solid oxide fuel cells (SOFC) at relatively low temperatures (about 700degreesC) have been published. Even though the conversion of almost dry CH4 at 1000degreesC on ceramic anodes was demonstrated more than 10 years...... ago, the reports about high-current densities for methane oxidation at such low temperatures are indeed surprising. Several papers indicate that a catalytic effect (due to the mixed ionic and electronic conductivity) of CeO2-x is partially responsible for this effect. However, this seems to contradict...

  20. Poisoning of Solid Oxide Electrolysis Cells by Impurities

    DEFF Research Database (Denmark)

    Ebbesen, Sune; Graves, Christopher R.; Hauch, Anne;

    2010-01-01

    Electrolysis of H2O, CO2, and co-electrolysis of H2O and CO2 was studied in Ni/yttria-stabilized zirconia (YSZ) electrode supported solid oxide electrolysis cells (SOECs) consisting of a Ni/YSZ support, a Ni/YSZ electrode layer, a YSZ electrolyte, and an lanthanum strontium manganite (LSM...

  1. Electrochemical characterisation of solid oxide cell electrodes for hydrogen production

    DEFF Research Database (Denmark)

    Bernuy-Lopez, Carlos; Knibbe, Ruth; He, Zeming;

    2011-01-01

    Oxygen electrodes and steam electrodes are designed and tested to develop improved solid oxide electrolysis cells for H2 production with the cell support on the oxygen electrode. The electrode performance is evaluated by impedance spectroscopy testing of symmetric cells at open circuit voltage (O...

  2. Performance Characterization of Solid Oxide Cells Under High Pressure

    DEFF Research Database (Denmark)

    Sun, Xiufu; Bonaccorso, Alfredo Damiano; Graves, Christopher R.;

    2015-01-01

    In this work, recent pressurized test results of a planar Ni- YSZ (YSZ: Yttria stabilized Zirconia) supported solid oxide cell are presented. Measurements were performed at 800 C in both fuel cell and electrolysis mode at different pressures. A comparison of the electrochemical performance...

  3. Slurry spin coating of thin film yttria stabilized zirconia/gadolinia doped ceria bi-layer electrolytes for solid oxide fuel cells

    Science.gov (United States)

    Kim, Hyun Joong; Kim, Manjin; Neoh, Ke Chean; Han, Gwon Deok; Bae, Kiho; Shin, Jong Mok; Kim, Gyu-Tae; Shim, Joon Hyung

    2016-09-01

    Thin ceramic bi-layered membrane comprising yttria-stabilized zirconia (YSZ) and gadolinia-doped ceria (GDC) is fabricated by the cost-effective slurry spin coating technique, and it is evaluated as an electrolyte of solid oxide fuel cells (SOFCs). It is demonstrated that the slurry spin coating method is capable of fabricating porous ceramic films by adjusting the content of ethyl-cellulose binders in the source slurry. The porous GDC layer deposited by spin coating under an optimal condition functions satisfactorily as a cathode-electrolyte interlayer in the test SOFC stack. A 2-μm-thick electrolyte membrane of the spin-coated YSZ/GDC bi-layer is successfully deposited as a dense and stable film directly on a porous NiO-YSZ anode support without any interlayers, and the SOFC produces power output over 200 mW cm-2 at 600 °C, with an open circuit voltage close to 1 V. Electrochemical impedance spectra analysis is conducted to evaluate the performance of the fuel cell components in relation with the microstructure of the spin-coated layers.

  4. Synthesis of Octahedral-Shaped NiO and Approaches to an Anode Material of Manufactured Solid Oxide Fuel Cells Using the Decalcomania Method

    Directory of Open Access Journals (Sweden)

    Haeran Cho

    2013-01-01

    Full Text Available Micrometer-sized and octahedral-shaped NiO particles were synthesized by microwave thermal treatment at 300 watt power for 15 min in a microwave chamber to be used as an anode material in solid oxide fuel cells. SEM image and particle size distribution revealed near-perfect octahedral NiO microparticle with sizes ranging from 4.0~11.0 μm. The anode functional layer (AFL, 60 wt% NiO synthesized: commercial 40 wt% YSZ, electrolyte (commercial Yttria-stabilized zirconia, YSZ, and cathode (commercial La0.8Sr0.2MnO3, LSM layers were manufactured using the decalcomania method on a porous anode support, sequentially. The sintered electrolyte at 1450°C for 2 h using the decalcomania method was dense and had a thickness of about 10 μm. The cathode was sintered at 1250°C for 2 h, and it was porous. Using humidified hydrogen as a fuel, a coin cell with a 15 μm thick anode functional layer exhibited maximum power densities of 0.28, 0.38, and 0.65 W/cm2 at 700, 750, and 800°C, respectively. Otherwise, when a commercial YSZ anode functional layer was used, the maximum power density was 0.55 W/cm2 at 800°C.

  5. Realistic prediction of solid pharmaceutical oxidation products by using a novel forced oxidation system.

    Science.gov (United States)

    Ueyama, Eiji; Tamura, Kousuke; Mizukawa, Kousei; Kano, Kenji

    2014-04-01

    This study investigated a novel solid-state-based forced oxidation system to enable a realistic prediction of pharmaceutical product oxidation, a key consideration in drug development and manufacture. Polysorbate 80 and ferric(III) acetylacetonate were used as an organic hydroperoxide source and a transition metal catalyst, respectively. Homogeneous solutions of target compounds and these reagents were prepared in a mixed organic solvent. The organic solvent was removed rapidly under reduced pressure, and the oxidation of the resulting dried solid was investigated. Analysis of the oxidation products generated in test compounds by this proposed forced oxidation system using HPLC showed a high similarity with those generated during more prolonged naturalistic drug oxidation. The proposed system provided a better predictive performance in prediction of realistic oxidative degradants of the drugs tested than did other established methods. Another advantage of this system was that the generation of undesired products of hydrolysis, solvolysis, and thermolysis was prevented because efficient oxidation was achieved under mild conditions. The results of this study suggest that this system is suitable for a realistic prediction of oxidative degradation of solid pharmaceuticals. PMID:24497072

  6. SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2003-06-01

    This report summarizes the progress made during the September 2001-March 2002 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program''. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. The overall objective of the program is to demonstrate a modular SOFC system that can be configured to create highly efficient, cost-competitive, and environmentally benign power plants tailored to specific markets. When fully developed, the system will meet the efficiency, performance, life, and cost goals for future commercial power plants.

  7. Studies of Morphology of Half-cell of Anode Supported SOFC after Reduction%阳极支撑氧化物半电池还原微观形貌研究

    Institute of Scientific and Technical Information of China (English)

    王霞; 王峰会; 坚增运

    2012-01-01

    This paper was conducted to study the morphology of the half-cell of anode supported SOFC after reduction. The specimens of half-cell were put in a tube furnace during reduction. The changes of the half-cell morphology were observed by means of SEM before and after reaction. Determination of the atomic proportions of the elements in half-cell before and after reduction is to quantify the oxide degree. It shows that the change of smooth surface morphology in the YSZ electrolyte surface before and after reduction is little, while the morphology of its cross section turns into fusion state after reduction from block state before reduction. The color of anode supported layer of NiO/YSZ changes from oxidation state of green NiO/YSZ into reduction state of gray Ni/YSZ. YSZ ceramic in the anode supported layer is granular and shiny. Its surface is uneven and the fracture step is obvious. The NiO in the anode supported layer is gray and sheet. Its surface is smooth. Reduction makes NiO phase, which is no longer coated with the YSZ, change into Ni phase. The Ni phase in half-cell is independent and increasing.%固体氧化物燃料电池在使用中存在还原过程,微观形貌会发生变形.将半电池试样在管式炉中进行还原反应,通过SEM观察其微现形貌反应前后的变化,利用能谱测定反应前后的元素原子比重.研究结果表明:电解质氧化钇稳定氧化锆(YSZ)薄膜表面形貌还原前后变化不大,表面平整光滑;截面形貌变化明显,还原后变为融合状态.阳极支撑NiO/YSZ截面颜色变化明显,还原后变为灰色的Ni/YSZ.YSZ陶瓷小颗粒状的出现,表面突出不平整,有明显的断裂解理台阶,层片状的NiO,表面光滑平整.还原反应使NiO相变成Ni相,不再与YSZ包覆在一起,独立的Ni相增多.

  8. Durable solid oxide electrolysis cells for hydrogen production

    DEFF Research Database (Denmark)

    Sun, Xiufu; Chen, Ming; Hendriksen, Peter Vang;

    2014-01-01

    Solid oxide cell (SOC) for electrolysis application has attracted great interest in recent years due to its high power-to-gas efficiency and capability of co-electrolysis of H2O and CO2 for syngas (H2 + CO) production. The demonstration of durable solid oxide electrolysis cell operation for fuel...... production is required for promoting commercialization of the SOEC technology. In this work, we report a recent 4400 hours test of a state-of-the-art Ni-YSZ electrode supported SOEC cell. The cell consists of a Ni-YSZ (YSZ: yttria stabilized zirconia) support and active fuel electrode, an YSZ electrolyte...... that except for the first 250 hours fast initial degradation, for the rest of the testing period, the cell showed rather stable performance with an moderate degradation rate of around 25 mV/1000 h. The electrochemical impedance spectra show that both serial resistance and polarization resistance of the cell...

  9. Electrolytes For Intermediate Temperature Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Rękas M.

    2015-06-01

    Full Text Available Solid electrolytes for construction of the intermediate-temperature solid oxide fuel cells, IT-SOFC, have been reviewed. Yttrium stabilized tetragonal zirconia polycrystals, YTZP, as a potential electrolyte of IT-SOFC have been highlighted. The experimental results involving structural, microstructural, electrical properties based on our own studies were presented. In order to study aluminum diffusion in YTZP, aluminum oxide was deposited on the surface of 3 mol.% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP. The samples were annealed at temperatures from 1523 to 1773 K. Diffusion profiles of Al in the form of mean concentration vs. depth in B-type kinetic region were investigated by secondary ion mass spectroscopy (SIMS. Both the lattice (DB and grain boundary (DGB diffusion were determined.

  10. Performance characterization of solid oxide cells under high pressure

    DEFF Research Database (Denmark)

    Sun, Xiufu; Bonaccorso, Alfredo Damiano; Graves, Christopher R.;

    2014-01-01

    Solid oxide electrolysis cells (SOECs) offer a great potential for large scale conversion of renewable electrical energy into chemical energy via electrolysis of H2O and CO2 to produce syngas (H2 + CO). The produced syngas can be further catalytically converted into various gaseous or liquid...... hydrocarbon fuels, which is normally performed at high pressure to achieve a high yield. Operation of SOECs at elevated pressure will therefore facilitate integration with the downstream fuel synthesis and is furthermore advantageous as it increases the cell performance. In this work, recent pressurised test...... results of a planar Ni-YSZ (YSZ: Yttria stabilized Zirconia) supported solid oxide cell are presented. The test was performed at 800 °C at pressures up to 15 bar. A comparison of the electrochemical performance of the cell at 1 and 3 bar shows a significant and equal performance gain at higher pressure...

  11. Development and Characterisation of Solid Oxide Electrolyser Cells (SOEC)

    OpenAIRE

    Schiller, Günter; Hörlein, Michael; Tietz, Frank

    2014-01-01

    A reliable energy supply which is based on increasing shares of sustainable and renewable energy sources, such as wind power and solar energy, requires appropriate storage technologies. Hydrogen as energy carrier, produced by water electrolysis using electric current from regenerative energy sources, offers a high potential in this respect. A very efficient option to produce hydrogen in this way is high-temperature steam electrolysis based on solid oxide electrolyser cells (SOEC). This techno...

  12. Solid Oxide Electrolysis Cells: Degradation at High Current Densities

    DEFF Research Database (Denmark)

    Knibbe, Ruth; Traulsen, Marie Lund; Hauch, Anne;

    2010-01-01

    The degradation of Ni/yttria-stabilized zirconia (YSZ)-based solid oxide electrolysis cells operated at high current densities was studied. The degradation was examined at 850°C, at current densities of −1.0, −1.5, and −2.0 A/cm2, with a 50:50 (H2O:H2) gas supplied to the Ni/YSZ hydrogen electrode...

  13. Improving the performance of solid oxide fuel cell systems

    OpenAIRE

    Halinen, Matias

    2015-01-01

    Solid oxide fuel cell (SOFC) systems can provide power production at a high electrical efficiency and with very low emissions. Furthermore, they retain their high electrical efficiency over a wide range of output power and offer good fuel flexibility, which makes them well suited for a range of applications. Currently SOFC systems are under investigation by researchers as well as being developed by industrial manufacturers. The first commercial SOFC systems have been on the market for some...

  14. Nanoscale chemical analysis and imaging of solid oxide cells

    DEFF Research Database (Denmark)

    Hauch, Anne; Bowen, Jacob R.; Kuhn, Luise Theil;

    2008-01-01

    The performance of solid oxide cells (SOCs) is highly dependent on triple phase boundaries (TPBs). Therefore, detailed TPB characterization is crucial for their further development. We demonstrate that it is possible to prepare a similar to 50 nm thick transmission electron microscopy (TEM) lamel...... of nanoscale impurity phases at the TPBs has been obtained with a few nanometers lateral resolution. (c) 2008 The Electrochemical Society....

  15. Current status of Westinghouse tubular solid oxide fuel cell program

    Energy Technology Data Exchange (ETDEWEB)

    Parker, W.G. [Westinghouse Science and Technology Center, Pittsburgh, PA (United States)

    1996-04-01

    In the last ten years the solid oxide fuel cell (SOFC) development program at Westinghouse has evolved from a focus on basic material science to the engineering of fully integrated electric power systems. Our endurance for this cell is 5 to 10 years. To date we have successfully operated at power for over six years. For power plants it is our goal to have operated before the end of this decade a MW class power plant. Progress toward these goals is described.

  16. Lowering the temperature of solid oxide fuel cells.

    Science.gov (United States)

    Wachsman, Eric D; Lee, Kang Taek

    2011-11-18

    Fuel cells are uniquely capable of overcoming combustion efficiency limitations (e.g., the Carnot cycle). However, the linking of fuel cells (an energy conversion device) and hydrogen (an energy carrier) has emphasized investment in proton-exchange membrane fuel cells as part of a larger hydrogen economy and thus relegated fuel cells to a future technology. In contrast, solid oxide fuel cells are capable of operating on conventional fuels (as well as hydrogen) today. The main issue for solid oxide fuel cells is high operating temperature (about 800°C) and the resulting materials and cost limitations and operating complexities (e.g., thermal cycling). Recent solid oxide fuel cells results have demonstrated extremely high power densities of about 2 watts per square centimeter at 650°C along with flexible fueling, thus enabling higher efficiency within the current fuel infrastructure. Newly developed, high-conductivity electrolytes and nanostructured electrode designs provide a path for further performance improvement at much lower temperatures, down to ~350°C, thus providing opportunity to transform the way we convert and store energy.

  17. Integration of a municipal solid waste gasification plant with solid oxide fuel cell and gas turbine

    DEFF Research Database (Denmark)

    Bellomare, Filippo; Rokni, Masoud

    2013-01-01

    it reacts with air and produces electricity. The exhausted gases out of the SOFC enter a burner for further fuel combusting and finally the off-gases are sent to a gas turbine to produce additional electricity. Different plant configurations have been studied and the best one found to be a regenerative gas...... in landfills. A Municipal Solid Waste Gasification Plant Integrated with Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) has been studied and the plant is called IGSG (Integrated Gasification SOFC and GT). Gasification plant is fed by MSW to produce syngas by which the anode side of an SOFC is fed wherein...

  18. Solid oxide fuel cell having a glass composite seal

    Science.gov (United States)

    De Rose, Anthony J.; Mukerjee, Subhasish; Haltiner, Jr., Karl Jacob

    2013-04-16

    A solid oxide fuel cell stack having a plurality of cassettes and a glass composite seal disposed between the sealing surfaces of adjacent cassettes, thereby joining the cassettes and providing a hermetic seal therebetween. The glass composite seal includes an alkaline earth aluminosilicate (AEAS) glass disposed about a viscous glass such that the AEAS glass retains the viscous glass in a predetermined position between the first and second sealing surfaces. The AEAS glass provides geometric stability to the glass composite seal to maintain the proper distance between the adjacent cassettes while the viscous glass provides for a compliant and self-healing seal. The glass composite seal may include fibers, powders, and/or beads of zirconium oxide, aluminum oxide, yttria-stabilized zirconia (YSZ), or mixtures thereof, to enhance the desirable properties of the glass composite seal.

  19. High Performance Nano-Ceria Electrodes for Solid Oxide Cells

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Martinez Aguilera, Lev; Sudireddy, Bhaskar Reddy

    2016-01-01

    ionic-electronic conducting oxide that could solve these issues if it can be integrated into an appropriate electrode structure. Two new approaches to obtain high-performance nanostructured doped-ceria electrodes are highlighted. The first is an infiltration-based architecture with Ce0.8Pr0.2O2-δ......In solid oxide electrochemical cells, the conventional Ni-based fuel-electrodes provide high electrocatalytic activity but they are often a major source of long-term performance degradation due to carbon deposition, poisoning of reaction sites, Ni mobility, etc. Doped-ceria is a promising mixed...... forming the active surfaces on a porous backbone with embedded electronic current collector material, yielding one of the highest performances reported for an electrode that operates either on fuel or oxidant. The second is a nano-Ce0.9Gd0.1O2-δ thin film prepared by spin-coating, which provides...

  20. Alternative anode materials for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B.; Huang, Yun-Hui [Texas Materials Institute, ETC 9.102, 1 University Station, C2200, The University of Texas at Austin, Austin, TX 78712 (United States)

    2007-11-08

    The electrolyte of a solid oxide fuel cell (SOFC) is an O{sup 2-}-ion conductor. The anode must oxidize the fuel with O{sup 2-} ions received from the electrolyte and it must deliver electrons of the fuel chemisorption reaction to a current collector. Cells operating on H{sub 2} and CO generally use a porous Ni/electrolyte cermet that supports a thin, dense electrolyte. Ni acts as both the electronic conductor and the catalyst for splitting the H{sub 2} bond; the oxidation of H{sub 2} to H{sub 2}O occurs at the Ni/electrolyte/H{sub 2} triple-phase boundary (TPB). The CO is oxidized at the oxide component of the cermet, which may be the electrolyte, yttria-stabilized zirconia, or a mixed oxide-ion/electron conductor (MIEC). The MIEC is commonly a Gd-doped ceria. The design and fabrication of these anodes are evaluated. Use of natural gas as the fuel requires another strategy, and MIECs are being explored for this application. The several constraints on these MIECs are outlined, and preliminary results of this on-going investigation are reviewed. (author)

  1. Status of Research on Application of High Purity Rare Earth Oxides in Solid Oxide Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    Ma Zhihong; Qiu Jufeng

    2004-01-01

    The solid oxide fuel cell (SOFC) is a high-efficient and environmentally friendly power generation system.The rare earth oxide materials are used extensively in the manufacturing of SOFC components.In particular, the CeO2doped with Gd2O3 or Sm2O3, lanthanide perovskite oxides are indispensable and key materials for developing the intermediate temperature SOFC.The research and development status of application of high purity rare earth oxides in SOFC was overviewed.The rare earth oxide-based and -doped materials were discussed for the SOFC components.Concerning the rare earth oxides applicable to SOFC, several topics were also pointed out for further researching and developing.

  2. Development of a Novel Efficient Solid-Oxide Hybrid for Co-generation of Hydrogen and Electricity Using Nearby Resources for Local Application

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Greg, G.; Virkar, Anil, V.; Bandopadhyay, Sukumar; Thangamani, Nithyanantham; Anderson, Harlan, U.; Brow, Richard, K.

    2009-06-30

    Developing safe, reliable, cost-effective, and efficient hydrogen-electricity co-generation systems is an important step in the quest for national energy security and minimized reliance on foreign oil. This project aimed to, through materials research, develop a cost-effective advanced technology cogenerating hydrogen and electricity directly from distributed natural gas and/or coal-derived fuels. This advanced technology was built upon a novel hybrid module composed of solid-oxide fuel-assisted electrolysis cells (SOFECs) and solid-oxide fuel cells (SOFCs), both of which were in planar, anode-supported designs. A SOFEC is an electrochemical device, in which an oxidizable fuel and steam are fed to the anode and cathode, respectively. Steam on the cathode is split into oxygen ions that are transported through an oxygen ion-conducting electrolyte (i.e. YSZ) to oxidize the anode fuel. The dissociated hydrogen and residual steam are exhausted from the SOFEC cathode and then separated by condensation of the steam to produce pure hydrogen. The rationale was that in such an approach fuel provides a chemical potential replacing the external power conventionally used to drive electrolysis cells (i.e. solid oxide electrolysis cells). A SOFC is similar to the SOFEC by replacing cathode steam with air for power generation. To fulfill the cogeneration objective, a hybrid module comprising reversible SOFEC stacks and SOFC stacks was designed that planar SOFECs and SOFCs were manifolded in such a way that the anodes of both the SOFCs and the SOFECs were fed the same fuel, (i.e. natural gas or coal-derived fuel). Hydrogen was produced by SOFECs and electricity was generated by SOFCs within the same hybrid system. A stand-alone 5 kW system comprising three SOFEC-SOFC hybrid modules and three dedicated SOFC stacks, balance-of-plant components (including a tailgas-fired steam generator and tailgas-fired process heaters), and electronic controls was designed, though an overall

  3. Effects of fuel processing methods on industrial scale biogas-fuelled solid oxide fuel cell system for operating in wastewater treatment plants

    Science.gov (United States)

    Farhad, Siamak; Yoo, Yeong; Hamdullahpur, Feridun

    The performance of three solid oxide fuel cell (SOFC) systems, fuelled by biogas produced through anaerobic digestion (AD) process, for heat and electricity generation in wastewater treatment plants (WWTPs) is studied. Each system has a different fuel processing method to prevent carbon deposition over the anode catalyst under biogas fuelling. Anode gas recirculation (AGR), steam reforming (SR), and partial oxidation (POX) are the methods employed in systems I-III, respectively. A planar SOFC stack used in these systems is based on the anode-supported cells with Ni-YSZ anode, YSZ electrolyte and YSZ-LSM cathode, operated at 800 °C. A computer code has been developed for the simulation of the planar SOFC in cell, stack and system levels and applied for the performance prediction of the SOFC systems. The key operational parameters affecting the performance of the SOFC systems are identified. The effect of these parameters on the electrical and CHP efficiencies, the generated electricity and heat, the total exergy destruction, and the number of cells in SOFC stack of the systems are studied. The results show that among the SOFC systems investigated in this study, the AGR and SR fuel processor-based systems with electrical efficiency of 45.1% and 43%, respectively, are suitable to be applied in WWTPs. If the entire biogas produced in a WWTP is used in the AGR or SR fuel processor-based SOFC system, the electricity and heat required to operate the WWTP can be completely self-supplied and the extra electricity generated can be sold to the electrical grid.

  4. Strategies for Lowering Solid Oxide Fuel Cells Operating Temperature

    Directory of Open Access Journals (Sweden)

    Albert Tarancón

    2009-11-01

    Full Text Available Lowering the operating temperature of solid oxide fuel cells (SOFCs to the intermediate range (500–700 ºC has become one of the main SOFC research goals. High operating temperatures put numerous requirements on materials selection and on secondary units, limiting the commercial development of SOFCs. The present review first focuses on the main effects of reducing the operating temperature in terms of materials stability, thermo-mechanical mismatch, thermal management and efficiency. After a brief survey of the state-of-the-art materials for SOFCs, attention is focused on emerging oxide-ionic conductors with high conductivity in the intermediate range of temperatures with an introductory section on materials technology for reducing the electrolyte thickness. Finally, recent advances in cathode materials based on layered mixed ionic-electronic conductors are highlighted because the decreasing temperature converts the cathode into the major source of electrical losses for the whole SOFC system. It is concluded that the introduction of alternative materials that would enable solid oxide fuel cells to operate in the intermediate range of temperatures would have a major impact on the commercialization of fuel cell technology.

  5. Continuum mechanics simulations of NiO/Ni-YSZ composites during reduction and re-oxidation

    DEFF Research Database (Denmark)

    Pihlatie, Mikko; Frandsen, Henrik Lund; Kaiser, Andreas;

    2010-01-01

    Repeated reduction–oxidation (redox) cycles on Ni-based solid oxide fuel cells (SOFC) have been experimentally well investigated and are known to be detrimental to the thermomechanical stability of the composites, especially on anode supported structures. In the present work the mechanistic...... analysis of the internal factors leading to the dimensional changes and the thermomechanical instability have been addressed, to our knowledge for the first time, using continuum mechanics simulations. The two intertwined percolating phases, YSZ and NiO/Ni, interact and the driving force...

  6. Development and optimisation of electrodematerials in solid oxide fuel cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Solid oxide fuel cell (SOFC) is an all solid electrochemical device to convert fuels such as hydrogen and natural gas to electricity with high efficiency and very low greenhouse gas emission compared to traditional thermal power generation plants. Moreover, the reliability and efficiency of SOFC is critically dependent on the performance and stability of its components including anode, cathode and electrolyte. This in turn is largely dependent on the material selection and the fabrication processes. In this paper, specific examples are given to demonstrate strategy and process in the development and optimisation of electrode materials such as Ni/Y2O3-ZrO2 cermet anodes and (LaSr)MnO3 based cathodes. The results also demonstrate the importance of fabrication processes and that the understanding of the electrode process plays a very important role in the optimisation process of electrode materials.

  7. Solid oxide electrolysis cell for decomposition of tritiated water

    International Nuclear Information System (INIS)

    The decomposition of tritiated water vapor with solid oxide electrolysis cell was proposed for the application to the D-T fusion reactor system. This method is essentially free from problems such as large tritium inventory, radiation damage, and generation of solid waste, so it is expected to be a promising one. Electrolysis of water vapor in argon carrier was performed using tube-type stabilized zirconia cell with porous platinum electrodes in the temperature range of 5000C to 9500C. High conversion ratio from water to hydrogen up to 99.9% was achieved. The characteristics of the cell is deduced from the Nernst's equation and conversion ratio is described as the function of the open circuit voltage. Experimental results agreed with the equation. Isotope effect in electrolysis is also discussed and experiments with heavy water were carried out. Obtained separation factor was slightly higher than the theoretical value

  8. CoxFe1-x oxide coatings on metallic interconnects for solid oxide fuel cells

    Science.gov (United States)

    Shen, Fengyu; Lu, Kathy

    2016-10-01

    In order to improve the performance of Cr-containing steel as an interconnect material for solid oxide fuel cells, CoFe alloy coatings with Co:Fe ratios of 9:1, 8:2, 7:3, 6:4, and 5:5 are deposited by electrodeposition and then oxidized to CoxFe1-x oxide coatings with a thickness of ∼6 μm as protective layers on the interconnect. The area specific resistance of the coated interconnect increases with the Fe content. Higher Co content oxide coatings are more effective in limiting the growth of the chromia scale while all coatings are effective in inhibiting Cr diffusion and evaporation. With the Co0.8Fe0.2 oxide coated interconnect, the electrochemical performance of the Sm0.5Sr0.5Co0.2Fe0.8O3 cathode is improved. Only 1.54 atomic percentage of Cr is detected on the surface of the Sm0.5Sr0.5Co0.2Fe0.8O3 cathode while no Cr is detected 0.66 μm or more into the cathode. CoxFe1-x oxide coatings are promising candidates for solid oxide fuel cell interconnects with the advantage of using existing cathode species for compatibility and performance enhancement.

  9. Reversible solid oxide fuel cells (R-SOFCs) with chemically stable proton-conducting oxides

    KAUST Repository

    Bi, Lei

    2015-07-01

    Proton-conducting oxides offer a promising way of lowering the working temperature of solid oxide cells to the intermediate temperate range (500 to 700. °C) due to their better ionic conductivity. In addition, the application of proton-conducting oxides in both solid oxide fuel cells (SOFCs) and sold oxide electrolysis cells (SOECs) provides unique advantages compared with the use of conventional oxygen-ion conducting conductors, including the formation of water at the air electrode site. Since the discovery of proton conduction in some oxides about 30. years ago, the development of proton-conducting oxides in SOFCs and SOECs (the reverse mode of SOFCs) has gained increased attention. This paper briefly summarizes the development in the recent years of R-SOFCs with proton-conducting electrolytes, focusing on discussing the importance of adopting chemically stable materials in both fuel cell and electrolysis modes. The development of electrode materials for proton-conducting R-SOFCs is also discussed. © 2015 Elsevier B.V.

  10. Thermodynamic Analysis of Methane-fueled Solid Oxide Fuel Cells Considering CO Electrochemical Oxidation

    Institute of Scientific and Technical Information of China (English)

    Qiong Sun; Keqing Zheng; Meng Ni⁎

    2014-01-01

    abstract Thermodynamic analyses in the literature have shown that solid oxide fuel cells (SOFCs) with proton conducting electrolyte (H-SOFC) exhibited higher performance than SOFC with oxygen ion conducting electrolyte (O-SOFC). However, these studies only consider H2 electrochemical oxidation and totally neglect the contribution of CO electrochemical oxidation in O-SOFC. In this short communication, a thermodynamic model is developed to compare the theoretically maximum efficiencies of H-SOFC and O-SOFC, considering the electrochemical oxidation of CO in O-SOFC anode. It is found that O-SOFC exhibits a higher maximum efficiency than H-SOFC due to the contribution from CO electrochemical oxidation, which is contrary to the common understanding of electrolyte effect on SOFC performance. The effects of operating temperature and fuel utilization factor on the theoretical efficiency of SOFC are also analyzed and discussed.

  11. Recent key technical barriers in solid oxide fuel cell technology

    Directory of Open Access Journals (Sweden)

    Milewski Jarosław

    2014-03-01

    Full Text Available High-temperature solid oxide fuel cells (SOFCs are considered as suitable components of future large-scale clean and efficient power generation systems. However, at its current stage of development some technical barriers exists which limit SOFC’s potential for rapid large-scale deployment. The present article aims at providing solutions to key technical barriers in SOFC technology. The focus is on the solutions addressing thermal resistance, fuel reforming, energy conversion efficiency, materials, design, and fuel utilisation issues.

  12. Transport parameters of thin, supported cathode layers in solid oxide fuel cells (SOFCs); Transportparameter duenner, getraegerter Kathodenschichten der oxidkeramischen Brennstoffzelle

    Energy Technology Data Exchange (ETDEWEB)

    Wedershoven, Christian

    2010-12-22

    The aim of this work was to determine the transport properties of thin cathode layers, which are part of the composite layer of a fabricated anode-supported solid oxide fuel cell (SOFC). The transport properties of the anode and cathode have a significant influence on the electrochemical performance of a fuel cell stack and therefore represent an important parameter when designing fuel cell stacks. In order to determine the transport parameters of the cathode layers in a fabricated SOFC, it is necessary to permeate the thin cathode layer deposited on the gas-tight electrolyte with a defined gas transport. These thin cathode layers cannot be fabricated as mechanically stable single layers and cannot therefore be investigated in the diffusion and permeation experiments usually used to determine transport parameters. The setup of these experiments - particularly the sample holder - was therefore altered in this work. The result of this altered setup was a three-dimensional flow configuration. Compared to the conventional setup, it was no longer possible to describe the gas transport in the experiments with an analytical one-dimensional solution. A numerical solution process had to be used to evaluate the measurements. The new setup permitted a sufficiently symmetrical gas distribution and thus allowed the description of the transport to be reduced to a two-dimensional description, which significantly reduced the computational effort required to evaluate the measurements. For pressure-induced transport, a parametrized coherent expression of transport could be derived. This expression is equivalent to the analytical description of the transport in conventional measurement setups, with the exception of parameters that describe the geometry of the gas diffusion. In this case, a numerical process is not necessary for the evaluation. Using the transport parameters of mechanically stable anode substrates, which can be measured both in the old and the new setups, the old and

  13. Lanthanum Manganate Based Cathodes for Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Jørgensen, Mette Juhl

    Composite cathodes for solid oxide fuel cells were investigated using electrochemical impedance spectroscopy and scanning electron microscopy. The aim was to study the oxygen reduction process in the electrode in order to minimise the voltage drop in the cathode. The electrodes contained...... a composite layer made from lanthanum strontium manganate (LSM) and yttria stabilised zirconia (YSZ) and a layer of pure LSM aimed for current collection. The performance of the composite electrodes was sensitive to microstructure and thickness. Further, the interface between the composite and the current...... five processes were found to affect the impedance of LSM/YSZ composite electrodes. Two high frequency processes were ascribed to transport of oxide ions/oxygen intermediates across LSM/YSZ interfaces and through YSZ in the composite. Several competitive elementary reaction steps, which appear as one...

  14. Iron aluminide alloy container for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, Roddie Reagan (Knoxville, TN); Singh, Prabhakar (Export, PA); Sikka, Vinod Kumar (Oak Ridge, TN)

    2000-01-01

    A container for fuel cells is made from an iron aluminide alloy. The container alloy preferably includes from about 13 to about 22 weight percent Al, from about 2 to about 8 weight percent Cr, from about 0.1 to about 4 weight percent M selected from Zr and Hf, from about 0.005 to about 0.5 weight percent B or from about 0.001 to about 1 weight percent C, and the balance Fe and incidental impurities. The iron aluminide container alloy is extremely resistant to corrosion and metal loss when exposed to dual reducing and oxidizing atmospheres at elevated temperatures. The alloy is particularly useful for containment vessels for solid oxide fuel cells, as a replacement for stainless steel alloys which are currently used.

  15. Redox Stable Anodes for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Guoliang eXiao

    2014-06-01

    Full Text Available Solid oxide fuel cells (SOFCs can convert chemical energy from the fuel directly to electrical energy with high efficiency and fuel flexibility. Ni-based cermets have been the most widely adopted anode for SOFCs. However, the conventional Ni-based anode has low tolerance to sulfur-contamination, is vulnerable to deactivation by carbon build-up (coking from direct oxidation of hydrocarbon fuels, and suffers volume instability upon redox cycling. Among these limitations, the redox instability of the anode is particularly important and has been intensively studied since the SOFC anode may experience redox cycling during fuel cell operations even with the ideal pure hydrogen as the fuel. This review aims to highlight recent progresses on improving redox stability of the conventional Ni-based anode through microstructure optimization and exploration of alternative ceramic-based anode materials.

  16. Multi-metallic anodes for solid oxide fuel cell applications

    International Nuclear Information System (INIS)

    A new method for direct preparation of materials for solid oxide fuel cell anode - Ni- YSZ cermets - based on mechanical alloying (MA) of the original powders is developed, allowing to admix homogeneously any component. Additive metals are selected from thermodynamic criteria, leading to compacts consolidation through sintering by activated surface (SAS). The combined process MA-SSA can reduce the sintering temperature by 300 deg C, yielding porous anodes. Densification mechanisms are discussed from quasi-isothermal sintering kinetics results. Doping with Ag, W, Cu, Mo, Nb, Ta, in descending order, promotes the densification of pellets through liquid phase sintering and evaporation of metals and oxides, which allow reducing the sintering temperature. Powders and pellets characterization by electronic microscopy and X-ray diffraction completes the result analyses. (author)

  17. Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Minh

    2006-07-31

    This report summarizes the work performed for Phase I (October 2001 - August 2006) under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled 'Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program'. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. During Phase I of the program significant progress has been made in the area of SOFC technology. A high-efficiency low-cost system was designed and supporting technology developed such as fuel processing, controls, thermal management, and power electronics. Phase I culminated in the successful demonstration of a prototype system that achieved a peak efficiency of 41%, a high-volume cost of $724/kW, a peak power of 5.4 kW, and a degradation rate of 1.8% per 500 hours. . An improved prototype system was designed, assembled, and delivered to DOE/NETL at the end of the program. This prototype achieved an extraordinary peak efficiency of 49.6%.

  18. Oxidation behaviour and electrical properties of cobalt/cerium oxide composite coatings for solid oxide fuel cell interconnects

    Science.gov (United States)

    Harthøj, Anders; Holt, Tobias; Møller, Per

    2015-05-01

    This work evaluates the performance of cobalt/cerium oxide (Co/CeO2) composite coatings and pure Co coatings to be used for solid oxide fuel cell (SOFC) interconnects. The coatings are electroplated on the ferritic stainless steels Crofer 22 APU and Crofer 22H. Coated and uncoated samples are exposed in air at 800 °C for 3000 h and oxidation rates are measured and oxide scale microstructures are investigated. Area-specific resistances (ASR) in air at 850 °C of coated and uncoated samples are also measured. A dual layered oxide scale formed on all coated samples. The outer layer consisted of Co, Mn, Fe and Cr oxide and the inner layer consisted of Cr oxide. The CeO2 was present as discrete particles in the outer oxide layer after exposure. The Cr oxide layer thicknesses and oxidations rates were significantly reduced for Co/CeO2 coated samples compared to for Co coated and uncoated samples. The ASR of all Crofer 22H samples increased significantly faster than of Crofer 22 APU samples which was likely due to the presence of SiO2 in the oxide/metal interface of Crofer 22H.

  19. Santa Clara County Planar Solid Oxide Fuel Cell Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Fred Mitlitsky; Sara Mulhauser; David Chien; Deepak Shukla; David Weingaertner

    2009-11-14

    The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project demonstrated the technical viability of pre-commercial PSOFC technology at the County 911 Communications headquarters, as well as the input fuel flexibility of the PSOFC. PSOFC operation was demonstrated on natural gas and denatured ethanol. The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project goals were to acquire, site, and demonstrate the technical viability of a pre-commercial PSOFC technology at the County 911 Communications headquarters. Additional goals included educating local permit approval authorities, and other governmental entities about PSOFC technology, existing fuel cell standards and specific code requirements. The project demonstrated the Bloom Energy (BE) PSOFC technology in grid parallel mode, delivering a minimum 15 kW over 8760 operational hours. The PSOFC system demonstrated greater than 81% electricity availability and 41% electrical efficiency (LHV net AC), providing reliable, stable power to a critical, sensitive 911 communications system that serves geographical boundaries of the entire Santa Clara County. The project also demonstrated input fuel flexibility. BE developed and demonstrated the capability to run its prototype PSOFC system on ethanol. BE designed the hardware necessary to deliver ethanol into its existing PSOFC system. Operational parameters were determined for running the system on ethanol, natural gas (NG), and a combination of both. Required modeling was performed to determine viable operational regimes and regimes where coking could occur.

  20. Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoxing; Quan, Wenying; Xiao, Jing; Peduzzi, Emanuela; Fujii, Mamoru; Sun, Funxia; Shalaby, Cigdem; Li, Yan; Xie, Chao; Ma, Xiaoliang; Johnson, David; Lee, Jeong; Fedkin, Mark; LaBarbera, Mark; Das, Debanjan; Thompson, David; Lvov, Serguei; Song, Chunshan

    2014-09-30

    This DOE project at the Pennsylvania State University (Penn State) initially involved Siemens Energy, Inc. to (1) develop new fuel processing approaches for using selected alternative and renewable fuels – anaerobic digester gas (ADG) and commercial diesel fuel (with 15 ppm sulfur) – in solid oxide fuel cell (SOFC) power generation systems; and (2) conduct integrated fuel processor – SOFC system tests to evaluate the performance of the fuel processors and overall systems. Siemens Energy Inc. was to provide SOFC system to Penn State for testing. The Siemens work was carried out at Siemens Energy Inc. in Pittsburgh, PA. The unexpected restructuring in Siemens organization, however, led to the elimination of the Siemens Stationary Fuel Cell Division within the company. Unfortunately, this led to the Siemens subcontract with Penn State ending on September 23rd, 2010. SOFC system was never delivered to Penn State. With the assistance of NETL project manager, the Penn State team has since developed a collaborative research with Delphi as the new subcontractor and this work involved the testing of a stack of planar solid oxide fuel cells from Delphi.

  1. Kinetic Studies on State of the Art Solid Oxide Cells

    DEFF Research Database (Denmark)

    Njodzefon, Jean-Claude; Graves, Christopher R.; Mogensen, Mogens Bjerg;

    2016-01-01

    Electrochemical reaction kinetics at the electrodes of Solid Oxide Cells (SOCs) were investigated at 700 °C for two cells with different fuel electrode microstructures as well as on a third cell with a reduced active electrode area. Three fuel mixtures were investigated – hydrogen/steam and refor......Electrochemical reaction kinetics at the electrodes of Solid Oxide Cells (SOCs) were investigated at 700 °C for two cells with different fuel electrode microstructures as well as on a third cell with a reduced active electrode area. Three fuel mixtures were investigated – hydrogen....../steam and reformate fuels hydrogen/carbon-dioxide and hydrogen/methane/steam. It was found that the kinetics at the fuel electrode were exactly the same in both reformates. The hydrogen/steam fuel displayed slightly faster kinetics than the reformate fuels. Furthermore the gas conversion impedance in the hydrogen...... into a single process as the gas conversion was reduced. The SOC with finer electrode microstructure displayed improved kinetics....

  2. LG Solid Oxide Fuel Cell (SOFC) Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Haberman, Ben [LG Fuel Cell Systems Inc., North Canton, OH (United States); Martinez-Baca, Carlos [LG Fuel Cell Systems Inc., North Canton, OH (United States); Rush, Greg [LG Fuel Cell Systems Inc., North Canton, OH (United States)

    2013-05-31

    This report presents a summary of the work performed by LG Fuel Cell Systems Inc. during the project LG Solid Oxide Fuel Cell (SOFC) Model Development (DOE Award Number: DE-FE0000773) which commenced on October 1, 2009 and was completed on March 31, 2013. The aim of this project is for LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) to develop a multi-physics solid oxide fuel cell (SOFC) computer code (MPC) for performance calculations of the LGFCS fuel cell structure to support fuel cell product design and development. A summary of the initial stages of the project is provided which describes the MPC requirements that were developed and the selection of a candidate code, STAR-CCM+ (CD-adapco). This is followed by a detailed description of the subsequent work program including code enhancement and model verification and validation activities. Details of the code enhancements that were implemented to facilitate MPC SOFC simulations are provided along with a description of the models that were built using the MPC and validated against experimental data. The modeling work described in this report represents a level of calculation detail that has not been previously available within LGFCS.

  3. Municipal Solid Waste Gasification with Solid Oxide Fuel Cells and Stirling Engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    . The gasification process is usually based on an atmospheric - pressure circulating fluidized bed gasifier coupled to a tar - crac king vessel. Syngas can be used as fuel in different kind of power plant such as gas turbine cycle, steam cycle, combined cycle, internal and external combustion engine and Solid Oxide...... studied to optimize the plant efficiency in terms of operating conditions. Compared with modern waste incinerators with heat recovery, the gasification process integrated with SOFC and Stirling engine permits an increase in electricity output up of 50%, which means that the solid waste gasification...... Fuel Cell (SOFC). In the present study, a MSW gasification plant int egrated with SOFC is combined with a Stirling engine to recover the energy of the off - gases from the topping SOFC cycle. Detailed plant design is proposed and thermodynamic analysis is performed. Relevant parameters have been...

  4. Effect of Substrate Thickness on Oxide Scale Spallation for Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenning N.; Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2011-07-01

    In this paper, the effect of the ferritic substrate's thickness on the delamination/spallation of the oxide scale was investigated experimentally and numerically. At the high-temperature oxidation environment of solid oxide fuel cells (SOFCs), a combination of growth stress with thermal stresses may lead to scale delamination/buckling and eventual spallation during SOFC stack cooling, even leading to serious degradation of cell performance. The growth stress is induced by the growth of the oxide scale on the scale/substrate interface, and thermal stress is induced by a mismatch of the coefficient of thermal expansion between the oxide scale and the substrate. The numerical results show that the interfacial shear stresses, which are the driving force of scale delamination between the oxide scale and the ferritic substrate, increase with the growth of the oxide scale and also with the thickness of the ferritic substrate; i.e., the thick ferritic substrate can easily lead to scale delamination and spallation. Experimental observation confirmed the predicted results of the delamination and spallation of the oxide scale on the ferritic substrate.

  5. Oxidation behaviour and electrical properties of cobalt/cerium oxide composite coatings for solid oxide fuel cell interconnects

    DEFF Research Database (Denmark)

    Harthøj, Anders; Holt, Tobias; Møller, Per

    2015-01-01

    This work evaluates the performance of cobalt/cerium oxide (Co/CeO2) composite coatings and pure Co coatings to be used for solid oxide fuel cell (SOFC) interconnects. The coatings are electroplated on the ferritic stainless steels Crofer 22 APU and Crofer 22H. Coated and uncoated samples....... The ASR of all Crofer 22H samples increased significantly faster than of Crofer 22 APU samples which was likely due to the presence of SiO2 in the oxide/metal interface of Crofer 22H....

  6. Shuttle Redesigned Solid Rocket Motor aluminum oxide investigations

    Science.gov (United States)

    Blomshield, Fred S.; Kraeutle, Karl J.; Stalnaker, Richard A.

    1994-10-01

    During the launch of STS-54, a 15 psi pressure blip was observed in the ballistic pressure trace of one of the two Space Shuttle Redesigned Solid Rocket Motors (RSRM). One possible scenario for the observed pressure increase deals with aluminum oxide slag formation in the RSRM. The purpose of this investigation was to examine changes which may have occurred in the aluminum oxide formation in shuttle solid propellant due to changes in the ammonium perchlorate. Aluminum oxide formation from three propellants, all having the same formulation, but containing ammonium perchlorate from different manufacturers, will be compared. Three methods have been used to look for possible differences among the propellants. The first method was to examine window bomb movies of the propellants burning at 100, 300 and 600 psia. The motor operating pressure during the pressure blip was around 600 psia. The second method used small samples of propellant which were fired in a combustion bomb which quenched the burning aluminum particles soon after they left the propellant surface. The bomb was fired in both argon and Nitrogen atmospheres at various pressures. Products from this device were examined by optical microscopy. The third method used larger propellant samples fired into a particle collection device which allowed the aluminum to react and combust more completely. This device was pressurized with Nitrogen to motor operating pressures. The collected products were subdivided into size fractions by screening and sedimentation and analyzed optically with an optical microscope. the results from all three methods indicate very small changes in the size distribution of combustion products.

  7. Modeling of thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode

    Science.gov (United States)

    Heydari, F.; Maghsoudipour, A.; Alizadeh, M.; Khakpour, Z.; Javaheri, M.

    2015-09-01

    Artificial intelligence models have the capacity to eliminate the need for expensive experimental investigation in various areas of manufacturing processes, including the material science. This study investigates the applicability of adaptive neuro-fuzzy inference system (ANFIS) approach for modeling the performance parameters of thermal expansion coefficient (TEC) of perovskite oxide for solid oxide fuel cell cathode. Oxides (Ln = La, Nd, Sm and M = Fe, Ni, Mn) have been prepared and characterized to study the influence of the different cations on TEC. Experimental results have shown TEC decreases favorably with substitution of Nd3+ and Mn3+ ions in the lattice. Structural parameters of compounds have been determined by X-ray diffraction, and field emission scanning electron microscopy has been used for the morphological study. Comparison results indicated that the ANFIS technique could be employed successfully in modeling thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode, and considerable savings in terms of cost and time could be obtained by using ANFIS technique.

  8. Direct oxidation of waste vegetable oil in solid-oxide fuel cells

    Science.gov (United States)

    Zhou, Z. F.; Kumar, R.; Thakur, S. T.; Rudnick, L. R.; Schobert, H.; Lvov, S. N.

    Solid-oxide fuel cells with ceria, ceria-Cu, and ceria-Rh anode were demonstrated to generate stable electric power with waste vegetable oil through direct oxidation of the fuel. The only pre-treatment to the fuel was a filtration to remove particulates. The performance of the fuel cell was stable over 100 h for the waste vegetable oil without dilution. The generated power was up to 0.25 W cm -2 for ceria-Rh fuel cell. This compares favorably with previously studied hydrocarbon fuels including jet fuels and Pennsylvania crude oil.

  9. Long-term evaluation of solid oxide fuel cell candidate materials in a 3-cell generic short stack fixture, Part II: sealing glass stability, microstructure and interfacial reactions.

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Y. S.; Stevenson, Jeffry W.; Choi, Jung-Pyung

    2014-03-15

    A generic solid oxide fuel cell stack test fixture was developed to evaluate candidate materials and processing methods under realistic conditions. Part I of the work addressed the stack fixture, seal system and cell performance of a 3-cell short stack tested at 800oC for 6000h. Commercial NiO-YSZ anode-supported thin YSZ electrolyte cells with LSM cathodes were used for assessment and were tested in constant current mode with dilute (~50% H2) fuel versus air. Part II of the work examined the sealing glass stability, microstructure development, interfacial reactions, and volatility issues. Part III of the work investigated the stability of Ce-(Mn,Co) spinel coating, AISI441 metallic interconnect, alumina coating, and cell degradation. After 6000h of testing, the refractory sealing glass YSO77 (Ba-Sr-Y-B-Si) showed desirable chemical compatibility with YSZ electrolyte in that no discernable interfacial reaction was identified, consistent with thermodynamic calculations. In addition, no glass penetration into the thin electrolyte was observed. At the aluminized AISI441 interface, the protective alumina coating appeared to be corroded by the sealing glass. Air side interactions appeared to be more severe than fuel side interactions. Metal species such as Cr, Mn, and Fe were detected in the glass, but were limited to the vicinity of the interface. No alkaline earth chromates were found at the air side. Volatility was also studied in a similar glass and weight loss in a wet reducing environment was determined. Using the steady-state volatility data, the life time (40,000h) weight loss of refractory sealing glass YSO77 was estimated to be less than 0.1 wt%.

  10. Durability of solid oxide fuel cells using sulfur containing fuels

    DEFF Research Database (Denmark)

    Hagen, Anke; Rasmussen, Jens Foldager Bregnballe; Thydén, Karl Tor Sune

    2011-01-01

    are critical in this respect. State-of-the-art Ni/YSZ SOFC anodes suffer from being rather sensitive towards sulfur impurities. In the current study, anode supported SOFCs with Ni/YSZ or Ni/ScYSZ anodes were exposed to H2S in the ppm range both for short periods of 24h and for a few hundred hours. In a fuel...... containing significant shares of methane, the reforming activities of the Ni/YSZ and Ni/ScYSZ anodes were severely poisoned already at low H2S concentrations of ∼2ppm H2S. The poisoning effect on the cell voltage was reversible only to a certain degree after exposure of 500h in the state-of-the-art cell, due...... to a loss of percolation of Ni particles in the Ni/YSZ anode layers closest to the electrolyte. Using SOFCs with Ni/ScYSZ anodes improved the H2S tolerance considerably, even at larger H2S concentrations of 10 and 20ppm over a few hundred hours....

  11. Metal Interconnects for Solid Oxide Fuel Cell Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    S. Elangovan

    2006-04-01

    Interconnect development is identified by the US Department of energy as a key technical area requiring focused research to meet the performance and cost goals under the Solid State Energy Conversion Alliance initiative. In the Phase I SECA Core Technology Program, Ceramatec investigated a commercial ferritic stainless steel composition for oxidation resistance properties by measuring the weight gain when exposed to air at the fuel cell operating temperature. A pre-treatment process that results in a dense, adherent scale was found to reduce the oxide scale growth rate significantly. A process for coating the surface of the alloy in order to reduce the in-plane resistance and potentially inhibit chromium oxide evaporation was also identified. The combination of treatments provided a very low resistance through the scale. The resistance measured was as low as 10 milliohm-cm2 at 750 C in air. The oxide scale was also found to be stable in humidified air at 750 C. The resistance value was stable over several thermal cycles. A similar treatment and coating for the fuel side of the interconnect also showed an exceptionally low resistance of one milliohm-cm2 in humidified hydrogen at 750 c, and was stable through multiple thermal cycles. Measurement of interconnect resistance when it was exposed to both air and humidified hydrogen on opposite sides also showed low, stable resistance after additional modification to the pre-treatment process. Resistance stacks, using an interconnect stack with realistic gas flows, also provided favorable results. Chromium evaporation issue however requires testing of fuel stacks and was outside of the scope of this project. based on results to-date, the alloy selection and the treatment processes appear to be well suited for SOFC interconnect application.

  12. Interconnects for intermediate temperature solid oxide fuel cells

    Science.gov (United States)

    Huang, Wenhua

    Presently, one of the principal goals of solid oxide fuel cells (SOFCs) research is to reduce the stack operating temperature to between 600 and 800°C. However, one of the principal technological barriers is the non-availability of a suitable material satisfying all of the stability requirements for the interconnect. In this work two approaches for intermediate temperature SOFC interconnects have been explored. The first approach comprises an interconnect consisting of a bi-layer structure, a p-type oxide (La0.96Sr0.08MnO 2.001/LSM) layer exposed to a cathodic environment, and an n-type oxide (Y0.08Sr0.88Ti0.95Al0.05O 3-delta/YSTA) layer exposed to anodic conditions. Theoretical analysis based on the bi-layer structure has established design criteria to implement this approach. The analysis shows that the interfacial oxygen partial pressure, which determines the interconnect stability, is independent of the electronic conductivities of both layers but dependent on the oxygen ion layer interconnects, the oxygen ion conductivities of LSM and YSTA were measured as a function of temperature and oxygen partial pressure. Based on the measured data, it has been determined that if the thickness of YSTA layer is around 0.1cm, the thickness of LSM layer should be around 0.6 mum in order to maintain the stability of LSM. In a second approach, a less expensive stainless steel interconnect has been studied. However, one of the major concerns associated with the use of metallic interconnects is the development of a semi-conducting or insulating oxide scale and chromium volatility during extended exposure to the SOFC operating environment. Dense and well adhered Mn-Cu spinet oxide coatings were successfully deposited on stainless steel by an electrophoretic deposition (EPD) technique. It was found that the Mn-Cu-O coating significantly reduced the oxidation rate of the stainless steel and the volatility of chromium. The area specific resistance (ASR) of coated Crofer 22 APU is

  13. Modeling and Structural Optimization of Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Panagakos, Grigorios

    for dealing with this problem. On the one hand, we attempt to perform optimization of a Solid Oxide Fuel Cell in the macro scale. Focusing on the anode interconnect, we wish to come up with an optimum interconnect design. This can be achieved in principal, since the interconnect needs to satisfy two major...... requirements. On the one hand, it needs to secure the intake of fuel into the cell, fact that would require an as low hydraulic resistance as possible, i.e. ideally an open channel and on the other hand to exhibit an as high as possible electronic conductance, which in the ideal case would mean an area blocked...... approaches and this is one of the first attempts to apply this combination of set of tools to fuel cells. Describing in a nutshell the methodology followed, we use Comsol's ability to create Matlab scripts which incorporate the desired physics of the problem (Partial Differential Equations, treating...

  14. Internal reforming development for solid oxide fuel cells

    International Nuclear Information System (INIS)

    Internal reforming of natural gas within a solid oxide fuel cell (SOFC) is expected to make it a more efficient system for the production of electrical power. Nickel-zirconia cermets are prime candidate material for use as the anode in an SOFC. This paper reports four procedures used to prepare 16 nickel-zirconia cermets: tape casting, slurry, incorporation of pore formers, and granulation. The resultant cermets had nickel contents from 50% to 80%,porosities from 14% to 66%, and mean pore sizes of 0.25--1.8 μm. The catalytic behavior of two cermets was determined in a continuously stirred tank reactor at atmospheric pressure over a temperature range of 800--1000 degrees C and steam-to-hydrocarbon ratios of 2--8 mol/mol using pure methane as the feed. The data support the reaction being first order with respect to methane and -1.25 for steam

  15. Planar solid oxide fuel cells: the Australian experience and outlook

    Science.gov (United States)

    Godfrey, Bruce; Föger, Karl; Gillespie, Rohan; Bolden, Roger; Badwal, S. P. S.

    Since 1992, Ceramic Fuel Cells (CFCL) has grown to what is now the largest focussed program globally for development of planar ceramic (solid oxide) fuel cell, SOFC, technology. A significant intellectual property position in know-how and patents has been developed, with over 80 people involved in the venture. Over $A60 million in funding for the activities of the company has been raised from private companies, government-owned corporations and government business-support programs, including from energy — particularly electricity — industry shareholders that can facilitate access to local markets for our products. CFCL has established state-of-the-art facilities for planar SOFC R&D, with their expansion and scaling-up to pilot manufacturing capability underway. We expect to achieve commercial introduction of our market-entry products in 2002, with prototype systems expected to be available from early 2001.

  16. Advanced impedance modeling of solid oxide electrochemical cells

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Hjelm, Johan

    2014-01-01

    Impedance spectroscopy is a powerful technique for detailed study of the electrochemical and transport processes that take place in fuel cells and electrolysis cells, including solid oxide cells (SOCs). Meaningful analysis of impedance measurements is nontrivial, however, because a large number of...... modeling parameters are fit to the many processes which often overlap in the same frequency ranges. Also, commonly used equivalent circuit (EC) models only provide zero-dimensional (0-D) approximations of the processes of the two electrodes, electrolyte and gas transport. Employing improved analytical...... electrode and 2-D gas transport models which have fewer unknown parameters for the same number of processes, (ii) use of a new model fitting algorithm, “multi-fitting”, in which multiple impedance spectra are fit simultaneously with parameters linked based on the variation of measurement conditions, (iii...

  17. Failure analysis of electrolyte-supported solid oxide fuel cells

    Science.gov (United States)

    Fleischhauer, Felix; Tiefenauer, Andreas; Graule, Thomas; Danzer, Robert; Mai, Andreas; Kuebler, Jakob

    2014-07-01

    For solid oxide fuel cells (SOFCs) one key aspect is the structural integrity of the cell and hence its thermo mechanical long term behaviour. The present study investigates the failure mechanisms and the actual causes for fracture of electrolyte supported SOFCs which were run using the current μ-CHP system of Hexis AG, Winterthur - Switzerland under lab conditions or at customer sites for up to 40,000 h. In a first step several operated stacks were demounted for post-mortem inspection, followed by a fractographic evaluation of the failed cells. The respective findings are then set into a larger picture including an analysis of the present stresses acting on the cell like thermal and residual stresses and the measurements regarding the temperature dependent electrolyte strength. For all investigated stacks, the mechanical failure of individual cells can be attributed to locally acting bending loads, which rise due to an inhomogeneous and uneven contact between the metallic interconnect and the cell.

  18. Electrolysis of carbon dioxide in Solid Oxide Electrolysis Cells

    DEFF Research Database (Denmark)

    Ebbesen, Sune; Mogensen, Mogens Bjerg

    2009-01-01

    Carbon dioxide electrolysis was studied in Ni/YSZ electrode supported Solid Oxide Electrolysis Cells (SOECs) consisting of a Ni-YSZ support, a Ni-YSZ electrode layer, a YSZ electrolyte, and a LSM-YSZ O2 electrode (YSZ = Yttria Stabilized Zirconia). The results of this study show that long term CO2...... of the current density and irreversible when operated at conditions that would oxidise carbon. This clearly shows that the passivation was not caused by coke formation. On the other hand, the passivation was partly reversible when introducing hydrogen. The passivation may be a consequence of impurities...... in the gas stream, most likely sulphur, adsorbing on some specific nickel sites in the cathode of the SOEC. Activation can be carried out by hydrogen reacting with adsorbed sulphur to form the volatile compound H2S. Because adsorption of sulphur is site specific, only a part of the nickel sites were...

  19. Anodes for Solid Oxide Fuel Cells Operating at Low Temperatures

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain

    . On the other hand, low-temperature operation poses serious challenges to the electrode performance. Effective catalysts, redox stable electrodes with improved microstructures are the prime requisite for the development of efficient SOFC anodes. The performance of Nb-doped SrT iO3 (STN) ceramic anodes......An important issue that has limited the potential of Solid Oxide Fuel Cells (SOFCs) for portable applications is its high operating temperatures (800-1000 ºC). Lowering the operating temperature of SOFCs to 400-600 ºC enable a wider material selection, reduced degradation and increased lifetime......, an investigation on the effect of application of cathodic polarization on Ni-YSZ anodes is described....

  20. Pressurized Operation of a Planar Solid Oxide Cell Stack

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Sun, Xiufu; Ebbesen, Sune Dalgaard;

    2016-01-01

    (electrode performance) increases for thermodynamic and kinetic reasons, respectively. Further, the summit frequency of the gas concentration impedance arc and the pressure difference across the stack and heat exchangers is seen to decrease with increasing pressure following a power-law expression. Finally......Solid oxide cells (SOCs) can be operated either as fuel cells (SOFC) to convert fuels to electricity or as electrolyzers (SOEC) to convert electricity to fuels such as hydrogen or methane. Pressurized operation of SOCs provide several benefits on both cell and system level. If successfully matured......, pressurized SOEC based electrolyzers can become more efficient both energy- and cost-wise than PEM and Alkaline systems. Pressurization of SOFCs can significantly increase the cell power density and reduce the size of auxiliary components. In the present study, a SOC stack was successfully operated...

  1. Adjoint method for solid-oxide fuel cell simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kapadia, S.; Anderson, W.K.; Elliott, L.; Burdyshaw, C. [University of Tennessee SimCenter at Chattanooga, 701 East M.L. King Boulevard, Chattanooga, TN 37403 (United States)

    2007-04-15

    Adjoint methods suitable for obtaining sensitivity derivatives for numerical simulations of solid-oxide fuel cells are presented. The adjoint method is derived, and the implementation is discussed, including a methodology for accurately obtaining all the linearizations necessary for correct implementation. Results are included for a one-dimensional anode model that includes diffusion, permeation, and relevant chemical reactions. Using this model, the accuracy of the sensitivity derivatives is demonstrated for design variables describing geometric and material properties of the anode. Finally, the adjoint method is demonstrated for a three-dimensional fuel cell geometry where sensitivity derivatives are obtained for approximately 180,000 design variables. The results are used to modify the upper and lower walls of the plenum to obtain significantly improved distribution of fluid amongst the channels. (author)

  2. AlliedSignal solid oxide fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Minh, N.; Barr, K.; Kelly, P.; Montgomery, K. [AlliedSignal Aerospace Equipment Systems, Torrance, CA (United States)

    1996-12-31

    AlliedSignal has been developing high-performance, lightweight solid oxide fuel cell (SOFC) technology for a broad spectrum of electric power generation applications. This technology is well suited for use in a variety of power systems, ranging from commercial cogeneration to military mobile power sources. The AlliedSignal SOFC is based on stacking high-performance thin-electrolyte cells with lightweight metallic interconnect assemblies to form a compact structure. The fuel cell can be operated at reduced temperatures (600{degrees} to 800{degrees}C). SOFC stacks based on this design has the potential of producing 1 kW/kg and 1 ML. This paper summarizes the technical status of the design, manufacture, and operation of AlliedSignal SOFCs.

  3. Heterogeneous electrocatalysis in porous cathodes of solid oxide fuel cells

    CERN Document Server

    Fu, Y; Bertei, A; Qi, C; Mohanram, A; Pietras, J D; Bazant, M Z

    2014-01-01

    A general physics-based model is developed for heterogeneous electrocatalysis in porous electrodes and used to predict and interpret the impedance of solid oxide fuel cells. This model describes the coupled processes of oxygen gas dissociative adsorption and surface diffusion of the oxygen intermediate to the triple phase boundary, where charge transfer occurs. The model accurately captures the Gerischer-like frequency dependence and the oxygen partial pressure dependence of the impedance of symmetric cathode cells. Digital image analysis of the microstructure of the cathode functional layer in four different cells directly confirms the predicted connection between geometrical properties and the impedance response. As in classical catalysis, the electrocatalytic activity is controlled by an effective Thiele modulus, which is the ratio of the surface diffusion length (mean distance from an adsorption site to the triple phase boundary) to the surface boundary layer length (square root of surface diffusivity div...

  4. Impedance Modeling of Solid Oxide Fuel Cell Cathodes

    DEFF Research Database (Denmark)

    Mortensen, Jakob Egeberg; Søgaard, Martin; Jacobsen, Torben

    2010-01-01

    A 1-dimensional impedance model for a solid oxide fuel cell cathode is formulated and applied to a cathode consisting of 50/50 wt% strontium doped lanthanum cobaltite and gadolinia doped ceria. A total of 42 impedance spectra were recorded in the temperature range: 555-852°C and in the oxygen...... partial pressure range 0.028-1.00 atm. The recorded impedance spectra were successfully analyzed using the developed impedance model in the investigated temperature and oxygen partial pressure range. It is also demonstrated that the model can be used to predict how impedance spectra evolve with different...... physical parameters such as the cathode thickness. ©2010 COPYRIGHT ECS - The Electrochemical Society...

  5. Advanced impedance modeling of solid oxide electrochemical cells

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Hjelm, Johan

    2014-01-01

    Impedance spectroscopy is a powerful technique for detailed study of the electrochemical and transport processes that take place in fuel cells and electrolysis cells, including solid oxide cells (SOCs). Meaningful analysis of impedance measurements is nontrivial, however, because a large number...... techniques to provide good guesses for the modeling parameters, like transforming the impedance data to the distribution of relaxation times (DRT), together with experimental parameter sensitivity studies, is the state-of-the-art approach to achieve good EC model fits. Here we present new impedance modeling...... electrode and 2-D gas transport models which have fewer unknown parameters for the same number of processes, (ii) use of a new model fitting algorithm, “multi-fitting”, in which multiple impedance spectra are fit simultaneously with parameters linked based on the variation of measurement conditions, (iii...

  6. Five Kilowatt Solid Oxide Fuel Cell/Diesel Reformer

    Energy Technology Data Exchange (ETDEWEB)

    Dennis Witmer; Thomas Johnson

    2008-12-31

    Reducing fossil fuel consumption both for energy security and for reduction in global greenhouse emissions has been a major goal of energy research in the US for many years. Fuel cells have been proposed as a technology that can address both these issues--as devices that convert the energy of a fuel directly into electrical energy, they offer low emissions and high efficiencies. These advantages are of particular interest to remote power users, where grid connected power is unavailable, and most electrical power comes from diesel electric generators. Diesel fuel is the fuel of choice because it can be easily transported and stored in quantities large enough to supply energy for small communities for extended periods of time. This projected aimed to demonstrate the operation of a solid oxide fuel cell on diesel fuel, and to measure the resulting efficiency. Results from this project have been somewhat encouraging, with a laboratory breadboard integration of a small scale diesel reformer and a Solid Oxide Fuel Cell demonstrated in the first 18 months of the project. This initial demonstration was conducted at INEEL in the spring of 2005 using a small scale diesel reformer provided by SOFCo and a fuel cell provided by Acumentrics. However, attempts to integrate and automate the available technology have not proved successful as yet. This is due both to the lack of movement on the fuel processing side as well as the rather poor stack lifetimes exhibited by the fuel cells. Commercial product is still unavailable, and precommercial devices are both extremely expensive and require extensive field support.

  7. Robust Joining Technology for Solid Oxide Fuel Cells Applications

    Science.gov (United States)

    Shpargel, Tarah P.; Needham, Robert J.; Singh, M.; Kung, S. C.

    2004-01-01

    Recently there has been a great deal of interest in research development and commercialization of solid oxide fuel cells (SOFCs). Joining and sealing are critical issues that will need to be addressed before SOFCs can truly perform as expected. Ceramics and metals can be difficult to join together, especially when the joint must withstand up to 900 C operating temperature of the SOFCs. The goal of the present study is to find the most suitable braze material for joining of yttria stabilized zirconia (YSZ) to stainless steel. A number of commercially available braze materials TiCuSil, TiCuNi, Copper-ABA, Gold-ABA and Gold-ABA-V have been evaluated. The oxidation behavior of the braze materials and steel substrates in air was also examined through thermogravimetric analysis. The microstructure and composition of the brazed regions have been examined by optical and scanning electron microscopy and eDS analysis. Effect of braze composition and processing conditions on the interfacial microstructure and composition of the joint regions will be presented.

  8. Modifying zirconia solid electrolyte surface property to enhance oxide transport

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, B.Y.; Song, S.Y. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-12-31

    Bismuth-strontium-calcium-copper oxide (Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}, BSCCO) is known for its high T{sub c} superconducting behavior and mixed conducting property. The applicability of similar high T{sub c} cuprates for intermediate-temperature solid oxide fuel cell (SOFC) application has been studied recently. We investigated the electrochemical behavior of several Ag{vert_bar}BSCCO{vert_bar}10 mol% yttria-stabilized zirconia (YSZ){vert_bar}Ag and Ag{vert_bar}YSZ{vert_bar}Ag cells using complex impedance spectroscopy. A highly uniform and porous microstructure was observed at the interface of the YSZ and BSCCO. The ionic conductivity determined from the Nyquest plots in the temperature range of 200-700{degrees}C agrees with the values reported in the literature. The specific resistance of the BSCCO{vert_bar}YSZ interface was also determined to be lower than those of the conventional manganite electrode, suggesting that BSCCO seems attractive for cathode applications in SOFC.

  9. Ammonium nitrate as an oxidizer in solid composite propellants

    Science.gov (United States)

    Manelis, G. B.; Lempert, D. B.

    2009-09-01

    Despite the fact that ammonium nitrate (AN) has the highest hydrogen content and fairly high oxygen balance (compared to other oxidizers), its extremely low formation enthalpy and relatively low density makes it one of the worst power oxidizers in solid composite propellants (SCP). Nevertheless, AN has certain advantages - the combustion of the compositions containing AN is virtually safe, its combustion products are ecologically clean, it is very accessible and cheap, and also very thermostable (far more stable than ammonium dinitramide (ADN)). Besides, its low density stops being a disadvantage if the propellant has to be used in deep space and therefore, must be carried there with other rocket carriers. The low cost of AN may also become a serious advantage in the AN application even in lower stages of multistage space launchers as well as in one-stage space launchers with low mass fraction of the propellant. The main specific features relevant to the creation of AN-based SCPs with the optimal energetic characteristics are discussed. The use of metals and their hydrides and proper fuel-binders as well as the recent successes in phase stabilization of AN are described.

  10. Optimisation of small series production and production scale-up scenarios of anode-supported intermediate-temperature planar SOFC single cells at Elcogen Ltd

    OpenAIRE

    Gurkin, Dmitri

    2011-01-01

    Distribution of production resources for continuous small series production of anode-supported intermediate-temperature planar SOFC single cells at Elcogen enterprise is improved. In addition, the author has developed the production scale-up scenarios for increasing the annual production volume of the above-mentioned SOFC single cells. Heildartexti er lokaður

  11. Effects of laminating and co-firing conditions on the performance of anode-supported Ce0.8Sm0.201.9 film electrolyte

    Directory of Open Access Journals (Sweden)

    Li X.

    2011-01-01

    Full Text Available In order to evaluate the laminating and co-firing technique on the performance of anode-supported Ce0.8Sm0.2O1.9 (SDC film electrolyte and its single cell, NiO-YSZ and NiOSDC anode-supported SDC film electrolytes were fabricated by laminating 24 sheets of anode plus one sheet of electrolyte and co-firing. La0.4Sr0.6Co0.2Fe0.8O3-δ (LSCF-SDC cathode was coated on the SDC electrolytes to form a single cell. The lamination was tried at different laminating temperatures and pressures and the co-firing was carried out at different temperatures. The results showed that the laminating temperature should above the glass transition temperature (Tg of the binder. The laminating pressure of 70 MPa resulted in warp of the samples. The best co-firing temperature of the anode-supported SDC film electrolyte was 1400°C. The SDC film electrolyte formed well adherence to the anode. The NiO-YSZ anode had larger flexural strength than the NiO-SDC anode. The NiO-YSZ anode-supported SDC film electrolyte single cell had an open circuit voltage of 0.803 V and a maximum power density of 93.03 mW/cm2 with hydrogen as fuel at 800°C.

  12. Switching on electrocatalytic activity in solid oxide cells

    Science.gov (United States)

    Myung, Jae-Ha; Neagu, Dragos; Miller, David N.; Irvine, John T. S.

    2016-09-01

    Solid oxide cells (SOCs) can operate with high efficiency in two ways—as fuel cells, oxidizing a fuel to produce electricity, and as electrolysis cells, electrolysing water to produce hydrogen and oxygen gases. Ideally, SOCs should perform well, be durable and be inexpensive, but there are often competitive tensions, meaning that, for example, performance is achieved at the expense of durability. SOCs consist of porous electrodes—the fuel and air electrodes—separated by a dense electrolyte. In terms of the electrodes, the greatest challenge is to deliver high, long-lasting electrocatalytic activity while ensuring cost- and time-efficient manufacture. This has typically been achieved through lengthy and intricate ex situ procedures. These often require dedicated precursors and equipment; moreover, although the degradation of such electrodes associated with their reversible operation can be mitigated, they are susceptible to many other forms of degradation. An alternative is to grow appropriate electrode nanoarchitectures under operationally relevant conditions, for example, via redox exsolution. Here we describe the growth of a finely dispersed array of anchored metal nanoparticles on an oxide electrode through electrochemical poling of a SOC at 2 volts for a few seconds. These electrode structures perform well as both fuel cells and electrolysis cells (for example, at 900 °C they deliver 2 watts per square centimetre of power in humidified hydrogen gas, and a current of 2.75 amps per square centimetre at 1.3 volts in 50% water/nitrogen gas). The nanostructures and corresponding electrochemical activity do not degrade in 150 hours of testing. These results not only prove that in operando methods can yield emergent nanomaterials, which in turn deliver exceptional performance, but also offer proof of concept that electrolysis and fuel cells can be unified in a single, high-performance, versatile and easily manufactured device. This opens up the possibility of

  13. Electrochemical and catalytic properties of Ni/BaCe0.75Y0.25O3-δ anode for direct ammonia-fueled solid oxide fuel cells.

    Science.gov (United States)

    Yang, Jun; Molouk, Ahmed Fathi Salem; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2015-04-01

    In this study, Ni/BaCe0.75Y0.25O3-δ (Ni/BCY25) was investigated as an anode for direct ammonia-fueled solid oxide fuel cells. The catalytic activity of Ni/BCY25 for ammonia decomposition was found to be remarkably higher than Ni/8 mol % Y2O3-ZrO2 and Ni/Ce0.90Gd0.10O1.95. The poisoning effect of water and hydrogen on ammonia decomposition reaction over Ni/BCY25 was evaluated. In addition, an electrolyte-supported SOFC employing BaCe0.90Y0.10O3-δ (BCY10) electrolyte and Ni/BCY25 anode was fabricated, and its electrochemical performance was investigated at 550-650 °C with supply of ammonia and hydrogen fuel gases. The effect of water content in anode gas on the cell performance was also studied. Based on these results, it was concluded that Ni/BCY25 was a promising anode for direct ammonia-fueled SOFCs. An anode-supported single cell denoted as Ni/BCY25|BCY10|Sm0.5Sr0.5CoO3-δ was also fabricated, and maximum powder density of 216 and 165 mW cm(-2) was achieved at 650 and 600 °C, for ammonia fuel, respectively.

  14. Evaluation of a single cell and candidate materials with high water content hydrogen in a generic solid oxide fuel cell stack test fixture, Part II: materials and interface characterization

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Y. S.; Stevenson, Jeffry W.; Choi, Jung-Pyung

    2013-01-01

    A generic solid oxide fuel cell (SOFC) test fixture was developed to evaluate candidate materials under realistic conditions. A commerical 50 mm x 50 mm NiO-YSZ anode supported thin YSZ electrolyte cell with lanthanum strontium manganite (LSM) cathode was tested to evaluate the stability of candidate materials. The cell was tested in two stages at 800oC: stage I of low (~3% H2O) humidity and stage II of high (~30% H2O) humidity hydrogen fuel at constant voltage or constant current mode. Part I of the work was published earlier with information of the generic test fixture design, materials, cell performance, and optical post-mortem analysis. In part II, detailed microstructure and interfacial characterizations are reported regarding the SOFC candidate materials: (Mn,Co)-spinel conductive coating, alumina coating for sealing area, ferritic stainless steel interconnect, refractory sealing glass, and their interactions with each other. Overall, the (Mn,Co)-spinel coating was very effective in minimizing Cr migration. No Cr was identified in the cathode after 1720h at 800oC. Aluminization of metallic interconnect also proved to be chemically compatible with alkaline-earth silicate sealing glass. The details of interfacial reaction and microstructure development are discussed.

  15. Filled glass composites for sealing of solid oxide fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, Rajan; Widgeon, Scarlett Joyce; Garino, Terry J.; Brochu, Mathieu; Gauntt, Bryan D.; Corral, Erica L.; Loehman, Ronald E.

    2009-04-01

    Glasses filled with ceramic or metallic powders have been developed for use as seals for solid oxide fuel cells (SOFC's) as part of the U.S. Department of Energy's Solid State Energy Conversion Alliance (SECA) Program. The composites of glass (alkaline earth-alumina-borate) and powders ({approx}20 vol% of yttria-stabilized zirconia or silver) were shown to form seals with SOFC materials at or below 900 C. The type and amount of powder were adjusted to optimize thermal expansion to match the SOFC materials and viscosity. Wetting studies indicated good wetting was achieved on the micro-scale and reaction studies indicated that the degree of reaction between the filled glasses and SOFC materials, including spinel-coated 441 stainless steel, at 750 C is acceptable. A test rig was developed for measuring strengths of seals cycled between room temperature and typical SOFC operating temperatures. Our measurements showed that many of the 410 SS to 410 SS seals, made using silver-filled glass composites, were hermetic at 0.2 MPa (2 atm.) of pressure and that seals that leaked could be resealed by briefly heating them to 900 C. Seal strength measurements at elevated temperature (up to 950 C), measured using a second apparatus that we developed, indicated that seals maintained 0.02 MPa (0.2 atm.) overpressures for 30 min at 750 C with no leakage. Finally, the volatility of the borate component of sealing glasses under SOFC operational conditions was studied using weight loss measurements and found by extrapolation to be less than 5% for the projected SOFC lifetime.

  16. Durability of solid oxide electrolysis cells for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Hauch, A.; Hoejgaard Jensen, S.; Dalgaard Ebbesen, S.

    2007-05-15

    In the perspective of the increasing interest in renewable energy and hydrogen economy, the reversible solid oxide cells (SOCs) is a promising technology as it has the potential of providing efficient and cost effective hydrogen production by high temperature electrolysis of steam (HTES). Furthermore development of such electrolysis cells can gain from the results obtained within the R and D of SOFCs. For solid oxide electrolysis cells (SOEC) to become interesting from a technological point of view, cells that are reproducible, high performing and long-term stable need to be developed. In this paper we address some of the perspectives of the SOEC technology i.e. issues such as a potential H2 production price as low as 0.71 US dollar/kg H{sub 2} using SOECs for HTES; is there a possible market for the electrolysers? and what R and D steps are needed for the realisation of the SOEC technology? In the experimental part we present electrolysis test results on SOCs that have been optimized for fuel cell operation but applied for HTES. The SOCs are produced on a pre-pilot scale at Risoe National Laboratory. These cells have been shown to have excellent initial electrolysis performance, but the durability of such electrolysis cells are not optimal and examples of results from SOEC tests over several hundreds of hours are given here. The long-term tests have been run at current densities of -0.5 A/cm{sup 2} and -1 A/cm{sup 2}, temperatures of 850 deg. C and 950 deg. C and p(H{sub 2}O)/p(H{sub 2}) of 0.5/0.5 and 0.9/0.1. Long-term degradation rates are shown to be up to 5 times higher for SOECs compared to similar SOFC testing. Furthermore, hydrogen and synthetic fuel production prices are calculated using the experimental results from long-term electrolysis test as input and a short outlook for the future work on SOECs will be given as well. (au)

  17. Three-Dimensional CFD Modeling of Transport Phenomena in a Cross-Flow Anode-Supported Planar SOFC

    Directory of Open Access Journals (Sweden)

    Zhonggang Zhang

    2013-12-01

    Full Text Available In this study, a three-dimensional computational fluid dynamics (CFD model is developed for an anode-supported planar SOFC from the Chinese Academy of Science Ningbo Institute of Material Technology and Engineering (NIMTE. The simulation results of the developed model are in good agreement with the experimental data obtained under the same conditions. With the simulation results, the distribution of temperature, flow velocity and the gas concentrations through the cell components and gas channels is presented and discussed. Potential and current density distributions in the cell and overall fuel utilization are also presented. It is also found that the temperature gradients exist along the length of the cell, and the maximum value of the temperature for the cross-flow is at the outlet region of the cell. The distribution of the current density is uneven, and the maximum current density is located at the interfaces between the channels, ribs and the electrodes, the maximum current density result in a large over-potential and heat source in the electrodes, which is harmful to the overall performance and working lifespan of the fuel cells. A new type of flow structure should be developed to make the current flow be more evenly distributed and promote most of the TPB areas to take part in the electrochemical reactions.

  18. Advanced Manufacturing of Intermediate Temperature, Direct Methane Oxidation Membrane Electrode Assemblies for Durable Solid Oxide Fuel Cell Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation builds on the successes of the Phase I program by integrating our direct oxidation membrane electrode assembly (MEA) into a monolithic solid...

  19. Development of Oxide Ceramics for Application in Solid Oxide Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    P.Holtappels; A.Braun; U.Vogt

    2007-01-01

    1 Results Solid oxide fuel cells (SOFC) are ceramic fuel cells that convert chemical into electrical energy in a temperature region between 650 ℃ and 1 000 ℃.Systems are currently under development for a variety of applications e.g. for both small and large scale stationary combined heat and power systems but also for the supply of electrical energy in the automotive area. The current objectives in the development of SOFCs is to lower the operating temperature from 850 ℃ down to below 750 ℃ in order to ...

  20. Alternative anode materials for methane oxidation in solid oxide fuel cells

    OpenAIRE

    Sfeir, Joseph; Grätzel, Michael

    2005-01-01

    Fuel Cells are electrochemical devices that are able to directly convert chemical energy to electrical energy, without any Carnot limitation. Hence, their energy efficiencies are relatively high. Among the various types of fuel cells, solid oxide fuel cells (SOFC) are operated at high temperatures and in principle can run on various fuels such as natural gas and hydrogen. As natural gas is sought to become one of the main fuels of the next decades, its direct feed to a SOFC is desirable as th...

  1. Development of single chamber solid oxide fuel cells (SCFC)

    Energy Technology Data Exchange (ETDEWEB)

    Viricelle, J.-P.; Udroiu, S.; Gadacz, G.; Pijolat, M.; Pijolat, C. [Ecole Nationale Superieure des Mines de Saint-Etienne, Centre SPIN, LPMG-UMR CNRS 5148, 158 cours Fauriel, 42023 Saint-Etienne Cedex 02 (France)

    2010-08-15

    Single Chamber Solid Oxide Fuel Cells (SCFC) have been prepared using an electrolyte as support (Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} named GDC). Anode (Ni-GDC) and different cathodes (Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3} (SSC), Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (BSCF) and La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSM)) were placed on the same side of the electrolyte. All the electrodes were deposited using screen-printing technology. A gold collector was also deposited on the cathode to decrease the over-potential. The different materials and fuel cell devices were tested under propane/air mixture, after a preliminary treatment under hydrogen to reduce the as-deposited nickel oxide anode. The results show that SSC and BSCF cathodes are not stable in these conditions, leading to a very low open circuit voltage (OCV) of 150 mV. Although LSM material is not the more adequate cathode regarding its high catalytic activity towards hydrocarbon conversion, it has a better chemical stability than SSC and BSCF. Ni-GDC-LSM SCFC devices were elaborated and tested; an OCV of nearly 750 mV could be obtained with maximum power densities around 20 mW cm{sup -2} at 620 C, under air-propane mixture with C{sub 3}H{sub 8}/O{sub 2} ratio equal to 0.53. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  2. Lanthanum manganate based cathodes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Juhl Joergensen, M.

    2001-07-01

    Composite cathodes for solid oxide fuel cells were investigated using electrochemical impedance spectroscopy and scanning electron microscopy. The aim was to study the oxygen reduction process in the electrode in order to minimise the voltage drop in the cathode. The electrodes contained a composite layer made from lanthanum strontium manganate (LSM) and yttria stabilised zirconia (YSZ) and a layer of pure LSM aimed for current collection. The performance of the composite electrodes was sensitive to microstructure and thickness. Further, the interface between the composite and the current collecting layer proved to affect the performance. In a durability study severe deg-radation of the composite electrodes was found when passing current through the electrode for 2000 hours at 1000 deg. C. This was ascribed to pore formation along the composite interfaces and densification of the composite and current collector microstructure. An evaluation of the measurement approach indicated that impedance spectroscopy is a very sensitive method. This affects the reproducibility, as small undesirable variations in for instance the microstructure from electrode to electrode may change the impedance. At least five processes were found to affect the impedance of LSM/YSZ composite electrodes. Two high frequency processes were ascribed to transport of oxide ions/oxygen intermediates across LSM/YSZ interfaces and through YSZ in the composite. Several competitive elementary reaction steps, which appear as one medium frequency process in the impedance spectra, were observed. A low frequency arc related to gas diffusion limitation in a stagnant gas layer above the composite structure was detected. Finally, an inductive process, assumed to be connected to an activation process involving segregates at the triple phase boundary between electrode, electrolyte and gas phase, was found. (au)

  3. Direct oxidation of jet fuels and Pennsylvania crude oil in a solid oxide fuel cell

    Science.gov (United States)

    Zhou, Z. F.; Gallo, C.; Pague, M. B.; Schobert, H.; Lvov, S. N.

    A Cu-ceria solid oxide fuel cell (SOFC) is shown to generate electric power using jet fuels and Pennsylvania crude oil through direct oxidation of the fuels. The liquid fuels contained up to 910 ppm of sulfur and were injected into the anode compartment either with or without N 2 dilution. The performance of the fuel cell was stable over 30 h for jet fuels and Pennsylvania crude oil without N 2 dilution whereas N 2 dilution prolonged the stable power generation up to 100 h for jet fuel and up to 80 h for Pennsylvania crude oil. The generated power density was about 0.1 W cm -2 for both fuels.

  4. Glass/Ceramic Composites for Sealing Solid Oxide Fuel Cells

    Science.gov (United States)

    Bansal, Narottam P.; Choi, Sung R.

    2007-01-01

    A family of glass/ceramic composite materials has been investigated for use as sealants in planar solid oxide fuel cells. These materials are modified versions of a barium calcium aluminosilicate glass developed previously for the same purpose. The composition of the glass in mole percentages is 35BaO + 15CaO + 5Al2O3 + 10B2O3 + 35SiO2. The glass seal was found to be susceptible to cracking during thermal cycling of the fuel cells. The goal in formulating the glass/ ceramic composite materials was to (1) retain the physical and chemical advantages that led to the prior selection of the barium calcium aluminosilicate glass as the sealant while (2) increasing strength and fracture toughness so as to reduce the tendency toward cracking. Each of the composite formulations consists of the glass plus either of two ceramic reinforcements in a proportion between 0 and 30 mole percent. One of the ceramic reinforcements consists of alumina platelets; the other one consists of particles of yttria-stabilized zirconia wherein the yttria content is 3 mole percent (3YSZ). In preparation for experiments, panels of the glass/ceramic composites were hot-pressed and machined into test bars.

  5. Fault diagnosis and prognostic of solid oxide fuel cells

    Science.gov (United States)

    Wu, XiaoJuan; Ye, Qianwen

    2016-07-01

    One of the major hurdles for solid oxide fuel cell (SOFC) commercialization is poor long-term performance and durability. Accurate fault diagnostic and prognostic technologies are two important tools to improve SOFC durability. In literature, plenty of diagnosis techniques for SOFC systems have been successfully designed. However, no literature studies SOFC fault prognosis approaches. In this paper a unified fault diagnosis and prognosis strategy is presented to identify faults (anode poisoning, cathode humidification or normal) and predict the remaining useful life for SOFC systems. Using a squares support vector machine (LS-SVM) classifier, a diagnosis model is built to identify SOFC different types of faults. After fault detection, two hidden semi-Mark models (HSMMs) are respectively employed to estimate SOFC remaining useful life in the case of anode poisoning and cathode humidification. The simulation results show that the fault recognition rates with the LS-SVM model are at best 97%, and the predicted error of the remaining useful life is within ±20%.

  6. Kinetic and geometric aspects of solid oxide fuel cell electrodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Skaarup, Steen

    1996-01-01

    The paper gives an overview of the main factors controlling the performance of the solid oxide fuel cell (SOFC) electrodes, emphasizing the most widely chosen anodes and cathodes, Ni-YSZ and LSM-YSZ. They are often applied as composites (mixtures) of the electron conducting electrode material...... and the ion conducting electrolyte. Some reasons for this choice are: I)to increase the three-phase-boundary (TPB) length (key reactants must pass the TPB) and 2) to assure good adherence of the electrodes to the electrolyte. In the case of Ni-YSZ cermet anode it is also clear that the electrochemical...... are is much more dependent on the structure than the low frequency arcs. In the case of LSM-YSZ composite it has been demonstrated that both the ratio of LSM to YSZ and the conductivity of the YSZ is of major importance. The length and the nature of the three-phase-boundary between LSM, YSZ and air influence...

  7. Vanadium-based anode catalysts for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fu, X.Z.; Luo, J.L.; Chuang, K.T.; Sanger, A.R. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering; Tu, H.Y. [Shanghai Jiao Tong Univ., Shanghai (China). Inst. of Fuel Cell, School of Mechanical Engineering; Yang, Q.M. [Vale-Inco Ltd., Mississauga, ON (Canada)

    2010-07-01

    Solid oxide fuel cells (SOFCs) are considered as important electricity generators because they convert carbon-containing fuels from fossil sources to electricity without generating pollution. Syngas is more available and less expensive than highly purified hydrogen. However, when exposed to syngas at SOFC operating temperatures, conventional nickel anode catalysts result in carbon deposition, which compromises their performance. Syngas derived from conversion of hydrocarbon or coal resources normally also contain hydrogen sulphide, which poisons nickel anode catalysts. In order to use syngas, it is necessary to either stringently clean the feed, which is a costly process, or develop catalysts that can operate using impure feed and are not prone to carbon deposition. This paper discussed the development of a vanadium-based material (VOx) which is an active anode catalyst for SOFCs, that is not prone to coking and is sulfur resistant. The VOx material was obtained by decomposition and reduction of ammonium metavanadate (NH{sub 4}VO{sub 3}) at high temperature. Coking and sulfur resistance of as-prepared VOx and nickel were compared in hydrogen sulphide-containing syngas environments at 900 degrees Celsius. It was concluded that the VOx material had much higher coking resistance and sulfur tolerance than nickel. The SOFC with VOx anode catalyst demonstrated excellent performance using hydrogen sulphide-containing syngas as fuel. 3 refs.

  8. Internal reforming development for solid oxide fuel cells

    Science.gov (United States)

    Lee, A. L.

    1987-02-01

    Internal reforming of natural gas within a solid oxide fuel cell (SOFC) should simplify the overall system design and make the SOFC an attractive means for producing electrical power. This program was undertaken to investigate the catalytic properties of nickel cermets, which are prime candidates for SOFC anodes. The initial task in this program was an extensive literature search for information on steam reforming of light hydrocarbons. The second task was to modify and calibrate the reactor systems that were used in the experimental kinetic studies. Two systems were used in this investigation; a continuously stirred tank reactor system (CSTR) and a plug flow reactor system (PFR). In the third task, 16 nickel-zirconia cermets were prepared using four procedures, tape casting, Westinghouse slurry, incorporation of performers, and granulation. The catalytic behavior of three cermets was determined in the fourth task. The reaction was first order with respect to methane and -1.25 for steam. Ethane and propane in the feed did not affect the methane conversion rate. The cermet has a higher initial tolerance for sulfur than standard nickel reforming catalysts. The final task was a mechanistic study of the steam reforming reaction on nickel and nickel-zirconia catalysts.

  9. PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    W.L. Lundberg; G.A. Israelson; R.R. Moritz(Rolls-Royce Allison); S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann (Consultant)

    2000-02-01

    Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

  10. Macro Level Modeling of a Tubular Solid Oxide Fuel Cell

    Directory of Open Access Journals (Sweden)

    Farshid Zabihian

    2010-11-01

    Full Text Available This paper presents a macro-level model of a solid oxide fuel cell (SOFC stack implemented in Aspen Plus® for the simulation of SOFC system. The model is 0-dimensional and accepts hydrocarbon fuels such as reformed natural gas, with user inputs of current density, fuel and air composition, flow rates, temperature, pressure, and fuel utilization factor. The model outputs the composition of the exhaust, work produced, heat available for the fuel reformer, and electrochemical properties of SOFC for model validation. It was developed considering the activation, concentration, and ohmic losses to be the main over-potentials within the SOFC, and mathematical expressions for these were chosen based on available studies in the literature. The model also considered the water shift reaction of CO and the methane reforming reaction. The model results were validated using experimental data from Siemens Westinghouse. The results showed that the model could capture the operating pressure and temperature dependency of the SOFC performance successfully in an operating range of 1–15 atm for pressure and 900 °C–1,000 °C for temperature. Furthermore, a sensitivity analysis was performed to identify the model constants and input parameters that impacted the over-potentials.

  11. Constrained Sintering in Fabrication of Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Hae-Weon Lee

    2016-08-01

    Full Text Available Solid oxide fuel cells (SOFCs are inevitably affected by the tensile stress field imposed by the rigid substrate during constrained sintering, which strongly affects microstructural evolution and flaw generation in the fabrication process and subsequent operation. In the case of sintering a composite cathode, one component acts as a continuous matrix phase while the other acts as a dispersed phase depending upon the initial composition and packing structure. The clustering of dispersed particles in the matrix has significant effects on the final microstructure, and strong rigidity of the clusters covering the entire cathode volume is desirable to obtain stable pore structure. The local constraints developed around the dispersed particles and their clusters effectively suppress generation of major process flaws, and microstructural features such as triple phase boundary and porosity could be readily controlled by adjusting the content and size of the dispersed particles. However, in the fabrication of the dense electrolyte layer via the chemical solution deposition route using slow-sintering nanoparticles dispersed in a sol matrix, the rigidity of the cluster should be minimized for the fine matrix to continuously densify, and special care should be taken in selecting the size of the dispersed particles to optimize the thermodynamic stability criteria of the grain size and film thickness. The principles of constrained sintering presented in this paper could be used as basic guidelines for realizing the ideal microstructure of SOFCs.

  12. Glass coated compressible solid oxide fuel cell seals

    Science.gov (United States)

    Rautanen, M.; Thomann, O.; Himanen, O.; Tallgren, J.; Kiviaho, J.

    2014-02-01

    With the growing footprint of solid oxide fuel cell stacks, there is a need to extend the operating range of compressible gaskets towards lower stress levels. This article describes a method to manufacture SOFC seals by coating a compressible sealing material (Thermiculite 866) with glass to obtain good sealing performance even at compression stresses as low as 0.1 MPa. Glass layer can be coated using an organic carrier consisting of terpineol, ethanol and ethyl cellulose. The coated seals can be heat treated by simply ramping the temperature up to operating temperature at 60 Kh-1 and therefore no extra steps, which are typical to glass seals, are required. Coated seals were manufactured using this route and evaluated both ex-situ and in a real stack. Leak rates of 0.1-0.3 ml (m min)-1 were measured at 2-25 mbar overpressure using 50/50 H2/N2. A 30-cell stack was manufactured and tested using coated seals. At nominal operating conditions of 0.25 A cm-2 and 650 °C average cathode temperature, 46% fuel utilization and 20% air utilization the stack had a total hydrogen cross leak of 60 ml min-1 corresponding to 0.7% of the inlet hydrogen flow rate.

  13. Electrochemical reduction of CO 2 in solid oxide electrolysis cells

    Science.gov (United States)

    Zhan, Zhongliang; Zhao, Lin

    This paper describes results on the electrochemical reduction of carbon dioxide using the same device as the typical planar nickel-YSZ cermet electrode supported solid oxide fuel cells (H 2-CO 2, Ni-YSZ|YSZ|LSCF-GDC, LSCF, air). Operation in both the fuel cell and the electrolysis mode indicates that the electrodes could work reversibly for the charge transfer processes. An electrolysis current density of ≈1 A cm -2 is observed at 800 °C and 1.3 V for an inlet mixtures of 25% H 2-75% CO 2. Mass spectra measurement suggests that the nickel-YSZ cermet electrode is highly effective for reduction of CO 2 to CO. Analysis of the gas transport in the porous electrode and the adsorption/desorption process over the nickel surface indicates that the cathodic reactions are probably dominated by the reduction of steam to hydrogen, whereas carbon monoxide is mainly produced via the reverse water gas shift reaction.

  14. Potential of Reversible Solid Oxide Cells as Electricity Storage System

    Directory of Open Access Journals (Sweden)

    Paolo Di Giorgio

    2016-08-01

    Full Text Available Electrical energy storage (EES systems allow shifting the time of electric power generation from that of consumption, and they are expected to play a major role in future electric grids where the share of intermittent renewable energy systems (RES, and especially solar and wind power plants, is planned to increase. No commercially available technology complies with all the required specifications for an efficient and reliable EES system. Reversible solid oxide cells (ReSOC working in both fuel cell and electrolysis modes could be a cost effective and highly efficient EES, but are not yet ready for the market. In fact, using the system in fuel cell mode produces high temperature heat that can be recovered during electrolysis, when a heat source is necessary. Before ReSOCs can be used as EES systems, many problems have to be solved. This paper presents a new ReSOC concept, where the thermal energy produced during fuel cell mode is stored as sensible or latent heat, respectively, in a high density and high specific heat material and in a phase change material (PCM and used during electrolysis operation. The study of two different storage concepts is performed using a lumped parameters ReSOC stack model coupled with a suitable balance of plant. The optimal roundtrip efficiency calculated for both of the configurations studied is not far from 70% and results from a trade-off between the stack roundtrip efficiency and the energy consumed by the auxiliary power systems.

  15. Integrated Solid Oxide Fuel Cell Power System Characteristics Prediction

    Directory of Open Access Journals (Sweden)

    Marian GAICEANU

    2009-07-01

    Full Text Available The main objective of this paper is to deduce the specific characteristics of the CHP 100kWe Solid Oxide Fuel Cell (SOFC Power System from the steady state experimental data. From the experimental data, the authors have been developed and validated the steady state mathematical model. From the control room the steady state experimental data of the SOFC power conditioning are available and using the developed steady state mathematical model, the authors have been obtained the characteristic curves of the system performed by Siemens-Westinghouse Power Corporation. As a methodology the backward and forward power flow analysis has been employed. The backward power flow makes possible to obtain the SOFC power system operating point at different load levels, resulting as the load characteristic. By knowing the fuel cell output characteristic, the forward power flow analysis is used to predict the power system efficiency in different operating points, to choose the adequate control decision in order to obtain the high efficiency operation of the SOFC power system at different load levels. The CHP 100kWe power system is located at Gas Turbine Technologies Company (a Siemens Subsidiary, TurboCare brand in Turin, Italy. The work was carried out through the Energia da Ossidi Solidi (EOS Project. The SOFC stack delivers constant power permanently in order to supply the electric and thermal power both to the TurboCare Company and to the national grid.

  16. Modeling Degradation in Solid Oxide Electrolysis Cells - Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Manohar Motwani

    2011-09-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells (SOECs). To accomplish this, technical and degradation issues associated with the SOECs will need to be addressed. This report covers various approaches being pursued to model degradation issues in SOECs. An electrochemical model for degradation of SOECs is presented. The model is based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic non-equilibrium. It is shown that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential,, within the electrolyte. The within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just near the oxygen electrode/electrolyte interface, leading to oxygen electrode delamination. These predictions are in accordance with the reported literature on the subject. Development of high pressures may be avoided by introducing some electronic conduction in the electrolyte. By combining equilibrium thermodynamics, non-equilibrium (diffusion) modeling, and first-principles, atomic scale calculations were performed to understand the degradation mechanisms and provide practical recommendations on how to inhibit and/or completely mitigate them.

  17. A combined SEM and CV Study of Solid Oxide Fuel Cell Interconnect Steels

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent; Ofoegbu, Stanley; Mikkelsen, Lars

    2012-01-01

    Scanning electron microscopy and cyclic voltammetry were used to investigate the high temperature oxidation behavior of two solid oxide fuel cell interconnect steels. One alloy had a low content of manganese; the other alloy had a high content of manganese. Four reduction and four oxidation peaks...

  18. Anode materials for sour natural gas solid oxide fuel cells

    Science.gov (United States)

    Danilovic, Nemanja

    Novel anode catalysts have been developed for sour natural gas solid oxide fuel cell (SOFC) applications. Sour natural gas comprises light hydrocarbons, and typically also contains H2S. An alternative fuel SOFC that operates directly on sour natural gas would reduce the overall cost of plant construction and operation for fuel cell power generation. The anode for such a fuel cell must have good catalytic and electrocatalytic activity for hydrocarbon conversion, sulfur-tolerance, resistance to coking, and good electronic and ionic conductivity. The catalytic activity and stability of ABO3 (A= La, Ce and/or Sr, B=Cr and one or more of Ti, V, Cr, Fe, Mn, or Co) perovskites as SOFC anode materials depends on both A and B, and are modified by substituents. The materials have been prepared by both solid state and wet-chemical methods. The physical and chemical characteristics of the materials have been fully characterized using electron microscopy, XRD, calorimetry, dilatometry, particle size and area, using XPS and TGA-DSC-MS. Electrochemical performance was determined using potentiodynamic and potentiostatic cell testing, electrochemical impedance analysis, and conductivity measurements. Neither Ce0.9Sr0.1VO3 nor Ce0.9 Sr0.1Cr0.5V0.5O3 was an active anode for oxidation of H2 and CH4 fuels. However, active catalysts comprising Ce0:9Sr0:1V(O,S)3 and Ce0.9Sr 0.1Cr0.5V0.5(O,S)3 were formed when small concentrations of H2S were present in the fuels. The oxysulfides formed in-situ were very active for conversion of H2S. The maximum performance improved from 50 mW cm-2 to 85 mW cm -2 in 0.5% H2S/CH4 at 850°C with partial substitution of V by Cr in Ce0.9Sr0.1V(O,S)3. Selective conversion of H2S offers potential for sweetening of sour gas without affecting the hydrocarbons. Perovskites La0.75Sr0.25Cr0.5X 0.5O3--delta, (henceforth referred to as LSCX, X=Ti, Mn, Fe, Co) are active for conversion of H2, CH4 and 0.5% H2S/CH4. The order of activity in the different fuels depends on

  19. In operando Raman spectroscopy as a tool for investigation of solid oxide electrodes

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund; Holtappels, Peter; Walker, Robert

    Solid oxide electrodes are important in a number of technologies including solid oxide fuel cells, solid oxide electrolysis cells, gas sensors and electrochemical gas purification. The electrodes operate at elevated temperatures (300-900 °C), while they are subjected to gas flow and electrical...... polarisation. Conventionally, the solid oxide electrodes have been studied by electrochemical techniques during operation, and then analyzed post-mortem using electron microscopy, elemental analyses etc. However, accurate interpretation of the electrochemical response from the electrodes requires careful...... in situ monitoring with techniques capable of resolving specific chemical changes that occur in real time. For instance Raman spectroscopy may yield insight into the presence of segregated oxide species or contaminating impurities on the electrodes during operation. In the work presented here, Raman...

  20. Solid Oxide Electrolysis Cells: Microstructure and Degradation of the Ni/Yttria-Stabilized Zirconia Electrode

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard;

    2008-01-01

    Solid oxide fuel cells produced at Risø DTU have been tested as solid oxide electrolysis cells for steam electrolysis by applying an external voltage. Varying the sealing on the hydrogen electrode side of the setup verifies that the previously reported passivation over the first few hundred hours...... of tested solid oxide electrolysis cells. Electrolysis testing at high current density, high temperature, and a high partial pressure of steam [−2 A/cm2, 950°C, p(H2O)=0.9 atm] was observed to lead to significant microstructural changes at the hydrogen electrode-electrolyte interface....

  1. Solid oxide fuels cells past present and future perspectives for SOFC technologies

    CERN Document Server

    Irvine, John TS

    2012-01-01

    Solid Oxide Fuel Cells (SOFCs) operate at high temperatures allowing more fuel flexibility and also useful heat output and so increase total efficiency, but does give some interesting engineering challenges. Solid Oxide Fuels Cells: Facts and Figures provides clear and accurate data for a selection of SOFC topics from the specific details of Ni cermet anodes, chemical expansion in materials, and the measuring and modelling of mechanical stresses, to the broader scope of the history and present design of cells, to SOFC systems and the future of SOFC. Celebrating Ulf Bossel s work on Solid Oxide

  2. Complementary techniques for solid oxide electrolysis cell characterisation at the micro- and nano-scale

    DEFF Research Database (Denmark)

    Wiedenmann, D.; Hauch, Anne; Grobety, B.;

    2010-01-01

    energy carriers. With the same technology, fuel gas can be used in a very efficient way to reconvert chemically stored energy into electrical energy, since SOECs also work in the reverse mode, operating as solid oxide fuel cells (SOFC). As solid oxide cells (SOC) perform at high-temperatures (700–900 °C......High-temperature steam electrolysis by solid oxide electrolysis cells (SOEC) is a method with great potential for transforming clean and renewable energy from non-fossil sources to synthetic fuels such as hydrogen, methane or dimethyl ether, which have been identified as promising alternative...

  3. Ionic conductivity studies of solid oxide fuel cell electrolytes and theoretical modeling of an entire solid oxide fuel cell

    Science.gov (United States)

    Pornprasertsuk, Rojana

    Because of the steep increase in oil prices, the global warming effect and the drive for energy independence, alternative energy research has been encouraged worldwide. The sustainable fuels such as hydrogen, biofuel, natural gas, and solar energy have attracted the attention of researchers. To convert these fuels into a useful energy source, an energy conversion device is required. Fuel cells are one of the energy conversion devices which convert chemical potentials into electricity. Due to their high efficiency, the ease to scale from 1 W range to megawatts range, no recharging requirement and the lack of CO2 and NOx emission (if H2 and air/O 2 are used), fuel cells have become a potential candidate for both stationary power generators and portable applications. This thesis has been focused primarily on solid oxide fuel cell (SOFC) studies due to its high efficiency, varieties of fuel choices, and no water management problem. At the present, however, practical applications of SOFCs are limited by high operating temperatures that are needed to create the necessary oxide-ion vacancy mobility in the electrolyte and to create sufficient electrode reactivities. This thesis introduces several experimental and theoretical approaches to lower losses both in the electrolyte and the electrodes. Yttria stabilized zirconia (YSZ) is commonly used as a solid electrolyte for SOFCs due to its high oxygen-ion conductivity. To improve the ionic conductivity for low temperature applications, an approach that involves dilating the structure by irradiation and introducing edge dislocations into the electrolyte was studied. Secondly, to understand the activation loss in SOFC, the kinetic Monte Carlo (KMC) technique was implemented to model the SOFC operation to determining the rate-limiting step due to the electrodes on different sizes of Pt catalysts. The isotope exchange depth profiling technique was employed to investigate the irradiation effect on the ionic transport in different

  4. Radiation-induced oxidation of solid poly(ethylene oxide). I. Experimental results

    International Nuclear Information System (INIS)

    γ-Initiated oxidations of solid poly(ethylene oxide) (PEO) have been carried out at ambient temperatures and the dependence of the rate of oxygen consumption on rate of initiation, O2 pressure, and crystallinity has been determined. At 250C, the radiation yield G for O2 absorbed is 117 to 281, depending on dose rate, and decreases moderately with increasing crystallinity. The principal oxidation products are formate and hemiformal groups, hydroperoxides, and some volatile compounds, mainly formaldehyde and carbon dioxide. The rates of O2 consumption and formation of products and chain scission are little affected by a change of the temperature in the range -23 to +550C except for hydroperoxide, the formation of which requires an activation energy of 4 kcal/mole. Experiments with 2,6-di-tert-butyl-p-cresol show that essentially all of the initiating PO2 . radicals escape cage termination; G value for formation of the initiating peroxy radicals was estimated from the inhibition period to be 5.0 +- 0.3

  5. Functionally Graded Cathodes for Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Harry Abernathy; Meilin Liu

    2006-12-31

    One primary suspected cause of long-term performance degradation of solid oxide fuels (SOFCs) is the accumulation of chromium (Cr) species at or near the cathode/electrolyte interface due to reactive Cr molecules originating from Cr-containing components (such as the interconnect) in fuel cell stacks. To date, considerable efforts have been devoted to the characterization of cathodes exposed to Cr sources; however, little progress has been made because a detailed understanding of the chemistry and electrochemistry relevant to the Cr-poisoning processes is still lacking. This project applied multiple characterization methods - including various Raman spectroscopic techniques and various electrochemical performance measurement techniques - to elucidate and quantify the effect of Cr-related electrochemical degradation at the cathode/electrolyte interface. Using Raman microspectroscopy the identity and location of Cr contaminants (SrCrO{sub 4}, (Mn/Cr){sub 3}O{sub 4} spinel) have been observed in situ on an LSM cathode. These Cr contaminants were shown to form chemically (in the absence of current flowing through the cell) at temperatures as low as 625 C. While SrCrO{sub 4} and (Mn/Cr){sub 3}O{sub 4} spinel must preferentially form on LSM, since the LSM supplies the Sr and Mn cations necessary for these compounds, LSM was also shown to be an active site for the deposition of Ag{sub 2}CrO{sub 4} for samples that also contained silver. In contrast, Pt and YSZ do not appear to be active for formation of Cr-containing phases. The work presented here supports the theory that Cr contamination is predominantly chemically-driven and that in order to minimize the effect, cathode materials should be chosen that are free of cations/elements that could preferentially react with chromium, including silver, strontium, and manganese.

  6. Evaluation of apatite silicates as solid oxide fuel cell electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Marrero-Lopez, D. [Dpto. de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C.S.I.C.), Universidad de Malaga, 29071 Malaga (Spain); Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Martin-Sedeno, M.C.; Aranda, M.A.G. [Dpto. de Quimica Inorganica, Universidad Malaga, 29071 Malaga (Spain); Pena-Martinez, J. [Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Instituto de Energias Renovables, Parque Tecnologico, Universidad de Castilla La Mancha, 02006 Albacete (Spain); Ruiz-Morales, J.C.; Nunez, P. [Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Ramos-Barrado, J.R. [Dpto. de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C.S.I.C.), Universidad de Malaga, 29071 Malaga (Spain)

    2010-05-01

    Apatite-type silicates have been considered as promising electrolytes for Solid Oxide Fuel Cells (SOFC); however studies on the potential use of these materials in SOFC devices have received relatively little attention. The lanthanum silicate with composition La{sub 10}Si{sub 5.5}Al{sub 0.5}O{sub 26.75} has been evaluated as electrolyte with the electrode materials commonly used in SOFC, i.e. manganite, ferrite and cobaltite as cathode materials and NiO-CGO composite, chromium-manganite and Sr{sub 2}MgMoO{sub 6} as anode materials. Chemical compatibility, area-specific resistance and fuel cell studies have been performed. X-ray powder diffraction (XRPD) analysis did not reveal any trace of reaction products between the apatite electrolyte and most of the aforementioned electrode materials. However, the area-specific polarisation resistance (ASR) of these electrodes in contact with apatite electrolyte increased significantly with the sintering temperature, indicating reactivity at the electrolyte/electrode interface. On the other hand, the ASR values are significantly improved using a ceria buffer layer between the electrolyte and electrode materials to prevent reactivity. Maximum power densities of 195 and 65 mWcm{sup -2} were obtained at 850 and 700 C, respectively in H{sub 2} fuel, using an 1 mm-thick electrolyte, a NiO-Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9} composite as anode and La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} as cathode materials. This fuel cell was tested for 100 h in 5%H{sub 2}-Ar atmosphere showing stable performance. (author)

  7. Solid oxide fuel cells towards real life applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    Solid Oxide Fuel Cells offer a clean and efficient way of producing electricity and heat from a wide selection of fuels. The project addressed three major challenges to be overcome by the technology to make commercialisation possible. (1) At the cell level, increased efficiency combined with production cost reduction has been achieved through an optimization of the manufacturing processes, b) by using alternative raw materials with a lower purchase price and c) by introducing a new generation of fuel cells with reduced loss and higher efficiency. (2) At the stack level, production cost reduction is reduced and manufacturing capacity is increased through an optimization of the stack production. (3) At the system level, development of integrated hotbox concepts for the market segments distributed generation (DG), micro combined heat and power (mCHP), and auxiliary power units (APU) have been developed. In the mCHP segment, two concepts have been developed and validated with regards to market requirements and scalability. In the APU-segment, different types of reformers have been tested and it has been proven that diesel can be reformed through appropriate reformers. Finally, operation experience and feedback has been gained by deployment of stacks in the test facility at the H.C. OErsted Power Plant (HCV). This demonstration has been carried out in collaboration between TOFC and DONG Energy Power A/S (DONG), who has participated as a subcontractor to TOFC. The demonstration has given valuable knowledge and experience with design, start-up and operation of small power units connected to the grid and future development within especially the mCHP segment will benefit from this. In this report, the project results are described for each of the work packages in the project. (Author)

  8. Miniature Solid-State Sulfur Oxide Sensor for Emissions Measurement Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering Incorporated (MEI) and Case Western Reserve University (CWRU) propose to develop a MEMS based, minature solid state sulfur oxide sensor for use in...

  9. Low Temperature, High Energy Density Micro Thin Film Solid Oxide Fuel Cell Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new type of solid oxide fuel cell based on thin film technology and ultra-thin electrolyte is being proposed to develop to realize major reductions in fuel cell...

  10. A Compact, Efficient Pyrolysis/Oxidation System for Solid Waste Resource Recovery in Space Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Both pyrolysis and oxidation steps have been considered as the key solid waste processing step for a Controlled Ecological Life Support System (CELSS). Pyrolysis is...

  11. Evaluation and Model of Performance of A Tubular Solid Oxide Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    JIA Jun-xi; SHEN Sheng-qiang

    2005-01-01

    A simulation model was developed to analyze the steady state and transient operation of a tubular solid oxide fuel cell. The model covers both the electrochemical and the heat transfer models. The electrochemical model deals with the Nernst potential, ohmic polarization, activation polarization, and concentration polarization, while the heat transfer model concerns the heat transfer by conduction, convection and radiation. The numerical results show that the ohmic loss is the dominant one among the three polarizations in a cathode-supported solid oxide fuel cell and in the middle part of a solid oxide fuel cell the temperature is higher than those at both the ends. When the inlet temperature and the flow rates of the fuel and the oxidant are kept constantly, the temperature of the solid structure of the cell will increase due to the increase of power output of the cell from the initial state to the new one.

  12. Solid oxide membrane (SOM) process for ytterbium and silicon production from their oxides

    Science.gov (United States)

    Jiang, Yihong

    The Solid oxide membrane (SOM) electrolysis is an innovative green technology that produces technologically important metals directly from their respective oxides. A yttria-stabilized zirconia (YSZ) tube, closed at one end is employed to separate the molten salt containing dissolved metal oxides from the anode inside the YSZ tube. When the applied electric potential between the cathode in the molten salt and the anode exceeds the dissociation potential of the desired metal oxides, oxygen ions in the molten salt migrate through the YSZ membrane and are oxidized at the anode while the dissolved metal cations in the flux are reduced to the desired metal at the cathode. Compared with existing metal production processes, the SOM process has many advantages such as one unit operation, less energy consumption, lower capital costs and zero carbon emission. Successful implementation of the SOM electrolysis process would provide a way to mitigate the negative environmental impact of the metal industry. Successful demonstration of producing ytterbium (Yb) and silicon (Si) directly from their respective oxides utilizing the SOM electrolysis process is presented in this dissertation. During the SOM electrolysis process, Yb2O3 was reduced to Yb metal on an inert cathode. The melting point of the supporting electrolyte (LiF-YbF3-Yb2O3) was determined by differential thermal analysis (DTA). Static stability testing confirmed that the YSZ tube was stable with the flux at operating temperature. Yb metal deposit on the cathode was confirmed by scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). During the SOM electrolysis process for silicon production, a fluoride based flux based on BaF2, MgF2, and YF3 was engineered to serve as the liquid electrolyte for dissolving silicon dioxide. YSZ tube was used to separate the molten salt from an anode current collector in the liquid silver. Liquid tin was chosen as cathode to dissolve the reduced silicon during

  13. Carbon and Redox Tolerant Infiltrated Oxide Fuel-Electrodes for Solid Oxide Cells

    DEFF Research Database (Denmark)

    Skafte, Theis Løye; Sudireddy, Bhaskar Reddy; Blennow, P.;

    2016-01-01

    To solve issues of coking and redox instability related to the presence of nickel in typical fuel electrodes in solid oxide cells,Gd-doped CeO2 (CGO) electrodes were studied using symmetriccells. These electrodes showed high electro-catalytic activity, butlow electronic conductivity. When...... infiltrated with Sr0.99Fe0.75Mo0.25O3-δ (SFM), the electronic conductivity wasenhanced. However, polarization resistance of the cells increased,suggesting that the infiltrated material is less electro-catalyticallyactive and was partly blocking the CGO surface reaction sites. Theactivity could be regained...... by infiltrating nano-sized CGO orNiCGO on top of SFM, while still sustaining the high electronicconductivity. Ohmic resistance of the electrodes was thuspractically eliminated and performance comparable to, or betterthan, state-of-the-art fuel electrodes was achieved. The Nicontaining cells were damaged by carbon...

  14. Electrode Reaction Pathway in Oxide Anode for Solid Oxide Fuel Cells

    Science.gov (United States)

    Li, Wenyuan

    Oxide anodes for solid oxide fuel cells (SOFC) with the advantage of fuel flexibility, resistance to coarsening, small chemical expansion and etc. have been attracting increasing interest. Good performance has been reported with a few of perovskite structure anodes, such as (LaSr)(CrMn)O3. However, more improvements need to be made before meeting the application requirement. Understanding the oxidation mechanism is crucial for a directed optimization, but it is still on the early stage of investigation. In this study, reaction mechanism of oxide anodes is investigated on doped YCrO 3 with H2 fuel, in terms of the origin of electrochemical activity, rate-determining steps (RDS), extension of reactive zone, and the impact from overpotential under service condition to those properties. H2 oxidation on the YCs anodes is found to be limited by charge transfer and H surface diffusion. A model is presented to describe the elementary steps in H2 oxidation. From the reaction order results, it is suggested that any models without taking H into the charge transfer step are invalid. The nature of B site element determines the H2 oxidation kinetics primarily. Ni displays better adsorption ability than Co. However, H adsorption ability of such oxide anode is inferior to that of Ni metal anode. In addition, the charge transfer step is directly associated with the activity of electrons in the anode; therefore it can be significantly promoted by enhancement of the electron activity. It is found that A site Ca doping improves the polarization resistance about 10 times, by increasing the activity of electrons to promote the charge transfer process. For the active area in the oxide anode, besides the traditional three-phase boundary (3PB), the internal anode surface as two-phase boundary (2PB) is proven to be capable of catalytically oxidizing the H2 fuel also when the bulk lattice is activated depending on the B site elements. The contribution from each part is estimated by switching

  15. Biomass-powered Solid Oxide Fuel Cells: Experimental and Modeling Studies for System Integrations

    NARCIS (Netherlands)

    Liu, M.

    2013-01-01

    Biomass is a sustainable energy source which, through thermo-chemical processes of biomass gasification, is able to be converted from a solid biomass fuel into a gas mixture, known as syngas or biosyngas. A solid oxide fuel cell (SOFC) is a power generation device that directly converts the chemical

  16. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides

    KAUST Repository

    Bi, Lei

    2014-01-01

    Energy crisis and environmental problems caused by the conventional combustion of fossil fuels boost the development of renewable and sustainable energies. H2 is regarded as a clean fuel for many applications and it also serves as an energy carrier for many renewable energy sources, such as solar and wind power. Among all the technologies for H2 production, steam electrolysis by solid oxide electrolysis cells (SOECs) has attracted much attention due to its high efficiency and low environmental impact, provided that the needed electrical power is generated from renewable sources. However, the deployment of SOECs based on conventional oxygen-ion conductors is limited by several issues, such as high operating temperature, hydrogen purification from water, and electrode stability. To avoid these problems, proton-conducting oxides are proposed as electrolyte materials for SOECs. This review paper provides a broad overview of the research progresses made for proton-conducting SOECs, summarizing the past work and finding the problems for the development of proton-conducting SOECs, as well as pointing out potential development directions.

  17. High performance zirconia-bismuth oxide nanocomposite electrolytes for lower temperature solid oxide fuel cells

    Science.gov (United States)

    Joh, Dong Woo; Park, Jeong Hwa; Kim, Do Yeub; Yun, Byung-Hyun; Lee, Kang Taek

    2016-07-01

    We develop a novel nanocomposite electrolyte, consisting of yttria-stabilized zirconia (YSZ) and erbia-stabilized bismuth oxide (ESB). The 20 mol% ESB-incorporated YSZ composite (20ESB-YSZ) achieves the high density (>97%) at the low sintering temperature of 800 °C. The microstructural analysis of 20ESB-YSZ reveals the characteristic nanocomposite structure of the highly percolated ESB phase at the YSZ grain boundaries (a few ∼ nm thick). The ionic conductivity of 20ESB-YSZ is increased by 5 times compared to that of the conventional YSZ due to the fast oxygen ion transport along the ESB phase. Moreover, this high conductivity is maintained up to 580 h, indicating high stability of the ESB-YSZ nanocomposite. In addition, the oxygen reduction reaction at the composite electrolyte/cathode interface is effectively enhanced (∼70%) at the temperature below 650 °C, mainly due to the fast dissociative oxygen adsorption on the ESB surface as well as the rapid oxygen ion incorporation into the ESB lattice. Thus, we believe this ESB-YSZ nanocomposite is a promising electrolyte for high performance solid oxide fuel cells at reduced temperatures.

  18. Development of conventional and single-chamber planar solid oxide fuel cells by screen-printing; Developpement de piles a combustible de type SOFC, conventionnelles et mono-chambres, en technologie planaire par serigraphie

    Energy Technology Data Exchange (ETDEWEB)

    Rotureau, D.

    2005-06-15

    This work is the first of a new research theme of the laboratory in the field of solid oxide planar fuel cells. With his high experience in the sensor field, the objectives were to realize prototypes using a 'low cost' technology like screen-printing, using classical materials in the field of fuel cells, rather than researching new materials having optimum properties which may be damaged during the realisation of the complete fuel cell. These materials are yttria stabilised zirconia (YSZ) for electrolyte, strontium doped lanthanum manganite (LSM) for cathode and a nickel oxide-YSZ cermet (NiO-YSZ) for anode. The first part of the study consists in structural and electrical characterizations of chosen materials, both on dense pellets and on screen-printed layers of YSZ, LSM or NiO-YSZ. These characterizations showed a good adequation of our materials for a fuel cell application. The second part consists in testing realised prototypes on electrolyte support and on anode support with screen-printed electrodes and electrolyte. The weak obtained performances are mainly due to the low functional temperature (800 C), the thickness of the electrolyte support (about 1 mm) and the porosity of the YSZ screen-printed layers. Finally, we tested in the same time an original device in which both electrodes are exposed to a fuel and air mixture. This promising device inspired from the research on potentiometric sensors developed in the team by N. Guillet (2001), avoids the tightness problem encountered with two gaseous chambers. Moreover, the performances obtained are just twice below than those obtained with a conventional fuel cell with two gaseous chambers. (author)

  19. Low Temperature Constrained Sintering of Cerium Gadolinium OxideFilms for Solid Oxide Fuel Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, Jason.D.

    2007-06-30

    Cerium gadolinium oxide (CGO) has been identified as an acceptable solid oxide fuel cell (SOFC) electrolyte at temperatures (500-700 C) where cheap, rigid, stainless steel interconnect substrates can be used. Unfortunately, both the high sintering temperature of pure CGO, >1200 C, and the fact that constraint during sintering often results in cracked, low density ceramic films, have complicated development of metal supported CGO SOFCs. The aim of this work was to find new sintering aids for Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95}, and to evaluate whether they could be used to produce dense, constrained Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} films at temperatures below 1000 C. To find the optimal sintering aid, Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} was doped with a variety of elements, of which lithium was found to be the most effective. Dilatometric studies indicated that by doping CGO with 3mol% lithium nitrate, it was possible to sinter pellets to a relative density of 98.5% at 800 C--a full one hundred degrees below the previous low temperature sintering record for CGO. Further, it was also found that a sintering aid's effectiveness could be explained in terms of its size, charge and high temperature mobility. A closer examination of lithium doped Ce0.9Gd0.1O1.95 indicated that lithium affects sintering by producing a Li{sub 2}O-Gd{sub 2}O{sub 3}-CeO{sub 2} liquid at the CGO grain boundaries. Due to this liquid phase sintering, it was possible to produce dense, crack-free constrained films of CGO at the record low temperature of 950 C using cheap, colloidal spray deposition processes. This is the first time dense constrained CGO films have been produced below 1000 C and could help commercialize metal supported ceria based solid oxide fuel cells.

  20. Low Temperature Constrained Sintering of Cerium Gadolinium OxideFilms for Solid Oxide Fuel Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, Jason Dale [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Cerium gadolinium oxide (CGO) has been identified as an acceptable solid oxide fuel cell (SOFC) electrolyte at temperatures (500-700 C) where cheap, rigid, stainless steel interconnect substrates can be used. Unfortunately, both the high sintering temperature of pure CGO, >1200 C, and the fact that constraint during sintering often results in cracked, low density ceramic films, have complicated development of metal supported CGO SOFCs. The aim of this work was to find new sintering aids for Ce0.9Gd0.1O1.95, and to evaluate whether they could be used to produce dense, constrained Ce0.9Gd0.1O1.95 films at temperatures below 1000 C. To find the optimal sintering aid, Ce0.9Gd0.1O1.95 was doped with a variety of elements, of which lithium was found to be the most effective. Dilatometric studies indicated that by doping CGO with 3mol% lithium nitrate, it was possible to sinter pellets to a relative density of 98.5% at 800 C--a full one hundred degrees below the previous low temperature sintering record for CGO. Further, it was also found that a sintering aid's effectiveness could be explained in terms of its size, charge and high temperature mobility. A closer examination of lithium doped Ce0.9Gd0.1O1.95 indicated that lithium affects sintering by producing a Li2O-Gd2O3-CeO2 liquid at the CGO grain boundaries. Due to this liquid phase sintering, it was possible to produce dense, crack-free constrained films of CGO at the record low temperature of 950 C using cheap, colloidal spray deposition processes. This is the first time dense constrained CGO films have been produced below 1000 C and could help commercialize metal supported ceria based solid oxide fuel cells.

  1. Co-Electrolysis of Steam and Carbon Dioxide in Solid Oxide Cells

    DEFF Research Database (Denmark)

    Ebbesen, Sune Dalgaard; Knibbe, Ruth; Mogensen, Mogens Bjerg

    2012-01-01

    Reduction of H2O and CO2 as well as oxidation of H2 and CO was studied in a Ni/YSZ electrode supported Solid Oxide Cell (SOC) produced at DTU Energy conversion (former Risø DTU). Even though these Ni/YSZ based SOCs were developed and optimized for fuel cell use, they can work as reversible SOCs i...

  2. Pressure effects in hollow and solid iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Silva, N.J.O., E-mail: nunojoao@ua.pt [Departamento de Física and CICECO, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Saisho, S.; Mito, M. [Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550 (Japan); Millán, A.; Palacio, F. [Instituto de Ciencia de Materiales de Aragón, CSIC - Universidad de Zaragoza. Departamento de Física de la Materia Condensada, Facultad de Ciencias, 50009 Zaragoza (Spain); Cabot, A. [Universitat de Barcelona and Catalonia Energy Research Institute, Barcelona (Spain); Iglesias, Ò.; Labarta, A. [Departament de Física Fonamental, Universitat de Barcelona and Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain)

    2013-06-15

    We report a study on the pressure response of the anisotropy energy of hollow and solid maghemite nanoparticles. The differences between the maghemite samples are understood in terms of size, magnetic anisotropy and shape of the particles. In particular, the differences between hollow and solid samples are due to the different shape of the nanoparticles and by comparing both pressure responses it is possible to conclude that the shell has a larger pressure response when compared to the core. - Highlights: ► Study of the pressure response of core and shell magnetic anisotropy. ► Contrast between hollow and solid maghemite nanoparticles. ► Disentanglement of nanoparticles core and shell magnetic properties.

  3. Solid State NMR Study of Hydrous Ruthenium Oxide Electrode Materials

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ Hydrous ruthenium oxides (RuO2·xH2O) have attracted great interests recently because of important technological applications in high-charge storage-capacity devices (e.g. Electrochemical capacitors)[1].

  4. Oxidative stability of solid foods with dispersed lipids

    OpenAIRE

    Damerau, Annelie

    2015-01-01

    The consumption of whole grain foods high in fibre is of interest because of the health-promoting effects associated with dietary fibre. Therefore, there is interest in developing new fibre-rich cereal foods. However, these kinds of foods also contain polyunsaturated lipids, which are prone to oxidation. Further, lipids are dispersed in a heterogeneous matrix of starch, proteins and fibre, which increases their tendency to oxidize because of a large surface area and possible contact with proo...

  5. Laser induced densification of cerium gadolinium oxide: Application to single-chamber solid oxide fuel cells

    Science.gov (United States)

    Mariño, Mariana; Rieu, Mathilde; Viricelle, Jean-Paul; Garrelie, Florence

    2016-06-01

    In single-chamber solid oxide fuel cells (SC-SOFC), anode and cathode are placed in a gas chamber where they are exposed to a fuel/air mixture. Similarly to conventional dual-chamber SOFC, the anode and the cathode are separated by an electrolyte. However, as in the SC-SOFC configuration the electrolyte does not play tightness role between compartments, this one can be a porous layer. Nevertheless, it is necessary to have a diffusion barrier to prevent the transportation of hydrogen produced locally at the anode to the cathode that reduces fuel cell performances. This study aims to obtain directly a diffusion barrier through the surface densification of the electrolyte Ce0.9Gd0.1O1.95 (CGO) by a laser treatment. KrF excimer laser and Yb fiber laser irradiations were used at different fluences and number of pulses to modify the density of the electrolyte coating. Microstructural characterizations confirmed the modifications on the surface of the electrolyte for appropriate experimental conditions showing either grain growth or densified but cracked surfaces. Gas permeation and electrical conductivities of the modified electrolyte were evaluated. Finally SC-SOFC performances were improved for the cells presenting grain growth at the electrolyte surface.

  6. Long term high temperature oxidation characteristics of La and Cu alloyed ferritic stainless steels for solid oxide fuel cell interconnects

    Science.gov (United States)

    Swaminathan, Srinivasan; Lee, Young-Su; Kim, Dong-Ik

    2016-09-01

    To ensure the best performance of solid oxide fuel cell metallic interconnects, the Fe-22 wt.% Cr ferritic stainless steels with various La contents (0.006-0.6 wt.%) and Cu addition (1.57 wt.%), are developed. Long-term isothermal oxidation behavior of these steels is investigated in air at 800 °C, for 2700 h. Chemistry, morphology, and microstructure of the thermally grown oxide scale are examined using XPS, SEM-EDX, and XRD techniques. Broadly, all the steels show a double layer consisting of an inner Cr2O3 and outer (Mn, Cr)3O4. Distinctly, in the La-added steels, binary oxides of Cr, Mn and Ti are found at the oxide scale surface together with (Mn, Cr)3O4. Furthermore, all La-varied steels possess the metallic Fe protrusions along with discontinuous (Mn, Cr)3O4 spinel zones at the oxide scale/metal interface and isolated precipitates of Ti-oxides in the underlying matrix. Increase of La content to 0.6 wt.% is detrimental to the oxidation resistance. For the Cu-added steel, Cu is found to segregate strongly at the oxide scale/metal interface which inhibits the ingress of oxygen thereby suppressing the subscale formation of (Mn, Cr)3O4. Thus, Cu addition to the Fe-22Cr ferritic stainless steels benefits the oxidation resistance.

  7. Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices

    Science.gov (United States)

    Rieke, Peter C.; Coffey, Gregory W.; Pederson, Larry R.; Marina, Olga A.; Hardy, John S.; Singh, Prabhaker; Thomsen, Edwin C.

    2010-07-20

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.

  8. Electrophoretic deposition of dense Sr- and Mg-doped LaGaO{sub 3} electrolyte films on porous La-doped ceria for intermediate temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Bozza, F.; Polini, R.; Traversa, E. [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata (Italy)

    2008-10-15

    The application of the electrophoretic deposition (EPD) technique to the preparation of dense La{sub 0.8}Sr{sub 0.2}Ga{sub 0.8}Mg{sub 0.2}O{sub 2.8} (LSGM) electrolyte films for intermediate temperature solid oxide fuel cells (IT-SOFCs) was investigated. Suspensions of LSGM were prepared in acetone +I{sub 2}+H{sub 2}O dispersion media. The effects of water and iodine content, of the applied voltage, and of powder loading on the EPD rate were systematically studied using metallic substrates (Pt and stainless steel). This allowed to identify the suitable set of EPD process parameters that were used to deposit LSGM films on tape-cast composite electrodes, composed of lanthanum-doped ceria (La{sub 0.4}Ce{sub 0.6}O{sub 2-x}, LDC), polyvinylidene difluoride (PVDF) and carbon powders. After EPD, dense and crack-free 15 {mu}m thick LSGM films were obtained on porous LDC by co-firing in air at 1,490 C. Line profile analyses performed by energy dispersive X-ray spectroscopy (EDS) did not reveal any interdiffusion of ions across the LSGM/LDC interface. The chemical and structural compatibility of LSGM with LDC was also checked by heat treating a mixture of the two powders (1:1 weight ratio) using the same thermal cycle as that of the LDC/LSGM bi-layer co-firing at 1,490 C. EPD has thus proven to be a viable way for manufacturing anode-supported LSGM electrolyte films. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  9. Thermodynamic analysis of Direct Urea Solid Oxide Fuel Cell in combined heat and power applications

    Science.gov (United States)

    Abraham, F.; Dincer, I.

    2015-12-01

    This paper presents a comprehensive steady state modelling and thermodynamic analysis of Direct Urea Solid Oxide Fuel Cell integrated with Gas Turbine power cycle (DU-SOFC/GT). The use of urea as direct fuel mitigates public health and safety risks associated with the use of hydrogen and ammonia. The integration scheme in this study covers both oxygen ion-conducting solid oxide fuel cells (SOFC-O) and hydrogen proton-conducting solid oxide fuel cells (SOFC-H). Parametric case studies are carried out to investigate the effects of design and operating parameters on the overall performance of the system. The results reveal that the fuel cell exhibited the highest level of exergy destruction among other system components. Furthermore, the SOFC-O based system offers better overall performance than that with the SOFC-H option mainly due to the detrimental reverse water-gas shift reaction at the SOFC anode as well as the unique configuration of the system.

  10. Ni/YSZ microstructure optimization for long-term stability of solid oxide electrolysis cells

    DEFF Research Database (Denmark)

    Hauch, Anne; Brodersen, Karen; Karas, Filip;

    2014-01-01

    In the last decade there has been a renewed and increased interest in electrolysis using solid oxide cells (SOC). So far the vast majority of results reported on long-term durability of solid oxide electrolysis cells (SOEC) have been obtained using SOC produced and optimized for fuel cell operation......; i.e. solid oxide fuel cells (SOFC). However, previous long-term tests have shown that the stability behavior of the Ni/yttria-stabilized-zirconia (Ni/YSZ) fuel electrode may fall out quite differently depending on whether the cell is operated in fuel cell or electrolysis mode at otherwise similar...... test conditions. Initial work has shown significant microstructural changes of the Ni/YSZ electrode close to the electrolyte interface after long-term steam electrolysis test at -1 A/cm2 at 800 C. The results indicate that it will be advantageous to optimize the electrode structure with the aim...

  11. The benefit of solid oxide fuel cells with integrated air pre-heater

    Energy Technology Data Exchange (ETDEWEB)

    Costamagna, P. [Univ. degli Studi di Genova, Fac. di Ingegneria, ISTIC, Inst. di Ingegneria Chimica e di Processo `G.B. Bonino`, Genova (Italy)

    1997-11-01

    A new design has recently been proposed in the field of solid oxide fuel cells, consisting of a traditional electrochemical cell integrated with a pre-heater. In this paper a simulation model for the rectangular planar solid oxide fuel cell with integrated air pre-heater is presented. A two-dimensional stack simulation is presented as well, one axis coincides with the fuel flow direction, the other with the stack height. Local quantities such as current density, gas and solid temperatures are reported and cell characteristics predicted. In a parameter study, effects of oxygen utilisation and heat-transfer conditions in the pre-heater on the local temperature distribution of the solid structure are considered. As a result, the benefit of the new cell design becomes evident when low air flow rates are applied. A further advantage associated with the reduced flow rate is the low air temperature at the inlet. (orig.)

  12. Fermi Potential across Working Solid Oxide Cells with Zirconia or Ceria Electrolytes

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2014-01-01

    A solid electrolyte will always possess a finite electronic conductivity, in particular electrolytes like doped ceria that easily get reduced and become mixed ionic and electronic conductors. This given rise too high leak currents through the solid oxide cell (SOC). Especially, problems have been...... observed for ceria based electrolytes, but also in case of solid oxide electrolyser cells (SOEC) with yttria stabilized zirconia (YSZ) big electronic leak currents have been observed for very high overvoltages on one or both electrodes. Furthermore, it is important to realize that the potential gradient...... driving the O2-ions is not the Fermi potential, which is the potential of the electrons, but the Galvani potential (or inner potential) (1). The concepts of potentials describing the electrical situation of a solid electrolyte is shown i Fig. 1, and an example of the Fermi potential (π) and Galvani...

  13. (La, Pr)0.8Sr0.2FeO3-δ-Sm 0.2Ce0.8O2-δ composite cathode for proton-conducting solid oxide fuel cells

    KAUST Repository

    Chen, Yonghong

    2014-08-01

    Mixed rare-earth (La, Pr)0.8Sr0.2FeO 3-δ-Sm0.2Ce0.8O2-δ (LPSF-SDC) composite cathode was investigated for proton-conducting solid oxide fuel cells based on protonic BaZr0.1Ce0.7Y 0.2O3-δ (BZCY) electrolyte. The powders of La 0.8-xPrxSr0.2FeO3-δ (x = 0, 0.2, 0.4, 0.6), Sm0.2Ce0.8O2-δ (SDC) and BaZr0.1Ce0.7Y0.2O3-δ (BZCY) were synthesized by a citric acid-nitrates self-propagating combustion method. The XRD results indicate that La0.8-xPrxSr 0.2FeO3-δ samples calcined at 950 °C exhibit perovskite structure and there are no interactions between LPSF0.2 and SDC at 1100 °C. The average thermal expansion coefficient (TEC) of LPSF0.2-SDC, BZCY and NiO-BZCY is 12.50 × 10-6 K-1, 13.51 × 10-6 K-1 and 13.47 × 10-6 K -1, respectively, which can provide good thermal compatibility between electrodes and electrolyte. An anode-supported single cell of NiO-BZCY|BZCY|LPSF0.2-SDC was successfully fabricated and operated from 700 °C to 550 °C with humidified hydrogen (∼3% H2O) as fuel and the static air as oxidant. A high maximum power density of 488 mW cm -2, an open-circuit potential of 0.95 V, and a low electrode polarization resistance of 0.071 Ω cm2 were achieved at 700 °C. Preliminary results demonstrate that LPSF0.2-SDC composite is a promising cathode material for proton-conducting solid oxide fuel cells. © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  14. Modelling of Physical, Chemical, and Material Properties of Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Jakub Kupecki

    2015-01-01

    Full Text Available This paper provides a review of modelling techniques applicable for system-level studies to account for physical, chemical, and material properties of solid oxide fuel cells. Functionality of 0D to 3D models is discussed and selected examples are given. Author provides information on typical length scales in evaluation of power systems with solid oxide fuel cells. In each section, proper examples of previous studies done in the field of 0D–3D modelling are recalled and discussed.

  15. Nanotubes of rare earth cobalt oxides for cathodes of intermediate-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sacanell, Joaquin [Departamento de Fisica, Centro Atomico Constituyentes, CNEA, Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Buenos Aires (Argentina); Leyva, A. Gabriela [Departamento de Fisica, Centro Atomico Constituyentes, CNEA, Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, UNSAM. Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Bellino, Martin G.; Lamas, Diego G. [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Buenos Aires (Argentina)

    2010-04-02

    In this work we studied the electrochemical properties of cathodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs) prepared with nanotubes of La{sub 0.6}Sr{sub 0.4}CoO{sub 3} (LSCO). Their nanostructures consist of agglomerated nanoparticles in tubular structures of sub-micrometric diameter. The resulting cathodes are highly porous both at the micro- and the nanoscale. This fact increases significantly the access to active sites for the oxygen reduction. We investigated the influence of the diameter of the precursor nanotubes on the polarization resistance of the LSCO cathodes on CeO{sub 2}-10 mol.% Sm{sub 2}O{sub 3} (SDC) electrolytes under air atmosphere, evaluated in symmetrical [LSCO/SDC/LSCO] cells. Our results indicate an optimized performance when the diameter of precursor nanotubes is sufficiently small to become dense nanorods after cathode sintering. We present a phenomenological model that successfully explains the behavior observed and considers that a small starting diameter acts as a barrier that prevents grains growth. This is directly related with the lack of contact points between nanotubes in the precursor, which are the only path for the growth of ceramic grains. We also observed that a conventional sintering process (of 1 h at 1000 C with heating and cooling rates of 10 C min{sup -1}) has to be preferred against a fast firing one (1 or 2 min at 1100 C with heating and cooling rates of 100 C min{sup -1}) in order to reach a higher performance. However, a good adhesion of the cathode can be achieved with both methods. Our results suggest that oxygen vacancy diffusion is enhanced while decreasing LSCO particle size. This indicates that the high performance of our nanostructured cathodes is not only related with the increase of the number of active sites for oxygen reduction but also to the fact that the nanotubes are formed by nanoparticles. (author)

  16. Solid oxide fuel cell power plant with an anode recycle loop turbocharger

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Kazuo; Skiba, Tommy; Patel, Kirtikumar H.

    2016-09-27

    An anode exhaust recycle turbocharger (100) has a turbocharger turbine (102) secured in fluid communication with a compressed oxidant stream within an oxidant inlet line (218) downstream from a compressed oxidant supply (104), and the anode exhaust recycle turbocharger (100) also includes a turbocharger compressor (106) mechanically linked to the turbocharger turbine (102) and secured in fluid communication with a flow of anode exhaust passing through an anode exhaust recycle loop (238) of the solid oxide fuel cell power plant (200). All or a portion of compressed oxidant within an oxidant inlet line (218) drives the turbocharger turbine (102) to thereby compress the anode exhaust stream in the recycle loop (238). A high-temperature, automotive-type turbocharger (100) replaces a recycle loop blower-compressor (52).

  17. Solid oxide fuel cell power plant with an anode recycle loop turbocharger

    Science.gov (United States)

    Saito, Kazuo; Skiba, Tommy; Patel, Kirtikumar H.

    2015-07-14

    An anode exhaust recycle turbocharger (100) has a turbocharger turbine (102) secured in fluid communication with a compressed oxidant stream within an oxidant inlet line (218) downstream from a compressed oxidant supply (104), and the anode exhaust recycle turbocharger (100) also includes a turbocharger compressor (106) mechanically linked to the turbocharger turbine (102) and secured in fluid communication with a flow of anode exhaust passing through an anode exhaust recycle loop (238) of the solid oxide fuel cell power plant (200). All or a portion of compressed oxidant within an oxidant inlet line (218) drives the turbocharger turbine (102) to thereby compress the anode exhaust stream in the recycle loop (238). A high-temperature, automotive-type turbocharger (100) replaces a recycle loop blower-compressor (52).

  18. Model-based Interpretation of the Performance and Degradation of Reformate Fueled Solid Oxide Fuel Cells

    OpenAIRE

    Kromp, Alexander

    2013-01-01

    Solid oxide fuel cells offer great prospects for the sustainable, clean and safe conversion of various fuels into electrical energy. In this thesis, the performance-determining loss processes for the cell operation on reformate fuels are elucidated via electrochemical impedance spectroscopy. Model-based analyses reveal the electrochemical fuel oxidation mechanism, the coupling of fuel gas transport and reforming chemistry and the impact of fuel impurities on the degradation of each loss process.

  19. A Review on Decomposition Deflagration of Oxidizer and Binders in Composite Solid Propellants

    Directory of Open Access Journals (Sweden)

    K. Kishore

    1979-01-01

    Full Text Available Binder and oxidizer decomposition play very significant role during the combustion of composite solid propellants. Ammonium perchlorate (AP is the practical oxidizer in composite propellant formulations. Available information on binder decomposition in general and AP decomposition in particular have been collected and reviewed from the viewpoint of their application in propellants. This review may be useful in understanding the mechanism of propellant combustion.

  20. Ferritic Steel Interconnectors and Their Interactions with Ni Base Anodes in Solid Oxide Fuel Cells (SOFC)

    OpenAIRE

    Froitzheim, J.

    2008-01-01

    In recent years high Cr ferritic steels such as Crofer 22 APU became the most widespread construction materials for solid oxide fuel cell (SOFC) interconnects mainly due to low cost and the ease of fabrication compared to ceramic materials. It was shown that optimum properties with respect to oxide scale growth and adherence could only be obtained by very low, carefully controlled concentrations of minor alloying additions such as Al and Si. This required sophisticated alloy manufacturing met...

  1. Inhibition of plasmonically enhanced interdot energy transfer in quantum dot solids via photo-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, S. M. [Department of Physics, University of Alabama in Huntsville, Huntsville, Alabama 35899 (United States); Nano and Micro Device Center, University of Alabama in Huntsville, Huntsville, Alabama 35899 (United States); Nejat, A.; West, R. G. [Department of Physics, University of Alabama in Huntsville, Huntsville, Alabama 35899 (United States)

    2012-11-15

    We studied the impact of photophysical and photochemical processes on the interdot Forster energy transfer in monodisperse CdSe/ZnS quantum dot solids. For this, we investigated emission spectra of CdSe/ZnS quantum dot solids in the vicinity of gold metallic nanoparticles coated with chromium oxide. The metallic nanoparticles were used to enhance the rate of the energy transfer between the quantum dots, while the chromium oxide coating led to significant increase of their photo-oxidation rates. Our results showed that irradiation of such solids with a laser beam can lead to unique spectral changes, including narrowing and blue shift. We investigate these effects in terms of inhibition of the plasmonically enhanced interdot energy transfer between quantum dots via the chromium-oxide accelerated photo-oxidation process. We demonstrate this considering energy-dependent rate of the interdot energy transfer process, plasmonic effects, and the way photo-oxidation enhances non-radiative decay rates of quantum dots with different sizes.

  2. Inhibition of plasmonically enhanced interdot energy transfer in quantum dot solids via photo-oxidation

    International Nuclear Information System (INIS)

    We studied the impact of photophysical and photochemical processes on the interdot Forster energy transfer in monodisperse CdSe/ZnS quantum dot solids. For this, we investigated emission spectra of CdSe/ZnS quantum dot solids in the vicinity of gold metallic nanoparticles coated with chromium oxide. The metallic nanoparticles were used to enhance the rate of the energy transfer between the quantum dots, while the chromium oxide coating led to significant increase of their photo-oxidation rates. Our results showed that irradiation of such solids with a laser beam can lead to unique spectral changes, including narrowing and blue shift. We investigate these effects in terms of inhibition of the plasmonically enhanced interdot energy transfer between quantum dots via the chromium-oxide accelerated photo-oxidation process. We demonstrate this considering energy-dependent rate of the interdot energy transfer process, plasmonic effects, and the way photo-oxidation enhances non-radiative decay rates of quantum dots with different sizes.

  3. Using CrAlN multilayer coatings to improve oxidation resistance of steel interconnects for solid oxide fuel cell stacks

    Science.gov (United States)

    Smith, R. J.; Tripp, C.; Knospe, A.; Ramana, C. V.; Kayani, A.; Gorokhovsky, Vladimir; Shutthanandan, V.; Gelles, D. S.

    2004-06-01

    The requirements of low-cost and high-temperature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. The performance of steel plates with multilayer coatings, consisting of CrN for electrical conductivity and CrAlN for oxidation resistance, was investigated. The coatings were deposited using large area filtered arc deposition technology, and subsequently annealed in air for up to 25 hours at 800 °C. The composition, structure, and morphology of the coated plates were characterized using Rutherford backscattering, nuclear reaction analysis, atomic force microscopy, and transmission electron microscopy techniques. By altering the architecture of the layers within the coatings, the rate of oxidation was reduced by more than an order of magnitude. Electrical resistance was measured at room temperature.

  4. The effect of surface treatment on the oxidation of ferritic stainless steels used for solid oxide fuel cell interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, L.; Ivey, D.G. [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta (Canada); Benhaddad, S.; Wood, A. [Versa Power Systems, Calgary, Alberta (Canada)

    2008-09-15

    Ferritic stainless steels are candidate interconnect materials for solid oxide fuel cells (SOFC); however, the oxidation resistance of commercial stainless steels within the operating temperature range of 700-800 C is not adequate. A relatively thick, poorly conducting oxide layer forms on the surface of the stainless steel interconnect, decreasing cell performance. One way of modifying the oxidation behaviour of an alloy is through surface treatment. The aim of this work is to perform a systematic study of the effect of surface treatment (sandblasting and cold rolling) on the oxidation behaviour of three different ferritic stainless steels at 800 C in air. Oxidized specimens are characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). In addition, specimens oxidized under the same conditions for 15 min are examined using secondary ion mass spectrometry (SIMS) depth profiling and X-ray photoelectron spectroscopy (XPS) depth profiling. For all three steels, the as-is (undeformed) specimens have a lower mass gain than the deformed specimens. The steel with the highest Cr content has significantly higher mass gains than the other two steels, which have similar mass gains. X-ray diffraction and electron microscopy results indicate that the oxide scale formed on all the specimens consists of an inner layer of chromia and an outer spinel layer. The relative amounts of the two oxide phases present depends on both the steel and treatment condition. The presence of insulating oxides at the metal/oxide interface is detected with both surface science techniques and electron microscopy. (author)

  5. Electrode Kinetics and Gas Conversion in Solid Oxide Cells

    OpenAIRE

    Njodzefon, Jean-Claude; Hjelm, Johan; Graves, Christopher R.; Weber, André

    2015-01-01

    Fastoxid brændselsceller (SOFC) omdanner brint, kulmonoxid og kulbrinteholdige brændstoffer (direkte) til elektricitet med meget høje virkningsgrader og har demonstreret næsten tilsvarende resultater, når de drives i omvendt tilstand, som en fast oxid elektrolysecelle (SOEC). I dette tilfælde lagres elektrisk (og termiske) energi som kemisk energi i reaktionsprodukterne. Til dette formål tilsættes cellerne med damp (H2O elektrolyse), kuldioxid (CO2 elektrolyse) eller en blanding af begge dele...

  6. Interaction mechanisms between slurry coatings and solid oxide fuel cell interconnect alloys during high temperature oxidation

    DEFF Research Database (Denmark)

    Persson, Åsa Helen; Mikkelsen, L.; Hendriksen, P.V.;

    2012-01-01

    Six different coatings consisting of fluorite-, corundum-, spinel- or perovskite-type oxides were deposited on a Fe22Cr alloy (Crofer 22APU) and oxidized at 900°C in moisturized air.Five of the coatings prevented break-away oxidation otherwise observed for the uncoated alloy, and the parabolic...

  7. Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells

    OpenAIRE

    Yang, Lei; Choi, YongMan; Qin, Wentao; Chen, Haiyan; Blinn, Kevin; Liu, Mingfei; Liu, Ping; Bai, Jianming; Trevor A. Tyson; Liu, Meilin

    2011-01-01

    The existing Ni-yttria-stabilized zirconia anodes in solid oxide fuel cells (SOFCs) perform poorly in carbon-containing fuels because of coking and deactivation at desired operating temperatures. Here we report a new anode with nanostructured barium oxide/nickel (BaO/Ni) interfaces for low-cost SOFCs, demonstrating high power density and stability in C3H8, CO and gasified carbon fuels at 750°C. Synchrotron-based X-ray analyses and microscopy reveal that nanosized BaO islands grow on the Ni su...

  8. Efficient reversible electrodes for solid oxide electrolyzer cells

    Energy Technology Data Exchange (ETDEWEB)

    Elangovan, S.; Hartvigsen, Joseph J.; Zhao, Feng

    2013-01-15

    An electrolyzer cell is disclosed which includes a cathode to reduce an oxygen-containing molecule, such as H2O, CO.sub.2, or a combination thereof, to produce an oxygen ion and a fuel molecule, such as H.sub.2, CO, or a combination thereof. An electrolyte is coupled to the cathode to transport the oxygen ion to an anode. The anode is coupled to the electrolyte to receive the oxygen ion and produce oxygen gas therewith. In one embodiment, the anode may be fabricated to include an electron-conducting phase having a perovskite crystalline structure or structure similar thereto. This perovskite may have a chemical formula of substantially (Pr(.sub.1-x)La.sub.x)(z-y)A'.sub.yBO(3-.differential.), wherein 0oxide intermixed with magnesium oxide.

  9. Efficient reversible electrodes for solid oxide electrolyzer cells

    Science.gov (United States)

    Elangovan, Singaravelu; Hartvigsen, Joseph J.

    2011-07-12

    An electrolyzer cell is disclosed which includes a cathode to reduce an oxygen-containing molecule, such as H2O, CO2, or a combination thereof, to produce an oxygen ion and a fuel molecule, such as H2, CO, or a combination thereof. An electrolyte is coupled to the cathode to transport the oxygen ion to an anode. The anode is coupled to the electrolyte to receive the oxygen ion and produce oxygen gas therewith. In one embodiment, the anode may be fabricated to include an electron-conducting phase having a perovskite crystalline structure or structure similar thereto. This perovskite may have a chemical formula of substantially (Pr(1-x)Lax)(z-y)A'yBO(3-.differential.), wherein 0.ltoreq.x.ltoreq.0.5, 0.ltoreq.y.ltoreq.0.5, and 0.8.ltoreq.z.ltoreq.1.1. In another embodiment, the cathode includes an electron-conducting phase that contains nickel oxide intermixed with magnesium oxide.

  10. Development of an advanced bond coat for solid oxide fuel cell interconnector applications

    Science.gov (United States)

    Yeh, An-Chou; Chen, Yu-Ming; Liu, Chien-Kuo; Shong, Wei-Ja

    2015-11-01

    An advanced bond coat has been developed for solid oxide fuel cell interconnector applications; a low thermal expansion superalloy has been selected as the substrate, and the newly developed bond coat is applied between the substrate and the LSM top coat. The bond coat composition is designed to be near thermodynamic equilibrium with the substrate to minimize interdiffusion with the substrate while providing oxidation protection for the substrate. The bond coat exhibits good oxidation resistance, a low area specific resistance, and a low thermal expansion coefficient at 800 °C; experimental results indicate that interdiffusion between the bond coat and the substrate can be hindered.

  11. Identification of chromium oxides and other solids in BWR reactor water

    International Nuclear Information System (INIS)

    Radioactive solid particles in reactor water may deposit as hot spots on reactor component surfaces, contributing to plant radiation field build-up. Phase identification of these solid particles would improve our understanding about the origins of the 'hot spots' and their behaviour under various water chemistry conditions. Phase identification is also important for the purpose of experimental verification of some thermodynamic calculations that predict thermodynamic stability of certain solid phases in BWR water environments. This paper concerns a transmission electron microscopy study on solid particles that were collected from two Swedish BWRs operated with hydrogen water chemistry. In the samples collected from both reactors, a significant fraction of the total activities came from radionuclide Cr-51. Among various solid particles detected, a significant number of chromium oxide particles were found. From one reactor amorphous chromium oxide particles were detected while from another reactor crystalline Cr2O3 was found. The presence of the metastable amorphous chromium oxide in the coolant suggests that any assumption of achieving thermodynamic equilibrium in the coolant system would not be valid. (author)

  12. Fracture toughness of glass sealants for solid oxide fuel cell application

    DEFF Research Database (Denmark)

    Abdoli, Hamid; Alizadeh, Parvin; Boccaccini, Dino;

    2014-01-01

    Glass and glass-ceramics are versatile materials and have been widely used for sealing in the ongoing development of intermediate temperature solid oxide fuel cell (SOFC) technology where its integrity is crucial for reliable operation of the stack. The fracture toughness is a key parameter...

  13. Ni-YSZ solid oxide fuel cell anode behavior upon redox cycling based on electrical characterization

    DEFF Research Database (Denmark)

    Klemensø, Trine; Mogensen, Mogens Bjerg

    2007-01-01

    Nickel (Ni)—yttria-stabilized zirconia (YSZ) cermets are a prevalent material used for solid oxide fuel cells. The cermet degrades upon redox cycling. The degradation is related to microstructural changes, but knowledge of the mechanisms has been limited. Direct current conductivity measurements...

  14. Solid oxide fuel cell systems with hot zones having improved reactant distribution

    Energy Technology Data Exchange (ETDEWEB)

    Poshusta, Joseph C.; Booten, Charles W.; Martin, Jerry L.

    2016-05-17

    A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

  15. Creep behaviour of porous metal supports for solid oxide fuel cells

    DEFF Research Database (Denmark)

    Boccaccini, Dino; Frandsen, Henrik Lund; Sudireddy, Bhaskar Reddy;

    2014-01-01

    The creep behaviour of porous ironechromium alloy used as solid oxide fuel cell support was investigated, and the creep parameters are compared with those of dense strips of similar composition under different testing conditions. The creep parameters were determined using a thermo-mechanical anal...

  16. Magnetron sputtered gadolinia-doped ceria diffusion barriers for metal-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Sønderby, Steffen; Klemensø, Trine; Christensen, Bjarke H.;

    2014-01-01

    Gadolinia-doped ceria (GDC) thin films are deposited by reactive magnetron sputtering in an industrial-scale setup and implemented as barrier layers between the cathode and electrolyte in metal-based solid oxide fuel cells consisting of a metal support, an electrolyte of ZrO2 co-doped with Sc2O3...

  17. Plant Characteristics of an Integrated Solid Oxide Fuel Cell Cycle and a Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2010-01-01

    Plant characteristics of a system containing a solid oxide fuel cell (SOFC) cycle on the top of a Rankine cycle were investigated. Natural gas (NG) was used as the fuel for the plant. A desulfurization reactor removes the sulfur content in the fuel, while a pre-reformer broke down the heavier hyd...

  18. Thermodynamic Analysis of an Integrated Solid Oxide Fuel Cell Cycle with a Rankine Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2010-01-01

    Hybrid systems consisting of Solid Oxide Fuel Cells (SOFC) on the top of a Steam Turbine (ST) are investigated. The plants are fired by natural gas (NG). A desulfurization reactor removes the sulfur content in the fuel while a pre-reformer breaks down the heavier hydrocarbons. The pre-treated fue...

  19. Nickel/Yttria-stabilised zirconia cermet anodes for solid oxide fuel cells

    NARCIS (Netherlands)

    Primdahl, Søren

    1999-01-01

    This thesis deals with the porous Ni/yttria-stabilized zirconia (YSZ) cermet anode on a YSZ electrolyte for solid oxide fuel cells (SOFC). Such anodes are predominantly operated in moist hydrogen at 700°C to 1000°C, and the most important technological parameters are the polarization resistance and

  20. Advanced Test Method of Solid Oxide Cells in a Plug-Flow Setup

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Hauch, Anne; Hendriksen, Peter Vang;

    2009-01-01

    This paper describes a case study of two electrolysis tests of solid oxide cells [Ni/yttria-stabilized zirconia (YSZ)-YSZ-lanthanum strontium manganite (LSM)/YSZ] tested in a plug-flow setup. An extensively instrumented cell test setup was used, and the tests involved measurements of the cell...

  1. Microstructural Degradation of Ni/YSZ Electrodes in Solid Oxide Electrolysis Cells under High Current

    DEFF Research Database (Denmark)

    Chen, Ming; Liu, Yi-Lin; Bentzen, Janet Jonna;

    2013-01-01

    Ni/yttria stabilized zirconia (YSZ) supported solid oxide electrolysis cells (SOECs) were exposed to long-term galvanostatic electrolysis tests, under different testing conditions (temperature, gas composition, current density etc.) with an emphasis on high current density (above −1 A/cm2...

  2. Physical Properties of Mixed Conductor Solid Oxide Fuel Cell Anodes of Doped CeO2

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Lindegaard, Thomas; Hansen, Uffe Rud;

    1994-01-01

    conductivity vs. oxygen partial pressure. For both typesof conductivity a dependence on dopant valency was observed. The electronic conductivity was independent of dopantradius in contrast to the ionic which was highly dependent. These measured physical properties are compared with the idealrequirements...... for solid oxide fuel cell anodes. Not all requirements are fulfilled. Measures to compensate for this arediscussed....

  3. The study of flow and proton exchange interactions in the cylindrical solid oxide fuel cell

    CERN Document Server

    Saievar-Iranizad, E

    2002-01-01

    The solid oxide fuel cell operates at high temperature of about 1000 deg C. In this temperature, some known materials such as Ni, ... which is abundant in the nature, can be used as a catalyst in the electrodes. The electrolytes of such cell solid oxide fuel cell can be made through non-porous solid ceramics such as Zircon's (ZrO sub 2). It can be stabilized using a doped Yttrium oxide. The importance of Yttria-stabilised Zirconia at high temperature belongs to the transport of oxygen ions through the electrolyte. Oxygen using in the hot cathode side causes a considerable reduction in the concentration of oxygen molecules. The oxygen ions exchange through the electrolyte relates to the molecular oxygen concentration gradient between the anode and cathode. Applying fuels such as hydrogen or natural gas in the anode and its chemical reaction with oxygen ions transfer from cathode through the electrolyte, produce electricity, water and heat. To study the ion exchange and its interaction into solid oxide fuel cel...

  4. Thermodynamic Performance Study of Biomass Gasification, Solid Oxide Fuel Cell and Micro Gas Turbine Hybrid Systems

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud

    2010-01-01

    A system level modelling study of three combined heat and power systems based on biomass gasification is presented. Product gas is converted in a micro gas turbine (MGT) in the first system, in a solid oxide fuel cell (SOFC) in the second system and in a combined SOFC–MGT arrangement in the third...

  5. Ab initio Defect Energetics in LaBO3 Perovskite Solid Oxide Fuel Cell Materials

    DEFF Research Database (Denmark)

    Lee, Yueh-Lin; Morgan, Dane; Kleis, Jesper;

    2009-01-01

    Perovskite materials of the form ABO3 are a promising family of compounds for use in solid oxide fuel cell (SOFC) cathodes. Study of the physics of these compounds under SOFC conditions with ab initio methods is particularly challenging due to high temperatures, exchange of oxygen with O2 gas, and...

  6. Aerobic Oxidation of 5-(Hydroxymethyl)furfural in Ionic Liquids with Solid Ruthenium Hydroxide Catalysts

    DEFF Research Database (Denmark)

    Ståhlberg, Tim Johannes Bjarki; Eyjolfsdottir, Ester; Gorbanev, Yury;

    2012-01-01

    The aerobic oxidation of 5-(hydroxymethyl)furfural was investigated over solid ruthenium hydroxide catalysts in ionic liquids at elevated temperatures and pressures. Several different catalyst supports were tested in combination with various ionic liquids. The best result was obtained in [EMIm...

  7. A detailed approach to model transport, heterogeneous chemistry, and electrochemistry in solid-oxide fuel cells

    OpenAIRE

    Janardhanan, Vinod

    2007-01-01

    This book lays out a numerical framework for the detailed description of heterogeneous chemistry, electrochemistry and porous media transport in solid-oxide fuel cells (SOFC). Assuming hydrogen as the only electrochemically active species, a modified Butler-Volmer equation is used to model the electrochemical charge transfer.

  8. Ni modified ceramic anodes for direct-methane solid oxide fuel cells

    Science.gov (United States)

    Xiao, Guoliang; Chen, Fanglin

    2016-01-19

    In accordance with certain embodiments of the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes synthesizing a composition having a perovskite present therein. The method further includes applying the composition on an electrolyte support to form an anode and applying Ni to the composition on the anode.

  9. Theory of the electronic and structural properties of solid state oxides

    Energy Technology Data Exchange (ETDEWEB)

    Chelikowsky, J.R.

    1990-01-01

    Studies on electronic and structural properties of solid state oxides continued. This quarter, studies have concentrated on silica. Progress is discussed in the following sections: interatomic potentials and the structural properties of silica; chemical reactivity and covalent/metallic bonding on Si clusters; and surface and thermodynamic interatomic forces fields for silicon. 64 refs., 20 figs., 5 tabs. (CBS)

  10. Thermodynamic analysis of SOFC (solid oxide fuel cell) - Stirling hybrid plants using alternative fuels

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2013-01-01

    A novel hybrid power system (∼10 kW) for an average family home is proposed. The system investigated contains a solid oxide fuel cell (SOFC) on top of a Stirling engine. The off-gases produced in the SOFC cycle are fed to a bottoming Stirling engine, at which additional power is generated. Simula...

  11. Prediction of solid oxide fuel cell cathode activity with first-principles descriptors

    DEFF Research Database (Denmark)

    Lee, Yueh-Lin; Kleis, Jesper; Rossmeisl, Jan;

    2011-01-01

    In this work we demonstrate that the experimentally measured area specific resistance and oxygen surface exchange of solid oxide fuel cell cathode perovskites are strongly correlated with the first-principles calculated oxygen p-band center and vacancy formation energy. These quantities...

  12. Design and Optimization of an Integrated Biomass Gasification and Solid Oxide Fuel Cell System

    DEFF Research Database (Denmark)

    Bang-Møller, Christian

    . The work deals with the coupling of thermal biomass gasification and solid oxide fuel cells (SOFCs), and specific focus is kept on exploring the potential performance of hybrid CHP systems based on the novel two-stage gasification concept and SOFCs. The two-stage gasification concept is developed...

  13. Durability of Solid Oxide Electrolysis Cell and Interconnects for Steam Electrolysis

    DEFF Research Database (Denmark)

    Sun, Xiufu; Chen, Ming; Liu, Yi-Lin;

    2013-01-01

    Durability of a solid oxide electrolysis cell tested at -1.5A / cm2 for high temperature steam electrolysis was investigated in the present work under stack relevant conditions. Detailed electrochemical and microstructural analyses were carried out. The results show that both the hydrogen...

  14. Degradation of Solid Oxide Electrolysis Cells Operated at High Current Densities

    DEFF Research Database (Denmark)

    Tao, Youkun; Ebbesen, Sune Dalgaard; Mogensen, Mogens Bjerg

    2014-01-01

    In this work the durability of solid oxide cells for co-electrolysis of steam and carbon dioxide (45 % H2O + 45 % CO2 + 10 % H2) at high current densities was investigated. The tested cells are Ni-YSZ electrode supported, with a YSZ electrolyte and either a LSM-YSZ or LSCF-CGO oxygen electrode...

  15. Recovery Act. Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, Gail E. [Delphi Automotive Systems, LLC., Gillingham (United Kingdom)

    2013-09-30

    Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration Project. Summarizing development of Delphi’s next generation SOFC system as the core power plant to prove the viability of the market opportunity for a 3-5 kW diesel SOFC system. Report includes test and demonstration results from testing the diesel APU in a high visibility fleet customer vehicle application.

  16. Manufacturing and characterization of metal-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Hjelm, Johan; Klemensø, Trine;

    2011-01-01

    A metal-supported solid oxide fuel cell design offers competitive advantages, for example reduced material costs and improved robustness. This paper reports the performance and stability of a recently developed metal-supported cell design, based on a novel cermet anode, on a 25cm2 (1cm2/16cm2...

  17. The effect of solids residence time on phosphorus adsorption to hydrous ferric oxide floc.

    Science.gov (United States)

    Conidi, Daniela; Parker, Wayne J

    2015-11-01

    The impact of solids residence time (SRT) on phosphate adsorption to hydrous ferric oxide (HFO) floc when striving for ultra-low P concentrations was characterized and an equilibrium model that describes the adsorption of P onto HFO floc of different ages was developed. The results showed that fresh HFO had a higher adsorption capacity in comparison to aged (2.8, 7.4, 10.8 and 22.8 days) HFO and contributed substantially to P removal at steady state. P adsorption onto HFO solids was determined to be best described by the Freundlich isotherm. P desorption from HFO solids was negligible supporting the hypothesis that chemisorption is the mechanism of P adsorption on HFO solids. A model that included the contribution of different classes of HFO solids (i.e. High, Low or Old, containing high concentration, low concentration or no active surface sites, respectively) to adsorption onto HFO from a sequencing batch reactor (SBR) system was found to adequately describe P adsorption onto HFO solids of different ages. From the model it was determined that the fractions of High and Low HFO decreased with SRT while the fraction of Old HFO increased with SRT. The transformation of High HFO to Low HFO did not limit the overall production of Old HFO and the fresh HFO solids contributed more to P removal at steady state than the aged solids.

  18. Numerical evaluation of oxide growth in metallic support microstructures of Solid Oxide Fuel Cells and its influence on mass transport

    DEFF Research Database (Denmark)

    Reiss, Georg; Frandsen, Henrik Lund; Persson, Åsa Helen;

    2015-01-01

    Metal-supported Solid Oxide Fuel Cells (SOFCs) are developed as a durable and cost-effective alternative to the state-of-the-art cermet SOFCs. This novel technology offers new opportunities but also new challenges. One of them is corrosion of the metallic support, which will decrease the long....... In addition to that an analytical frame-work is proposed, which is capable of estimating the porosity, tortuosity and the corresponding ASR based on weight gain measurements....

  19. Glass-based seal for solid oxide fuel cells could help bring this efficient energy technology to market

    OpenAIRE

    Trulove, Susan

    2009-01-01

    Solid oxide fuel cells (SOFCs) have great potential for stationary and mobile applications. Stationary use ranges from residential applications to power plants. Mobile applications include power for ships at sea and in space, as well as for autos. In addition to electricity, when SOFCs are operated in reverse mode as solid oxide electrolyzer cells, pure hydrogen can be generated by splitting water.

  20. Fracture toughness of solid oxide fuel cell anode substrates determined by a double-torsion technique

    Science.gov (United States)

    Pećanac, G.; Wei, J.; Malzbender, J.

    2016-09-01

    Planar solid oxide fuel cell anode substrates are exposed to high mechanical loads during assembly, start-up, steady-state operation and thermal cycling. Hence, characterization of mechanical stability of anode substrates under different oxidation states and at relevant temperatures is essential to warrant a reliable operation of solid oxide fuel cells. As a basis for mechanical assessment of brittle supports, two most common anode substrate material variants, NiO-3YSZ and NiO-8YSZ, were analyzed in this study with respect to their fracture toughness at room temperature and at a typical stack operation temperature of 800 °C. The study considered both, oxidized and reduced materials' states, where also an outlook is given on the behavior of the re-oxidized state that might be induced by malfunctions of sealants or other functional components. Aiming at the improvement of material's production, different types of warm pressed and tape cast NiO-8YSZ substrates were characterized in oxidized and reduced states. Overall, the results confirmed superior fracture toughness of 3YSZ compared to 8YSZ based composites in the oxidized state, whereas in the reduced state 3YSZ based composites showed similar fracture toughness at room temperature, but a higher value at 800 °C compared to 8YSZ based composites. Complementary microstructural analysis aided the interpretation of mechanical characterization.

  1. Microstructure Sensitive Design and Processing in Solid Oxide Electrolyzer Cell

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Hamid Garmestani; Dr. Stephen Herring

    2009-06-12

    The aim of this study was to develop and inexpensive manufacturing process for deposition of functionally graded thin films of LSM oxides with porosity graded microstructures for use as IT-SOFCs cathode. The spray pyrolysis method was chosen as a low-temperature processing technique for deposition of porous LSM films onto dense YXZ substrates. The effort was directed toward the optimization of the processing conditions for deposition of high quality LSM films with variety of morphologies in the range of dense to porous microstructures. Results of optimization studies of spray parameters revealed that the substrate surface temperature is the most critical parameter influencing the roughness and morphology, porosity, cracking and crystallinity of the film.

  2. CHALLENGES IN GENERATING HYDROGEN BY HIGH TEMPERATURE ELECTROLYSIS USING SOLID OXIDE CELLS

    Energy Technology Data Exchange (ETDEWEB)

    M. S. Sohal; J. E. O' Brien; C. M. Stoots; M. G. McKellar; J. S. Herring; E. A. Harvego

    2008-03-01

    Idaho National Laboratory’s (INL) high temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells is presented in this paper. The research results reported here have been obtained in a laboratory-scale apparatus. These results and common scale-up issues also indicate that for the technology to be successful in a large industrial setting, several technical, economical, and manufacturing issues have to be resolved. Some of the issues related to solid oxide cells are stack design and performance optimization, identification and evaluation of cell performance degradation parameters and processes, integrity and reliability of the solid oxide electrolysis (SOEC) stacks, life-time prediction and extension of the SOEC stack, and cost reduction and economic manufacturing of the SOEC stacks. Besides the solid oxide cells, balance of the hydrogen generating plant also needs significant development. These issues are process and ohmic heat source needed for maintaining the reaction temperature (~830°C), high temperature heat exchangers and recuperators, equal distribution of the reactants into each cell, system analysis of hydrogen and associated energy generating plant, and cost optimization. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.23/kg of hydrogen assuming an internal rate of return of 10%. These issues need interdisciplinary research effort of federal laboratories, solid oxide cell manufacturers, hydrogen consumers, and other such stakeholders. This paper discusses research and development accomplished by INL on such issues and highlights associated challenges that need to

  3. Innovative Seals for Solid Oxide Fuel Cells (SOFC)

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Raj

    2008-06-30

    A functioning SOFC requires different type of seals such as metal-metal, metal-ceramic, and ceramic-ceramic. These seals must function at high temperatures between 600--900{sup o}C and in oxidizing and reducing environments of the fuels and air. Among the different type of seals, the metal-metal seals can be readily fabricated using metal joining, soldering, and brazing techniques. However, the metal-ceramic and ceramic-ceramic seals require significant research and development because the brittle nature of ceramics/glasses can lead to fracture and loss of seal integrity and functionality. Consequently, any seals involving ceramics/glasses require a significant attention and technology development for reliable SOFC operation. This final report is prepared to describe the progress made in the program on the needs, approaches, and performance of high temperature seals for SOFC. In particular, a new concept of self-healing glass seals is pursued for making seals between metal-ceramic material combinations, including some with a significant expansion mismatch.

  4. Structural, morphological, and electrical properties of doped ceria as a solid electrolyte for intermediate-temperature solid oxide fuel cells

    KAUST Repository

    Stojmenović, M.

    2015-03-11

    The solid solutions of CeO2 with one or more rare-earth oxides among Yb2O3, Sm2O3, and Gd2O3 are synthesized by either modified glycine nitrate procedure (MGNP) or self-propagating reaction at room temperature (SPRT). The overall mole fraction of rare-earth oxide dopants was x = 0.2. The characterization was committed by XRPD, TEM, BET, and Raman Spectroscopy methods. According to XRPD and Raman spectroscopy, the obtained products presented the single-phase solid solutions with basic fluorite-type CeO2 structure, regardless on the number and the concentration of dopants. Both XRPD and TEM analysis evidenced the nanometer particle dimensions. The defect model was applied to calculate lattice parameters of single-, co-, and multi-doped solids. The sintering of the sample nanopowders was performed at 1550 °C, in air atmosphere. The sintered samples were characterized by XRPD, SEM, and complex impedance methods. The sintering did not affect the concentration ratios of the constituents. The highest conductivity at 700 °C amounting to 2.14 × 10−2 and 1.92 × 10−2 Ω−1 cm−1 was measured for the sample Ce0.8Sm0.08Gd0.12O2−δ, synthesized by SPRT and MGNP methods, respectively. The corresponding activation energies of conductivity, measured in the temperature range 500–700 °C, amounted to 0.24 and 0.23 eV.

  5. An Aurivillius Oxide Based Cathode with Excellent CO2 Tolerance for Intermediate-Temperature Solid Oxide Fuel Cells.

    Science.gov (United States)

    Zhu, Yinlong; Zhou, Wei; Chen, Yubo; Shao, Zongping

    2016-07-25

    The Aurivillius oxide Bi2 Sr2 Nb2 MnO12-δ (BSNM) was used as a cobalt-free cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). To the best of our knowledge, the BSNM oxide is the only alkaline-earth-containing cathode material with complete CO2 tolerance that has been reported thus far. BSNM not only shows favorable activity in the oxygen reduction reaction (ORR) at intermediate temperatures but also exhibits a low thermal expansion coefficient, excellent structural stability, and good chemical compatibility with the electrolyte. These features highlight the potential of the new BSNM material as a highly promising cathode material for IT-SOFCs.

  6. An Aurivillius Oxide Based Cathode with Excellent CO2 Tolerance for Intermediate-Temperature Solid Oxide Fuel Cells.

    Science.gov (United States)

    Zhu, Yinlong; Zhou, Wei; Chen, Yubo; Shao, Zongping

    2016-07-25

    The Aurivillius oxide Bi2 Sr2 Nb2 MnO12-δ (BSNM) was used as a cobalt-free cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). To the best of our knowledge, the BSNM oxide is the only alkaline-earth-containing cathode material with complete CO2 tolerance that has been reported thus far. BSNM not only shows favorable activity in the oxygen reduction reaction (ORR) at intermediate temperatures but also exhibits a low thermal expansion coefficient, excellent structural stability, and good chemical compatibility with the electrolyte. These features highlight the potential of the new BSNM material as a highly promising cathode material for IT-SOFCs. PMID:27294808

  7. Tribological properties of solid lubricating film/microarc oxidation coating on Al alloys

    Institute of Scientific and Technical Information of China (English)

    LUO Zhuang-zi; ZHANG Zhao-zhu; LIU Wei-min; TIAN Jun

    2005-01-01

    A process for preparation of solid lubricating films on micro-arc oxidation(MAO) coating was introduced to provide self-lubricating and wear-resistant multilayer coatings for aluminum alloys. The friction and wear behavior of various burnished and bonded solid lubricating films on the as-deposited and polished micro-arc oxidation coatings sliding against steel and ceramic counterparts was evaluated with a Timken tester and a reciprocating friction and wear tester, respectively. The burnished and bonded solid lubricating films on the polished micro-arc oxidation coatings are superior to the as-deposited ones in terms of the wear resistant behavior, because they lead to strengthened interfacial adhesion between the soft lubricating top-film and the hard polished MAO sub-coating, which helps increase the wear resistance of the solid lubricating film on multilayer coating. Thus the multilayer coatings are potential candidates as self-lubricating and wear-resistant coatings for Al alloy parts in engineering applications.

  8. Chemical compatibility, redox behavior, and electrochemical performance of Nd1−xSrxCoO3−δ cathodes based on Ce1.9Gd0.1O1.95 for intermediate-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Highlights: ► Nd1−xSrxCoO3−δ (x = 0.3, 0.4, 0.5, 0.6, and 0.7) are synthesized by glycine nitrate method and investigated the effect of Sr substitution for Nd. ► Electrical properties of the samples are identified by a four-terminal DC arrangement in air. ► Symmetrical half cells are measured by impedance spectroscopy at 500, 550, 600, 650, and 700 °C in air under an open-circuit condition. ► Electrochemical performances of Nd1−xSrxCoO3−δ cathodes are investigated using an anode supported cell based on GDC electrolyte for application to IT-SOFCs. - Abstract: The effect of Sr substitution for Nd on Nd1−xSrxCoO3−δ (NSC) (x = 0.3, 0.4, 0.5, 0.6, and 0.7) is investigated to evaluate NSC as a cathode material based on Gd0.1Ce0.9O1.95 (GDC) electrolyte for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The NSC powders are prepared by the glycine nitrate method. At a given temperature, the electrical conductivity increases with increasing Sr content up to x = 0.5 and then decreases for x > 0.5. The redox behavior of NSC (x = 0.3, 0.5, and 0.7) cathodes is studied by the coulometric titration at 700 °C. In order to investigate the area specific resistances of NSC–GDC cathodes, symmetrical half cells (cathode/electrolyte/cathode) are measured using impedance spectroscopy at various temperatures in air under open circuit voltage (OCV) condition. The electrochemical performance of NSC–GDC cathodes is measured using an NSC–GDC/GDC/Ni-GDC anode supported cell. The maximum power density of NSC–GDC cathodes increases with increasing strontium content up to x = 0.5 and then decreases at 700 °C. In terms of electrical conductivity and electrochemical performance, Nd1−xSrxCoO3−δ (x = 0.5) is more suitable as a cathode material based on GDC electrolyte in IT-SOFC applications.

  9. Immobilization of Radioactive Rare Earth oxide Waste by Solid Phase Sintering

    International Nuclear Information System (INIS)

    In the pyroprocessing of spent nuclear fuels, LiCl-KCl waste salt containing radioactive rare earth chlorides are generated. The radioactive rare earth oxides are recovered by co-oxidative precipitation of rare earth elements. The powder phase of rare earth oxide waste must be immobilized to produce a monolithic wasteform suitable for storage and ultimate disposal. The immobilization of these waste developed in this study involves a solid state sintering of the waste with host borosilicate glass and zinc titanate based ceramic matrix (ZIT). And the rare-earth monazite which synthesised by reaction of ammonium di-hydrogen phosphate with the rare earth oxides waste, were immobilized with the borosilicate glass. It is shown that the developed ZIT ceramic wasteform is highly resistant the leaching process, high density and thermal conductivity.

  10. Evaluation of nickel-titanium oxide-niobium pentoxide metal ceramic composite as interconnect for solid oxide fuel cell

    Science.gov (United States)

    Budur, Abhijith

    With increasing importance for clean energy, fuel cells have gained great significance in recent decades. Solid oxide fuel cells are easy to transport due to presence of solid electrolyte and also have requisite electrical properties,but have been obstructed by their limitation to be used at only temperatures greater than 6000C and less than 8000C. To construct a stack of cells, materials that are good electrical conductors and having necessary mechanical strengths at that temperatures are being considered as interconnects between the cells. Evaluation of Nickel-Titanium dioxide-Niobium pentoxide (NTN) as interconnect and comparison to Stainless Steel 441 alloy has been made in this research. The criteria for evaluation are the resistance, long-term stability and the power density characteristics of the cell for each interconnect. Electrical measurements by impedance spectroscopy techniques were conducted at variousworking temperatures using a gas mixture of 10 % hydrogen and 90% nitrogen to evaluate both interconnect materials in the working range of fuel cells. Scanning Electron Microscopy images of Lanthanum Strontium Manganite paste before and after the fuel cell measurements are shown.The results showed that both NTN and Stainless Steel 441 interconnects exhibit similar electrical properties under operating conditions of the fuel cell. Since theNTN interconnect is less prone to corrosion and does not have the effect of chromium poisoning, it can be considered as a viable interconnect material for solid oxide fuel cells.

  11. Oxide scale formation on different metallic interconnects for solid oxide fuel cells

    International Nuclear Information System (INIS)

    Highlights: ► The oxidation of Crofer 22 APU, SS430 and Conicro 4023 W188 was studied. ► Oxide scales were studied by XRD and SEM after oxidation at 800 °C in air for 1000 h. ► A spinel outer layer and chromia inner layer were formed for all alloys. - Abstract: The formation of an oxide layer on different metallic samples (i.e., Crofer 22 APU, SS430 and Conicro 4023 W188) treated at 800 °C for 100 and 1000 h in air was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX) and thermogravimetric analysis. The results indicate that the oxide scale formed on the metallic interconnect consists of a spinel (Fe, Cr, Mn)3O4 or (Fe, Cr, Ni)3Co2O4 outer layer and a chromia (Cr2O3) inner layer. The Crofer 22 APU and Conicro 4023 W188 samples were determined to be more promising as metallic interconnects than SS430 due to their higher oxidation resistance.

  12. Solid-to-solid oxidation of a vanadium(IV) to a vanadium(V) compound: chemisty of a sulfur-containing siderophore.

    Science.gov (United States)

    Chatterjee, Pabitra B; Crans, Debbie C

    2012-09-01

    Visible light facilitates a solid-to-solid photochemical aerobic oxidation of a hunter-green microcrystalline oxidovanadium(IV) compound (1) to form a black powder of cis-dioxidovanadium(V) (2) at ambient temperature. The siderophore ligand pyridine-2,6-bis(thiocarboxylic acid), H(2)L, is secreted by a microorganism from the Pseudomonas genus. This irreversible transformation of a metal monooxo to a metal dioxo complex in the solid state in the absence of solvent is unprecedented. It serves as a proof-of-concept reaction for green chemistry occurring in solid matrixes. PMID:22880634

  13. Operational characteristics of thin film solid oxide fuel cells with ruthenium anode in natural gas

    Science.gov (United States)

    Takagi, Yuto; Kerman, Kian; Ko, Changhyun; Ramanathan, Shriram

    2013-12-01

    Direct utilization of hydrocarbons in low temperature solid oxide fuel cells is of growing interest in the landscape of alternative energy technologies. Here, we report on performance of self-supported micro-solid oxide fuel cells (μSOFCs) with ruthenium (Ru) nano-porous thin film anodes operating in natural gas and methane. The μSOFCs consist of 8 mol% yttria-stabilized zirconia thin film electrolytes, porous platinum cathodes and porous Ru anodes, and were tested with dry natural gas and methane as fuels and air as the oxidant. At 500 °C, comparable power densities of 410 mW cm-2 and 440 mW cm-2 were obtained with dry natural gas and methane, respectively. In weakly humidified natural gas, open circuit voltage of 0.95 V at 530 °C with peak power density of 800 mW cm-2 was realized. The μSOFC was continuously operated at constant voltage of 0.7 V with methane, where quasi-periodic oscillatory behavior of the performance was observed. Through post-operation XPS studies it was found that the oxidation state of Ru anode surfaces significantly differs depending on the fuel used, oxidation being enhanced with methane or natural gas. The nature of the oscillation is discussed based on the transition in surface oxygen coverage states and electro-catalytic activity of Ru anodes.

  14. Modeling and parametric simulations of solid oxide fuel cells with methane carbon dioxide reforming

    International Nuclear Information System (INIS)

    Highlights: ► A 2D model is developed for solid oxide fuel cells (SOFCs). ► CH4 reforming by CO2 (MCDR) is included. ► SOFC with MCDR shows comparable performance with methane steam reforming SOFC. ► Increasing CO electrochemical oxidation greatly enhances the SOFC performance. ► Effects of potential and temperature on SOFC performance are also discussed. - Abstract: A two-dimensional model is developed to simulate the performance of solid oxide fuel cells (SOFCs) fed with CO2 and CH4 mixture. The electrochemical oxidations of both CO and H2 are included. Important chemical reactions are considered in the model, including methane carbon dioxide reforming (MCDR), reversible water gas shift reaction (WGSR), and methane steam reforming (MSR). It’s found that at a CH4/CO2 molar ratio of 50/50, MCDR and reversible WGSR significantly influence the cell performance while MSR is negligibly small. The performance of SOFC fed with CO2/CH4 mixture is comparable to SOFC running on CH4/H2O mixtures. The electric output of SOFC can be enhanced by operating the cell at a low operating potential or at a high temperature. In addition, the development of anode catalyst with high activity towards CO electrochemical oxidation is important for SOFC performance enhancement. The model can serve as a useful tool for optimization of the SOFC system running on CH4/CO2 mixtures

  15. Measuring individual overpotentials in an operating solid-oxide electrochemical cell

    CERN Document Server

    Gabaly, Farid El; McDaniel, Anthony H; Farrow, Roger L; Linne, Mark A; Hussain, Zahid; Bluhm, Hendrik; Liu, Zhi; McCarty, Kevin F

    2010-01-01

    We use photo-electrons as a non-contact probe to measure local electrical potentials in a solid-oxide electrochemical cell. We characterize the cell in operando at near-ambient pressure using spatially-resolved X-ray photoemission spectroscopy. The overpotentials at the interfaces between the Ni and Pt electrodes and the yttria-stabilized zirconia (YSZ) electrolyte are directly measured. The method is validated using electrochemical impedance spectroscopy. Using the overpotentials, which characterize the cell's inefficiencies, we compare without ambiguity the electro-catalytic efficiencies of Ni and Pt, finding that on both metals H2O splitting proceeds more rapidly than H2 oxidation.

  16. Surface engineering of nanoporous substrate for solid oxide fuel cells with atomic layer-deposited electrolyte

    Directory of Open Access Journals (Sweden)

    Sanghoon Ji

    2015-08-01

    Full Text Available Solid oxide fuel cells with atomic layer-deposited thin film electrolytes supported on anodic aluminum oxide (AAO are electrochemically characterized with varying thickness of bottom electrode catalyst (BEC; BECs which are 0.5 and 4 times thicker than the size of AAO pores are tested. The thicker BEC ensures far more active mass transport on the BEC side and resultantly the thicker BEC cell generates ≈11 times higher peak power density than the thinner BEC cell at 500 °C.

  17. Thermodynamic analyses of municipal solid waste gasification plant integrated with solid oxide fuel cell and Stirling hybrid system

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2015-01-01

    is subject to chemical treatments through air or/and steam utilization; the result is a synthesis gas, called "Syngas" which is principally composed of hydrogen and carbon monoxide. Traces of hydrogen sulfide could also be present which can easily be separated in a desulfurization reactor. The gasification...... process is usually based on an atmospheric-pressure circulating fluidized bed gasifier coupled to a tar-cracking vessel. Syngas can be used as fuel in different kind of power plant such as gas turbine cycle, steam cycle, combined cycle, internal and external combustion engine and Solid Oxide Fuel Cell...... with incineration technologies. Moreover waste incinerators require the installation of sophisticated exhaust gas cleaning equipment that can be large and expensive and are not necessary in the studied plant....

  18. Participation of the Third Order Optical Nonlinearities in Nanostructured Silver Doped Zinc Oxide Thin Solid Films

    Directory of Open Access Journals (Sweden)

    C. Torres-Torres

    2012-01-01

    Full Text Available We report the transmittance modulation of optical signals in a nanocomposite integrated by two different silver doped zinc oxide thin solid films. An ultrasonic spray pyrolysis approach was employed for the preparation of the samples. Measurements of the third-order nonlinear optical response at a nonresonant 532 nm wavelength of excitation were performed using a vectorial two-wave mixing. It seems that the separated contribution of the optical nonlinearity associated with each film noticeable differs in the resulting nonlinear effects with respect to the additive response exhibited by the bilayer system. An enhancement of the optical Kerr nonlinearity is predicted for prime number arrays of the studied nanoclusters in a two-wave interaction. We consider that the nanostructured morphology of the thin solid films originates a strong modification of the third-order optical phenomena exhibited by multilayer films based on zinc oxide.

  19. Hydrogen and synthetic fuel production using pressurized solid oxide electrolysis cells

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Sun, Xiufu; Ebbesen, Sune;

    2010-01-01

    Wind and solar power is troubled by large fluctuations in delivery due to changing weather. The surplus electricity can be used in a Solid Oxide Electrolyzer Cell (SOEC) to split CO2 + H2O into CO + H2 (+O2). The synthesis gas (CO + H2) can subsequently be catalyzed into various types of synthetic...... fuels using a suitable catalyst. As the catalyst operates at elevated pressure the fuel production system can be simplified by operating the SOEC at elevated pressure. Here we present the results of a cell test with pressures ranging from 0.4 bar to 10 bar. The cell was tested both as an SOEC...... and as a Solid Oxide Fuel Cell (SOFC). In agreement with previous reports, the SOFC performance increases with pressure. The SOEC performance, at 750 °C, was found to be weakly affected by the pressure range in this study, however the internal resistance decreased significantly with increasing pressure....

  20. Characterization of Solid Oxide Fuel Cell Components Using Electromagnetic Model-Based Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Zilberstein, Vladimir; Craven, Chris; Goldfine, Neil

    2004-12-28

    In this Phase I SBIR, the contractor demonstrated a number of capabilities of model-based sensors such as MWM sensors and MWM-Arrays. The key results include (1) porosity/microstructure characterization for anodes, (2) potential for cathode material characterization, (3) stress measurements in nickel and cobalt, and (4) potential for stress measurements in non-magnetic materials with a ferromagnetic layer. In addition, potential applications for manufacturing quality control of nonconductive layers using interdigitated electrode dielectrometers have been identified. The results indicate that JENTEK's MWM technology can be used to significantly reduce solid oxide fuel cell production and operating costs in a number of ways. Preliminary investigations of solid oxide fuel cell health monitoring and scale-up issues to address industry needs have also been performed.

  1. Ignition et oxydation des particules de combustible solide pulvérisé Ignition and Oxidation of Pulverized Solid Fuel

    Directory of Open Access Journals (Sweden)

    De Soete G. G.

    2006-11-01

    élais d'ignition ont été déterminés pour un grand nombre de combustibles solides de rang inférieur et supérieur (charbons, cokes, asphaltènes, suies, bois, graphite. L'étude de la vitesse expérimentale de la combustion hétérogène, notamment l'étude de la température apparente d'activation, et sa dépendance par rapport à la taille des particules et à la concentration d'oxygène, montre que, dans les conditions des essais, cette combustion est contrôlée par la désorption du CO et se déroule principalement en régime cinético-diffusionnel mixte. L'étude de la dépendance des délais d'ignition par rapport à la température, la taille des particules et la pression partielle d'oxygène, suggère que, pendant ces délais, les réactions se déroulent en régime cinétique pur et que le produit des réactions de désorption est principalement le CO. The heated-grid method is used to investigate the competition between (1 the devolatilization and subsequent oxidation of pyrolysis products and (2 the ignition of the solid matrix and its rapid combustion. A comparison between the instant of ignition and the start of pyrolysis is used to determine the range in which ignition of a pyrolyzable solid fuel of the whole coal ignitiontype (i. e. when ignition occurs before pyrolysis becomes measurable occurs as a function of temperature, particle size and oxygen concentration. The results suggest that this type of ignition might occur, as a general rule, under conditions involving pulverized solid fuels in industrial flames. In the case of whole coalignition, the rate of combustion of the solid matrix is inhibited during the period following ignition. This inhibition is due partly to the difficulty oxygen has of spreading through the pores during the discharge of pyrolysis products and partly to preferential oxygen consumption during the oxidation of pyrolysis products, mainly when this oxidation develops in the form of flames. t is only when pyrolysis ends that

  2. Preparation of NiO-YSZ-Graphite Aqueous Slurry and Its Application in Fabricating Solid Oxide Fuel Cells by Slip-Casting%NiO-YSZ-石墨水系浆料的研制及其在注浆成型制备固体氧化物燃料电池中的应用

    Institute of Scientific and Technical Information of China (English)

    刘丹丹; 谢永敏; 刘江; 王金霞

    2014-01-01

    Ni-YSZ(钇稳定氧化锆)金属陶瓷普遍被用作固体氧化物燃料电池(SOFC)的阳极材料,其氧化物浆料的性质对湿法制备的SOFC的性能具有重要影响。通过zeta电位分析,研究了NiO-YSZ双分散相水系浆料的稳定性。对六种分散剂作用于NiO、YSZ表面的zeta电位进行研究,发现采用的阴离子分散剂和两性分散剂使NiO和YSZ在水中带有相反电荷而引起迅速絮凝;采用阳离子分散剂聚二烯二甲基氯化铵(PDAC)时, NiO和YSZ因带有正电荷相互排斥而稳定分散于水中,在此基础上,加入作为SOFC阳极造孔剂的石墨,采用聚乙烯吡咯烷酮(PVP)作为石墨的分散剂,制备出了NiO-YSZ-石墨的稳定水系浆料。采用此浆料通过注浆成型制得阳极支撑管,进而组装成SOFC单电池。该单电池在800°C时最大功率密度达到509 mW∙cm-2;扫描电镜(SEM)分析表明电极与电解质间接触良好,阳极孔洞分布均匀。%Cermet of Ni-YSZ (yttrium-stabilized zirconia) is commonly used as the anode material of solid oxide fuel cells (SOFCs) and the properties of the NiO-YSZ slurry has a significant effect on the performance of SOFCs prepared by wet processes. The stability of the NiO-YSZ slurry was investigated through zeta potential analysis. The effects of six dispersants on the surface zeta potentials of NiO and YSZ were examined. It was found that the zeta potential of NiO was opposite to that of YSZ when the anionic or amphoteric dispersant existed. When the cationic dispersant poly(diallyldimethylammonium chloride) (PDAC) was used, the zeta potentials for both NiO and YSZ were positive and they could be simultaneously suspended in water. By adding graphite, which is used as the pore former when fabricating the SOFC anode, into the NiO-YSZ suspension and using polyvinylpyrrolidone (PVP) as the dispersant of graphite, a stable NiO-YSZ-graphite aqueous slurry was successful y prepared. The slurry was used to

  3. Two and three dimensional electron backscattered diffraction analysis of solid oxide cells materials

    OpenAIRE

    Saowadee, Nath; Bowen, Jacob R.; Agersted, Karsten

    2013-01-01

    There are two main technique were developed in this work: a technique to calculate grain boundary energy and pressure and a technique to measure lattice constant from EBSD. The techniques were applied to Nb-doped Strontium titanate (STN) and yttria stabilized zirconia (YSZ) which are commonly used in solid oxide fuel cell and electrolysis cell. Conductivity of STN is one of the important properties that researchers desire to improve. Grin boundary conductivity contributes to the overall condu...

  4. Technology data for high temperature solid oxide electrolyser cells, alkali and PEM electrolysers

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Ridjan, Iva; Connolly, David;

    The transition to 100% renewable energy systems will require a more integrated energy system. Connecting the electricity sector to transport is one of the major challenges in this transition, especially for long-distance and heavy-duty transport. Hydrogen is one potential solution to this challen...... electrolyte membrane (PEM), and solid oxide (SOEC) electrolysers between 2012 and 2050. These inputs can be used for analysing energy systems that include electrolysers....

  5. Potent bactericidal efficacy of copper oxide impregnated non-porous solid surfaces

    OpenAIRE

    Monk, Alastair B.; Kanmukhla, Vikram; Trinder, Ken; Borkow, Gadi

    2014-01-01

    Background The role of fomites and the environment in nosocomial infections is becoming widely recognized. In this paper we discuss the use of Cupron copper oxide impregnated non-porous solid surface in the hospital setting and present in vitro testing data via USA Environmental Protection Agency (EPA) approved testing protocols that demonstrate the efficacy of these products to assist in reduction in environmental contamination and potentially nosocomial infections. Results The two counterto...

  6. A novel electronic current-blocked stable mixed ionic conductor for solid oxide fuel cells

    NARCIS (Netherlands)

    Sun, Wenping; Jiang, Yinzhu; Wang, Yanfei; Fang, Shumin; Zhu, Zhiwen; Liu, Wei

    2011-01-01

    A novel ionic conductor, BaCe0.8Sm0.2O3−δ–Ce0.8Sm0.2O2−δ (BCS–SDC, weight ratio 1:1), is reported as an electrolyte material for solid oxide fuel cells (SOFCs). Homogeneous BCS–SDC composite powders are synthesized via a one-step gel combustion method. The BCS and SDC crystalline grains play a role

  7. Operando X-ray Investigation of Electrode/Electrolyte Interfaces in Model Solid Oxide Fuel Cells

    OpenAIRE

    Volkov, Sergey; Vonk, Vedran; Khorshidi, Navid; Franz, Dirk; Kubicek, Markus; Kilic, Volkan; Felici, Roberto; Huber, Tobias M.; Navickas, Edvinas; Rupp, Ghislain M.; Fleig, Jürgen; Stierle, Andreas

    2016-01-01

    We employed operando anomalous surface X-ray diffraction to investigate the buried interface between the cathode and the electrolyte of a model solid oxide fuel cell with atomic resolution. The cell was studied under different oxygen pressures at elevated temperatures and polarizations by external potential control. Making use of anomalous X-ray diffraction effects at the Y and Zr K-edges allowed us to resolve the interfacial structure and chemical composition of a (100)-oriented, 9.5 mol % y...

  8. Characterization and Long-Term Testing of Solid Oxide Electrolyzer Cells

    OpenAIRE

    Schiller, Günter; Hörlein, Michael; Tietz, Frank; Friedrich, K. Andreas

    2014-01-01

    A reliable energy supply which is based on increasing shares of sustainable and renewable energy sources, such as wind power and solar energy, requires appropriate storage technologies. Hydrogen as energy carrier, produced by water electrolysis using electric current from regenerative energy sources, offers a high potential in this respect. A very efficient option to produce hydrogen in this way is high-temperature steam electrolysis based on solid oxide electrolyzer cells (SOEC). This techno...

  9. Solid oxide electrolysis--a key enabling technology for sustainable energy scenarios.

    Science.gov (United States)

    Hansen, John Bøgild

    2015-01-01

    Production of fuels and chemicals from steam and/or CO2 with solid oxide electrolysis cells (SOEC) and electricity have attracted considerable interest recently. This paper is an extended version of the introductory lecture presented at the first Faraday Discussions meeting on the subject. The focus is on the state of the art of cells, stacks and systems. Thermodynamics, performance and degradation are addressed. Remaining challenges and potential application of the technology are discussed from an industrial perspective.

  10. Cathode development for solid oxide electrolysis cells for high temperature hydrogen production

    OpenAIRE

    Yang, Xuedi

    2010-01-01

    This study has been mainly focused on high temperature solid oxide electrolysis cells (HT-SOECs) for steam electrolysis. The compositions, microstructures and metal catalysts for SOEC cathodes based on (La₀.₇₅Sr₀.₂₅)₀.₉₅Mn₀.₅Cr₀.₅O₃ (LSCM) have been investigated. Hydrogen production amounts from SOECs with LSCM cathodes have been detected and current-to-hydrogen efficiencies have been calculated. The effect of humidity on electrochemical performances from SOECs with cathodes ba...

  11. Real-time thermal imaging of solid oxide fuel cell cathode activity in working condition

    DEFF Research Database (Denmark)

    Montanini, Roberto; Quattrocchi, Antonino; Piccolo, Sebastiano;

    2016-01-01

    Electrochemical methods such as voltammetry and electrochemical impedance spectroscopy are effective for quantifying solid oxide fuel cell (SOFC) operational performance, but not for identifying and monitoring the chemical processes that occur on the electrodes’ surface, which are thought...... preserving the electrochemical performance of the device. Infrared images recorded under different working conditions are then processed by means of a dedicated image processing algorithm for quantitative data analysis. Results reported in the paper highlight the effectiveness of infrared thermal imaging...

  12. Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases

    OpenAIRE

    Rheaume, Jonathan Michael

    2010-01-01

    Solid state electrochemical sensors that measure nitrogen oxides (NOx) in lean exhaust have been investigated in order to help meet future on-board diagnostic (OBD) regulations for diesel vehicles. This impedancemetric detection technology consists of a planar, single cell sensor design with various sensing electrode materials and yttria-stabilized zirconia (YSZ) as the electrolyte. No reference to ambient air is required. An impedance analysis method yields a signal that is proportional to t...

  13. Design and performance of tubular flat-plate solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, T.; Ikeda, D.; Kanagawa, H. [NTT Integrated Information & Energy Systems Labs., Tokyo (Japan)] [and others

    1996-12-31

    With the growing interest in conserving the environmental conditions, much attention is being paid to Solid Oxide Fuel Cell (SOFC), which has high energy-conversion efficiency. Many organizations have conducted studies on tubular and flat type SOFCs. Nippon Telegraph and Telephone Corporation (NTT) has studied a combined tubular flat-plate SOFC, and already presented the I-V characteristics of a single cell. Here, we report the construction of a stack of this SOFC cell and successful generation tests results.

  14. Corrosion behavior of iron and nickel base alloys under solid oxide fuel cell exposure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ziomek-Moroz, M.; Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.

    2006-03-01

    Topography and phase composition of the scales formed on commercial ferritic stainless steels and experimental low CTE nickel-based alloys were studied in atmospheres simulating solid oxide fuel cell (SOFC) environments. The materials were studied under dual environment conditions with air on one side of the sample and carbon monoxide on the other side at 750°C. Surface characterization techniques, such as scanning electron microscopy and X-ray diffraction analysis were used in this study.

  15. Solid flexible electrochemical supercapacitor using Tobacco mosaic virus nanostructures and ALD ruthenium oxide

    Science.gov (United States)

    Gnerlich, M.; Pomerantseva, E.; Gregorczyk, K.; Ketchum, D.; Rubloff, G.; Ghodssi, R.

    2013-11-01

    An all-solid electrochemical supercapacitor has been developed using a nanostructured nickel and titanium nitride template that is coated with ruthenium oxide by atomic layer deposition (ALD). The electrode morphology was based on a high surface area biotemplate of genetically modified Tobacco mosaic virus. The biotemplate automatically self-assembles at room temperature in aqueous solution. Nafion® perfluorosulfonate ionomer dispersion was cast on the electrodes and used as a solid proton-conducting electrolyte. A 5.8 F g-1 gravimetric capacity (578 µF cm-2 based on footprint) was achieved in Nafion electrolyte, and the device retained 80% of its capacity after 25 000 cycles. The technology presented here will enable thin, solid, flexible supercapacitors that are compatible with standard microfabrication techniques.

  16. Solid flexible electrochemical supercapacitor using Tobacco mosaic virus nanostructures and ALD ruthenium oxide

    International Nuclear Information System (INIS)

    An all-solid electrochemical supercapacitor has been developed using a nanostructured nickel and titanium nitride template that is coated with ruthenium oxide by atomic layer deposition (ALD). The electrode morphology was based on a high surface area biotemplate of genetically modified Tobacco mosaic virus. The biotemplate automatically self-assembles at room temperature in aqueous solution. Nafion® perfluorosulfonate ionomer dispersion was cast on the electrodes and used as a solid proton-conducting electrolyte. A 5.8 F g−1 gravimetric capacity (578 µF cm−2 based on footprint) was achieved in Nafion electrolyte, and the device retained 80% of its capacity after 25 000 cycles. The technology presented here will enable thin, solid, flexible supercapacitors that are compatible with standard microfabrication techniques. (paper)

  17. Characterisation of proton conducting oxide materials for use in reverse water gas shift catalysis and solid oxide fuel cells

    OpenAIRE

    De A. L. Viana, Hermenegildo

    2007-01-01

    This study concerned the preparation, characterisation and evaluation of different proton conductors for the Reverse Water Gas Shift Reaction (RWGS) and their evaluation as electrolytes for Solid Oxide Fuel Cells (SOFC) under H₂ and O₂. Materials with both catalytic and conductive properties are of a great interest, as their use in electrocatalytical systems may be very important. Sr₃CaZr₀.₅Ta₁.₅O₈.₇₅ (SCZT), BaCe₀.₉Y₀.₁O₂.₉₅ (BCY10) and Ba₃Ca₁.₁₈Nb₁.₈₂O₈.₇₃ (BCN18), were the initial material...

  18. Thermodynamic analysis of combined Solid Oxide Electrolyzer and Fischer–Tropsch processes

    International Nuclear Information System (INIS)

    In this paper a thermodynamic analysis and simple optimization of a combined Solid Oxide Electrolyzer Cell and Fisher–Tropsch Synthesis processes for sustainable hydrocarbons fuel production is reported. Comprehensive models are employed to describe effects of temperature, pressure, reactant composition and molar flux and flow on the system efficiency and final production distribution. The electrolyzer model was developed in-house and validated with experimental data of a typical Solid Oxide Electrolyzer. The Fischer–Tropsch Synthesis model employed lumped kinetics of syngas utilization, which includes inhibiting effect of water content and kinetics of Water–Gas Shift reaction. Product distribution model incorporated olefin re-adsorption and varying physisorption and solubility of hydrocarbons with their carbon number. The results were compared with those reported by Becker et al. with simplified analysis of such process. In the present study an opposite effect of operation at elevated pressure was observed. Proposed optimized system achieved overall efficiency of 66.67% and almost equal spread of light- (31%wt), mid-(36%wt) and heavy-hydrocarbons (33%wt). Paraffins contributed the majority of the yield. - Highlights: • Analysis of Solid Oxide Electrolyzer combined with Fisher Tropsch process. • Efficiency of converting water and carbon dioxide into synthetic fuels above 66%. • Effects of process temperature, pressure, gas flux and compositions were analyzed

  19. Study on rare earth/alkaline earth oxide-doped CeO2 solid electrolyte

    Institute of Scientific and Technical Information of China (English)

    YAN Kai; ZHEN Qiang; Song Xiwen

    2007-01-01

    Five types of rare earth/alkaline earth oxide-doped CeO2 superfine-powders were synthesized by a low-temperature combustion technique. The relevant solid electrolyte materials were also sintered by pressureless sintering at different temperatures. The results of X-ray diffraction and transmission electron microscopy showed that the grain size of the powders was approximately 20-30 nm, and rare earth/alkaline earth oxides were completely dissolved into ceria-based solid solution with fluorite structure. The electrical conductivities of the Sm2O3-CeO2 system were measured by the ac impedance technique in air at temperatures ranging from 513-900℃. The results indicated that the ionic conductivities of Sm0.20Ce0.8O1.875 solid electrolyte increase with increasing sintering temperature, and the relationship between the conductivities and measuring temperature obeys the Arrhenius equation. Then the Sm2O3-CeO2 material was further doped with other rare earth/alkaline earth oxide, and the conductivities improve with the effective index.

  20. System for operating solid oxide fuel cell generator on diesel fuel

    Science.gov (United States)

    Singh, Prabhu (Inventor); George, Raymond A. (Inventor)

    1997-01-01

    A system is provided for operating a solid oxide fuel cell generator on diesel fuel. The system includes a hydrodesulfurizer which reduces the sulfur content of commercial and military grade diesel fuel to an acceptable level. Hydrogen which has been previously separated from the process stream is mixed with diesel fuel at low pressure. The diesel/hydrogen mixture is then pressurized and introduced into the hydrodesulfurizer. The hydrodesulfurizer comprises a metal oxide such as ZnO which reacts with hydrogen sulfide in the presence of a metal catalyst to form a metal sulfide and water. After desulfurization, the diesel fuel is reformed and delivered to a hydrogen separator which removes most of the hydrogen from the reformed fuel prior to introduction into a solid oxide fuel cell generator. The separated hydrogen is then selectively delivered to the diesel/hydrogen mixer or to a hydrogen storage unit. The hydrogen storage unit preferably comprises a metal hydride which stores hydrogen in solid form at low pressure. Hydrogen may be discharged from the metal hydride to the diesel/hydrogen mixture at low pressure upon demand, particularly during start-up and shut-down of the system.

  1. A mixed proton-oxide ion-electron conducting anode for highly coking-resistant solid oxide fuel cells

    International Nuclear Information System (INIS)

    Highlights: • A multi-phase mixed proton-oxide ion-electron conducting anode was employed. • BaO/Ni interfaces facilitate water-mediated carbon removal. • Fast oxygen ions flux and formed water are favorable for hydrocarbon reformation. - Abstract: A multi-phase mixed proton-oxide ion-electron conducting composite is employed as a new anode material for a coking-resistant solid oxide fuel cell (SOFC) based on oxide ion conducting electrolyte, operated in methane and ethanol. The formation of BaO/Ni interfaces can effectively readily adsorb water and facilitate water-mediated carbon removal. The fast oxygen ions flux and formed steam at anode side are also found to be favorable for hydrocarbon reformation to promote the cell performance and long term stability. At 700 °C, maximum power densities of 580 and 368 mW cm−2 are achieved in methane and ethanol, respectively. The resistance against carbon deposition is significantly improved, showing stable voltage in 120 h durability test

  2. Anodic Oxidation in Aluminum Electrode by Using Hydrated Amorphous Aluminum Oxide Film as Solid Electrolyte under High Electric Field.

    Science.gov (United States)

    Yao, Manwen; Chen, Jianwen; Su, Zhen; Peng, Yong; Zou, Pei; Yao, Xi

    2016-05-01

    Dense and nonporous amorphous aluminum oxide (AmAO) film was deposited onto platinized silicon substrate by sol-gel and spin coating technology. The evaporated aluminum film was deposited onto the AmAO film as top electrode. The hydrated AmAO film was utilized as a solid electrolyte for anodic oxidation of the aluminum electrode (Al) film under high electric field. The hydrated AmAO film was a high efficiency electrolyte, where a 45 nm thick Al film was anodized completely on a 210 nm thick hydrated AmAO film. The current-voltage (I-V) characteristics and breakdown phenomena of a dry and hydrated 210 nm thick AmAO film with a 150 nm thick Al electrode pad were studied in this work. Breakdown voltage of the dry and hydrated 210 nm thick AmAO film were 85 ± 3 V (405 ± 14 MV m(-1)) and 160 ± 5 V (762 ± 24 MV m(-1)), respectively. The breakdown voltage of the hydrated AmAO film increased about twice, owing to the self-healing behavior (anodic oxidation reaction). As an intuitive phenomenon of the self-healing behavior, priority anodic oxidation phenomena was observed in a 210 nm thick hydrated AmAO film with a 65 nm thick Al electrode pad. The results suggested that self-healing behavior (anodic oxidation reaction) was occurring nearby the defect regions of the films during I-V test. It was an effective electrical self-healing method, which would be able to extend to many other simple and complex oxide dielectrics and various composite structures.

  3. Solid oxide electrolyte fuel cell system. Kotai denkaishitsu nenryo denchi sochi

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, R. (Yuasa Battery Co. Ltd., Osaka (Japan))

    1992-09-17

    To improve the solid oxide electrolyte fuel cell for higher output, provision of manifolds for air and fuel in honeycomb structure has been proposed. The method of making them in the honeycomb structure has a problem of difficulty in the fabrication. This invention is concerned with a structure, wherein the structural body of the power generating member and that of the electric conducting member are connected between the air electrode on the surface of the structural body of the power generating member and that on the surface of the structural member of the electric conducting member with interposed conductive metal oxide, and the interconnecting member of the power generating structural member body is connected to the air electrode on the surface of the structural member of another power generating member. As a result of this structure, high output solid oxide electrolyte fuel cell can be fabricated by connecting the structural bodies of the power generating members and those of the conducting members in regular succession. Strontium or calcium doped LaMnO3, LaCoO3, CaMnO3, and LaCrO3 are used as the metal oxides. 10 figs.

  4. Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    Emiliana Fabbri, Daniele Pergolesi and Enrico Traversa

    2010-01-01

    Full Text Available High temperature proton conductor (HTPC oxides are attracting extensive attention as electrolyte materials alternative to oxygen-ion conductors for use in solid oxide fuel cells (SOFCs operating at intermediate temperatures (400–700 °C. The need to lower the operating temperature is dictated by cost reduction for SOFC pervasive use. The major stake for the deployment of this technology is the availability of electrodes able to limit polarization losses at the reduced operation temperature. This review aims to comprehensively describe the state-of-the-art anode and cathode materials that have so far been tested with HTPC oxide electrolytes, offering guidelines and possible strategies to speed up the development of protonic SOFCs.

  5. Synthesis and characterization of cobaltite nanotubes for solid-oxide fuel cell cathodes

    Science.gov (United States)

    Napolitano, F.; Baqué, L.; Troiani, H.; Granada, M.; Serquis, A.

    2009-05-01

    La1-xSrxCo1-yFeyO3-δ oxides are good candidates for solid oxide fuel cell (SOFC) cathodes because these materials present high ionic and electronic conductivity, and compatibility with Cerium Gadolinium Oxide (CGO) electrolytes allowing a lower operation temperature. In this work, we report the synthesis of La0.4Sr0.6Co0.8Fe0.2O3-δ (LSCF) nanotubes prepared by a porous polycarbonate membrane approach, obtaining different microstructures depending on sintering conditions. The structure and morphology of the nanotubes and deposited films were characterized by X-ray diffraction, transmission and scanning microscopy. Finally, we obtained nanostructured films of vertically aligned LSCF tubes deposited over the whole surface of CGO pellets with diameter up to 2.5cm in a direct and single step process.

  6. Life prediction of coated and uncoated metallic interconnect for solid oxide fuel cell applications

    Science.gov (United States)

    Liu, W. N.; Sun, X.; Stephens, E.; Khaleel, M. A.

    In this paper, we present an integrated experimental and modeling methodology in predicting the life of coated and uncoated metallic interconnect (IC) for solid oxide fuel cell (SOFC) applications. The ultimate goal is to provide cell designer and manufacture with a predictive methodology such that the life of the IC system can be managed and optimized through different coating thickness to meet the overall cell designed life. Crofer 22 APU is used as the example IC material system. The life of coated and uncoated Crofer 22 APU under isothermal cooling was predicted by comparing the predicted interfacial strength and the interfacial stresses induced by the cooling process from the operating temperature to room temperature, together with the measured oxide scale growth kinetics. It was found that the interfacial strength between the oxide scale and the Crofer 22 APU substrate decreases with the growth of the oxide scale, and that the interfacial strength for the oxide scale/spinel coating interface is much higher than that of the oxide scale/Crofer 22 APU substrate interface. As expected, the predicted life of the coated Crofer 22 APU is significantly longer than that of the uncoated Crofer 22 APU.

  7. Vapour phase approach for iron oxide nanoparticle synthesis from solid precursors

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mandeep; Ulbrich, Pavel; Prokopec, Vadym [Institute of Chemical Technology Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Svoboda, Pavel [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 120 00 Prague 2 (Czech Republic); Šantavá, Eva [Institute of Physics ASCR, Na Slovance 2, 182 21 Prague 8 (Czech Republic); Štěpánek, František, E-mail: Frantisek.Stepanek@vscht.cz [Institute of Chemical Technology Prague, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2013-04-15

    A new non-solution mediated approach to the synthesis of iron oxide nanoparticles directly from solid FeCl{sub 2} salt precursors has been developed. The method is rapid, simple and scalable. The structural properties and the phase of the resulting iron oxide particles has been determined by a range of methods including XRD, FT-IR and Mössbauer spectroscopy, and the phase is shown to be maghemite (γ-Fe{sub 2}O{sub 3}). The magnetic properties of the iron oxide particles have been measured using SQUID, confirming superparamagnetic behaviour of the powder and a saturation magnetization of 53.0 emu g{sup −1} at 300 K. Aqueous dispersions at increasing concentrations were prepared and their heating rate under a 400 kHz alternating magnetic field measured. The specific absorption rate (SAR) of the iron oxide was found to be 84.8 W g{sup −1}, which makes the material suitable for the formulation of ferrofluids or ferrogels with RF heating properties. - Graphical Abstract: Superparamagnetic iron oxide nanoparticles obtained by a novel vapour phase approach. Highlights: ► Novel vapour phase (non-solvent) approach for iron oxide nanoparticle synthesis. ► Attractive alternative approach to the present co-precipitation method. ► Better magnetic properties with high coercivity of nanoparticles. ► A high specific absorption rate (SAR) for hyperthermia applications.

  8. Solid Oxide Fuel Cell/Turbine Hybrid Power System for Advanced Aero-propulsion and Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Solid oxide fuel cell (SOFC)/ gas turbine hybrid power systems (HPSs) have been recognized by federal agencies and other entities as having the potential to operate...

  9. Models for solid oxide fuel cell systems exploitation of models hierarchy for industrial design of control and diagnosis strategies

    CERN Document Server

    Marra, Dario; Polverino, Pierpaolo; Sorrentino, Marco

    2016-01-01

    This book presents methodologies for optimal design of control and diagnosis strategies for Solid Oxide Fuel Cell systems. A key feature of the methodologies presented is the exploitation of modelling tools that balance accuracy and computational burden.

  10. Properties of solid solutions, doped film, and nanocomposite structures based on zinc oxide

    Science.gov (United States)

    Lashkarev, G. V.; Shtepliuk, I. I.; Ievtushenko, A. I.; Khyzhun, O. Y.; Kartuzov, V. V.; Ovsiannikova, L. I.; Karpyna, V. A.; Myroniuk, D. V.; Khomyak, V. V.; Tkach, V. N.; Timofeeva, I. I.; Popovich, V. I.; Dranchuk, N. V.; Khranovskyy, V. D.; Demydiuk, P. V.

    2015-02-01

    A study of the properties of materials based on the wide bandgap zinc oxide semiconductor, which are promising for application in optoelectronics, photovoltaics and nanoplasmonics. The structural and optical properties of solid solution Zn1-xCdxO films with different cadmium content, are studied. The samples are grown using magnetron sputtering on sapphire backing. Low-temperature photoluminescence spectra revealed emission peaks associated with radiative recombination processes in those areas of the film that have varying amounts of cadmium. X-ray phase analysis showed the presence of a cadmium oxide cubic phase in these films. Theoretical studies of the solid solution thermodynamic properties allowed for a qualitative interpretation of the observed experimental phenomena. It is established that the growth of the homogeneous solid solution film is possible only at high temperatures, whereas regions of inhomogeneous composition can be narrowed through elastic deformation, caused by the mismatch of the film-backing lattice constants. The driving forces of the spinodal decomposition of the Zn1-xCdxO system are identified. Fullerene-like clusters of Znn-xCdxOn are used to calculate the bandgap and the cohesive energy of ZnCdO solid solutions. The properties of transparent conductive ZnO films, doped with Group III donor impurities (Al, Ga, In), are examined. It is shown that oxygen vacancies are responsible for the hole trap centers in the zinc oxide photoconductivity process. We also examine the photoluminescence properties of metal-ZnO nanocomposite structures, caused by surface plasmons.

  11. Performance of alternative oxide anodes for the electrochemical oxidation of hydrogen and methane in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Tu, H.; Apfel, H.; Stimming, U. [Department of Physics E19, Technical University of Munich, James-Franck-Strasse 1, D-85748 Garching (Germany)

    2006-07-15

    The electrode performances of the alternative oxides: La{sub 0.05}Ca{sub 0.95}Cr{sub 0.05}Ti{sub 0.95}O{sub 3-{delta}}-8YSZ and Ce{sub 0.8}TM{sub 0.2}O{sub 2-{delta}}(TM=Mn, Co) for the direct electrochemical oxidation of methane are investigated to assess their potential as anode materials for efficient methane conversion in a SOFC. The electrochemical oxidation of hydrogen was also studied, for comparison. The oxides are characterised electrochemically with impedance spectroscopy in the frequency range from 10 mHz to 1MHz, using a three-electrode geometry. They are compared to a standard Ni/8YSZ anode for the electrochemical oxidation of hydrogen. It is found that La{sub 0.05}Ca{sub 0.95}Cr{sub 0.05}Ti{sub 0.95}O{sub 3-{delta}}-8YSZ demonstrates a poor electrochemical activity in both hydrogen and methane. However, the electrochemical activity of Ce{sub 0.8}Mn{sub 0.2}O{sub 2-{delta}} is promising, but the electronic conductivity needs to be increased, e.g., by adding a conducting oxide, before it can be used as an anode material in a SOFC. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  12. Effective improvement of interface modified strontium titanate based solid oxide fuel cell anodes by infiltration with nano-sized palladium and gadolinium-doped cerium oxide

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain; Høgh, Jens Valdemar Thorvald; Zhang, Wei;

    2013-01-01

    The development of low temperature solid oxide fuel cell (SOFC) anodes by infiltration of Pd/Gd-doped cerium oxide (CGO) electrocatalysts in Nb-doped SrTiO3 (STN) backbones has been investigated. Modification of the electrode/electrolyte interface by thin layer of spin-coated CGO (400-500 nm) con...

  13. Effect of Co deposition on oxidation behavior and electrical properties of ferritic steel for solid oxide fuel cell interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Kruk, A.; Adamczyk, A.; Gil, A. [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Krakow (Poland); Kąc, S. [AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. Mickiewicza 30, 30-059 Krakow (Poland); Dąbek, J.; Ziąbka, M. [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Krakow (Poland); Brylewski, T., E-mail: brylew@agh.edu.pl [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Krakow (Poland)

    2015-09-01

    In this work, a Co layer deposited on DIN 50049 steel by means of pulsed laser deposition was applied for the protection of solid oxide fuel cell (SOFC) interconnects operating on the cathode side. The coated and uncoated steel samples were oxidized in air at 1073 K for 500 h, and their microstructures as well as electrical resistances were evaluated using X-ray diffraction, atomic force microscopy, scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, and the 2-probe 4-point direct current method. It was demonstrated that the Co coating had reduced the oxidation rate of the steel by nearly a half. The area-specific resistance value of the coated steel was 5 × 10{sup −6} Ω·m{sup 2}, which was significantly lower than that of bare steel after 350 h of oxidation at 1073 K. Cr vaporization tests showed that the Co coating was efficient at blocking the outward diffusion of Cr. The obtained results prove that steel coated with a thin film of cobalt was suitable for use as metallic interconnect material in SOFCs operating at intermediate temperatures. - Highlights: • Co layer was deposited on ferritic steel by means of pulsed laser deposition. • Coated and bare ferritic steel samples were exposed to air at 1073 K for 500 h. • Scale growth rate on bare steel is higher than that on coated steel. • Electrical resistance for oxidized coated steel was lower than for bare steel. • Co-coated steel effectively reduced the formation of volatile Cr species.

  14. SOLID OXIDE FUEL CELL MANUFACTURING COST MODEL: SIMULATING RELATIONSHIPS BETWEEN PERFORMANCE, MANUFACTURING, AND COST OF PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Eric J. Carlson; Yong Yang; Chandler Fulton

    2004-04-20

    The successful commercialization of fuel cells will depend on the achievement of competitive system costs and efficiencies. System cost directly impacts the capital equipment component of cost of electricity (COE) and is a major contributor to the O and M component. The replacement costs for equipment (also heavily influenced by stack life) is generally a major contributor to O and M costs. In this project, they worked with the SECA industrial teams to estimate the impact of general manufacturing issues of interest on stack cost using an activities-based cost model for anode-supported planar SOFC stacks with metallic interconnects. An earlier model developed for NETL for anode supported planar SOFCs was enhanced by a linkage to a performance/thermal/mechanical model, by addition of Quality Control steps to the process flow with specific characterization methods, and by assessment of economies of scale. The 3-dimensional adiabatic performance model was used to calculate the average power density for the assumed geometry and operating conditions (i.e., inlet and exhaust temperatures, utilization, and fuel composition) based on publicly available polarizations curves. The SECA team provided guidance on what manufacturing and design issues should be assessed in this Phase I demonstration of cost modeling capabilities. They considered the impact of the following parameters on yield and cost: layer thickness (i.e., anode, electrolyte, and cathode) on cost and stress levels, statistical nature of ceramic material failure on yield, and Quality Control steps and strategies. In this demonstration of the capabilities of the linked model, only the active stack (i.e., anode, electrolyte, and cathode) and interconnect materials were included in the analysis. Factory costs are presented on an area and kilowatt basis to allow developers to extrapolate to their level of performance, stack design, materials, seal and system configurations, and internal corporate overheads and margin

  15. High temperature oxidation behavior of interconnect coated with LSCF and LSM for solid oxide fuel cell by screen printing

    Science.gov (United States)

    Lee, Shyong; Chu, Chun-Lin; Tsai, Ming-Jui; Lee, Jye

    2010-01-01

    The current study examined the effect of La 0.6Sr 0.4Co 0.2Fe 0.8O 3 (LSCF) and La 0.7Sr 0.3MnO 3 (LSM) coatings on the electrical properties and oxidation resistance of Crofer22 APU at 800 °C hot air. LSCF and LSM were coated on Crofer22 APU by screen printing and sintered over temperatures ranging from 1000 to 1100 °C in N 2. The coated alloy was first checked for compositions, morphology and interface conditions and then treated in a simulated oxidizing environment at 800 °C for 200 h. After measuring the long-term electrical resistance, the area specific resistance (ASR) at 800 °C for the alloy coated with LSCF was less than its counterpart coated with LSM. This work used LSCF coating as a metallic interconnect to reduce working temperature for the solid oxide fuel cell.

  16. FUNDAMENTAL STUDIES OF THE DURABILITY OF MATERIALS FOR INTERCONNECTS IN SOLID OXIDE FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Frederick S. Pettit; Gerald H. Meier

    2003-06-30

    This report describes the result of the first eight months of effort on a project directed at improving metallic interconnect materials for solid oxide fuel cells (SOFCs). The results include cyclic oxidation studies of a group of ferritic alloys, which are candidate interconnect materials. The exposures have been carried out in simulated fuel cell atmospheres. The oxidation morphologies have been characterized and the ASR has been measured for the oxide scales. The effect of fuel cell electric current density on chromia growth rates has been considered The thermomechanical behavior of the scales has been investigated by stress measurements using x-ray diffraction and interfacial fracture toughness measurements using indentation. The ultimate goal of this thrust is to use knowledge of changes in oxide thickness, stress and adhesion to develop accelerated testing methods for evaluating SOFC interconnect alloys. Finally a theoretical assessment of the potential for use of ''new'' metallic materials as interconnect materials has been conducted and is presented in this report. Alloys being considered include materials based on pure nickel, materials based on the ''Invar'' concept, and coated materials to optimize properties in both the anode and cathode gases.

  17. High-Temperature, Dual-Atmosphere Corrosion of Solid-Oxide Fuel Cell Interconnects

    Science.gov (United States)

    Gannon, Paul; Amendola, Roberta

    2012-12-01

    High-temperature corrosion of ferritic stainless steel (FSS) surfaces can be accelerated and anomalous when it is simultaneously subjected to different gaseous environments, e.g., when separating fuel (hydrogen) and oxidant (air) streams, in comparison with single-atmosphere exposures, e.g., air only. This so-called "dual-atmosphere" exposure is realized in many energy-conversion systems including turbines, boilers, gasifiers, heat exchangers, and particularly in intermediate temperature (600-800°C) planar solid-oxide fuel cell (SOFC) stacks. It is generally accepted that hydrogen transport through the FSS (plate or tube) and its subsequent integration into the growing air-side surface oxide layer can promote accelerated and anomalous corrosion—relative to single-atmosphere exposure—via defect chemistry changes, such as increased cation vacancy concentrations, decreased oxygen activity, and steam formation within the growing surface oxide layers. Establishment of a continuous and dense surface oxide layer on the fuel side of the FSS can inhibit hydrogen transport and the associated effects on the air side. Minor differences in FSS composition, microstructure, and surface conditions can all have dramatic influences on dual-atmosphere corrosion behaviors. This article reviews high-temperature, dual-atmosphere corrosion phenomena and discusses implications for SOFC stacks, related applications, and future research.

  18. Methane Conversion to C2 Hydrocarbons in Solid State Oxide Electrolyte Membrane Reactor

    Institute of Scientific and Technical Information of China (English)

    LI Jun; ZHAO Ling; ZHU Zhong-nan; XI Dan-li

    2005-01-01

    Provskite-type catalysts, Ln0.6 Sr0.4 FexCo1-x O3 (Ln = Nd,Pr, Gd, Sm, La, 0<x<1) and Ln0.8Na0.2CoO3(Ln= La,Gd, Sm) were synthesized, their catalytic properties in the oxidative coupling of methane (OCM) were examined in a fixed-bed reactor. The former group presented higher activity in the OCM, but the main product was carbon dioxide. While the later group showed lower activity but much higher selectivity to C2 hydrocarbons compared with the former. Electrochemical measurements were conducted in a solid oxide membrane reactor with La0.8 Na0.2CoO3 as catalyst. The results showed that methane was oxidized to carbon dioxide and ethane by two parallel reactions. Ethane was oxidized to ethene and carbon dioxide. A fraction of ethene was oxidized deeply to carbon dioxide. The total selectivity to C2 hydrocarbons exceeded 70%. Based on the experimental results, a kinetic model was suggested to describe the reaction results.

  19. Atomic solid state energy scale: Universality and periodic trends in oxidation state

    Science.gov (United States)

    Pelatt, Brian D.; Kokenyesi, Robert S.; Ravichandran, Ram; Pereira, Clifford B.; Wager, John F.; Keszler, Douglas A.

    2015-11-01

    The atomic solid state energy (SSE) scale originates from a plot of the electron affinity (EA) and ionization potential (IP) versus band gap (EG). SSE is estimated for a given atom by assessing an average EA (for a cation) or an average IP (for an anion) for binary inorganic compounds having that specific atom as a constituent. Physically, SSE is an experimentally-derived average frontier orbital energy referenced to the vacuum level. In its original formulation, 69 binary closed-shell inorganic semiconductors and insulators were employed as a database, providing SSE estimates for 40 elements. In this contribution, EA and IP versus EG are plotted for an additional 92 compounds, thus yielding SSE estimates for a total of 64 elements from the s-, p-, d-, and f-blocks of the periodic table. Additionally, SSE is refined to account for its dependence on oxidation state. Although most cations within the SSE database are found to occur in a single oxidation state, data are available for nine d-block transition metals and one p-block main group metal in more than one oxidation state. SSE is deeper in energy for a higher cation oxidation state. Two p-block main group non-metals within the SSE database are found to exist in both positive and negative oxidation states so that they can function as a cation or anion. SSEs for most cations are positioned above -4.5 eV with respect to the vacuum level, and SSEs for all anions are positioned below. Hence, the energy -4.5 eV, equal to the hydrogen donor/acceptor ionization energy ε(+/-) or equivalently the standard hydrogen electrode energy, is considered to be an absolute energy reference for chemical bonding in the solid state.

  20. Composite electrolyte with proton conductivity for low-temperature solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Raza, Rizwan, E-mail: razahussaini786@gmail.com [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Energy Technology, Royal Institute of Technology, KTH, Stockholm 10044 (Sweden); Ahmed, Akhlaq; Akram, Nadeem; Saleem, Muhammad; Niaz Akhtar, Majid; Ajmal Khan, M.; Abbas, Ghazanfar; Alvi, Farah; Yasir Rafique, M. [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Sherazi, Tauqir A. [Department of Chemistry, COMSATS Institute of Information Technology, Abbotabad 22060 (Pakistan); Shakir, Imran [Sustainable Energy Technologies (SET) center, College of Engineering, King Saud University, PO-BOX 800, Riyadh 11421 (Saudi Arabia); Mohsin, Munazza [Department of Physics, Lahore College for Women University, Lahore, 54000 (Pakistan); Javed, Muhammad Sufyan [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Applied Physics, Chongqing University, Chongqing 400044 (China); Zhu, Bin, E-mail: binzhu@kth.se, E-mail: zhubin@hubu.edu.cn [Department of Energy Technology, Royal Institute of Technology, KTH, Stockholm 10044 (Sweden); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Physics and Electronic Science/Faculty of Computer and Information, Hubei University, Wuhan, Hubei 430062 (China)

    2015-11-02

    In the present work, cost-effective nanocomposite electrolyte (Ba-SDC) oxide is developed for efficient low-temperature solid oxide fuel cells (LTSOFCs). Analysis has shown that dual phase conduction of O{sup −2} (oxygen ions) and H{sup +} (protons) plays a significant role in the development of advanced LTSOFCs. Comparatively high proton ion conductivity (0.19 s/cm) for LTSOFCs was achieved at low temperature (460 °C). In this article, the ionic conduction behaviour of LTSOFCs is explained by carrying out electrochemical impedance spectroscopy measurements. Further, the phase and structure analysis are investigated by X-ray diffraction and scanning electron microscopy techniques. Finally, we achieved an ionic transport number of the composite electrolyte for LTSOFCs as high as 0.95 and energy and power density of 90% and 550 mW/cm{sup 2}, respectively, after sintering the composite electrolyte at 800 °C for 4 h, which is promising. Our current effort toward the development of an efficient, green, low-temperature solid oxide fuel cell with the incorporation of high proton conductivity composite electrolyte may open frontiers in the fields of energy and fuel cell technology.

  1. Direct methanol utilization in intermediate temperature liquid-tin anode solid oxide fuel cells

    International Nuclear Information System (INIS)

    Highlights: • Modification of Sn-based anode with Cu/SDC improves power density. • Cu and SDC improve wetting of Sn on YSZ and reduce anode polarization resistance. • Carbon formation has not been observed in SOFCs containing tin-based anodes. • Micro-channel structure in the anode reduces gas conversion resistance. - Abstract: Direct utilization of methanol in liquid tin anode solid oxide fuel cells has been experimentally demonstrated at 1023 K. A Cu and SDC modified Sn anode solid oxide fuel cell had a maximum power density of 259.2 mW/cm2 during operation on methanol. Carbon deposition was not observed in the Raman spectra of the post-test anodes. Electrochemical impedance spectroscopy indicated that gas conversion resistance increased when using methanol instead of hydrogen. The micro-channel architecture of the electrode mitigated the increase. Scanning electron microscopy images showed that addition of Cu and Sn improved wetting of Sn on YSZ and reduced anode polarization resistance. The anode gases were analyzed by mass spectroscopy and a mechanism for electrochemical oxidation of methanol has been proposed

  2. Composite electrolyte with proton conductivity for low-temperature solid oxide fuel cell

    International Nuclear Information System (INIS)

    In the present work, cost-effective nanocomposite electrolyte (Ba-SDC) oxide is developed for efficient low-temperature solid oxide fuel cells (LTSOFCs). Analysis has shown that dual phase conduction of O−2 (oxygen ions) and H+ (protons) plays a significant role in the development of advanced LTSOFCs. Comparatively high proton ion conductivity (0.19 s/cm) for LTSOFCs was achieved at low temperature (460 °C). In this article, the ionic conduction behaviour of LTSOFCs is explained by carrying out electrochemical impedance spectroscopy measurements. Further, the phase and structure analysis are investigated by X-ray diffraction and scanning electron microscopy techniques. Finally, we achieved an ionic transport number of the composite electrolyte for LTSOFCs as high as 0.95 and energy and power density of 90% and 550 mW/cm2, respectively, after sintering the composite electrolyte at 800 °C for 4 h, which is promising. Our current effort toward the development of an efficient, green, low-temperature solid oxide fuel cell with the incorporation of high proton conductivity composite electrolyte may open frontiers in the fields of energy and fuel cell technology

  3. Oxygen Reduction Kinetics Enhancement on a 2 Heterostructured Oxide Surface for Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Crumlin, Ethan [Massachusetts Institute of Technology (MIT); Mutoro, Eva [ORNL; Ahn, Sung Jin [Massachusetts Institute of Technology (MIT); Jose la O' , Gerardo [Massachusetts Institute of Technology (MIT); Leonard, Donovan N [ORNL; Borisevich, Albina Y [ORNL; Biegalski, Michael D [ORNL; Christen, Hans M [ORNL; Shao-Horn, Yang [Massachusetts Institute of Technology (MIT)

    2010-01-01

    Heterostructured interfaces of oxides, which can exhibit transport and reactivity characteristics remarkably different from those of bulk oxides, are interesting systems to explore in search of highly active cathodes for the oxygen reduction reaction (ORR). Here, we show that the ORR of {approx}85 nm thick La{sub 0.8}Sr{sub 0.2}CoO{sub 3-{delta}} (LSC{sub 113}) films prepared by pulsed laser deposition on (001)-oriented yttria-stabilized zirconia (YSZ) substrates is dramatically enhanced ({approx} 3-4 orders of magnitude above bulk LSC{sub 113}) by surface decorations of (La{sub 0.5}Sr{sub 0.5}){sub 2}CoO{sub 4{+-}{delta}} (LSC{sub 214}) with coverage in the range from {approx}0.1 to {approx}15 nm. Their surface and atomic structures were characterized by atomic force, scanning electron, and scanning transmission electron microscopy, and the ORR kinetics were determined by electrochemical impedance spectroscopy. Although the mechanism for ORR enhancement is not yet fully understood, our results to date show that the observed ORR enhancement can be attributed to highly active interfacial LSC{sub 113}/LSC{sub 214} regions, which were shown to be atomically sharp.

  4. Oxygen Reduction Kinetics Enhancement on a Heterostructured Oxide Surface for Solid Oxide Fuel Cells

    KAUST Repository

    Crumlin, Ethan J.

    2010-11-04

    Heterostructured interfaces of oxides, which can exhibit transport and reactivity characteristics remarkably different from those of bulk oxides, are interesting systems to explore in search of highly active cathodes for the oxygen reduction reaction (ORR). Here, we show that the ORR of ∼85 nm thick La0.8Sr0.2CoO3-δ (LSC113) films prepared by pulsed laser deposition on (001)-oriented yttria-stabilized zirconia (YSZ) substrates is dramatically enhanced (∼3-4 orders of magnitude above bulk LSC113) by surface decorations of (La 0.5Sr0.5)2CoO4±δ (LSC214) with coverage in the range from ∼0.1 to ∼15 nm. Their surface and atomic structures were characterized by atomic force, scanning electron, and scanning transmission electron microscopy, and the ORR kinetics were determined by electrochemical impedance spectroscopy. Although the mechanism for ORR enhancement is not yet fully understood, our results to date show that the observed ORR enhancement can be attributed to highly active interfacial LSC113/LSC214 regions, which were shown to be atomically sharp. © 2010 American Chemical Society.

  5. Fundamental Studies of the Durability of Materials for Interconnects in Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Frederick S. Pettit; Gerald H. Meier

    2006-06-30

    Ferritic stainless steels are a leading candidate material for use as an SOFC interconnect, but have the problem of forming volatile chromia species that lead to cathode poisoning. This project has focused both on optimization of ferritic alloys for SOFC applications and evaluating the possibility of using alternative materials. The initial efforts involved studying the oxidation behavior of a variety of chromia-forming ferritic stainless steels in the temperature range 700-900 C in atmospheres relevant to solid oxide fuel cell operation. The alloys exhibited a wide variety of oxidation behavior based on composition. A method for reducing the vaporization is to add alloying elements that lead to the formation of a thermally grown oxide layer over the protective chromia. Several commercial steels form manganese chromate on the surface. This same approach, combined with observations of TiO{sub 2} overlayer formation on the chromia forming, Ni-based superalloy IN 738, has resulted in the development of a series of Fe-22 Cr-X Ti alloys (X=0-4 wt%). Oxidation testing has indicated that this approach results in significant reduction in chromia evaporation. Unfortunately, the Ti also results in accelerated chromia scale growth. Fundamental thermo-mechanical aspects of the durability of solid oxide fuel cell (SOFC) interconnect alloys have also been investigated. A key failure mechanism for interconnects is the spallation of the chromia scale that forms on the alloy, as it is exposed to fuel cell environments. Indentation testing methods to measure the critical energy release rate (Gc) associated with the spallation of chromia scale/alloy systems have been evaluated. This approach has been used to evaluate the thermomechanical stability of chromia films as a function of oxidation exposure. The oxidation of pure nickel in SOFC environments was evaluated using thermogravimetric analysis (TGA) to determine the NiO scaling kinetics and a four-point probe was used to measure

  6. Radiation oxidation of polypropylene: A solid-state 13C NMR study using selective isotopic labeling

    International Nuclear Information System (INIS)

    Polypropylene samples, in which the three different carbon atoms along the chain were selectively labeled with carbon-13, were subjected to radiation under inert and air atmospheres, and to post-irradiation exposure in air at various temperatures. By using solid-state 13C NMR measurements at room temperature, we have been able to identify and quantify the oxidation products. The isotopic labeling provides insight into chemical reaction mechanisms, since oxidation products can be traced back to their positions of origin on the macromolecule. The major products include peroxides and alcohols, both formed at tertiary carbon sites along the chain. Other products include methyl ketones, acids, esters, peresters, and hemiketals formed from reaction at the tertiary carbon, together with in-chain ketones and esters from reaction at the secondary chain carbon. No evidence is found of products arising from reactions at the methyl side chain. Significant temperature-dependent differences are apparent; for example much higher yields of chain-end methyl ketones, which are the indicator product of chain scission, are generated for both elevated temperature irradiation and for post-irradiation treatment at elevated temperatures. Time-dependent plots of yields of the various oxidation products have been obtained under a wide range of conditions, including the post-irradiation oxidation of a sample at room temperature in air that has been monitored for 2 years. Radiation-oxidation products of polypropylene are contrasted to products measured for 13C-labeled polyethylene in an earlier investigation: the peroxides formed in irradiated polypropylene are remarkably longer lived, the non-peroxidic products are significantly different, and the overall ratios of oxidation products in polypropylene change relatively little as a function of the extent of oxidation

  7. 49 CFR 177.838 - Class 4 (flammable solid) materials, Class 5 (oxidizing) materials, and Division 4.2 (pyroforic...

    Science.gov (United States)

    2010-10-01

    ..., see the List of CFR Sections Affected which appears in the Finding Aids section of the printed volume... (oxidizing) materials, and Division 4.2 (pyroforic liquid) materials. 177.838 Section 177.838 Transportation... § 177.838 Class 4 (flammable solid) materials, Class 5 (oxidizing) materials, and Division...

  8. Methods for using novel cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Science.gov (United States)

    Jacobson, Allan J.; Wang, Shuangyan; Kim, Gun Tae

    2016-01-12

    Methods using novel cathode, electrolyte and oxygen separation materials operating at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes include oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  9. Selective Aerobic Oxidation of 5-Hydroxymethylfurfural in Water Over Solid Ruthenium Hydroxide Catalysts with Magnesium-Based Supports

    DEFF Research Database (Denmark)

    Gorbanev, Yury; Kegnæs, Søren; Riisager, Anders

    2011-01-01

    Solid catalyst systems comprised of ruthenium hydroxide supported on magnesium-based carrier materials (spinel, magnesium oxide and hydrotalcite) were investigated for the selective, aqueous aerobic oxidation of the biomass-derived chemical 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid...

  10. Strong, Tough Glass Composites Developed for Solid Oxide Fuel Cell Seals

    Science.gov (United States)

    Bansal, Narottam P.; Choi, Sung R.

    2005-01-01

    A fuel cell is an electrochemical device that continuously converts the chemical energy of a fuel directly into electrical energy. It consists of an electrolyte, an anode, and a cathode. Various types of fuel cells are available, such as direct methanol fuel cells, alkaline fuel cells, proton-exchange-membrane fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, and solid oxide fuel cells (SOFCs). The salient features of an SOFC are all solid construction and high-temperature electrochemical-reaction-based operation, resulting in clean, efficient power generation from a variety of fuels. SOFCs are being developed for a broad range of applications, such as portable electronic devices, automobiles, power generation, and aeronautics.

  11. Solid-State Thermal Reaction of a Molecular Material and Solventless Synthesis of Iron Oxide

    Science.gov (United States)

    Roy, Debasis; Roy, Madhusudan; Zubko, Maciej; Kusz, Joachim; Bhattacharjee, Ashis

    2016-09-01

    Solid-state thermal decomposition reaction of a molecular material {As}({C}6{H}5)4[{Fe}^{II}{Fe}^{III} ({C}2{O}4)3]}n has been studied using non-isothermal thermogravimetry (TG) in an inert atmosphere. By analyzing the TG data collected at multiple heating rates in 300 K-1300 K range, the kinetic parameters (activation energy, most probable reaction mechanism function and frequency factor) are determined using different multi-heating rate analysis programs. Activation energy and the frequency factor are found to be strongly dependent on the extent of decomposition. The decomposed material has been characterized to be hematite using physical techniques (FT-IR and powder XRD). Particle morphology has been checked by TEM. A solid-state reaction pathway leading the molecular precursor to hematite has been proposed illustrating an example of solventless synthesis of iron oxides utilizing thermal decomposition as a technique using innocuous materials.

  12. Three-dimensional ionic conduction in the strained electrolytes of solid oxide fuel cells

    Science.gov (United States)

    Han, Yupei; Zou, Minda; Lv, Weiqiang; Mao, Yiwu; Wang, Wei; He, Weidong

    2016-05-01

    Flexible power sources including fuel cells and batteries are the key to realizing flexible electronic devices with pronounced foldability. To understand the bending effects in these devices, theoretical analysis on three-dimensional (3-D) lattice bending is necessary. In this report, we derive a 3-D analytical model to analyze the effects of electrolyte crystal bending on ionic conductivity in flexible solid-state batteries/fuel cells. By employing solid oxide fuel cells as a materials' platform, the intrinsic parameters of bent electrolyte materials, including lattice constant, Young's modulus, and Poisson ratio, are evaluated. Our work facilitates the rational design of highly efficient flexible electrolytes for high-performance flexible device applications.

  13. A study on production of biodiesel using a novel solid oxide catalyst derived from waste.

    Science.gov (United States)

    Majhi, Samrat; Ray, Srimanta

    2016-05-01

    The issues of energy security, dwindling supply and inflating price of fossil fuel have shifted the global focus towards fuel of renewable origin. Biodiesel, having renewable origin, has exhibited great potential as substitute for fossil fuels. The most common route of biodiesel production is through transesterification of vegetable oil in presence of homogeneous acid or base or solid oxide catalyst. But, the economics of biodiesel is not competitive with respect to fossil fuel due to high cost of production. The vegetable oil waste is a potential alternative for biodiesel production, particularly when disposal of used vegetable oil has been restricted in several countries. The present study evaluates the efficacy of a low-cost solid oxide catalyst derived from eggshell (a food waste) in transesterification of vegetable oil and simulated waste vegetable oil (SWVO). The impact of thermal treatment of vegetable oil (to simulate frying operation) on transesterification using eggshell-derived solid oxide catalyst (ESSO catalyst) was also evaluated along with the effect of varying reaction parameters. The study reported that around 90 % biodiesel yield was obtained with vegetable oil at methanol/oil molar ratio of 18:1 in 3 h reaction time using 10 % ESSO catalyst. The biodiesel produced with ESSO catalyst from SWVO, thermally treated at 150 °C for 24 h, was found to conform with the biodiesel standard, but the yield was 5 % lower compared to that of the untreated oil. The utilization of waste vegetable oil along with waste eggshell as catalyst is significant for improving the overall economics of the biodiesel in the current market. The utilization of waste for societal benefit with the essence of sustainable development is the novelty of this work. PMID:26154033

  14. A study on production of biodiesel using a novel solid oxide catalyst derived from waste.

    Science.gov (United States)

    Majhi, Samrat; Ray, Srimanta

    2016-05-01

    The issues of energy security, dwindling supply and inflating price of fossil fuel have shifted the global focus towards fuel of renewable origin. Biodiesel, having renewable origin, has exhibited great potential as substitute for fossil fuels. The most common route of biodiesel production is through transesterification of vegetable oil in presence of homogeneous acid or base or solid oxide catalyst. But, the economics of biodiesel is not competitive with respect to fossil fuel due to high cost of production. The vegetable oil waste is a potential alternative for biodiesel production, particularly when disposal of used vegetable oil has been restricted in several countries. The present study evaluates the efficacy of a low-cost solid oxide catalyst derived from eggshell (a food waste) in transesterification of vegetable oil and simulated waste vegetable oil (SWVO). The impact of thermal treatment of vegetable oil (to simulate frying operation) on transesterification using eggshell-derived solid oxide catalyst (ESSO catalyst) was also evaluated along with the effect of varying reaction parameters. The study reported that around 90 % biodiesel yield was obtained with vegetable oil at methanol/oil molar ratio of 18:1 in 3 h reaction time using 10 % ESSO catalyst. The biodiesel produced with ESSO catalyst from SWVO, thermally treated at 150 °C for 24 h, was found to conform with the biodiesel standard, but the yield was 5 % lower compared to that of the untreated oil. The utilization of waste vegetable oil along with waste eggshell as catalyst is significant for improving the overall economics of the biodiesel in the current market. The utilization of waste for societal benefit with the essence of sustainable development is the novelty of this work.

  15. Strontium Titanate-based Composite Anodes for Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Kammer Hansen, Kent; Wallenberg, L.R.;

    2008-01-01

    Surfactant-assisted infiltration of Gd-doped ceria (CGO) in Nb-doped SrTiO3 (STN) was investigated as a potential fuel electrode for solid oxide fuel cells (SOFC). An electronically conductive backbone structure of STN was first fabricated at high temperatures and then combined with the mixed...... conducting and electrochemically active nano-sized CGO phase at low temperatures. Symmetrical cell measurements at open circuit voltage (OCV), showed that the electrochemical activity was maintained or even improved compared to Ni/YSZ fuel electrodes. The novel electrode had an electrode polarization...

  16. Operation strategy for solid oxide fuel cell systems for small-scale stationary applications

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2009-01-01

    /shutdown phases and degrades the fuel cells. To counteract the degradation, the system has not to be stressed with rapid load variation during the operation. The analysis will consider an average profile for heat and power demand of a family house. Finally data analysis and power system limitations will be used......Solid oxide fuel cell micro cogeneration systems have the potential to reduce domestic energy consumption by providing both heat and power on site without transmission losses. The high grade heat produced during the operation of the power causes high thermal transients during startup...... to develop a viable strategy of operation....

  17. Solid oxide cell R&D at Riso National Laboratory-and its transfer to technology

    DEFF Research Database (Denmark)

    Linderoth, Søren

    2009-01-01

    Risø National Laboratory has conducted R&D on solid oxide cells for almost 20 years—all the time together with industries with interest in deploying the technology when mature. Risø National Laboratory (Risø) and Topsoe Fuel Cell A/S (TOFC) have for several years jointly carried out a development...... by the consortium, e.g. a metal-supported cell. TOFC has an extended program to develop the SOFC technology all the way to a marketable product....

  18. Spectroelectrochemical cell for in situ studies of solid oxide fuel cells

    DEFF Research Database (Denmark)

    Hagen, Anke; Traulsen, Marie Lund; Kiebach, Wolff-Ragnar;

    2012-01-01

    Solid oxide fuel cells (SOFCs) are able to produce electricity and heat from hydrogen- or carbon-containing fuels with high efficiencies and are considered important cornerstones for future sustainable energy systems. Performance, activation and degradation processes are crucial parameters to...... materials and structural properties, preferably at the atomic level. A characterization of these properties under operation is desired. As SOFCs operate at temperatures around 1073 K, this is a challenge. A spectroelectrochemical cell was designed that is able to study SOFCs at operating temperatures and in...

  19. Microstructure characterisation of solid oxide electrolysis cells operated at high current density

    DEFF Research Database (Denmark)

    Bowen, Jacob R.; Bentzen, Janet Jonna; Chen, Ming;

    High temperature solid oxide cells can be operated either as fuel cells or electrolysis cells for efficient power generation or production of hydrogen from steam or synthesis gas (H2 + CO) from steam and CO2 respectively. When operated under harsh conditions, they often exhibit microstructural...... quantified using the mean linear intercept method as a function of current density and correlated to increases in serial resistance. The above structural changes are then compared in terms of electrode degradation observed during the co-electrolysis of steam and CO2 at current densities up to -1.5 A cm-2...

  20. A solid dietary fat containing fish oil redistributes lipoprotein subclasses without increasing oxidative stress in men

    DEFF Research Database (Denmark)

    Tholstrup, T.; Hellgren, Lars; Petersen, M.;

    2004-01-01

    by oleic acid in test fat "O." Plasma total triacylglycerol (TAG), VLDL TAG, cholesterol in VLDL, and intermediate density lipoproteins (IDL) were lower (P LDL-2 (d = 1031-1042 g/L) subclass, and cholesterol of HDL2b subclass, were higher after intake......, a solid dietary fat containing (n-3) PUFA decreased plasma TAG, VLDL, and IDL cholesterol, and redistributed lipoprotein subclasses in LDL and HDL, with a higher concentration of the larger and less atherogenic subfractions. These changes took place without an increase in oxidative stress as measured...

  1. Combination nickel foam expanded nickel screen electrical connection supports for solid oxide fuel cells

    Science.gov (United States)

    Draper, Robert; Prevish, Thomas; Bronson, Angela; George, Raymond A.

    2007-01-02

    A solid oxide fuel assembly is made, wherein rows (14, 25) of fuel cells (17, 19, 21, 27, 29, 31), each having an outer interconnection (20) and an outer electrode (32), are disposed next to each other with corrugated, electrically conducting expanded metal mesh member (22) between each row of cells, the corrugated mesh (22) having top crown portions and bottom portions, where the top crown portion (40) have a top bonded open cell nickel foam (51) which contacts outer interconnections (20) of the fuel cells, said mesh and nickel foam electrically connecting each row of fuel cells, and where there are no more metal felt connections between any fuel cells.

  2. Triple phase boundary specific pathway analysis for quantitative characterization of solid oxide cell electrode microstructure

    DEFF Research Database (Denmark)

    Jørgensen, Peter Stanley; Ebbehøj, Søren Lyng; Hauch, Anne

    2015-01-01

    The density and percolation of Triple phase boundary sites are important quantities in analyzing microstructures of solid oxide fuel cell electrodes from tomography data. However, these measures do not provide descriptions of the quality of the TPB sites in terms of the length and radius...... or not by also analyzing the pathway length to the TPB sites and the bottleneck radius of the pathway. We show how these methods can be utilized in quantifying and relating the TPB specific results to cell test data of an electrode reduction protocol study for Ni/Scandia-and-Yttria-doped-Zirconia (Ni...

  3. Biomass gasification integrated with a solid oxide fuel cell and Stirling engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    An integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power application is analyzed. The target for electricity production is 120 kW. Woodchips are used as gasification feedstock to produce syngas, which is then used to feed the SOFC stacks...... for electricity production. Unreacted hydrocarbons remaining after the SOFC are burned in a catalytic burner, and the hot off-gases from the burner are recovered in a Stirling engine for electricity and heat production. Domestic hot water is used as a heat sink for the Stirling engine. A complete balance...

  4. Materials and Components for Low Temperature Solid Oxide Fuel Cells – an Overview

    OpenAIRE

    Radhika, D; A. S. Nesaraj

    2013-01-01

    This article summarizes the recent advancements made in the area of materials and components for low temperature solid oxide fuel cells (LT-SOFCs). LT-SOFC is a new trend in SOFCtechnology since high temperature SOFC puts very high demands on the materials and too expensive to match marketability. The current status of the electrolyte and electrode materials used in SOFCs, their specific features and the need for utilizing them for LT-SOFC are presented precisely in this review article. The s...

  5. TOF-SIMS characterization of impurity enrichment and redistribution in solid oxide electrolysis cells during operation

    DEFF Research Database (Denmark)

    Kiebach, Wolff-Ragnar; Norrman, Kion; Chatzichristodoulou, Christodoulos;

    2014-01-01

    TOF-SIMS analyses of state-of-the-art high temperature solid oxide electrolysis cells before and after testing under different operating conditions were performed. The investigated cells consist of an yttria stabilized zirconia (YSZ) electrolyte, a La1-xSrxMnO3-δ composite anode and a Ni-YSZ cermet...... and Ca, increases. For Si, a concentration gradient is found from the gas inlet to the gas outlet. Additionally, a loss of Ni percolation in the active cathode is observed in the same area where the Si enrichment is found. Based on the obtained TOF-SIMS results, the influence of the operating conditions...

  6. Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration

    DEFF Research Database (Denmark)

    Mogensen, David; Grunwaldt, Jan-Dierk; Hendriksen, Peter Vang;

    2014-01-01

    The kinetics of catalytic steam reforming of methane over an Ni-YSZ anode of a solid oxide fuel cell (SOFC) have been investigated with the cell placed in a stack configuration. In order to decrease the degree of conversion, a single cell stack with reduced area was used. Measurements were...... performed in the temperature range 600-800 degrees C and the partial pressures of all reactants and products were varied. The obtained rates could be well fitted with a power law expression (r proportional to P-CH4(0.7)). A simple model is presented which is capable of predicting the methane conversion...

  7. Integration of A Solid Oxide Fuel Cell into A 10 MW Gas Turbine Power Plant

    Directory of Open Access Journals (Sweden)

    Denver F. Cheddie

    2010-04-01

    Full Text Available Power generation using gas turbine power plants operating on the Brayton cycle suffers from low efficiencies. In this work, a solid oxide fuel cell (SOFC is proposed for integration into a 10 MW gas turbine power plant, operating at 30% efficiency. The SOFC system utilizes four heat exchangers for heat recovery from both the turbine outlet and the fuel cell outlet to ensure a sufficiently high SOFC temperature. The power output of the hybrid plant is 37 MW at 66.2% efficiency. A thermo-economic model predicts a payback period of less than four years, based on future projected SOFC cost estimates.

  8. Feed-forward control of a solid oxide fuel cell system with anode offgas recycle

    Science.gov (United States)

    Carré, Maxime; Brandenburger, Ralf; Friede, Wolfgang; Lapicque, François; Limbeck, Uwe; da Silva, Pedro

    2015-05-01

    In this work a combined heat and power unit (CHP unit) based on the solid oxide fuel cell (SOFC) technology is analysed. This unit has a special feature: the anode offgas is partially recycled to the anode inlet. Thus it is possible to increase the electrical efficiency and the system can be operated without external water feeding. A feed-forward control concept which allows secure operating conditions of the CHP unit as well as a maximization of its electrical efficiency is introduced and validated experimentally. The control algorithm requires a limited number of measurement values and few deterministic relations for its description.

  9. Fuzzy Logic Based Controller for a Grid-Connected Solid Oxide Fuel Cell Power Plant

    OpenAIRE

    Chatterjee, Kalyan; Shankar, Ravi; Kumar, Amit

    2014-01-01

    This paper describes a mathematical model of a solid oxide fuel cell (SOFC) power plant integrated in a multimachine power system. The utilization factor of a fuel stack maintains steady state by tuning the fuel valve in the fuel processor at a rate proportional to a current drawn from the fuel stack. A suitable fuzzy logic control is used for the overall system, its objective being controlling the current drawn by the power conditioning unit and meet a desirable output power demand. The prop...

  10. Reversible solid oxide fuel cells as energy conversion and storage devices

    OpenAIRE

    Gamble, Stephen R.

    2011-01-01

    A reversible solid oxide fuel cell (RSOFC) system could buffer intermittent electrical generation, e.g. wind, wave power by storing electrical energy as hydrogen and heat. RSOFC were fabricated by thermoplastic extrusion of (La₀.₈Sr₀.₂)₀.₉₅MnO[subscript(3−δ)] (LSM) ceramic support tubes, which were microstructurally stable with 55% porosity at 1350°C. A composite oxygen electrode of LSM-YSZ was applied, providing a homogeneous substrate for a 20 μm - 30 μm thick YSZ electrolyte. A dip-coated ...

  11. Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration

    OpenAIRE

    Mogensen, D.; J.-D. Grunwaldt; Hendriksen, P. V.; J. U. Nielsen; K. Dam-Johansen

    2014-01-01

    The kinetics of catalytic steam reforming of methane over an Ni-YSZ anode of a solid oxide fuel cell (SOFC) have been investigated with the cell placed in a stack configuration. In order to decrease the degree of conversion, a single cell stack with reduced area was used. Measurements were performed in the temperature range 600-800 degrees C and the partial pressures of all reactants and products were varied. The obtained rates could be well fitted with a power law expression (r proportional ...

  12. Sensitivity analysis for solid oxide fuel cells using a three-dimensional numerical model

    Energy Technology Data Exchange (ETDEWEB)

    Kapadia, S.; Anderson, W.K. [University of Tennessee SimCenter at Chattanooga, 701, East M.L. King Boulevard, Chattanooga, TN 37403 (United States)

    2009-04-15

    A three-dimensional numerical solver is developed to model complex transport processes inside all components of a solid oxide fuel cell (SOFC). An initial assessment of the accuracy of the model is made by comparing a numerically generated polarization curve with experimental results. Sensitivity derivatives of objective functions representing the cell voltage and the concentration polarization are obtained with respect to the material properties of the anode and the cathode using discrete adjoint method. Implementation of the discrete adjoint method is validated by comparing sensitivity derivatives obtained using the adjoint technique with results obtained using direct-differentiation and finite-difference methods. (author)

  13. Accelerated testing of solid oxide fuel cell stacks for micro combined heat and power application

    DEFF Research Database (Denmark)

    Hagen, Anke; Høgh, Jens Valdemar Thorvald; Barfod, Rasmus

    2015-01-01

    State-of-the-art (SoA) solid oxide fuel cell (SOFC) stacks are tested using profiles relevant for use in micro combined heat and power (CHP) units. Such applications are characterised by dynamic load profiles. In order to shorten the needed testing time and to investigate potential acceleration...... of degradation, the profiles are executed faster than required for real applications. Operation with fast load cycling, both using hydrogen and methane/steam as fuels, does not accelerate degradation compared to constant operation, which demonstrates the maturity of SoA stacks and enables transferring knowledge...

  14. Copper cobalt spinel as a high performance cathode for intermediate temperature solid oxide fuel cells.

    Science.gov (United States)

    Shao, Lin; Wang, Qi; Fan, Lishuang; Wang, Pengxiang; Zhang, Naiqing; Sun, Kening

    2016-06-30

    CuCo2O4 spinel prepared via an EDTA-citric acid process was studied as a candidate solid oxide fuel cell (SOFC) cathode material at intermediate temperatures (IT). CuCo2O4 cathodes were measured using thermal gravimetric analysis, X-ray diffraction and scanning electron microscopy. AC impedance spectroscopy and DC polarization measurements were used to study the electrode performance. The obtained value of the polarization resistances at 800 °C was 0.12 Ω cm(2) with a maximum power density of 972 mW cm(-2). PMID:27326915

  15. Residential Systems Based on Solid Oxide Fuel Cells for Scandinavian Climate

    DEFF Research Database (Denmark)

    Rokni, Masoud; Vialetto, Giulio

    2015-01-01

    Energy saving is an open point in most European countries where energy policies are oriented to reduce the use of fossil fuels, greenhouses emissions and energy independence and to increase the use of renewable energies. In the last several years, new technologies have been developed, and some...... of them received subsidies to increase installation and reduce cost. This article presents an innovative cogeneration system based on a solid oxide fuel cell (SOFC) system and heat pump for household applications with a focus on primary energy and economic savings using electric equivalent load parameter...

  16. Innovative Household Systems Based on Solid Oxide Fuel Cells for a Northern European climate

    DEFF Research Database (Denmark)

    Rokni, Masoud; Vialetto, Giulio

    2015-01-01

    Energy saving is an open point in most European countries where energy policies are oriented to reduce the use of fossil fuels, greenhouses emissions and energy independence and to increase the use of renewable energies. In the last several years, new technologies have been developed, and some...... of them received subsidies to increase installation and reduce cost.This article presents an innovative cogeneration system based on a solid oxide fuel cell (SOFC) systemand heat pump for household applications with a focus on primary energy and economic savings using electric equivalent load parameter...

  17. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    Science.gov (United States)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  18. Monolithic solid oxide fuel cell technology advancement for coal-based power generation

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-14

    The program is conducted by a team consisting of AiResearch Los Angeles Division of Allied-Signal Aerospace Company and Argonne National Laboratory (ANL). The objective of the program is to advance materials and fabrication methodologies to develop a monolithic solid oxide fuel cell (MSOFC) system capable of meeting performance, life, and cost goals for coal-based power generation. The program focuses on materials research and development, fabrication process development, cell/stack performance testing and characterization, cost and system analysis, and quality development.

  19. Oxides with polyatomic anions considered as new electrolyte materials for solid oxide fuel cells (SOFCs)

    Energy Technology Data Exchange (ETDEWEB)

    Bin Hassan, Oskar Hasdinor

    2010-10-21

    Materials with Polyatomic anions of [Al{sub 2}O{sub 7}]{sup -8}, [Ti{sub 2}O{sub 8}]{sup -8} and [P{sub 2}O{sub 7}]{sup -4} were investigated with respect to their ionic conductivity properties as well as its thermal expansion properties with the aim to use them as SOFCs electrolytes. The polyatomic anion groups selected from the oxy-cuspidine family of Gd{sub 4}Al{sub 2}O{sub 9} and Gd{sub 4}Ti{sub 2}O{sub 10} as well as from pyrophosphate SnP{sub 2}O{sub 7}. The pure oxy-cuspidine Gd{sub 4}Al{sub 2}O{sub 9}, the series of Gd{sub 4}Al{sub 2-x}Mg{sub x}O{sub 9-x/2} with x=0.10-1.0 and Gd{sub 4-x}M{sub x}Al{sub 2}O{sub 9-x/2} (M=Ca, Sr) with x = 0.05-0.5 were prepared successfully by the citrate complexation method. All samples showed the crystal structure of monoclinic oxycuspidine structure with space group of P2{sub 1/c} and Z=4. No solid solution was observed for Gd{sub 4}Al{sub 2-x}Mg{sub x}O{sub 9-x/2} where additional phases of Gd{sub 2}O{sub 3} and MgO were presence. XRD semiquantitative analysis together with SEM-EDX analysis revealed that Mg{sup 2+} was not able to substitute the Al{sup 3+} ions even at low Mg{sup 2+} concentration. The solid solution limit of Gd{sub 4-x}Ca{sub x}Al{sub 2}O{sub 9-x/2} and Gd{sub 4-x}Sr{sub x}Al{sub 2}O{sub 9-x/2} was determined between 0.05-0.10 and 0.01-0.05 mol for Ca and Sr, respectively. Beyond the substitution limit Gd{sub 4}Al{sub 2}O{sub 9}, GdAlO{sub 3} and SrGd{sub 2}Al{sub 2}O{sub 7} appeared as additional phases. The highest electrical conductivity obtained at 900 C yielded {sigma}= 1.49 x 10{sup -4}Scm{sup -1} for Gd{sub 3.95}Ca{sub 0.05}Al{sub 2}O{sub 8.98}. In comparison, the conductivity of pure Gd{sub 4}Al{sub 2}O{sub 9} was {sigma}= 1.73 x 10{sup -5} Scm{sup -1}. The conductivities determined were in a similar range as those of other cuspidine materials investigated previously. The thermal expansion coefficient of Gd{sub 4}Al{sub 2}O{sub 9} at 1000 C was 7.4 x 10{sup -6}K{sup -1}. The earlier reported

  20. Oxides with polyatomic anions considered as new electrolyte materials for solid oxide fuel cells (SOFCs)

    Energy Technology Data Exchange (ETDEWEB)

    Bin Hassan, Oskar Hasdinor

    2010-10-21

    Materials with Polyatomic anions of [Al{sub 2}O{sub 7}]{sup -8}, [Ti{sub 2}O{sub 8}]{sup -8} and [P{sub 2}O{sub 7}]{sup -4} were investigated with respect to their ionic conductivity properties as well as its thermal expansion properties with the aim to use them as SOFCs electrolytes. The polyatomic anion groups selected from the oxy-cuspidine family of Gd{sub 4}Al{sub 2}O{sub 9} and Gd{sub 4}Ti{sub 2}O{sub 10} as well as from pyrophosphate SnP{sub 2}O{sub 7}. The pure oxy-cuspidine Gd{sub 4}Al{sub 2}O{sub 9}, the series of Gd{sub 4}Al{sub 2-x}Mg{sub x}O{sub 9-x/2} with x=0.10-1.0 and Gd{sub 4-x}M{sub x}Al{sub 2}O{sub 9-x/2} (M=Ca, Sr) with x = 0.05-0.5 were prepared successfully by the citrate complexation method. All samples showed the crystal structure of monoclinic oxycuspidine structure with space group of P2{sub 1/c} and Z=4. No solid solution was observed for Gd{sub 4}Al{sub 2-x}Mg{sub x}O{sub 9-x/2} where additional phases of Gd{sub 2}O{sub 3} and MgO were presence. XRD semiquantitative analysis together with SEM-EDX analysis revealed that Mg{sup 2+} was not able to substitute the Al{sup 3+} ions even at low Mg{sup 2+} concentration. The solid solution limit of Gd{sub 4-x}Ca{sub x}Al{sub 2}O{sub 9-x/2} and Gd{sub 4-x}Sr{sub x}Al{sub 2}O{sub 9-x/2} was determined between 0.05-0.10 and 0.01-0.05 mol for Ca and Sr, respectively. Beyond the substitution limit Gd{sub 4}Al{sub 2}O{sub 9}, GdAlO{sub 3} and SrGd{sub 2}Al{sub 2}O{sub 7} appeared as additional phases. The highest electrical conductivity obtained at 900 C yielded {sigma}= 1.49 x 10{sup -4}Scm{sup -1} for Gd{sub 3.95}Ca{sub 0.05}Al{sub 2}O{sub 8.98}. In comparison, the conductivity of pure Gd{sub 4}Al{sub 2}O{sub 9} was {sigma}= 1.73 x 10{sup -5} Scm{sup -1}. The conductivities determined were in a similar range as those of other cuspidine materials investigated previously. The thermal expansion coefficient of Gd{sub 4}Al{sub 2}O{sub 9} at 1000 C was 7.4 x 10{sup -6}K{sup -1}. The earlier reported

  1. PEALD YSZ-based bilayer electrolyte for thin film-solid oxide fuel cells

    Science.gov (United States)

    Yu, Wonjong; Cho, Gu Young; Hong, Soonwook; Lee, Yeageun; Kim, Young Beom; An, Jihwan; Cha, Suk Won

    2016-10-01

    Yttria-stabilized zirconia (YSZ) thin film electrolyte deposited by plasma enhanced atomic layer deposition (PEALD) was investigated. PEALD YSZ-based bi-layered thin film electrolyte was employed for thin film solid oxide fuel cells on nanoporous anodic aluminum oxide substrates, whose electrochemical performance was compared to the cell with sputtered YSZ-based electrolyte. The cell with PEALD YSZ electrolyte showed higher open circuit voltage (OCV) of 1.0 V and peak power density of 182 mW cm-2 at 450 °C compared to the one with sputtered YSZ electrolyte(0.88 V(OCV), 70 mW cm-2(peak power density)). High OCV and high power density of the cell with PEALD YSZ-based electrolyte is due to the reduction in ohmic and activation losses as well as the gas and electrical current tightness.

  2. Energy and exergy analysis of an ethanol reforming process for solid oxide fuel cell applications.

    Science.gov (United States)

    Tippawan, Phanicha; Arpornwichanop, Amornchai

    2014-04-01

    The fuel processor in which hydrogen is produced from fuels is an important unit in a fuel cell system. The aim of this study is to apply a thermodynamic concept to identify a suitable reforming process for an ethanol-fueled solid oxide fuel cell (SOFC). Three different reforming technologies, i.e., steam reforming, partial oxidation and autothermal reforming, are considered. The first and second laws of thermodynamics are employed to determine an energy demand and to describe how efficiently the energy is supplied to the reforming process. Effect of key operating parameters on the distribution of reforming products, such as H2, CO, CO2 and CH4, and the possibility of carbon formation in different ethanol reformings are examined as a function of steam-to-ethanol ratio, oxygen-to-ethanol ratio and temperatures at atmospheric pressure. Energy and exergy analysis are performed to identify the best ethanol reforming process for SOFC applications. PMID:24561628

  3. Molybdate Based Ceramic Negative-Electrode Materials for Solid Oxide Cells

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Reddy Sudireddy, Bhaskar; Mogensen, Mogens Bjerg

    2010-01-01

    Novel molybdate materials with varying Mo valence were synthesized as possible negative-electrode materials for solid oxide cells. The phase, stability, microstructure and electrical conductivity were characterized. The electrochemical activity for H2O and CO2 reduction and H2 and CO oxidation...... was studied using simplified geometry point-contact electrodes. Unique phenomena were observed for some of the materials - they decomposed into multiple phases and formed a nanostructured surface upon exposure to operating conditions (in certain reducing atmospheres). The new phases and surface features...... enhanced the electrocatalytic activity and electronic conductivity. The polarization resistances of the best molybdates were two orders of magnitude lower than that of donor-doped strontium titanates. Many of the molybdate materials were significantly activated by cathodic polarization, and they exhibited...

  4. Elastoplastic Properties of Solid Oxide Fuel Cell Before and After Reduction

    Institute of Scientific and Technical Information of China (English)

    Xiang ZHAO; Fenghui WANG

    2013-01-01

    Oliver Pharr method may overestimate the hardness because of the effect of pile up.In this paper,the mechanical properties of oxide fuel cell,such as hardness and elastic modulus,are determined by a work of indentation,then a reverse analysis algorithms is followed to analyze the yield strength.From the nanoindentation tests carried out for the half-cell structure of solid oxide fuel cells (SOFCs),the typical mechanical properties are derived by the work of indentation and the reverse analysis algorithms.Due to the differences of Young's modulus and the mismatch of thermal expansion coefficients in the half-cell structure (NiO-YSZ/YSZ),the residual stress,which has effects on the fuel cell's performance,is aroused during sintering.Numerical results show that the load-displacement curve is agreement with the experimental curve if the residual stress was considered.

  5. Effect of SO2 on Performance of Solid Oxide Fuel Cell Cathodes

    Institute of Scientific and Technical Information of China (English)

    WANG De-jun; LENG Jing

    2012-01-01

    Effects of SO2 in ambient air on the performance and durability of solid oxide fuel cell(SOFC) cathode were evaluated by galvanostatic measurement.Comparison between two cathode materials was made to consider the cathode degradation mechanisms.The degradation performance is associated with a slow decomposition of the La0.6Sr0.4Co0.2Fe0.8O3(LSCF) due to the segregation of strontium oxide.Negligible deterioration for (La0.7Sr0.3)MnO3 (LSM) cathode was caused by SO2 poisoning under a current density of 200 mA/cm2.Metal sulphate formation may explain a slight deterioration under increasing high the concentration of SO2.It was verified that the poisoning mechanism for the two cathode materials resulted from the gradual decomposition of the cathode materials.

  6. A solid oxide fuel cell with a gadolinia-doped ceria anode: Preparation and performance

    DEFF Research Database (Denmark)

    Marina, O.A.; Bagger, C.; Primdahl, S.;

    1999-01-01

    The application of doped ceria as an anode material in high-temperature solid oxide fuel cells (SOFC) is described. Deposition of an anchoring layer of YSZ particles was used to obtain sufficient adhesion between a porous Ce0.6Gd0.4O1.8 (CG4) anode and an yrttria-stabilised zirconia (YSZ...... internal resistance of 0.39 Ohm cm(2) at 0.71 V cell voltage and a power density of 470 mW/cm(2) was obtained at 1000 degrees C using H-2/H2O/N-2 = 9/1.2/89.8 as the fuel and air as oxidant. A current density of 0.25 A/cm(2) at an area specific internal resistance of 2 Ohm cm(2) was obtained with CH4/H2O...

  7. Performance of a novel type of electrolyte-supported solid oxide fuel cell with honeycomb structure

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Morales, Juan Carlos; Savvin, Stanislav N.; Nunez, Pedro [Departmento de Quimica Inorganica, Universidad de La Laguna, 38200 Tenerife (Spain); Marrero-Lopez, David [Departamento de Fisica Aplicada I, Universidad de Malaga, 29071 Malaga (Spain); Pena-Martinez, Juan; Canales-Vazquez, Jesus [Instituto de Energias Renovables-Universidad de Castilla la Mancha, 02006 Albacete (Spain); Roa, Joan Josep; Segarra, Merce [DIOPMA, Departamento de Ciencia de los Materiales e Ing. Metalurgica, 08028 Barcelona (Spain)

    2010-01-15

    A novel design, alternative to the conventional electrolyte-supported solid oxide fuel cell (SOFC) is presented. In this new design, a honeycomb-electrolyte is fabricated from hexagonal cells, providing high mechanical strength to the whole structure and supporting the thin layer used as electrolyte of a SOFC. This new design allows a reduction of {proportional_to}70% of the electrolyte material and it renders modest performances over 320 mW cm{sup -2} but high volumetric power densities, i.e. 1.22 W cm{sup -3} under pure CH{sub 4} at 900 C, with a high OCV of 1.13 V, using the standard Ni-YSZ cermet as anode, Pt as cathode material and air as the oxidant gas. (author)

  8. Development of a solid oxide fuel cell (SOFC) automotive auxiliary power unit (APU) fueled by gasoline

    International Nuclear Information System (INIS)

    This paper describes the design and the development progress of a 3 to 5 auxiliary power unit (APU) based on a gasoline fueled solid oxide fuel cell (SOFC). This fuel cell was supplied reformate gas (reactant) by a partial oxidation (POx) catalytic reformer utilizing liquid gasoline and designed by Delphi Automotive Systems. This reformate gas consists mainly of hydrogen, carbon monoxide and nitrogen and was fed directly in to the SOFC stack without any additional fuel reformer processing. The SOFC stack was developed by Global Thermoelectric and operates around 700oC. This automotive APU produces power to support future 42 volt vehicle electrical architectures and loads. The balance of the APU, designed by Delphi Automotive Systems, employs a packaging and insulation design to facilitate installation and operation on-board automobiles. (author)

  9. Encapsulated solid phase epitaxy of a Ge quantum well embedded in an epitaxial rare earth oxide.

    Science.gov (United States)

    Laha, Apurba; Bugiel, E; Jestremski, M; Ranjith, R; Fissel, A; Osten, H J

    2009-11-25

    An efficient method based on molecular beam epitaxy has been developed to integrate an epitaxial Ge quantum well buried into a single crystalline rare earth oxide. The monolithic heterostructure comprised of Gd2O3-Ge-Gd2O3 grown on an Si substrate exhibits excellent crystalline quality with atomically sharp interfaces. This heterostructure with unique structural quality could be used for novel nanoelectronic applications in quantum-effect devices such as nanoscale transistors with a high mobility channel, resonant tunneling diode/transistors, etc. A phenomenological model has been proposed to explain the epitaxial growth process of the Ge layer under oxide encapsulation using a solid source molecular beam epitaxy technique. PMID:19875877

  10. System modeling of an air-independent solid oxide fuel cell system for unmanned undersea vehicles

    Science.gov (United States)

    Burke, A. Alan; Carreiro, Louis G.

    To examine the feasibility of a solid oxide fuel cell (SOFC)-powered unmanned undersea vehicle (UUV), a system level analysis is presented that projects a possible integration of the SOFC stack, fuel steam reformer, fuel/oxidant storage and balance of plant components into a 21-in. diameter UUV platform. Heavy hydrocarbon fuel (dodecane) and liquid oxygen (LOX) are chosen as the preferred reactants. A maximum efficiency of 45% based on the lower heating value of dodecane was calculated for a system that provides 2.5 kW for 40 h. Heat sources and sinks have been coupled to show viable means of thermal management. The critical design issues involve proper recycling of exhaust steam from the fuel cell back into the reformer and effective use of the SOFC stack radiant heat for steam reformation of the hydrocarbon fuel.

  11. Auxiliary power unit based on a solid oxide fuel cell and fuelled with diesel

    Science.gov (United States)

    Lawrence, Jeremy; Boltze, Matthias

    An auxiliary power unit (APU) is presented that is fuelled with diesel, thermally self-sustaining, and based on a solid oxide fuel cell (SOFC). The APU is rated at 1 kW electrical, and can generate electrical power after a 3 h warm-up phase. System features include a "dry" catalytic partial oxidation (CPOX) diesel reformer, a 30 cell SOFC stack with an open cathode, and a porous-media afterburner. The APU does not require a supply of external water. The SOFC stack is an outcome of a development partnership with H.C. Starck GmbH and Fraunhofer IKTS, and is discussed in detail in an accompanying paper.

  12. Novel approaches for fabrication of thin film layers for solid oxide electrolyte fuel cells

    Science.gov (United States)

    Murugesamoorthi, K. A.; Srinivasan, S.; Cocke, D. L.; Appleby, A. J.

    1990-01-01

    The main objectives of the SOFC (solid oxide fuel cell) project are to (1) identify viable and cost-effective techniques to prepare cell components for stable MSOFCs (monolithic SOFCs); (2) fabricate half and single cells; and (3) evaluate their performances. The approach used to fabricate stable MSOFCs is as follows: (1) the electrolyte layer is prepared in the form of a honeycomb structure by alloy oxidation and other cell components are deposited on it; (2) the electrolyte and anode layers are deposited on the cathode layer, which has a porous, honeycomb structure; and (3) the electrolyte and cathode layers are deposited on the anode layer. The current status of the project is reported.

  13. Optimum Chemical Regeneration of the Gases Burnt in Solid Oxide Fuel Cells

    Science.gov (United States)

    Baskakov, A. P.; Volkova, Yu. V.; Plotnikov, N. S.

    2014-07-01

    A simplified method of calculating the concentrations of the components of a thermodynamically equilibrium mixture (a synthesis gas) supplied to the anode channel of a battery of solid oxide fuel cells and the change in these concentrations along the indicated channel is proposed and results of corresponding calculations are presented. The variants of reforming of a natural gas (methane) by air and steam as well as by a part of the exhaust combustion products for obtaining a synthesis gas are considered. The amount of the anode gases that should be returned for the complete chemical regeneration of the gases burnt in the fuel cells was determined. The dependence of the electromotive force of an ideal oxide fuel element (the electric circuit of which is open) on the degree of absorption of oxygen in a thermodynamically equilibrium fuel mixture was calculated.

  14. Cu Binding to Iron Oxide-Organic Matter Coprecipitates in Solid and Dissolved Phases

    Science.gov (United States)

    Vadas, T. M.; Koenigsmark, F.

    2015-12-01

    Recent studies indicate that Cu is released from wetlands following storm events. Assymetrical field flow field fractionation (AF4) analyses as well as total and dissolved metal concentration measurements suggest iron oxide-organic matter complexes control Cu retention and release. Coprecipitation products of Fe oxide and organic matter were prepared under conditions similar to the wetland to assess Cu partitioning to and availability from solid phases that settle from solution as well as phases remaining suspended. Cu coprecipitation and sorption to organomineral precipitation solids formed at different Fe:organic carbon (OC) ratios were compared for net Cu removal and extractability. As more humic acid was present during precipitation of Fe, TEM images indicated smaller Fe oxide particles formed within an organic matrix as expected. In coprecipitation reactions, as the ratio of Fe:OC decreased, more Cu was removed from solution at pH 5.5 and below. However, in sorption reactions, there was an inhibition of Cu removal at low OC concentrations. As the pH increased from 5.5 to 7 and as solution phase OC concentration increased, more Cu remained dissolved in both coprecipitation and sorption reactions. The addition of Ca2+, glycine, histidine and citric acid or lowering the pH resulted in more extractable Cu from the coprecipitation compared with the sorption reactions. The variations in Cu extraction were likely due to a combination of a more amorphous structure in CPT products, and the relative abundance of available Fe oxide or OC binding sites. Suspended Fe oxide-organic matter coprecipitates were assessed using AF4 coupled to online TOC analysis and ICP-MS. In laboratory prepared samples, Cu was observed in a mixture of small 1-5 nm colloids of Fe oxide-organic matter precipitates, but the majority was observed in larger organic matter colloids and were not UV absorbing, suggesting more aliphatic carbon materials. In field samples, up to 60% of the dissolved Cu

  15. Study on Targeting and in vitro Anti-oxidation of Baicalin Solid Lipid Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    PING Yang; YU Lian; HU Yan-qiu; MA Li-na; CAO Yue-sheng; ZHANG Lei; MIYAMURA Mitsuhiko; YOKOTA Junko; YOSHIOKA Saburo

    2012-01-01

    Objective To prepare liver-targeted baicalin solid lipid nanoparticles(BSLNs)and to study their in vitro anti-oxidative activity.Methods BSLNs were prepared by emulsification ultrasonic dispersion method and characterized by transmission electron microscopy and laser particle size distribution;The tissue in vivo distribution was detected by pharmacokinetics;In vitro anti-superoxide dismutase(SOD)activity and reduction capacity of BSLNs were determined;The ability of removing hydroxyl radical was determined by phenanthroline-Fe2+oxidation.Results The best prescription was baicalin-soybean lecithin-glyeeryl monostearate-poloxamer 188(1:5:15:30);The encapsulation efficiency and drug loading were 84.7% and 5.65%,respectively,mean size of particles was(68.6±8)nm,Zeta potential was-22.13 mV;The in vitro anti-oxidant results showed that BSLNs had a significant inhibitory effect on SOD and a strong reducing capacity as well as a removing hydroxide radical ability.The targeting rate of BSLNs was 6.931 for liver.Conclusion The results demonstrate that BSLNs could enhance the liver targeting ability and in vitro anti-oxidative activity significantly.

  16. Shape-Dependent Activity of Ceria for Hydrogen Electro-Oxidation in Reduced-Temperature Solid Oxide Fuel Cells.

    Science.gov (United States)

    Tong, Xiaofeng; Luo, Ting; Meng, Xie; Wu, Hao; Li, Junliang; Liu, Xuejiao; Ji, Xiaona; Wang, Jianqiang; Chen, Chusheng; Zhan, Zhongliang

    2015-11-01

    Single crystalline ceria nanooctahedra, nanocubes, and nanorods are hydrothermally synthesized, colloidally impregnated into the porous La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) scaffolds, and electrochemically evaluated as the anode catalysts for reduced temperature solid oxide fuel cells (SOFCs). Well-defined surface terminations are confirmed by the high-resolution transmission electron microscopy--(111) for nanooctahedra, (100) for nanocubes, and both (110) and (100) for nanorods. Temperature-programmed reduction in H2 shows the highest reducibility for nanorods, followed sequentially by nanocubes and nanooctahedra. Measurements of the anode polarization resistances and the fuel cell power densities reveal different orders of activity of ceria nanocrystals at high and low temperatures for hydrogen electro-oxidation, i.e., nanorods > nanocubes > nanooctahedra at T ≤ 450 °C and nanooctahedra > nanorods > nanocubes at T ≥ 500 °C. Such shape-dependent activities of these ceria nanocrystals have been correlated to their difference in the local structure distortions and thus in the reducibility. These findings will open up a new strategy for design of advanced catalysts for reduced-temperature SOFCs by elaborately engineering the shape of nanocrystals and thus selectively exposing the crystal facets.

  17. Shape-Dependent Activity of Ceria for Hydrogen Electro-Oxidation in Reduced-Temperature Solid Oxide Fuel Cells.

    Science.gov (United States)

    Tong, Xiaofeng; Luo, Ting; Meng, Xie; Wu, Hao; Li, Junliang; Liu, Xuejiao; Ji, Xiaona; Wang, Jianqiang; Chen, Chusheng; Zhan, Zhongliang

    2015-11-01

    Single crystalline ceria nanooctahedra, nanocubes, and nanorods are hydrothermally synthesized, colloidally impregnated into the porous La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) scaffolds, and electrochemically evaluated as the anode catalysts for reduced temperature solid oxide fuel cells (SOFCs). Well-defined surface terminations are confirmed by the high-resolution transmission electron microscopy--(111) for nanooctahedra, (100) for nanocubes, and both (110) and (100) for nanorods. Temperature-programmed reduction in H2 shows the highest reducibility for nanorods, followed sequentially by nanocubes and nanooctahedra. Measurements of the anode polarization resistances and the fuel cell power densities reveal different orders of activity of ceria nanocrystals at high and low temperatures for hydrogen electro-oxidation, i.e., nanorods > nanocubes > nanooctahedra at T ≤ 450 °C and nanooctahedra > nanorods > nanocubes at T ≥ 500 °C. Such shape-dependent activities of these ceria nanocrystals have been correlated to their difference in the local structure distortions and thus in the reducibility. These findings will open up a new strategy for design of advanced catalysts for reduced-temperature SOFCs by elaborately engineering the shape of nanocrystals and thus selectively exposing the crystal facets. PMID:26307555

  18. Modeling and experimental validation of CO heterogeneous chemistry and electrochemistry in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Yurkiv, Vitaly

    2010-12-17

    In the present work experimental and numerical modeling studies of the heterogeneously catalyzed and electrochemical oxidation of CO at Nickel/yttria-stabilized zirconia (YSZ) solid oxide fuel cell (SOFC) anode systems were performed to evaluate elementary charge-transfer reaction mechanisms taking place at the three-phase boundary of CO/CO{sub 2} gas-phase, Ni electrode, and YSZ electrolyte. Temperature-programmed desorption and reaction experiments along with density functional theory calculations were performed to determine adsorption/desorption and surface diffusion kinetics as well as thermodynamic data for the CO/CO{sub 2}/Ni and CO/CO{sub 2}/YSZ systems. Based on these data elementary reaction based models with four different charge transfer mechanisms for the electrochemical CO oxidation were developed and applied in numerical simulations of literature experimental electrochemical data such as polarization curves and impedance spectra. Comparison between simulation and experiment demonstrated that only one of the four charge transfer mechanisms can consistently reproduce the electrochemical data over a wide range of operating temperatures and CO/CO{sub 2} gas compositions. (orig.) [German] In der vorliegenden Arbeit wurden experimentelle und numerische Untersuchungen zur heterogen katalysierten und elektrochemischen Oxidation von CO an Anodensystemen (bestehend aus Nickel und yttriumdotiertem Zirkoniumdioxid, YSZ) von Festoxidbrennstoffzellen (engl. Solid Oxide Fuel Cells, SOFCs) ausgefuehrt, um den mikroskopischen Mechanismus der an der CO/CO{sub 2}-Gasphase/Ni-Elektrode/YSZ-Elektrolyt- Dreiphasen-Grenzflaeche ablaufenden Ladungsuebertragungsreaktion aufzuklaeren. Temperaturprogrammierte Desorptionsmessungen (TPD) und Temperaturprogrammierte Reaktionsmessungen (TPR) sowie Dichtefunktionaltheorierechnungen wurden ausgefuehrt, um adsorptions-, desorptions- und reaktionskinetische sowie thermodynamische Daten fuer die CO/CO{sub 2}/Ni- und CO/CO{sub 2}/YSZ

  19. TAPE CALENDERING MANUFACTURING PROCESS FOR MULTILAYER THIN-FILM SOLID OXIDE FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Minh; Kurt Montgomery

    2004-10-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the Phases I and II under Contract DE-AC26-00NT40705 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Tape Calendering Manufacturing Process For Multilayer Thin-Film Solid Oxide Fuel Cells''. The main objective of this project was to develop the manufacturing process based on tape calendering for multilayer solid oxide fuel cells (SOFC's) using the unitized cell design concept and to demonstrate cell performance under specified operating conditions. Summarized in this report is the development and improvements to multilayer SOFC cells and the unitized cell design. Improvements to the multilayer SOFC cell were made in electrochemical performance, in both the anode and cathode, with cells demonstrating power densities of nearly 0.9 W/cm{sup 2} for 650 C operation and other cell configurations showing greater than 1.0 W/cm{sup 2} at 75% fuel utilization and 800 C. The unitized cell design was matured through design, analysis and development testing to a point that cell operation at greater than 70% fuel utilization was demonstrated at 800 C. The manufacturing process for both the multilayer cell and unitized cell design were assessed and refined, process maps were developed, forming approaches explored, and nondestructive evaluation (NDE) techniques examined.

  20. Reactive magnesium oxide cements: geochemical modelling of pH profile and solid phase composition

    International Nuclear Information System (INIS)

    Due to a range of technical and sustainability advantages, reactive magnesium oxide cements (MgO) are a potential alternative to Portland cement (PC) for conditioning intermediate level radioactive waste (ILW). MgO cements consist of a mixture of hydraulic cement and reactive magnesium oxide to which pozzolans such as silica fume (SF) may be added. While favourable, the mechanical and chemical properties of MgO matrices still require further investigation to ensure effective immobilisation of contaminants. In this study a solubility-speciation model was developed using PHREEQC to simulate blends based on low and high contents of MgO, including SF as a supplementary material. Analyses aimed at characterising binding systems focusing on their equilibrium pH with pure water and saturation index (SI) of solid phases. The geochemical model successfully confirmed that the equilibrium pH is inversely proportional to the fraction of MgO and SF present in the hydrated paste. Comparison with data available on literature mostly gave a consistent picture and the model provided reasonable predictions of existent solid phases. (authors)

  1. CO oxidation on Ta-Modified SnO2 solid solution catalysts

    Science.gov (United States)

    Han, Xue; Xu, Xianglan; Liu, Wenming; Wang, Xiang; Zhang, Rongbin

    2013-06-01

    Co-precipitation method was adopted to prepare Sn-Ta mixed oxide catalysts with different Sn/Ta molar ratios and used for CO oxidation. The catalysts were investigated by N2-Brunauer-Emmett-Teller (N2-BET), X-ray diffraction patterns (XRD), H2-temperature programmed reduction (H2-TPR), Thermal Gravity Analysis - Differential Scanning Calorimetry (TGA-DSC) techniques. It is revealed that a small amount of Ta cations can be doped into SnO2 lattice to form solid solution by co-precipitation method, which resulted in samples having higher surface areas, improved thermal stability and more deficient oxygen species on the surface of SnO2. As a result, those Sn rich Sn-Ta solid solution catalysts with an Sn/Ta molar ratio higher than 4/2 showed significantly enhanced activity as well as good resistance to water deactivation. It is noted here that if tantala disperses onto SnO2 surface instead of doping into its lattice, it will then have negative effect on its activity.

  2. Generator module architecture for a large solid oxide fuel cell power plant

    Science.gov (United States)

    Gillett, James E.; Zafred, Paolo R.; Riggle, Matthew W.; Litzinger, Kevin P.

    2013-06-11

    A solid oxide fuel cell module contains a plurality of integral bundle assemblies, the module containing a top portion with an inlet fuel plenum and a bottom portion receiving air inlet feed and containing a base support, the base supports dense, ceramic exhaust manifolds which are below and connect to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the fuel cells comprise a fuel cell stack bundle all surrounded within an outer module enclosure having top power leads to provide electrical output from the stack bundle, where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all 100% of the weight of the stack, and each bundle assembly has its own control for vertical and horizontal thermal expansion control.

  3. Compatibility between glass sealants and electrode materials of solid oxide fuel cells

    Institute of Scientific and Technical Information of China (English)

    PIAO Jinhua; SUN Kening; Chen Xinbing

    2008-01-01

    BaO-CaO-Al2O3-SiO2-La2O3-B2O3 system glass materials were investigated as sealants for a solid oxide fuel cell (SOFC).The transition temperature (Tg) and the crystal temperature (Td) values decrease greatly with the increase of BaCO3 content when the other components do not change.For the thermal expansion coefficient (TEC) values,the trend is inverse.The sealant has superior thermal expansion coefficient matching properties with La(Sr)MnO3 (LSM) cathode,La(Sr)FeO3 (LSF) cathode,Ni-LDC (La doped CeO2) anode,and Ni-YSZ (yttria stabilized zirconia) cermet anode.The sealant also has superior stability,compatibility,and good bonding characteristic with these electrode materials at 800-900℃.The results indicate that the aluminosilicate system glass sealant possesses superior compatibility with electrode materials of the solid oxide fuel cell.

  4. H2O/CO2 co-electrolysis in solid oxide electrolysis cells

    Institute of Scientific and Technical Information of China (English)

    Han Minfang; Fan Hui; Peng Suping

    2014-01-01

    A solid oxide electrolysis cell (SOEC) is an environmental-friendly device which can convert electric energy into chemical energy with high efficiency. In this paper,the progress on structure and operational princi-ple of an SOEC for co-electrolyzing H2O and CO2 to generate syngas was reviewed. The recent development of high temperature H2O/CO2 co-electrolysis from solid oxide single electrolysis cell was introduced. Also investi-gated was H2O/CO2 co-electrolysis research using hydrogen electrode-supported nickel (Ni)-yttria-stabilized zir-conia (YSZ)/YSZ/Sr-doped LaMnO3 (LSM)-YSZ cells in our group. With 50%H2O,15.6%H2 and 34.4%CO2 inlet gas to Ni-YSZ electrode,polarization curves (I-U curves) and electrochemical impedance spectra (EIS) were measured at 800℃and 900℃. Long-term durability of electrolysis was carried out with the same in-let gas at 900℃and 0.2 A/cm2. In addition,the improvement of structure and development of novel materials for increasing the electrolysis efficiency of SOECs were put forward as well.

  5. Electrolysis of solid copper oxide to copper in Choline chloride-EG eutectic melt

    International Nuclear Information System (INIS)

    Electrochemical deoxygenation of porous CuO pellet to prepare copper was investigated in the 33.3-66.7 mol% Choline chloride (ChCl)-EG eutectic melt at 353 K. Cyclic voltammetry of the Pt-powder cavity microelectrode loaded with CuO powder exhibited that the solid CuO can be electrochemically reduced in solid state in the eutectic melt. Constant-voltage (2.0 to 2.4 V) electrolysis, with an assembled cathode of a sintered porous CuO pellet and a graphite anode, that performed in the eutectic melt demonstrated the conversion process of oxide-to metal as confirmed by scanning electron microscopy, energy-dispersive X-ray, and X-ray diffraction spectra. A mechanism for this reduction process has been proposed on the basis of the in situ formation of numerous gas at the cathode, emphasizing that the oxidation of cathodically generated O2− ions occurred nearby along with the copper electroreduction, in which the new formed metal was served as a temporary anode, oxygen was generated at the interface of the reduced copper and electrolyte inside the cathode

  6. High pressure operation of tubular solid oxide fuel cells and their intergration with gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, C.; Wepfer, W.J. [Georgia Institute of Technology, Atlanta, GA (United States)

    1996-12-31

    Fossil fuels continue to be used at a rate greater than that of their natural formation, and the current byproducts from their use are believed to have a detrimental effect on the environment (e.g. global warming). There is thus a significant impetus to have cleaner, more efficient fuel consumption alternatives. Recent progress has led to renewed vigor in the development of fuel cell technology, which has been shown to be capable of producing high efficiencies with relatively benign exhaust products. The tubular solid oxide fuel cell developed by Westinghouse Electric Corporation has shown significant promise. Modeling efforts have been and are underway to optimize and better understand this fuel cell technology. Thus far, the bulk of modeling efforts has been for operation at atmospheric pressure. There is now interest in developing high-efficiency integrated gas turbine/solid oxide fuel cell systems. Such operation of fuel cells would obviously occur at higher pressures. The fuel cells have been successfully modeled under high pressure operation and further investigated as integrated components of an open loop gas turbine cycle.

  7. Open-source computational model of a solid oxide fuel cell

    Science.gov (United States)

    Beale, Steven B.; Choi, Hae-Won; Pharoah, Jon G.; Roth, Helmut K.; Jasak, Hrvoje; Jeon, Dong Hyup

    2016-03-01

    The solid oxide fuel cell is an electro-chemical device which converts chemical energy into electricity and heat. To compete in today's market, design improvements, in terms of performance and life cycle, are required. Numerical prototypes can accelerate design and development progress. In this programme of research, a three-dimensional solid oxide fuel cell prototype, openFuelCell, based on open-source computational fluid dynamics software was developed and applied to a single cell. Transport phenomena, combined with the solution to the local Nernst equation for the open-circuit potential, as well as the Kirchhoff-Ohm relationship for the local current density, allow local electro-chemistry, fluid flow, multi-component species transport, and multi-region thermal analysis to be considered. The underlying physicochemical hydrodynamics, including porous-electrode and electro-chemical effects are described in detail. The openFuelCell program is developed in an object-oriented open-source C++ library. The code is available at

  8. Assessment of bio-fuel options for solid oxide fuel cell applications

    Science.gov (United States)

    Lin, Jiefeng

    Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with

  9. Treating solid dairy manure using microwave-enhanced advanced oxidation process.

    Science.gov (United States)

    Kenge, Anju A; Liao, Ping H; Lo, Kwang V

    2009-08-01

    The microwave enhanced advanced oxidation process (MW/H(2)O(2)-AOP) was used to treat separated solid dairy manure for nutrient release and solids reduction. The MW/H(2)O(2)-AOP was conducted at a microwave temperature of 120 degrees C for 10 minutes, and at three pH conditions of 3.5, 7.3 and 12. The hydrogen peroxide dosage at approximately 2 mL per 1% TS for a 30 mL sample was used in this study, reflecting a range of 0.53-0.75 g H(2)O(2)/g dry sludge. The results indicated that substantial quantities of nutrients could be released into the solution at pH of 3.5. However, at neutral and basic conditions only volatile fatty acids and soluble chemical oxygen demand could be released. The analyses on orthophosphate, soluble chemical oxygen demands and volatile fatty acids were re-examined for dairy manure. It was found that the orthophosphate concentration for untreated samples at a higher % total solids (TS) was suppressed and lesser than actual. To overcome this difficulty, the initial orthophosphate concentration had to be measured at 0.5% TS.

  10. Effect of binder burnout on the sealing performance of glass ceramics for solid oxide fuel cells

    Science.gov (United States)

    Ertugrul, Tugrul Y.; Celik, Selahattin; Mat, Mahmut D.

    2013-11-01

    The glass ceramics composite sealants are among few materials suitable for the solid oxide fuel cells (SOFC) due to their high operating temperatures (600 °C-850 °C). The glass ceramics chemically bond to both the metallic interconnector and the ceramic electrolyte and provide a gas tight connection. A careful and several stages manufacturing procedure is required to obtain a gas tight sealing. In this study, effects of binder burnout process on the sealing performance are investigated employing commercially available glass ceramic powders. The glass ceramic laminates are produced by mixing glass ceramic powders with the organic binders and employing a tape casting method. The laminates are sandwiched between the metallic interconnectors of an SOFC cell. The burnout and subsequent sealing quality are analyzed by measuring leakage rate and final macrostructure of sealing region. The effects of heating rate, dead weight load, solid loading, carrier gas and their flow rates are investigated. It is found that sealing quality is affected from all investigated parameters. While a slower heating rate is required for a better burnout, the mass flow rate of sweep gas must be adequate for removal of the burned gas. The leakage rate is reduced to 0.1 ml min-1 with 2 °C min-1 + 1 °C min-1 heating rate, 86.25% solid loading, 200 N dead weight load and 500 ml min-1 sweep gas flow rate.

  11. Novel quasi-symmetric solid oxide fuel cells with enhanced electrochemical performance

    KAUST Repository

    Chen, Yonghong

    2016-02-16

    Symmetrical solid oxide fuel cell (SSOFC) using same materials as both anode and cathode simultaneously has gained extensively attentions, which can simplify fabrication process, minimize inter-diffusion between components, enhance sulfur and coking tolerance by operating the anode as the cathode in turn. With keeping the SSOFC\\'s advantages, a novel quasi-symmetrical solid oxide fuel cell (Q-SSOFC) is proposed to further improve the performance, which optimally combines two different SSOFC electrode materials as both anode and cathode simultaneously. PrBaFe2O5+δ (PBFO) and PrBaFe1.6Ni0.4O5+δ (PBFNO, Fe is partially substituted by Ni.) are prepared and applied as both cathode and anode for SSOFC, which exhibit desirable chemical and thermal compatibility with Sm0.8Ce0.2O1.9 (SDC) electrolyte. PBFO cathode exhibits higher oxygen reduction reaction (ORR) activity than PBFNO cathode in air, whereas PBFNO anode exhibits higher hydrogen oxidation reaction (HOR) activity than PBFO anode in H2. The as-designed Q-SSOFC of PBFNO/SDC/PBFO exhibits higher electrochemical performance than the conventional SSOFCs of both PBFO/SDC/PBFO and PBFNO/SDC/PBFNO. The superior performance of Q-SSOFC is attributed to the lowest polarization resistance (Rp). The newly developed Q-SSOFCs open doors for further improvement of electrochemical performance in SSOFC, which hold more promise for various potential applications. © 2016 Elsevier B.V. All rights reserved.

  12. Yttrium and Nickel Co-Doped BaZrO3 as a Proton-Conducting Electrolyte for Intermediate Temperature Solid Oxide Fuel Cells

    KAUST Repository

    Shafi, S. P.

    2015-07-17

    High temperature proton conducting oxides, due to their lower activation energy for proton conduction, can achieve high conductivity at relatively low temperatures (500-700°C). Though BaZr0.8Y0.2O3-δ (BZY) perovskite exhibits good chemical stability and high bulk conductivity, high grain boundary resistance decreases its total conductivity. This work focuses on substitution of Zr4+ with Ni2+ in the perovskite B-site in a targeted fashion in order to promote the sinterability of BZY. Powder X-ray diffraction analysis showed the formation of single phases for Ba0.8-xY0.2NixO3-δ compositions up to x = 0.04. Scanning electron microscopy (SEM) image analysis demonstrated that densification is promoted by increasing the Ni-content, reaching a fully dense microstructure for Ba0.76Y0.2Ni0.04O3-δ (BZYNi04). An anode supported single cell based on BZYNi04 electrolyte showed superior power performance, achieving 240 and 428 mW cm-2 at 600 and 700°C, respectively. © The Electrochemical Society.

  13. Y and Ni Co-Doped BaZrO3 as a Proton-Conducting Solid Oxide Fuel Cell Electrolyte Exhibiting Superior Power Performance

    KAUST Repository

    Shafi, Shahid P.

    2015-10-16

    The fabrication of anode supported single cells based on BaZr0.8Y0.2O3-δ (BZY20) electrolyte is challenging due to its poor sinteractive nature. The acceleration of shrinkage behavior, improved sinterability and larger grain size were achieved by the partial substitution of Zr with Ni in the BZY perovskite. Phase pure Ni-doped BZY powders of nominal compositions BaZr0.8-xY0.2NixO3-δ were synthesized up to x = 0.04 using a wet chemical combustion synthesis route. BaZr0.76Y0.2Ni0.04O3-δ (BZYNi04) exhibited adequate total conductivity and the open circuit voltage (OCV) values measured on the BZYNi04 pellet suggested lack of significant electronic contribution. The improved sinterability of BZYNi04 assisted the ease in film fabrication and this coupled with the application of an anode functional layer and a suitable cathode, PrBaCo2O5+δ (PBCO), resulted in a superior fuel cell power performance. With humidified hydrogen and static air as the fuel and oxidant, respectively, a peak power density value of 428 and 240 mW cm−2 was obtained at 700 and 600°C, respectively.

  14. Obtaining of ceria - samaria - gadolinia ceramics for application as solid oxide fuel cell (SOFC) electrolyte

    International Nuclear Information System (INIS)

    Cerium oxide (CeO2) when doped with rare earth oxides has its ionic conductivity enhanced, enabling its use as electrolyte for Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC), which is operated in temperatures between 500 e 700 degree C. The most effective additives or dopants for ionic conductivity improvement are (samarium oxide - Sm2O3) and gadolinia (gadolinium oxide - Gd2O3), fixing the concentration between 10 and 20 molar%. In this work, Ce0,8(SmGd)0,2O1,9 powders have been synthesized by hydroxide, carbonate and oxalate coprecipitation routes. The hydrothermal treatment has been studied for powders precipitated with ammonium hydroxide. A concentrate of rare earths containing 90wt% of CeO2 and other containing 51% of Sm2O3 and 30% of Gd2O3, both prepared from monazite processing, were used as starting materials. These concentrates were used due the lower cost compared to pure commercial materials and the chemical similarity of others rare earth elements. Initially, the coprecipitation and calcination conditions were defined. The process efficiency was verified by ceramic sinterability evaluation. The results showed that powders calcined in the range of 450 and 800 degree C presented high specific surface area (90 - 150 m2.g-1) and fluorite cubic structure, indicating the solid solution formation. It was observed, by scanning electron microscopy, that morphology of particles and agglomerates is a function of precipitant agent. The dilatometric analysis indicated the higher rate of shrinkage at temperatures around 1300-1350 degree C. High densification values (>95% TD) was obtained at temperatures above 1400 degree C. Synthesis by hydroxides coprecipitation followed by hydrothermal treatment demonstrated to be a promising route for crystallization of ceria nano powders at low temperatures (200 degree C). High values of specific surface area were reached with the employment of hydrothermal treatment (about 100 m2.g-1). High density ceramics were

  15. STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Eric D. Wachsman; Keith L. Duncan

    2001-09-30

    Solid oxide fuel cells (SOFCs) are the future of energy production in America. They offer great promise as a clean and efficient process for directly converting chemical energy to electricity while providing significant environmental benefits (they produce negligible hydrocarbons, CO, or NO{sub x} and, as a result of their high efficiency, produce about one-third less CO{sub 2} per kilowatt hour than internal combustion engines). Unfortunately, the current SOFC technology, based on a stabilized zirconia electrolyte, must operate in the region of 1000 C to avoid unacceptably high ohmic losses. These high temperatures demand (a) specialized (expensive) materials for the fuel cell interconnects and insulation, (b) time to heat up to the operating temperature and (c) energy input to arrive at the operating temperature. Therefore, if fuel cells could be designed to give a reasonable power output at low to intermediate1 temperatures tremendous benefits may be accrued. At low temperatures, in particular, it becomes feasible to use ferritic steel for interconnects instead of expensive and brittle ceramic materials such as those based on LaCrO{sub 3}. In addition, sealing the fuel cell becomes easier and more reliable; rapid start-up is facilitated; thermal stresses (e.g., those caused by thermal expansion mismatches) are reduced; radiative losses ({approx}T{sup 4}) become minimal; electrode sintering becomes negligible and (due to a smaller thermodynamic penalty) the SOFC operating cycle (heating from ambient) would be more efficient. Combined, all these improvements further result in reduced initial and operating costs. The problem is, at lower temperatures the conductivity of the conventional stabilized zirconia electrolyte decreases to the point where it cannot supply electrical current efficiently to an external load. The primary objectives of the proposed research are to develop a stable high conductivity (> 0.05 S cm{sup -1} at {le} 550 C) electrolyte for lower

  16. Nickel oxide nanowires: vapor liquid solid synthesis and integration into a gas sensing device

    Science.gov (United States)

    Kaur, N.; Comini, E.; Zappa, D.; Poli, N.; Sberveglieri, G.

    2016-05-01

    In the field of advanced sensor technology, metal oxide nanostructures are promising materials due to their high charge carrier mobility, easy fabrication and excellent stability. Among all the metal oxide semiconductors, nickel oxide (NiO) is a p-type semiconductor with a wide band gap and excellent optical, electrical and magnetic properties, which has not been much investigated. Herein, we report the growth of NiO nanowires by using the vapor liquid solid (VLS) technique for gas sensing applications. Platinum, palladium and gold have been used as a catalyst for the growth of NiO nanowires. The surface morphology of the nanowires was investigated through scanning electron microscopy to find out which catalyst and growth conditions are best for the growth of nanowires. GI-XRD and Raman spectroscopies were used to confirm the crystalline structure of the material. Different batches of sensors have been prepared, and their sensing performances towards different gas species such as carbon monoxide, ethanol, acetone and hydrogen have been explored. NiO nanowire sensors show interesting and promising performances towards hydrogen.

  17. Nickel oxide nanowires: vapor liquid solid synthesis and integration into a gas sensing device.

    Science.gov (United States)

    Kaur, N; Comini, E; Zappa, D; Poli, N; Sberveglieri, G

    2016-05-20

    In the field of advanced sensor technology, metal oxide nanostructures are promising materials due to their high charge carrier mobility, easy fabrication and excellent stability. Among all the metal oxide semiconductors, nickel oxide (NiO) is a p-type semiconductor with a wide band gap and excellent optical, electrical and magnetic properties, which has not been much investigated. Herein, we report the growth of NiO nanowires by using the vapor liquid solid (VLS) technique for gas sensing applications. Platinum, palladium and gold have been used as a catalyst for the growth of NiO nanowires. The surface morphology of the nanowires was investigated through scanning electron microscopy to find out which catalyst and growth conditions are best for the growth of nanowires. GI-XRD and Raman spectroscopies were used to confirm the crystalline structure of the material. Different batches of sensors have been prepared, and their sensing performances towards different gas species such as carbon monoxide, ethanol, acetone and hydrogen have been explored. NiO nanowire sensors show interesting and promising performances towards hydrogen.

  18. Iridium-Tin oxide solid-solution nanocatalysts with enhanced activity and stability for oxygen evolution

    Science.gov (United States)

    Li, Guangfu; Yu, Hongmei; Yang, Donglei; Chi, Jun; Wang, Xunying; Sun, Shucheng; Shao, Zhigang; Yi, Baolian

    2016-09-01

    Addressing major challenges from the material cost, efficiency and stability, it is highly desirable to develop high-performance catalysts for oxygen evolution reaction (OER). Herein we explore a facile surfactant-assisted approach for fabricating Irsbnd Sn (Ir/Sn = 0.6/0.4, by mol.) nano-oxide catalysts with good morphology control. Direct proofs from XRD and X-ray photoelectron spectra indicate hydrophilic triblock polymer (TBP, like Pluronic® F108) surfactant can boost the formation of stable solid-solution structure. With the TBP hydrophilic and block-length increase, the fabricated Irsbnd Sn oxides undergoing the rod-to-sphere transition obtain the relatively lower crystallization, decreased crystallite size, Ir-enriched surface and incremental available active sites, all of which can bolster the OER activity and stability. Meanwhile, it is observed that the coupled Ir oxidative etching takes a crucial role in determining the material structure and performance. Compared with commercial Ir black, half-cell tests confirm F108-assistant catalysts with over 40 wt% Ir loading reduction show 2-fold activity enhancement as well as significant stability improvement. The lowest cell voltage using 0.88 mg cm-2 Ir loading is only 1.621 V at 1000 mA cm-2 and 80 °C with a concomitant energy efficiency of 75.8% which is beyond the DOE 2017 efficiency target of 74%.

  19. Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells

    KAUST Repository

    Crumlin, Ethan J.

    2012-01-01

    Perovskite oxides have high catalytic activities for oxygen electrocatalysis competitive to platinum at elevated temperatures. However, little is known about the oxide surface chemistry that influences the activity near ambient oxygen partial pressures, which hampers the design of highly active catalysts for many clean-energy technologies such as solid oxide fuel cells. Using in situ synchrotron-based, ambient pressure X-ray photoelectron spectroscopy to study the surface chemistry changes, we show that the coverage of surface secondary phases on a (001)-oriented La 0.8Sr 0.2CoO 3-δ (LSC) film becomes smaller than that on an LSC powder pellet at elevated temperatures. In addition, strontium (Sr) in the perovskite structure enriches towards the film surface in contrast to the pellet having no detectable changes with increasing temperature. We propose that the ability to reduce surface secondary phases and develop Sr-enriched perovskite surfaces of the LSC film contributes to its enhanced activity for O 2 electrocatalysis relative to LSC powder-based electrodes. © 2012 The Royal Society of Chemistry.

  20. Extended Durability Testing of an External Fuel Processor for a Solid Oxide Fuel Cell (SOFC)

    Energy Technology Data Exchange (ETDEWEB)

    Mark Perna; Anant Upadhyayula; Mark Scotto

    2012-11-05

    Durability testing was performed on an external fuel processor (EFP) for a solid oxide fuel cell (SOFC) power plant. The EFP enables the SOFC to reach high system efficiency (electrical efficiency up to 60%) using pipeline natural gas and eliminates the need for large quantities of bottled gases. LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) is developing natural gas-fired SOFC power plants for stationary power applications. These power plants will greatly benefit the public by reducing the cost of electricity while reducing the amount of gaseous emissions of carbon dioxide, sulfur oxides, and nitrogen oxides compared to conventional power plants. The EFP uses pipeline natural gas and air to provide all the gas streams required by the SOFC power plant; specifically those needed for start-up, normal operation, and shutdown. It includes a natural gas desulfurizer, a synthesis-gas generator and a start-gas generator. The research in this project demonstrated that the EFP could meet its performance and durability targets. The data generated helped assess the impact of long-term operation on system performance and system hardware. The research also showed the negative impact of ambient weather (both hot and cold conditions) on system operation and performance.

  1. Synthesis, characterization and oxide ionic conductivity of -type solid solution in bismuth oxide doped with ytterbium oxide binary system

    Indian Academy of Sciences (India)

    Esra Öztürk; Nilgun Ozpozan Kalaycioglu; Serkan Dayan; Handan Ozlu

    2013-06-01

    In this study, after doping Yb2O3 substance to -Bi2O3 substance in the range of 1% ≤ ≤ 8% in a series of different mole ratios, heat treatment was performed by applying a cascade temperature rise in the range of 700–790 °C for 48 and 120 h and new phases were obtained in the (Bi2O3)1− (Yb2O3) system. After 48 h of heat treatment at 750 °C and 120 h of heat treatment at 790 °C, mixtures containing 1–8% mole Yb2O3 formed a tetragonal phase. With the help of XRD, crystal systems and lattice parameters of the solid solutions were obtained and their characterization was carried out. Thermal measurements were made by using a simultaneous DTA/TG system. The total conductivity (T) in the -Bi2O3 doped with Yb2O3 system was measured using four-probe d.c. method.

  2. Mechanosynthesis and mechanolysis of solid solutions of La{sub 2}O{sub 3} with some rare earth oxides

    Energy Technology Data Exchange (ETDEWEB)

    Todorowsky, D. [Sofia Univ. (Bulgaria). Khimicheski Fakultet; Terziev, A. [Sofia Univ. (Bulgaria). Khimicheski Fakultet; Minkova, N. [Sofia Univ. (Bulgaria). Khimicheski Fakultet

    1996-12-31

    The effect of the mechanoactivation on Y{sub 2}O{sub 3}, Nd{sub 2}O{sub 3} and CeO{sub 2}, on mixtures of La{sub 2}O{sub 3} with each of these oxides as well as on the solid solutions La{sub 2}O{sub 3}-CeO{sub 2} is studied. The activation causes a decrease of the individual oxides` unit cell parameters. The formation of solid solutions of La{sub 2}O{sub 3} with the oxides studied is found. Under the conditions of activation in air no decomposition of La{sub 2}O{sub 3}-CeO{sub 2} solid solution is detected. The solution is, however, destroyed when the activation is carried out in the presence of acids. (orig.)

  3. Preparation and Properties of Solid Oxide Fuel Cells with (Cu–Ce–Zr–O)–ScSZ as Anode%以(Cu–Ce–Zr–O)–ScSZ为阳极的固体氧化物燃料电池的制备及性能

    Institute of Scientific and Technical Information of China (English)

    苏蕙; 吴也凡; 罗凌虹; 程亮; 石纪军

    2011-01-01

    The Cu–doped Ce–Zr–O solid solution was prepared by an impregnation method.The porous anode was made by Cu–doped Ce–Zr–O solid solution and scandium oxide-stabilized zirconia to prevent carbon deposition.Phase composition and mor-phology of solid solution and porous anode were characterized by X-ray diffractometer and scanning electron microscope.Electrical performances of this cell and Ni–YSZ anode supported cell were measured with methane as a fuel.The results show that there coexist tetragonal,monoclinic and cubic phases in ZrO2,where tetragonal phase of ZrO2 is the most.Activity of preventing carbon deposition was improved by Cu and CeO2.When cell worked at 750 ℃ with wet methane as a fuel,the maximum power density of(Cu–Ce–Zr–O)–ScSZ/ScSZ/LSM(La0.8Sr0.2MnO3)–ScSZ cell is 435 mW/cm2,the power density does not decrease and the export capability is stable in 50 h.%采用浸渍法制备掺Cu的Ce–Zr–O固溶体。以掺Cu的Ce–Zr–O固溶体和Sc2O3稳定的ZrO2(scandium oxide-stabilized zirconia,ScSZ)为原料,制备可抗积碳的(Cu–Ce–Zr–O)–ScSZ多孔阳极。采用X射线衍射仪和扫描电子显微镜对固溶体和多孔阳极的物相组成和形貌进行表征。以甲烷为燃料气体对单电池发电性能进行测试,并与Ni–ScSZ阳极电池进行比较。结果表明:掺入Cu的Ce–Zr–O固溶体中含有ZrO2的四方相、单斜相和立方相,但以四方相为主。Cu和CeO

  4. Program of scientific investigations and development of solid-oxide fuel cells (SOFC) in VIITF proposals on scientific and technical collaboration and SOFC commercialization

    Energy Technology Data Exchange (ETDEWEB)

    Kleschev, Yu.N.; Chulharev, V.F.

    1996-04-01

    Investigations being performed at VNIITF covers the whole cycle of solid oxide fuel cell manufacturing. This report describes the main directions of investigations in materials, technologies, and commercialization.

  5. Phase 1 - Evaluation of a Functional Interconnect System for Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    James M. Rakowski

    2006-09-30

    This project is focused on evaluating the suitability of materials and complex multi-materials systems for use as solid oxide fuel cell interconnects. ATI Allegheny Ludlum has generated promising results for interconnect materials which incorporate modified surfaces. Methods for producing these surfaces include cladding, which permits the use of novel materials, and modifications via unique thermomechanical processing, which allows for the modification of materials chemistry. The University of Pittsburgh is assisting in this effort by providing use of their in-place facilities for dual atmosphere testing and ASR measurements, along with substantial work to characterize post-exposure specimens. Carnegie Mellon is testing interconnects for chromia scale spallation resistance using macro-scale and nano-scale indentation tests. Chromia spallation can increase electrical resistance to unacceptable levels and interconnect systems must be developed that will not experience spallation within 40,000 hours at operating temperatures. Spallation is one of three interconnect failure mechanisms, the others being excessive growth of the chromia scale (increasing electrical resistance) and scale evaporation (which can poison the cathode). The goal of indentation fracture testing at Carnegie Mellon is to accelerate the evaluation of new interconnect systems (by inducing spalls at after short exposure times) and to use fracture mechanics to understand mechanisms leading to premature interconnect failure by spallation. Tests include bare alloys from ATI and coated systems from DOE Laboratories and industrial partners, using ATI alloy substrates. West Virginia University is working towards developing a cost-effective material for use as a contact material in the cathode chamber of the SOFC. Currently materials such as platinum are well suited for this purpose, but are cost-prohibitive. For the solid-oxide fuel cell to become a commercial reality it is imperative that lower cost

  6. THE INVESTIGATION ON INTERFACE CHARACTERISTIC OF CERAMIC SEALANTS PRODUCED FROM NATURAL ROCKS FOR SOLID OXIDE FUEL CELLS

    OpenAIRE

    Çiçekli, A Elif; ERCENK, Ediz; Yılmaz, Şenol

    2015-01-01

    Solid oxide fuel cells (SOFC), which are green electrochemical devices, transform directly chemical energy of fuel to electricity, and striking heat energy by using solid fuels as electrolyte [1-3].One of the essential problems for SOFC is to mix the gases, which used in anode and cathode, reacting electrochemically at high temperature before the reaction and/or the gas infiltration to outside of SOFC. It makes security problem and low efficiency. To use safe sealing material for SOFC is very...

  7. STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Eric D. Wachsman

    2000-10-01

    Solid oxide fuel cells (SOFCs) are the future of energy production in America. They offer great promise as a clean and efficient process for directly converting chemical energy to electricity while providing significant environmental benefits (they produce negligible CO, HC, or NOx and, as a result of their high efficiency, produce about one-third less CO{sub 2} per kilowatt hour than internal combustion engines). Unfortunately, the current SOFC technology, based on a stabilized zirconia electrolyte, must operate in the region of 1000 C to avoid unacceptably high ohmic losses. These high temperatures demand (a) specialized (expensive) materials for the fuel cell interconnects and insulation, (b) time to heat up to the operating temperature and (c) energy input to arrive at the operating temperature. Therefore, if fuel cells could be designed to give a reasonable power output at lower temperatures tremendous benefits may be accrued, not the least of which is reduced cost. The problem is, at lower temperatures the conductivity of the conventional stabilized zirconia electrolyte decreases to the point where it cannot supply electrical current efficiently to an external load. The primary objectives of the proposed research is to develop a stable high conductivity (>0.05 S cm{sup -1} at 550 C) electrolyte for lower temperature SOFCs. This objective is specifically directed toward meeting the lowest (and most difficult) temperature criteria for the 21st Century Fuel Cell Program. Meeting this objective provides a potential for future transportation applications of SOFCs, where their ability to directly use hydrocarbon fuels could permit refueling within the existing transportation infrastructure. In order to meet this objective we are developing a functionally gradient bilayer electrolyte comprised of bismuth oxide on the air side and ceria on the fuel side. Bismuth oxide and doped ceria are among the highest ionic conducting electrolytes and in fact bismuth oxide based

  8. Gas-Solid Reaction Route toward the Production of Intermetallics from Their Corresponding Oxide Mixtures

    Directory of Open Access Journals (Sweden)

    Hesham Ahmed

    2016-08-01

    Full Text Available Near-net shape forming of metallic components from metallic powders produced in situ from reduction of corresponding pure metal oxides has not been explored to a large extent. Such a process can be probably termed in short as the “Reduction-Sintering” process. This methodology can be especially effective in producing components containing refractory metals. Additionally, in situ production of metallic powder from complex oxides containing more than one metallic element may result in in situ alloying during reduction, possibly at lower temperatures. With this motivation, in situ reduction of complex oxides mixtures containing more than one metallic element has been investigated intensively over a period of years in the department of materials science, KTH, Sweden. This review highlights the most important features of that investigation. The investigation includes not only synthesis of intermetallics and refractory metals using the gas solid reaction route but also study the reaction kinetics and mechanism. Environmentally friendly gases like H2, CH4 and N2 were used for simultaneous reduction, carburization and nitridation, respectively. Different techniques have been utilized. A thermogravimetric analyzer was used to accurately control the process conditions and obtain reaction kinetics. The fluidized bed technique has been utilized to study the possibility of bulk production of intermetallics compared to milligrams in TGA. Carburization and nitridation of nascent formed intermetallics were successfully carried out. A novel method based on material thermal property was explored to track the reaction progress and estimate the reaction kinetics. This method implies the dynamic measure of thermal diffusivity using laser flash method. These efforts end up with a successful preparation of nanograined intermetallics like Fe-Mo and Ni-W. In addition, it ends up with simultaneous reduction and synthesis of Ni-WN and Ni-WC from their oxide mixtures

  9. Rapid Synthesis of Lead Oxide Nanorods by One-step Solid-state Chemical Reaction at Room Temperature

    Institute of Scientific and Technical Information of China (English)

    CAO, Ya-Li(曹亚丽); JIA, Dian-Zeng(贾殿赠); LIU, Lang(刘浪); LUO, Jian-Min(骆建敏)

    2004-01-01

    A simple and facile method was reported to synthesize lead oxide nanorods. Nanorods of lead oxide were obtained directly from grinding solid metal salt and sodium hydroxide in agate mortar with the assistance of a suitable nonionic surfactant in only one step, which is different from the result of hydroxide in solution. The product has been characterized by XRD, TEM and SEM. The formation mechanism of rod-like morphology is discussed and the surfactant plays an important soft-template role in modifying the interface of solid-state reaction and according process of rod-formation.

  10. Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte

    Science.gov (United States)

    Kammoun, M.; Berg, S.; Ardebili, H.

    2015-10-01

    Enhanced safety of flexible batteries is an imperative objective due to the intimate interaction of such devices with human organs such as flexible batteries that are integrated with touch-screens or embedded in clothing or space suits. In this study, the fabrication and testing of a high performance thin-film Li-ion battery (LIB) is reported that is both flexible and relatively safer compared to the conventional electrolyte based batteries. The concept is facilitated by the use of solid polymer nanocomposite electrolyte, specifically, composed of polyethylene oxide (PEO) matrix and 1 wt% graphene oxide (GO) nanosheets. The flexible LIB exhibits a high maximum operating voltage of 4.9 V, high capacity of 0.13 mA h cm-2 and an energy density of 4.8 mW h cm-3. The battery is encapsulated using a simple lamination method that is economical and scalable. The laminated battery shows robust mechanical flexibility over 6000 bending cycles and excellent electrochemical performance in both flat and bent configurations. Finite element analysis (FEA) of the LIB provides critical insights into the evolution of mechanical stresses during lamination and bending.Enhanced safety of flexible batteries is an imperative objective due to the intimate interaction of such devices with human organs such as flexible batteries that are integrated with touch-screens or embedded in clothing or space suits. In this study, the fabrication and testing of a high performance thin-film Li-ion battery (LIB) is reported that is both flexible and relatively safer compared to the conventional electrolyte based batteries. The concept is facilitated by the use of solid polymer nanocomposite electrolyte, specifically, composed of polyethylene oxide (PEO) matrix and 1 wt% graphene oxide (GO) nanosheets. The flexible LIB exhibits a high maximum operating voltage of 4.9 V, high capacity of 0.13 mA h cm-2 and an energy density of 4.8 mW h cm-3. The battery is encapsulated using a simple lamination method

  11. Transport phenomena in solid oxide fuel cell electrodes focusing on heat transfer related to chemical reactions

    Science.gov (United States)

    Navasa, M.; Andersson, M.; Yuan, J.; Sundén, B.

    2012-11-01

    Solid oxide fuel cells (SOFCs) are widely studied for their advantages especially at high temperatures. However, operating at high temperatures represents a high cost due to the strict requirements the materials are expected to fulfill. Thus, the main goal in SOFC research has been to decrease the operating temperature so that the range of available materials is widened and hence, the operating cost can be reduced. In this paper, the different heat sources that contribute to the cell energy balance are presented with strong emphasis on the chemical reactions that take place in SOFCs. The knowledge of which heat sources or sinks taking place and their locations within the SOFC can provide useful information for further design and efficiency improvements.

  12. Advanced multi-fuelled solid oxide fuel cells (ASOFCs) using functional nanocomposites for polygeneration

    Energy Technology Data Exchange (ETDEWEB)

    Raza, Rizwan [Department of Physics, COMSATS Institute of Information Technology, Lahore (Pakistan); Department of Energy Technology, Royal Institute of Technology, Stockholm (Sweden); Qin, Haiying; Samavati, Mahrokh; Zhu, Bin [Department of Energy Technology, Royal Institute of Technology, Stockholm (Sweden); Liu, Qinghua [Tianjin Laboratory for Chemical Engineering (Tianjin University), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 (China); Lima, Raquel B. [Department of Fiber and Polymer Technology, Royal Institute of Technology, KTH, 10044, Stockholm (Sweden)

    2011-11-15

    An advanced multifuelled solid oxide fuel cell (ASOFC) with a functional nanocomposite was developed and tested for use in a polygeneration system. Several different types of fuel, for example, gaseous (hydrogen and biogas) and liquid fuels (bio-ethanol and bio-methanol), were used in the experiments. Maximum power densities of 1000, 300, 600, 550 mW cm{sup -2} were achieved using hydrogen, bio-gas, bio-methanol, and bio-ethanol, respectively, in the ASOFC. Electrical and total efficiencies of 54% and 80% were achieved using the single cell with hydrogen fuel. These results show that the use of a multi-fuelled system for polygeneration is a promising means of generating sustainable power. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Numerical simulation of a direct internal reforming solid oxide fuel cell using computational fluid dynamics methodas

    Institute of Scientific and Technical Information of China (English)

    Jun LI; Ying-wei KANG; Guang-yi CAO; Xin-jian ZHU; Heng-yong TU; Jian LI

    2008-01-01

    A detailed mathematical model of a direct internal reforming solid oxide fuel cell (DIR-SOFC) incorporating with simulation of chemical and physical processes in the fuel cell is presented. The model is developed based on the reforming and electrochemical reaction mechanisms, mass and energy conservation, and heat transfer. A computational fluid dynamics (CFD) method is used for solving the complicated multiple partial differential equations (PDEs) to obtain the numerical approximations.The resulting distributions of chemical species concentrations, temperature and current density in a cross-flow DIR-SOFC are given and analyzed in detail. Further, the influence between distributions of chemical species concentrations, temperature and current density during the simulation is illustrated and discussed. The heat and mass transfer, and the kinetics of reforming and electrochemical reactions have significant effects on the parameter distributions within the cell. The results show the particularchar acteristics of the DIR-SOFC among fuel cells, and can aid in stack design and control.

  14. Preparation of electrolyte membranes for micro tubular solid oxide fuel cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Yttria-stabilized zirconia (YSZ) micro tubular electrolyte membranes for solid oxide fuel cells (SOFCs) were prepared via the combined wet phase inversion and sintering technique. The as-derived YSZ mi- cro tubes consist of a thin dense skin layer and a thick porous layer that can serve as the electrode of fuel cells. The dense and the porous electrolyte layers have the thickness of 3-5 μm and 70-90 μm, respectively, while the inner surface porosity of the porous layer is higher than 28.1%. The two layers are perfectly integrated together to preclude the crack or flake of electrolyte film from the electrode. The presented method possesses distinct advantages such as technological simplicity, low cost and high reliability, and thus provides a new route for the preparation of micro tubular SOFCs.

  15. Life cycle sustainability of solid oxide fuel cells: From methodological aspects to system implications

    Science.gov (United States)

    Mehmeti, Andi; McPhail, Stephen J.; Pumiglia, Davide; Carlini, Maurizio

    2016-09-01

    This study reviews the status of life cycle assessment (LCA) of Solid Oxide Fuel Cells (SOFCs) and methodological aspects, communicates SOFC environmental performance, and compares the environmental performance with competing power production technologies using a life cycle perspective. Results indicate that power generation using SOFCs can make a significant contribution to the aspired-to greener energy future. Despite superior environmental performance, empirical studies indicate that economic performance is predominantly the highest-ranked criterion in the decision making process. Future LCA studies should attempt to employ comprehensive dynamic multi-criteria environmental impact analysis coupled with economic aspects, to allow a robust comparison of results. A methodology framework is proposed to achieve simultaneously ambitious socio-economic and environmental objectives considering all life cycle stages and their impacts.

  16. Two and three dimensional electron backscattered diffraction analysis of solid oxide cells materials

    DEFF Research Database (Denmark)

    Saowadee, Nath

    There are two main technique were developed in this work: a technique to calculate grain boundary energy and pressure and a technique to measure lattice constant from EBSD. The techniques were applied to Nb-doped Strontium titanate (STN) and yttria stabilized zirconia (YSZ) which are commonly used...... in solid oxide fuel cell and electrolysis cell. Conductivity of STN is one of the important properties that researchers desire to improve. Grin boundary conductivity contributes to the overall conductivity of the STN. Grain boundary density controlled by mainly grain growth in material processing. Grain...... compared to a mechanically polished surface but yielded a high pattern quality on YSZ. The difference between STN and YSZ pattern quality is thought to be caused by difference in the degree of ion damage as their backscatter coefficients and ion penetration depths are virtually identical. Reducing the FIB...

  17. Design, fabrication and characterization of a double layer solid oxide fuel cell (DLFC)

    Science.gov (United States)

    Wang, Guangjun; Wu, Xiangying; Cai, Yixiao; Ji, Yuan; Yaqub, Azra; Zhu, Bin

    2016-11-01

    A double layer solid oxide fuel cell (DLSOFC) without using the electrolyte (layer) has been designed by integrating advantages of positive electrode material of lithium ion battery(LiNi0.8Co0.15Al0.05O2) and oxygen-permeable membranes material (trace amount cobalt incorporated terbium doped ceria, TDC + Co) based on the semiconductor physics principle. Instead of using an electrolyte layer, the depletion layer between the anode and cathode served as an electronic insulator to block the electrons but to maintain the electrolyte function for ionic transport. Thus the device with two layers can realize the function of SOFC and at the same time avoids the electronic short circuiting problem. Such novel DLFC showed good performance at low temperatures, for instance, a maximum power density of 230 mWcm-2 was achieved at 500 °C. The working principle of the new device is presented.

  18. Life Time Performance Characterization of Solid Oxide Electrolysis Cells for Hydrogen Production

    DEFF Research Database (Denmark)

    Sun, Xiufu; Chen, Ming; Liu, Yi-Lin;

    2015-01-01

    is needed. Solid oxide electrolysis cells (SOECs) offer a promising technological solution for efficient energy conversion and production of hydrogen or syngas (mixture of H2 and CO) using excess electricity from renewable energy sources. For SOECs to become commercially interesting, performance, durability...... densities up to -1 A/cm2. The long-term degradation is dominated by increase in serial resistance, which can be associated to a great extent with microstructure changes in the active Ni/YSZ electrode, namely Ni loss (directly reflected by an increase in the porosity) and Ni re-distribution. Operating...... generation SOEC cells produced at DTU are able to be operated at current density up to ~-0.9 A/cm2, in order to achieve a commercialization target of 5 years lifetime (for continuous electrolysis operation of hydrogen production). The cells can be operated at even higher current density, if the hydrogen...

  19. Life Time Performance Characterization of Solid Oxide Electrolysis Cells for Hydrogen Production

    DEFF Research Database (Denmark)

    Sun, Xiufu; Chen, Ming; Liu, Yi-Lin;

    2015-01-01

    Solid oxide electrolysis cells (SOECs) offer a promising technological solution for efficient energy conversion and production of hydrogen or syngas. The commercialization of the SOEC technology can be promoted if SOECs can be operated at high current density with stable performance over ~5 years...... - 3 years (continuous operation, setting 1.5 V as the upper voltage defining “end of life”). The results provide technological input to future design of electrolysis plants for hydrogen production. © 2015 ECS - The Electrochemical Society....... In this work, long-term durability of Ni/yttria stabilized zirconia (YSZ) supported planar SOECs was investigated at 800 oC for electrolysis of steam at different current densities from 0 to -1.25 A/cm2. The SOEC cells are able to be operated at current density up to ~-1 A/cm2, with a predicted life time of 2...

  20. Investigation of Novel Electrocatalysts for Metal Supported Solid Oxide Fuel Cells - Ru:GDC

    DEFF Research Database (Denmark)

    Sudireddy, Bhaskar Reddy; Nielsen, Jimmy; Thydén, Karl Tor Sune;

    2015-01-01

    The electrochemical performance and stability of the planar metal supported solid oxide fuel cells (MS-SOFC) with two different electrocatalytically active materials, namely, Ni:GDC and Ru:GDC were investigated. Ru:GDC with an ASR of 0.322 Ωcm2 performed better than Ni:GDC with an ASR of 0.453 Ωcm2...... at 650oC. The performance of the Ru:GDC infiltrated MS-SOFC is the best measured so far on planar MS-SOFCs. It was observed that the stability of both the electrocatalytically active materials is relatively poor. Microstructure of the anode functional layer appeared to be dense up on the examination...