WorldWideScience

Sample records for anode interfacial layer

  1. UV-treated graphene oxide as anode interfacial layers for P3HT : PCBM solar cells

    Science.gov (United States)

    Cheng, Cheng-En; Tsai, Cheng-Wei; Pei, Zingway; Lin, Tsung-Wu; Chang, Chen-Shiung; Shih-Sen Chien, Forest

    2015-06-01

    Solution-processable graphene oxide (GO) ultrathin films were introduced as anode interfacial layers (AILs) for polymer solar cells (PSCs). The photovoltaic performance of PSCs containing thermal- and UV-treated GO was comparable to that of PSCs with conventional poly(3,4-ethyledioxythiphene):poly(styrenesulfonate) AILs. UV treatment induced the surface activation of GO; an increase in the work function of UV-treated GO improved the energy band alignment at the GO/poly(3-hexylthiophene) interface, which accounted for the efficient hole collection and photovoltaic performance of PSCs with treated GO.

  2. First-Principles Investigations of the Working Mechanism of 2D h-BN as an Interfacial Layer for the Anode of Lithium Metal Batteries.

    Science.gov (United States)

    Shi, Le; Xu, Ao; Zhao, Tianshou

    2017-01-18

    An issue with the use of metallic lithium as an anode material for lithium-based batteries is dendrite growth, causing a periodic breaking and repair of the solid electrolyte interphase (SEI) layer. Adding 2D atomic crystals, such as h-BN, as an interfacial layer between the lithium metal anode and liquid electrolyte has been demonstrated to be effective to mitigate dendrite growth, thereby enhancing the Columbic efficiency of lithium metal batteries. But the underlying mechanism leading to the reduced dendrite growth remains unknown. In this work, with the aid of first-principle calculations, we find that the interaction between the h-BN and lithium metal layers is a weak van der Waals force, and two atomic layers of h-BN are thick enough to block the electron tunneling from lithium metal to electrolyte, thus prohibiting the decomposition of electrolyte. The interlayer spacing between the h-BN and lithium metal layers can provide larger adsorption energies toward lithium atoms than that provided by bare lithium or h-BN, making lithium atoms prefer to intercalate under the cover of h-BN during the plating process. The combined high stiffness of h-BN and the low diffusion energy barriers of lithium at the Li/h-BN interfaces induce a uniform distribution of lithium under h-BN, therefore effectively suppressing dendrite growth.

  3. Organic photovoltaic device with interfacial layer and method of fabricating same

    Science.gov (United States)

    Marks, Tobin J.; Hains, Alexander W.

    2013-03-19

    An organic photovoltaic device and method of forming same. In one embodiment, the organic photovoltaic device has an anode, a cathode, an active layer disposed between the anode and the cathode; and an interfacial layer disposed between the anode and the active layer, the interfacial layer comprising 5,5'-bis[(p-trichlorosilylpropylphenyl)phenylamino]-2,2'-bithiophene (PABTSi.sub.2).

  4. Efficient PEDOT:PSS-Free Polymer Solar Cells with an Easily Accessible Polyacrylonitrile Polymer Material as a Novel Solution-Processable Anode Interfacial Layer.

    Science.gov (United States)

    Noh, Yong-Jin; Park, Sae-Mi; Yeo, Jun-Seok; Kim, Dong-Yu; Kim, Seok-Soon; Na, Seok-In

    2015-11-18

    We demonstrate that an easily accessible polyacrylonitrile (PAN) polymer can efficiently function as a novel solution-processable anode interfacial layer (AIL) to boost the device performances of polymer:fullerene-based solar cells (PSCs). The PAN thin film was simply prepared with spin-coating of a cost-efficient PAN solution dissolved in dimethylformamide on indium tin oxide (ITO), and the thin polymeric interlayer on PSC parameters and stability were systemically investigated. As a result, the cell efficiency of the PSC with PAN was remarkably enhanced compared to the device using bare ITO. Furthermore, with PAN, we finally achieved an excellent power conversion efficiency (PCE) of 6.7% and a very high PSC stability in PTB7:PC71BM systems, which constitute a highly comparable PCE and superior device lifetime relative to those of conventional PSCs with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS). These results demonstrate that the inexpensive solution-processed PAN polymer can be an attractive PSS alternative and is more powerful for achieving better cell performances and lower cost PSC production.

  5. Interfacial chemistry of zinc anodes for reinforced concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Covino, B.S. Jr.; Bullard, S.J.; Cramer, S.D.; Holcomb, G.R. [Dept. of Energy, Albany, OR (United States). Albany Research Center; McGill, G.E.; Cryer, C.B. [Oregon Dept. of Transportation, Salem, OR (United States); Stoneman, A. [International Lead Zinc Research Organization, Research Triangle Park, NC (United States); Carter, R.R. [California Dept. of Transportation, Sacramento, CA (United States)

    1997-12-01

    Thermally-sprayed zinc anodes are used in both galvanic and impressed current cathodic protection systems for reinforced concrete structures. The Albany Research Center, in collaboration with the Oregon Department of Transportation, has been studying the effect of electrochemical aging on the bond strength of zinc anodes for bridge cathodic protection systems. Changes in anode bond strength and other anode properties can be explained by the chemistry of the zinc-concrete interface. The chemistry of the zinc-concrete interface in laboratory electrochemical aging studies is compared with that of several bridges with thermal-sprayed zinc anodes and which have been in service for 5 to 10 years using both galvanic and impressed current cathodic protection systems. The bridges are the Cape Creek Bridge on the Oregon coast and the East Camino Undercrossing near Placerville, CA. Also reported are interfacial chemistry results for galvanized steel rebar from the 48 year old Longbird Bridge in Bermuda.

  6. Consequences of Anode Interfacial Layer Deletion. HCl-Treated ITO in P3HT:PCBM-Based Bulk-Heterojunction Organic Photovoltaic Devices

    Science.gov (United States)

    2010-01-01

    an overall increase in light-to-power conversion efficiency (Eff) of 70% to 5.0% with an active layer composed of poly- (3-hexylthiophene) ( P3HT ) and...electrical homogenization. This suggests that an interface capable ofOhmic contact to the P3HT electron donor for loss-less charge collection might be...Device Fabrication. A clean, dry 10 mL Schlenk flask was charged with P3HT (20 mg), PCBM (20 mg), and a stir bar. The flask was cycled N2/vacuum

  7. Lithium intercalation and interfacial kinetics of composite anodes formed by oxidized graphite and copper

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, M.; Nobili, F.; Dsoke, S.; Tossici, R.; Marassi, R. [Dipartimento di Scienze Chimiche, Universita di Camerino, Via S. Agostino, 1, 62032 Camerino (MC) (Italy); D' Amico, F. [Dipartimento di Fisica, Universita di Camerino, Via Madonna delle Carceri, 9, 62032 Camerino (MC) (Italy); Croce, F. [Dipartimento di Scienze del Farmaco, Universita degli Studi ' ' G. D' Annunzio' ' , Via dei Vestini, 31, 66013 Chieti (Italy)

    2009-05-01

    The electrochemical behavior of composite anodes prepared either by mixing partially oxidized graphite and Cu powders or by coating the pristine partially oxidized graphite electrodes with few-nanometer-thick Cu layers has been studied by slow-scan-rate cyclic voltammetry (SSCV) and galvanostatic charge/discharge cycles over the temperature range of -30 C to 20 C. The interfacial intercalation/deintercalation kinetics has also been investigated using electrochemical impedance spectroscopy (EIS). The role of the Cu in improving low-temperature performances and kinetics of graphite electrodes is discussed. (author)

  8. Modeling interfacial liquid layers on environmental ices

    Directory of Open Access Journals (Sweden)

    M. H. Kuo

    2011-09-01

    Full Text Available Interfacial layers on ice significantly influence air-ice chemical interactions. In solute-containing aqueous systems, a liquid brine may form upon freezing due to the exclusion of impurities from the ice crystal lattice coupled with freezing point depression in the concentrated brine. The brine may be segregated to the air-ice interface where it creates a surface layer, in micropockets, or at grain boundaries or triple junctions.

    We present a model for brines and their associated liquid layers in environmental ice systems that is valid over a wide range of temperatures and solute concentrations. The model is derived from fundamental equlibrium thermodynamics and takes into account nonideal solution behavior in the brine, partitioning of the solute into the ice matrix, and equilibration between the brine and the gas phase for volatile solutes. We find that these phenomena are important to consider when modeling brines in environmental ices, especially at low temperatures. We demonstrate its application for environmentally important volatile and nonvolatile solutes including NaCl, HCl, and HNO3. The model is compared to existing models and experimental data from literature where available. We also identify environmentally relevant regimes where brine is not predicted to exist, but the QLL may significantly impact air-ice chemical interactions. This model can be used to improve the representation of air-ice chemical interactions in polar atmospheric chemistry models.

  9. Impact of Interfacial Layers in Perovskite Solar Cells.

    Science.gov (United States)

    Cho, An-Na; Park, Nam-Gyu

    2017-10-09

    Perovskite solar cells (PCSs) are composed of organic-inorganic lead halide perovskite as the light harvester. Since the first report on a long-term-durable, 9.7 % efficient, solid-state perovskite solar cell, organic-inorganic halide perovskites have received considerable attention because of their excellent optoelectronic properties. As a result, a power conversion efficiency (PCE) exceeding 22 % was certified. Controlling the grain size, grain boundary, morphology, and defects of the perovskite layer is important for achieving high efficiency. In addition, interfacial engineering is equally or more important to further improve the PCE through better charge collection and a reduction in charge recombination. In this Review, the type of interfacial layers and their impact on photovoltaic performance are investigated for both the normal and the inverted cell architectures. Four different interfaces of fluorine-doped tin oxide (FTO)/electron-transport layer (ETL), ETL/perovskite, perovskite/hole-transport layer (HTL), and HTL/metal are classified, and their roles are investigated. The effects of interfacial engineering with organic or inorganic materials on photovoltaic performance are described in detail. Grain-boundary engineering is also included because it is related to interfacial engineering and the grain boundary in the perovskite layer plays an important role in charge conduction, recombination, and chargecarrier life time. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Tungsten oxides as interfacial layers for improved performance in hybrid optoelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Vasilopoulou, M., E-mail: mariva@imel.demokritos.gr [Institute of Microelectronics, NCSR Demokritos, Terma Patriarchou Grigoriou, 15310 Aghia Paraskevi (Greece); Palilis, L.C.; Georgiadou, D.G.; Argitis, P. [Institute of Microelectronics, NCSR Demokritos, Terma Patriarchou Grigoriou, 15310 Aghia Paraskevi (Greece); Kennou, S. [Department of Chemical Engineering, University of Patras, 26500, Patras (Greece); Kostis, I. [Department of Electronics, Technological and Educational Institute of Pireaus, 12244 Aegaleo (Greece); Department of Information and Communication Systems Engineering, University of the Aegean, 83200 Karlovassi (Greece); Papadimitropoulos, G. [Institute of Microelectronics, NCSR Demokritos, Terma Patriarchou Grigoriou, 15310 Aghia Paraskevi (Greece); Stathopoulos, N.A. [Department of Electronics, Technological and Educational Institute of Pireaus, 12244 Aegaleo (Greece); Iliadis, A.A. [Department of Information and Communication Systems Engineering, University of the Aegean, 83200 Karlovassi (Greece); Electrical and Computer Engineering Department, University of Maryland, College Park (United States); Konofaos, N. [Department of Information and Communication Systems Engineering, University of the Aegean, 83200 Karlovassi (Greece); Davazoglou, D. [Institute of Microelectronics, NCSR Demokritos, Terma Patriarchou Grigoriou, 15310 Aghia Paraskevi (Greece); Sygellou, L. [Department of Chemical Engineering, University of Patras, 26500, Patras (Greece)

    2011-06-30

    Tungsten oxide (WO{sub 3}) films with thicknesses ranging from 30 to 100 nm were grown by Hot Filament Vapor Deposition (HFVD). Films were studied by X-Ray Photoemission Spectroscopy (XPS) and were found to be stoichiometric. The surface morphology of the films was characterized by Atomic Force Microscopy (AFM). Samples had a granular form with grains in the order of 100 nm. The surface roughness was found to increase with film thickness. HFVD WO{sub 3} films were used as conducting interfacial layers in advanced hybrid organic-inorganic optoelectronic devices. Hybrid-Organic Light Emitting Diodes (Hy-OLEDs) and Organic Photovoltaics (Hy-OPVs) were fabricated with these films as anode and/or as cathode interfacial conducting layers. The Hy-OLEDs showed significantly higher current density and a lower turn-on voltage when a thin WO{sub 3} layer was inserted at the anode/polymer interface, while when inserted at the cathode/polymer interface the device performance was found to deteriorate. The improvement was attributed to a more efficient hole injection and transport from the Fermi level of the anode to the Highest Occupied Molecular Orbital (HOMO) of a yellow emitting copolymer (YEP). On the other hand, the insertion of a thin WO{sub 3} layer at the cathode/polymer interface of Hy-OPV devices based on a polythiophene-fullerene bulk-heterojunction blend photoactive layer resulted in an increase of the produced photogenerated current, more likely due to improved electron extraction at the Al cathode.

  11. Germanium Nitride Interfacial Layer for Chalcogenide Random Access Memory Applications

    Science.gov (United States)

    Shen, Jie; Liu, Bo; Song, Zhitang; Xu, Cheng; Rao, Feng; Liang, Shuang; Feng, Songlin; Chen, Bomy

    2008-01-01

    This work reports on the performance improvement of a chalcogenide random access memory device by applying germanium nitride as an interfacial layer. The device with an 8-nm-thick GeN film was fabricated using standard 0.18 µm complementary metal oxide semiconductor technology. The as-deposited GeN is in the amorphous state and has a smooth surface. An electrical test showed that this N-deficient layer induces a lower threshold voltage during the operation. It is believed that the reduction mainly originated from the excellent interfacial properties, high electrical resistivity, and low thermal conductivity of GeN, which is would be a prospective interfacial material in CRAM devices.

  12. High-performance anode for Polymer Electrolyte Membrane Fuel Cells by multiple-layer Pt sputter deposition

    Science.gov (United States)

    Natarajan, Sadesh Kumar; Hamelin, Jean

    We investigate the sputtering deposition as a tool for preparing Polymer Electrolyte Membrane Fuel Cell (PEMFC) electrodes with improved performance and catalyst utilization. Anodes of PEMFC with ultra-low loading of Pt (0.05 mg cm -2) are developed by alternate sputtering of Pt and painting layers of carbon nanotube ink with Nafion directly on the gas diffusion layer. Sputter depositing alternate layers of Pt on carbon-Nafion layer (CNL) has increased the anode activity over single-layer Pt deposited anode due to improved porosity and the presence of Pt nanoparticles in the inner CNL. Also, we investigated the influence of Nafion content in the CNL. The optimal Nafion content giving less resistance and better performance in an anode is 29 wt.%. This is significantly lower than for standard MEA anodes, indicating sufficient interfacial contact between each CNL. We studied the anodes prepared with 50 wt.% Nafion, which revealed larger ohmic resistance and also, blocks the CNL pores reducing gas permeability. Excellent mass transfer and performance is obtained with three-layer Pt sputter deposited anode with CNL containing 29 wt.% of Nafion.

  13. Power Enhancement of Lithium-Ion Batteries by a Graphene Interfacial Layer.

    Science.gov (United States)

    Song, Young Il; An, Ja Hwa; Kim, Tae Yoo; Lee, Jung Woo; Yoo, Young Zo; Suh, Su Jeong; Kim, Sung-Soo

    2015-11-01

    We achieved a method for power enhancement of heavy-duty lithium-ion batteries (LIBs) by synthesizing a graphene interfacial layer onto the anode copper current collector (ACCC). We tested fabricated coin cells, which used either 35-μm-thick rolled pristine copper foil or graphene synthesized onto the pristine copper foil for power output estimation of the LIBs. We observed the copper surface morphology with a scanning electron microscope (SEM). Raman spectroscopy was used to measure the bonding characteristics and estimate the layers of graphene films. In addition, transmittance and electrical resistance were measured by ultra-violet visible near-infrared spectroscopy (UV-Vis IR) and 4 point probe surface resistance measurement. The graphene films on polyethylene terephthalate (PET) substrate obtained a transmittance of 97.5% and sheet resistance of 429 Ω/square. Power enhancement performances was evaluated using LIB coin cells. After 5C current discharge rate of -1.7 A/g reversible capacity of 293 mAh/g and 326 mAh/g were obtained for pristine and synthesized graphene anode current collectors, respectively. The graphene synthesized onto the ACCC showed superior power performance. The results presented herein demonstrate a power enhancement of LIBs by a decrease in electron flow resistivity between active materials and the ACCC and removal of the native oxide layer on the anode copper surface using high quality graphene synthesized onto the ACCC.

  14. Electroless formation of hybrid lithium anodes for fast interfacial ion transport

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Snehashis; Stalin, Sanjuna; Vu, Duylinh; Fawole, Kristen; Archer, Lynden A. [School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY (United States); Tu, Zhengyuan [Department of Material Science and Engineering, Cornell University, Ithaca, NY (United States); Gunceler, Deniz [Department of Physics, Cornell University, Ithaca, NY (United States); Sundararaman, Ravishankar [Material Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY (United States)

    2017-10-09

    Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport

    KAUST Repository

    Choudhury, Snehashis

    2017-08-17

    Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes.

  16. Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport.

    Science.gov (United States)

    Choudhury, Snehashis; Tu, Zhengyuan; Stalin, Sanjuna; Vu, Duylinh; Fawole, Kristen; Gunceler, Deniz; Sundararaman, Ravishankar; Archer, Lynden A

    2017-10-09

    Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Low cost fuel cell diffusion layer configured for optimized anode water management

    Science.gov (United States)

    Owejan, Jon P; Nicotera, Paul D; Mench, Matthew M; Evans, Robert E

    2013-08-27

    A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel is higher than the diffusion resistance of the cathode gas diffusion layer. The anode gas diffusion layer may comprise filler particles having in-plane platelet geometries and be made of lower cost materials and manufacturing processes than currently available commercial carbon fiber substrates. The diffusion resistance difference between the anode gas diffusion layer and the cathode gas diffusion layer may allow for passive water balance control.

  18. Spark protection layers for CMOS pixel anode chips in MPGDs

    NARCIS (Netherlands)

    Bilevych, Y.; Bilevych, Y.; Blanco Carballo, V.M.; Chefdeville, M.A.; Colas, P.; Delagnes, E.; Fransen, M.; van der Graaff, H.; Koppert, W.J.C.; Melai, J.; Salm, Cora; Schmitz, Jurriaan; Timmermans, J.; Timmermans, J.; Wyrsch, N.

    2011-01-01

    In this work we have investigated the functioning of high resistivity amorphous silicon and silicon-rich nitride layers as a protection against discharges in Micro-Patterned Gaseous Detectors (MPGDs).When the anode is protected by a high resistivity layer, discharge signals are limited in charge. A

  19. Very High Isp Thruster with Anode Layer (VHITAL): An Overview

    Science.gov (United States)

    Marrese-Reading, Colleen M.; Frisbee, Robert; Sengupta, Anita; Cappelli, Mark A.; Tverdoklebov, Sergey; Semenkin, Sasha; Boyd, Iain

    2004-01-01

    This article describes the two stage bismuth fueled Hall thruster technology that was developed at TsNIIMASH [1] and the Very High Isp Thruster with Anode Layer (VHITAL) technology assessment program that is funded by NASA Exploration Systems Mission Directorate (ESMD)' Prometheus program. The overall objective of this program is to evaluate the potential for this Russian-developed thruster technology to enable near-term, Nuclear Electric Propulsion (NEf)-enabled ESMD missions to the outer planets. This 2.5 year program will provide the technology basis for the development of even higher power anode layer thrusters for rapid outer planet exploration missions and, ultimately, human exploration of the solar system. The first 6 month phase is currently in progress. If this phase is successful, the second (1 year) and third (1 year) phase of the proposed program will follow.

  20. Improved Reliability of Small Molecule Organic Solar Cells by Double Anode Buffer Layers

    Directory of Open Access Journals (Sweden)

    Pao-Hsun Huang

    2014-01-01

    Full Text Available An optimized hybrid planar heterojunction (PHJ of small molecule organic solar cells (SM-OSCs based on copper phthalocyanine (CuPc as donor and fullerene (C60 as acceptor was fabricated, which obviously enhanced the performance of device by sequentially using both MoO3 and pentacene as double anode buffer layers (ABL, also known as hole extraction layer (HEL. A series of the vacuum-deposited ABL, acting as an electron and exciton blocking layer, were examined for their characteristics in SM-OSCs. The performance and reliability were compared between conventional ITO/ABL/CuPc/C60/BCP/Ag cells and the new ITO/double ABL/CuPc/C60/BCP/Ag cells. The effect on the electrical properties of these materials was also investigated to obtain the optimal thickness of ABL. The comparison shows that the modified cell has an enhanced reliability compared to traditional cells. The improvement of lifetime was attributed to the idea of double layers to prevent humidity and oxygen from diffusing into the active layer. We demonstrated that the interfacial extraction layers are necessary to avoid degradation of device. That is to say, in normal temperature and pressure, a new avenue for the device within double buffer layers has exhibited the highest values of open circuit voltage (Voc, fill factor (FF, and lifetime in this work compared to monolayer of ABL.

  1. Characteristics of the low power cylindrical anode layer ion source

    International Nuclear Information System (INIS)

    Zhao Jie; Tang Deli; Cheng Changming; Geng Shaofei

    2009-01-01

    A low power cylindrical anode layer ion source and its working characteristic, and the beam distribution are introduced. This ion source has two working states, emanative state and collimated state, and the normal parameters of this system are: working voltage 200-1200 V, discharge current 0.1-1.4A, air pressure 1.9 x 10 -2 -1.7 x 10 -1 Pa, gas flow 5-20 sccm. (authors)

  2. Surface alloys as interfacial layers between quasicrystalline and periodic materials

    Science.gov (United States)

    Duguet, T.; Ledieu, J.; Dubois, J. M.; Fournée, V.

    2008-08-01

    Low adhesion with normal metals is an intrinsic property of many quasicrystalline surfaces. Although this property could be useful to develop low friction or non-stick coatings, it is also responsible for the poor adhesion of quasicrystalline coatings on metal substrates. Here we investigate the possibility of using complex metallic surface alloys as interface layers to enhance the adhesion between quasicrystals and simple metal substrates. We first review some examples where such complex phases are formed as an overlayer. Then we study the formation of such surface alloys in a controlled way by annealing a thin film deposited on a quasicrystalline substrate. We demonstrate that a coherent buffer layer consisting of the γ-Al4Cu9 approximant can be grown between pure Al and the i-Al-Cu-Fe quasicrystal. The interfacial relationships between the different layers are defined by [111]_{\\mathrm {Al}}\\parallel [110]_{\\mathrm {Al_4Cu_9}}\\parallel [5\\mathrm {f}]_{i\\mbox {-}\\mathrm {Al\\mbox {--}Cu \\mbox {--}Fe}} .

  3. Surface alloys as interfacial layers between quasicrystalline and periodic materials

    Energy Technology Data Exchange (ETDEWEB)

    Duguet, T; Ledieu, J; Dubois, J M; Fournee, V [Laboratoire de Science et Genie des Materiaux et de Metallurgie, UMR 7584 CNRS-Nancy Universite, Ecole des Mines de Nancy, Parc de Saurupt, F-54042 Nancy (France)], E-mail: fournee@lsg2m.org

    2008-08-06

    Low adhesion with normal metals is an intrinsic property of many quasicrystalline surfaces. Although this property could be useful to develop low friction or non-stick coatings, it is also responsible for the poor adhesion of quasicrystalline coatings on metal substrates. Here we investigate the possibility of using complex metallic surface alloys as interface layers to enhance the adhesion between quasicrystals and simple metal substrates. We first review some examples where such complex phases are formed as an overlayer. Then we study the formation of such surface alloys in a controlled way by annealing a thin film deposited on a quasicrystalline substrate. We demonstrate that a coherent buffer layer consisting of the {gamma}-Al{sub 4}Cu{sub 9} approximant can be grown between pure Al and the i-Al-Cu-Fe quasicrystal. The interfacial relationships between the different layers are defined by [111]{sub Al} parallel [110]{sub Al4Cu9} parallel [5f]{sub i-Al-}C{sub u-Fe}.

  4. Nanoporous Mo2C functionalized 3D carbon architecture anode for boosting flavins mediated interfacial bioelectrocatalysis in microbial fuel cells

    Science.gov (United States)

    Zou, Long; Lu, Zhisong; Huang, Yunhong; Long, Zhong-er; Qiao, Yan

    2017-08-01

    An efficient microbial electrocatalysis in microbial fuel cells (MFCs) needs both high loading of microbes (biocatalysts) and robust interfacial electron transfer from microbes to electrode. Herein a nanoporous molybdenum carbide (Mo2C) functionalized carbon felt electrode with rich 3D hierarchical porous architecture is applied as MFC anode to achieve superior electrocatalytic performance. The nanoporous Mo2C functionalized anode exhibits strikingly improved microbial electrocatalysis in MFCs with 5-fold higher power density and long-term stability of electricity production. The great enhancement is attributed to the introduction of rough Mo2C nanostructural interface into macroporous carbon architecture for promoting microbial growth with great excretion of endogenous electron shuttles (flavins) and rich available nanopores for enlarging electrochemically active surface area. Importantly, the nanoporous Mo2C functionalized anode is revealed for the first time to have unique electrocatalytic activity towards redox reaction of flavins with more negative redox potential, indicating a more favourable thermodynamic driving force for anodic electron transfer. This work not only provides a promising electrode for high performance MFCs but also brings up a new insight into the effect of nanostructured materials on interfacial bioelectrocatalysis.

  5. Hafnium metallocene compounds used as cathode interfacial layers for enhanced electron transfer in organic solar cells

    Science.gov (United States)

    2012-01-01

    We have used hafnium metallocene compounds as cathode interfacial layers for organic solar cells [OSCs]. A metallocene compound consists of a transition metal and two cyclopentadienyl ligands coordinated in a sandwich structure. For the fabrication of the OSCs, poly[3,4-ethylenedioxythiophene]:poly(styrene sulfonate), poly(3-hexylthiophene-2,5-diyl) + [6,6]-phenyl C61 butyric acid methyl ester, bis-(ethylcyclopentadienyl)hafnium(IV) dichloride, and aluminum were deposited as a hole transport layer, an active layer, a cathode interfacial layer, and a cathode, respectively. The hafnium metallocene compound cathode interfacial layer improved the performance of OSCs compared to that of OSCs without the interfacial layer. The current density-voltage characteristics of OSCs with an interfacial layer thickness of 0.7 nm and of those without an interfacial layer showed power conversion efficiency [PCE] values of 2.96% and 2.34%, respectively, under an illumination condition of 100 mW/cm2 (AM 1.5). It is thought that a cathode interfacial layer of an appropriate thickness enhances the electron transfer between the active layer and the cathode, and thus increases the PCE of the OSCs. PMID:22230259

  6. Hafnium metallocene compounds used as cathode interfacial layers for enhanced electron transfer in organic solar cells

    Science.gov (United States)

    Park, Keunhee; Oh, Seungsik; Jung, Donggeun; Chae, Heeyeop; Kim, Hyoungsub; Boo, Jin-Hyo

    2012-01-01

    We have used hafnium metallocene compounds as cathode interfacial layers for organic solar cells [OSCs]. A metallocene compound consists of a transition metal and two cyclopentadienyl ligands coordinated in a sandwich structure. For the fabrication of the OSCs, poly[3,4-ethylenedioxythiophene]:poly(styrene sulfonate), poly(3-hexylthiophene-2,5-diyl) + [6, 6]-phenyl C61 butyric acid methyl ester, bis-(ethylcyclopentadienyl)hafnium(IV) dichloride, and aluminum were deposited as a hole transport layer, an active layer, a cathode interfacial layer, and a cathode, respectively. The hafnium metallocene compound cathode interfacial layer improved the performance of OSCs compared to that of OSCs without the interfacial layer. The current density-voltage characteristics of OSCs with an interfacial layer thickness of 0.7 nm and of those without an interfacial layer showed power conversion efficiency [PCE] values of 2.96% and 2.34%, respectively, under an illumination condition of 100 mW/cm2 (AM 1.5). It is thought that a cathode interfacial layer of an appropriate thickness enhances the electron transfer between the active layer and the cathode, and thus increases the PCE of the OSCs.

  7. Layer-by-layer graphene/TCNQ stacked films as conducting anodes for organic solar cells.

    Science.gov (United States)

    Hsu, Chang-Lung; Lin, Cheng-Te; Huang, Jen-Hsien; Chu, Chih-Wei; Wei, Kung-Hwa; Li, Lain-Jong

    2012-06-26

    Large-area graphene grown by chemical vapor deposition (CVD) is a promising candidate for transparent conducting electrode applications in flexible optoelectronic devices such as light-emitting diodes or organic solar cells. However, the power conversion efficiency (PCE) of the polymer photovoltaic devices using a pristine CVD graphene anode is still not appealing due to its much lower conductivity than that of conventional indium tin oxide. We report a layer-by-layer molecular doping process on graphene for forming sandwiched graphene/tetracyanoquinodimethane (TCNQ)/graphene stacked films for polymer solar cell anodes, where the TCNQ molecules (as p-dopants) were securely embedded between two graphene layers. Poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester (P3HT/PCBM) bulk heterojunction polymer solar cells based on these multilayered graphene/TCNQ anodes are fabricated and characterized. The P3HT/PCBM device with an anode structure composed of two TCNQ layers sandwiched by three CVD graphene layers shows optimum PCE (∼2.58%), which makes the proposed anode film quite attractive for next-generation flexible devices demanding high conductivity and transparency.

  8. Effect of antiferromagnetic interfacial coupling on spin-wave resonance frequency of multi-layer film

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Rong-ke, E-mail: rkqiu@163.com; Cai, Wei

    2017-08-15

    Highlights: • A quantum approach is developed to study the SWR of a bicomponent multi-layer films. • The comparison of the SWR in films with FM and AFM interfacial coupling has been made. • The present results show the method to enhance and adjust the SWR frequency of films. - Abstract: We investigate the spin-wave resonance (SWR) frequency in a bicomponent bilayer and triple-layer films with antiferromagnetic or ferromagnetic interfacial couplings, as function of interfacial coupling, surface anisotropy, interface anisotropy, thickness and external magnetic field, using the linear spin-wave approximation and Green’s function technique. The microwave properties for multi-layer magnetic film with antiferromagnetic interfacial coupling is different from those for multi-layer magnetic film with ferromagnetic interfacial coupling. For the bilayer film with antiferromagnetic interfacial couplings, as the lower (upper) surface anisotropy increases, only the SWR frequencies of the odd (even) number modes increase. The lower (upper) surface anisotropy does not affect the SWR frequencies of the even (odd) number modes{sub .} For the multi-layer film with antiferromagnetic interfacial coupling, the SWR frequency of modes m = 1, 3 and 4 decreases while that of mode m = 2 increases with increasing thickness of the film within a proper parameter region. The present results could be useful in enhancing our fundamental understanding and show the method to enhance and adjust the SWR frequency of bicomponent multi-layer magnetic films with antiferromagnetic or ferromagnetic interfacial coupling.

  9. MoO3–Au composite interfacial layer for high efficiency and air-stable organic solar cells

    DEFF Research Database (Denmark)

    Pan, Hongbin; Zuo, Lijian; Fu, Weifei

    2013-01-01

    Efficient and stable polymer bulk-heterojunction solar cells based on regioregular poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PC61BM) blend active layer have been fabricated with a MoO3–Au co-evaporation composite film as the anode interfacial layer (AIL). The optical...... resistance and thus improving the fill factor and efficiency of the devices. Additionally, the air stability of devices with different AILs (MoO3–Au composite, MoO3 and PEDOT:PSS) were studied and it was found that the MoO3–Au composite layer remarkably improved the stability of the solar cells with shelf...

  10. Process and electrolyte for applying barrier layer anodic coatings

    International Nuclear Information System (INIS)

    Dosch, R.G.; Prevender, T.S.

    1975-01-01

    Various metals may be anodized, and preferably barrier anodized, by anodizing the metal in an electrolyte comprising quaternary ammonium compound having a complex metal anion in a solvent containing water and a polar, water soluble organic material. (U.S.)

  11. Enhancing the Performances of P3HT:PCBM-MoS3-Based H2-Evolving Photocathodes with Interfacial Layers.

    Science.gov (United States)

    Bourgeteau, Tiphaine; Tondelier, Denis; Geffroy, Bernard; Brisse, Romain; Cornut, Renaud; Artero, Vincent; Jousselme, Bruno

    2015-08-05

    Organic semiconductors have great potential for producing hydrogen in a durable and economically viable manner because they rely on readily available materials and can be solution-processed over large areas. With the objective of building efficient hybrid organic-inorganic photoelectrochemical cells, we combined a noble-metal-free and solution-processable catalyst for proton reduction, MoS3, and a poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) bulk heterojunction (BHJ). Different interfacial layers were investigated to improve the charge transfer between P3HT:PCBM and MoS3. Metallic Al/Ti interfacial layers led to an increase of the photocurrent by up to 8 mA cm(-2) at reversible hydrogen electrode (RHE) potential with a 0.6 V anodic shift of the H2 evolution reaction onset potential, a value close to the open-circuit potential of the P3HT:PCBM solar cell. A 50-nm-thick C60 layer also works as an interfacial layer, with a current density reaching 1 mA cm(-2) at the RHE potential. Moreover, two recently highlighted1 figures-of-merit, measuring the ratio of power saved, Φsaved,ideal and Φsaved,NPAC, were evaluated and discussed to compare the performances of various photocathodes assessed in a three-electrode configuration. Φsaved,ideal and Φsaved,NPAC use the RHE and a nonphotoactive electrode with an identical catalyst as the dark electrode, respectively. They provide different information especially for differentiation of the roles of the photogenerating layer and catalyst. The best results were obtained with the Al/Ti metallic interlayer, with Φsaved,ideal and Φsaved,NPAC reaching 0.64% and 2.05%, respectively.

  12. Design and numerical simulation of the electromagnetic field of linear anode layer ion source

    International Nuclear Information System (INIS)

    Wang Lisheng; Tang Deli; Cheng Changming

    2006-01-01

    The principle of anode layer ion source for etching, pre-cleaning and ion beam assisted deposition was described. The influence of the magnetic field on the performance of anode layer ion source was analyzed. Design of the magnetic loop for the linear anode layer ion source was given. The electromagnetic field distribution of the ion source was simulated by means of ANSYS code and the simulation results were in agreement with experimental ones. The numerical simulation results of the electromagnetic field are useful for improving the anode layer ion source. (authors)

  13. Ultrasonic Guided Waves in Piezoelectric Layered Composite with Different Interfacial Properties

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2011-01-01

    Full Text Available Combining the propagation model of guided waves in a multilayered piezoelectric composite with the interfacial model of rigid, slip, and weak interfaces, the generalized dispersion characteristic equations of guided waves propagating in a piezoelectric layered composite with different interfacial properties are derived. The effects of the slip, weak, and delamination interfaces in different depths on the dispersion properties of the lowest-order mode ultrasonic guided wave are analyzed. The theory would be used to characterize the interfacial properties of piezoelectric layered composite nondestructively.

  14. Electrochemical performance of Sn-Sb-Cu film anodes prepared by layer-by-layer electrodeposition

    International Nuclear Information System (INIS)

    Jiang Qianlei; Xue Ruisheng; Jia Mengqiu

    2012-01-01

    A novel layer-by-layer electrodeposition and heat-treatment approach was attempted to obtain Sn-Sb-Cu film anode for lithium ion batteries. The preparation of Sn-Sb-Cu anodes started with galvanostatic electrochemically depositing antimony and tin sequentially on the substrate of copper foil collector. Sn-Sb and Cu-Sb alloys were formed when heated. The SEM analysis showed that the crystalline grains become bigger and the surface of the Sn-Sb-Cu anode becomes more denser after annealing. The energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analysis showed the antimony, tin and copper were alloyed to form SnSb and Cu 2 Sb after heat treatment. The X-ray photoelectron spectroscopy (XPS) analysis showed the surface of the Sn-Sb-Cu electrode was covered by a thin oxide layer. Electrochemical measurements showed that the annealed Sn-Sb-Cu anode has high reversible capacity and good capacity retention. It exhibited a reversible capacity of about 962 mAh/g in the initial cycle, which still remained 715 mAh/g after 30 cycles.

  15. The effect of interfacial layers on charge transport in organic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Mbuyise, Xolani G.; Tonui, Patrick; Mola, Genene Tessema, E-mail: mola@ukzn.ac.za

    2016-09-01

    The effect of interfacial buffer layers in organic photovoltaic cell (OPV) whose active layer is composed of poly(3 hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend was studied. The electrical properties of OPV devices produced with and without interfacial layers are compared and discussed in terms of measured parameters of the cells. The charge transport properties showed significant difference on the mobility and activation factor between the two types of device structures. The life time measurements in the unprotected conditions are also presented and discussed.

  16. Interfacial layers from the protein HFBII hydrophobin: Dynamic surface tension, dilatational elasticity and relaxation times

    NARCIS (Netherlands)

    Alexandrov, N.A.; Marinova, K.G.; Gurkov, T.D.; Danov, K.D.; Kralchevsky, P.A.; Stoyanov, S.D.; Blijdenstein, T.B.J.; Arnaudov, L.N.; Pelan, E.G.; Lips, A.

    2012-01-01

    The pendant-drop method (with drop-shape analysis) and Langmuir trough are applied to investigate the characteristic relaxation times and elasticity of interfacial layers from the protein HFBII hydrophobin. Such layers undergo a transition from fluid to elastic solid films. The transition is

  17. Electrochemical performance and interfacial investigation on Si composite anode for lithium ion batteries in full cell

    Science.gov (United States)

    Shobukawa, Hitoshi; Alvarado, Judith; Yang, Yangyuchen; Meng, Ying Shirley

    2017-08-01

    Lithium ion batteries (LIBs) containing silicon (Si) as a negative electrode have gained much attention recently because they deliver high energy density. However, the commercialization of LIBs with Si anode is limited due to the unstable electrochemical performance associated with expansion and contraction during electrochemical cycling. This study investigates the electrochemical performance and degradation mechanism of a full cell containing Si composite anode and LiFePO4 (lithium iron phosphate (LFP)) cathode. Enhanced electrochemical cycling performance is observed when the full cell is cycled with fluoroethylene carbonate (FEC) additive compared to the standard electrolyte. To understand the improvement in the electrochemical performance, x-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) are used. Based on the electrochemical behavior, FEC improves the reversibility of lithium ion diffusion into the solid electrolyte interphase (SEI) on the Si composite anode. Moreover, XPS analysis demonstrates that the SEI composition generated from the addition of FEC consists of a large amount of LiF and less carbonate species, which leads to better capacity retention over 40 cycles. The effective SEI successively yields more stable capacity retention and enhances the reversibility of lithium ion diffusion through the interphase of the Si anode, even at higher discharge rate. This study contributes to a basic comprehension of electrochemical performance and SEI formation of LIB full cells with a high loading Si composite anode.

  18. Self-healing sandwich structures incorporating an interfacial layer with vascular network

    International Nuclear Information System (INIS)

    Chen, Chunlin; Peters, Kara; Li, Yulong

    2013-01-01

    A self-healing capability specifically targeted for sandwich composite laminates based on interfacial layers with built-in vascular networks is presented. The self-healing occurs at the facesheet–core interface through an additional interfacial layer to seal facesheet cracks and rebond facesheet–core regions. The efficacy of introducing the self-healing system at the facesheet–core interface is evaluated through four-point bend and edgewise compression testing of representative foam core sandwich composite specimens with impact induced damage. The self-healing interfacial layer partially restored the specific initial stiffness, doubling the residual initial stiffness as compared to the control specimen after the impact event. The restoration of the ultimate specific skin strength was less successful. The results also highlight the critical challenge in self-healing of sandwich composites, which is to rebond facesheets which have separated from the core material. (paper)

  19. Effects of Anodic Buffer Layer in Top-Illuminated Organic Solar Cell with Silver Electrodes

    Directory of Open Access Journals (Sweden)

    Tien-Lung Chiu

    2013-01-01

    Full Text Available An efficient ITO-free top-illuminated organic photovoltaic (TOPV based on small molecular planar heterojunction was achieved by spinning a buffer layer of poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate (PEDOT:PSS, on the Ag-AgOx anode. The PEDOT:PSS thin film separates the active layer far from the Ag anode to prevent metal quenching and redistributes the strong internal optical field toward dissociated interface. The thickness and morphology of this anodic buffer layer are the key factors in determining device performances. The uniform buffer layer contributes a large short-circuit current and open-circuit voltage, benefiting the final power conversion efficiency (PCE. The TOPV device with an optimal PEDOT:PSS thickness of about 30 nm on Ag-AgOx anode exhibits the maximum PCE of 1.49%. It appreciates a 1.37-fold enhancement in PCE over that of TOPV device without buffer layer.

  20. Atomic Layer Deposition of SnO2 on MXene for Li-Ion Battery Anodes

    KAUST Repository

    Ahmed, Bilal

    2017-02-24

    In this report, we show that oxide battery anodes can be grown on two-dimensional titanium carbide sheets (MXenes) by atomic layer deposition. Using this approach, we have fabricated a composite SnO2/MXene anode for Li-ion battery applications. The SnO2/MXene anode exploits the high Li-ion capacity offered by SnO2, while maintaining the structural and mechanical integrity by the conductive MXene platform. The atomic layer deposition (ALD) conditions used to deposit SnO2 on MXene terminated with oxygen, fluorine, and hydroxyl-groups were found to be critical for preventing MXene degradation during ALD. We demonstrate that SnO2/MXene electrodes exhibit excellent electrochemical performance as Li-ion battery anodes, where conductive MXene sheets act to buffer the volume changes associated with lithiation and delithiation of SnO2. The cyclic performance of the anodes is further improved by depositing a very thin passivation layer of HfO2, in the same ALD reactor, on the SnO2/MXene anode. This is shown by high-resolution transmission electron microscopy to also improve the structural integrity of SnO2 anode during cycling. The HfO2 coated SnO2/MXene electrodes demonstrate a stable specific capacity of 843 mAh/g when used as Li-ion battery anodes.

  1. Anode-originated SEI migration contributes to formation of cathode-electrolyte interphase layer

    Science.gov (United States)

    Fang, Shuyu; Jackson, David; Dreibelbis, Mark L.; Kuech, Thomas F.; Hamers, Robert J.

    2018-01-01

    Cathode-electrolyte interphase (CEI) formation is a key process that impacts the performance of lithium-ion batteries. In this work, we characterized the composition and stoichiometry of CEI layer on LiNixMnyCo1-x-yO2 (NMC) cathodes via a novel combination of quantitative correlation analysis of X-ray photoelectron spectra and binder-free cathode formulation. By comparing the CEI formation in NMC-based cells with lithium, graphite and lithium titanate anodes, we demonstrate a CEI formation pathway via migration of surface species that originally formed on the anode side. A case study of cathodes coated by atomic layer deposition with a thin layer of Al2O3 demonstrates that anode-to-cathode migration can be mitigated by ALD cathode coatings. This work highlights the importance of anode-mediated processes in order to correctly interpret surface phenomena on the cathode side and to guide further development of surface protection strategies.

  2. Interfacial layers from the protein HFBII hydrophobin: dynamic surface tension, dilatational elasticity and relaxation times.

    Science.gov (United States)

    Alexandrov, Nikola A; Marinova, Krastanka G; Gurkov, Theodor D; Danov, Krassimir D; Kralchevsky, Peter A; Stoyanov, Simeon D; Blijdenstein, Theodorus B J; Arnaudov, Luben N; Pelan, Eddie G; Lips, Alex

    2012-06-15

    The pendant-drop method (with drop-shape analysis) and Langmuir trough are applied to investigate the characteristic relaxation times and elasticity of interfacial layers from the protein HFBII hydrophobin. Such layers undergo a transition from fluid to elastic solid films. The transition is detected as an increase in the error of the fit of the pendant-drop profile by means of the Laplace equation of capillarity. The relaxation of surface tension after interfacial expansion follows an exponential-decay law, which indicates adsorption kinetics under barrier control. The experimental data for the relaxation time suggest that the adsorption rate is determined by the balance of two opposing factors: (i) the barrier to detachment of protein molecules from bulk aggregates and (ii) the attraction of the detached molecules by the adsorption layer due to the hydrophobic surface force. The hydrophobic attraction can explain why a greater surface coverage leads to a faster adsorption. The relaxation of surface tension after interfacial compression follows a different, square-root law. Such behavior can be attributed to surface diffusion of adsorbed protein molecules that are condensing at the periphery of interfacial protein aggregates. The surface dilatational elasticity, E, is determined in experiments on quick expansion or compression of the interfacial protein layers. At lower surface pressures (<11 mN/m) the experiments on expansion, compression and oscillations give close values of E that are increasing with the rise of surface pressure. At higher surface pressures, E exhibits the opposite tendency and the data are scattered. The latter behavior can be explained with a two-dimensional condensation of adsorbed protein molecules at the higher surface pressures. The results could be important for the understanding and control of dynamic processes in foams and emulsions stabilized by hydrophobins, as well as for the modification of solid surfaces by adsorption of such

  3. Simple O2 Plasma-Processed V2O5 as an Anode Buffer Layer for High-Performance Polymer Solar Cells

    DEFF Research Database (Denmark)

    Bao, Xichang; Zhu, Qianqian; Wang, Ting

    2015-01-01

    A simple O2 plasma processing method for preparation of a vanadium oxide (V2O5) anode buffer layer on indium tin oxide (ITO)-coated glass for polymer solar cells (PSCs) is reported. The V2O5 layer with high transmittance and good electrical and interfacial properties was prepared by spin coating...... a vanadium(V) triisopropoxide oxide alcohol solution on ITO and then O2 plasma treatment for 10 min [V2O5 (O2 plasma)]. PSCs based on P3HT:PC61BM and PBDTTT-C:PC71BM using V2O5 (O2 plasma) as an anode buffer layer show high power conversion efficiencies (PCEs) of 4.47 and 7.54%, respectively, under...... the illumination of AM 1.5G (100 mW/cm2). Compared to that of the control device with PBDTTT-C:PC71BM as the active layer and PEDOT:PSS (PCE of 6.52%) and thermally annealed V2O5 (PCE of 6.27%) as the anode buffer layer, the PCE was improved by 15.6 and 20.2%, respectively, after the introduction of a V2O5 (O2...

  4. Supersaturated Self-Assembled Charge-Selective Interfacial Layers for Organic Solar Cells

    Science.gov (United States)

    2014-11-24

    layers (IFLs) on the tin-doped indium oxide (ITO) anodes of organic photovoltaic (OPV) cells , a series of Ar2N-(CH2)n-SiCl3 precursors with Ar = 3,4...applications such as organic photovoltaics ,1−6 thin-film transistors ,7−9 and organic/ polymer light-emitting diodes.10−13 Using SAM surface mod- ification...oxide (ITO) anodes of organic photovoltaic (OPV) cells , a series of Ar2N-(CH2)n-SiCl3 precursors with Ar = 3,4-difluorophenyl, n = 3, 6, 10, and 18, was

  5. Nanoengineering and interfacial engineering of photovoltaics by atomic layer deposition

    Science.gov (United States)

    Bakke, Jonathan R.; Pickrahn, Katie L.; Brennan, Thomas P.; Bent, Stacey F.

    2011-09-01

    Investment into photovoltaic (PV) research has accelerated over the past decade as concerns over energy security and carbon emissions have increased. The types of PV technology in which the research community is actively engaged are expanding as well. This review focuses on the burgeoning field of atomic layer deposition (ALD) for photovoltaics. ALD is a self-limiting thin film deposition technique that has demonstrated usefulness in virtually every sector of PV technology including silicon, thin film, tandem, organic, dye-sensitized, and next generation solar cells. Further, the specific applications are not limited. ALD films have been deposited on planar and nanostructured substrates and on inorganic and organic devices, and vary in thickness from a couple of angstroms to over 100 nm. The uses encompass absorber materials, buffer layers, passivating films, anti-recombination shells, and electrode modifiers. Within the last few years, the interest in ALD as a PV manufacturing technique has increased and the functions of ALD have expanded. ALD applications have yielded fundamental understanding of how devices operate and have led to increased efficiencies or to unique architectures for some technologies. This review also highlights new developments in high throughput ALD, which is necessary for commercialization. As the demands placed on materials for the next generation of PV become increasingly stringent, ALD will evolve into an even more important method for research and fabrication of solar cell devices.

  6. The simulation of the temperature effects on the microhardness of anodic alumina oxide layers

    Directory of Open Access Journals (Sweden)

    M. Gombár

    2014-01-01

    Full Text Available In order to improve the mechanical properties of the layer deposited by anodic oxidation of aluminum on the material EN AW-1050 H24, in the contribution was investigated the microhardness of the deposited layer as a function of the physic-chemical factors affecting in the process of anodic oxidation at the constant anodic current density J = 3 A.dm-2 in electrolyte formed by sulfuric acid and oxalic acid, with the emphasis on the influence of electrolyte temperature in the range – 1,78 °C to 45,78 °C. The model of the studied dependence was compiled based on mathematical and statistical analysis of matrix from experimental obtained data from composite rotation plan of experiment with five independent variable factors (amount of sulfuric acid in the electrolyte, the amount of oxalic acid in the electrolyte, electrolyte, anodizing time and applied voltage.

  7. Enhancement of device performance of organic solar cells by an interfacial perylene derivative layer

    KAUST Repository

    Kim, Inho

    2010-05-26

    We report that device performance of organic solar cells consisting of zinc phthalocyanine and fullerene (C60) can be enhanced by insertion of a perylene derivative interfacial layer between fullerene and bathocuproine (BCP) exciton blocking layer (EBL). The morphology of the BCP is influenced by the underlying N,N′-dihexyl-perylene-3,4,9,10-bis(dicarboximide) (PTCDI-C6), which promotes migration of the cathode metal into the BCP layer. Insertion of a PTCDI-C6 layer between fullerene and BCP layers enhances the power conversion efficiency to 2.5%, an improvement of 32% over devices without PTCDI-C6 layer. The enhancement in device performance by insertion of PTCDI-C6 is attributed to a reduction in series resistance due to promoted metal migration into BCP and optimized optical interference effects in multilayered devices. © 2010 American Chemical Society.

  8. Fatigue crack growth simulations of interfacial cracks in bi-layered FGMs using XFEM

    Science.gov (United States)

    Bhattacharya, S.; Singh, I. V.; Mishra, B. K.; Bui, T. Q.

    2013-10-01

    An investigation of fatigue crack growth of interfacial cracks in bi-layered materials using the extended finite element method is presented. The bi-material consists of two layers of dissimilar materials. The bottom layer is made of aluminium alloy while the upper one is made of functionally graded material (FGM). The FGM layer consists of 100 % aluminium alloy on the left side and 100 % ceramic (alumina) on the right side. The gradation in material property of the FGM layer is assumed to be exponential from the alloy side to the ceramic side. The domain based interaction integral approach is extended to obtain the stress intensity factors for an interfacial crack under thermo-mechanical load. The edge and centre cracks are taken at the interface of bi-layered material. The fatigue life of the interface crack plate is obtained using the Paris law of fatigue crack growth under cyclic mode-I, mixed-mode and thermal loads. This study reveals that the crack propagates into the FGM layer under all types of loads.

  9. Crystalline Molybdenum Oxide Thin-Films for Application as Interfacial Layers in Optoelectronic Devices

    DEFF Research Database (Denmark)

    Fernandes Cauduro, André Luis; dos Reis, Roberto; Chen, Gong

    2017-01-01

    The ability to control the interfacial properties in metal-oxide thin films through surface defect engineering is vital to fine-tune their optoelectronic properties and thus their integration in novel optoelectronic devices. This is exemplified in photovoltaic devices based on organic, inorganic...... with structural characterizations, this work addresses a novel method for tuning, and correlating, the optoelectronic properties and microstructure of device-relevant MoOx layers....

  10. Influence of Interfacial Carbide Layer Characteristics on Thermal Properties of Copper-Diamond Composites (Postprint)

    Science.gov (United States)

    2014-04-01

    wettability of diamond is not an issue. Moreover, the solid-state processing can, in principle , be carried out at relatively low temperatures even for non...capacity. q was mea- sured using Archimedes ’ method, and D was measured with laser flash technique per ASTM E1461. The speci- mens for D measurement... principle , attainable by changing the interfacial Cr3C2 layer characteristics. In an earlier study [3], for a given diamond particle size and volume

  11. Interfacial instability induced by lateral vapor pressure fluctuation in bounded thin liquid-vapor layers

    OpenAIRE

    Kanatani, Kentaro

    2008-01-01

    We study an instability of thin liquid-vapor layers bounded by rigid parallel walls from both below and above. In this system, the interfacial instability is induced by lateral vapor pressure fluctuation, which is in turn attributed to the effect of phase change: evaporation occurs at a hotter portion of the interface and condensation at a colder one. The high vapor pressure pushes the interface downward and the low one pulls it upward. A set of equations describing the temporal evolution of ...

  12. Enhancing the performances of P3HT:PCBM – MoS3 based H2-evolving photocathodes with interfacial layers

    Science.gov (United States)

    Bourgeteau, Tiphaine; Tondelier, Denis; Geffroy, Bernard; Brisse, Romain; Cornut, Renaud; Artero, Vincent; Jousselme, Bruno

    2015-01-01

    Organic semiconductors have great potential for producing hydrogen in a durable and economically viable manner, as they rely on readily available materials and can be solution-processed over large areas. With the objective of building efficient hybrid organic-inorganic photo-electrochemical cells, we combined a noble metal-free and solution-processable catalyst for proton reduction, MoS3, and a poly-(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) bulk heterojunction (BHJ). Different interfacial layers were investigated to improve the charge transfer between P3HT:PCBM and MoS3. Metallic Al\\Ti interfacial layers led to an increase of the photocurrent up to 8 mA cm−2 at reversible hydrogen electrode (RHE) potential with a 0.6 V anodic shift of the HER onset potential, a value close to the open circuit potential of the P3HT:PCBM solar cell. A 50 nm thick C60 layer also works as interfacial layer, with current density reaching 1 mA cm−2 at RHE potential. Moreover, two recently highlighted1 figures-of-merit, measuring the ratio of power saved, Φsaved,ideal and Φsaved,NPAC, were evaluated and discussed to compare the performances of various photocathodes assessed in a three-electrode configuration. Φsaved,ideal and Φsaved,NPAC use the RHE and a non-photoactive electrode with identical catalyst as dark electrode, respectively. They provide different information especially for the differentiation of the role of the photogenerating layer and the role of the catalyst. Best results were obtained with the Al\\Ti metallic interlayer, with Φsaved,ideal and Φsaved,NPAC reaching 0.64 % and 2.05 % respectively. PMID:26151685

  13. Interfacial Bonding Energy on the Interface between ZChSnSb/Sn Alloy Layer and Steel Body at Microscale

    Directory of Open Access Journals (Sweden)

    Jianmei Wang

    2017-09-01

    Full Text Available To investigate the performance of bonding on the interface between ZChSnSb/Sn and steel body, the interfacial bonding energy on the interface of a ZChSnSb/Sn alloy layer and the steel body with or without Sn as an intermediate layer was calculated under the same loadcase using the molecular dynamics simulation software Materials Studio by ACCELRYS, and the interfacial bonding energy under different Babbitt thicknesses was compared. The results show that the bonding energy of the interface with Sn as an intermediate layer is 10% larger than that of the interface without a Sn layer. The interfacial bonding performances of Babbitt and the steel body with Sn as an intermediate layer are better than those of an interface without a Sn layer. When the thickness of the Babbitt layer of bushing is 17.143 Å, the interfacial bonding energy reaches the maximum, and the interfacial bonding performance is optimum. These findings illustrate the bonding mechanism of the interfacial structure from the molecular level so as to ensure the good bonding properties of the interface, which provides a reference for the improvement of the bush manufacturing process from the microscopic point of view.

  14. A Novel Method to Determine the Thermal Conductivity of Interfacial Layers Surrounding the Nanoparticles of a Nanofluid.

    Science.gov (United States)

    Pal, Rajinder

    2014-10-13

    Nanofluids are becoming increasingly popular as heat transfer fluids in a variety of industrial applications, due to their enhanced heat transfer characteristics. The thermal conductivity of nanofluids is usually found to be much larger than that predicted from the classical models, such as the Maxwell model. The key mechanism of enhancement of thermal conductivity of dilute nanofluids is the solvation of nanoparticles with a layer of matrix liquid. As of now, little is known quantitatively about the thermal conductivity of the interfacial layers surrounding the nanoparticles. In this article, a novel method is presented to determine the thermal conductivity of the interfacial layers of the nanoparticles. The proposed method allows the estimation of the thermal conductivity of interfacial layers based on the combined measurements of the intrinsic viscosity and intrinsic thermal conductivity of a bulk nanofluid. From the measured intrinsic viscosity of the nanofluid, the thickness of the interfacial layer is estimated. Using the known interfacial layer thickness along with the measured intrinsic thermal conductivity of the nanofluid, the thermal conductivity of the interfacial layer is estimated. The proposed method is validated by simulation and experimental results.

  15. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  16. Preparation and Evaluation of Multi-Layer Anodes of Solid Oxide Fuel Cell

    Science.gov (United States)

    Santiago, Diana; Farmer, Serene C.; Setlock, John A.

    2012-01-01

    The development of an energy device with abundant energy generation, ultra-high specific power density, high stability and long life is critical for enabling longer missions and for reducing mission costs. Of all different types of fuel cells, the solid oxide fuel cells (SOFC) is a promising high temperature device that can generate electricity as a byproduct of a chemical reaction in a clean way and produce high quality heat that can be used for other purposes. For aerospace applications, a power-to-weight of (is) greater than 1.0 kW/kg is required. NASA has a patented fuel cell technology under development, capable of achieving the 1.0 kW/kg figure of merit. The first step toward achieving these goals is increasing anode durability. The catalyst plays an important role in the fuel cells for power generation, stability, efficiency and long life. Not only the anode composition, but its preparation and reduction are key to achieving better cell performance. In this research, multi-layer anodes were prepared varying the chemistry of each layer to optimize the performance of the cells. Microstructure analyses were done to the new anodes before and after fuel cell operation. The cells' durability and performance were evaluated in 200 hrs life tests in hydrogen at 850 C. The chemistry of the standard nickel anode was modified successfully reducing the anode degradation from 40% to 8.4% in 1000 hrs and retaining its microstructure.

  17. Use of interfacial layers to prolong hole lifetimes in hematite probed by ultrafast transient absorption spectroscopy

    Science.gov (United States)

    Paradzah, Alexander T.; Diale, Mmantsae; Maabong, Kelebogile; Krüger, Tjaart P. J.

    2018-04-01

    Hematite is a widely investigated material for applications in solar water oxidation due primarily to its small bandgap. However, full realization of the material continues to be hampered by fast electron-hole recombination rates among other weaknesses such as low hole mobility, short hole diffusion length and low conductivity. To address the problem of fast electron-hole recombination, researchers have resorted to growth of nano-structured hematite, doping and use of under-layers. Under-layer materials enhance the photo-current by minimising electron-hole recombination through suppressing of back electron flow from the substrate, such as fluorine-doped tin oxide (FTO), to hematite. We have carried out ultrafast transient absorption spectroscopy on hematite in which Nb2O5 and SnO2 materials were used as interfacial layers to enhance hole lifetimes. The transient absorption data was fit with four different lifetimes ranging from a few hundred femtoseconds to a few nanoseconds. We show that the electron-hole recombination is slower in samples where interfacial layers are used than in pristine hematite. We also develop a model through target analysis to illustrate the effect of under-layers on electron-hole recombination rates in hematite thin films.

  18. Improvement of the interfacial Dzyaloshinskii-Moriya interaction by introducing a Ta buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nam-Hui; Jung, Jinyong; Cho, Jaehun; You, Chun-Yeol, E-mail: cyyou@inha.ac.kr [Department of Physics, Inha University, Incheon 402-751 (Korea, Republic of); Han, Dong-Soo; Kim, June-Seo, E-mail: spin2mtj@gmail.com; Swagten, Henk J. M. [Department of Applied Physics, Center for NanoMaterials, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2015-10-05

    We report systematic measurements of the interfacial Dzyaloshinskii-Moriya interaction (iDMI) by employing Brillouin light scattering in Pt/Co/AlO{sub x} and Ta/Pt/Co/AlO{sub x} structures. By introducing a tantalum buffer layer, the saturation magnetization and the interfacial perpendicular magnetic anisotropy are significantly improved due to the better interface between heavy metal and ferromagnetic layer. From the frequency shift between Stokes- and anti-Stokes spin-waves, we successively obtain considerably larger iDM energy densities (D{sub max} = 1.65 ± 0.13 mJ/m{sup 2} at t{sub Co} = 1.35 nm) upon adding the Ta buffer layer, despite the nominally identical interface materials. Moreover, the energy density shows an inverse proportionality with the Co layer thickness, which is the critical clue that the observed iDMI is indeed originating from the interface between the Pt and Co layers.

  19. Interfacial magnetic anisotropy of Co90Zr10 on Pt layer.

    Science.gov (United States)

    Kil, Joon Pyo; Bae, Gi Yeol; Suh, Dong Ik; Choi, Won Joon; Noh, Jae Sung; Park, Wanjun

    2014-11-01

    Spin Transfer Torque (STT) is of great interest in data writing scheme for the Magneto-resistive Random Access Memory (MRAM) using Magnetic Tunnel Junction (MTJ). Scalability for high density memory requires ferromagnetic electrodes having the perpendicular magnetic easy axis. We investigated CoZr as the ferromagnetic electrode. It is observed that interfacial magnetic anisotropy is preferred perpendicular to the plane with thickness dependence on the interfaces with Pt layer. The anisotropy energy (K(u)) with thickness dependence shows a change of magnetic-easy-axis direction from perpendicular to in-plane around 1.2 nm of CoZr. The interfacial anisotropy (K(i)) as the directly related parameters to switching and thermal stability, are estimated as 1.64 erg/cm2 from CoZr/Pt multilayered system.

  20. Simple solution-processed CuOX as anode buffer layer for efficient organic solar cells

    International Nuclear Information System (INIS)

    Shen, Wenfei; Yang, Chunpeng; Bao, Xichang; Sun, Liang; Wang, Ning; Tang, Jianguo; Chen, Weichao; Yang, Renqiang

    2015-01-01

    Graphical abstract: - Highlights: • Simple solution-processed CuO X hole transport layer for efficient organic solar cell. • Good photovoltaic performances as hole transport layer in OSCs with P3HT and PBDTTT-C as donor materials. • The device with CuO X as hole transport layer shows great improved stability compared with that of device with PEDOT:PSS as hole transport layer. - Abstract: A simple, solution-processed ultrathin CuO X anode buffer layer was fabricated for high performance organic solar cells (OSCs). XPS measurement demonstrated that the CuO X was the composite of CuO and Cu 2 O. The CuO X modified ITO glass exhibit a better surface contact with the active layer. The photovoltaic performance of the devices with CuO X layer was optimized by varying the thickness of CuO X films through changing solution concentration. With P3HT:PC 61 BM as the active layer, we demonstrated an enhanced PCE of 4.14% with CuO X anode buffer layer, compared with that of PEDOT:PSS layer. The CuO X layer also exhibits efficient photovoltaic performance in devices with PBDTTT-C:PC 71 BM as the active layer. The long-term stability of CuO X device is better than that of PEDOT:PSS device. The results indicate that the easy solution-processed CuO X film can act as an efficient anode buffer layer for high-efficiency OSCs

  1. Auto-compensation of ion beam in an accelerator with anode layer

    International Nuclear Information System (INIS)

    Bizyukov, A.A.; Kashaba, A.E.; Sereda, K.N.; Tselujko, A.F.; Yunakov, N.N.

    1997-01-01

    Experiments of studies on the ion beam auto-compensation are described. It is shown that in the accelerators with anode layer in the case of insulated collector there appears the auto-compensation due to excitation of additional non-independent gaseous discharge

  2. Anomalous acceleration of ions in a plasma accelerator with an anodic layer

    Science.gov (United States)

    V, M. BARDAKOV; S, D. IVANOV; A, V. KAZANTSEV; N, A. STROKIN; A, N. STUPIN; Binhao, JIANG; Zhenyu, WANG

    2018-03-01

    In a plasma accelerator with an anodic layer (PAAL), we discovered experimentally the effect of ‘super-acceleration’ of the bulk of the ions to energies W exceeding the energy equivalent to the discharge voltage V d. The E × B discharge was ignited in an environment of atomic argon and helium and molecular nitrogen. Singly charged argon ions were accelerated most effectively in the case of the largest discharge currents and pressure P of the working gas. Helium ions with W > eV d (e being the electron charge) were only recorded at maximum pressures. Molecular nitrogen was not accelerated to energies W > eV d. Anomalous acceleration is realized in the range of radial magnetic fields on the anode 2.8 × 10 -2 ≤ B rA ≤ 4 × 10 -2 T. It was also found analytically that the cathode of the accelerator can receive anomalously accelerated ions. In this case, the value of the potential in the anodic layer becomes higher than the anode potential, and the anode current exceeds some critical value. Numerical modeling in terms of the developed theory showed qualitative agreement between modeling data and measurements.

  3. In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells.

    Science.gov (United States)

    Tang, Jiahuan; Chen, Shanshan; Yuan, Yong; Cai, Xixi; Zhou, Shungui

    2015-09-15

    Graphene can be used to improve the performance of the anode in a microbial fuel cell (MFC) due to its good biocompatibility, high electrical conductivity and large surface area. However, the chemical production and modification of the graphene on the anode are environmentally hazardous because of the use of various harmful chemicals. This study reports a novel method based on the electrochemical exfoliation of a graphite plate (GP) for the in situ formation of graphene layers on the surface of a graphite electrode. When the resultant graphene-layer-based graphite plate electrode (GL/GP) was used as an anode in an MFC, a maximum power density of 0.67 ± 0.034 W/m(2) was achieved. This value corresponds to 1.72-, 1.56- and 1.26-times the maximum power densities of the original GP, exfoliated-graphene-modified GP (EG/GP) and chemically-reduced-graphene-modified GP (rGO/GP) anodes, respectively. Electrochemical measurements revealed that the high performance of the GL/GP anode was attributable to its macroporous structure, improved electron transfer and high electrochemical capacitance. The results demonstrated that the proposed method is a facile and environmentally friendly synthesis technique for the fabrication of high-performance graphene-based electrodes for use in microbial energy harvesting. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Au Nanoparticles as Interfacial Layer for CdS Quantum Dot-sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Zhu Guang

    2010-01-01

    Full Text Available Abstract Quantum dot-sensitized solar cells based on fluorine-doped tin oxide (FTO/Au/TiO2/CdS photoanode and polysulfide electrolyte are fabricated. Au nanoparticles (NPs as interfacial layer between FTO and TiO2 layer are dip-coated on FTO surface. The structure, morphology and impedance of the photoanodes and the photovoltaic performance of the cells are investigated. A power conversion efficiency of 1.62% has been obtained for FTO/Au/TiO2/CdS cell, which is about 88% higher than that for FTO/TiO2/CdS cell (0.86%. The easier transport of excited electron and the suppression of charge recombination in the photoanode due to the introduction of Au NP layer should be responsible for the performance enhancement of the cell.

  5. Thermal conduction in polymeric nanofluids under mean field approximation: role of interfacial adsorption layers

    International Nuclear Information System (INIS)

    Nisha, M R; Philip, J

    2013-01-01

    Polymeric nanofluids of TiO 2 /PVA (polyvinyl alcohol) and Cu/PVA have been prepared by dispersing nanoparticles of TiO 2 or metallic copper in PVA. The thermal diffusivities and thermal conductivities of these nanofluids have been measured as a function of particle loading following a thermal wave interference technique in a thermal wave resonant cavity. It is found that in both cases thermal conductivity increases with particle concentration, with Cu/PVA nanofluids showing a much larger increase. The results have been compared with the corresponding values calculated following different theoretical models. Comparison of the results with model-based calculations shows that the thermal conductivity variations in these nanofluids are within the framework of the classical mean field theory including the formation of thin interfacial adsorption layers around nanoparticles. Although the molecular weight of PVA is very high, it is found that the adsorption layer thickness is limited by the hydrodynamic radius of the nanoparticles. It is found that particle clustering followed by interfacial layering accounts for the larger increase in thermal conductivity found for Cu/PVA compared to TiO 2 /PVA. (paper)

  6. The function of microporous layers and the interaction between the anode and cathode in DMFCs

    DEFF Research Database (Denmark)

    Zhang, H. F.; Wang, SY; Pei, PC

    2008-01-01

    A combined effect of microporous layers (MPLs) on direct methanol fuel cells (DMFCs) is investigated. From the distribution of the outstanding carbon loading combinations of the cathode MPL and anode MPL as well as the evolutions of polarization curves, a combined effect in which the contributions...... of the two MPLs interdepend is observed. A further discussion indicates that either MPL in DMFCs is of double roles: a side role of obstructing mass transfers and a main role of adjusting an interaction between the anode and cathode. It is inferred that it is the combination of the two roles that produces...... the combined effect....

  7. Increased Power in Sediment Microbial Fuel Cell: Facilitated Mass Transfer via a Water-Layer Anode Embedded in Sediment

    OpenAIRE

    Lee, Yoo Seok; An, Junyeong; Kim, Bongkyu; Park, HyunJun; Kim, Jisu; Chang, In Seop

    2015-01-01

    We report a methodology for enhancing the mass transfer at the anode electrode of sediment microbial fuel cells (SMFCs), by employing a fabric baffle to create a separate water-layer for installing the anode electrode in sediment. The maximum power in an SMFC with the anode installed in the separate water-layer (SMFC-wFB) was improved by factor of 6.6 compared to an SMFC having the anode embedded in the sediment (SMFC-woFB). The maximum current density in the SMFC-wFB was also 3.9 times highe...

  8. Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures

    Science.gov (United States)

    Peng, Shouzhong; Wang, Mengxing; Yang, Hongxin; Zeng, Lang; Nan, Jiang; Zhou, Jiaqi; Zhang, Youguang; Hallal, Ali; Chshiev, Mairbek; Wang, Kang L.; Zhang, Qianfan; Zhao, Weisheng

    2015-12-01

    Spin-transfer-torque magnetic random access memory (STT-MRAM) attracts extensive attentions due to its non-volatility, high density and low power consumption. The core device in STT-MRAM is CoFeB/MgO-based magnetic tunnel junction (MTJ), which possesses a high tunnel magnetoresistance ratio as well as a large value of perpendicular magnetic anisotropy (PMA). It has been experimentally proven that a capping layer coating on CoFeB layer is essential to obtain a strong PMA. However, the physical mechanism of such effect remains unclear. In this paper, we investigate the origin of the PMA in MgO/CoFe/metallic capping layer structures by using a first-principles computation scheme. The trend of PMA variation with different capping materials agrees well with experimental results. We find that interfacial PMA in the three-layer structures comes from both the MgO/CoFe and CoFe/capping layer interfaces, which can be analyzed separately. Furthermore, the PMAs in the CoFe/capping layer interfaces are analyzed through resolving the magnetic anisotropy energy by layer and orbital. The variation of PMA with different capping materials is attributed to the different hybridizations of both d and p orbitals via spin-orbit coupling. This work can significantly benefit the research and development of nanoscale STT-MRAM.

  9. Breathing oscillations in enlarged cylindrical-anode-layer Hall plasma accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Geng, S. F.; Wang, C. X. [Southwestern Institute of Physics, Chengdu 610041 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Tang, D. L.; Qiu, X. M. [Southwestern Institute of Physics, Chengdu 610041 (China); Fu, R. K. Y. [Plasma Technology Limited, Festival Walk Tower, Tat Chee Avenue, Kowloon, Hong Kong (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2013-05-28

    Breathing oscillations in the discharge of an enlarged cylindrical-anode-layer Hall plasma accelerator are investigated by three-dimensional particle-in-cell (PIC) simulation. Different from the traditional breathing mode in a circular Hall plasma accelerator, the bulk plasma oscillation here is trigged by the potential barrier generated by the concentrated ion beam and substantial enough to compete with the anode voltage. The electric field near the anode is suppressed by the potential barrier thereby decreasing the electron density by {approx}36%. The discharge is restored to the normal level after the concentrated beam explodes and then it completes one cycle of electro-driven breathing oscillation. The breathing mode identified by the PIC simulation has a frequency range of {approx}156 kHz-{approx}250 kHz and does not vary monotonically with the discharge voltage.

  10. Evaluation of double-layer density modulated Si thin films as Li-ion battery anodes

    Science.gov (United States)

    Taha Demirkan, Muhammed; Yurukcu, Mesut; Dursun, Burcu; Demir-Cakan, Rezan; Karabacak, Tansel

    2017-10-01

    Double-layer density modulated silicon thin films which contain alternating low and high density Si film layers were fabricated by magnetron sputtering. Two different samples consisting of alternating layers of high-density/low-density and low-density/high-density Si thin film layers were investigated as anode electrodes in Li-ion batteries. Si thin film in which the terminating layer at the top is low density Si layer-quoted as low-density/high-density film (LD/HD)- exhibits better performance than Si thin film that has high density layer at the top, -quoted as high-density/low-density (HD/LD). A highly stabilized cycling performance with the specific charge capacities of 2000 mAh g‑1 at the 150th cycle at C/2 current density, and 1200 mAh g‑1 at the 240th cycle at 10 C current density were observed for the LD/HD Si anode in the presence of fluoroethylene carbonate (FEC) electrolyte additive.

  11. HEMA inhibits interfacial nano-layering of the functional monomer MDP.

    Science.gov (United States)

    Yoshida, Y; Yoshihara, K; Hayakawa, S; Nagaoka, N; Okihara, T; Matsumoto, T; Minagi, S; Osaka, A; Van Landuyt, K; Van Meerbeek, B

    2012-11-01

    Previous research showed that the functional monomer 10-methacryloxydecyl dihydrogen phosphate (MDP) ionically bonds to hydroxyapatite (HAp) and forms a nano-layered structure at the interface with HAp-based substrates. Such hydrophobic nano-layering is considered to contribute to the long-term durability of the bond to tooth tissue. However, dental adhesives are complex mixtures usually containing different monomers. This study investigated the effect of the monomer 2-hydroxyethylmethacrylate (HEMA) on the chemical interaction of MDP with HAp by x-ray diffraction (XRD), nuclear magnetic resonance (NMR), and quartz crystal microbalance (QCM). We examined the chemical interaction of 5 experimental MDP solutions with increasing concentrations of HEMA. XRD revealed that addition of HEMA inhibits nano-layering at the interface, while NMR confirmed that MDP remained adsorbed onto the HAp surface. QCM confirmed this adsorption of MDP to HAp, as well as revealed that the demineralization rate of HAp by MDP was reduced by HEMA. It was concluded that even though the adsorption of MDP to HAp was not hindered, addition of HEMA inhibited interfacial nano-layering. Potential consequences with regard to bond durability necessitate further research.

  12. In-depth porosity control of mesoporous silicon layers by an anodization current adjustment

    Science.gov (United States)

    Lascaud, J.; Defforge, T.; Certon, D.; Valente, D.; Gautier, G.

    2017-12-01

    The formation of thick mesoporous silicon layers in P+-type substrates leads to an increase in the porosity from the surface to the interface with silicon. The adjustment of the current density during the electrochemical etching of porous silicon is an intuitive way to control the layer in-depth porosity. The duration and the current density during the anodization were varied to empirically model porosity variations with layer thickness and build a database. Current density profiles were extracted from the model in order to etch layer with in-depth control porosity. As a proof of principle, an 80 μm-thick porous silicon multilayer was synthetized with decreasing porosities from 55% to 35%. The results show that the assessment of the in-depth porosity could be significantly enhanced by taking into account the pure chemical etching of the layer in the hydrofluoric acid-based electrolyte.

  13. A layer-by-layer ZnO nanoparticle-PbS quantum dot self-assembly platform for ultrafast interfacial electron injection

    KAUST Repository

    Eita, Mohamed Samir

    2014-08-28

    Absorbent layers of semiconductor quantum dots (QDs) are now used as material platforms for low-cost, high-performance solar cells. The semiconductor metal oxide nanoparticles as an acceptor layer have become an integral part of the next generation solar cell. To achieve sufficient electron transfer and subsequently high conversion efficiency in these solar cells, however, energy-level alignment and interfacial contact between the donor and the acceptor units are needed. Here, the layer-by-layer (LbL) technique is used to assemble ZnO nanoparticles (NPs), providing adequate PbS QD uptake to achieve greater interfacial contact compared with traditional sputtering methods. Electron injection at the PbS QD and ZnO NP interface is investigated using broadband transient absorption spectroscopy with 120 femtosecond temporal resolution. The results indicate that electron injection from photoexcited PbS QDs to ZnO NPs occurs on a time scale of a few hundred femtoseconds. This observation is supported by the interfacial electronic-energy alignment between the donor and acceptor moieties. Finally, due to the combination of large interfacial contact and ultrafast electron injection, this proposed platform of assembled thin films holds promise for a variety of solar cell architectures and other settings that principally rely on interfacial contact, such as photocatalysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Thickness scaling effect on interfacial barrier and electrical contact to two-dimensional MoS2 layers.

    Science.gov (United States)

    Li, Song-Lin; Komatsu, Katsuyoshi; Nakaharai, Shu; Lin, Yen-Fu; Yamamoto, Mahito; Duan, Xiangfeng; Tsukagoshi, Kazuhito

    2014-12-23

    Understanding the interfacial electrical properties between metallic electrodes and low-dimensional semiconductors is essential for both fundamental science and practical applications. Here we report the observation of thickness reduction induced crossover of electrical contact at Au/MoS2 interfaces. For MoS2 thicker than 5 layers, the contact resistivity slightly decreases with reducing MoS2 thickness. By contrast, the contact resistivity sharply increases with reducing MoS2 thickness below 5 layers, mainly governed by the quantum confinement effect. We find that the interfacial potential barrier can be finely tailored from 0.3 to 0.6 eV by merely varying MoS2 thickness. A full evolution diagram of energy level alignment is also drawn to elucidate the thickness scaling effect. The finding of tailoring interfacial properties with channel thickness represents a useful approach controlling the metal/semiconductor interfaces which may result in conceptually innovative functionalities.

  15. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells.

    Science.gov (United States)

    Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J; Chang, Robert P H; Facchetti, Antonio; Marks, Tobin J

    2015-06-30

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor-inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.

  16. High-Performance Perovskite Solar Cells Engineered by an Ammonia Modified Graphene Oxide Interfacial Layer.

    Science.gov (United States)

    Feng, Shanglei; Yang, Yingguo; Li, Meng; Wang, Jinmiao; Cheng, Zhendong; Li, Jihao; Ji, Gengwu; Yin, Guangzhi; Song, Fei; Wang, Zhaokui; Li, Jingye; Gao, Xingyu

    2016-06-15

    The introduction of an ammonia modified graphene oxide (GO:NH3) layer into perovskite-based solar cells (PSCs) with a structure of indium-tin oxide (ITO)/poly(3,4-ethylene-dioxythiophene):poly(4-styrenesulfonate) ( PSS)-GO: NH3/CH3NH3PbI3-xClx/phenyl C61-butyric acid methyl ester (PCBM)/(solution Bphen) sBphen/Ag improves their performance and perovskite structure stability significantly. The fabricated devices with a champion PCE up to 16.11% are superior in all the performances in comparison with all the reference devices without the GO:NH3 layer. To understand the improved device performances, synchrotron-based grazing incidence X-ray diffraction (GIXRD), scanning electron microscopy (SEM), ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), and UV-visible absorption measurements have been conducted on perovskite films on different substrates. It was found that these improvements should be partially attributed to the improved crystallization and preferred orientation order of peovskite structure, partially to the improved morphology with nearly complete coverage, partially to the enhanced optical absorption caused by the PSS-GO:NH3 layer, and partially to the better matched energy-level-alignment at the perovskite interface. Furthermore, the device was shown to be more stable in the ambient condition, which is clearly associated with the improved peovskite structure stability by the GO:NH3 layer observed by the GIXRD measurements. All these achievements will promote more applications of chemically modified graphene oxide interfacial layer in the PSCs as well as other organic multilayer devices.

  17. Ultra-thin fluoropolymer buffer layer as an anode stabilizer of organic light emitting devices

    International Nuclear Information System (INIS)

    Yang, Nam Chul; Lee, Jaeho; Song, Myung-Won; Ahn, Nari; Kim, Mu-Hyun; Lee, Songtaek; Chin, Byung Doo

    2007-01-01

    We have investigated the effect of thin fluoro-acrylic polymer as an anode stabilizer on the lifetime of an organic light emitting device (OLED). Surface chemical properties of commercial fluoropolymer, FC-722 (Fluorad(TM) of 3M), on indium-tin oxide (ITO) were characterized by x-ray photoemission spectroscopy. An OLED with 1 nm thick fluoropolymeric film showed identical brightness and efficiency behaviour and improved operational stability compared with the reference device with UV-O 3 treated ITO. The improvement in the lifetime was accompanied by the suppression of the voltage increase at the initial stage of constant-current driving, which can be attributed to the action of the FC-722 layer by smoothing the ITO surface. Fluoropolymer coating, therefore, improves the lifetime of the small molecular OLED by the simple and reliable anode-stabilizing process

  18. Modeling interfacial slag layer phenomena in the shell/mold gap in continuous casting of steel

    Science.gov (United States)

    Meng, Ya

    A new lubrication and friction model of slag in the interfacial gap was combined into an existing 1-D heat transfer model, CON1D. Analytical transient models of liquid slag flow and solid slag stress have been coupled with a finite-difference model of heat transfer in the mold, gap and steel shell to predict transient shear stress, friction, slip and fracture of the slag layers. Experimental work was conducted to measure the properties of slag powder, including the friction coefficient at elevated temperatures and viscosity near solidification temperature. Tests with wide cooling rates range were conducted to construct CCT curves and to predict critical cooling rates of two slags with different crystallization tendencies. Slag composition and microstructure were analyzed by XRD and SEM. The CON1D model predicts shell thickness, temperature distributions in the mold and shell, slag layers thickness, heat flux profiles down the mold, cooling water temperature rise, ideal taper of the mold walls, and other related phenomena. Plants measurements from operating casters were collected to calibrate the model. The model was then applied to study the effect of casting speed and powder viscosity properties on slag layer behavior. The study finds that liquid slag lubrication would produce negligible stresses. Lower mold slag consumption rate leads to higher solid friction and results in solid slag layer fracture and movement if it falls below a critical value. Mold friction and fracture are governed by lubrication consumption rate. The high measured friction force in operating casters could be due to three sources: an intermittent moving solid slag layer, excessive mold taper or mold misalignment. The model was also applied to interpret the crystallization behavior of slag. A mechanism for the formation of this crystalline layer was proposed that combined the effects of a shift in the viscosity curve, a decrease in the liquid slag conductivity due to partial crystallization

  19. Embedding a Diketopyrrolopyrrole-Based Cross-linking Interfacial Layer Enhances the Performance of Organic Photovoltaics.

    Science.gov (United States)

    Hsu, Hsiang-Lin; Chao, Ying-Chieh; Liao, Yu-Hua; Chung, Chung-Lin; Peng, Ya-Juan; Chen, Chih-Ping; Jeng, Ru-Jong

    2018-03-14

    In this study, we prepared DPPBTDA, a diketopyrrolopyrrole-based small molecule presenting a terminal cross-linkable azido group, as a cathode modifying layer for organic photovoltaics (OPVs) having the inverted device structure glass/indium tin oxide/zinc oxide (ZnO) with or without the interfacial layer (IFL)/active layer/MoO 3 /Ag. The active layer comprising a blend of poly[4,8-bis(5-(2-ethylhexyl)thien-2-yl)benzo[1,2- b;4,5- b']dithiophene-2,6-diyl- alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4- b]thiophene)-2-carboxylate-2,6-diyl] (PTB7-Th) as the electron donor and [6,6]-phenyl-C 71 -butyric acid methyl ester (PC 71 BM) as the electron acceptor. Atomic force microscopy, space-charge-limited current mobility, surface energy, electron spectroscopy for chemical analysis depth profile, ultraviolet photoelectron spectroscopy analysis, and OPV performance data revealed that the surface status of ZnO changed after inserting the DPPBTDA/PCBM hybrid IFL and induced an optimized blend morphology, having a preferred gradient distribution of the conjugated polymer and PC 71 BM, for efficient carrier transport. The power conversion efficiency (AM 1.5 G, 1000 W m -2 ) of the device incorporating the hybrid IFL increased to 9.4 ± 0.11% from 8.5 ± 0.15% for the preoptimized PTB7-Th/PCBM device (primarily because of an enhancement in the fill factor from 68.7 ± 1.1 to 72.1 ± 0.8%).

  20. Giant interfacial perpendicular magnetic anisotropy in MgO/CoFe/capping layer structures

    Science.gov (United States)

    Peng, Shouzhong; Zhao, Weisheng; Qiao, Junfeng; Su, Li; Zhou, Jiaqi; Yang, Hongxin; Zhang, Qianfan; Zhang, Youguang; Grezes, Cecile; Amiri, Pedram Khalili; Wang, Kang L.

    2017-02-01

    Magnetic tunnel junction based on the CoFeB/MgO/CoFeB structures is of great interest due to its application in the spin-transfer-torque magnetic random access memory (STT-MRAM). Large interfacial perpendicular magnetic anisotropy (PMA) is required to achieve high thermal stability. Here, we use the first-principles calculations to investigate the magnetic anisotropy energy (MAE) of the MgO/CoFe/capping layer structures, where the capping materials include 5d metals Hf, Ta, Re, Os, Ir, Pt, and Au and 6p metals Tl, Pb, and Bi. We demonstrate that it is feasible to enhance PMA by using proper capping materials. Relatively large PMA is found in the structures with the capping materials of Hf, Ta, Os, Ir, and Pb. More importantly, the MgO/CoFe/Bi structure gives rise to giant PMA (6.09 mJ/m2), which is about three times larger than that of the MgO/CoFe/Ta structure. The origin of the MAE is elucidated by examining the contributions to MAE from each atomic layer and orbital. These findings provide a comprehensive understanding of the PMA and point towards the possibility to achieve the advanced-node STT-MRAM with high thermal stability.

  1. Effect of nanoscale SubPc interfacial layer on the performance of inverted polymer solar cells based on P3HT/PC71BM.

    Science.gov (United States)

    Kim, Jung Yong; Noh, Seunguk; Nam, Young Min; Kim, Jun Young; Roh, Jeongkyun; Park, Myeongjin; Amsden, Jason J; Yoon, Do Y; Lee, Changhee; Jo, Won Ho

    2011-11-01

    The effect of a nanoscale boron subphthalocyanine chloride (SubPc) interfacial layer on the performance of inverted polymer solar cells based on poly (3-hexyl thiophene) (P3HT) and [6,6]-phenyl-C(71)-butyric acid methyl ester (PC(71)BM) was studied. When a 1 nm SubPc layer was introduced between the active layer (P3HT:PC(71)BM) and MoO(x) in the device with ITO/ZnO/P3HT:PC(71)BM/SubPc/MoO(x)/Al configuration, the power conversion efficiency (PCE) was increased from 3.42 (without SubPc) to 3.59%. This improvement is mainly attributed to the enhanced open-circuit voltage from 0.62 to 0.64 V. When the Flory-Huggins interaction parameters were estimated from the solubility parameters through the contact angle measurement, it revealed that the interaction between SubPc and PC(71)BM is more attractive than that between SubPc and P3HT at the interface of P3HT:PC(71)BM/SubPc, through which charges are well transported from the active layer to the anode. This is supported by a decrease of the contact resistance from 5.49 (SubPc 0 nm) to 0.94 MΩ cm (SubPc 1 nm). The photoelectron spectra provide another evidence for the enhanced PCE, exhibiting that the 1 nm thick SubPc layer extracts more photoelectrons from the active layer than other thicknesses.

  2. Effect of electrolyte temperature on the thickness of anodic aluminium oxide (AAO layer

    Directory of Open Access Journals (Sweden)

    P. Michal

    2016-07-01

    Full Text Available Effect of electrolyte temperature on the thickness of resulting oxide layer has been studied. Unlike previous published studies this article was aimed to monitor the relationship between electrolyte temperature and resulting AAO layer thickness in interaction with other input factors affecting during anodizing process under special process condition, i.e. lower concentration of sulphuric acid, oxalic acid, boric acid and sodium chloride. According to Design of Experiments (DOE 80 individual test runs of experiment were carried out. Using statistical analysis and artificial intelligence for evaluation, the computational model predicting the thickness of oxide layer in the range from 5 / μm to 15 / μm with tolerance ± 0,5 / μm was developed.

  3. Double-layer anti-reflection coating containing a nanoporous anodic aluminum oxide layer for GaAs solar cells.

    Science.gov (United States)

    Yang, Tianshu; Wang, Xiaodong; Liu, Wen; Shi, Yanpeng; Yang, Fuhua

    2013-07-29

    Multilayer anti-reflection (AR) coatings can be used to improve the efficiency of Gallium Arsenide (GaAs) solar cells. We propose an alternate method to obtain optical thin films with specified refractive indices, which is using a self-assembled nanoporous anodic aluminum oxide (AAO) template as an optical thin film whose effective refractive index can be tuned by pore-widening. Different kinds of double-layer AR coatings each containing an AAO layer were designed and investigated by finite difference time domain (FDTD) method. We demonstrate that a λ /4n - λ /4n AR coating consisting of a TiO(2) layer and an AAO layer whose effective refractive index is 1.32 realizes a 96.8% light absorption efficiency of the GaAs solar cell under AM1.5 solar spectrum (400 nm-860 nm). We also have concluded some design principles of the double-layer AR coating containing an AAO layer for GaAs solar cells.

  4. Increased Power in Sediment Microbial Fuel Cell: Facilitated Mass Transfer via a Water-Layer Anode Embedded in Sediment.

    Directory of Open Access Journals (Sweden)

    Yoo Seok Lee

    Full Text Available We report a methodology for enhancing the mass transfer at the anode electrode of sediment microbial fuel cells (SMFCs, by employing a fabric baffle to create a separate water-layer for installing the anode electrode in sediment. The maximum power in an SMFC with the anode installed in the separate water-layer (SMFC-wFB was improved by factor of 6.6 compared to an SMFC having the anode embedded in the sediment (SMFC-woFB. The maximum current density in the SMFC-wFB was also 3.9 times higher (220.46 mA/m2 than for the SMFC-woFB. We found that the increased performance in the SMFC-wFB was due to the improved mass transfer rate of organic matter obtained by employing the water-layer during anode installation in the sediment layer. Acetate injection tests revealed that the SMFC-wFB could be applied to natural water bodies in which there is frequent organic contamination, based on the acetate flux from the cathode to the anode.

  5. Increased Power in Sediment Microbial Fuel Cell: Facilitated Mass Transfer via a Water-Layer Anode Embedded in Sediment.

    Science.gov (United States)

    Lee, Yoo Seok; An, Junyeong; Kim, Bongkyu; Park, HyunJun; Kim, Jisu; Chang, In Seop

    2015-01-01

    We report a methodology for enhancing the mass transfer at the anode electrode of sediment microbial fuel cells (SMFCs), by employing a fabric baffle to create a separate water-layer for installing the anode electrode in sediment. The maximum power in an SMFC with the anode installed in the separate water-layer (SMFC-wFB) was improved by factor of 6.6 compared to an SMFC having the anode embedded in the sediment (SMFC-woFB). The maximum current density in the SMFC-wFB was also 3.9 times higher (220.46 mA/m2) than for the SMFC-woFB. We found that the increased performance in the SMFC-wFB was due to the improved mass transfer rate of organic matter obtained by employing the water-layer during anode installation in the sediment layer. Acetate injection tests revealed that the SMFC-wFB could be applied to natural water bodies in which there is frequent organic contamination, based on the acetate flux from the cathode to the anode.

  6. Use of a Soluble Anode in Electrodeposition of Thick Bismuth Telluride Layers

    Science.gov (United States)

    Maas, M.; Diliberto, S.; de Vaulx, C.; Azzouz, K.; Boulanger, C.

    2014-10-01

    Integration of thermoelectric devices within an automotive heat exchanger could enable conversion of lost heat into electrical energy, contributing to improved total output from the engine. For this purpose, synthesis of thick bismuth telluride (Bi2Te3) films is required. Bismuth telluride has been produced by an electrochemical method in nitric acid with a sacrificial bismuth telluride anode as the source of cations. The binary layer grows on the working electrode while the counter-electrode, a Bi2Te3 disk obtained by high frequency melting, is oxidized to BiIII and TeIV. This process leads to auto-regeneration of the solution without modification of its composition. The thickness of films deposited by use of the Bi2Te3 anode was approximately 10 times that without. To demonstrate the utility of a soluble anode in electrochemical deposition, we report characterization of the composition and morphology of the films obtained under different experimental conditions. Perfectly dense and regular Bi2Te3 films (˜400 μm) with low internal stress and uniform composition across the cross-section were prepared. Their thermoelectric properties were assessed.

  7. Influence of electrical parameters on morphology of nanostructured TiO2 layers developed by electrochemical anodization

    Directory of Open Access Journals (Sweden)

    Strnad Gabriela

    2017-01-01

    Full Text Available Ti6Al4V alloy micro rough surfaces with TiO2 self-organized nanostructured layers were synthesized using electrochemical anodization in phosphate/fluoride electrolyte, at different end potentials (5V, 10V, 15V, and 20 V. The current – time characteristics were recorded, and the link between current evolution and the morphology of developing oxide layers was investigated. On flat surfaces of Ti6Al4V alloy we developed TiO2 layers with different morphologies (random pores, nanopores of 25…50 nm, and highly organized nanotubes of 50…100 nm in diameter depending on electrical parameters of anodization process. In our anodization cell, in optimized conditions, we are able to superimpose nanostructured oxide layers (nanotubular or nanoporous over micro structured surfaces of titanium based materials used for biomedical implants.

  8. Co-delivery of ibuprofen and gentamicin from nanoporous anodic titanium dioxide layers.

    Science.gov (United States)

    Pawlik, Anna; Jarosz, Magdalena; Syrek, Karolina; Sulka, Grzegorz D

    2017-04-01

    Although single-drug therapy may prove insufficient in treating bacterial infections or inflammation after orthopaedic surgeries, complex therapy (using both an antibiotic and an anti-inflammatory drug) is thought to address the problem. Among drug delivery systems (DDSs) with prolonged drug release profiles, nanoporous anodic titanium dioxide (ATO) layers on Ti foil are very promising. In the discussed research, ATO samples were synthesized via a three-step anodization process in an ethylene glycol-based electrolyte with fluoride ions. The third step lasted 2, 5 and 10min in order to obtain different thicknesses of nanoporous layers. Annealing the as-prepared amorphous layers at the temperature of 400°C led to obtaining the anatase phase. In this study, water-insoluble ibuprofen and water-soluble gentamicin were used as model drugs. Three different drug loading procedures were applied. The desorption-desorption-diffusion (DDD) model of the drug release was fitted to the experimental data. The effects of crystalline structure, depth of TiO 2 nanopores and loading procedure on the drug release profiles were examined. The duration of the drug release process can be easily altered by changing the drug loading sequence. Water-soluble gentamicin is released for a long period of time if gentamicin is loaded in ATO as the first drug. Additionally, deeper nanopores and anatase phase suppress the initial burst release of drugs. These results confirm that factors such as morphological and crystalline structure of ATO layers, and the procedure of drug loading inside nanopores, allow to alter the drug release performance of nanoporous ATO layers. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Stability of High Band Gap P3HT : PCBM Organic Solar Cells Using TiOx Interfacial Layer

    Directory of Open Access Journals (Sweden)

    Kurniawan Foe

    2014-01-01

    Full Text Available We fabricated a poly[3-hexylthiophene] (P3HT and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM organic photovoltaic cells (OPCs using TiOx interfacial layer. We performed optimization processes for P3HT : PC61BM with the TiOx layer. We found that a solution based TiOx layer coated at a spin speed of 3000 rpm improved the photon absorption of the active layer. An optimized TiOx layer was also used as the interfacial layer to investigate the stability of P3HT : PC61BM OPC. After 70 days of storage, we observed that the short-circuit current density (JSC dropped by 16.2%, fill factor (FF dropped by 10.6%, and power conversion efficiency (PCE dropped approximately by 25%, while the open-circuit voltage (VOC remained relatively stable. We found that a solution based TiOx layer synthesized using a sol-gel chemistry method was very effective in protecting the active layer from degradation.

  10. Liquid crystal alignment in nanoporous anodic aluminum oxide layer for LCD panel applications.

    Science.gov (United States)

    Hong, Chitsung; Tang, Tsung-Ta; Hung, Chi-Yu; Pan, Ru-Pin; Fang, Weileun

    2010-07-16

    This paper reports the implementation and integration of a self-assembled nanoporous anodic aluminum oxide (np-AAO) film and liquid crystal (LC) on an ITO-glass substrate for liquid crystal display (LCD) panel applications. An np-AAO layer with a nanopore array acts as the vertical alignment layer to easily and uniformly align the LC molecules. Moreover, the np-AAO nanoalignment layer provides outstanding material properties, such as being inorganic with good transmittance, and colorless on ITO-glass substrates. In this application, an LCD panel, with the LC on the np-AAO nanoalignment layer, is successfully implemented on an ITO-glass substrate, and its performance is demonstrated. The measurements show that the LCD panel, consisting of an ITO-glass substrate and an np-AAO layer, has a transmittance of 60-80%. In addition, the LCD panel switches from a black state to a bright state at 3 V(rms), with a response time of 62.5 ms. In summary, this paper demonstrates the alignment of LC on an np-AAO layer for LCD applications.

  11. Ultimate Scaling of High-κ Gate Dielectrics: Higher-κ or Interfacial Layer Scavenging?

    Directory of Open Access Journals (Sweden)

    Takashi Ando

    2012-03-01

    Full Text Available Current status and challenges of aggressive equivalent-oxide-thickness (EOT scaling of high-κ gate dielectrics via higher-κ ( > 20 materials and interfacial layer (IL scavenging techniques are reviewed. La-based higher-κ materials show aggressive EOT scaling (0.5–0.8 nm, but with effective workfunction (EWF values suitable only for n-type field-effect-transistor (FET. Further exploration for p-type FET-compatible higher-κ materials is needed. Meanwhile, IL scavenging is a promising approach to extend Hf-based high-κ dielectrics to future nodes. Remote IL scavenging techniques enable EOT scaling below 0.5 nm. Mobility-EOT trends in the literature suggest that short-channel performance improvement is attainable with aggressive EOT scaling via IL scavenging or La-silicate formation. However, extreme IL scaling (e.g., zero-IL is accompanied by loss of EWF control and with severe penalty in reliability. Therefore, highly precise IL thickness control in an ultra-thin IL regime ( < 0.5 nm will be the key technology to satisfy both performance and reliability requirements for future CMOS devices.

  12. Layered SnS sodium ion battery anodes synthesized near room temperature

    KAUST Repository

    Xia, Chuan

    2017-08-10

    In this report, we demonstrate a simple chemical bath deposition approach for the synthesis of layered SnS nanosheets (typically 6 nm or ~10 layers thick) at very low temperature (40 °C). We successfully synthesized SnS/C hybrid electrodes using a solution-based carbon precursor coating with subsequent carbonization strategy. Our data showed that the ultrathin carbon shell was critical to the cycling stability of the SnS electrodes. As a result, the as-prepared binder-free SnS/C electrodes showed excellent performance as sodium ion battery anodes. Specifically, the SnS/C anodes delivered a reversible capacity as high as 792 mAh·g−1 after 100 cycles at a current density of 100 mA·g−1. They also had superior rate capability (431 mAh·g−1 at 3,000 mA·g−1) and stable long-term cycling performance under a high current density (345 mAh·g−1 after 500 cycles at 3 A·g−1). Our approach opens up a new route to synthesize SnS-based hybrid materials at low temperatures for energy storage and other applications. Our process will be particularly useful for chalcogenide matrix materials that are sensitive to high temperatures during solution synthesis.

  13. A Study on Organic-Metal Halide Perovskite Film Morphology, Interfacial Layers, Tandem Applications, and Encapsulation

    Science.gov (United States)

    Fisher, Dallas A.

    Organic-metal halide perovskites have brought about a new wave of research in the photovoltaic community due to their ideally suited optical and electronic parameters. In less than a decade, perovskite solar cell performance has skyrocketed to unprecedented efficiencies with numerous reported methodologies. Perovskites face many challenges with high-quality film morphology, interfacial layers, and long-term stability. In this work, these active areas are explored through a combination of studies. First, the importance of perovskite film precursor ratios is explored with an in-depth study of carrier lifetime and solvent-grain effects. It was found that excess lead iodide precursor greatly improves the film morphology by reducing pinholes in the solar absorber. Dimethyl sulfoxide (DMSO) solvent was found to mend grains, as well as improve carrier lifetime and device performance, possibly by passivation of grain boundary traps. Second, applications of perovskite with tandem cells is investigated, with an emphasis for silicon devices. Perovskites can easily be integrated with silicon, which already has strong market presence. Additionally, both materials' bandgaps are ideally suited for maximum tandem efficiency. The silicon/perovskite tandem device structure necessitated the optimization of inverted (p-i-n) structure devices. PEDOT:PSS, copper oxide, and nickel oxide p-type layers were explored through a combination of photoluminescent, chemical reactivity, and solar simulation results. Results were hindered due to resistive ITO and rough silicon substrates, but tandem devices displayed Voc indicative of proper monolithic performance. Third, replacement of titanium dioxide n-type layer with iron oxide (Fe 2O3, common rust) was studied. Iron oxide experiences less ultraviolet instability than that of titanium dioxide under solar illumination. It was found that current density slightly decreased due to parasitic absorption from the rust, but that open circuit voltage

  14. Porous anodic alumina on galvanically grown PtSi layer for application in template-assisted Si nanowire growth

    Directory of Open Access Journals (Sweden)

    Stavrinidou Eleni

    2011-01-01

    Full Text Available Abstract We report on the fabrication and morphology/structural characterization of a porous anodic alumina (PAA/PtSi nano-template for use as matrix in template-assisted Si nanowire growth on a Si substrate. The PtSi layer was formed by electroless deposition from an aqueous solution containing the metal salt and HF, while the PAA membrane by anodizing an Al film deposited on the PtSi layer. The morphology and structure of the PtSi layer and of the alumina membrane on top were studied by Scanning and High Resolution Transmission Electron Microscopies (SEM, HRTEM. Cross sectional HRTEM images combined with electron diffraction (ED were used to characterize the different interfaces between Si, PtSi and porous anodic alumina.

  15. Morphology control of anodic ZrO2 layer for the prevention of H2 production from Zr-4 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y. J.; Park, J. W.; Cho, S. O. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    Since the Fukushima disaster happened, studies on accident-resistant nuclear fuel has been carried out actively. There has been an attempt to protect zircaloy fuel cladding by coating SiC. Research on producing oxide layer that can block fuel cladding from water on the surface of zircaloy fuel cladding by means of anodizing to reduce the rate of oxidation of fuel cladding at Loss Of Coolant Accident (LOCA) is an significant ongoing study subject. Applying nanostructured oxide layer to the prevention of thermal deformation of oxide layer was already suggested in our research group, the reasons of which is nanoporous structure is better than nanotube structure in terms of corrosion-resistant structure because nanotube structure can be easily peeled off. In this study, methods which are able to control morphology between nanoporous and nanotube structure were conducted by changing the anodizing conditions. Hence, Using glycerol and ammonium fluoride, Zircaloy-4 was anodized by varying water contents and applied voltage. It reveals that the alloy transition from nanoporous structure to nanotube structure can be changed by varying water contents of anodizing solution and applied voltage. Anodizing conditions determining nanoporous structure were obtained. According to the mechanism already suggested, nanoporous oxide layer that can seal the fuel cladding perfectly, and increase critical heat flux (CHF) due to large surface area is easily produced. This results obtained in this paper expected to be facilitated fabrication of accident-resistant nuclear fuel cladding.

  16. Influence of interfacial scattering and surface roughness on giant magnetoresistance in Fe/Cr trilayers using ab initio layer potentials

    International Nuclear Information System (INIS)

    Pereiro, M.; Botana, J.; Baldomir, D.; Warda, K.; Wojtczak, L.; Man'kovsky, S.V.; Iglesias, M.; Pardo, V.; Arias, J.E.

    2005-01-01

    Ab initio full-potential linearized augmented-plane-wave (FP-LAPW) method combined with the semiclassical Boltzmann formalism was employed to calculate the giant magnetoresistance ratio in the trilayers nFe/3Cr/nFe (1=< n=<8). The present results emphasize the very important role of the ferromagnetic layer as well as the interfacial scattering and surface roughness on the giant magnetoresistance effect

  17. Studying interfacial reactions of cholesterol sulfate in an unsaturated phosphatidylglycerol layer with ozone using field induced droplet ionization mass spectrometry.

    Science.gov (United States)

    Ko, Jae Yoon; Choi, Sun Mi; Rhee, Young Min; Beauchamp, J L; Kim, Hugh I

    2012-01-01

    Field-induced droplet ionization (FIDI) is a recently developed ionization technique that can transfer ions from the surface of microliter droplets to the gas phase intact. The air-liquid interfacial reactions of cholesterol sulfate (CholSO(4)) in a 1-palmitoyl-2-oleoyl-sn-phosphatidylglycerol (POPG) surfactant layer with ozone (O(3)) are investigated using field-induced droplet ionization mass spectrometry (FIDI-MS). Time-resolved studies of interfacial ozonolysis of CholSO(4) reveal that water plays an important role in forming oxygenated products. An epoxide derivative is observed as a major product of CholSO(4) oxidation in the FIDI-MS spectrum after exposure of the droplet to O(3) for 5 s. The abundance of the epoxide product then decreases with continued O(3) exposure as the finite number of water molecules at the air-liquid interface becomes exhausted. Competitive oxidation of CholSO(4) and POPG is observed when they are present together in a lipid surfactant layer at the air-liquid interface. Competitive reactions of CholSO(4) and POPG with O(3) suggest that CholSO(4) is present with POPG as a well-mixed interfacial layer. Compared with CholSO(4) and POPG alone, the overall ozonolysis rates of both CholSO(4) and POPG are reduced in a mixed layer, suggesting the double bonds of both molecules are shielded by additional hydrocarbons from one another. Molecular dynamics simulations of a monolayer comprising POPG and CholSO(4) correlate well with experimental observations and provide a detailed picture of the interactions between CholSO(4), lipids, and water molecules in the interfacial region. © American Society for Mass Spectrometry, 2011

  18. Two-Dimensional SnO Anodes with a Tunable Number of Atomic Layers for Sodium Ion Batteries

    KAUST Repository

    Zhang, Fan

    2017-01-18

    We have systematically changed the number of atomic layers stacked in 2D SnO nanosheet anodes and studied their sodium ion battery (SIB) performance. The results indicate that as the number of atomic SnO layers in a sheet decreases, both the capacity and cycling stability of the Na ion battery improve. The thinnest SnO nanosheet anodes (two to six SnO monolayers) exhibited the best performance. Specifically, an initial discharge and charge capacity of 1072 and 848 mAh g-1 were observed, respectively, at 0.1 A g-1. In addition, an impressive reversible capacity of 665 mAh g-1 after 100 cycles at 0.1 A g-1 and 452 mAh g-1 after 1000 cycles at a high current density of 1.0 A g-1 was observed, with excellent rate performance. As the average number of atomic layers in the anode sheets increased, the battery performance degraded significantly. For example, for the anode sheets with 10-20 atomic layers, only a reversible capacity of 389 mAh g-1 could be obtained after 100 cycles at 0.1 A g-1. Density functional theory calculations coupled with experimental results were used to elucidate the sodiation mechanism of the SnO nanosheets. This systematic study of monolayer-dependent physical and electrochemical properties of 2D anodes shows a promising pathway to engineering and mitigating volume changes in 2D anode materials for sodium ion batteries. It also demonstrates that ultrathin SnO nanosheets are promising SIB anode materials with high specific capacity, stable cyclability, and excellent rate performance.

  19. A Novel Method for Fabricating Double Layers Porous Anodic Alumina in Phosphoric/Oxalic Acid Solution and Oxalic Acid Solution

    Directory of Open Access Journals (Sweden)

    Yanfang Xu

    2016-01-01

    Full Text Available A novel method for fabricating ordered double layers porous anodic alumina (DL-PAA with controllable nanopore size was presented. Highly ordered large pore layer with interpore distance of 480 nm was fabricated in phosphoric acid solution with oxalic acid addition at the potential of 195 V and the small pore layer was fabricated in oxalic acid solution at the potential from 60 to 100 V. Experimental results show that the thickness of large pore layer is linearly correlative with anodizing time, and pore diameter is linearly correlative with pore widening time. When the anodizing potential in oxalic acid solution was adjusted from 60 to 100 V, the small pore layers with continuously tunable interpore distance from 142 to 241 nm and pore density from 1.94×109 to 4.89×109 cm−2 were obtained. And the interpore distance and the pore density of small pore layers are closely correlative with the anodizing potential. The fabricated DL-PAA templates can be widely utilized for fabrication of ordered nanomaterials, such as superhydrophobic or gecko-inspired adhesive materials and metal or semiconductor nanowires.

  20. Interfacial shear rheology of β-lactoglobulin-Bovine submaxillary mucin layers adsorbed at air/water interface.

    Science.gov (United States)

    Çelebioğlu, Hilal Y; Kmiecik-Palczewska, Joanna; Lee, Seunghwan; Chronakis, Ioannis S

    2017-09-01

    The interfacial rheological properties of solutions of β-lactoglobulin (BLG), as a model food compound, mixed with bovine submaxillary mucin (BSM), a major salivary protein, have been investigated. Time, frequency, stress sweep and flow measurements have been performed at different pHs (7.4, 5.0 and 3.0), to investigate the air/water interfacial properties. All protein layers (BLG, BSM, and BLG-BSM mixtures) formed an elastic network at the air/water interface with low frequency dependence of the interfacial modulus. The results indicated that BLG moves faster as smaller molecule than mucin, and dominate the surface adsorption and the network formation for the BLG-BSM mixtures. Moreover, BLG-BSM protein mixtures exhibited interfacial properties with lower elastic and viscous moduli than BLG, as a result of competitive displacement of BLG proteins with BSMs from the interface. It is suggested that hydrophobic patches of BSM can be imbedded into the BLG monolayer as driven by a strong hydrophobic interaction with air and disrupt the cohesive assembly of BLG, whereas the hydrophilic (negatively charged) parts of the BSM chain are protruding from the interface towards the bulk water. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Study on calcination of bi-layered films produced by anodizing iron in dimethyl sulfoxide electrolyte

    International Nuclear Information System (INIS)

    Jagminas, Arūnas; Klimas, Vaclovas; Mažeika, Kęstutis; Mickevičius, Sigitas; Balakauskas, Saulius

    2012-01-01

    Research on well adherent, thick and nanoporous oxide film formation onto the metal substrates underwent a major burst throughout the last decade. In the current study, thick bi-layered films produced onto a pure iron surface by anodizing way in dimethyl sulfoxide (DMSO) electrolyte containing silica hexafluoride acid have been investigated upon the annealing in air. Compositional, phase and structural transformations of the film material to hematite, α-Fe 2 O 3 , were studied using Mössbauer spectroscopy at room to cryogenic temperatures, thermogravimetry (TG), differential thermal analysis (DTA), photoemission spectroscopy, scanning electron microscopy (SEM), and wave dispersive X-ray spectroscopy (WDX). Experimental findings indicated that much longer heating in air is required for these films to be fully transformed to hematite. This effect is linked here with the complex nature of DMSO films. Based on the combined WDX, photoemission and Mössbauer spectroscopy results, the transformations taken place during calcination of such amorphous films by heat-treatment in air to crystalline hematite have been determined. Investigations on the calcination effects of thick iron anodic films reported here offer opportunities for both fundamental research and practical applications.

  2. Enhancing the platinum atomic layer deposition infiltration depth inside anodic alumina nanoporous membrane

    Energy Technology Data Exchange (ETDEWEB)

    Vaish, Amit, E-mail: anv@udel.edu; Krueger, Susan; Dimitriou, Michael; Majkrzak, Charles [National Institute of Standards and Technology (NIST) Center for Neutron Research, Gaithersburg, MD 20899-8313 (United States); Vanderah, David J. [Institute for Bioscience and Biotechnology Research, NIST, Rockville, Maryland 20850 (United States); Chen, Lei, E-mail: lei.chen@nist.gov [NIST Center for Nanoscale Science and Technology, Gaithersburg, Maryland 20899-8313 (United States); Gawrisch, Klaus [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892 (United States)

    2015-01-15

    Nanoporous platinum membranes can be straightforwardly fabricated by forming a Pt coating inside the nanopores of anodic alumina membranes (AAO) using atomic layer deposition (ALD). However, the high-aspect-ratio of AAO makes Pt ALD very challenging. By tuning the process deposition temperature and precursor exposure time, enhanced infiltration depth along with conformal coating was achieved for Pt ALD inside the AAO templates. Cross-sectional scanning electron microscopy/energy dispersive x-ray spectroscopy and small angle neutron scattering were employed to analyze the Pt coverage and thickness inside the AAO nanopores. Additionally, one application of platinum-coated membrane was demonstrated by creating a high-density protein-functionalized interface.

  3. Surface/Interfacial Structure and Chemistry of High-Energy Nickel-Rich Layered Oxide Cathodes: Advances and Perspectives.

    Science.gov (United States)

    Hou, Peiyu; Yin, Jiangmei; Ding, Meng; Huang, Jinzhao; Xu, Xijin

    2017-12-01

    The urgent prerequisites of high energy-density and superior electrochemical properties have been the main inspiration for the advancement of cathode materials in lithium-ion batteries (LIBs) in the last two decades. Nickel-rich layered transition-metal oxides with large reversible capacity as well as high operating voltage are considered as the most promising candidate for next-generation LIBs. Nonetheless, the poor long-term cycle-life and inferior thermal stability have limited their broadly practical applications. In the research of LIBs, it is observed that surface/interfacial structure and chemistry play significant roles in the performance of cathode cycling. This is due to the fact that they are basically responsible for the reversibility of Li + intercalation/deintercalation chemistries while dictating the kinetics of the general cell reactions. In this Review, the surface/interfacial structure and chemistry of nickel-rich layered cathodes involving structural defects, redox mechanisms, structural evolutions, side-reactions among others are initially demonstrated. Recent advancements in stabilizing the surface/interfacial structure and chemistry of nickel-rich cathodes by surface modification, core-shell/concentration-gradient structure, foreign-ion substitution, hybrid surface, and electrolyte additive are presented. Then lastly, the remaining challenges such as the fundamental studies and commercialized applications, as well as the future research directions are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Layer-Tunable Phosphorene Modulated by the Cation Insertion Rate as a Sodium-Storage Anode.

    Science.gov (United States)

    Huang, Zhaodong; Hou, Hongshuai; Zhang, Yan; Wang, Chao; Qiu, Xiaoqing; Ji, Xiaobo

    2017-09-01

    Liquid phase exfoliation of few-layer phosphorene (FL-P) is extensively explored in recent years. Nevertheless, their deficiencies such as ultralong sonication time, limited flake size distribution, and uncontrollable thicknesses are major hurdles for the development of phosphorene-based materials. Herein, electrochemical cationic intercalation has been introduced to prepare phosphorene, through which large-area FL-P without surface functional groups can be efficiently attained (less than 1 h). More importantly, its layer number (from 2 to 11 layers) can be manipulated by changing the applied potential. The as-obtained phosphorene delivers superior sodium-storage performances when directly utilized as an anode material in sodium-ion batteries. This electrochemical cation insertion method to prepare phosphorene should greatly facilitate the development of phosphorene-based technologies. Moreover, this work provides the possibility for the scalable preparation of monolayer 2D materials by exploring intercalation ions. Additionally, the successful electrochemical exfoliation of phosphorene can promote the application of electrochemical exfoliation in other 2D materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Improvement of interfacial adhesion in vertical GaN-based LEDs by introducing O2 plasma cleaning and intermediate layers

    International Nuclear Information System (INIS)

    Kim, Sunjung

    2010-01-01

    Interfacial adhesion between an indium tin oxide (ITO)/Ni/Ag/Ni/Au p-electrode, and Au and Ni/Au seeds in vertical GaN-based light emitting diodes (LEDs) was enhanced by O 2 plasma cleaning treatment of the Au surface in the p-electrode. However, AES and REELS analyses of the Au surface in the p-electrode detected surface damage to the p-electrode and photoresist (PR) passivation structure from O 2 plasma cleaning. W/Ni and Al/Ni adhesion layers were introduced in the Au seed to increase interfacial adhesion between Au seed and untreated PR passivation. Forward leakage current as low as 0.91 nA at 2 V was observed for the vertical LED with the Al/Ni/Au seed, for which adhesion strength to O 2 plasma-cleaned Au and untreated PR was 141.2 MPa and 62.8 MPa, respectively.

  6. Simple solution-processed CuO{sub X} as anode buffer layer for efficient organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wenfei [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Institute of Hybrid Materials, The Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Yang, Chunpeng [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Bao, Xichang, E-mail: baoxc@qibebt.ac.cn [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Sun, Liang; Wang, Ning [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Tang, Jianguo [Institute of Hybrid Materials, The Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Chen, Weichao [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Yang, Renqiang, E-mail: yangrq@qibebt.ac.cn [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China)

    2015-10-15

    Graphical abstract: - Highlights: • Simple solution-processed CuO{sub X} hole transport layer for efficient organic solar cell. • Good photovoltaic performances as hole transport layer in OSCs with P3HT and PBDTTT-C as donor materials. • The device with CuO{sub X} as hole transport layer shows great improved stability compared with that of device with PEDOT:PSS as hole transport layer. - Abstract: A simple, solution-processed ultrathin CuO{sub X} anode buffer layer was fabricated for high performance organic solar cells (OSCs). XPS measurement demonstrated that the CuO{sub X} was the composite of CuO and Cu{sub 2}O. The CuO{sub X} modified ITO glass exhibit a better surface contact with the active layer. The photovoltaic performance of the devices with CuO{sub X} layer was optimized by varying the thickness of CuO{sub X} films through changing solution concentration. With P3HT:PC{sub 61}BM as the active layer, we demonstrated an enhanced PCE of 4.14% with CuO{sub X} anode buffer layer, compared with that of PEDOT:PSS layer. The CuO{sub X} layer also exhibits efficient photovoltaic performance in devices with PBDTTT-C:PC{sub 71}BM as the active layer. The long-term stability of CuO{sub X} device is better than that of PEDOT:PSS device. The results indicate that the easy solution-processed CuO{sub X} film can act as an efficient anode buffer layer for high-efficiency OSCs.

  7. Co-extrusion of electrolyte/anode functional layer/anode triple-layer ceramic hollow fibres for micro-tubular solid oxide fuel cells-electrochemical performance study

    Science.gov (United States)

    Li, Tao; Wu, Zhentao; Li, K.

    2015-01-01

    In this study, the effects of an anode functional layer (AFL) with controlled thickness on physical and electrochemical properties of a micro-tubular SOFC have been systematically studied. A series of electrolyte/AFL/anode triple-layer hollow fibres with controllable AFL thicknesses (16.9-52.7 μm) have been fabricated via a single-step phase-inversion assisted co-extrusion technique. Both robustness of the cell and gas-tightness of the electrolyte layer are considerably improved by introducing the AFL of this type. The fracture force of the sample with the thickest AFL (9.67 N) almost doubles when compared to the electrolyte/anode dual-layer counterpart (5.24 N). Gas-tightness of the electrolyte layer is also considerably increased as AFL contributes to better-matched sintering behaviours between different components. Moreover, the formation of an AFL simultaneously with electrolyte and anode significantly improves the cell performances. The sample with the thinnest AFL (approximately 16.9 μm, 6% of the total anode thickness) leads to a 30% (from 0.89 to 1.21 W cm-2) increase in maximum power density, due to increased triple-phase boundaries (TPB). However, further increase in TPB from a thicker AFL is less effective for improving the cell performance, due to the substantially increased fuel diffusion resistance and subsequently higher concentration polarization. This indicates that the control over the AFL thickness is critically important in avoiding offsetting the benefits of extended TPB and consequently decreased cell performances.

  8. Multi-layered proton-conducting electrolyte

    Science.gov (United States)

    Lee, Tae H.; Dorris, Stephen E.; Balachandran, Uthamalingam

    2017-06-27

    The present invention provides a multilayer anode/electrolyte assembly comprising a porous anode substrate and a layered solid electrolyte in contact therewith. The layered solid electrolyte includes a first dense layer of yttrium-doped barium zirconate (BZY), optionally including another metal besides Y, Ba, and Zr (e.g., a lanthanide metal such as Pr) on one surface thereof, a second dense layer of yttrium-doped barium cerate (BCY), and an interfacial layer between and contacting the BZY and BCY layers. The interfacial layer comprises a solid solution of the BZY and BCY electrolytes. The porous anode substrate comprises at least one porous ceramic material that is stable to carbon dioxide and water (e.g., porous BZY), as well as an electrically conductive metal and/or metal oxide (e.g., Ni, NiO, and the like).

  9. Fabrication of super slippery sheet-layered and porous anodic aluminium oxide surfaces and its anticorrosion property

    Science.gov (United States)

    Song, Tingting; Liu, Qi; Liu, Jingyuan; Yang, Wanlu; Chen, Rongrong; Jing, Xiaoyan; Takahashi, Kazunobu; Wang, Jun

    2015-11-01

    Inspired by natural plants such as Nepenthes pitcher plants, super slippery surfaces have been developed to improve the attributes of repellent surfaces. In this report, super slippery porous anodic aluminium oxide (AAO) surfaces have fabricated by a simple and reproducible method. Firstly, the aluminium substrates were treated by an anodic process producing micro-nano structured sheet-layered pores, and then immersed in Methyl Silicone Oil, Fluororalkylsilane (FAS) and DuPont Krytox, respectively, generating super slippery surfaces. Such a good material with excellent anti-corrosion property through a simple and repeatable method may be potential candidates for metallic application in anti-corrosion and extreme environment.

  10. Interfacial rheological properties of adsorbed protein layers and surfactants: a review

    NARCIS (Netherlands)

    Bos, M.A.; Vliet, van T.

    2001-01-01

    Proteins and low molecular weight (LMW) surfactants are widely used for the physical stabilisation of many emulsions and foam based food products. The formation and stabilisation of these emulsions and foams depend strongly on the interfacial properties of the proteins and the LMW surfactants.

  11. Interfacial rheological properties of adsorbed protein layers and surfactants : a review

    NARCIS (Netherlands)

    Bos, M.A.; Vliet, T. van

    2001-01-01

    Proteins and low molecular weight (LMW) surfactants are widely used for the physical stabilisation of many emulsions and foam based food products. The formation and stabilisation of these emulsions and foams depend strongly on the interfacial properties of the proteins and the LMW surfactants.

  12. Nonlinear switching in Al/Li:NiO/ITO forming-free resistive memories caused by interfacial layer

    Science.gov (United States)

    Yuan, Xin-Cai; Wei, Xian-Hua; Dai, Bo; Zeng, Hui-Zhong

    2016-01-01

    Nonlinear bipolar resistive switching (BRS) of Al/NiO/ITO without forming is demonstrated in this paper. Compared with the linear BRS needing forming, the forming-free nonlinear BRS can be operated using a smaller current about two orders at a smaller switching voltage in the same device. Different from the Joule heating mechanism of the linear BRS behavior after forming, the conduction of the nonlinear BRS is dominated by oxygen vacancy drift induced by electric field across the interface between metal Al, NiO film, and conducting ITO, in which Al/NiO interfacial layer and ITO act as a dual-oxygen reservoir. Furthermore, the doping of Li into NiO layer improves switching properties such as the ON/OFF ratio and reproducibility due to the increase of oxygen vacancy. The results imply that forming-free nonlinear BRS of binary oxides caused by interface layer is feasible in similar dual-oxygen reservoir structure.

  13. Graded composite diamond coatings with top-layer nanocrystallinity and interfacial integrity: Cross-sectional Raman mapping

    Energy Technology Data Exchange (ETDEWEB)

    Dumpala, Ravikumar [Manufacturing Engineering Section, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Nano Functional Materials Technology Centre, Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India); Ramamoorthy, B. [Manufacturing Engineering Section, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Rao, M.S. Ramachandra, E-mail: msrrao@iitm.ac.in [Nano Functional Materials Technology Centre, Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India)

    2014-01-15

    Cross-sectional structural characteristics of the CVD diamond coatings deposited on the tungsten carbide (WC-Co) substrates were analysed using Raman imaging technique. The grain size of the nanocrystalline diamond (NCD) coatings was observed to deviate from the nanocrystallinity with increasing thickness and exhibited the surface characteristics of microcrystalline diamond (MCD). However, thick diamond coatings with surface nanocrystallinity is the key requirement for load-bearing tribological applications. Tribological tests have clearly indicated the significance and need for the top-layer nanocrystallinity. Graded composite diamond coatings with an architecture of NCD/transition-layer/MCD/WC-Co are potentail candiadates to realize thick diamond coatings with top-layer nanocrystallinity. Residual stresses along the cross-section of the graded composite diamond coatings were analysed using Raman imaging technique, which confirmed the improved interfacial integrity of the graded composite diamond coatings.

  14. Graded composite diamond coatings with top-layer nanocrystallinity and interfacial integrity: Cross-sectional Raman mapping

    Science.gov (United States)

    Dumpala, Ravikumar; Ramamoorthy, B.; Rao, M. S. Ramachandra

    2014-01-01

    Cross-sectional structural characteristics of the CVD diamond coatings deposited on the tungsten carbide (WC-Co) substrates were analysed using Raman imaging technique. The grain size of the nanocrystalline diamond (NCD) coatings was observed to deviate from the nanocrystallinity with increasing thickness and exhibited the surface characteristics of microcrystalline diamond (MCD). However, thick diamond coatings with surface nanocrystallinity is the key requirement for load-bearing tribological applications. Tribological tests have clearly indicated the significance and need for the top-layer nanocrystallinity. Graded composite diamond coatings with an architecture of NCD/transition-layer/MCD/WC-Co are potentail candiadates to realize thick diamond coatings with top-layer nanocrystallinity. Residual stresses along the cross-section of the graded composite diamond coatings were analysed using Raman imaging technique, which confirmed the improved interfacial integrity of the graded composite diamond coatings

  15. Solid oxide fuel cell bi-layer anode with gadolinia-doped ceria for utilization of solid carbon fuel

    Science.gov (United States)

    Kellogg, Isaiah D.; Koylu, Umit O.; Dogan, Fatih

    Pyrolytic carbon was used as fuel in a solid oxide fuel cell (SOFC) with a yttria-stabilized zirconia (YSZ) electrolyte and a bi-layer anode composed of nickel oxide gadolinia-doped ceria (NiO-GDC) and NiO-YSZ. The common problems of bulk shrinkage and emergent porosity in the YSZ layer adjacent to the GDC/YSZ interface were avoided by using an interlayer of porous NiO-YSZ as a buffer anode layer between the electrolyte and the NiO-GDC primary anode. Cells were fabricated from commercially available component powders so that unconventional production methods suggested in the literature were avoided, that is, the necessity of glycine-nitrate combustion synthesis, specialty multicomponent oxide powders, sputtering, or chemical vapor deposition. The easily-fabricated cell was successfully utilized with hydrogen and propane fuels as well as carbon deposited on the anode during the cyclic operation with the propane. A cell of similar construction could be used in the exhaust stream of a diesel engine to capture and utilize soot for secondary power generation and decreased particulate pollution without the need for filter regeneration.

  16. Impact of Gd2O3 passivation layer on interfacial and electrical properties of atomic-layer-deposited ZrO2 gate dielectric on GaAs

    Science.gov (United States)

    Gong, Youpin; Zhai, Haifa; Liu, Xiaojie; Kong, Jizhou; Wu, Di; Li, Aidong

    2014-02-01

    ZrO2 gate dielectric films were fabricated on n-GaAs substrates by atomic layer deposition (ALD), using metal organic chemical vapor deposition (MOCVD)-derived ultrathin Gd2O3 film as interfacial control layer between ZrO2 and n-GaAs. The interfacial structure, capacitance-voltage and current-voltage properties of ZrO2/n-GaAs and ZrO2/Gd2O3/n-GaAs metal-oxide-semiconductor (MOS) capacitors have been investigated. The introduction of an ultrathin Gd2O3 control layer can effectively suppress the formation of As oxides and high valence Ga oxide at the high k/GaAs interface which evidently improved the electrical properties of GaAs-based MOS capacitors, such as higher accumulation capacitance and lower leakage current density. It was found that the current conduction mechanism of MOS capacitors varied from Poole-Frenkel emission to Schottky-Richardson emission after introducing the thin Gd2O3 layer. The band alignments of interfaces for ZrO2/GaAs and ZrO2/Gd2O3/GaAs were established, which indicates that the conduction band offset (CBO) for ZrO2/GaAs and ZrO2/Gd2O3/GaAs stacks are ˜1.45 and ˜1.62 eV, correspondingly.

  17. Effects of the buffer layer inserted between the transparent conductive oxide anode and the organic electron donor

    Energy Technology Data Exchange (ETDEWEB)

    Godoy, A.; Kouskoussa, B.; Benchouk, K.; Khelil, A. [Facultad Ciencias de la Salud, Universidad Diego Portales, Ejercito 141, Santiago de Chile (Chile); Cattin, L.; Soto, G.M. [Universite de Nantes, Nantes Atlantique Universites, Institut des Materiaux Jean Rouxel (IMN)-CNRS, Faculte des Sciences et Techniques, 2 rue de la Houssiniere, BP 92208, Nantes F-44000 (France); Toumi, L. [LPCM2E, Universite d' Oran Es-Senia, LPCM2E (Algeria); Diaz, F.R.; del Valle, M.A. [Laboratorio de Polimeros, Facultad de Quimica, Pontificia Universidad Catolica de Chile, Casilla 306, Correo 22, Santiago (Chile); Morsli, M.; Bernede, J.C. [Universite de Nantes, Nantes Atlantique Universites, LAMP, Faculte des Sciences et Techniques, 2 rue de la Houssiniere, BP 92208, Nantes F-44000 (France)

    2010-04-15

    In optoelectronic devices, the work function of the transparent conductive oxide, which is used as anode, does not match well the highest occupied molecular orbital of the organic material, which induces the formation of a barrier opposed to hole exchange at this interface. Therefore a thin buffer layer is often used to achieve good matching of the band structure at the interface. From experimental results it can be deduced that the main effects of the buffer layer consist in a better matching of the band structure at the interface anode/organic material and in a more homogeneous organic layer growth. We show that, whatever the nature of the buffer layer-metal, oxide, organic material - the classical Schottky-Mott model allows to anticipate, at least roughly, the behaviour of the contact, even if some dipole effect are often present. A good correlation between the ''metal/buffer layer'' work function and the barrier {phi}{sub b} for hole exchange at anode/organic electron donor interfaces is obtained, as expected by the model. (author)

  18. Physical processes in forward-biased ZnS MIS light-emitting diodes with a 'thick' interfacial layer

    Energy Technology Data Exchange (ETDEWEB)

    Lukyanchikova, N.B.; Pavelko, T.M.; Pekar, G.S.

    1981-08-16

    Forward-biased electroluminescent ZnS MIS structures with a 'thick' (200 to 3 x 10/sup 4/ A) interfacial layer are investigated. A peculiar feature of the structures studied is that the insertion of the high-resisivity layer between the metal and ZnS results in an increase of the electroluminescence brightness both at a given voltage bias and at a given forward current. The nature of the effect of the insulator on the diode characteristics as well as the mechanisms of carrier transport through the 'thick' interfacial layer are analysed.

  19. Effects of ultrathin AlAs interfacial layer on the structure and optical properties of GaInP epilayer grown on germanium

    International Nuclear Information System (INIS)

    Jia, S.P.; Chen, G.F.; He, W.; Dai, P.; Chen, J.X.; Lu, S.L.; Yang, H.

    2014-01-01

    Highlights: • GaInP with an ultrathin AlAs interfacial layers was grown on Ge by MOVPE. • The 5 Å AlAs results in a decrease of PL intensity from the Ge-based complexes. • The increase of AlAs thickness from 5 Å to 5 nm did not improve inhibiting effect. • The incorporation of AlAs results in an increased ordered degree of GaInP. - Abstract: Structure and optical properties of GaInP epilayer with the ultrathin interfacial layers grown on germanium by metal–organic vapor-phase epitaxy (MOVPE) were characterized by high resolution transmission electron microscopy (HRTEM), photoluminescence (PL), Raman as well as surface morphology measurement. A five angstroms (5 Å) AlAs interfacial layer results in the decrease of PL intensity arising from the emission of [Ge (Ga,In) − V (Ga,In) ] complex. With the incorporation of AlAs interfacial layer, an increased ordered degree of GaInP epilayer is observed. On the basis of the combination of step–terrace-reconstruction (STR) mode with the dimer-induced-stress model, a CuPt-B type ordering of GaInP which is related to AlAs reconstruction with 2× periodicity process is proposed to explain this effect. Long range order occurs as a consequence of the minimization of the strain energy with increased interfacial layer thickness from 5 Å to 5 nm

  20. Effects of ultrathin AlAs interfacial layer on the structure and optical properties of GaInP epilayer grown on germanium

    Energy Technology Data Exchange (ETDEWEB)

    Jia, S.P. [Key Lab. for New Type of Functional Materials in Hebei Province, School of Material and Engineering, Hebei University of Technology, Tianjin 300130 (China); Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Chen, G.F. [Key Lab. for New Type of Functional Materials in Hebei Province, School of Material and Engineering, Hebei University of Technology, Tianjin 300130 (China); He, W. [Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Department of Teaching Basic Courses, The Chinese People' s Armed Police Force Academy, Langfang, Hebei Province 065000 (China); Dai, P.; Chen, J.X. [Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Lu, S.L., E-mail: sllu2008@sinano.ac.cn [Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Yang, H. [Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 (China)

    2014-10-30

    Highlights: • GaInP with an ultrathin AlAs interfacial layers was grown on Ge by MOVPE. • The 5 Å AlAs results in a decrease of PL intensity from the Ge-based complexes. • The increase of AlAs thickness from 5 Å to 5 nm did not improve inhibiting effect. • The incorporation of AlAs results in an increased ordered degree of GaInP. - Abstract: Structure and optical properties of GaInP epilayer with the ultrathin interfacial layers grown on germanium by metal–organic vapor-phase epitaxy (MOVPE) were characterized by high resolution transmission electron microscopy (HRTEM), photoluminescence (PL), Raman as well as surface morphology measurement. A five angstroms (5 Å) AlAs interfacial layer results in the decrease of PL intensity arising from the emission of [Ge{sub (Ga,In)} − V{sub (Ga,In)}] complex. With the incorporation of AlAs interfacial layer, an increased ordered degree of GaInP epilayer is observed. On the basis of the combination of step–terrace-reconstruction (STR) mode with the dimer-induced-stress model, a CuPt-B type ordering of GaInP which is related to AlAs reconstruction with 2× periodicity process is proposed to explain this effect. Long range order occurs as a consequence of the minimization of the strain energy with increased interfacial layer thickness from 5 Å to 5 nm.

  1. Electrical characterization of thulium silicate interfacial layers for integration in high-k/metal gate CMOS technology

    Science.gov (United States)

    Dentoni Litta, Eugenio; Hellström, Per-Erik; Henkel, Christoph; Östling, Mikael

    2014-08-01

    This work presents a characterization of the electrical properties of thulium silicate thin films, within the scope of a possible application as IL (interfacial layer) in scaled high-k/metal gate CMOS technology. Silicate formation is investigated over a wide temperature range (500-900 °C) through integration in MOS capacitor structures and analysis of the resulting electrical properties. The results are compared to those obtained from equivalent devices integrating lanthanum silicate interfacial layers. The thulium silicate IL is formed through a gate-last CMOS-compatible process flow, providing IL EOT of 0.1-0.3 nm at low formation temperature and interface state density at flatband condition below 2 × 1011 cm-2 eV-1. The effects of a possible integration in a gate-first process flow with a maximum thermal budget of 1000 °C are also evaluated, achieving an IL EOT of 0.2-0.5 nm, an interface state density at flatband condition ˜1 × 1011 cm-2 eV-1 and a reduction in gate leakage current density of one order of magnitude compared to the same stack without IL.

  2. Wafer-Scale Synthesis of Semiconducting SnO Monolayers from Interfacial Oxide Layers of Metallic Liquid Tin.

    Science.gov (United States)

    Daeneke, Torben; Atkin, Paul; Orrell-Trigg, Rebecca; Zavabeti, Ali; Ahmed, Taimur; Walia, Sumeet; Liu, Maning; Tachibana, Yasuhiro; Javaid, Maria; Greentree, Andrew D; Russo, Salvy P; Kaner, Richard B; Kalantar-Zadeh, Kourosh

    2017-11-28

    Atomically thin semiconductors are one of the fastest growing categories in materials science due to their promise to enable high-performance electronic and optical devices. Furthermore, a host of intriguing phenomena have been reported to occur when a semiconductor is confined within two dimensions. However, the synthesis of large area atomically thin materials remains as a significant technological challenge. Here we report a method that allows harvesting monolayer of semiconducting stannous oxide nanosheets (SnO) from the interfacial oxide layer of liquid tin. The method takes advantage of van der Waals forces occurring between the interfacial oxide layer and a suitable substrate that is brought into contact with the molten metal. Due to the liquid state of the metallic precursor, the surface oxide sheet can be delaminated with ease and on a large scale. The SnO monolayer is determined to feature p-type semiconducting behavior with a bandgap of ∼4.2 eV. Field effect transistors based on monolayer SnO are demonstrated. The synthetic technique is facile, scalable and holds promise for creating atomically thin semiconductors at wafer scale.

  3. Effects of interfacial transition layers on the electrical properties of individual Fe 30 Co 61 Cu 9 /Cu multilayer nanowires

    KAUST Repository

    Ma, Hongbin

    2016-01-01

    In this work, we accurately measure the electrical properties of individual Fe30Co61Cu9/Cu multilayered nanowires using nanomanipulators in in situ scanning electron microscopy to reveal that interfacial transition layers are influential in determining their transport behaviors. We investigate the morphology, crystal structure and chemistry of the Fe30Co61Cu9/Cu multilayered nanowires to characterize them at the nanoscale. We also compare the transport properties of these multilayered nanowires to those of individual pure Cu nanowires and to those of alloy Fe30Co61Cu9 nanowires. The multilayered nanowires with a 50 nm diameter had a remarkable resistivity of approximately 5.41 × 10-7 Ω m and a failure current density of 1.54 × 1011 A m-2. Detailed analysis of the electrical data reveals that interfacial transition layers influence the electrical properties of multilayered nanowires and are likely to have a strong impact on the life of nanodevices. This work contributes to a basic understanding of the electrical parameters of individual magnetic multilayered nanowires for their application as functional building blocks and interconnecting leads in nanodevices and nanoelectronics, and also provides a clear physical picture of a single multilayered nanowire which explains its electrical resistance and its source of giant magnetoresistance. © The Royal Society of Chemistry 2016.

  4. Morphological modelling of three-phase microstructures of anode layers using SEM images.

    Science.gov (United States)

    Abdallah, Bassam; Willot, François; Jeulin, Dominique

    2016-07-01

    A general method is proposed to model 3D microstructures representative of three-phases anode layers used in fuel cells. The models are based on SEM images of cells with varying morphologies. The materials are first characterized using three morphological measurements: (cross-)covariances, granulometry and linear erosion. They are measured on segmented SEM images, for each of the three phases. Second, a generic model for three-phases materials is proposed. The model is based on two independent underlying random sets which are otherwise arbitrary. The validity of this model is verified using the cross-covariance functions of the various phases. In a third step, several types of Boolean random sets and plurigaussian models are considered for the unknown underlying random sets. Overall, good agreement is found between the SEM images and three-phases models based on plurigaussian random sets, for all morphological measurements considered in the present work: covariances, granulometry and linear erosion. The spatial distribution and shapes of the phases produced by the plurigaussian model are visually very close to the real material. Furthermore, the proposed models require no numerical optimization and are straightforward to generate using the covariance functions measured on the SEM images. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  5. Modified surface morphology of a novel Ti-24Nb-4Zr-7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration.

    Science.gov (United States)

    Li, Xiang; Chen, Tao; Hu, Jing; Li, Shujun; Zou, Qin; Li, Yunfeng; Jiang, Nan; Li, Hui; Li, Jihua

    2016-08-01

    The Ti-24Nb-4Zr-7.9Sn titanium alloy (Ti2448) has shown potential for use in biomedical implants, because this alloy possesses several important mechanical properties, such as a high fracture strength, low elastic modulus, and good corrosion resistance. In this study, we aimed to produce a hierarchical nanostructure on the surface of Ti2448 to endow this alloy with favorable biological properties. The chemical composition of Ti2448 (64.0wt% Ti, 23.9wt% Nb, 3.9wt% Zr, and 8.1wt% Sn) gives this material electrochemical properties that lead to the generation of topographical features under standard anodic oxidation. We characterized the surface properties of pure Ti (Ti), nanotube-Ti (NT), Ti2448, and nanotube-Ti2448 (NTi2448) based on surface morphology (scanning electron microscopy and atomic force microscopy), chemical and phase compositions (X-ray diffraction and X-ray photoelectron spectroscopy), and wettability (water contact angle). We evaluated the biocompatibility and osteointegration of implant surfaces by observing the behavior of bone marrow stromal cells (BMSCs) cultured on the surfaces in vitro and conducting histological analysis after in vivo implantation of the modified materials. Our results showed that a hierarchical structure with a nanoscale bone-like layer was achieved along with nanotube formation on the Ti2448 surface. The surface characterization data suggested the superior biocompatibility of the NTi2448 surface in comparison with the Ti, NT, and Ti2448 surfaces. Moreover, the NTi2448 surface showed better biocompatibility for BMSCs in vitro and better osteointegration in vivo. Based on these results, we conclude that anodic oxidation facilitated the formation of a nanoscale bone-like structure and nanotubes on Ti2448. Unlike the modified titanium surfaces developed to date, the NTi2448 surface, which presents both mechanical compatibility and bioactivity, offers excellent biocompatibility and osteointegration, suggesting its potential for

  6. Detection of Interfacial Debonding in a Rubber-Steel-Layered Structure Using Active Sensing Enabled by Embedded Piezoceramic Transducers.

    Science.gov (United States)

    Feng, Qian; Kong, Qingzhao; Jiang, Jian; Liang, Yabin; Song, Gangbing

    2017-09-01

    Rubber-steel-layered structures are used in many engineering applications. Laminated rubber-steel bearing, as a type of seismic isolation device, is one of the most important applications of the rubber-steel-layered structures. Interfacial debonding in rubber-steel-layered structures is a typical failure mode, which can severely reduce their load-bearing capacity. In this paper, the authors developed a simple but effective active sensing approach using embedded piezoceramic transducers to provide an in-situ detection of the interfacial debonding between the rubber layers and steel plates. A sandwiched rubber-steel-layered specimen, consisting of one rubber layer and two steel plates, was fabricated as the test specimen. A novel installation technique, which allows the piezoceramic transducers to be fully embedded into the steel plates without changing the geometry and the surface conditions of the plates, was also developed in this research. The active sensing approach, in which designed stress waves can propagate between a pair of the embedded piezoceramic transducers (one as an actuator and the other one as a sensor), was employed to detect the steel-rubber debonding. When the rubber-steel debonding occurs, the debonded interfaces will attenuate the propagating stress wave, so that the amplitude of the received signal will decrease. The rubber-steel debonding was generated by pulling the two steel plates in opposite directions in a material-testing machine. The changes of the received signal before and after the debonding were characterized in a time domain and further quantified by using a wavelet packet-based energy index. Experiments on the healthy rubber-steel-layered specimen reveal that the piezoceramic-induced stress wave can propagate through the rubber layer. The destructive test on the specimen demonstrates that the piezoceramic-based active sensing approach can effectively detect the rubber-steel debonding failure in real time. The active sensing

  7. Detection of Interfacial Debonding in a Rubber–Steel-Layered Structure Using Active Sensing Enabled by Embedded Piezoceramic Transducers

    Science.gov (United States)

    Feng, Qian; Jiang, Jian; Liang, Yabin; Song, Gangbing

    2017-01-01

    Rubber–steel-layered structures are used in many engineering applications. Laminated rubber–steel bearing, as a type of seismic isolation device, is one of the most important applications of the rubber–steel-layered structures. Interfacial debonding in rubber–steel-layered structures is a typical failure mode, which can severely reduce their load-bearing capacity. In this paper, the authors developed a simple but effective active sensing approach using embedded piezoceramic transducers to provide an in-situ detection of the interfacial debonding between the rubber layers and steel plates. A sandwiched rubber–steel-layered specimen, consisting of one rubber layer and two steel plates, was fabricated as the test specimen. A novel installation technique, which allows the piezoceramic transducers to be fully embedded into the steel plates without changing the geometry and the surface conditions of the plates, was also developed in this research. The active sensing approach, in which designed stress waves can propagate between a pair of the embedded piezoceramic transducers (one as an actuator and the other one as a sensor), was employed to detect the steel–rubber debonding. When the rubber–steel debonding occurs, the debonded interfaces will attenuate the propagating stress wave, so that the amplitude of the received signal will decrease. The rubber–steel debonding was generated by pulling the two steel plates in opposite directions in a material-testing machine. The changes of the received signal before and after the debonding were characterized in a time domain and further quantified by using a wavelet packet-based energy index. Experiments on the healthy rubber–steel-layered specimen reveal that the piezoceramic-induced stress wave can propagate through the rubber layer. The destructive test on the specimen demonstrates that the piezoceramic-based active sensing approach can effectively detect the rubber–steel debonding failure in real time. The

  8. Interfacial mixing in as-deposited Si/Ni/Si layers analyzed by x-ray and polarized neutron reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Debarati, E-mail: debarati@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Basu, Saibal; Singh, Surendra [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Roy, Sumalay; Dev, Bhupendra Nath [Department of Materials Science, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032 (India)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Room temperature diffusion in Si/Ni/Si trilayer detected through complementary x-ray and polarized neutron reflectometry. Black-Right-Pointing-Pointer Analyses of XPNR data generated the construction of the layered structure in terms of physical parameters along with alloy layers created by diffusion. Black-Right-Pointing-Pointer Scattering length density information from XPNR provided quantitative assessment of the stoichiometry of alloys formed at the Si/Ni and Ni/Si interfaces. - Abstract: Interdiffusion occurring across the interfaces in a Si/Ni/Si layered system during deposition at room temperature was probed using x-ray reflectivity (XRR) and polarized neutron reflectivity (PNR). Exploiting the complementarity of these techniques, both structural and magnetic characterization with nanometer depth resolution could be achieved. Suitable model fitting of the reflectivity profiles identified the formation of Ni-Si mixed alloy layers at the Si/Ni and Ni/Si interfaces. The physical parameters of the layered structure, including quantitative assessment of the stoichiometry of interfacial alloys, were obtained from the analyses of XRR and PNR patterns. In addition, PNR provided magnetic moment density profile as a function of depth in the stratified medium.

  9. Tuning indium tin oxide work function with solution-processed alkali carbonate interfacial layers for high-efficiency inverted organic photovoltaic cells.

    Science.gov (United States)

    Chen, Fei; Chen, Qi; Mao, Lin; Wang, Yixin; Huang, Xun; Lu, Wei; Wang, Bing; Chen, Liwei

    2013-12-06

    Selective electron collection by an interfacial layer modified indium tin oxide cathode is critically important for achieving high-efficiency inverted structure organic photovoltaic (OPV) cells. Here, we demonstrate that solution-processed alkali carbonates, such as Li2CO3, Na2CO3, K2CO3, Rb2CO3, Cs2CO3, are good interfacial layer materials. Both carbonate concentration and annealing conditions can affect cathode work function and surface roughness. By proper optimization, different alkali carbonates can be almost equally effective as the cathode interfacial layer. Furthermore, good device performance can be achieved at a low annealing temperature (<50 ° C), which allows for potential applications in solution-processed inverted OPV cells on plastic substrates. This work indicates that alkali carbonates, not just cesium carbonate, are valid choices as the cathode interlayer in inverted OPV devices.

  10. Modification of SnO2 Anodes by Atomic Layer Deposition for High Performance Lithium Ion Batteries

    KAUST Repository

    Yesibolati, Nulati

    2013-05-01

    Tin dioxide (SnO2) is considered one of the most promising anode materials for Lithium ion batteries (LIBs), due to its large theoretical capacity and natural abundance. However, its low electronic/ionic conductivities, large volume change during lithiation/delithiation and agglomeration prevent it from further commercial applications. In this thesis, we investigate modified SnO2 as a high energy density anode material for LIBs. Specifically two approaches are presented to improve battery performances. Firstly, SnO2 electrochemical performances were improved by surface modification using Atomic Layer Deposition (ALD). Ultrathin Al2O3 or HfO2 were coated on SnO2 electrodes. It was found that electrochemical performances had been enhanced after ALD deposition. In a second approach, we implemented a layer-by-layer (LBL) assembled graphene/carbon-coated hollow SnO2 spheres as anode material for LIBs. Our results indicated that the LBL assembled electrodes had high reversible lithium storage capacities even at high current densities. These superior electrochemical performances are attributed to the enhanced electronic conductivity and effective lithium diffusion, because of the interconnected graphene/carbon networks among nanoparticles of the hollow SnO2 spheres.

  11. Solution processed transition metal oxide anode buffer layers for efficiency and stability enhancement of polymer solar cells

    Science.gov (United States)

    Ameen, M. Yoosuf; Shamjid, P.; Abhijith, T.; Reddy, V. S.

    2018-01-01

    Polymer solar cells were fabricated with solution-processed transition metal oxides, MoO3 and V2O5 as anode buffer layers (ABLs). The optimized device with V2O5 ABL exhibited considerably higher power conversion efficiency (PCE) compared to the devices based on MoO3 and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) ABLs. The space charge limited current measurements and impedance spectroscopy results of hole-only devices revealed that V2O5 provided a very low charge transfer resistance and high hole mobility, facilitating efficient hole transfer from the active layer to the ITO anode. More importantly, incorporation of V2O5 as ABL resulted in substantial improvement in device stability compared to MoO3 and PEDOT:PSS based devices. Unencapsulated PEDOT:PSS-based devices stored at a relative humidity of 45% have shown complete failure within 96 h. Whereas, MoO3 and V2O5 based devices stored in similar conditions retained 22% and 80% of their initial PCEs after 96 h. Significantly higher stability of the V2O5-based device is ascribed to the reduction in degradation of the anode/active layer interface, as evident from the electrical measurements.

  12. Effect of the thickness of the anode electrode catalyst layers on the performance in direct methanol fuel cells

    Science.gov (United States)

    Glass, Dean E.; Olah, George A.; Prakash, G. K. Surya

    2017-06-01

    For the large scale fuel cell manufacture, the catalyst loading and layer thickness are critical factors affecting the performance and cost of membrane electrode assemblies (MEAs). The influence of catalyst layer thicknesses at the anode of a PEM based direct methanol fuel cell (DMFC) has been investigated. Catalysts were applied with the drawdown method with varied thicknesses ranging from 1 mil to 8 mils (1 mil = 25.4 μm) with a Pt/Ru anode loading of 0.25 mg cm-2 to 2.0 mg cm-2. The MEAs with the thicker individual layers (8 mils and 4 mils) performed better overall compared to the those with the thinner layers (1 mil and painted). The peak power densities for the different loading levels followed an exponential decrease of Pt/Ru utilization at the higher loading levels. The highest power density achieved was 49 mW cm-2 with the 4 mil layers at 2.0 mg cm-2 catalyst loading whereas the highest normalized power density was 116 mW mg-1 with the 8 mil layers at 0.25 mg cm-2 loading. The 8 mil drawdowns displayed a 50% and 23% increase in normalized power density compared to the 1 mil drawdowns at 0.25 mg cm-2 and 0.5 mg cm-2 loadings, respectively.

  13. Tuning the dead-layer behavior of La0.67Sr0.33MnO3/SrTiO3 via interfacial engineering

    Science.gov (United States)

    Peng, R.; Xu, H. C.; Xia, M.; Zhao, J. F.; Xie, X.; Xu, D. F.; Xie, B. P.; Feng, D. L.

    2014-02-01

    The dead-layer behavior, deterioration of the bulk properties in near-interface layers, restricts the applications of many oxide heterostructures. We present the systematic study of the dead-layer in La0.67Sr0.33MnO3/SrTiO3 grown by ozone-assisted molecular beam epitaxy. Dead-layer behavior is systematically tuned by varying the interfacial doping, while unchanged with varied doping at any other atomic layers. In situ photoemission and low energy electron diffraction measurements suggest intrinsic oxygen vacancies at the surface of ultra-thin La0.67Sr0.33MnO3, which are more concentrated in thinner films. Our results show correlation between interfacial doping, oxygen vacancies, and the dead-layer, which can be explained by a simplified electrostatic model.

  14. Silicon dioxide with a silicon interfacial layer as an insulating gate for highly stable indium phosphide metal-insulator-semiconductor field effect transistors

    Science.gov (United States)

    Kapoor, V. J.; Shokrani, M.

    1991-01-01

    A novel gate insulator consisting of silicon dioxide (SiO2) with a thin silicon (Si) interfacial layer has been investigated for high-power microwave indium phosphide (InP) metal-insulator-semiconductor field effect transistors (MISFETs). The role of the silicon interfacial layer on the chemical nature of the SiO2/Si/InP interface was studied by high-resolution X-ray photoelectron spectroscopy. The results indicated that the silicon interfacial layer reacted with the native oxide at the InP surface, thus producing silicon dioxide, while reducing the native oxide which has been shown to be responsible for the instabilities in InP MISFETs. While a 1.2-V hysteresis was present in the capacitance-voltage (C-V) curve of the MIS capacitors with silicon dioxide, less than 0.1 V hysteresis was observed in the C-V curve of the capacitors with the silicon interfacial layer incorporated in the insulator. InP MISFETs fabricated with the silicon dioxide in combination with the silicon interfacial layer exhibited excellent stability with drain current drift of less than 3 percent in 10,000 sec, as compared to 15-18 percent drift in 10,000 sec for devices without the silicon interfacial layer. High-power microwave InP MISFETs with Si/SiO2 gate insulators resulted in an output power density of 1.75 W/mm gate width at 9.7 GHz, with an associated power gain of 2.5 dB and 24 percent power added efficiency.

  15. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells.

    Science.gov (United States)

    Sengodan, Sivaprakash; Choi, Sihyuk; Jun, Areum; Shin, Tae Ho; Ju, Young-Wan; Jeong, Hu Young; Shin, Jeeyoung; Irvine, John T S; Kim, Guntae

    2015-02-01

    Different layered perovskite-related oxides are known to exhibit important electronic, magnetic and electrochemical properties. Owing to their excellent mixed-ionic and electronic conductivity and fast oxygen kinetics, cation layered double perovskite oxides such as PrBaCo2O5 in particular have exhibited excellent properties as solid oxide fuel cell oxygen electrodes. Here, we show for the first time that related layered materials can be used as high-performance fuel electrodes. Good redox stability with tolerance to coking and sulphur contamination from hydrocarbon fuels is demonstrated for the layered perovskite anode PrBaMn2O5+δ (PBMO). The PBMO anode is fabricated by in situ annealing of Pr0.5Ba0.5MnO3-δ in fuel conditions and actual fuel cell operation is demonstrated. At 800 °C, layered PBMO shows high electrical conductivity of 8.16 S cm(-1) in 5% H2 and demonstrates peak power densities of 1.7 and 1.3 W cm(-2) at 850 °C using humidified hydrogen and propane fuels, respectively.

  16. Strengthening Interface Transition Layer of Carbon Fiber/Epoxy Composites with CNTs and Its Effect on Interfacial Performance

    Directory of Open Access Journals (Sweden)

    YAO Hong-wei

    2016-12-01

    Full Text Available The sizing treatments were used to introduce carbon nanotubes (CNTs to carbon fiber (CF surfaces for fabrication of CF/CNTs/epoxy multi-scale composites. Comparing with the base composites without CNTs, interlaminar shear strength (ILSS and flexural strength of the modified composites were increased by 13.54% and 12.88%, respectively. Force modulation atomic force microscope and linear scanning system of scanning electron microscope were carried out to analyze the microstructure of composite interface. The results indicate that a transition layer reinforced by CNTs is constructed between fiber and epoxy (EP matrix, which has certain thickness and exhibits gradient distribution of modulus and carbon element content. The composites containing CNTs are sonicated before curing to disperse CNTs in the surrounding resin. As a result, the interface transition layer is weakened and the ILSS and flexural strength of prepared composites decrease by 7.33% and 5.34%, respectively. Therefore, the significant role of the interface transition layer in improving the interfacial performance of composites is evidenced again at another perspective.

  17. Revisiting Surface Modification of Graphite: Dual-Layer Coating for High-Performance Lithium Battery Anode Materials.

    Science.gov (United States)

    Song, Gyujin; Ryu, Jaegeon; Ko, Seunghee; Bang, Byoung Man; Choi, Sinho; Shin, Myoungsoo; Lee, Sang-Young; Park, Soojin

    2016-06-06

    Surface modification of electrode active materials has garnered considerable attention as a facile way to meet stringent requirements of advanced lithium-ion batteries. Here, we demonstrated a new coating strategy based on dual layers comprising antimony-doped tin oxide (ATO) nanoparticles and carbon. The ATO nanoparticles are synthesized via a hydrothermal method and act as electronically conductive/electrochemically active materials. The as-synthesized ATO nanoparticles are introduced on natural graphite along with citric acid used as a carbon precursor. After carbonization, the carbon/ATO-decorated natural graphite (c/ATO-NG) is produced. In the (carbon/ATO) dual-layer coating, the ATO nanoparticles coupled with the carbon layer exhibit unprecedented synergistic effects. The resultant c/ATO-NG anode materials display significant improvements in capacity (530 mA h g(-1) ), cycling retention (capacity retention of 98.1 % after 50 cycles at a rate of C/5), and low electrode swelling (volume expansion of 38 % after 100 cycles) which outperform that of typical graphite materials. Furthermore, a full-cell consisting of a c/ATO-NG anode and an LiNi0.5 Mn1.5 O4 cathode presents excellent cycle retention (capacity retention of >80 % after 100 cycles). We envision that the dual-layer coating concept proposed herein opens a new route toward high-performance anode materials for lithium-ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The interfacial tension of the mercury —1 M HClO4− solution interface at high potentials; comparison with double-layer capacitance measurements

    NARCIS (Netherlands)

    Sluyters-Rehbach, M.; Woittiez, W.J.A.; Sluyters, J.H.

    Interfacial tension values have been measured in order to calculate the electrical charge density as a function of potential. The results are in accordance with those obtained from double-layer capacitance data reported earlier2,3, also at highly positive potentials.

  19. Effect of interfacial layers on physical and electrical properties of dinaphtho[2,3-b:2‧,3‧-d]thiophene organic thin-film transistors

    Science.gov (United States)

    Shaari, Safizan; Naka, Shigeki; Okada, Hiroyuki

    2017-03-01

    We fabricated hexyl-substituted dinaphtho[2,3-b:2‧,3‧-d]thiophene (C6-DNT-V) organic thin-film transistors (OTFTs) with different interfacial layers. The interfacial layers comprised various types of polymers, polyimide, self-assembled monolayers, and high-κ materials. We investigated the effect of interfacial layers on the physical and electrical properties of C6-DNT-V OTFTs. The relationships between mobility and contact angle, threshold voltage and contact angle, on/off ratio and contact angle, mobility and X-ray diffraction intensity, and mobility and dielectric constant were investigated. We found that the contact angle strongly affected the threshold voltage, and the correlation coefficient was calculated to be 0.88. This is due to the fact that use of interfacial layers on the dielectric surface changes the contact angle and hence the surface energy. The altered surface energy will contribute to a change in the grain boundary of C6-DNT-V and affect the shift in threshold voltage. The relationships between other properties showed correlation coefficients of lower than 0.51.

  20. Stable MoS2 Field-Effect Transistors Using TiO2 Interfacial Layer at Metal/MoS2 Contact

    KAUST Repository

    Park, Woojin

    2017-09-07

    Molybdenum disulphide (MoS2) is an emerging 2-dimensional (2D) semiconductor for electronic devices. However, unstable and low performance of MoS2 FETs is an important concern. In this study, inserting an atomic layer deposition (ALD) titanium dioxide (TiO2) interfacial layer between contact metal and MoS2 channel is suggested to achieve more stable performances. The reduced threshold voltage (VTH) shift and reduced series resistance (RSD) were simultaneously achieved.

  1. A High-Performing Sulfur-Tolerant and Redox-Stable Layered Perovskite Anode for Direct Hydrocarbon Solid Oxide Fuel Cells

    Science.gov (United States)

    Ding, Hanping; Tao, Zetian; Liu, Shun; Zhang, Jiujun

    2015-01-01

    Development of alternative ceramic oxide anode materials is a key step for direct hydrocarbon solid oxide fuel cells (SOFCs). Several lanthanide based layered perovskite-structured oxides demonstrate outstanding oxygen diffusion rate, favorable electronic conductivity, and good oxygen surface exchange kinetics, owing to A-site ordered structure in which lanthanide and alkali-earth ions occupy alternate (001) layers and oxygen vacancies are mainly located in [LnOx] planes. Here we report a nickel-free cation deficient layered perovskite, (PrBa)0.95(Fe0.9Mo0.1)2O5 + δ (PBFM), for SOFC anode, and this anode shows an outstanding performance with high resistance against both carbon build-up and sulfur poisoning in hydrocarbon fuels. At 800 °C, the layered PBFM showed high electrical conductivity of 59.2 S cm−1 in 5% H2 and peak power densities of 1.72 and 0.54 W cm−2 using H2 and CH4 as fuel, respectively. The cell exhibits a very stable performance under a constant current load of 1.0 A cm−2. To our best knowledge, this is the highest performance of ceramic anodes operated in methane. In addition, the anode is structurally stable at various fuel and temperature conditions, suggesting that it is a feasible material candidate for high-performing SOFC anode. PMID:26648509

  2. Investigation of Interfacial Layer for Ultrasonic Spot Welded Aluminum to Copper Joints.

    Science.gov (United States)

    Zhang, Zijiao; Wang, Kaifeng; Li, Jingjing; Yu, Qian; Cai, Wayne

    2017-10-02

    The bonding formation for ultrasonic welding of dissimilar metals has been shrouded in mystery because of the complex thermomechanical behavior at the bonding interface. We investigated the microstructure and phases at the bonding interface of ultrasonically welded aluminum to copper joints using transmission electron microscopy, and found a ~10 nm thick transition layer composed of amorphous phase and nanocrystallines, which was believed to form the bonding between these two metals in addition to mechanical interlocking observed at a larger scale. Interdiffusion of parent elements (i.e. Al and Cu) was noticed in the amorphous phase, which was mainly driven by plastic deformation in solid state introduced by ultrasonic vibration. High densities of dislocations and stacking faults were also observed in the parent metals close to the transition layer, confirming the effects of severe plastic deformation.

  3. Enhanced ionic conductivity in composite materials due to interfacial space charge layers

    International Nuclear Information System (INIS)

    Dudney, N.J.

    1985-01-01

    The ionic conductivity of a number of salts (e.g., β-AgI, LiI, CuCl, HgI 2 , etc.) can be enhanced by one to three orders of magnitude with the addition of fine particles of an insoluble and nonconducting material such as Al 2 O 3 or SiO 2 . Typically the conductivity increases with addition of the inert particles and reaches a peak at 10-40 vol % of the particles. The mechanism responsible for the enhanced conductivity of the composite is not understood at this time. Some claim that this effect is due to an increased concentration of charge carriers in a diffuse space charge layer near the charged surface of the particle. The goal of the present study is to test this proposed mechanism by calculating the maximum space charge layer effect and then using this result to estimate the conductivity of a composite with a random distribution of Al 2 O 3 particles. Also, the conductivity of composite systems has been investigated assuming an ordered distribution of particles which are surrounded by a high conductivity layer

  4. Interfacial engineering of electron transport layer using Caesium Iodide for efficient and stable organic solar cells

    Science.gov (United States)

    Upama, Mushfika Baishakhi; Elumalai, Naveen Kumar; Mahmud, Md Arafat; Wright, Matthew; Wang, Dian; Xu, Cheng; Haque, Faiazul; Chan, Kah Howe; Uddin, Ashraf

    2017-09-01

    Polymer solar cells (PSCs) have gained immense research interest in the recent years predominantly due to low-cost, solution process-ability, and facile device fabrication. However, achieving high stability without compromising the power conversion efficiency (PCE) serves to be an important trade-off for commercialization. In line with this, we demonstrate the significance of incorporating a CsI/ZnO bilayer as electron transport layer (ETL) in the bulk heterojunction PSCs employing low band gap polymer (PTB7) and fullerene (PC71BM) as the photo-active layer. The devices with CsI/ZnO interlayer exhibited substantial enhancement of 800% and 12% in PCE when compared to the devices with pristine CsI and pristine ZnO as ETL, respectively. Furthermore, the UV and UV-ozone induced degradation studies revealed that the devices incorporating CsI/ZnO bilayer possess excellent decomposition stability (∼23% higher) over the devices with pristine ZnO counterparts. The incorporation of CsI between ITO and ZnO was found to favorably modify the energy-level alignment at the interface, contributing to the charge collection efficiency as well as protecting the adjacent light absorbing polymer layers from degradation. The mechanism behind the improvement in PCE and stability is analyzed using the electrochemical impedance spectroscopy and dark I-V characteristics.

  5. Comparative electrochemical analysis of crystalline and amorphous anodized iron oxide nanotube layers as negative electrode for LIB.

    Science.gov (United States)

    Pervez, Syed Atif; Kim, Doohun; Farooq, Umer; Yaqub, Adnan; Choi, Jung-Hee; Lee, You-Jin; Doh, Chil-Hoon

    2014-07-23

    This work is a comparative study of the electrochemical performance of crystalline and amorphous anodic iron oxide nanotube layers. These nanotube layers were grown directly on top of an iron current collector with a vertical orientation via a simple one-step synthesis. The crystalline structures were obtained by heat treating the as-prepared (amorphous) iron oxide nanotube layers in ambient air environment. A detailed morphological and compositional characterization of the resultant materials was performed via transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and Raman spectroscopy. The XRD patterns were further analyzed using Rietveld refinements to gain in-depth information on their quantitative phase and crystal structures after heat treatment. The results demonstrated that the crystalline iron oxide nanotube layers exhibit better electrochemical properties than the amorphous iron oxide nanotube layers when evaluated in terms of the areal capacity, rate capability, and cycling performance. Such an improved electrochemical response was attributed to the morphology and three-dimensional framework of the crystalline nanotube layers offering short, multidirectional transport lengths, which favor rapid Li(+) ions diffusivity and electron transport.

  6. Geobacter Dominates the Inner Layers of a Stratified Biofilm on a Fluidized Anode During Brewery Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Sara Tejedor-Sanz

    2018-03-01

    Full Text Available In this study, we designed a microbial electrochemical fluidized bed reactor (ME-FBR, with an electroconductive anodic bed made of activated carbon particles for treating a brewery wastewater. Under a batch operating mode, acetate and propionate consumption rates were 13-fold and 2.4-fold higher, respectively, when the fluidized anode was polarized (0.2 V with respect to open circuit conditions. Operating in a continuous mode, this system could effectively treat the brewery effluent at organic loading rates (OLR over 1.7 kg m-3NRV d-1 and with removal efficiencies of 95 ± 1.4% (hydraulic retention time of 1 day and an influent of 1.7 g-COD L-1. The coulombic efficiency values highly depended upon the OLR applied, and varied from a 56 ± 15% to 10 ± 1%. Fluorescence in situ hybridization (FISH analysis revealed a relative high abundance of Geobacter species (ca. 20%, and clearly showed a natural microbial stratification. Interestingly, the Geobacter cluster was highly enriched in the innermost layers of the biofilm (thickness of 10 μm, which were in contact with the electroconductive particles of bed, whereas the rest of bacteria were located in the outermost layers. To our knowledge, this is the first time that such a clear microbial stratification has been observed on an anode-respiring biofilm. Our results revealed the relevant role of Geobacter in switching between the electrode and other microbial communities performing metabolic reactions in the outermost environment of the biofilm.

  7. SnO2 anode surface passivation by atomic layer deposited HfO2 improves li-ion battery performance

    KAUST Repository

    Yesibolati, Nulati

    2014-03-14

    For the first time, it is demonstrated that nanoscale HfO2 surface passivation layers formed by atomic layer deposition (ALD) significantly improve the performance of Li ion batteries with SnO2-based anodes. Specifically, the measured battery capacity at a current density of 150 mAg -1 after 100 cycles is 548 and 853 mAhg-1 for the uncoated and HfO2-coated anodes, respectively. Material analysis reveals that the HfO2 layers are amorphous in nature and conformably coat the SnO2-based anodes. In addition, the analysis reveals that ALD HfO2 not only protects the SnO2-based anodes from irreversible reactions with the electrolyte and buffers its volume change, but also chemically interacts with the SnO2 anodes to increase battery capacity, despite the fact that HfO2 is itself electrochemically inactive. The amorphous nature of HfO2 is an important factor in explaining its behavior, as it still allows sufficient Li diffusion for an efficient anode lithiation/delithiation process to occur, leading to higher battery capacity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Interfacial characteristics of polyethylene terephthalate-based piezoelectric multi-layer films

    International Nuclear Information System (INIS)

    Liu, Z.H.; Pan, C.T.; Chen, Y.C.; Liang, P.H.

    2013-01-01

    The study examines the deformation between interfaces and the adhesion mechanism of multi-layer flexible electronic composites. Indium tin oxide (ITO), aluminum (Al), and zinc oxide (ZnO) were deposited on a polyethylene terephthalate (PET) substrate using radio frequency magnetron sputtering at room temperature to form flexible structures (e.g., ITO/PET, Al/PET, ZnO/ITO/PET, and ZnO/Al/PET) for piezoelectric transducers. ITO and Al films are used as the conductive layers. A ZnO thin film shows a high (002) c-axis preferred orientation at 2θ = 34.45° and excellent piezoelectric properties. Nanoscratching and nano-indention testing were conducted to analyze the adhesion following periodic mechanical stress. Additionally, two Berkovich and conical probes with a curvature radius of 40 nm and 10 μm are examined for the scratching test. A 4-point probe is used to measure the conductive properties. The plastic deformation between the ductile Al film and PET substrate is observed using scanning electron microscopy to examine the chip formation on the ITO/PET. Delamination between the ZnO and Al/PET substrate was not observed. The result suggests that ZnO film has excellent adhesion with Al/PET compared to ITO/PET. - Highlights: ► Interfaces and adhesion mechanism of multi-layer flexible electronic composites ► Polyethylene terephthalate (PET) based flexible structures ► Nano-scratching and nano-indention tests were used to analyze adhesion. ► Using two various probes of Berkovich and conical ► Piezoelectric zinc oxide film has excellent adhesion with aluminum/PET

  9. Interfacial and Electrical Properties of Ge MOS Capacitor by ZrLaON Passivation Layer and Fluorine Incorporation

    Science.gov (United States)

    Huang, Yong; Xu, Jing-Ping; Liu, Lu; Cheng, Zhi-Xiang; Lai, Pui-To; Tang, Wing-Man

    2017-09-01

    Ge Metal-Oxide-Semiconductor (MOS) capacitor with HfTiON/ZrLaON stacked gate dielectric and fluorine-plasma treatment is fabricated, and its interfacial and electrical properties are compared with its counterparts without the ZrLaON passivation layer or the fluorine-plasma treatment. Experimental results show that the sample exhibits excellent performances: low interface-state density (3.7×1011 cm-2eV-1), small flatband voltage (0.21 V), good capacitance-voltage behavior, small frequency dispersion and low gate leakage current (4.41×10-5 A/cm2 at Vg = Vfb + 1V). These should be attributed to the suppressed growth of unstable Ge oxides on the Ge surface during gate-dielectric annealing by the ZrLaON interlayer and fluorine incorporation, thus greatly reducing the defective states at/near the ZrLaON/Ge interface and improving the electrical properties of the device.

  10. Layer-by-layer assembled graphene-coated mesoporous SnO2 spheres as anodes for advanced Li-ion batteries

    KAUST Repository

    Shahid, Muhammad

    2014-10-01

    We report layer-by-layer (LBL) assembly of graphene/carbon-coated mesoporous SnO2 spheres (Gr/C-SnO2 spheres), without binder and conducting additives, as anode materials with excellent Li-ion insertion-extraction properties. Our results indicate that these novel LBL assembled electrodes have high reversible Li storage capacity, improved cycling, and especially good rate performance, even at high specific currents. The superior electrochemical performance offered by these LBL assembled Gr/C-SnO2 spheres is attributed to the enhanced electronic conductivity and effective diffusion of Li ions in the interconnected network of nanoparticles forming the mesoporous SnO2 spheres. © 2014 Elsevier B.V. All rights reserved.

  11. The Upper Limit to the Theoretical Efficiency of P-N Homojunction and Interfacial Layer Heterojunction Solar Cells.

    Science.gov (United States)

    Spitzer, Mark Bradley

    The physical mechanisms governing photovoltaic energy conversion in p-n homojunction and interfacial layer heterojunction (ILH) solar cells are examined. The usefulness of minority carrier mirrors (MCM) in such cells is studied by solving the minority carrier diffusion equation in the n- and p-type quasi-neutral regions of the cell, with boundary conditions representing MCM's at the ends of these regions. In this formalism, the MCM is considered to be an interfacial plane having zero surface recombination velocity. Non -zero values are also considered. It is shown that the MCM improves the open circuit voltage of the solar cell when it is located within a diffusion length of the junction between the n- and p-type regions. The effect of the MCM diminishes as the distance between it and the junction increases. The above analysis is applied to the direct gap materials CuInSe(,2) (E = 1.0eV) and GaAs (E = 1.43eV). It is shown that the theoretical upper limit to the conversion efficiency for devices employing MCM's on the front and back is approximately 26% for a CuInSe(,2) cell of width 2 microns. The analysis is also applied to cells made from silicon. A cell thickness of approximately 300 microns is necessary to absorb all the light owing to the indirect bandgap of silicon, yet the solar cell must be made thin in order to attain the maximum effect of the MCM's. A concept of internal light trapping is discussed; this trapping causes the light to undergo multiple reflections within the thin cell. By solving the minority carrier diffusion equation with appropriate generation function, it is shown that the upper limit to the efficiency is approximately 27%, for a cell of 15 microns in width. The ILH solar cell is examined. A model describing current transport in the ILH cell is discussed and applied to the MIS solar cell. A new type of solar cell, the back surface MIS cell, is considered. The model is applied to this type of cell and the efficiency is calculated. The ILH

  12. Effect of various intermediate ceramic layers on the interfacial stability of zirconia core and veneering ceramics.

    Science.gov (United States)

    Yoon, Hyung-In; Yeo, In-Sung; Yi, Yang-Jin; Kim, Sung-Hun; Lee, Jai-Bong; Han, Jung-Suk

    2015-01-01

    The purposes of this study were to evaluate the effects of intermediate ceramics on the adhesion between the zirconia core and veneer ceramics. The polished surfaces of fully sintered Y-TZP blocks received three different treatments: (1) connector (C), (2) liner (L) or (3) wash layer (W). All the treated zirconia blocks were veneered with either (a) fluorapatite glass-ceramic (E) or (b) feldspathic porcelain (V) and divided into four groups (CE, CV, LE and WV). For the control group, the testing surfaces of metal blocks were veneered with feldspathic porcelain (VM). A half of the samples in each group (n = 21) were exposed to thermocycling, while the other half of the specimens were stored at room temperature under dry conditions. All specimens were subjected to the shear test and the failed surfaces were microscopically examined. The elemental distribution at the zirconia core/veneer interface was analyzed. The specimens in Groups CE and CV exhibited significantly greater mean bond strength values than those in Groups LE and WV, respectively (p ceramic substances into the zirconia surface. A glass-ceramic based connector is significantly more favorable to core/veneer adhesion than the other intermediate ceramics evaluated in the study. However, thermal cycling affected the bond strength at the core/veneer interface differently according to the intermediate ceramics.

  13. Photoelectrochemical Characterization of Sprayed alpha-Fe2O3 Thin Films : Influence of Si Doping and SnO2 Interfacial Layer

    NARCIS (Netherlands)

    Liang, Y.; Enache, C.S.; Van De Krol, R.

    2008-01-01

    a-Fe2O3 thin film photoanodes for solar water splitting were prepared by spray pyrolysis of Fe(AcAc)3. The donor density in the Fe2O3 films could be tuned between 10171020cm-3 by doping with silicon. By depositing a 5 nm SnO2 interfacial layer between the Fe2O3 films and the transparent conducting

  14. Post-mortem analysis on LiFePO4|Graphite cells describing the evolution & composition of covering layer on anode and their impact on cell performance

    Science.gov (United States)

    Lewerenz, Meinert; Warnecke, Alexander; Sauer, Dirk Uwe

    2017-11-01

    During cyclic aging of lithium-ion batteries the formation of a μm-thick covering layer on top of the anode facing the separator is found on top of the anode. In this work several post-mortem analyses of cyclic aged cylindrical LFP|Graphite cells are evaluated to give a detailed characterization of the covering layer and to find possible causes for the evolution of such a layer. The analyses of the layer with different methods return that it consists to high percentage of plated active lithium, deposited Fe and products of a solid electrolyte interphase (SEI). The deposition is located mainly in the center of the cell symmetrical to the coating direction. The origin of these depositions is assumed in locally overcharged particles, Fe deposition or inhomogeneous distribution of capacity density. As a secondary effect the deposition on one side increases the thickness locally; thereafter a pressure-induced overcharging due to charge agglomeration of the back side of the anode occurs. Finally a compact and dense covering layer in a late state of aging leads to deactivation of the covered parts of the anode and cathode due to suppressed lithium-ion conductivity. This leads to increasing slope of capacity fade and increase of internal resistance.

  15. Effects of the Molybdenum Oxide/Metal Anode Interfaces on Inverted Polymer Solar Cells

    International Nuclear Information System (INIS)

    Wu Jiang; Guo Xiao-Yang; Xie Zhi-Yuan

    2012-01-01

    Inverted polymer solar cells with molybdenum oxide (MoO 3 ) as an anode buffer layer and different metals (Al or Ag) as anodes are studied. It is found that the inverted cell with a top Ag anode demonstrates enhanced charge collection and higher power conversion efficiency (PCE) compared to the cell with a top Al anode. An 18% increment of PCE is obtained by replacing Al with Ag as the top anode. Further studies show that an interfacial dipole pointing from MoO 3 to Al is formed at MoO 3 /Al interfaces due to electron transfer from Al to MoO 3 while this phenomenon cannot be observed at MoO 3 /Ag interfaces. It is speculated that the electric field at the MoO 3 /Al interface would hinder hole extraction, and hence reduce the short-circuit current

  16. A Synopsis of Interfacial Phenomena in Lithium-Based Polymer Electrolyte Electrochemical Cells

    Science.gov (United States)

    Baldwin, Richard S.; Bennett, William R.

    2007-01-01

    The interfacial regions between electrode materials, electrolytes and other cell components play key roles in the overall performance of lithium-based batteries. For cell chemistries employing lithium metal, lithium alloy or carbonaceous materials (i.e., lithium-ion cells) as anode materials, a "solid electrolyte interphase" (SEI) layer forms at the anode/electrolyte interface, and the properties of this "passivating" layer significantly affect the practical cell/battery quality and performance. A thin, ionically-conducting SEI on the electrode surface can beneficially reduce or eliminate undesirable side reactions between the electrode and the electrolyte, which can result in a degradation in cell performance. The properties and phenomena attributable to the interfacial regions existing at both anode and cathode surfaces can be characterized to a large extent by electrochemical impedance spectroscopy (EIS) and related techniques. The intention of the review herewith is to support the future development of lithium-based polymer electrolytes by providing a synopsis of interfacial phenomena that is associated with cell chemistries employing either lithium metal or carbonaceous "composite" electrode structures which are interfaced with polymer electrolytes (i.e., "solvent-free" as well as "plasticized" polymer-binary salt complexes and single ion-conducting polyelectrolytes). Potential approaches to overcoming poor cell performance attributable to interfacial effects are discussed.

  17. Facile synthesis of Ni-decorated multi-layers graphene sheets as effective anode for direct urea fuel cells

    Directory of Open Access Journals (Sweden)

    Ahmed Yousef

    2017-09-01

    Full Text Available A large amount of urea-containing wastewater is produced as a by-product in the fertilizer industry, requiring costly and complicated treatment strategies. Considering that urea can be exploited as fuel, this wastewater can be treated and simultaneously exploited as a renewable energy source in a direct urea fuel cell. In this study, multi-layers graphene/nickel nanocomposites were prepared by a one-step green method for use as an anode in the direct urea fuel cell. Typically, commercial sugar was mixed with nickel(II acetate tetrahydrate in distilled water and then calcined at 800 °C for 1 h. Raman spectroscopy, X-ray diffraction (XRD, scanning electron microscope (SEM, transmission electron microscope (TEM and energy dispersive spectroscopy (EDS were employed to characterize the final product. The results confirmed the formation of multi-layers graphene sheets decorated by nickel nanoparticles. To investigate the influence of metal nanoparticles content, samples were prepared using different amounts of the metal precursor; nickel acetate content was changed from 0 to 5 wt.%. Investigation of the electrochemical characterizations indicated that the sample prepared using the original solution with 3 wt.% nickel acetate had the best current density, 81.65 mA/cm2 in a 0.33 M urea solution (in 1 M KOH at an applied voltage 0.9 V vs Ag/AgCl. In a passive direct urea fuel cell based on the optimal composition, the observed maximum power density was 4.06 × 10−3 mW/cm2 with an open circuit voltage of 0.197 V at room temperature in an actual electric circuit. Overall, this study introduces a cheap and beneficial methodology to prepare effective anode materials for direct urea fuel cells.

  18. Surface Passivation of MoO₃ Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes.

    Science.gov (United States)

    Ahmed, B; Shahid, Muhammad; Nagaraju, D H; Anjum, D H; Hedhili, Mohamed N; Alshareef, H N

    2015-06-24

    We demonstrate an effective strategy to overcome the degradation of MoO3 nanorod anodes in lithium (Li) ion batteries at high-rate cycling. This is achieved by conformal nanoscale surface passivation of the MoO3 nanorods by HfO2 using atomic layer deposition (ALD). At high current density such as 1500 mA/g, the specific capacity of HfO2-coated MoO3 electrodes is 68% higher than that of bare MoO3 electrodes after 50 charge/discharge cycles. After 50 charge/discharge cycles, HfO2-coated MoO3 electrodes exhibited specific capacity of 657 mAh/g; on the other hand, bare MoO3 showed only 460 mAh/g. Furthermore, we observed that HfO2-coated MoO3 electrodes tend to stabilize faster than bare MoO3 electrodes because nanoscale HfO2 layer prevents structural degradation of MoO3 nanorods. Additionally, the growth temperature of MoO3 nanorods and the effect of HfO2 layer thickness was studied and found to be important parameters for optimum battery performance. The growth temperature defines the microstructural features and HfO2 layer thickness defines the diffusion coefficient of Li-ions through the passivation layer to the active material. Furthermore, ex situ high resolution transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction were carried out to explain the capacity retention mechanism after HfO2 coating.

  19. Surface Passivation of MoO3 Nanorods by Atomic Layer Deposition Towards High Rate Durable Li Ion Battery Anodes

    KAUST Repository

    Ahmed, Bilal

    2015-06-03

    We demonstrate an effective strategy to overcome the degradation of MoO3 nanorod anodes in Lithium (Li) ion batteries at high rate cycling. This is achieved by conformal nanoscale surface passivation of the MoO3 nanorods by HfO2 using atomic layer deposition (ALD). At high current density such as 1500 mA/g, the specific capacity of HfO2 coated MoO3 electrodes is 68% higher than bare MoO3 electrodes after 50 charge/discharge cycles. After 50 charge/discharge cycles, HfO2 coated MoO3 electrodes exhibited specific capacity of 657 mAh/g, on the other hand, bare MoO3 showed only 460 mAh/g. Furthermore, we observed that HfO2 coated MoO3 electrodes tend to stabilize faster than bare MoO3 electrodes because nanoscale HfO2 layer prevents structural degradation of MoO3 nanorods. Additionally, the growth temperature of MoO3 nanorods and the effect of HfO2 layer thickness was studied and found to be important parameters for optimum battery performance. The growth temperature defines the microstructural features and HfO2 layer thickness defines the diffusion coefficient of Li–ions through the passivation layer to the active material. Furthermore, ex–situ HRTEM, X–ray photoelectron spectroscopy (XPS), Raman spectroscopy and X–ray diffraction was carried out to explain the capacity retention mechanism after HfO2 coating.

  20. Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives.

    Science.gov (United States)

    Yin, Zhigang; Wei, Jiajun; Zheng, Qingdong

    2016-08-01

    Organic solar cells (OSCs) have shown great promise as low-cost photovoltaic devices for solar energy conversion over the past decade. Interfacial engineering provides a powerful strategy to enhance efficiency and stability of OSCs. With the rapid advances of interface layer materials and active layer materials, power conversion efficiencies (PCEs) of both single-junction and tandem OSCs have exceeded a landmark value of 10%. This review summarizes the latest advances in interfacial layers for single-junction and tandem OSCs. Electron or hole transporting materials, including metal oxides, polymers/small-molecules, metals and metal salts/complexes, carbon-based materials, organic-inorganic hybrids/composites, and other emerging materials, are systemically presented as cathode and anode interface layers for high performance OSCs. Meanwhile, incorporating these electron-transporting and hole-transporting layer materials as building blocks, a variety of interconnecting layers for conventional or inverted tandem OSCs are comprehensively discussed, along with their functions to bridge the difference between adjacent subcells. By analyzing the structure-property relationships of various interfacial materials, the important design rules for such materials towards high efficiency and stable OSCs are highlighted. Finally, we present a brief summary as well as some perspectives to help researchers understand the current challenges and opportunities in this emerging area of research.

  1. Fabrication of supported Ca-doped lanthanum niobate electrolyte layer and NiO containing anode functional layer by electrophoretic deposition

    DEFF Research Database (Denmark)

    Bozza, Francesco; Bonanos, Nikolaos

    2012-01-01

    The technique of electrophoretic deposition (EPD) has been applied for the preparation of a dense calcium-doped lanthanum niobate electrolyte film. La0.995Ca0.005NbO4 (LCN) powder was suspended in a solution of acetylacetone, iodine and water. The effects of suspension composition and deposition...... conditions were analyzed in order to identify a suitable set of EPD process parameters. The powders were deposited on a composite substrate of LCN, NiO, binder and graphite. A dense 8 μm film of lanthanum niobate supported on a porous substrate was obtained after sintering at 1200 °C. The technique was found...... to be effective also for the deposition of a mixture of NiO and LCN powders which, after sintering, would form LCN/NiO anode functional layer. Electrochemical characterization of the supported LCN film was performed by applying a LCN/NiO counter electrode....

  2. Functional solid additive modified PEDOT:PSS as an anode buffer layer for enhanced photovoltaic performance and stability in polymer solar cells

    OpenAIRE

    Xu, Binrui; Gopalan, Sai-Anand; Gopalan, Anantha-Iyengar; Muthuchamy, Nallal; Lee, Kwang-Pill; Lee, Jae-Sung; Jiang, Yu; Lee, Sang-Won; Kim, Sae-Wan; Kim, Ju-Seong; Jeong, Hyun-Min; Kwon, Jin-Beon; Bae, Jin-Hyuk; Kang, Shin-Won

    2017-01-01

    Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is most commonly used as an anode buffer layer in bulk-heterojunction (BHJ) polymer solar cells (PSCs). However, its hygroscopic and acidic nature contributes to the insufficient electrical conductivity, air stability and restricted photovoltaic (PV) performance for the fabricated PSCs. In this study, a new multifunctional additive, 2,3-dihydroxypyridine (DOH), has been used in the PEDOT: PSS buffer layer to obtain modified ...

  3. Metallic MoN layer and its application as anode for lithium-ion batteries

    Science.gov (United States)

    Zhang, Qiaoxuan; Ma, Jiachen; Lei, Ming; Quhe, Ruge

    2018-04-01

    Recently, two-dimensional (2D) metallic MoN was manufactured successfully in experiment. Its intrinsic properties remain to be explored theoretically, in depth. The intrinsic properties of a MoN monolayer are investigated by first-principles calculations. The distinct geometric properties of the outermost Mo and N surfaces are discovered. We predict an extremely high work function of 6.3 eV of the N surface, which indicates the great value of the 2D MoN for application in the semiconductor industry. We further explore the potential of 2D MoN as anode material for lithium-ion batteries. It is found that the adsorption energy of a single Li atom on an MoN surface can be as low as -4.04 eV. The small diffusion barriers (0.41 eV) and high theoretical maximum capacity (406 mAh · g-1 with the inclusion of multilayer adsorption) all imply an outstanding lithium-ion battery performance by 2D MoN.

  4. Metallic MoN Layer and its Application as Anode for Lithium-ion Batteries.

    Science.gov (United States)

    Zhang, Qiaoxuan; Ma, Jiachen; Lei, Ming; Quhe, Ruge

    2018-02-06

    Recently, two-dimensional (2D) metallic MoN was manufactured successfully in experiment, while its intrinsic properties remain to be explored theoretically in depth. The intrinsic properties of MoN monolayer are investigated by first-principles calculations. Distinct geometric properties of the outmost Mo and N surfaces are discovered. We predict an extremely high work function of 6.3 eV of the N surface, which indicates great value of the 2D MoN for application in the semiconductor industry. We further explore the potential of 2D MoN as anode material for lithium-ion batteries. It is found that adsorption energy of the single Li atom on MoN surface can be as low as - 4.04 eV. The small diffusion barriers (0.41 eV) and high theoretical maximum capacity (406 mAh∙g-1 with the inclusion of multilayer adsorption) all imply the outstanding lithium-ion batteries performance by 2D MoN. © 2018 IOP Publishing Ltd.

  5. Direct ceramic inkjet printing of yttria-stabilized zirconia electrolyte layers for anode-supported solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Tomov, R.I.; Hopkins, S.C. [Applied Superconductivity and Cryoscience Group, Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB4 3QZ (United Kingdom); Krauz, M.; Kluczowski, J.R. [Institute of Power Engineering, Ceramic Department CEREL, 36-040 Boguchwala (Poland); Jewulski, J. [Institute of Power Engineering, Fuel Cells Department, 02-981 Warsaw (Poland); Glowacka, D.M. [Detector Physics Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Glowacki, B.A. [Applied Superconductivity and Cryoscience Group, Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB4 3QZ (United Kingdom); Institute of Power Engineering, Fuel Cells Department, 02-981 Warsaw (Poland)

    2010-11-01

    Electromagnetic drop-on-demand direct ceramic inkjet printing (EM/DCIJP) was employed to fabricate dense yttria-stabilized zirconia (YSZ) electrolyte layers on a porous NiO-YSZ anode support from ceramic suspensions. Printing parameters including pressure, nozzle opening time and droplet overlapping were studied in order to optimize the surface quality of the YSZ coating. It was found that moderate overlapping and multiple coatings produce the desired membrane quality. A single fuel cell with a NiO-YSZ/YSZ ({proportional_to}6 {mu}m)/LSM + YSZ/LSM architecture was successfully prepared. The cell was tested using humidified hydrogen as the fuel and ambient air as the oxidant. The cell provided a power density of 170 mW cm{sup -2} at 800 C. Scanning electron microscopy (SEM) revealed a highly coherent dense YSZ electrolyte layer with no open porosity. These results suggest that the EM/DCIJP inkjet printing technique can be successfully implemented to fabricate electrolyte coatings for SOFC thinner than 10 {mu}m and comparable in quality to those fabricated by more conventional ceramic processing methods. (author)

  6. Interfacial Shear Rheology of β-Lactoglobulin - Bovine Submaxillary Mucin Layers Adsorbed at Air/Water Interface

    DEFF Research Database (Denmark)

    Celebioglu, Hilal Yilmaz; Kmiecik-Palczewska, Joanna; Lee, Seunghwan

    2017-01-01

    , and dominate the surface adsorption and the network formation for the BLG-BSM mixtures. Moreover, BLG-BSM protein mixtures exhibited interfacial properties with lower elastic and viscous moduli than BLG, as a result of competitive displacement of BLG proteins with BSMs from the interface. It is suggested...

  7. Engineering of the energetic structure of the anode of organic photovoltaic devices utilizing hot-wire deposited transition metal oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Vasilopoulou, M., E-mail: mariva@imel.demokritos.gr [Institute of Nanoscience and Nanotechnology, Department of Microelectronics, National Center for Scientific Research Demokritos, POB 60228, 15310 Agia Paraskevi, Attiki (Greece); Stathopoulos, N.A.; Savaidis, S.A. [Department of Electronics, Technological and Educational Institute (TEI) of Piraeus, Petrou Ralli & Thivon, 12244 Aegaleo (Greece); Kostis, I. [Institute of Nanoscience and Nanotechnology, Department of Microelectronics, National Center for Scientific Research Demokritos, POB 60228, 15310 Agia Paraskevi, Attiki (Greece); Department of Electronics, Technological and Educational Institute (TEI) of Piraeus, Petrou Ralli & Thivon, 12244 Aegaleo (Greece); Papadimitropoulos, G. [Institute of Nanoscience and Nanotechnology, Department of Microelectronics, National Center for Scientific Research Demokritos, POB 60228, 15310 Agia Paraskevi, Attiki (Greece); Davazoglou, D., E-mail: d.davazoglou@imel.demokritos.gr [Institute of Nanoscience and Nanotechnology, Department of Microelectronics, National Center for Scientific Research Demokritos, POB 60228, 15310 Agia Paraskevi, Attiki (Greece)

    2015-09-30

    Graphical abstract: In this work we perform successful engineering of the anode of organic photovoltaics based on poly(3-hexylthiophene):[6,6]-phenyl butyric acid methyl ester blends by using metal oxide transport layers exhibiting shallow gap states which act as a barrier-free path for hole transport toward the anode. - Highlights: • Interface engineering of the anode. • Organic photovoltaics (OPVs). • Shallow gap states. • Barrier-free hole transport. • Design rules for interface engineering in OPVs. - Abstract: In this work we use hydrogen deposited molybdenum and tungsten oxides (chemically described as H:MO{sub x}x ≤ 3 where M = Mo or W) to control the energetics at the anode of bulk heterojunction (BHJ) organic photovoltaics (OPVs) based on poly(3-hexylthiophene):[6,6]-phenyl butyric acid methyl ester (P3HT:PC{sub 71}BM) blends. Significantly improved current densities and open circuit voltages were achieved as a result of improved hole transport from the P3HT highest occupied molecular orbital (HOMO) toward indium tin oxide (ITO) anode. This was attributed to the formation of shallow gap states in these oxides which are located just below the Fermi level and above the polymer HOMO and thus may act as a barrier-free path for the extraction of holes. Consequently, these states can be used for controlling the energetic structure of the anode of OPVs. By using ultraviolet photoelectron spectroscopy it was found that dependent on the deposition conditions these gap states and work function of the metal oxides may be tailored to contribute to the precise alignment of the HOMO of the organic semiconductor (OSC) with the Fermi level of the anode electrode resulting in further enhancement of the device performance.

  8. Engineering Interfacial Silicon Dioxide for Improved Metal-Insulator-Semiconductor Silicon Photoanode Water Splitting Performance.

    Science.gov (United States)

    Satterthwaite, Peter F; Scheuermann, Andrew G; Hurley, Paul K; Chidsey, Christopher E D; McIntyre, Paul C

    2016-05-25

    Silicon photoanodes protected by atomic layer deposited (ALD) TiO2 show promise as components of water splitting devices that may enable the large-scale production of solar fuels and chemicals. Minimizing the resistance of the oxide corrosion protection layer is essential for fabricating efficient devices with good fill factor. Recent literature reports have shown that the interfacial SiO2 layer, interposed between the protective ALD-TiO2 and the Si anode, acts as a tunnel oxide that limits hole conduction from the photoabsorbing substrate to the surface oxygen evolution catalyst. Herein, we report a significant reduction of bilayer resistance, achieved by forming stable, ultrathin (ALD-TiO2 protected anodes were employed: (1) TiO2 deposition directly on an HF-etched Si(100) surface, (2) TiO2 deposition after SiO2 atomic layer deposition on an HF-etched Si(100) surface, and (3) oxygen scavenging, post-TiO2 deposition to decompose the SiO2 layer using a Ti overlayer. Each of these methods provides a progressively superior means of reliably thinning the interfacial SiO2 layer, enabling the fabrication of efficient and stable water oxidation silicon anodes.

  9. Influence of an MgO interfacial layer on the properties of Pb(Zr,Ti)O3/ZnO ferroelectric-semiconductor heterostructures

    Science.gov (United States)

    Xiao, Bo; Walker, Brandon; Pradhan, Aswini K.

    2014-05-01

    We report on the study of high quality Pb(Zr,Ti)O3 thin films grown by radio-frequency magnetron sputtering on (0 0 0 1) ZnO with an MgO interfacial seed layer. A systematic investigation of the heterostructures has been performed by x-ray diffraction, atomic force microscopy (AFM) and ultraviolet-visible spectroscopy for the structural and optical properties, along with the electrical characterization and simulation. (0 1 1)-oriented perovskite phase was observed in Pb(Zr,Ti)O3 thin films which used the MgO seed layer, whereas the pyrochlore phase was dominant in the films deposited directly on ZnO. The surface morphology measured by AFM indicated that the introduction of the MgO interfacial seed layer promoted formation of a smooth surface and uniform grain structures in the thin films. The transmission spectra also showed an increase of the optical transmittance measured by ultraviolet-visible spectroscopy. The capacitance-voltage measurements exhibited butterfly-shaped capacitance curves which bear a resemblance to those of the typical metal-ferroelectric-metal structures. The characteristics of the polarization versus electric field were investigated by a simulation to understand the behaviour of the hysteresis loops in this metal-ferroelectric-insulator-semiconductor structure.

  10. Direct observation of electrically active interfacial layer defects which may cause threshold voltage instabilities in HfO2 based metal-oxide-silicon field-effect transistors

    Science.gov (United States)

    Ryan, J. T.; Lenahan, P. M.; Robertson, J.; Bersuker, G.

    2008-03-01

    We show that a Si /HfO2 interfacial layer defect with an electron spin resonance spectrum similar to that of some E' center variants responds to oxide bias consistent with an amphoteric defect. The spectrum is weakly orientation dependent indicating that the defect does not reside in a completely amorphous matrix. The defect's spin lattice relaxation time is much shorter than that of conventional E' centers suggesting that the defect involves some coupling of a Hf atom to a nearby oxygen deficient silicon dangling bond defect. This defect very likely plays an important role in widely reported instabilities in HfO2 based transistors.

  11. Photoactive layered nanocomposites obtained by direct transferring of anodic TiO{sub 2} nanotubes to commodity thermoplastics

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, Ruy, E-mail: ruy.sanzgonzalez@cnr.it [CNR-IMM, Via Santa Sofia 64, I-95123 Catania (Italy); Buccheri, Maria Antonietta; Zimbone, Massimo; Scuderi, Viviana; Amiard, Guillaume; Impellizzeri, Giuliana [CNR-IMM, Via Santa Sofia 64, I-95123 Catania (Italy); Romano, Lucia [CNR-IMM, Via Santa Sofia 64, I-95123 Catania (Italy); Department of Physics, University of Catania, Via Santa Sofia 64, I-95123 Catania (Italy); Privitera, Vittorio [CNR-IMM, Via Santa Sofia 64, I-95123 Catania (Italy)

    2017-03-31

    Highlights: • Rapid and scalable synthesis of flexible photoactive layered nanocomposites is presented. • The nanocomposites show similar photonic efficiencies to TiO{sub 2} nanotubes and commercial products. • The nanocomposites exhibit antibacterial properties under 1 mW cm{sup −2} UVA. • The synthesis process is solvent-free and reduces the amount of raw materials. - Abstract: TiO{sub 2} nanotubes demonstrated to be a versatile nanostructure for biomaterials, clean energy and water remediation applications. However, the cost of titanium and the poor mechanical properties of the nanotubes hinder their adoption at large scale. This work presents a straightforward and scalable method for transferring photoactive anodic TiO{sub 2} nanotubes from titanium foils to commodity thermoplastic polymers, polypropylene, polyethylene terephthalate, polycarbonate, and polymethylmetacrylate, allowing the reusing of the remaining titanium. The obtained flexible nanocomposites reach a maximum photonic efficiencies of 0.038% (ISO-10678:2010) representing the 93% of photonic efficiency of TiO{sub 2} nanotubes on titanium. In addition, the nanocomposites and TiO{sub 2} nanotubes on titanium present similar antibacterial properties under 1 mW cm{sup −2} UV-A, 60% of Escherichia coli survival after 1 h of exposition. The final objective of this work is to point out main concepts and key parameters for a low-cost fabrication of a photoactive nanocomposite material.

  12. Finding the lost open-circuit voltage in polymer solar cells by UV-ozone treatment of the nickel acetate anode buffer layer.

    Science.gov (United States)

    Wang, Fuzhi; Sun, Gang; Li, Cong; Liu, Jiyan; Hu, Siqian; Zheng, Hua; Tan, Zhan'ao; Li, Yongfang

    2014-06-25

    Efficient polymer solar cells (PSCs) with enhanced open-circuit voltage (Voc) are fabricated by introducing solution-processed and UV-ozone (UVO)-treated nickel acetate (O-NiAc) as an anode buffer layer. According to X-ray photoelectron spectroscopy data, NiAc partially decomposed to NiOOH during the UVO treatment. NiOOH is a dipole species, which leads to an increase in the work function (as confirmed by ultraviolet photoemission spectroscopy), thus benefitting the formation of ohmic contact between the anode and photoactive layer and leading to increased Voc. In addition, the UVO treatment improves the wettability between the substrate and solvent of the active layer, which facilitates the formation of an upper photoactive layer with better morphology. Further, the O-NiAc layer can decrease the series resistance (Rs) and increase the parallel resistance (Rp) of the devices, inducing enhanced Voc in comparison with the as-prepared NiAc-buffered control devices without UVO treatment. For PSCs based on the P3HT:PCBM system, Voc increases from 0.50 to 0.60 V after the NiAc buffer layer undergoes UVO treatment. Similarly, in the P3HT:ICBA system, the Voc value of the device with a UVO-treated NiAc buffer layer increases from 0.78 to 0.88 V, showing an enhanced power conversion efficiency of 6.64%.

  13. Stability enhancement of P3HT:PCBM polymer solar cells using thermally evaporated MoO3 anode buffer layer

    Science.gov (United States)

    Ameen, M. Yoosuf; Shamjid, P.; Abhijith, T.; Radhakrishnan, Thulasi; Reddy, V. S.

    2018-02-01

    Polymer solar cells have been fabricated with thermally evaporated MoO3 as anode buffer layer (ABL). The stability of MoO3 and PEDOT:PSS based devices was examined under different test conditions. The MoO3 based device exhibited a slightly better efficiency and significantly higher stability compared to PEDOT:PSS based device. At a relative humidity of 45% the unencapsulated PEDOT:PSS based device degraded completely within 96 h. On the other hand, MoO3 based device retained more than 60% of its initial efficiency after 96 h. The reason behind stability enhancement was investigated by measuring time-evolution of reflectance and hole-current. Experimental results revealed that the stability enhancement for MoO3 based device originates from the reduction in degradation of anode/active layer interface.

  14. Interfacial layer thickness dependent electrical characteristics of Au/(Zn-doped PVA)/n-4H-SiC (MPS) structures at room temperature

    Science.gov (United States)

    Lapa, Havva Elif; Kökce, Ali; Al-Dharob, Mohammed; Orak, İkram; Özdemir, Ahmet Faruk; Altındal, Semsettin

    2017-10-01

    Au/(Zn-doped PVA)/n-4H-SiC metal/polymer/semiconductor (MPS) structures with different interfacial layer thickness values (50, 150, 500 nm) were fabricated and their electrical characteristics were compared. Their electrical parameters (i.e. reverse-bias saturation current (Io), ideality factor (n), zero-bias barrier height (BH) (Φbo), series and shunt resistances (Rs, Rsh)) were calculated from the forward bias current-voltage (IF-VF) data whereas other parameters (i.e. Fermi energy level (EF), BH (Vb) and donor concentration (Nd)) were calculated from the linear part of C-2-V characteristics at room temperature. Obtained results confirmed that the values of n, Φbo, Rs and Rsh increase with increasing interlayer thickness, and linear correlation between n and Φbo was observed. The high values of n for three structures can be ascribed to the presence of an interlayer, surface states (Nss) and barrier inhomogeneities. The energy density distribution profile of Nss was obtained from the IF-VF data by taking into account voltage-dependent effective BH (Ve) and n for each structure. The Ri vs V plot for these structures was obtained using both Ohm's law and Nicollian-Brews method. All these experimental results show that the interfacial layer and its thickness play an important role in main electric parameters of these structures.

  15. Contribution to the study of low-energy X-ray-induced degradations on the oxide-silicon interfacial transition layer of MOS structures

    International Nuclear Information System (INIS)

    Boukabache, Ali

    1983-01-01

    The Si-SiO 2 interface is considered as a transition layer. Its thickness is typically about 10 A. It contains traps which exchange charges with silicon by a tunneling mechanism. Its influence on MOS capacitor, gate-controlled diode and MOS transistor is analyzed. Long channel MOST's (P-Substrate) are irradiated with low energy X-ray (between 0 and 240 Krads) in order to validate the model. Capacitance, recombination velocity and 1/f noise measurements indicate that the X- ray induce traps distributed in space and in energy. These traps provoke a decrease in mobility. Additionally, X-rays create a fixed oxide charge which induce a shift in the characteristics of MOS structures. Finally, under irradiation the behaviour of the gate-controlled diode and the MOS capacitor are in accordance with theoretical model of the interfacial layer. The overall noise behaviour cannot be explained by existing theoretical models. (author) [fr

  16. Novel 2D Layered Molybdenum Ditelluride Encapsulated in Few-Layer Graphene as High-Performance Anode for Lithium-Ion Batteries.

    Science.gov (United States)

    Ma, Ning; Jiang, Xiao-Yu; Zhang, Lu; Wang, Xiao-Shuang; Cao, Yu-Liang; Zhang, Xian-Zheng

    2018-02-28

    Molybdenum ditelluride nanosheets encapsulated in few-layer graphene (MoTe 2 /FLG) are synthesized by a simple heating method using Te and Mo powder and subsequent ball milling with graphite. The as-prepared MoTe 2 /FLG nanocomposites as anode materials for lithium-ion batteries exhibit excellent electrochemical performance with a highly reversible capacity of 596.5 mAh g -1 at 100 mA g -1 , a high rate capability (334.5 mAh g -1 at 2 A g -1 ), and superior cycling stability (capacity retention of 99.5% over 400 cycles at 0.5 A g -1 ). Ex situ X-ray diffraction and transmission electron microscopy are used to explore the lithium storage mechanism of MoTe 2 . Moreover, the electrochemical performance of a MoTe 2 /FLG//0.35Li 2 MnO 3 ·0.65LiMn 0.5 Ni 0.5 O 2 full cell is investigated, which displays a reversible capacity of 499 mAh g -1 (based on the MoTe 2 /FLG mass) at 100 mA g -1 and a capacity retention of 78% over 50 cycles, suggesting the promising application of MoTe 2 /FLG for lithium-ion storage. First-principles calculations exhibit that the lowest diffusion barrier (0.18 eV) for lithium ions along pathway III in the MoTe 2 layered structure is beneficial for improving the Li intercalation/deintercalation property. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Reaching state-of-the art requirements for MIM capacitors with a single-layer anodic Al2O3 dielectric and imprinted electrodes

    Science.gov (United States)

    Hourdakis, Emmanouel; Nassiopoulou, Androula G.

    2017-07-01

    Metal-Insulator-Metal (MIM) capacitors with a high capacitance density and low non-linearity coefficient using a single-layer dielectric of barrier-type anodic alumina (Al2O3) and an imprinted bottom Al electrode are presented. Imprinting of the bottom electrode aimed at increasing the capacitor effective surface area by creating a three-dimensional MIM capacitor architecture. The bottom Al electrode was only partly nanopatterned so as to ensure low series resistance of the MIM capacitor. With a 3 nm thick anodic Al2O3 dielectric, the capacitor with the imprinted electrode showed a 280% increase in capacitance density compared to the flat electrode capacitor, reaching a value of 20.5 fF/μm2. On the other hand, with a 30 nm thick anodic Al2O3 layer, the capacitance density was 7.9 fF/μm2 and the non-linearity coefficient was as low as 196 ppm/V2. These values are very close to reaching all requirements of the last International Technology Roadmap for Semiconductors for MIM capacitors [ITRS, http://www.itrs2.net/2013-itrs.html for ITRS Roadmap (2013)], and they are achieved by a single-layer dielectric instead of the complicated dielectric stacks of the literature. The obtained results constitute a real progress compared to previously reported results by our group for MIM capacitors using imprinted electrodes.

  18. Solid oxide fuel cells with both high voltage and power output by utilizing beneficial interfacial reaction.

    Science.gov (United States)

    Su, Chao; Shao, Zongping; Lin, Ye; Wu, Yuzhou; Wang, Huanting

    2012-09-21

    An intriguing cell concept by applying proton-conducting oxide as the ionic conducting phase in the anode and taking advantage of beneficial interfacial reaction between anode and electrolyte is proposed to successfully achieve both high open circuit voltage (OCV) and power output for SOFCs with thin-film samarium doped ceria (SDC) electrolyte at temperatures higher than 600 °C. The fuel cells were fabricated by conventional route without introducing an additional processing step. A very thin and dense interfacial layer (2-3 μm) with compositional gradient was created by in situ reaction between anode and electrolyte although the anode substrate had high surface roughness (>5 μm), which is, however, beneficial for increasing triple phase boundaries where electrode reactions happen. A fuel cell with Ni-BaZr(0.4)Ce(0.4)Y(0.2)O(3) anode, thin-film SDC electrolyte and Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ) (BSCF) cathode has an OCV as high as 1.022 V and delivered a power density of 462 mW cm(-2) at 0.7 V at 600 °C. It greatly promises an intriguing fuel cell concept for efficient power generation.

  19. Tuning the dead-layer behavior of La{sub 0.67}Sr{sub 0.33}MnO{sub 3}/SrTiO{sub 3} via interfacial engineering

    Energy Technology Data Exchange (ETDEWEB)

    Peng, R.; Xu, H. C.; Xia, M.; Zhao, J. F.; Xie, X.; Xu, D. F.; Xie, B. P., E-mail: bpxie@fudan.edu.cn; Feng, D. L., E-mail: dlfeng@fudan.edu.cn [State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200433 (China)

    2014-02-24

    The dead-layer behavior, deterioration of the bulk properties in near-interface layers, restricts the applications of many oxide heterostructures. We present the systematic study of the dead-layer in La{sub 0.67}Sr{sub 0.33}MnO{sub 3}/SrTiO{sub 3} grown by ozone-assisted molecular beam epitaxy. Dead-layer behavior is systematically tuned by varying the interfacial doping, while unchanged with varied doping at any other atomic layers. In situ photoemission and low energy electron diffraction measurements suggest intrinsic oxygen vacancies at the surface of ultra-thin La{sub 0.67}Sr{sub 0.33}MnO{sub 3}, which are more concentrated in thinner films. Our results show correlation between interfacial doping, oxygen vacancies, and the dead-layer, which can be explained by a simplified electrostatic model.

  20. Comparison of analytical possibilities of inversion voltammetry of tellurium with cathodic and anodic potential scanning taking layer-by-layer analysis of GaAs-Te films as example

    International Nuclear Information System (INIS)

    Kaplin, A.A.; Portnyagina, Eh.O.; Gridaev, V.F.

    1979-01-01

    Possibility of application in analytical purposes of the process of tellurium precipitation electrosolution from the surfaces of graphite and mercury-graphite electrodes at the cathode scanning of the potential is shown. As a result of comparison of direct and inversion scanning with cathodic and anodic scanning of the potential, variants of voltammetric method of tellurium determination in artificial solutions and, taking the developed method of layer-by-layer analysis of the GaAsTe films as an example, advantage of mercury-graphite electrode with cathodic scanning as compared to graphite electrode with cathode scanning of the potential is shown. Reproducibility of the GaAs film analysis results according to anodic and cathodic tellurium peaks is satisfactory. Maximum deviation from the results of analysis of oxidation peaks and tellurium peduction does not exceed 15 rel. %. Thus, for tellurium concentrations, exceeding 5x10 -6 g-ion/l, both anodic and cathodic scanning of the potential can be used, though error in tellurium determination according to cathodic peaks is 1.5-2.0 times higher. At tellurium amounts lower 5x10 -6 g-ion/l the determination should be carried out according to the peaks of tellurium anodic oxidation from the surface of graphite electrode or according to the peaks of tellurium cathodic reduction from the surface of mercury-graphite electrode

  1. Molecular Level Manipulation of Interfacial Charge Transport

    Science.gov (United States)

    Song, Charles Kiseok

    The bulk-heterojunction organic (BHJ) photovoltaics (OPVs) and lithium ion battery (LiB) have been extensively studied. Power conversion efficiency (PCE) of an OPV greater than 10% and utilizing group 4 elements as the anode to accommodate high capacity for LiBs are the goals of many studies. However, the currently ubiquitous hole-collecting layer of OPVs limit device performance and durability, and group 4 elements are unstable and brittle to be commercially produced. Thus, my thesis has focused on developing functional and durable interfacial layers (IFLs) for OPVs and characterizing flexible artificial solid-electrolyte interphase (SEI) for LiBs. In Chapter 2, a series of robust organosilane-based dipolar self-assembled monolayer (SAM) IFLs on the tin-doped indium oxide (ITO) anodes of OPVs are developed. These hydrophobic and amorphous IFLs modify anode work functions from 4.66 to 5.27 eV. Two series of Glass/ITO/SAM IFL/Active Layer/LiF/Al BHJ OPVs are fabricated, and a strong positive correlation between the electrochemically-derived heterogeneous electron transport rate constants (ks) and OPV PCEs are observed due to enhanced anode carrier extraction. In Chapter 3, a series of unusually denser organosilane-based SAM IFLs on ITO anodes of OPVs are developed. Precursor mixtures having short and long tail groups were simultaneously deposited to minimize sterical encumbrance and denser SAM IFLs are achieved. These heterogeneous supersaturated SAMs (SHSAMs), with PCE (7.62%) exceeding that of PEDOT:PSS IFL, are found to be 17% denser and enhances PCE by 54% versus comparable devices with homogeneous SAM IFLs due to enhanced charge selectivity and collection. In Chapter 4, libraries of electron affinities (EAs) of widely used conductive polymers are constructed by cyclic voltammetry (CV) in conventional and LiB media. The EAs of the conductive polymer films measured via CV in conventional (EAC) and Li+ battery (EAB) media could be linearly correlated by EAB = (1

  2. Two-Step Physical Deposition of a Compact CuI Hole-Transport Layer and the Formation of an Interfacial Species in Perovskite Solar Cells.

    Science.gov (United States)

    Gharibzadeh, Saba; Nejand, Bahram Abdollahi; Moshaii, Ahmad; Mohammadian, Nasim; Alizadeh, Amir Hossein; Mohammadpour, Rahele; Ahmadi, Vahid; Alizadeh, Abdolali

    2016-08-09

    A simple and practical approach is introduced for the deposition of CuI as an inexpensive inorganic hole-transport material (HTM) for the fabrication of low cost perovskite solar cells (PSCs) by gas-solid phase transformation of Cu to CuI. The method provides a uniform and well-controlled CuI layer with large grains and good compactness that prevents the direct connection between the contact electrodes. Solar cells prepared with CuI as the HTM with Au electrodes displays an exceptionally high short-circuit current density of 32 mA cm(-2) , owing to an interfacial species formed between the perovskite and the Cu resulting in a long wavelength contribution to the incident photon-to-electron conversion efficiency (IPCE), and an overall power conversion efficiency (PCE) of 7.4 %. The growth of crystalline and uniform CuI on a low roughness perovskite layer leads to remarkably high charge extraction in the cells, which originates from the high hole mobility of CuI in addition to a large number of contact points between CuI and the perovskite layer. In addition, the solvent-free method has no damaging side effect on the perovskite layer, which makes it an appropriate method for large scale applications of CuI in perovskite solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Low-cost fabrication and polar-dependent switching uniformity of memory devices using alumina interfacial layer and Ag nanoparticle monolayer

    Directory of Open Access Journals (Sweden)

    Peng Xia

    2017-11-01

    Full Text Available A facile and low-cost process was developed for fabricating write-once-read-many-times (WORM Cu/Ag NPs/Alumina/Al memory devices, where the alumina passivation layer formed naturally in air at room temperature, whereas the Ag nanoparticle monolayer was in situ prepared through thermal annealing of a 4.5 nm Ag film in air at 150°C. The devices exhibit irreversible transition from initial high resistance (OFF state to low resistance (ON state, with ON/OFF ratio of 107, indicating the introduction of Ag nanoparticle monolayer greatly improves ON/OFF ratio by four orders of magnitude. The uniformity of threshold voltages exhibits a polar-dependent behavior, and a narrow range of threshold voltages of 0.40 V among individual devices was achieved upon the forward voltage. The memory device can be regarded as two switching units connected in series. The uniform alumina interfacial layer and the non-uniform distribution of local electric fields originated from Ag nanoparticles might be responsible for excellent switching uniformity. Since silver ions in active layer can act as fast ion conductor, a plausible mechanism relating to the formation of filaments sequentially among the two switching units connected in series is suggested for the polar-dependent switching behavior. Furthermore, we demonstrate both alumina layer and Ag NPs monolayer play essential roles in improving switching parameters based on comparative experiments.

  4. Interfacial and electrical properties of Al2O3/GaN metal-oxide-semiconductor junctions with ultrathin AlN layer

    Science.gov (United States)

    Kim, Hogyoung; Kim, Dong Ha; Choi, Byung Joon

    2017-12-01

    Ultrathin AlN layer deposited by atomic layer deposition (ALD) was employed in Al2O3/GaN metal-oxide-semiconductor (MOS) capacitors, and their interfacial and electrical properties were investigated using X-ray photoelectron spectroscopy (XPS) and current-voltage ( I-V) and capacitance-voltage ( C-V) measurements. XPS analyses revealed that the diffusion of N atoms into Al2O3 and the degradation of Al2O3 film quality were significant for the thickest Al2O3 (10 nm). The sample with a 10-nm-thick Al2O3 layer produced the highest leakage current and trap density. These results may result from the deteriorated interface characteristics near the AlN layer caused by long growth time. Therefore, it is suggested that the Al2O3 thickness (and optimal growth time) is a key factor in Al2O3/AlN/GaN MOS capacitors.

  5. Low-cost fabrication and polar-dependent switching uniformity of memory devices using alumina interfacial layer and Ag nanoparticle monolayer

    Science.gov (United States)

    Xia, Peng; Li, Luman; Wang, Pengfei; Gan, Ying; Xu, Wei

    2017-11-01

    A facile and low-cost process was developed for fabricating write-once-read-many-times (WORM) Cu/Ag NPs/Alumina/Al memory devices, where the alumina passivation layer formed naturally in air at room temperature, whereas the Ag nanoparticle monolayer was in situ prepared through thermal annealing of a 4.5 nm Ag film in air at 150°C. The devices exhibit irreversible transition from initial high resistance (OFF) state to low resistance (ON) state, with ON/OFF ratio of 107, indicating the introduction of Ag nanoparticle monolayer greatly improves ON/OFF ratio by four orders of magnitude. The uniformity of threshold voltages exhibits a polar-dependent behavior, and a narrow range of threshold voltages of 0.40 V among individual devices was achieved upon the forward voltage. The memory device can be regarded as two switching units connected in series. The uniform alumina interfacial layer and the non-uniform distribution of local electric fields originated from Ag nanoparticles might be responsible for excellent switching uniformity. Since silver ions in active layer can act as fast ion conductor, a plausible mechanism relating to the formation of filaments sequentially among the two switching units connected in series is suggested for the polar-dependent switching behavior. Furthermore, we demonstrate both alumina layer and Ag NPs monolayer play essential roles in improving switching parameters based on comparative experiments.

  6. Rational design of a bi-layered reduced graphene oxide film on polystyrene foam for solar-driven interfacial water evaporation

    KAUST Repository

    Shi, Le

    2016-12-20

    Solar-driven water evaporation has been emerging as a highly efficient way for utilizing solar energy for clean water production and wastewater treatment. Here we rationally designed and fabricated a bi-layered photothermal membrane with a porous film of reduced graphene oxide (rGO) on the top and polystyrene (PS) foam at the bottom. The top porous rGO layer acts as a light absorber to harvest and convert light efficiently to thermal energy and the bottom PS layer, which purposefully disintegrates water transport channels, acts as an excellent thermal barrier to minimize heat transfer to the nonevaporative bulk water. The optimized bi-layered membrane was able to produce water evaporation rate as high as 1.31 kg m−2 h−1 with light to evaporation conversion efficiency as high as 83%, which makes it a promising photothermal material in the literature. Furthermore, the experiments and theoretical simulation were both conducted to examine the relationship between the overall energy efficiency and the depth of the photothermal material underwater and the experimental and simulations results coincided with each other. Therefore, this work provides systematic evidence in support of the concept of the interfacial heating and shines important light on practical applications of solar-driven processes for clean water production.

  7. Inverted bulk-heterojunction organic solar cells with the transfer-printed anodes and low-temperature-processed ultrathin buffer layers

    Science.gov (United States)

    Itoh, Eiji; Sakai, Shota; Fukuda, Katsutoshi

    2018-03-01

    We studied the effects of a hole buffer layer [molybdenum oxide (MoO3) and natural copper oxide layer] and a low-temperature-processed electron buffer layer on the performance of inverted bulk-heterojunction organic solar cells in a device consisting of indium-tin oxide (ITO)/poly(ethylene imine) (PEI)/titanium oxide nanosheet (TiO-NS)/poly(3-hexylthiopnehe) (P3HT):phenyl-C61-butyric acid methylester (PCBM)/oxide/anode (Ag or Cu). The insertion of ultrathin TiO-NS (˜1 nm) and oxide hole buffer layers improved the open circuit voltage V OC, fill factor, and rectification properties owing to the effective hole blocking and electron transport properties of ultrathin TiO-NS, and to the enhanced work function difference between TiO-NS and the oxide hole buffer layer. The insertion of the TiO-NS contributed to the reduction in the potential barrier at the ITO/PEI/TiO-NS/active layer interface for electrons, and the insertion of the oxide hole buffer layer contributed to the reduction in the potential barrier for holes. The marked increase in the capacitance under positive biasing in the capacitance-voltage characteristics revealed that the combination of TiO-NS and MoO3 buffer layers contributes to the selective transport of electrons and holes, and blocks counter carriers at the active layer/oxide interface. The natural oxide layer of the copper electrode also acts as a hole buffer layer owing to the increase in the work function of the Cu surface in the inverted cells. The performance of the cell with evaporated MoO3 and Cu layers that were transfer-printed to the active layer was almost comparable to that of the cell with MoO3 and Ag layers directly evaporated onto the active layer. We also demonstrated comparable device performance in the cell with all-printed MoO3 and low-temperature-processed silver nanoparticles as an anode.

  8. Influence of the Ti microstructure on anodic self-organized TiO{sub 2} nanotube layers produced in ethylene glycol electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Macak, J.M., E-mail: jan.macak@upce.cz [Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 53002 Pardubice (Czech Republic); Jarosova, M. [Laboratory of Nanostructures and Nanomaterials, Institute of Physics of the CAS, v.v.i., Na Slovance 2, 18221 Prague 8 (Czech Republic); Jäger, A. [Department of Structure analysis, Institute of Physics of the CAS, v.v.i., Cukrovarnicka 10, 16200 Prague 6 (Czech Republic); Sopha, H. [Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 53002 Pardubice (Czech Republic); Klementová, M. [Institute of Inorganic Chemistry of the CAS, v.v.i., Husinec-Rez 1001, Rez 25068 (Czech Republic)

    2016-05-15

    Highlights: • The microstructure of Ti substrates investigated by EBSD. • Comparison of polished vs. unpolished substrates was carried out. • Grain orientation influences the uniformity of self-organized TiO{sub 2} nanotubes. • Tubes with different average diameter grow on grains with different orientation. • Grain size and boundaries influence the number of flaws in the tube layers. - Abstract: The relationship between the microstructure of Ti substrates and the anodic growth of self-organized TiO{sub 2} nanotube layers obtained upon their anodization in the ethylene glycol based electrolytes on these substrates is reported for the first time. Polished Ti sheets with mirror-like surface as well as unpolished Ti foils were considered in this work. Grains with a wide range of crystallographic orientations and sizes were revealed by Electron Backscatter Diffraction (EBSD) and correlated with nanotube growth on both types of substrates. A preferred grain orientation with [0 0 0 1] axis perpendicular to the surface was observed on all substrates. Surfaces of all substrates were anodized for 18 h in ethylene glycol electrolytes containing 88 mM NH{sub 4}F and 1.5% water and thoroughly inspected by SEM. By a precise comparison of Ti substrates before and after anodization, the uniformity of produced self-organized TiO{sub 2} nanotube layers was evaluated in regard to the specific orientation of individual grains. Grains with [0 0 0 1] axis perpendicular to the surface turned out to be the most growth-promoting orientation on polished substrates. No orientation was found to be strictly growth-retarding, but sufficient anodization time (24 h) was needed to obtain uniform nanotube layers on all grains without remnant porous initial oxide. In contrast with polished Ti sheets, no specific orientation was found to significantly promote or retard the nanotube growth in the case of unpolished Ti foils. Finally, the difference between the average nanotube diameters of

  9. Influence of the highest occupied molecular orbital energy level of the donor material on the effectiveness of the anode buffer layer in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bernede, J.C.; Leriche, P.; Roncali, J. [UNAM, Moltech Anjou, CNRS, UMR 6200, Groupe Systemes Conjugues Lineaires, Angers (France); Cattin, L. [UNAM, Institut Jean Rouxel (IMN), UMR 6502, Nantes (France); Djobo, S. Ouro; Morsli, M. [Universite de Nantes, LAMP, EA 3825, Faculte des Sciences et des Techniques, Nantes (France); Kanth, S.R.B.; Patil, S. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore (India); Godoy, A. [University San Sebastian, Prog. Bachiller, Cs. Biolog. Qcas, Bellavista (Chile); Diaz, F.R.; Del Valle, M.A. [University Catolica Chile, Fac. Quimica, Santiago (Chile)

    2011-08-15

    Efficiency of organic photovoltaic cells based on organic electron donor/organic electron acceptor junctions can be strongly improved when the transparent conductive Anode is coated with a Buffer Layer (ABL). Here, the effects of a metal (gold) or oxide (molybdenum oxide) ABL are reported, as a function of the Highest Occupied Molecular Orbital (HOMO) of different electron donors. The results indicate that a good matching between the work function of the anode and the highest occupied molecular orbital of the donor material is the major factor limiting the hole transfer efficiency. Indeed, gold is efficient as ABL only when the HOMO of the organic donor is close to its work function {phi}{sub Au}. Therefore we show that the MoO{sub 3} oxide has a wider field of application as ABL than gold. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Highly efficient inverted organic light emitting diodes by inserting a zinc oxide/polyethyleneimine (ZnO:PEI) nano-composite interfacial layer

    Science.gov (United States)

    Kaçar, Rifat; Pıravadılı Mucur, Selin; Yıldız, Fikret; Dabak, Salih; Tekin, Emine

    2017-06-01

    The electrode/organic interface is one of the key factors in attaining superior device performance in organic electronics, and inserting a tailor-made layer can dramatically modify its properties. The use of nano-composite (NC) materials leads to many advantages by combining materials with the objective of obtaining a desirable combination of properties. In this context, zinc oxide/polyethyleneimine (ZnO:PEI) NC film was incorporated as an interfacial layer into inverted bottom-emission organic light emitting diodes (IBOLEDs) and fully optimized. For orange-red emissive MEH-PPV based IBOLEDs, a high power efficiency of 6.1 lm W-1 at a luminance of 1000 cd m-2 has been achieved. Notably, the external quantum efficiency (EQE) increased from 0.1 to 4.8% and the current efficiency (CE) increased from 0.2 to 8.7 cd A-1 with rise in luminance (L) from 1000 to above 10 000 cd m-2 levels when compared to that of pristine ZnO-based devices. An identical device architecture containing a ZnO:PEI NC layer has also been used to successfully fabricate green and blue emissive IBOLEDs. The significant enhancement in the inverted device performance, in terms of luminance and efficiency, is attributed to a good energy-level alignment between the cathode/organic interface which leads to effective carrier balance, resulting in efficient radiative-recombination.

  11. Effect of surface pretreatment on interfacial chemical bonding states of atomic layer deposited ZrO2 on AlGaN

    International Nuclear Information System (INIS)

    Ye, Gang; Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong; Wang, Hong; Ng, Serene Lay Geok; Ji, Rong; Liu, Zhi Hong

    2015-01-01

    Atomic layer deposition (ALD) of ZrO 2 on native oxide covered (untreated) and buffered oxide etchant (BOE) treated AlGaN surface was analyzed by utilizing x-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy. Evidenced by Ga–O and Al–O chemical bonds by XPS, parasitic oxidation during deposition is largely enhanced on BOE treated AlGaN surface. Due to the high reactivity of Al atoms, more prominent oxidation of Al atoms is observed, which leads to thicker interfacial layer formed on BOE treated surface. The results suggest that native oxide on AlGaN surface may serve as a protecting layer to inhibit the surface from further parasitic oxidation during ALD. The findings provide important process guidelines for the use of ALD ZrO 2 and its pre-ALD surface treatments for high-k AlGaN/GaN metal–insulator–semiconductor high electron mobility transistors and other related device applications

  12. Characterization of interfacial effects in organic macrocycles Langmuir and Langmuir-Blodgett layers studied by surface potential and FT-IR spectroscopy examination

    Energy Technology Data Exchange (ETDEWEB)

    Boguta, Andrzej [Faculty of Technical Physics, Institute of Physics, Poznan University of Technology, Nieszawska 13a, 60 - 965 Poznan (Poland); Wrobel, Danuta [Faculty of Technical Physics, Institute of Physics, Poznan University of Technology, Nieszawska 13a, 60 - 965 Poznan (Poland)]. E-mail: wrobel@phys.put.poznan.pl; Bartczak, Adam [Faculty of Technical Physics, Institute of Physics, Poznan University of Technology, Nieszawska 13a, 60 - 965 Poznan (Poland); Swietlik, Roman [Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60 - 197 Poznan (Poland); Stachowiak, Zdzislaw [Central Laboratory of Accumulators and Cells, Forteczna 12, 61 - 362 Poznan (Poland); Ion, Rodica M. [Department of Chemical Analysis, Institute for Chemical Research ICECHIM, Splaiul Independentei 202, Bucharest 79611 (Romania)

    2004-10-15

    Surface potential (SP) examination and FT-IR (infrared) reflection-absorption spectra were used for the characterization of interfacial effects in organic dye thin layer on solid substrates. Surface potentials of magnesium tetranaphtylporphyrin (MgTNP), magnesium or lead phthalocyanine monolayer on the water subphase were measured and the dipole moments of the investigated dyes were evaluated (1.07 D, 0.52 D and 0.31 D for MgTNP, MgPc and PbPc, respectively). The differences between the dipolar moment values were attributed to the differences between porphyrin and phthalocyanines molecular structures and to the differences in metal electronegativity and metal ion distortion in the molecular frame. Also asymmetry in the covalent linkage and coordination bonding in the center of the molecular skeleton and the differences in polarisablility of the dye molecules as sources of the difference in the dipolar moment values were taken into consideration. The FT-IR reflection-absorption spectra were used for the characterization of the magnesium phthalocyanines Langmuir-Blodgett (LB) layer formed on semiconducting (In{sub 2}O{sub 3}) or Au substrates. The modification of the IR spectra upon Langmuir-Blodgett dye layer deposition was attributed to the redistribution of electrons at the semiconducting (metallic)/dye layer interface and to different substrate morphology. The difference in the band splitting for dye on Au and In{sub 2}O{sub 3} was related to the smaller amount of charge transferred to the dye film from In{sub 2}O{sub 3} than from Au substrate and to the changes in the topology of the different substrates after coating with the dye layer.

  13. Role of organically modified layered silicate both as an active interfacial modifier and nanofiller for immiscible polymer blends.

    CSIR Research Space (South Africa)

    Ray, SS

    2007-05-01

    Full Text Available The role of organically modified layered silicate as a compatibilizer for immiscible polystyrene (PS) with polypropylene (PP) or polypropylene grafted with maleic anhydride (PP-g-MA) blends was investigated. Scanning electron micrographs (SEM...

  14. Color tone and interfacial microstructure of white oxide layer on commercially pure Ti and Ti-Nb-Ta-Zr alloys

    Science.gov (United States)

    Miura-Fujiwara, Eri; Mizushima, Keisuke; Watanabe, Yoshimi; Kasuga, Toshihiro; Niinomi, Mitsuo

    2014-11-01

    In this study, the relationships among oxidation condition, color tone, and the cross-sectional microstructure of the oxide layer on commercially pure (CP) Ti and Ti-36Nb-2Ta-3Zr-0.3O were investigated. “White metals” are ideal metallic materials having a white color with sufficient strength and ductility like a metal. Such materials have long been sought for in dentistry. We have found that the specific biomedical Ti alloys, such as CP Ti, Ti-36Nb-2Ta-3Zr-0.3O, and Ti-29Nb-13Ta-4.6Zr, form a bright yellowish-white oxide layer after a particular oxidation heat treatment. The brightness L* and yellowness +b* of the oxide layer on CP Ti and Ti-36Nb-2Ta-3Zr-0.3O increased with heating time and temperature. Microstructural observations indicated that the oxide layer on Ti-29Nb-13Ta-4.6Zr and Ti-36Nb-2Ta-3Zr-0.3O was dense and firm, whereas a piecrust-like layer was formed on CP Ti. The results obtained in this study suggest that oxide layer coating on Ti-36Nb-2Ta-3Zr-0.3O is an excellent technique for dental applications.

  15. 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries

    Science.gov (United States)

    Cha, Eunho; Patel, Mumukshu D.; Park, Juhong; Hwang, Jeongwoon; Prasad, Vish; Cho, Kyeongjae; Choi, Wonbong

    2018-04-01

    Among the candidates to replace Li-ion batteries, Li-S cells are an attractive option as their energy density is about five times higher ( 2,600 Wh kg-1). The success of Li-S cells depends in large part on the utilization of metallic Li as anode material. Metallic lithium, however, is prone to grow parasitic dendrites and is highly reactive to several electrolytes; moreover, Li-S cells with metallic Li are also susceptible to polysulfides dissolution. Here, we show that 10-nm-thick two-dimensional (2D) MoS2 can act as a protective layer for Li-metal anodes, greatly improving the performances of Li-S batteries. In particular, we observe stable Li electrodeposition and the suppression of dendrite nucleation sites. The deposition and dissolution process of a symmetric MoS2-coated Li-metal cell operates at a current density of 10 mA cm-2 with low voltage hysteresis and a threefold improvement in cycle life compared with using bare Li-metal. In a Li-S full-cell configuration, using the MoS2-coated Li as anode and a 3D carbon nanotube-sulfur cathode, we obtain a specific energy density of 589 Wh kg-1 and a Coulombic efficiency of 98% for over 1,200 cycles at 0.5 C. Our approach could lead to the realization of high energy density and safe Li-metal-based batteries.

  16. Three-Dimensional Carbon Nanotube−Textile Anode for High-Performance Microbial Fuel Cells

    KAUST Repository

    Xie, Xing

    2011-01-12

    Microbial fuel cells (MFCs) harness the metabolism of microorganisms, converting chemical energy into electrical energy. Anode performance is an important factor limiting the power density of MFCs for practical application. Improving the anode design is thus important for enhancing the MFC performance, but only a little development has been reported. Here, we describe a biocompatible, highly conductive, two-scale porous anode fabricated from a carbon nanotube-textile (CNT-textile) composite for high-performance MFCs. The macroscale porous structure of the intertwined CNT-textile fibers creates an open 3D space for efficient substrate transport and internal colonization by a diverse microflora, resulting in a 10-fold-larger anolyte-biofilm-anode interfacial area than the projective surface area of the CNT-textile. The conformally coated microscale porous CNT layer displays strong interaction with the microbial biofilm, facilitating electron transfer from exoelectrogens to the CNT-textile anode. An MFC equipped with a CNT-textile anode has a 10-fold-lower charge-transfer resistance and achieves considerably better performance than one equipped with a traditional carbon cloth anode: the maximum current density is 157% higher, the maximum power density is 68% higher, and the energy recovery is 141% greater. © 2011 American Chemical Society.

  17. Interfacial reactions between titanium and borate glass

    Energy Technology Data Exchange (ETDEWEB)

    Brow, R.K. [Sandia National Labs., Albuquerque, NM (United States); Saha, S.K.; Goldstein, J.I. [Lehigh Univ., Bethlehem, PA (United States). Dept. of Materials Science

    1992-12-31

    Interfacial reactions between melts of several borate glasses and titanium have been investigated by analytical scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS). A thin titanium boride interfacial layer is detected by XPS after short (30 minutes) thermal treatments. ASEM analyses after longer thermal treatments (8--120 hours) reveal boron-rich interfacial layers and boride precipitates in the Ti side of the interface.

  18. Interfacial metal flux in ligand mixtures. 1. The revisited reaction layer approximation: theory and examples of applications.

    Science.gov (United States)

    Zhang, Zeshi; Buffle, Jacques

    2009-06-18

    Understanding the physical chemical behaviors of each metal species in a solution containing a mixture of ligands is a prerequisite, e.g., for studying metal bioavailability or making predictions on dynamic risk assessment in ecotoxicology. For many years, the reaction layer concept has been used fruitfully due to its simplicity for understanding and making predictions on diffusion/reaction processes. Until now, it has been applied mainly to solutions containing one ligand. Here, we reconsider the fundamentals of this approach and extend it to multiligand systems. It is shown that each metal complex has its own reaction layer (so-called composite reaction layer), which results from the interplay of this particular complex with all the other complexes. Moreover, it is shown that the overall metal flux can be computed by assuming the existence of one single fictitious equivalent reaction layer thickness for the whole of the complexes. This equivalent reaction layer is a mathematical combination of all the composite reaction layers. Simple analytical equations are obtained, which make it possible to readily interpret the role of the various types of metal species in a mixture. The revisited reaction layer approach, denoted as the reaction layer approximation (RLA), is validated by comparing the total metal flux, the individual fluxes of each metal species, and their concentration profiles computed by the RLA with those obtained by a rigorous mathematical approach. The examples of Pb(II) in a modified Aquil medium and of Cu(II) in solutions of nitrilotriacetic acid and N-(2-carboxyphenyl)glycine are treated in detail. In particular, an original result is obtained with the Cu/NTA/N-(2-carboxyphenyl)glycine system, namely an unexpected flux enhancement is observed, which is specific to solutions with ligand mixtures. The corresponding physicochemical mechanism is not readily understood by the rigorous mathematical (either numerical or analytical) solutions due to their

  19. Interfacial characterization of ceramic core materials with veneering porcelain for all-ceramic bi-layered restorative systems.

    Science.gov (United States)

    Tagmatarchis, Alexander; Tripodakis, Aris-Petros; Filippatos, Gerasimos; Zinelis, Spiros; Eliades, George

    2014-01-01

    The aim of the study was to characterize the elemental distribution at the interface between all-ceramic core and veneering porcelain materials. Three groups of all-ceramic cores were selected: A) Glass-ceramics (Cergo, IPS Empress, IPS Empress 2, e-max Press, Finesse); B) Glass-infiltrated ceramics (Celay Alumina, Celay Zirconia) and C) Densely sintered ceramics (Cercon, Procera Alumina, ZirCAD, Noritake Zirconia). The cores were combined with compatible veneering porcelains and three flat square test specimens were produced for each system. The core-veneer interfaces were examined by scanning electron microscopy and energy dispersive x-ray microanalysis. The glass-ceramic systems showed interfacial zones reach in Si and O, with the presence of K, Ca, Al in core and Ca, Ce, Na, Mg or Al in veneer material, depending on the system tested. IPS Empress and IPS Empress 2 demonstrated distinct transitional phases at the core-veneer interface. In the glassinfiltrated systems, intermixing of core (Ce, La) with veneer (Na, Si) elements occurred, whereas an abrupt drop of the core-veneer elemental concentration was documented at the interfaces of all densely sintered ceramics. The results of the study provided no evidence of elemental interdiffusion at the core-veneer interfaces in densely sintered ceramics, which implies lack of primary chemical bonding. For the glass-containing systems (glassceramics and glass-infiltrated ceramics) interdiffusion of the glass-phase seems to play a critical role in establishing a primary bonding condition between ceramic core and veneering porcelain.

  20. Layered double hydroxides for preparing CoMn{sub 2}O{sub 4} nanoparticles as anodes of lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Xu; Ma, Jingjing; Yuan, Ruo, E-mail: yuanruo@swu.edu.cn; Yang, Xia, E-mail: xiayang2@swu.edu.cn

    2017-06-15

    In the field of lithium-ion batteries, CoMn{sub 2}O{sub 4} as an anode material has attracted a wide attention because it inherited the splendid electrochemical performances of Mn and Co-based metal oxides. Compared to graphite, Co-based oxides have a higher capacity which is about twice of the graphite. Moreover, Mn-based oxides have lower operating voltages and manganese exists abundantly in nature. Layered double hydroxides (LDHs), similar with brucite structure, were used as precursor for CoMn{sub 2}O{sub 4} nanoparticles in this work. Under high temperature process, the LDHs decomposed to CoMn{sub 2}O{sub 4} nanoparticles. When evaluated as anode materials for lithium ion batteries, the CoMn{sub 2}O{sub 4} nanoparticles behaved good electrochemical performance with the discharge and charge capacity of 733 mAh g{sup -1} and 721 mAh g{sup -1} at current density of 200 mA g{sup -1} after 100 cycles. This method for preparing CoMn{sub 2}O{sub 4} nanoparticles is easy, which may provide a way for synthesis of other bimetallic oxides and anodes of lithium ion batteries. - Highlights: • Layered double hydroxides were employed as precursors to synthesize CoMn{sub 2}O{sub 4}. • The CoMn{sub 2}O{sub 4} nanoparticles behaved good electrochemical performance. • This study provides a guideline for preparing bimetallic oxides.

  1. High-Performance Integrated Self-Package Flexible Li-O2Battery Based on Stable Composite Anode and Flexible Gas Diffusion Layer.

    Science.gov (United States)

    Yang, Xiao-Yang; Xu, Ji-Jing; Bao, Di; Chang, Zhi-Wen; Liu, Da-Peng; Zhang, Yu; Zhang, Xin-Bo

    2017-07-01

    With the rising development of flexible and wearable electronics, corresponding flexible energy storage devices with high energy density are required to provide a sustainable energy supply. Theoretically, rechargeable flexible Li-O 2 batteries can provide high specific energy density; however, there are only a few reports on the construction of flexible Li-O 2 batteries. Conventional flexible Li-O 2 batteries possess a loose battery structure, which prevents flexibility and stability. The low mechanical strength of the gas diffusion layer and anode also lead to a flexible Li-O 2 battery with poor mechanical properties. All these attributes limit their practical applications. Herein, the authors develop an integrated flexible Li-O 2 battery based on a high-fatigue-resistance anode and a novel flexible stretchable gas diffusion layer. Owing to the synergistic effect of the stable electrocatalytic activity and hierarchical 3D interconnected network structure of the free-standing cathode, the obtained flexible Li-O 2 batteries exhibit superior electrochemical performance, including a high specific capacity, an excellent rate capability, and exceptional cycle stability. Furthermore, benefitting from the above advantages, the as-fabricated flexible batteries can realize excellent mechanical and electrochemical stability. Even after a thousand cycles of the bending process, the flexible Li-O 2 battery can still possess a stable open-circuit voltage, a high specific capacity, and a durable cycle performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Identification of nano-sized holes by TEM in the graphene layer of graphite and the high rate discharge capability of Li-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Takamura, Tsutomu [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Endo, Koji [Department of Chemistry, Rikkyo University, Tokyo 171-8501 (Japan); Fu, Lijun; Wu, Yuping [Department of Chemistry, Fudan University, Shanghai 200433 (China); Lee, Kyeong Jik [SODIFF Advanced Material Co. Ltd., Yeongju, Geongbuk 750-080 (Korea); Matsumoto, Takatoshi [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai (Japan)

    2007-12-20

    SEM images of round-shaped natural graphite, currently widely used as the anode active material of Li-ion batteries, show that the surface mainly consists of the basal plane, which suggests that the Li insertion/extraction reaction rate is quite limited. In contrast to this suggestion, however, the anode of commercial Li-ion batteries is capable of high rate charging/discharging. In order to explain this inconsistency, we propose that there are nano-holes in the graphene layers of the graphite allowing Li to be very easily inserted and extracted via the holes. Prior to the measurements a quantum chemical investigation was performed on the energy required for Li to pass through the hole in a graphene layer (E{sub act}). The results showed that the E{sub act} value is too high when the size is smaller than pyrene, but is fairly low for holes of the size of coronene, implying that Li can pass through the basal plane layer if there is a hole larger than coronene. Characterization of the rounded graphite sample and flaky natural graphite was conducted by constant-current charge/discharge cycle tests, X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM). XRD revealed no appreciable difference between the rounded graphite and flaky natural graphite, in agreement with Raman data. A detailed analysis of the HRTEM results revealed the presence of a number of variously sized circular images. We believe that these are holes in the graphene layer through which Li can pass. The mechanism of formation of the holes is discussed. (author)

  3. Interfacial forces in aqueous media

    CERN Document Server

    van Oss, Carel J

    2006-01-01

    Thoroughly revised and reorganized, the second edition of Interfacial Forces in Aqueous Media examines the role of polar interfacial and noncovalent interactions among biological and nonbiological macromolecules as well as biopolymers, particles, surfaces, cells, and both polar and apolar polymers. The book encompasses Lifshitz-van der Waals and electrical double layer interactions, as well as Lewis acid-base interactions between colloidal entities in polar liquids such as water. New in this Edition: Four previously unpublished chapters comprising a new section on interfacial propertie

  4. Development of n-ZnO/p-Si single heterojunction solar cell with and without interfacial layer

    Science.gov (United States)

    Hussain, Babar

    The conversion efficiency of conventional silicon (Si) photovoltaic cells has not been improved significantly during last two decades but their cost decreased dramatically during this time. However, the higher price-per-watt of solar cells is still the main bottleneck in their widespread use for power generation. Therefore, new materials need to be explored for the fabrication of solar cells potentially with lower cost and higher efficiency. The n-type zinc oxide (n-ZnO) and p-type Si (p-Si) based single heterojunction solar cell (SHJSC) is one of the several attempts to replace conventional Si single homojunction solar cell technology. There are three inadequacies in the literature related to n-ZnO/p-Si SHJSC: (1) a detailed theoretical analysis to evaluate potential of the solar cell structure, (2) inconsistencies in the reported value of open circuit voltage (VOC) of the solar cell, and (3) lower value of experimentally achieved VOC as compared to theoretical prediction based on band-bending between n-ZnO and p-Si. Furthermore, the scientific community lacks consensus on the optimum growth parameters of ZnO. In this dissertation, I present simulation and experimental results related to n-ZnO/p-Si SHJSC to fill the gaps mentioned above. Modeling and simulation of the solar cell structure are performed using PC1D and AFORS-HET software taking practical constraints into account to explore the potential of the structure. Also, unnoticed benefits of ZnO in solar cells such as an additional antireflection (AR) effect and low temperature deposition are highlighted. The growth parameters of ZnO using metal organic chemical vapor deposition and sputtering are optimized. The structural, optical, and electrical characterization of ZnO thin films grown on sapphire and Si substrates is performed. Several n-ZnO/p-Si SHJSC devices are fabricated to confirm the repeatability of the VOC. Moreover, the AR effect of ZnO while working as an n-type layer is experimentally verified

  5. Dependence of Interfacial Dzyaloshinskii-Moriya Interaction on Layer Thicknesses in Ta /Co -Fe -B /TaOx Heterostructures from Brillouin Light Scattering

    Science.gov (United States)

    Chaurasiya, Avinash Kumar; Choudhury, Samiran; Sinha, Jaivardhan; Barman, Anjan

    2018-01-01

    The interfacial Dzyaloshinskii-Moriya interaction (IDMI) has recently drawn extensive research interest due to its fundamental role in stabilizing chiral spin textures in ultrathin ferromagnets, which are suitable candidates for future magnetic-memory devices. Here, we explore the ferromagnetic and heavy-metal layer-thickness dependence of IDMI in technologically important Ta /Co20Fe60B20/TaOx heterostructures by measuring nonreciprocity in spin-wave frequency using the Brillouin light-scattering technique. The observed value of the IDMI constant agrees with that obtained from a separate measurement of in-plane angular dependence of frequency nonreciprocity, which is also in good agreement with the theory predicted by Cortes-Ortuno and Landeros. Linear scaling behavior of IDMI with the inverse of Co-Fe-B thicknesses suggests that IDMI originates primarily from the interface in these heterostructures, whereas we observe a weak dependence of Ta thickness on the strength of IDMI. Importantly, the observed value of the IDMI constant is reasonably large by a factor of 3 compared to annealed Ta /Co -Fe -B /MgO heterostructures. We propose that the observation of large IDMI is likely due to the absence of boron diffusion towards the Ta /Co -Fe -B interface as the heterostructures are as deposited. Our detailed investigation opens up a route to designing thin-film heterostructures with the tailored IDMI constant for controlling Skyrmion-based magnetic-memory devices.

  6. Controllable synthesis of graphene sheets with different numbers of layers and effect of the number of graphene layers on the specific capacity of anode material in lithium-ion batteries

    International Nuclear Information System (INIS)

    Tong, Xin; Wang, Hui; Wang, Gang; Wan, Lijuan; Ren, Zhaoyu; Bai, Jintao; Bai, Jinbo

    2011-01-01

    High quality graphene sheets are synthesized through efficient oxidation process followed by rapid thermal expansion and reduction by H 2 . The number of graphene layers is controlled by tuning the oxidation degree of GOs. The higher the oxidation degree of GOs is getting, the fewer the numbers of graphene layers can be obtained. The material is characterized by elemental analysis, thermo-gravimetric analysis, scanning electron microscopy, atomic force microscopy, transmission electron microscopy and Fourier transform infrared spectroscopies. The obtained graphene sheets with single, triple and quintuplicate layers as anode materials exhibit a high reversible capacity of 1175, 1007, and 842 mA h g -1 , respectively, which show that the graphene sheets with fewer layers have higher reversible capacity. -- Graphical abstract: The typical TEM images of the graphene sheets derived from GO3(a), GO2(b) and GO1(c). Display Omitted Highlights: → With the oxidation degree of GO increasing, the numbers of graphene layers decreased. → With the numbers of graphene layers decreasing, the reversible capacity improved. → Graphene sheets with single-layer exhibit the best electrochemical performances.

  7. Scalable Synthesis of Few-Layer MoS2 Incorporated into Hierarchical Porous Carbon Nanosheets for High-Performance Li- and Na-Ion Battery Anodes.

    Science.gov (United States)

    Park, Seung-Keun; Lee, Jeongyeon; Bong, Sungyool; Jang, Byungchul; Seong, Kwang-Dong; Piao, Yuanzhe

    2016-08-03

    It is still a challenging task to develop a facile and scalable process to synthesize porous hybrid materials with high electrochemical performance. Herein, a scalable strategy is developed for the synthesis of few-layer MoS2 incorporated into hierarchical porous carbon (MHPC) nanosheet composites as anode materials for both Li- (LIB) and Na-ion battery (SIB). An inexpensive oleylamine (OA) is introduced to not only serve as a hinder the stacking of MoS2 nanosheets but also to provide a conductive carbon, allowing large scale production. In addition, a SiO2 template is adopted to direct the growth of both carbon and MoS2 nanosheets, resulting in the formation of hierarchical porous structures with interconnected networks. Due to these unique features, the as-obtained MHPC shows substantial reversible capacity and very long cycling performance when used as an anode material for LIBs and SIBs, even at high current density. Indeed, this material delivers reversible capacities of 732 and 280 mA h g(-1) after 300 cycles at 1 A g(-1) in LIBs and SIBs, respectively. The results suggest that these MHPC composites also have tremendous potential for applications in other fields.

  8. Improving the Energy Efficiency of Direct Formate Fuel Cells with a Pd/C-CeO2 Anode Catalyst and Anion Exchange Ionomer in the Catalyst Layer

    Directory of Open Access Journals (Sweden)

    Hamish Andrew Miller

    2018-02-01

    Full Text Available This article describes the development of a high power density Direct Formate Fuel Cell (DFFC fed with potassium formate (KCOOH. The membrane electrode assembly (MEA contains no platinum metal. The cathode catalyst is FeCo/C combined with a commercial anion exchange membrane (AEM. To enhance the power output and energy efficiency we have employed a nanostructured Pd/C-CeO2 anode catalyst. The activity for the formate oxidation reaction (FOR is enhanced when compared to a Pd/C catalyst with the same Pd loading. Fuel cell tests at 60 °C show a peak power density of almost 250 mW cm−2. The discharge energy (14 kJ, faradic efficiency (89% and energy efficiency (46% were determined for a single fuel charge (30 mL of 4 M KCOOH and 4 M KOH. Energy analysis demonstrates that removal of the expensive KOH electrolyte is essential for the future development of these devices. To compensate we apply for the first time a polymeric ionomer in the catalyst layer of the anode electrode. A homopolymer is synthesized by the radical polymerization of vinyl benzene chloride followed by amination with 1,4-diazabicyclo[2.2.2]octane (DABCO. The energy delivered, energy efficiency and fuel consumption efficiency of DFFCs fed with 4 M KCOOH are doubled with the use of the ionomer.

  9. Fabrication of porous carbon sphere@SnO2@carbon layer coating composite as high performance anode for sodium-ion batteries

    Science.gov (United States)

    Li, Xin; Sun, Xiaohong; Gao, Zhiwen; Hu, Xudong; Guo, Jingdong; Cai, Shu; Guo, Ruisong; Ji, Huiming; Zheng, Chunming; Hu, Wenbin

    2018-03-01

    SnO2 has triggered lots of research efforts as anode for sodium-ion batteries. However, the volume expansion and poor conductivity lead to an unsatisfactory electrochemical performance for the practical application of SnO2. In this work, a novel carbon-coated SnO2 supported by porous carbon sphere composite is synthesized by hydrothermal process combining with annealing method. The porous carbon sphere@SnO2@carbon layer coating composite anode delivers a reversible capacity of 326 mAh g-1 over 80 cycles at a current density of 50 mA g-1. Even at 1600 mA g-1, a capacity of 82 mAh g-1 is still maintained after 550 cycles. Such excellent performance can be ascribed to the unique structure, which efficiently accommodates volume expansion, enhances conductivity and offers shortened sodium-ion transport pathway. The charge-storage mechanisms can be comprised of diffusion-controlled reaction and pseudocapacitance effect. At high scan rate of 1.0 mV s-1, the capacity contribution of pseudocapacitance effect could reach as high as 78%.

  10. Interface/border trap characterization of Al{sub 2}O{sub 3}/AlN/GaN metal-oxide-semiconductor structures with an AlN interfacial layer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shenghou; Yang, Shu; Tang, Zhikai; Jiang, Qimeng; Liu, Cheng; Chen, Kevin J., E-mail: eekjchen@ust.hk [Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Wang, Maojun [Institute of Microelectronics, Peking University, Beijing 100871 (China); Shen, Bo [School of Physics, Peking University, Beijing 100871 (China)

    2015-02-02

    We report the interface characterization of Al{sub 2}O{sub 3}/AlN/GaN MOS (metal-oxide-semiconductor) structures with an AlN interfacial layer. A thin monocrystal-like interfacial layer (AlN) is formed at the Al{sub 2}O{sub 3}/GaN to effectively block oxygen from the GaN surface and prevent the formation of detrimental Ga-O bonds. The suppression of Ga-O bonds is validated by X-ray photoelectron spectroscopy of the critical interface. Frequency-dispersion in C-V characteristics has been significantly reduced, owing to improved interface quality. Furthermore, using the conventional conductance method suitable for extracting the interface trap density D{sub it} in MOS structures, D{sub it} in the device with AlN was determined to be in the range of 10{sup 11}–10{sup 12 }eV{sup −1 }cm{sup −2}, showing one order of magnitude lower than that without AlN. Border traps near the gate-dielectric/GaN interface were identified and shown to be suppressed by the AlN interfacial layer as well.

  11. Two-dimensional layered compound based anode materials for lithium-ion batteries and sodium-ion batteries.

    Science.gov (United States)

    Xie, Xiuqiang; Wang, Shijian; Kretschmer, Katja; Wang, Guoxiu

    2017-08-01

    Rechargeable batteries, such as lithium-ion and sodium-ion batteries, have been considered as promising energy conversion and storage devices with applications ranging from small portable electronics, medium-sized power sources for electromobility, to large-scale grid energy storage systems. Wide implementations of these rechargeable batteries require the development of electrode materials that can provide higher storage capacities than current commercial battery systems. Within this greater context, this review will present recent progresses in the development of the 2D material as anode materials for battery applications represented by studies conducted on graphene, molybdenum disulfide, and MXenes. This review will also discuss remaining challenges and future perspectives of 2D materials in regards to a full utilization of their unique properties and interactions with other battery components. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Functional solid additive modified PEDOT:PSS as an anode buffer layer for enhanced photovoltaic performance and stability in polymer solar cells.

    Science.gov (United States)

    Xu, Binrui; Gopalan, Sai-Anand; Gopalan, Anantha-Iyengar; Muthuchamy, Nallal; Lee, Kwang-Pill; Lee, Jae-Sung; Jiang, Yu; Lee, Sang-Won; Kim, Sae-Wan; Kim, Ju-Seong; Jeong, Hyun-Min; Kwon, Jin-Beom; Bae, Jin-Hyuk; Kang, Shin-Won

    2017-03-24

    Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is most commonly used as an anode buffer layer in bulk-heterojunction (BHJ) polymer solar cells (PSCs). However, its hygroscopic and acidic nature contributes to the insufficient electrical conductivity, air stability and restricted photovoltaic (PV) performance for the fabricated PSCs. In this study, a new multifunctional additive, 2,3-dihydroxypyridine (DOH), has been used in the PEDOT: PSS buffer layer to obtain modified properties for PEDOT: PSS@DOH and achieve high PV performances. The electrical conductivity of PEDOT:PSS@DOH films was markedly improved compared with that of PEDOT:PSS. The PEDOT:PSS@DOH film exhibited excellent optical characteristics, appropriate work function alignment, and good surface properties in BHJ-PSCs. When a poly(3-hexylthiohpene):[6,6]-phenyl C 61 -butyric acid methyl ester blend system was applied as the photoactive layer, the power conversion efficiency of the resulting PSCs with PEDOT:PSS@DOH(1.0%) reached 3.49%, outperforming pristine PEDOT:PSS, exhibiting a power conversion enhancement of 20%. The device fabricated using PEDOT:PSS@DOH (1.0 wt%) also exhibited improved thermal and air stability. Our results also confirm that DOH, a basic pyridine derivative, facilitates adequate hydrogen bonding interactions with the sulfonic acid groups of PSS, induces the conformational transformation of PEDOT chains and contributes to the phase separation between PEDOT and PSS chains.

  13. Impact of Copper-Doped Titanium Dioxide Interfacial Layers on the Interface-State and Electrical Properties of Si-based MOS Devices

    Science.gov (United States)

    Akin, Seçkİn; Sönmezoğlu, Savaş

    2015-09-01

    The current study presents the interface-state and electrical properties of silicon (Si)-based metal-oxide-semiconductor (MOS) devices using copper-doped titanium dioxide (Cu:TiO2) nanoparticles for possible applications as an interfacial layer in scaled high-k/metal gate MOSFET technology. The structural properties of the Cu:TiO2 nanoparticles have been obtained by means of X-ray diffraction (XRD), UV-Vis-NIR spectrometry, atomic force microscopy, and scanning electron microscopy measurements; they were compared with pure TiO2 thin film. With the incorporation of Cu, rutile-dominated anatase/rutile multiphase crystalline was revealed by XRD analysis. To understand the nature of this structure, the electronic parameters controlling the device performance were calculated using current-voltage ( I- V), capacitance-voltage ( C- V), and conductance-voltage ( G- V) measurements. The ideality factor ( n) was 1.21 for the Al/Cu:TiO2/ p-Si MOS device, while the barrier height ϕ b was 0.75 eV with semi-log I- V characteristics. This is in good agreement with 0.78 eV measured by the Norde model. Possible reasons for the deviation of the ideality factor from unity have been addressed. From the C- V measurements, the values of diffusion potential, barrier height, and carrier concentration were extracted as 0.67, 0.98 eV, and 8.73 × 1013 cm-3, respectively. Our results encourage further work to develop process steps that would allow the Cu-doped TiO2 film/Si interface to play a major role in microelectronic applications.

  14. Interfacial energy levels and related properties of atomic-layer-deposited Al{sub 2}O{sub 3} films on nanoporous TiO{sub 2} electrodes of dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tien, Ta-Chang; Pan, Fu-Ming [Department of Material Science and Engineering, National Chiao Tung University, 300, Taiwan (China); Wang, Lih-Ping; Lee, Chia-Hua; Tung, Yung-Liang; Tsai, Song-Yeu [Photovoltaics Technology Center, Industrial Technology Research Institute, 310, Taiwan (China); Lin, Ching; Tsai, Feng-Yu [Department of Materials Science and Engineering, National Taiwan University, 106, Taiwan (China); Chen, Su-Jen, E-mail: tien@itri.org.t [Nanotechnology Research Center, Industrial Technology Research Institute, 310, Taiwan (China)

    2009-07-29

    Low-temperature ({approx}150 {sup 0}C), atomic-layer-deposited Al{sub 2}O{sub 3} films on nanoporous TiO{sub 2} electrodes of dye-sensitized solar cells (DSSCs) were investigated using electron spectroscopy. The power conversion efficiency (PCE) of the DSSCs was increased from 5.7% to 6.5%, an improvement of 14%, with one monolayer of Al{sub 2}O{sub 3} with a thickness of {approx}0.2 nm. The formation of Ti-O-Al(OH){sub 2} and interfacial dipole layers exhibited a strong influence on the work function of the Al{sub 2}O{sub 3} over-layers, while the thicker Al{sub 2}O{sub 3} over-layers caused the values of valence band maximum and band gap to approach the values associated with pure Al{sub 2}O{sub 3}. A work function difference ({Delta}{Phi}{sub A-T}) of 0.4 eV and a recombination barrier height ({epsilon}{sub RB}) of 0.1 eV were associated with the highest PCE achieved by the first monolayer of the Al{sub 2}O{sub 3} layer. Thicker Al{sub 2}O{sub 3} over-layers, however, caused significant reduction of PCE with negative {Delta}{Phi}{sub T-A} and increased interfacial energy barrier height (*{epsilon}{sub IB}) between the N719 dyes and TiO{sub 2} electrodes. It was concluded that the PCE of the DSSCs may correlate with {Delta}{Phi}{sub A-T}, {epsilon}{sub RB}, and *{epsilon}{sub IB} resulting from various thicknesses of the Al{sub 2}O{sub 3} over-layers and that interfacial reactions, such as the formation of Ti-O-Al(OH){sub 2} and dipole layers, play an important role in determining the interfacial energy levels required to achieve optimal performance of dye-sensitized TiO{sub 2} solar cells.

  15. Process for anodizing aluminum foil

    International Nuclear Information System (INIS)

    Ball, J.A.; Scott, J.W.

    1984-01-01

    In an integrated process for the anodization of aluminum foil for electrolytic capacitors including the formation of a hydrous oxide layer on the foil prior to anodization and stabilization of the foil in alkaline borax baths during anodization, the foil is electrochemically anodized in an aqueous solution of boric acid and 2 to 50 ppm phosphate having a pH of 4.0 to 6.0. The anodization is interrupted for stabilization by passing the foil through a bath containing the borax solution having a pH of 8.5 to 9.5 and a temperature above 80 0 C. and then reanodizing the foil. The process is useful in anodizing foil to a voltage of up to 760 V

  16. Ultrathin Nitrogen-Doped Carbon Layer Uniformly Supported on Graphene Frameworks as Ultrahigh-Capacity Anode for Lithium-Ion Full Battery.

    Science.gov (United States)

    Huang, Yanshan; Li, Ke; Yang, Guanhui; Aboud, Mohamed F Aly; Shakir, Imran; Xu, Yuxi

    2018-01-24

    The designable structure with 3D structure, ultrathin 2D nanosheets, and heteroatom doping are considered as highly promising routes to improve the electrochemical performance of carbon materials as anodes for lithium-ion batteries. However, it remains a significant challenge to efficiently integrate 3D interconnected porous frameworks with 2D tunable heteroatom-doped ultrathin carbon layers to further boost the performance. Herein, a novel nanostructure consisting of a uniform ultrathin N-doped carbon layer in situ coated on a 3D graphene framework (NC@GF) through solvothermal self-assembly/polymerization and pyrolysis is reported. The NC@GF with the nanosheets thickness of 4.0 nm and N content of 4.13 at% exhibits an ultrahigh reversible capacity of 2018 mA h g -1 at 0.5 A g -1 and an ultrafast charge-discharge feature with a remarkable capacity of 340 mA h g -1 at an ultrahigh current density of 40 A g -1 and a superlong cycle life with a capacity retention of 93% after 10 000 cycles at 40 A g -1 . More importantly, when coupled with LiFePO 4 cathode, the fabricated lithium-ion full cells also exhibit high capacity and excellent rate and cycling performances, highlighting the practicability of this NC@GF. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Self-assembly surface modified indium-tin oxide anodes for single-layer light-emitting diodes

    CERN Document Server

    Morgado, J; Charas, A; Matos, M; Alcacer, L; Cacialli, F

    2003-01-01

    We study the effect of indium-tin oxide surface modification by self assembling of highly polar molecules on the performance of single-layer light-emitting diodes (LEDs) fabricated with polyfluorene blends and aluminium cathodes. We find that the efficiency and light-output of such LEDs is comparable to, and sometimes better than, the values obtained for LEDs incorporating a hole injection layer of poly(3,4-ethylene dioxythiophene) doped with polystyrene sulphonic acid. This effect is attributed to the dipole-induced work function modification of indium-tin oxide.

  18. Self-assembly surface modified indium-tin oxide anodes for single-layer light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Morgado, Jorge [Instituto de Telecomunicacoes and Departamento de Engenharia Quimica, Instituto Superior Tecnico, Avenida Rovisco Pais, P-1049-001 Lisbon (Portugal); Barbagallo, Nunzio [Instituto de Telecomunicacoes and Departamento de Engenharia Quimica, Instituto Superior Tecnico, Avenida Rovisco Pais, P-1049-001 Lisbon (Portugal); Charas, Ana [Instituto de Telecomunicacoes and Departamento de Engenharia Quimica, Instituto Superior Tecnico, Avenida Rovisco Pais, P-1049-001 Lisbon (Portugal); Matos, Manuel [Departamento de Engenharia Quimica, Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emidio Navarro-1, P-1949-001 Lisbon (Portugal); Alcacer, Luis [Instituto de Telecomunicacoes and Departamento de Engenharia Quimica, Instituto Superior Tecnico, Avenida Rovisco Pais, P-1049-001 Lisbon (Portugal); Cacialli, Franco [Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT (United Kingdom)

    2003-03-07

    We study the effect of indium-tin oxide surface modification by self assembling of highly polar molecules on the performance of single-layer light-emitting diodes (LEDs) fabricated with polyfluorene blends and aluminium cathodes. We find that the efficiency and light-output of such LEDs is comparable to, and sometimes better than, the values obtained for LEDs incorporating a hole injection layer of poly(3,4-ethylene dioxythiophene) doped with polystyrene sulphonic acid. This effect is attributed to the dipole-induced work function modification of indium-tin oxide.

  19. Impact of La2O3 interfacial layers on InGaAs metal-oxide-semiconductor interface properties in Al2O3/La2O3/InGaAs gate stacks deposited by atomic-layer-deposition

    Science.gov (United States)

    Chang, C.-Y.; Ichikawa, O.; Osada, T.; Hata, M.; Yamada, H.; Takenaka, M.; Takagi, S.

    2015-08-01

    We examine the electrical properties of atomic layer deposition (ALD) La2O3/InGaAs and Al2O3/La2O3/InGaAs metal-oxide-semiconductor (MOS) capacitors. It is found that the thick ALD La2O3/InGaAs interface provides low interface state density (Dit) with the minimum value of ˜3 × 1011 cm-2 eV-1, which is attributable to the excellent La2O3 passivation effect for InGaAs surfaces. It is observed, on the other hand, that there are a large amount of slow traps and border traps in La2O3. In order to simultaneously satisfy low Dit and small hysteresis, the effectiveness of Al2O3/La2O3/InGaAs gate stacks with ultrathin La2O3 interfacial layers is in addition evaluated. The reduction of the La2O3 thickness to 0.4 nm in Al2O3/La2O3/InGaAs gate stacks leads to the decrease in hysteresis. On the other hand, Dit of the Al2O3/La2O3/InGaAs interfaces becomes higher than that of the La2O3/InGaAs ones, attributable to the diffusion of Al2O3 through La2O3 into InGaAs and resulting modification of the La2O3/InGaAs interface structure. As a result of the effective passivation effect of La2O3 on InGaAs, however, the Al2O3/10 cycle (0.4 nm) La2O3/InGaAs gate stacks can realize still lower Dit with maintaining small hysteresis and low leakage current than the conventional Al2O3/InGaAs MOS interfaces.

  20. Interfacial pH-gradient induced micro-capillary filling with the aid of transverse electrodes arrays in presence of electrical double layer effects

    International Nuclear Information System (INIS)

    Jain, Avi; Chakraborty, Suman

    2010-01-01

    In the present work, we outline the design and analysis of a micro-capillary filling mechanism through the aid of interfacial pH gradients (and hence interfacial tension gradients) generated by employing arrays of transverse electrodes inducing step changes in voltages, in a natural buffer system that requires low power and no synthetic ampholytes. The capillary transport is modulated by a dynamic and non-trivial coupling between the interfacial tension and viscous resistances, as a consequence of the underlying intermolecular interactions. The competing effects of the driving and the retarding forces effectively determine the displacement, velocity and acceleration characteristics of the capillary front, in a dynamically evolving manner. A comprehensive theoretical model of capillary dynamics is developed here to address these issues in details, thereby revealing the combined influence of the interfacial electrochemistry and the applied transverse voltages, as guided by the pertinent fundamental thermodynamic principles governed by free energy considerations and the physico-chemical phenomena over interfacial scales. Non-trivial implications of the pH-gradient driven micro-capillary transport are aptly emphasized, so as to offer significant physical insights on the adopted strategy as a guiding principle for facilitating capillary filling processes by inducing a modulation in the effective interfacial energy. Particular implications on the capillary filling time are also pinpointed, revealing the effectiveness of the adopted design strategy. Finally, a universal scaling relationship of the capillary filling time as a function of the pertinent operating parameters is derived, so as to provide a generalized guideline for implementing the design scheme. A non-dimensional parameter, depending simultaneously on the inter-electrode pitch and the transverse voltage, is identified, which may be kept to a minimal limit within the other operating constraints of the chosen

  1. Anodic oxidation

    CERN Document Server

    Ross, Sidney D; Rudd, Eric J; Blomquist, Alfred T; Wasserman, Harry H

    2013-01-01

    Anodic Oxidation covers the application of the concept, principles, and methods of electrochemistry to organic reactions. This book is composed of two parts encompassing 12 chapters that consider the mechanism of anodic oxidation. Part I surveys the theory and methods of electrochemistry as applied to organic reactions. These parts also present the mathematical equations to describe the kinetics of electrode reactions using both polarographic and steady-state conditions. Part II examines the anodic oxidation of organic substrates by the functional group initially attacked. This part particular

  2. Direct sub-nanometer scale electron microscopy analysis of anion incorporation to self-ordered anodic alumina layers

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Rovira, L.; Lopez-Haro, M.; Hungria, A.B.; El Amrani, K. [Department of Materials Science and Metallurgical Engineering and Inorganic Chemistry, University of Cadiz, Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain); Sanchez-Amaya, J.M. [Titania, Ensayos y Proyectos Industriales, S.L. Parque Tecnobahia, Edificio RETSE, Nave 4, 11500 El Puerto de Santa Maria (Cadiz) (Spain); Calvino, J.J. [Department of Materials Science and Metallurgical Engineering and Inorganic Chemistry, University of Cadiz, Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain); Botana, F.J., E-mail: javier.botana@uca.e [Department of Materials Science and Metallurgical Engineering and Inorganic Chemistry, University of Cadiz, Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain)

    2010-11-15

    Research highlights: {yields} Morphological and chemical characterization at atomic scale of porous alumina layers anodised in ordered regimes. {yields} Characterization based on the use of FEG-SEM, STEM-HAADF, STEM-EELS and STEM-X-EDS. {yields} Nanoscale distribution of P-, C- and S-bearing species in the pore wall. - Abstract: Ordered porous alumina layers prepared by two-step anodising in phosphoric, oxalic and sulphuric acids have been characterized at sub-nanometer scale using electron microscopy techniques. FEG-SEM and STEM-HAADF images allowed estimating the pore size, cell wall and pore wall thicknesses of the layers. Nanoanalytical characterization has been performed by STEM-EELS and STEM-X-EDS. Detailed features of the spatial distribution of anions in the pore wall of the films have been obtained. Maximum concentration of P-species occurs, approximately, at the middle of the pore wall; adjacent to the pore for C-species, whereas the distribution of S-species appears to be uniform.

  3. Layer-by-layer assembled multilayers of polyethylenimine-stabilized platinum nanoparticles and PEDOT:PSS as anodes for the methanol oxidation reaction.

    Science.gov (United States)

    Knowles, Kyler R; Hanson, Colin C; Fogel, April L; Warhol, Brian; Rider, David A

    2012-07-25

    Polyethylenimine-capped platinum nanoparticles (PEI-capped Pt NPs) are synthesized by photoreduction and qualified as a component for electrostatic layer-by-layer assembly and subsequent electrocatalysis. The PEI-capped Pt NPs are characterized for size and charge using scanning force microscopy, transmission electron microscopy, dynamic light scattering and zetapotential. Well-defined multilayers are produced via thin film electrostatic assembly of PEI-capped Pt NPs with the conducting polymer: poly(3,4-ethylenedioxythiophene):poly(p-styrenesulfonate) [(PEDOT:PSS)(-)Na(+)]. The composite thin films are subsequently characterized by ultraviolet-visible spectroscopy, scanning force microscopy, inductively coupled plasma mass spectroscopy and thermogravimetric analysis. The layer-by-layer deposition process was found to proceed in a controlled manner which permits the fabrication of stable and uniform multilayer thin films. [PEI-capped Pt NPs/(PEDOT:PSS)] multilayers were found to be an active catalyst coating for the oxidation of methanol and a 20 bilayer film proceeds with a stable level of catalyst activity for over 1000 oxidation cycles.

  4. A novel radial anode layer ion source for inner wall pipe coating and materials modification--hydrogenated diamond-like carbon coatings from butane gas.

    Science.gov (United States)

    Murmu, Peter P; Markwitz, Andreas; Suschke, Konrad; Futter, John

    2014-08-01

    We report a new ion source development for inner wall pipe coating and materials modification. The ion source deposits coatings simultaneously in a 360° radial geometry and can be used to coat inner walls of pipelines by simply moving the ion source in the pipe. Rotating parts are not required, making the source ideal for rough environments and minimizing maintenance and replacements of parts. First results are reported for diamond-like carbon (DLC) coatings on Si and stainless steel substrates deposited using a novel 360° ion source design. The ion source operates with permanent magnets and uses a single power supply for the anode voltage and ion acceleration up to 10 kV. Butane (C4H10) gas is used to coat the inner wall of pipes with smooth and homogeneous DLC coatings with thicknesses up to 5 μm in a short time using a deposition rate of 70 ± 10 nm min(-1). Rutherford backscattering spectrometry results showed that DLC coatings contain hydrogen up to 30 ± 3% indicating deposition of hydrogenated DLC (a-C:H) coatings. Coatings with good adhesion are achieved when using a multiple energy implantation regime. Raman spectroscopy results suggest slightly larger disordered DLC layers when using low ion energy, indicating higher sp(3) bonds in DLC coatings. The results show that commercially interesting coatings can be achieved in short time.

  5. Carbon-coated ZnO mat passivation by atomic-layer-deposited HfO2as an anode material for lithium-ion batteries.

    Science.gov (United States)

    Jung, Mi-Hee

    2017-11-01

    ZnO has had little consideration as an anode material in lithium-ion batteries compared with other transition-metal oxides due to its inherent poor electrical conductivity and large volume expansion upon cycling and pulverization of ZnO-based electrodes. A logical design and facile synthesis of ZnO with well-controlled particle sizes and a specific morphology is essential to improving the performance of ZnO in lithium-ion batteries. In this paper, a simple approach is reported that uses a cation surfactant and a chelating agent to synthesize three-dimensional hierarchical nanostructured carbon-coated ZnO mats, in which the ZnO mats are composed of stacked individual ZnO nanowires and form well-defined nanoporous structures with high surface areas. In order to improve the performance of lithium-ion batteries, HfO 2 is deposited on the carbon-coated ZnO mat electrode via atomic layer deposition. Lithium-ion battery devices based on the carbon-coated ZnO mat passivation by atomic layer deposited HfO 2 exhibit an excellent initial discharge and charge capacities of 2684.01 and 963.21mAhg -1 , respectively, at a current density of 100mAg -1 in the voltage range of 0.01-3V. They also exhibit cycle stability after 125 cycles with a capacity of 740mAhg -1 and a remarkable rate capability. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Dithienylpyrrole- and Tris[4-(2-thienylphenyl]amine-Containing Copolymers as Promising Anodic Layers in High-Contrast Electrochromic Devices

    Directory of Open Access Journals (Sweden)

    Tzi-Yi Wu

    2018-04-01

    Full Text Available Three dithienylpyrrole- and tris[4-(2-thienylphenyl]amine-containing copolymers (P(MPS-co-TTPA, P(MPO-co-TTPA, and P(ANIL-co-TTPA were deposited on indium tin oxide (ITO surfaces using electrochemical polymerization. Spectroelectrochemical characterizations of polymer films revealed that P(MPS-co-TTPA film was light olive green, greyish-green, bluish grey, and grey in neutral state, intermediate state, oxidized state, and highly oxidized state, respectively, whereas P(MPO-co-TTPA film was green moss, foliage green, dark greyish-green, and bluish-grey in neutral state, intermediate state, oxidized state, and highly oxidized state, respectively. The ΔTmax of P(MPS-co-TTPA film at 964 nm, P(MPO-co-TTPA film at 914 nm, and P(ANIL-co-TTPA film at 960 nm were 67.2%, 60.7%, and 67.1%, respectively, and the coloration efficiency (η of P(MPS-co-TTPA film at 964 nm, P(MPO-co-TTPA film at 914 nm, and P(ANIL-co-TTPA film at 960 nm were calculated to be 260.3, 176.6, and 230.8 cm2 C−1, respectively. Dual type complementary colored electrochromic devices (ECDs were constructed using P(MPS-co-TTPA, P(MPO-co-TTPA, or P(ANIL-co-TTPA as anodic copolymer layer and PProDOT-Et2 as cathodic polymer layer. P(MPO-co-TTPA/PProDOT-Et2 ECD revealed high ΔT (55.1% and high η (766.5 cm2 C−1 at 580 nm. Moreover, P(MPS-co-TTPA/PProDOT-Et2, P(MPO-co-TTPA/PProDOT-Et2, and P(ANIL-co-TTPA/PProDOT-Et2 ECDs showed satisfactory long-term cycling stability and optical memory.

  7. Characterization of La0.995Ca0.005NbO4/Ni anode functional layer by electrophoretic deposition in a La0.995Ca0.005NbO4 electrolyte based PCFC

    DEFF Research Database (Denmark)

    Bozza, Francesco; Schafbauer, W.; Meulenberg, W.A.

    2012-01-01

    The Electrophoretic Deposition (EPD) technique has been applied to the preparation of a porous La0.995Ca0.005NbO4/Ni composite anode layer, deposited on a porous pre-sintered La0.995Ca0.005NbO4/Ni support. Powders of La0.995Ca0.005NbO4 and NiO were suspended in a solution of acetylacetone, iodine...

  8. Origin of Enhanced Hole Injection in Organic Light-Emitting Diodes with an Electron-Acceptor Doping Layer: p-Type Doping or Interfacial Diffusion?

    Science.gov (United States)

    Zhang, Lei; Zu, Feng-Shuo; Deng, Ya-Li; Igbari, Femi; Wang, Zhao-Kui; Liao, Liang-Sheng

    2015-06-10

    The electrical doping nature of a strong electron acceptor, 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HATCN), is investigated by doping it in a typical hole-transport material, N,N'-bis(naphthalen-1-yl)-N,N'-diphenylbenzidine (NPB). A better device performance of organic light-emitting diodes (OLEDs) was achieved by doping NPB with HATCN. The improved performance could, in principle, arise from a p-type doping effect in the codeposited thin films. However, physical characteristics evaluations including UV-vis absorption, Fourier transform infrared absorption, and X-ray photoelectron spectroscopy demonstrated that there was no obvious evidence of charge transfer in the NPB:HATCN composite. The performance improvement in NPB:HATCN-based OLEDs is mainly attributed to an interfacial modification effect owing to the diffusion of HATCN small molecules. The interfacial diffusion effect of the HATCN molecules was verified by the in situ ultraviolet photoelectron spectroscopy evaluations.

  9. Anode Fall Formation in a Hall Thruster

    International Nuclear Information System (INIS)

    Dorf, Leonid A.; Raitses, Yevgeny F.; Smirnov, Artem N.; Fisch, Nathaniel J.

    2004-01-01

    As was reported in our previous work, accurate, nondisturbing near-anode measurements of the plasma density, electron temperature, and plasma potential performed with biased and emissive probes allowed the first experimental identification of both electron-repelling (negative anode fall) and electron-attracting (positive anode fall) anode sheaths in Hall thrusters. An interesting new phenomenon revealed by the probe measurements is that the anode fall changes from positive to negative upon removal of the dielectric coating, which appears on the anode surface during the course of Hall thruster operation. As reported in the present work, energy dispersion spectroscopy analysis of the chemical composition of the anode dielectric coating indicates that the coating layer consists essentially of an oxide of the anode material (stainless steel). However, it is still unclear how oxygen gets into the thruster channel. Most importantly, possible mechanisms of anode fall formation in a Hall thruster with a clean and a coated anodes are analyzed in this work; practical implication of understanding the general structure of the electron-attracting anode sheath in the case of a coated anode is also discussed

  10. High dielectric constant and energy density induced by the tunable TiO2 interfacial buffer layer in PVDF nanocomposite contained with core-shell structured TiO2@BaTiO3 nanoparticles

    Science.gov (United States)

    Hu, Penghao; Jia, Zhuye; Shen, Zhonghui; Wang, Peng; Liu, Xiaoru

    2018-05-01

    To realize application in high-capacity capacitors and portable electric devices, large energy density is eagerly desired for polymer-based nanocomposite. The core-shell structured nanofillers with inorganic buffer layer are recently supposed to be promising in improving the dielectric property of polymer nanocomposite. In this work, core-shell structured TO@BT nanoparticles with crystalline TiO2 buffer layer coated on BaTiO3 nanoparticle were fabricated via solution method and heat treatment. The thickness of the TO buffer layer can be tailored by modulating the additive amount of the titanate coupling agent in preparation process, and the apparent dielectric properties of nanocomposite are much related to the thickness of the TO layer. The relatively thin TO layer prefer to generate high polarization to increase dielectric constant while the relatively thick TO layer would rather to homogenize field to maintain breakdown strength. Simulation of electric field distribution in the interfacial region reveals the improving effect of the TO buffer layer on the dielectric properties of nanocomposite which accords with the experimental results well. The optimized nanoparticle TO@BT-2 with a mean thickness of 3-5 nm buffer layer of TO is effective in increasing both the ε and Eb in the PVDF composite film. The maximal discharged energy density of 8.78 J/cm3 with high energy efficiency above 0.6 is obtained in TO@BT-2/PVDF nanocomposite with 2.5 vol% loading close to the breakdown strength of 380 kV/mm. The present study demonstrates the approach to optimize the structure of core-shell nanoparticles by modulating buffer layer and provides a new way to further enlarge energy density in polymer nanocomposite.

  11. Interfacial reactions between PbO-rich glasses and aluminium composites

    CERN Document Server

    Ison, S J

    2000-01-01

    565 deg C occurs when dissolution rate exceeds oxidation rate, exposing the fresh Al anode to the glass melt. Under inert atmosphere (at 583 deg C), air oxidation is not possible and galvanic cell redox reactions generate an excessive copper interlayer as the system attempts to sustain the oxide layer at the anode. Similar behaviour is observed in those coatings formed on the alloy using glass C (containing Al sub 2 O sub 3 and Na sub 2 O). In this case, the interfacial reactions involve the PbO of the glass and Pb-rich spherical precipitates are formed in the interfacial region, along side sodium aluminosilicate phases, precipitated from the PbO-depleted glass. The behaviour in both systems indicates that oxygen diffuses through the edge of the glass drop, from the atmosphere, to the substrate/glass interface. Coatings formed on the MMCs in air exhibited a porosity of approx 10%, attributed to the production of CO sub 2 gas through the oxidation of SiC at the glass/MMC interface by oxygen diffusion from the ...

  12. Effect of High Frequency Pulsing on the Interfacial Structure of Anodised Aluminium-TiO2

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Bordo, Kirill

    2015-01-01

    High frequency anodizing of friction stir processed Al-TiO2 surface composites was investigated. The effect of anodizing parameters on the structure and morphology of the anodic layer including the incorporation of the TiO2 particles into the anodic layer is studied. Anodizing process was carried...... particles into the anodic alumina. Lower electrical resistance of the TiO2 arising from oxygen defects, combined with applied negative potential during the low voltage cycle, are found to be responsible for the observed morphological features in the anodic alumina.......High frequency anodizing of friction stir processed Al-TiO2 surface composites was investigated. The effect of anodizing parameters on the structure and morphology of the anodic layer including the incorporation of the TiO2 particles into the anodic layer is studied. Anodizing process was carried...

  13. Solution-processable organic-inorganic hybrid hole injection layer for high efficiency phosphorescent organic light-emitting diodes.

    Science.gov (United States)

    Lee, Min Hsuan; Choi, Wing Hong; Zhu, Furong

    2016-03-21

    The presence of a solution-processed hybrid PSS-MoO3-based hole injection layer (HIL) promotes a good interfacial contact between the indium tin oxide anode and hole-transporting layer for efficient operation of organic light-emitting diodes (OLEDs). This work reveals that the use of the hybrid HIL benefits the performance of phosphorescent OLEDs in two ways: (1) to assist in efficient hole injection, thereby improving power efficiency of OLEDs, and (2) to improve electron-hole current balance and suppression of interfacial defects at the organic/anode interface. The combined effects result in the power efficiency of 89.2 lm/W and external quantum efficiency of 23.9% for phosphorescent green OLEDs. The solution-processed hybrid PSS-MoO3-based HIL is beneficial for application in solution-processed organic electronic devices.

  14. Dentin-cement Interfacial Interaction

    Science.gov (United States)

    Atmeh, A.R.; Chong, E.Z.; Richard, G.; Festy, F.; Watson, T.F.

    2012-01-01

    The interfacial properties of a new calcium-silicate-based coronal restorative material (Biodentine™) and a glass-ionomer cement (GIC) with dentin have been studied by confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), micro-Raman spectroscopy, and two-photon auto-fluorescence and second-harmonic-generation (SHG) imaging. Results indicate the formation of tag-like structures alongside an interfacial layer called the “mineral infiltration zone”, where the alkaline caustic effect of the calcium silicate cement’s hydration products degrades the collagenous component of the interfacial dentin. This degradation leads to the formation of a porous structure which facilitates the permeation of high concentrations of Ca2+, OH-, and CO32- ions, leading to increased mineralization in this region. Comparison of the dentin-restorative interfaces shows that there is a dentin-mineral infiltration with the Biodentine, whereas polyacrylic and tartaric acids and their salts characterize the penetration of the GIC. A new type of interfacial interaction, “the mineral infiltration zone”, is suggested for these calcium-silicate-based cements. PMID:22436906

  15. Investigation of ionic movements during anodic oxidation of superimposed metallic layers by the use of Rutherford backscattering techniques and nuclear micro analysis

    International Nuclear Information System (INIS)

    Perriere, J.; Siejka, J.; Rigo, S.

    1980-01-01

    Nuclear micro-analysis by the direct observation of nuclear reactions and of backscattered particles was used to study ionic movements during the anodization of superimposed metallic films (M 1 -M 2 systems). It has been shown that the order of cations is largely preserved during the anodization of Ta-Nb or Al-Nb systems while it is inverted in the case of Nb-Ta and Nb-Al systems. These results are discussed in terms of differences in jump probabilities of atoms. The oxygen movements in these systems were studied by 18 O tracing techniques; the results suggest that a correlation exists between oxygen and cationic migration during anodic oxide growth. The discussion of these results in terms of microscopic transport mechanisms is based on a neighbour to neighbour type propagation process for cationic as well as oxygen movement. (author)

  16. Spatial atomic layer deposition on flexible porous substrates: ZnO on anodic aluminum oxide films and Al2O3 on Li ion battery electrodes

    International Nuclear Information System (INIS)

    Sharma, Kashish; Routkevitch, Dmitri; Varaksa, Natalia; George, Steven M.

    2016-01-01

    Spatial atomic layer deposition (S-ALD) was examined on flexible porous substrates utilizing a rotating cylinder reactor to perform the S-ALD. S-ALD was first explored on flexible polyethylene terephthalate polymer substrates to obtain S-ALD growth rates on flat surfaces. ZnO ALD with diethylzinc and ozone as the reactants at 50 °C was the model S-ALD system. ZnO S-ALD was then performed on nanoporous flexible anodic aluminum oxide (AAO) films. ZnO S-ALD in porous substrates depends on the pore diameter, pore aspect ratio, and reactant exposure time that define the gas transport. To evaluate these parameters, the Zn coverage profiles in the pores of the AAO films were measured using energy dispersive spectroscopy (EDS). EDS measurements were conducted for different reaction conditions and AAO pore geometries. Substrate speeds and reactant pulse durations were defined by rotating cylinder rates of 10, 100, and 200 revolutions per minute (RPM). AAO pore diameters of 10, 25, 50, and 100 nm were utilized with a pore length of 25 μm. Uniform Zn coverage profiles were obtained at 10 RPM and pore diameters of 100 nm. The Zn coverage was less uniform at higher RPM values and smaller pore diameters. These results indicate that S-ALD into porous substrates is feasible under certain reaction conditions. S-ALD was then performed on porous Li ion battery electrodes to test S-ALD on a technologically important porous substrate. Li 0.20 Mn 0.54 Ni 0.13 Co 0.13 O 2 electrodes on flexible metal foil were coated with Al 2 O 3 using 2–5 Al 2 O 3 ALD cycles. The Al 2 O 3 ALD was performed in the S-ALD reactor at a rotating cylinder rate of 10 RPM using trimethylaluminum and ozone as the reactants at 50 °C. The capacity of the electrodes was then tested versus number of charge–discharge cycles. These measurements revealed that the Al 2 O 3 S-ALD coating on the electrodes enhanced the capacity stability. This S-ALD process could be extended to roll-to-roll operation for

  17. Phase segregation, interfacial intermetallic growth and electromigration-induced failure in Cu/In–48Sn/Cu solder interconnects under current stressing

    International Nuclear Information System (INIS)

    Li, Yi; Lim, Adeline B.Y.; Luo, Kaiming; Chen, Zhong; Wu, Fengshun; Chan, Y.C.

    2016-01-01

    The evolution of microstructure in Cu/In–48Sn/Cu solder bump interconnects at a current density of 0.7 × 10 4 A/cm 2 and ambient temperature of 55 °C has been investigated. During electromigration, tin (Sn) atoms migrated from cathode to anode, while indium (In) atoms migrated from anode to cathode. As a result, the segregation of the Sn-rich phase and the In-rich phase occurred. A Sn-rich layer and an In-rich layer were formed at the anode and the cathode, respectively. The accumulation rate of the Sn-rich layer was 1.98 × 10 −9 cm/s. The atomic flux of Sn was calculated to be approximately 1.83 × 10 13 atoms/cm 2 s. The product of the diffusivity and the effective charge number of Sn was determined to be approximately 3.13 × 10 −10 cm 2 /s. The In–48Sn/Cu IMC showed a two layer structure of Cu 6 (Sn,In) 5 , adjacent to the Cu, and Cu(In,Sn) 2 , adjacent to the solder. Both the cathode IMC and the anode IMC thickened with increasing electromigration time. The IMC evolution during electromigration was strongly influenced by the migration of Cu atoms from cathode to anode and the accumulation of Sn-rich and In-rich layers. During electromigration, the Cu(In,Sn) 2 at the cathode interface thickened significantly, with a spalling characteristic, due to the accumulation of In-rich layer and the migration of Cu atoms - while the Cu(In,Sn) 2 at the anode interface reduced obviously, due to the accumulation of Sn-rich layer. The mechanism of electromigration-induced failure in Cu/In–48Sn/Cu interconnects was the cathode Cu dissolution-induced solder melt, which led to the rapid consumption of Cu in the cathode pad during liquid-state electromigration and this finally led to the failure. - Highlights: • Sn migrates to the anode, while In migrates to the cathode, during EM in Cu/In–48Sn/Cu. • The atomic flux of Sn has been calculated. • The interfacial IMCs were identified as: Cu 6 (Sn,In) 5 + Cu(In,Sn) 2 . • The interface evolution is strongly

  18. Self-organized anodic TiO.sub.2./sub. nanotube layers: influence of the Ti substrate on nanotube growth and dimensions

    Czech Academy of Sciences Publication Activity Database

    Sopha, H.; Jäger, Aleš; Knotek, P.; Tesař, Karel; Jarošová, Markéta; Macák, J. M.

    2016-01-01

    Roč. 190, Feb (2016), s. 744-752 ISSN 0013-4686 R&D Projects: GA ČR GBP108/12/G043 Institutional support: RVO:68378271 Keywords : titanium * anodization * titanium dioxide * nanotubes * ordering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.798, year: 2016

  19. Anomalous Hall effect suppression in anatase Co:TiO2 by the insertion of an interfacial TiO2 buffer layer

    NARCIS (Netherlands)

    Lee, Y.J.; de Jong, Machiel Pieter; van der Wiel, Wilfred Gerard; Kim, Y.; Brock, J.D.

    2010-01-01

    We present the effect of introducing a TiO2 buffer layer at the SrTiO3 /Co:TiO2 interface on the magnetic and structural properties of anatase Co:TiO2 1.4 at. % Co. Inserting the buffer layer leads to suppression of the room-temperature anomalous Hall effect, accompanied by a reduced density of Co

  20. Interfacial effects in multilayers

    International Nuclear Information System (INIS)

    Barbee, T.W. Jr.

    1998-01-01

    Interfacial structure and the atomic interactions between atoms at interfaces in multilayers or nano-laminates have significant impact on the physical properties of these materials. A technique for the experimental evaluation of interfacial structure and interfacial structure effects is presented and compared to experiment. In this paper the impact of interfacial structure on the performance of x-ray, soft x-ray and extreme ultra-violet multilayer optic structures is emphasized. The paper is concluded with summary of these results and an assessment of their implications relative to multilayer development and the study of buried interfaces in solids in general

  1. Interfacial structure of multi-layered thin-films produced by pulsed laser deposition for use in small-scale ceramic capacitors

    International Nuclear Information System (INIS)

    Araki, Takao; Hino, Takanori; Ohara, Masahiro

    2014-01-01

    The aim of this study was to develop thin film capacitors with superior properties that could provide an alternative to materials currently used in conventional multi-layer ceramic capacitors fabricated by sintering. To this end, an artificial dielectric super lattice technique, incorporating pulsed laser deposition, was applied to improving the dielectric properties of thin film capacitors. This method permits the A-site atoms of a perovskite ABO 3 structure to be selected layer by layer at a nanoscopic scale; consequently, multi-layer BaTiO 3 - SrTiO 3 thin films were produced on Pt(111)/Ti/SiO 2 /Si(100) and SrTiO 3 (111) substrates. Hetero-epitaxial grain growth was observed between BaTiO 3 and SrTiO 3 , with the lattice mismatch between them introducing a compressive residual strain at the interface. The dielectric properties of these multi-layer thin-film capacitors were found to be superior to those of conventional solid-solution thin films once the thickness of the layers and the ratio of the two oxides were optimized

  2. Anodic growth of titanium dioxide nanostructures

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed is a method of producing nanostructures of titanium dioxide (TiO 2 ) by anodisation of titanium (Ti) in an electrochemical cell, comprising the steps of: immersing a non-conducting substrate coated with a layer of titanium, defined as the anode, in an electrolyte solution...... an electrical contact to the layer of titanium on the anode, where the electrical contact is made in the electrolyte solution...

  3. Influence of the Ti microstructure on anodic self-organized TiO.sub.2./sub. nanotube layers produced in ethylene glycol electrolytes.

    Czech Academy of Sciences Publication Activity Database

    Macák, J. M.; Jarošová, Markéta; Jäger, Aleš; Sopha, H.; Klementová, Mariana

    2016-01-01

    Roč. 371, May (2016), s. 607-612 ISSN 0169-4332 R&D Projects: GA ČR GBP108/12/G043; GA ČR(CZ) GA14-20744S Institutional support: RVO:68378271 ; RVO:61388980 Keywords : titanum * anodization * titanium dioxide * nanotubes * EBSD Subject RIV: BM - Solid Matter Physics ; Magnetism; CA - Inorganic Chemistry (UACH-T) Impact factor: 3.387, year: 2016

  4. Layered oxides-LiNi1/3Co1/3Mn1/3O2 as anode electrode for symmetric rechargeable lithium-ion batteries

    Science.gov (United States)

    Wang, Yuesheng; Feng, Zimin; Yang, Shi-Ze; Gagnon, Catherine; Gariépy, Vincent; Laul, Dharminder; Zhu, Wen; Veillette, René; Trudeau, Michel L.; Guerfi, Abdelbast; Zaghib, Karim

    2018-02-01

    High-performance and long-cycling rechargeable lithium-ion batteries have been in steadily increasing demand for the past decades. Nevertheless, the two dominant anodes at the moment, graphite and L4T5O12, suffer from a safety issue of lithium plating (operating voltage at ∼ 0.1 V vs. Li+/Li) and low capacity (175 mAh/g), respectively. Here, we report LiNi1/3Co1/3Mn1/3O2 as an alternative anode material which has a working voltage of ∼1.1 V and a capacity as high as 330 mAh/g at the current rate of C/15. Symmetric cells with both electrodes containing LiNi1/3Co1/3Mn1/3O2 can deliver average discharge voltage of 2.2 V. In-situ XRD, HRTEM and first principles calculations indicate that the reaction mechanism of a LiNi1/3Co1/3Mn1/3O2 anode is comprised mainly of conversion. Both the fundamental understanding and practical demonstrations suggest that LiNi1/3Co1/3Mn1/3O2 is a promising negative electrode material for lithium-ion batteries.

  5. Interfacial engineering with ultrathin poly (9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) layer for high efficient perovskite light-emitting diodes

    Science.gov (United States)

    Lin, Chunyan; Chen, Ping; Xiong, ZiYang; Liu, Debei; Wang, Gang; Meng, Yan; Song, Qunliang

    2018-02-01

    Organic-inorganic hybrid perovskites have attracted great attention in the field of lighting and display due to their very high color purity and low-cost solution-process. Researchers have done a lot of work in realizing high performance electroluminescent devices. However, the current efficiency (CE) of methyl-ammonium lead halide perovskite light-emitting diodes (PeLEDs) still needs to be improved. Herein, we demonstrate the enhanced performance of PeLEDs through introducing an ultrathin poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) buffer layer between poly(3,4-ethylendioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and CH3NH3PbBr3 perovskite. Compared to the reference device without PFO, the optimal device luminous intensity, the maximum CE, and the maximum external quantum efficiency increases from 8139 cd m-2 to 30 150 cd m-2, from 7.20 cd A-1 (at 6.8 V) to 10.05 cd A-1 (at 6.6 V), and from 1.73% to 2.44%, respectively. The ultrathin PFO layer not only reduces the exciton quenching at the interface between the hole-transport layer and emission layer, but also passivates the shallow-trap ensure increasing hole injection, as well as increases the coverage of perovskite film.

  6. Scalable 2D Mesoporous Silicon Nanosheets for High-Performance Lithium-Ion Battery Anode.

    Science.gov (United States)

    Chen, Song; Chen, Zhuo; Xu, Xingyan; Cao, Chuanbao; Xia, Min; Luo, Yunjun

    2018-02-05

    Constructing unique mesoporous 2D Si nanostructures to shorten the lithium-ion diffusion pathway, facilitate interfacial charge transfer, and enlarge the electrode-electrolyte interface offers exciting opportunities in future high-performance lithium-ion batteries. However, simultaneous realization of 2D and mesoporous structures for Si material is quite difficult due to its non-van der Waals structure. Here, the coexistence of both mesoporous and 2D ultrathin nanosheets in the Si anodes and considerably high surface area (381.6 m 2 g -1 ) are successfully achieved by a scalable and cost-efficient method. After being encapsulated with the homogeneous carbon layer, the Si/C nanocomposite anodes achieve outstanding reversible capacity, high cycle stability, and excellent rate capability. In particular, the reversible capacity reaches 1072.2 mA h g -1 at 4 A g -1 even after 500 cycles. The obvious enhancements can be attributed to the synergistic effect between the unique 2D mesoporous nanostructure and carbon capsulation. Furthermore, full-cell evaluations indicate that the unique Si/C nanostructures have a great potential in the next-generation lithium-ion battery. These findings not only greatly improve the electrochemical performances of Si anode, but also shine some light on designing the unique nanomaterials for various energy devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Electrically Conductive Anodized Aluminum Surfaces

    Science.gov (United States)

    Nguyen, Trung Hung

    2006-01-01

    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic, electrostaticdischarge- suppressing finishes: examples include silver impregnated anodized, black electroless nickel, black chrome, and black copper. In

  8. A novel catalyst layer structure based surface-patterned Nafion® membrane for high-performance direct methanol fuel cell

    DEFF Research Database (Denmark)

    Chen, Ming; Wang, Meng; Ding, Xianan

    2018-01-01

    Conventional catalyst layer with a smooth surface exists the larger area of“catalytic dead zone” and reduces the utilization of catalyst. Based on this, a novel catalyst layer structure based surface-patterned Nafion® membrane was designed to achieve more efficient electrochemical reaction...... to prepare the novel catalyst layer, and the effect of pressure on the performance of MEA was investigated. The results suggested that the peak power density of DMFC with optimal novel catalyst layer structure increased by 28.84%, the charge transfer resistances of anode and cathode reduced by 28.8% and 26.......5% respectively, compared with the conventional catalyst layer. Performance improvement is attributed to the fact that the novel catalyst layer structure optimizes the electrolyte membrane/catalyst layer and gas diffusion layer/catalyst layer interfacial structure, which increases the electrochemical reaction...

  9. Suppression of interfacial voids formation during silane (SiH4)-based silicon oxide bonding with a thin silicon nitride capping layer

    Science.gov (United States)

    Lee, Kwang Hong; Bao, Shuyu; Wang, Yue; Fitzgerald, Eugene A.; Seng Tan, Chuan

    2018-01-01

    The material properties and bonding behavior of silane-based silicon oxide layers deposited by plasma-enhanced chemical vapor deposition were investigated. Fourier transform infrared spectroscopy was employed to determine the chemical composition of the silicon oxide films. The incorporation of hydroxyl (-OH) groups and moisture absorption demonstrates a strong correlation with the storage duration for both as-deposited and annealed silicon oxide films. It is observed that moisture absorption is prevalent in the silane-based silicon oxide film due to its porous nature. The incorporation of -OH groups and moisture absorption in the silicon oxide films increase with the storage time (even in clean-room environments) for both as-deposited and annealed silicon oxide films. Due to silanol condensation and silicon oxidation reactions that take place at the bonding interface and in the bulk silicon, hydrogen (a byproduct of these reactions) is released and diffused towards the bonding interface. The trapped hydrogen forms voids over time. Additionally, the absorbed moisture could evaporate during the post-bond annealing of the bonded wafer pair. As a consequence, defects, such as voids, form at the bonding interface. To address the problem, a thin silicon nitride capping film was deposited on the silicon oxide layer before bonding to serve as a diffusion barrier to prevent moisture absorption and incorporation of -OH groups from the ambient. This process results in defect-free bonded wafers.

  10. Multiple Interfacial Fe3O4@BaTiO3/P(VDF-HFP) Core-Shell-Matrix Films with Internal Barrier Layer Capacitor (IBLC) Effects and High Energy Storage Density.

    Science.gov (United States)

    Zhou, Ling; Fu, Qiuyun; Xue, Fei; Tang, Xiahui; Zhou, Dongxiang; Tian, Yahui; Wang, Geng; Wang, Chaohong; Gou, Haibo; Xu, Lei

    2017-11-22

    Flexible nanocomposites composed of high dielectric constant fillers and polymer matrix have shown great potential for electrostatic capacitors and energy storage applications. To obtain the composited material with high dielectric constant and high breakdown strength, multi-interfacial composited particles, which composed of conductive cores and insulating shells and possessed the internal barrier layer capacitor (IBLC) effect, were adopted as fillers. Thus, Fe 3 O 4 @BaTiO 3 core-shell particles were prepared and loaded into the poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) polymer matrix. As the mass fraction of core-shell fillers increased from 2.5 wt % to 30 wt %, the dielectric constant of the films increased, while the loss tangent remained at a low level (energy storage density of 7.018 J/cm 3 was measured at 2350 kV/cm, which shows significant enhancement than those of the pure P(VDF-HFP) films and analogous composited films with converse insulating-conductive core-shell fillers. A Maxwell-Wagner capacitor model was also adopted to interpret the efficiency of IBLC effects on the suppressed loss tangent and the superior breakdown strength. This work explored an effective approach to prepare dielectric nanocomposites for energy storage applications experimentally and theoretically.

  11. Influence of enzymatic reactions on the electrochemical behavior of EN X2CrNiMo17-11-2 (AISI 316L) stainless steel in bio-corrosion: role of interfacial processes on the modification of the passive layer

    International Nuclear Information System (INIS)

    Landoulsi, J.

    2008-01-01

    The outstanding corrosion behavior of stainless steels (SS) results from the presence of thin oxide layer (some nanometers). In non sterile aqueous media, stainless steels may exhibit a non stable behavior resulting from interactions between microbial species and passive film. In fact, microorganisms can be deeply involved in the corrosion processes usually reported as Microbial Influenced Corrosion (MIC). They can induce the initiation or the acceleration of this phenomenon and they do so when organized in bio-films. From the electrochemical point of view, stainless steels showed an increase of the free corrosion potential (Ecorr) attributed to the bio-film settlement. The Eco' ennoblement was broadly reported in seawater and seems to be confirmed in fresh water according to recent findings. A considerable progress in the comprehension of MIC processes was related to the role of extracellular species, essentially enzymes. Many enzymatic reactions occurring in bio-films consist on using oxygen as electron acceptor to generate hydrogen peroxide and related species. The aim of this work is to understand the mechanisms involved in the electrochemical behavior of stainless steel according to an enzymatic approach in medium simulating fresh water. To this end, glucose oxidase was chosen to globalize aerobic activities of bio-films. Electrochemical measurements in situ and surface analysis allow the comprehension of the role and the nature of interfacial processes. Surface characterization was performed with the help of a new quantitative utilization of XPS analysis and AFM. Results show a significant evolution in term of morphology (surface organization), (ii) chemical composition (passive layer, adsorbed organic species) and (iii) chemical reaction (oxidation, dissolution, effect of enzyme). Finally, a new enzymatic system is proposed to mimic specific physicochemical conditions at the SS / bio-film interface, in particular enzymatic generation of oxidant species in

  12. Atomic Layer Deposition of Hafnium(IV) Oxide on Graphene Oxide: Probing Interfacial Chemistry and Nucleation by using X-ray Absorption and Photoelectron Spectroscopies.

    Science.gov (United States)

    Alivio, Theodore E G; De Jesus, Luis R; Dennis, Robert V; Jia, Ye; Jaye, Cherno; Fischer, Daniel A; Singisetti, Uttam; Banerjee, Sarbajit

    2015-07-27

    Interfacing graphene with metal oxides is of considerable technological importance for modulating carrier density through electrostatic gating as well as for the design of earth-abundant electrocatalysts. Herein, we probe the early stages of the atomic layer deposition (ALD) of HfO 2 on graphene oxide using a combination of C and O K-edge near-edge X-ray absorption fine structure spectroscopies and X-ray photoelectron spectroscopy. Dosing with water is observed to promote defunctionalization of graphene oxide as a result of the reaction between water and hydroxyl/epoxide species, which yields carbonyl groups that further react with migratory epoxide species to release CO 2 . The carboxylates formed by the reaction of carbonyl and epoxide species facilitate binding of Hf precursors to graphene oxide surfaces. The ALD process is accompanied by recovery of the π-conjugated framework of graphene. The delineation of binding modes provides a means to rationally assemble 2D heterostructures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Self-Organized Fullerene Interfacial Layer for Efficient and Low-Temperature Processed Planar Perovskite Solar Cells with High UV-Light Stability.

    Science.gov (United States)

    Xie, Jiangsheng; Yu, Xuegong; Huang, Jiabin; Sun, Xuan; Zhang, Yunhai; Yang, Zhengrui; Lei, Ming; Xu, Lingbo; Tang, Zeguo; Cui, Can; Wang, Peng; Yang, Deren

    2017-08-01

    In this Communication, a self-organization method of [6,6]-phenyl-C61-butyric acid 2-((2-(dimethylamino)-ethyl) (methyl)amino)ethyl ester (PCBDAN) interlayer in between 6,6-phenyl C61-butyric acid methyl ester (PCBM) and indium tin oxide (ITO) has been proposed to improve the performance of N-I-P perovskite solar cells (PSCs). The introduction of self-organized PCBDAN interlayer can effectively reduce the work function of ITO and therefore eliminate the interface barrier between electron transport layer and electrode. It is beneficial for enhancing the charge extraction and decreasing the recombination loss at the interface. By employing this strategy, a highest power conversion efficiency of 18.1% has been obtained with almost free hysteresis. Furthermore, the N-I-P PSCs have excellent stability under UV-light soaking, which can maintain 85% of its original highest value after 240 h accelerated UV aging. This self-organization method for the formation of interlayer can not only simplify the fabrication process of low-cost PSCs, but also be compatible with the roll-to-roll device processing on flexible substrates.

  14. Anodic etching of GaN based film with a strong phase-separated InGaN/GaN layer: Mechanism and properties

    International Nuclear Information System (INIS)

    Gao, Qingxue; Liu, Rong; Xiao, Hongdi; Cao, Dezhong; Liu, Jianqiang; Ma, Jin

    2016-01-01

    Highlights: • GaN film with a strong phase-separated InGaN/GaN layer was etched by electrochemical etching. • Vertically aligned nanopores in n-GaN films were buried underneath the InGaN/GaN structures. • The relaxation of compressive stress in the MQW structure was found by PL and Raman spectra. - Abstract: A strong phase-separated InGaN/GaN layer, which consists of multiple quantum wells (MQW) and superlattices (SL) layers and can produce a blue wavelength spectrum, has been grown on n-GaN thin film, and then fabricated into nanoporous structures by electrochemical etching method in oxalic acid. Scanning electron microscopy (SEM) technique reveals that the etching voltage of 8 V leads to a vertically aligned nanoporous structure, whereas the films etched at 15 V show branching pores within the n-GaN layer. Due to the low doping concentration of barriers (GaN layers) in the InGaN/GaN layer, we observed a record-low rate of etching (<100 nm/min) and nanopores which are mainly originated from the V-pits in the phase-separated layer. In addition, there exists a horizontal nanoporous structure at the interface between the phase-separated layer and the n-GaN layer, presumably resulting from the high transition of electrons between the barrier and the well (InGaN layer) at the interface. As compared to the as-grown MQW structure, the etched MQW structure exhibits a photoluminescence (PL) enhancement with a partial relaxation of compressive stress due to the increased light-extracting surface area and light-guiding effect. Such a compressive stress relaxation can be further confirmed by Raman spectra.

  15. Anodic etching of GaN based film with a strong phase-separated InGaN/GaN layer: Mechanism and properties

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qingxue [School of Physics, Shandong University, Jinan, 250100 (China); Liu, Rong [Department of Fundamental Theories, Shandong Institute of Physical Education and Sports, Jinan 250063 (China); Xiao, Hongdi, E-mail: hdxiao@sdu.edu.cn [School of Physics, Shandong University, Jinan, 250100 (China); Cao, Dezhong; Liu, Jianqiang; Ma, Jin [School of Physics, Shandong University, Jinan, 250100 (China)

    2016-11-30

    Highlights: • GaN film with a strong phase-separated InGaN/GaN layer was etched by electrochemical etching. • Vertically aligned nanopores in n-GaN films were buried underneath the InGaN/GaN structures. • The relaxation of compressive stress in the MQW structure was found by PL and Raman spectra. - Abstract: A strong phase-separated InGaN/GaN layer, which consists of multiple quantum wells (MQW) and superlattices (SL) layers and can produce a blue wavelength spectrum, has been grown on n-GaN thin film, and then fabricated into nanoporous structures by electrochemical etching method in oxalic acid. Scanning electron microscopy (SEM) technique reveals that the etching voltage of 8 V leads to a vertically aligned nanoporous structure, whereas the films etched at 15 V show branching pores within the n-GaN layer. Due to the low doping concentration of barriers (GaN layers) in the InGaN/GaN layer, we observed a record-low rate of etching (<100 nm/min) and nanopores which are mainly originated from the V-pits in the phase-separated layer. In addition, there exists a horizontal nanoporous structure at the interface between the phase-separated layer and the n-GaN layer, presumably resulting from the high transition of electrons between the barrier and the well (InGaN layer) at the interface. As compared to the as-grown MQW structure, the etched MQW structure exhibits a photoluminescence (PL) enhancement with a partial relaxation of compressive stress due to the increased light-extracting surface area and light-guiding effect. Such a compressive stress relaxation can be further confirmed by Raman spectra.

  16. Ellipsometry of anodic film growth

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.G.

    1978-08-01

    An automated computer interpretation of ellisometer measurements of anodic film growth was developed. Continuous mass and charge balances were used to utilize more fully the time dependence of the ellipsometer data and the current and potential measurements. A multiple-film model was used to characterize the growth of films which proceeds via a dissolution--precipitation mechanism; the model also applies to film growth by adsorption and nucleation mechanisms. The characteristic parameters for film growth describe homogeneous and heterogeneous crystallization rates, film porosities and degree of hydration, and the supersaturation of ionic species in the electrolyte. Additional descriptions which may be chosen are patchwise film formation, nonstoichiometry of the anodic film, and statistical variations in the size and orientation of secondary crystals. Theories were developed to describe the optical effects of these processes. An automatic, self-compensating ellipsometer was used to study the growth in alkaline solution of anodic films on silver, cadmium, and zinc. Mass-transport conditions included stagnant electrolyte and forced convection in a flow channel. Multiple films were needed to characterize the optical properties of these films. Anodic films grew from an electrolyte supersatuated in the solution-phase dissolution product. The degree of supersaturation depended on transport conditions and had a major effect on the structure of the film. Anodic reaction rates were limited by the transport of charge carriers through a primary surface layer. The primary layers on silver, zinc, and cadmium all appeared to be nonstoichiometric, containing excess metal. Diffusion coefficients, transference numbers, and the free energy of adsorption of zinc oxide were derived from ellipsometer measurements. 97 figures, 13 tables, 198 references.

  17. Anodization and Optical Appearance of Sputter Deposited Al-Zr Coatings

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Canulescu, Stela; Shabadi, Rajashekhara

    2014-01-01

    Anodized Al alloy components are extensively used in various applications like architectural, decorative and automobiles for corrosion protection and/or decorative optical appearance. However, tailoring the anodized layer for specific optical appearance is limited due to variation in composition...

  18. Plasma enhanced chemical vapor deposition of metalboride interfacial layers as diffusion barriers for nanostructured diamond growth on cobalt containing alloys CoCrMo and WC-Co

    Science.gov (United States)

    Johnston, Jamin M.

    This work is a compilation of theory, finite element modeling and experimental research related to the use of microwave plasma enhanced chemical vapor deposition (MPECVD) of diborane to create metal-boride surface coatings on CoCrMo and WC-Co, including the subsequent growth of nanostructured diamond (NSD). Motivation for this research stems from the need for wear resistant coatings on industrial materials, which require improved wear resistance and product lifetime to remain competitive and satisfy growing demand. Nanostructured diamond coatings are a promising solution to material wear but cannot be directly applied to cobalt containing substrates due to graphite nucleation. Unfortunately, conventional pre-treatment methods, such as acid etching, render the substrate too brittle. Thus, the use of boron in a MPECVD process is explored to create robust interlayers which inhibit carbon-cobalt interaction. Furthermore, modeling of the MPECVD process, through the COMSOL MultiphysicsRTM platform, is performed to provide insight into plasma-surface interactions using the simulation of a real-world apparatus. Experimental investigation of MPECVD boriding and NSD deposition was conducted at surface temperatures from 700 to 1100 °C. Several well-adhered metal-boride surface layers were formed: consisting of CoB, CrB, WCoB, CoB and/or W2CoB2. Many of the interlayers were shown to be effective diffusion barriers against elemental cobalt for improving nucleation and adhesion of NSD coatings; diamond on W2CoB2 was well adhered. However, predominantly WCoB and CoB phase interlayers suffered from diamond film delamination. Metal-boride and NSD surfaces were evaluated using glancing-angle x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), cross-sectional scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), micro-Raman spectroscopy, nanoindentation, scratch testing and epoxy pull testing. COMSOL MultiphysicsRTM was used to construct a

  19. FLUORINE CELL ANODE ASSEMBLY

    Science.gov (United States)

    Cable, R.E.; Goode, W.B. Jr.; Henderson, W.K.; Montillon, G.H.

    1962-06-26

    An improved anode assembly is deslgned for use in electrolytlc cells ln the productlon of hydrogen and fluorlne from a moIten electrolyte. The anode assembly comprises a copper post, a copper hanger supported by the post, a plurality of carbon anode members, and bolt means for clamplng half of the anode members to one slde of the hanger and for clamplng the other half of the anode members to the other slde of the hanger. The heads of the clamplng bolts are recessed withln the anode members and carbon plugs are inserted ln the recesses above the bolt heads to protect the boIts agalnst corroslon. A copper washer is provided under the head of each clamplng boIt such that the anode members can be tightly clamped to the hanger with a resultant low anode jolnt resistance. (AEC)

  20. Interfacial insertion of a poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) layer between the poly(3-hexyl thiophene) semiconductor and cross-linked poly(vinyl alcohol) insulator layer in organic field-effect transistors

    International Nuclear Information System (INIS)

    Cruz-Cruz, Isidro; Tavares, Ana C B; Hümmelgen, Ivo A; Reyes-Reyes, Marisol; López-Sandoval, Román

    2014-01-01

    The role of a thin layer of conductive poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT : PSS), inserted between the gate dielectric and the active layer in poly(3-hexylthiophene)-based transistors was investigated. The devices were fabricated in the bottom-gate top-contact geometry by using cross-linked poly(vinyl alcohol) as the dielectric, whereas the PEDOT : PSS layer was prepared by using an aged aqueous dispersion with addition of different amounts of dimethyl sulfoxide (DMSO) as a secondary dopant. Under these conditions, both a significant reduction in the number of electrically active traps at the interface with the semiconductor and an improvement in the field-effect mobility were obtained, whereas the low power consumption was preserved. The threshold voltage was also displaced by approximately −1 V. (paper)

  1. Bubble-Sheet-Like Interface Design with an Ultrastable Solid Electrolyte Layer for High-Performance Dual-Ion Batteries.

    Science.gov (United States)

    Qin, Panpan; Wang, Meng; Li, Na; Zhu, Haili; Ding, Xuan; Tang, Yongbing

    2017-05-01

    In this work, a bubble-sheet-like hollow interface design on Al foil anode to improve the cycling stability and rate performance of aluminum anode based dual-ion battery is reported, in which, a carbon-coated hollow aluminum anode is used as both anode materials and current collector. This anode structure can guide the alloying position inside the hollow nanospheres, and also confine the alloy sizes within the hollow nanospheres, resulting in significantly restricted volumetric expansion and ultrastable solid electrolyte interface (SEI). As a result, the battery demonstrates an excellent long-term cycling stability within 1500 cycles with ≈99% capacity retention at 2 C. Moreover, this cell displays an energy density of 169 Wh kg -1 even at high power density of 2113 W kg -1 (10 C, charge and discharge within 6 min), which is much higher than most of conventional lithium ion batteries. The interfacial engineering strategy shown in this work to stabilize SEI layer and control the alloy forming position could be generalized to promote the research development of metal anodes based battery systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Interfacial rheology: an overview of measuring techniques and its role in dispersions and electrospinning.

    Science.gov (United States)

    Pelipenko, Jan; Kristl, Julijana; Rošic, Romana; Baumgartner, Saša; Kocbek, Petra

    2012-06-01

    Interfacial rheological properties have yet to be thoroughly explored. Only recently, methods have been introduced that provide sufficient sensitivity to reliably determine viscoelastic interfacial properties. In general, interfacial rheology describes the relationship between the deformation of an interface and the stresses exerted on it. Due to the variety in deformations of the interfacial layer (shear and expansions or compressions), the field of interfacial rheology is divided into the subcategories of shear and dilatational rheology. While shear rheology is primarily linked to the long-term stability of dispersions, dilatational rheology provides information regarding short-term stability. Interfacial rheological characteristics become relevant in systems with large interfacial areas, such as emulsions and foams, and in processes that lead to a large increase in the interfacial area, such as electrospinning of nanofibers.

  3. Emulsions for interfacial filtration.

    Energy Technology Data Exchange (ETDEWEB)

    Grillet, Anne Mary; Bourdon, Christopher Jay; Souza, Caroline Ann; Welk, Margaret Ellen; Hartenberger, Joel David; Brooks, Carlton, F.

    2006-11-01

    We have investigated a novel emulsion interfacial filter that is applicable for a wide range of materials, from nano-particles to cells and bacteria. This technology uses the interface between the two immiscible phases as the active surface area for adsorption of targeted materials. We showed that emulsion interfaces can effectively collect and trap materials from aqueous solution. We tested two aqueous systems, a bovine serum albumin (BSA) solution and coal bed methane produced water (CBMPW). Using a pendant drop technique to monitor the interfacial tension, we demonstrated that materials in both samples were adsorbed to the liquid-liquid interface, and did not readily desorb. A prototype system was built to test the emulsion interfacial filter concept. For the BSA system, a protein assay showed a progressive decrease in the residual BSA concentration as the sample was processed. Based on the initial prototype operation, we propose an improved system design.

  4. Battery, especially for portable devices, has an anode containing silicon

    OpenAIRE

    Kan, S.Y.

    2002-01-01

    The anode (2) contains silicon. A battery with a silicon-containing anode is claimed. An Independent claim is also included for a method used to make the battery, comprising the doping of a silicon substrate (1) with charge capacity-increasing material (preferably boron, phosphorous or arsenic), etching the doped substrate layer in order to increase its porosity, and applying a cathode (3) in the form of a lithium oxide compound onto the resulting anode and applying an electrolyte (4) to the ...

  5. Single layers of WS2 nanoplates embedded in nitrogen-doped carbon nanofibers as anode materials for lithium-ion batteries

    Science.gov (United States)

    Yu, Sunmoon; Jung, Ji-Won; Kim, Il-Doo

    2015-07-01

    Single layers of WS2 nanoplates are uniformly embedded in nitrogen-doped carbon nanofibers (WS2@NCNFs) via a facile electrospinning method. Crystallization of the single-layered WS2 nanoplates and in situ nitrogen doping into the carbon nanofibers were simultaneously accomplished during a two-step heat treatment. The distinctive structure of the WS2@NCNFs enables outstanding electrochemical performances.Single layers of WS2 nanoplates are uniformly embedded in nitrogen-doped carbon nanofibers (WS2@NCNFs) via a facile electrospinning method. Crystallization of the single-layered WS2 nanoplates and in situ nitrogen doping into the carbon nanofibers were simultaneously accomplished during a two-step heat treatment. The distinctive structure of the WS2@NCNFs enables outstanding electrochemical performances. Electronic supplementary information (ESI) available: Experimental section, SEM images of WS2 powder and ground WS2 powder, TEM image and SAED pattern of the WS2 powder, Raman spectra of the WS2 powder, CV curves of the WS2 powder, voltage profiles of the WS2 powder, schematic diagram of WS2@NCNFs undergoing lithium storage reactions, electrochemical performance of NCNFs, morphologies and EDS mapping of WS2@NCNFs after cycling, and a table of contributions of NCNFs to the specific capacity. See DOI: 10.1039/c5nr02425k

  6. Enhanced photocatalytic activity of hydrogenated and vanadium doped TiO2 nanotube arrays grown by anodization of sputtered Ti layers

    Science.gov (United States)

    Motola, Martin; Satrapinskyy, Leonid; Čaplovicová, Mária; Roch, Tomáš; Gregor, Maroš; Grančič, Branislav; Greguš, Ján; Čaplovič, Ľubomír; Plesch, Gustav

    2018-03-01

    TiO2 nanotube (TiNT) arrays were grown on silicon substrate via electrochemical anodization of titanium films sputtered by magnetron. To improve the photocatalytic activity of arrays annealed in air (o-TiNT), doping of o-TiNT with vanadium was performed (o-V/TiNT). These non-doped and doped TiNT arrays were also hydrogenated in H2/Ar atmosphere to r-TiNT and r-V/TiNT samples, respectively. Investigation of composition and morphology by X-ray diffraction (XRD), electron microscopy (SEM and TEM) and X-ray photoelectron spectroscopy (XPS) showed the presence of well-ordered arrays of anatase nanotubes with average diameter and length of 100 nm and 1.3 μm, respectively. In both oxidized and reduced V-doped samples, vanadium is partly dissolved in the structure of anatase and partly deposited in form of oxide on the nanotube surface. Vanadium-doped and reduced samples exhibited higher rates in the photodegradation of organic dyes (compared to non-modified o-TiNT sample) and this is caused by limitation of electron-hole recombination rates and by shift of the energy gap into visible region. The photocatalytic activity was measured under UV, sunlight and visible irradiation, and the corresponding efficiency increased in the order (o-TiNT) < (r-TiNT) < (o-V/TiNT) < (r-V/TiNT). Under visible light, only r-TiNT and r-V/TiNT showed significant photocatalytic activity.

  7. Probing Interfacial Water on Nanodiamonds in Colloidal Dispersion.

    Science.gov (United States)

    Petit, Tristan; Yuzawa, Hayato; Nagasaka, Masanari; Yamanoi, Ryoko; Osawa, Eiji; Kosugi, Nobuhiro; Aziz, Emad F

    2015-08-06

    The structure of interfacial water layers around nanoparticles dispersed in an aqueous environment may have a significant impact on their reactivity and on their interaction with biological species. Using transmission soft X-ray absorption spectroscopy in liquid, we demonstrate that the unoccupied electronic states of oxygen atoms from water molecules in aqueous colloidal dispersions of nanodiamonds have a different signature than bulk water. X-ray absorption spectroscopy can thus probe interfacial water molecules in colloidal dispersions. The impacts of nanodiamond surface chemistry and concentration on interfacial water electronic signature are discussed.

  8. Interfacial reactions in lithium batteries

    Science.gov (United States)

    Chen, Zonghai; Amine, Rachid; Ma, Zi-Feng; Amine, Khalil

    2017-08-01

    The lithium-ion battery was first commercially introduced by Sony Corporation in 1991 using LiCoO2 as the cathode material and mesocarbon microbeads (MCMBs) as the anode material. After continuous research and development for 25 years, lithium-ion batteries have been the dominant energy storage device for modern portable electronics, as well as for emerging applications for electric vehicles and smart grids. It is clear that the success of lithium-ion technologies is rooted to the existence of a solid electrolyte interphase (SEI) that kinetically suppresses parasitic reactions between the lithiated graphitic anodes and the carbonate-based non-aqueous electrolytes. Recently, major attention has been paid to the importance of a similar passivation/protection layer on the surface of cathode materials, aiming for a rational design of high-energy-density lithium-ion batteries with extended cycle/calendar life. In this article, the physical model of the SEI, as well as recent research efforts to understand the nature and role of the SEI are summarized, and future perspectives on this important research field will also be presented.

  9. Electrometallurgy of copper refinery anode slimes

    Science.gov (United States)

    Scott, J. D.

    1990-08-01

    High-selenium copper refinery anode slimes form two separate and dynamically evolving series of compounds with increasing electrolysis time. In one, silver is progressively added to non-stoichiometric copper selenides, both those originally present in the anode and those formed subsequently in the slime layer, and in the other, silver-poor copper selenides undergo a dis-continuous crystallographic sequence of anodic-oxidative transformations. The silver-to-selenium molar ratio in the as-cast anode and the current density of electrorefining can be used to construct predominance diagrams for both series and, thus, to predict the final bulk “mineralogy” of the slimes. Although totally incorrect in detail, these bulk data are sufficiently accurate to provide explanations for several processing problems which have been experienced by Kidd Creek Division, Falconbridge Ltd., in its commercial tankhouse. They form the basis for a computer model which predicts final cathode quality from chemical analyses of smelter feed.

  10. Performance evaluation of platinum-molybdenum carbide nanocatalysts with ultralow platinum loading on anode and cathode catalyst layers of proton exchange membrane fuel cells

    Science.gov (United States)

    Saha, Shibely; Cabrera Rodas, José Andrés; Tan, Shuai; Li, Dongmei

    2018-02-01

    An alternative catalyst platform, consisting of a phase-pure transition carbide (TMC) support and Pt nanoparticles (NPs) in the range of subnanometer to idealized disk electrode screening tests, few to none have been applied in a realistic fuel cell membrane electrode assembly (MEA). We recently reported that β-Mo2C hollow nanotubes modified with Pt NPs via atomic layer deposition (ALD) possess better activity and durability than 20% Pt/C. This paper presents systematic evaluation of the Pt/Mo2C catalysts in a MEA, investigating effects of different MEA preparation techniques, gas diffusion layers (GDL) and various Pt loadings in the ultralow range (hydrogen (H2) and oxygen (O2). Accelerated degradation tests (ADT) on Pt/Mo2C catalysts show 111% higher power density than commercial 20% Pt/C after the vigorous ADT.

  11. First-Principles Study of Phosphorene and Graphene Heterostructure as Anode Materials for Rechargeable Li Batteries.

    Science.gov (United States)

    Guo, Gen-Cai; Wang, Da; Wei, Xiao-Lin; Zhang, Qi; Liu, Hao; Lau, Woon-Ming; Liu, Li-Min

    2015-12-17

    There is a great desire to develop the high-efficient anodes materials for Li batteries, which require not only large capacity but also high stability and mobility. In this work, the phosphorene/graphene heterostructure (P/G) was carefully explored based on first-principles calculations. The binding energy of Li on the pristine phosphorene is relatively weak (within 1.9 eV), whereas the phosphorene/graphene heterostructure (P/G) can greatly improve the binding energy (2.6 eV) without affecting the high mobility of Li within the layers. The electronic structures show that the large Li adsorption energy and fast diffusion ability of the P/G origin from the interfacial synergy effect. Interestingly, the P/G also displays ultrahigh stiffness (Cac = 350 N/m, Czz = 464 N/m), which can effectively avoid the distortion of the pristine phosphorene after the insertion of lithium. Thus, P/G can greatly enhance the cycle life of the battery. Owing to the high capacity, good conductivity, excellent Li mobility, and ultrahigh stiffness, P/G is a very promising anode material in Li-ion batteries (LIBs).

  12. Multi-functional integration of pore P25@C@MoS{sub 2} core-double shell nanostructures as robust ternary anodes with enhanced lithium storage properties

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Biao [School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350 (China); Zhao, Naiqin [School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350 (China); Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin 300072 (China); Wei, Chaopeng; Zhou, Jingwen; He, Fang; Shi, Chunsheng; He, Chunnian [School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350 (China); Liu, Enzuo, E-mail: ezliu@tju.edu.cn [School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350 (China); Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin 300072 (China)

    2017-04-15

    Highlights: • P25@carbon supported MoS{sub 2} composite was prepared by a one-step process. • The distribution and interaction of C, MoS{sub 2} and TiO{sub 2} are systematically examined. • The enjoyable features of the three components are complementarily integrated. • The smart ternary electrode exhibits excellent cycling stability and rate capability. - Abstract: Ternary anodes have attracted more and more attention due to the characteristic advantages resulting from the effect integration of three different materials on the lithium storage mechanism with functional interfaces interaction. However, clarifying the distribution and interaction of carbon, MoS{sub 2} and TiO{sub 2} in the MoS{sub 2}/C/TiO{sub 2} composite, which is helpful for the understanding of the formation and lithium storage mechanism of the ternary anodes, is a well-known challenge. Herein, a novel pore core-double shell nanostructure of P25@carbon network supported few-layer MoS{sub 2} nanosheet (P25@C@FL-MoS{sub 2}) is successfully synthesized by a one-pot hydrothermal approach. The distribution and interaction of the carbon, MoS{sub 2} and TiO{sub 2} in the obtained P25@C@FL-MoS{sub 2} hybrid are systematically characterized by transmission electron microscopy, Raman spectra and X-ray photoelectron spectroscopy analysis et al. It is found that the carbon serves as binder, which supports few-layer MoS{sub 2} shell and coats the P25 core via Ti−O−C bonds at the same time. Such multi-functional integration with smart structure and strong interfacial contact generates favorable structure stability and interfacial pseudocapacity-like storage mechanism. As a consequence, superior cycling and rate capacity of the muti-functional integration ternary P25@C@FL-MoS{sub 2} anode are achieved.

  13. Synthesis and characterization of 10%Gd doped ceria (GDC) deposited on NiO-GDC anode-grade-ceramic substrate as half cell for IT-SOFC

    DEFF Research Database (Denmark)

    Chourashiya, M. G.; Jadhav, L. D.

    2011-01-01

    with their interfacial-quality. By optimization of preparative parameters of SPT and modification of surface of anode-grade ceramic substrate, we were able to prepare the GDC films having thickness of the order of 13 μm on NiO-GDC substrate. Further to improve the interfacial quality and densification of film, annealing...

  14. Arc attachment at HID anodes: measurements and interpretation

    International Nuclear Information System (INIS)

    Redwitz, M; Dabringhausen, L; Lichtenberg, S; Langenscheidt, O; Heberlein, J; Mentel, J

    2006-01-01

    Anodes for high intensity discharge lamps made of cylindrical tungsten rods and the plasma in front of them are investigated in a special lamp filled with argon and other noble gases at pressures of 0.1-1 MPa. The arc attachment on these anodes takes place in a constricted mode. The temperature is measured pyrometrically along the electrode axis and the anode fall electrically. The electron temperature, T e , and the electron density, n e , within the anodic boundary layer are determined spectroscopically with high spatial resolution. It is found that the power input into the anode increases nearly linearly with the arc current. The proportionality constant is mainly determined by the work function of the electrode material and T e but is independent of the electrically measured anode fall and scarcely dependent on the electrode dimensions. The constriction is more pronounced in cold anodes, with maxima of T e and n e in front of the electrode surface, than on hot anodes with thermionic electron emission and vaporization of the electrode material. The distances of the T e - and n e -maxima from the anode surface are increased and T e is reduced in front of the anode with increasing anode temperature. The experimental findings may be explained by a model of the anodic boundary layer consisting of a thin sheath in front of the surface and a more extended constriction zone. The current and voltage are anti-parallel within the sheath. The power which is needed to sustain the sheath is supplied by an enhanced electrical power input into the constriction zone

  15. Layered Lepidocrocite Type Structure Isolated by Revisiting the Sol–Gel Chemistry of Anatase TiO 2 : A New Anode Material for Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jiwei [Sorbonne Universités,; Reeves, Kyle G. [Sorbonne Universités,; Porras Gutierrez, Ana-Gabriela [Sorbonne Universités,; Body, Monique [Université; Legein, Christophe [Université; Kakinuma, Katsuyoshi [Fuel; Borkiewicz, Olaf J. [X-ray; Chapman, Karena W. [X-ray; Groult, Henri [Sorbonne Universités,; Salanne, Mathieu [Sorbonne Universités,; Réseau; Dambournet, Damien [Sorbonne Universités,; Réseau

    2017-09-19

    Searches for new electrode materials for batteries must comply on financial and environmental costs to be useful in practical devices. The sol-gel chemistry has been widely used to design and implemented new concepts for the emergence of advanced materials such as hydride organic-inorganic composites. Here, we show that the simple reaction system including titanium alkoxide and water can be used to stabilize a new class of electrode materials. By investigating the crystallization path of anatase TiO2, an X-ray amorphous intermediate phase has been identified whose local structure probed by the pair distribution function, 1H solid-state NMR and DFT calculations, consists of a layered-type structure as found in the lepido-crocite. This phase presents the following general formula Ti2-xxO4-4x(OH)4x.nH2O (x ~ 0.5) where the substitution of oxide by hydroxide anions leads to the formation of titanium vacancies (•) and H2O molecules are located in interlayers. Solid-state 1H NMR has enabled to characterize three main hydroxide environments that are Ti⟂-OH, Ti22-OH and Ti3⟂-OH and layered H2O molecules. The electrochemical properties of this phase were further investigated versus lithium and is shown to be very promising with reversible capacities of around 200 mAh.g-1 and an operating voltage of 1.55 V. We further showed that the lithium intercalation proceeds via a solid-solution mechanism. 7Li solid-state NMR and DFT calculations allowed to identify lithium host sites that are located at the titanium vacancies and interlayer space with lithium being solvated by structural water molecules. The easy fabrication, the absence of lithium and easier recycling and the encouraging properties makes this class of materials very attractive for competitive electrodes for batteries. We thus demonstrate that the revisit of an “old” chemistry with

  16. Anodized dental implant surface

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Mishra

    2017-01-01

    Full Text Available Purpose: Anodized implants with moderately rough surface were introduced around 2000. Whether these implants enhanced biologic effect to improve the environment for better osseointegration was unclear. The purpose of this article was to review the literature available on anodized surface in terms of their clinical success rate and bone response in patients till now. Materials and Methods: A broad electronic search of MEDLINE and PubMed databases was performed. A focus was made on peer-reviewed dental journals. Only articles related to anodized implants were included. Both animal and human studies were included. Results: The initial search of articles resulted in 581 articles on anodized implants. The initial screening of titles and abstracts resulted in 112 full-text papers; 40 animal studies, 16 studies on cell adhesion and bacterial adhesion onto anodized surfaced implants, and 47 human studies were included. Nine studies, which do not fulfill the inclusion criteria, were excluded. Conclusions: The long-term studies on anodized surface implants do favor the surface, but in most of the studies, anodized surface is compared with that of machined surface, but not with other surfaces commercially available. Anodized surface in terms of clinical success rate in cases of compromised bone and immediately extracted sockets has shown favorable success.

  17. Modeling of anodic dissolution of U Pu Zr ternary alloy in the molten LiCl KCl electrolyte

    Science.gov (United States)

    Iizuka, Masatoshi; Kinoshita, Kensuke; Koyama, Tadafumi

    2005-02-01

    The metallic fuel anode in the molten salt electrorefining step for the pyrometallurgical reprocessing was modeled based on the findings from the anodic dissolution tests using a U Pu Zr ternary alloy. This anode model simulates selective dissolution of uranium and plutonium at lower anode potential, growth of a diffusion controlling layer consisting of a mixture of the molten salt electrolyte and the remaining zirconium metal, and simultaneous dissolution of all the constituents at higher anode potential. The calculation with this model reproduced well the actual anodic behavior of the U Pu Zr ternary alloy such as two-step rapid rise in the anode potential.

  18. Interfacial phase-change memory.

    Science.gov (United States)

    Simpson, R E; Fons, P; Kolobov, A V; Fukaya, T; Krbal, M; Yagi, T; Tominaga, J

    2011-07-03

    Phase-change memory technology relies on the electrical and optical properties of certain materials changing substantially when the atomic structure of the material is altered by heating or some other excitation process. For example, switching the composite Ge(2)Sb(2)Te(5) (GST) alloy from its covalently bonded amorphous phase to its resonantly bonded metastable cubic crystalline phase decreases the resistivity by three orders of magnitude, and also increases reflectivity across the visible spectrum. Moreover, phase-change memory based on GST is scalable, and is therefore a candidate to replace Flash memory for non-volatile data storage applications. The energy needed to switch between the two phases depends on the intrinsic properties of the phase-change material and the device architecture; this energy is usually supplied by laser or electrical pulses. The switching energy for GST can be reduced by limiting the movement of the atoms to a single dimension, thus substantially reducing the entropic losses associated with the phase-change process. In particular, aligning the c-axis of a hexagonal Sb(2)Te(3) layer and the 〈111〉 direction of a cubic GeTe layer in a superlattice structure creates a material in which Ge atoms can switch between octahedral sites and lower-coordination sites at the interface of the superlattice layers. Here we demonstrate GeTe/Sb(2)Te(3) interfacial phase-change memory (IPCM) data storage devices with reduced switching energies, improved write-erase cycle lifetimes and faster switching speeds.

  19. Anodic oxidation of InP in pure water

    International Nuclear Information System (INIS)

    Robach, Y.; Joseph, J.; Bergignat, E.; Hollinger, G.

    1989-01-01

    It is shown that thin InP native oxide films can be grown by anodization of InP in pure water. An interfacial phosphorus-rich In(PO 3 ) 3 -like condensed phosphate is obtained this way. This condensed phosphate has good passivating properties and can be used in electronic device technology. The chemical composition of these native oxides was found similar to that of an anodic oxide grown in an anodization in glycol and water (AGW) electrolyte. From the similarity between the two depth profiles observed in pure water and AGW electrolyte, they can conclude that dissolution phenomena do not seem to play a major role. The oxide growth seems to be controlled by the drift of ionic species under the electric field

  20. Anodic oxidation of Ta/Fe alloys

    International Nuclear Information System (INIS)

    Mato, S.; Alcala, G.; Thompson, G.E.; Skeldon, P.; Shimizu, K.; Habazaki, H.; Quance, T.; Graham, M.J.; Masheder, D.

    2003-01-01

    The behaviour of iron during anodizing of sputter-deposited Ta/Fe alloys in ammonium pentaborate electrolyte has been examined by transmission electron microscopy, Rutherford backscattering spectroscopy, glow discharge optical emission spectroscopy and X-ray photoelectron spectroscopy. Anodic films on Ta/1.5 at.% Fe, Ta/3 at.% Fe and Ta/7 at.% Fe alloys are amorphous and featureless and develop at high current efficiency with respective formation ratios of 1.67, 1.60 and 1.55 nm V -1 . Anodic oxidation of the alloys proceeds without significant enrichment of iron in the alloy in the vicinity of the alloy/film interface and without oxygen generation during film growth, unlike the behaviour of Al/Fe alloys containing similar concentrations of iron. The higher migration rate of iron species relative to that of tantalum ions leads to the formation of an outer iron-rich layer at the film surface

  1. Porous Co3O4 nanofibers surface-modified by reduced graphene oxide as a durable, high-rate anode for lithium ion battery

    International Nuclear Information System (INIS)

    Hu, Renzong; Zhang, Houpo; Bu, Yunfei; Zhang, Hanyin; Zhao, Bote; Yang, Chenghao

    2017-01-01

    Here we report our findings in synthesis and characterization of porous Co 3 O 4 nanofibers coated with a surface-modification layer, reduced graphene oxide. The unique porous Co 3 O 4 @rGO architecture enables efficient stress relaxation and fast Li + ions and electron transport during discharge/charge cycling. When tested in a half cell, the Co 3 O 4 @rGO electrodes display high Coulombic efficiency, enhanced cyclic stability, and high rate capability (∼900 mAh/g at 1A/g, and ∼600 mAh/g at 5 A/g). The high capacity is contributed by a stable capacity yielded from reversible conversion reactions above 0.8 V vs. Li/Li + , and a increasing capacity induced by the electrolyte decomposition and interfacial storage between 0.8 0.01 V during discahrge. A full cell constructed from a Co 3 O 4 @rGO anode and a LiMn 2 O 4 cathode delivers good capacity retention with operation voltage of ∼2.0 V. These performances are better than those of other full cells using alloy or metal oxide anodes. Our work is a preliminary attempt for practicality of high capacity metal oxide anodes in Li-ion batteries used for the electronic devices.

  2. Measuring Interfacial Polymerization Kinetics Using Microfluidic Interferometry.

    Science.gov (United States)

    Nowbahar, Arash; Mansard, Vincent; Mecca, Jodi M; Paul, Mou; Arrowood, Tina; Squires, Todd M

    2018-03-07

    A range of academic and industrial fields exploit interfacial polymerization in producing fibers, capsules, and films. Although widely used, measurements of reaction kinetics remain challenging and rarely reported, due to film thinness and reaction rapidity. Here, polyamide film formation is studied using microfluidic interferometry, measuring monomer concentration profiles near the interface during the reaction. Our results reveal that the reaction is initially controlled by a reaction-diffusion boundary layer within the organic phase, which allows the first measurements of the rate constant for this system.

  3. Anode Support Creep

    DEFF Research Database (Denmark)

    2015-01-01

    Initial reduction temperature of an SOC is kept higher than the highest intended operation temperature of the SOC to keep the electrolyte under compression by the Anode Support at all temperatures equal to and below the maximum intended operation temperature.......Initial reduction temperature of an SOC is kept higher than the highest intended operation temperature of the SOC to keep the electrolyte under compression by the Anode Support at all temperatures equal to and below the maximum intended operation temperature....

  4. Liquid Silicon Pouch Anode

    Science.gov (United States)

    2017-09-06

    collector 18 can be made from nickel; however, other high conductivity metals and alloys can be used for this such as gold, silver , platinum, alloys of...The conductive particles can be carbon such as carbon black or graphite. These particles can also be metals such as copper, nickel, silver , gold...anode cycling characteristics, higher battery capacity, and longer cycle life. [0005] Rechargeable batteries with lithium metal anodes have been

  5. A comparative study regarding effects of interfacial ferroelectric ...

    Indian Academy of Sciences (India)

    A comparative study regarding effects of interfacial ferroelectric. Bi4Ti3O12 (BTO) layer on electrical characteristics of Au/n-Si structures. M YILDIRIM and M GÖKÇEN. ∗. Department of Physics, Faculty of Arts & Science, Düzce University, 81620 Düzce, Turkey. MS received 11 July 2012; revised 7 January 2013. Abstract.

  6. Synthesis of exfoliated PA66 nanocomposites via interfacial ...

    Indian Academy of Sciences (India)

    Nanocomposites of polyamide 66 (PA66) with layered silicate and silica (SiO2) nanoparticles were prepared via in situ interfacial polycondensation method. Hexamethylenediamine (HDMA) and adipoyl chloride(AdCl) were reacted in a two-phase media. Montmorillonite (NaMMT) and silica nanoparticles were added to ...

  7. Synthesis of exfoliated PA66 nanocomposites via interfacial ...

    Indian Academy of Sciences (India)

    et al [5] prepared polyamide reverse osmosis (RO) mem- branes by interfacial polymerization of trimesoylchloride. (TMC) and m-phenylenediamine (MPD) monomers over a polyethersulfone (PES) support layer. They evaluated the separation performance of the fabricated thin film compos- ite (TFC) membranes by a cross ...

  8. Exploring As-Cast PbCaSn-Mg Anodes for Improved Performance in Copper Electrowinning

    Science.gov (United States)

    Yuwono, Jodie A.; Clancy, Marie; Chen, Xiaobo; Birbilis, Nick

    2018-03-01

    Lead calcium tin (PbCaSn) alloys are the common anodes used in copper electrowinning (Cu EW). Given a large amount of energy consumed in Cu EW process, anodes with controlled oxygen evolution reaction (OER) kinetics and a lower OER overpotential are advantageous for reducing the energy consumption. To date, magnesium (Mg) has never been studied as an alloying element for EW anodes. As-cast PbCaSn anodes with the addition of Mg were examined herein, revealing an improved performance compared to that of the industrial standard PbCaSn anode. The alloy performances in the early stages of anode life and passivation were established from electrochemical studies which were designed to simulate industrial Cu EW process. The 24-hour polarization testing revealed that the Mg alloying depolarizes the anode potential up to 80 mV; thus, resulting in a higher Cu EW efficiency. In addition, scanning electron microscopy and X-ray photoelectron spectroscopy revealed that the alteration of the alloy microstructure and the corresponding interfacial reactions contribute to the changes of the anode electrochemical performances. The present study reveals for the first time the potency of Mg alloying in reducing the overpotential of PbCaSn anode.

  9. Quantitative relationship between nanotube length and anodizing current during constant current anodization

    International Nuclear Information System (INIS)

    Zhang, Yulian; Cheng, Weijie; Du, Fei; Zhang, Shaoyu; Ma, Weihua; Li, Dongdong; Song, Ye; Zhu, Xufei

    2015-01-01

    Highlights: • Ti anodization was performed by constant current rather than constant voltage. • The nanotube length was controlled by ionic current rather than dissolution current. • Electronic current can be estimated by the nanotube length and the anodizing current. • Dissolution reaction hardly contributes electric current across the barrier layer. - Abstract: The growth kinetics of anodic TiO 2 nanotubes (ATNTs) still remains unclear. ATNTs are generally fabricated under potentiostatic conditions rather than galvanostatic ones. The quantitative relationship between nanotube length and anodizing current (J total ) is difficult to determine, because the variable J total includes ionic current (J ion ) (also called oxide growth current J grow =J ion ) and electronic current (J e ), which cannot be separated from each other. One successful approach to achieve this objective is to use constant current anodization rather than constant voltage anodization, that is, through quantitative comparison between the nanotube length and the known J total during constant current anodization, we can estimate the relative magnitudes of J grow and J e . The nanotubes with lengths of 1.24, 2.23, 3.51 and 4.70 μm, were formed under constant currents (J total ) of 15, 20, 25 and 30 mA, respectively. The relationship between nanotube length (y) and anodizing current (x =J total =J grow +J e ) can be expressed by a fitting equation: y=0.23(x-10.13), from which J grow (J grow = x -10.13) and J e (∼10.13 mA) could be inferred under the present conditions. Meanwhile, the same conclusion could also be deduced from the oxide volume data. These results indicate that the nanotube growth is attributed to the oxide growth current rather than the dissolution current.

  10. Improvement in direct methanol fuel cell performance by treating the anode at high anodic potential

    Science.gov (United States)

    Joghee, Prabhuram; Pylypenko, Svitlana; Wood, Kevin; Corpuz, April; Bender, Guido; Dinh, Huyen N.; O'Hayre, Ryan

    2014-01-01

    This work investigates the effect of a high anodic potential treatment protocol on the performance of a direct methanol fuel cell (DMFC). DMFC membrane electrode assemblies (MEAs) with PtRu/C (Hi-spec 5000) anode catalyst are subjected to anodic treatment (AT) at 0.8 V vs. DHE using potentiostatic method. Despite causing a slight decrease in the electrochemical surface area (ECSA) of the anode, associated with ruthenium dissolution, AT results in significant improvement in DMFC performance in the ohmic and mass transfer regions and increases the maximum power density by ∼15%. Furthermore, AT improves the long-term DMFC stability by reducing the degradation of the anode catalyst. From XPS investigation, it is hypothesized that the improved performance of AT-treated MEAs is related to an improved interface between the catalyst and Nafion ionomer. Among potential explanations, this improvement may be caused by incorporation of the ionomer within the secondary pores of PtRu/C agglomerates, which generates a percolating network of ionomer between PtRu/C agglomerates in the catalyst layer. Furthermore, the decreased concentration of hydrophobic CF2 groups may help to enhance the hydrophilicity of the catalyst layer, thereby increasing the accessibility of methanol and resulting in better performance in the high current density region.

  11. Cold welding of organic light emitting diode: Interfacial and contact models

    Directory of Open Access Journals (Sweden)

    J. Asare

    2016-06-01

    Full Text Available This paper presents the results of an analytical and computational study of the contacts and interfacial fracture associated with the cold welding of Organic Light Emitting diodes (OLEDs. The effects of impurities (within the possible interfaces are explored for contacts and interfacial fracture between layers that are relevant to model OLEDs. The models are used to study the effects of adhesion, pressure, thin film layer thickness and dust particle modulus (between the contacting surfaces on contact profiles around impurities between cold-welded thin films. The lift-off stage of thin films (during cold welding is then modeled as an interfacial fracture process. A combination of adhesion and interfacial fracture theories is used to provide new insights for the design of improved contact and interfacial separation during cold welding. The implications of the results are discussed for the design and fabrication of cold welded OLED structures.

  12. Impact of air exposure and surface chemistry on Li-Li7La3Zr2O12 interfacial resistance

    Energy Technology Data Exchange (ETDEWEB)

    Sharafi, Asma [Univ. of Michigan, Ann Arbor, MI (United States); Yu, Seungho [Univ. of Michigan, Ann Arbor, MI (United States); Naguib, Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Marcus [Univ. of Michigan, Ann Arbor, MI (United States); Ma, Cheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meyer, Harry M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nanda, Jagjit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chi, Maiofang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Siegel, Donald J. [Univ. of Michigan, Ann Arbor, MI (United States); Sakamoto, Jeff [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-06-15

    Li7La3Zr2O12 (LLZO) is a promising solid-state electrolyte that could enable solid-state-batteries (SSB) employing metallic Li anodes. For a SSB to be viable, the stability and charge transfer kinetics at the Li–LLZO interface should foster facile plating and stripping of Li. Contrary to these goals, recent studies have reported high Li–LLZO interfacial resistance which was attributed to a contamination layer that forms upon exposure of LLZO to air. This study clarifies the mechanisms and consequences associated with air exposure of LLZO; additionally, strategies to minimize these effects are described. First-principles calculations reveal that LLZO readily reacts with humid air; the most favorable reaction pathway involves protonation of LLZO and formation of Li2CO3. X-ray photoelectron spectroscopy, scanning electron microscopy, Raman spectroscopy, and transmission electron microscopy were used to characterize the surface and subsurface chemistry of LLZO as a function of relative humidity and exposure time. Additionally, electrochemical impedance spectroscopy was used to measure the Li–LLZO interfacial resistance as a function of surface contamination. These data indicate that air exposure-induced contamination impacts the interfacial resistance significantly, when exposure time exceeds 24 h. The results of this study provide valuable insight into the sensitivity of LLZO to air and how the effects of air contamination can be reversed.

  13. Interfacial Instabilities in Evaporating Drops

    Science.gov (United States)

    Moffat, Ross; Sefiane, Khellil; Matar, Omar

    2007-11-01

    We study the effect of substrate thermal properties on the evaporation of sessile drops of various liquids. An infra-red imaging technique was used to record the interfacial temperature. This technique illustrates the non-uniformity in interfacial temperature distribution that characterises the evaporation process. Our results also demonstrate that the evaporation of methanol droplets is accompanied by the formation of wave-trains in the interfacial temperature field; similar patterns, however, were not observed in the case of water droplets. More complex patterns are observed for FC-72 refrigerant drops. The effect of substrate thermal conductivity on the structure of the complex pattern formation is also elucidated.

  14. Interfacial characteristics of Biodentine and MTA with dentine in simulated body fluid.

    Science.gov (United States)

    Kim, Jong Ryul; Nosrat, Ali; Fouad, Ashraf F

    2015-02-01

    Newer tricalcium silicate cements (TSC) may offer biocompatibility with improved working properties. This study aimed to evaluate: (1) the occurrence of mineral deposition at the interface between dentine and two TSC (ProRoot(®) MTA and Biodentine(®)) in simulated body fluid, and (2) to investigate the nature of interfacial layer. Six root dentine segments of 1.5mm thickness were obtained from extracted human teeth and were instrumented with Gates-Glidden drills. The specimens were then randomly filled with either MTA or Biodentine. The specimens were placed in the simulated body fluid containing the same phosphate concentration as blood plasma. After 4 weeks, the specimens were examined with Scanning Electron Microscope (SEM) and Energy Disperse X-ray Spectroscopy (EDX) to measure the thickness of the interfacial layer and Ca/P ratio. Transmission Electron Microscope (TEM) and Selective Area Electron Diffraction (SAED) were conducted to examine the interface ultramicroscopically and to determine the nature of the crystalline structure within interfacial layer. The thickness of interfacial layer was significantly higher in the MTA group (14.5 μm vs 4.8 μm) (pBiodentine in Ca/P ratio of interfacial layer (4.1 vs 2.7) (p>0.05). From TEM examination, amorphous calcium phosphate (ACP) was observed in the interface along with the surface of dentine. As an alternative to MTA, Biodentine displayed bioactivity by producing an interfacial layer on the root canal dentine even though its thickness was significantly lower than MTA. ACP was observed in the interfacial layer of both biomaterials. Biodentine could be considered as an alternative to MTA due to comparable bioactivity which creates interfacial layer between root canal dentin and Biodentine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Fuel cell anode configuration for CO tolerance

    Science.gov (United States)

    Uribe, Francisco A.; Zawodzinski, Thomas A.

    2004-11-16

    A polymer electrolyte fuel cell (PEFC) is designed to operate on a reformate fuel stream containing oxygen and diluted hydrogen fuel with CO impurities. A polymer electrolyte membrane has an electrocatalytic surface formed from an electrocatalyst mixed with the polymer and bonded on an anode side of the membrane. An anode backing is formed of a porous electrically conductive material and has a first surface abutting the electrocatalytic surface and a second surface facing away from the membrane. The second surface has an oxidation catalyst layer effective to catalyze the oxidation of CO by oxygen present in the fuel stream where at least the layer of oxidation catalyst is formed of a non-precious metal oxidation catalyst selected from the group consisting of Cu, Fe, Co, Tb, W, Mo, Sn, and oxides thereof, and other metals having at least two low oxidation states.

  16. Manufacturing of anode supported SOFCs: Processing parameters and their influence

    DEFF Research Database (Denmark)

    Ramousse, Severine; Menon, Mohan; Brodersen, Karen

    2007-01-01

    The establishment of low cost, highly reliable and reproducible manufacturing processes has been focused for commercialization of SOFC technology. A major challenge in the production chain is the manufacture of anode-supported planar SOFC's single cells in which each layer in a layered structure...

  17. Contrastive study of anodic oxidation on carbon fibers and graphite fibers

    International Nuclear Information System (INIS)

    Liu Xin; Yang Changling; Lu Yonggen

    2012-01-01

    Anodic oxidation of polyacrylonitrile (PAN) graphite fibers was investigated in comparison with that of carbon fibers. The mechanical and interfacial properties of the treated fibers along with their surface structures were studied with X-ray photoelectron spectroscopy, atomic force microscope, contact angle analyzer, tensile strength instrument and Raman spectrometer. The results show that the graphite fibers were inactive during anodic oxidation for the higher graphitic carbon, while the carbon fibers were active and the surface oxygen content got saturated soon. The dynamics of anodic oxidation for the fibers can be described by a homogenous thickness reduction model, which indicated that the kinetic constant of anodic oxidation for the graphite fibers was only one sixth of that for the carbon fibers. Surface roughness contributed to the improvement on fiber/matrix adhesion as well as the surface oxygen content. The achievement of the surface treatment was proved by Raman spectroscopy mapping the stress of the fiber inside an epoxy resin droplet. The increase of interfacial shear strength from the untreated graphite fibers to the anodized graphite fibers was 160% (from 65 to 170 MPa), much higher than 70% that from untreated carbon fibers to the anodized ones (from 135 to 230 MPa).

  18. Contrastive study of anodic oxidation on carbon fibers and graphite fibers

    Science.gov (United States)

    Liu, Xin; Yang, Changling; Lu, Yonggen

    2012-03-01

    Anodic oxidation of polyacrylonitrile (PAN) graphite fibers was investigated in comparison with that of carbon fibers. The mechanical and interfacial properties of the treated fibers along with their surface structures were studied with X-ray photoelectron spectroscopy, atomic force microscope, contact angle analyzer, tensile strength instrument and Raman spectrometer. The results show that the graphite fibers were inactive during anodic oxidation for the higher graphitic carbon, while the carbon fibers were active and the surface oxygen content got saturated soon. The dynamics of anodic oxidation for the fibers can be described by a homogenous thickness reduction model, which indicated that the kinetic constant of anodic oxidation for the graphite fibers was only one sixth of that for the carbon fibers. Surface roughness contributed to the improvement on fiber/matrix adhesion as well as the surface oxygen content. The achievement of the surface treatment was proved by Raman spectroscopy mapping the stress of the fiber inside an epoxy resin droplet. The increase of interfacial shear strength from the untreated graphite fibers to the anodized graphite fibers was 160% (from 65 to 170 MPa), much higher than 70% that from untreated carbon fibers to the anodized ones (from 135 to 230 MPa).

  19. Interfacial Widths of Conjugated Polymer Bilayers

    Energy Technology Data Exchange (ETDEWEB)

    NCSU; UC Berkeley; UCSB; Advanced Light Source; Garcia, Andres; Yan, Hongping; Sohn, Karen E.; Hexemer, Alexander; Nguyen, Thuc-Quyen; Bazan, Guillermo C.; Kramer, Edward J.; Ade, Harald

    2009-08-13

    The interfaces of conjugated polyelectrolyte (CPE)/poly[2-methoxy-5-(2{prime}-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV) bilayers cast from differential solvents are shown by resonant soft X-ray reflectivity (RSoXR) to be very smooth and sharp. The chemical interdiffusion due to casting is limited to less than 0.6 nm, and the interface created is thus nearly 'molecularly' sharp. These results demonstrate for the first time and with high precision that the nonpolar MEH-PPV layer is not much disturbed by casting the CPE layer from a polar solvent. A baseline is established for understanding the role of interfacial structure in determining the performance of CPE-based polymer light-emitting diodes. More broadly, we anticipate further applications of RSoXR as an important tool in achieving a deeper understanding of other multilayer organic optoelectronic devices, including multilayer photovoltaic devices.

  20. Lithium batteries, anodes, and methods of anode fabrication

    KAUST Repository

    Li, Lain-Jong

    2016-12-29

    Prelithiation of a battery anode carried out using controlled lithium metal vapor deposition. Lithium metal can be avoided in the final battery. This prelithiated electrode is used as potential anode for Li- ion or high energy Li-S battery. The prelithiation of lithium metal onto or into the anode reduces hazardous risk, is cost effective, and improves the overall capacity. The battery containing such an anode exhibits remarkably high specific capacity and a long cycle life with excellent reversibility.

  1. Microstructure and optical appearance of anodized friction stir processed Al - Metal oxide surface composites

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Bordo, Kirill

    2014-01-01

    Multiple-pass friction stir processing (FSP) was employed to impregnate Ti, Y and Ce oxide powders into the surface of an Aluminium alloy. The FSP processed surface composite was subsequently anodized with an aim to develop optical effects in the anodized layer owing to the presence of incorporated...... oxide particles which will influence the scattering of light. This paper presents the investigations on relation between microstructure of the FSP zone and optical appearance of the anodized layer due to incorporation of metal oxide particles and modification of the oxide particles due to the anodizing...

  2. Inert Anode Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1999-07-01

    This ASME report provides a broad assessment of open literature and patents that exist in the area of inert anodes and their related cathode systems and cell designs, technologies that are relevant for the advanced smelting of aluminum. The report also discusses the opportunities, barriers, and issues associated with these technologies from a technical, environmental, and economic viewpoint.

  3. Anodes for alkaline electrolysis

    Science.gov (United States)

    Soloveichik, Grigorii Lev [Latham, NY

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  4. Movable anode x-ray source with enhanced anode cooling

    Science.gov (United States)

    Bird, C.R.; Rockett, P.D.

    1987-08-04

    An x-ray source is disclosed having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events. 5 figs.

  5. Theory and simulation of anode spots in low pressure plasmas

    Science.gov (United States)

    Scheiner, Brett; Barnat, Edward V.; Baalrud, Scott D.; Hopkins, Matthew M.; Yee, Benjamin T.

    2017-11-01

    When electrodes are biased above the plasma potential, electrons accelerated through the associated electron sheath can dramatically increase the ionization rate of neutrals near the electrode surface. It has previously been observed that if the ionization rate is great enough, a double layer separates a luminous high-potential plasma attached to the electrode surface (called an anode spot or fireball) from the bulk plasma. Here, results of the first 2D particle-in-cell simulations of anode spot formation are presented along with a theoretical model describing the formation process. It is found that ionization leads to the build-up of an ion-rich layer adjacent to the electrode, forming a narrow potential well near the electrode surface that traps electrons born from ionization. It is shown that anode spot onset occurs when a quasineutral region is established in the potential well and the density in this region becomes large enough to violate the steady-state Langmuir condition, which is a balance between electron and ion fluxes across the double layer. A model for steady-state properties of the anode spot is also presented, which predicts values for the anode spot size, double layer potential drop, and form of the sheath at the electrode by considering particle, power, and current balance. These predictions are found to be consistent with the presented simulation and previous experiments.

  6. Three-dimensional metal scaffold supported bicontinuous silicon battery anodes.

    Science.gov (United States)

    Zhang, Huigang; Braun, Paul V

    2012-06-13

    Silicon-based lithium ion battery anodes are attracting significant attention because of silicon's exceptionally high lithium capacity. However, silicon's large volume change during cycling generally leads to anode pulverization unless the silicon is dispersed throughout a matrix in nanoparticulate form. Because pulverization results in a loss of electric connectivity, the reversible capacity of most silicon anodes dramatically decays within a few cycles. Here we report a three-dimensional (3D) bicontinuous silicon anode formed by depositing a layer of silicon on the surface of a colloidal crystal templated porous nickel metal scaffold, which maintains electrical connectivity during cycling due to the scaffold. The porous metal framework serves to both impart electrical conductivity to the anode and accommodate the large volume change of silicon upon lithiation and delithiation. The initial capacity of the bicontinuous silicon anode is 3568 (silicon basis) and 1450 mAh g(-1) (including the metal framework) at 0.05C. After 100 cycles at 0.3C, 85% of the capacity remains. Compared to a foil-supported silicon film, the 3D bicontinuous silicon anode exhibits significantly improved mechanical stability and cycleability.

  7. Interfacial coupling in multiferroic/ferromagnet heterostructures

    Science.gov (United States)

    Trassin, M.; Clarkson, J. D.; Bowden, S. R.; Liu, Jian; Heron, J. T.; Paull, R. J.; Arenholz, E.; Pierce, D. T.; Unguris, J.

    2013-04-01

    We report local probe investigations of the magnetic interaction between BiFeO3 films and a ferromagnetic Co0.9Fe0.1 layer. Within the constraints of intralayer exchange coupling in the Co0.9Fe0.1, the multiferroic imprint in the ferromagnet results in a collinear arrangement of the local magnetization and the in-plane BiFeO3 ferroelectric polarization. The magnetic anisotropy is uniaxial, and an in-plane effective coupling field of order 10 mT is derived. Measurements as a function of multiferroic layer thickness show that the influence of the multiferroic layer on the magnetic layer becomes negligible for 3 nm thick BiFeO3 films. We ascribe this breakdown in the exchange coupling to a weakening of the antiferromagnetic order in the ultrathin BiFeO3 film based on our x-ray linear dichroism measurements. These observations are consistent with an interfacial exchange coupling between the CoFe moments and a canted antiferromagnetic moment in the BiFeO3.

  8. Recent advances in interfacial engineering of perovskite solar cells

    Science.gov (United States)

    Ye, Meidan; He, Chunfeng; Iocozzia, James; Liu, Xueqin; Cui, Xun; Meng, Xiangtong; Rager, Matthew; Hong, Xiaodan; Liu, Xiangyang; Lin, Zhiqun

    2017-09-01

    Due to recent developments, organometallic halide perovskite solar cells (PSCs) have attracted even greater interest owing to their impressive photovoltaic properties and simple device manufacturing processes with the potential for commercial applications. The power conversion efficiencies (PCEs) of PSCs have surged from 3.8% for methyl ammonium lead halide-sensitized liquid solar cells, CH3NH3PbX3 (X  =  Cl, Br, I), in 2009, to more than 22% for all-solid-state solar cells in 2016. Over the past few years, significant effort has been dedicated to realizing PSCs with even higher performance. In this review, recent advances in the interfacial engineering of PSCs are addressed. The specific strategies for the interfacial engineering of PSCs fall into two categories: (1) solvent treatment and additives to improve the light-harvesting capabilities of perovskite films, and (2) the incorporation of various functional materials at the interfaces between the active layers (e.g. electron transporting layer, perovskite layer, and hole transporting layer). This review aims to provide a comprehensive overview of strategies for the interfacial engineering of PSCs with potential benefits including enhanced light harvesting, improved charge separation and transport, improved device stability, and elimination of photocurrent hysteresis.

  9. Multi-layer coatings for bipolar rechargeable batteries with enhanced terminal voltage

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph C.; Kaschmitter, James; Pierce, Steve

    2017-06-06

    A method for producing a multi-layer bipolar coated cell according to one embodiment includes applying a first active cathode material above a substrate to form a first cathode; applying a first solid-phase ionically-conductive electrolyte material above the first cathode to form a first electrode separation layer; applying a first active anode material above the first electrode separation layer to form a first anode; applying an electrically conductive barrier layer above the first anode; applying a second active cathode material above the anode material to form a second cathode; applying a second solid-phase ionically-conductive electrolyte material above the second cathode to form a second electrode separation layer; applying a second active anode material above the second electrode separation layer to form a second anode; and applying a metal material above the second anode to form a metal coating section. In another embodiment, the anode is formed prior to the cathode. Cells are also disclosed.

  10. Na-Ion Battery Anodes: Materials and Electrochemistry.

    Science.gov (United States)

    Luo, Wei; Shen, Fei; Bommier, Clement; Zhu, Hongli; Ji, Xiulei; Hu, Liangbing

    2016-02-16

    The intermittent nature of renewable energy sources, such as solar and wind, calls for sustainable electrical energy storage (EES) technologies for stationary applications. Li will be simply too rare for Li-ion batteries (LIBs) to be used for large-scale storage purposes. In contrast, Na-ion batteries (NIBs) are highly promising to meet the demand of grid-level storage because Na is truly earth abundant and ubiquitous around the globe. Furthermore, NIBs share a similar rocking-chair operation mechanism with LIBs, which potentially provides high reversibility and long cycling life. It would be most efficient to transfer knowledge learned on LIBs during the last three decades to the development of NIBs. Following this logic, rapid progress has been made in NIB cathode materials, where layered metal oxides and polyanionic compounds exhibit encouraging results. On the anode side, pure graphite as the standard anode for LIBs can only form NaC64 in NIBs if solvent co-intercalation does not occur due to the unfavorable thermodynamics. In fact, it was the utilization of a carbon anode in LIBs that enabled the commercial successes. Anodes of metal-ion batteries determine key characteristics, such as safety and cycling life; thus, it is indispensable to identify suitable anode materials for NIBs. In this Account, we review recent development on anode materials for NIBs. Due to the limited space, we will mainly discuss carbon-based and alloy-based anodes and highlight progress made in our groups in this field. We first present what is known about the failure mechanism of graphite anode in NIBs. We then go on to discuss studies on hard carbon anodes, alloy-type anodes, and organic anodes. Especially, the multiple functions of natural cellulose that is used as a low-cost carbon precursor for mass production and as a soft substrate for tin anodes are highlighted. The strategies of minimizing the surface area of carbon anodes for improving the first-cycle Coulombic efficiency are

  11. Virus-enabled silicon anode for lithium-ion batteries.

    Science.gov (United States)

    Chen, Xilin; Gerasopoulos, Konstantinos; Guo, Juchen; Brown, Adam; Wang, Chunsheng; Ghodssi, Reza; Culver, James N

    2010-09-28

    A novel three-dimensional Tobacco mosaic virus assembled silicon anode is reported. This electrode combines genetically modified virus templates for the production of high aspect ratio nanofeatured surfaces with electroless deposition to produce an integrated nickel current collector followed by physical vapor deposition of a silicon layer to form a high capacity silicon anode. This composite silicon anode produced high capacities (3300 mAh/g), excellent charge-discharge cycling stability (0.20% loss per cycle at 1C), and consistent rate capabilities (46.4% at 4C) between 0 and 1.5 V. The biological templated nanocomposite electrode architecture displays a nearly 10-fold increase in capacity over currently available graphite anodes with remarkable cycling stability.

  12. Scaling of interfacial jump conditions

    International Nuclear Information System (INIS)

    Quezada G, S.; Vazquez R, A.; Espinosa P, G.

    2015-09-01

    To model the behavior of a nuclear reactor accurately is needed to have balance models that take into account the different phenomena occurring in the reactor. These balances have to be coupled together through boundary conditions. The boundary conditions have been studied and different treatments have been given to the interface. In this paper is a brief description of some of the interfacial jump conditions that have been proposed in recent years. Also, the scaling of an interfacial jump condition is proposed, for coupling the different materials that are in contact within a nuclear reactor. (Author)

  13. Corrosion of cermet anodes during low temperature electrolysis of alumina. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kozarek, R.L.; Ray, S.P.; Dawless, R.K.; LaCamera, A.F.

    1997-09-26

    Successful development of inert anodes to replace carbon anodes in Hall cells has the potential benefits of lower energy consumption,lower operating costs, and reduced CO{sub 2} and CO emissions. Using inert anodes at reduced current density and reduced operating temperature (800 C) has potential for decreasing the corrosion rate of inert anodes. It may also permit the use of new materials for containment and insulation. This report describes the fabrication characteristics and the corrosion performance of 5324-17% Cu Cermet anodes in 100 hour tests. Although some good results were achieved, the corrosion rate at low temperature (800 C) is varied and not significantly lower than typical results at high temperature ({approximately} 960 C). This report also describes several attempts at 200 hour tests, with one anode achieving 177 hours of continuous operation and another achieving a total of 235 hours but requiring three separate tests of the same anode. The longest run did show a lower wear rate in the last test; but a high resistance layer developed on the anode surface and forced an unacceptably low current density. It is recommended that intermediate temperatures be explored as a more optimal environment for inert anodes. Other electrolyte chemistries and anode compositions (especially high conductivity anodes) should be considered to alleviate problems associated with lower temperature operation.

  14. PAT and SEM study of porous silicon formed by anodization methods

    International Nuclear Information System (INIS)

    Liu Jian; Wei Long; Wang Huiyao; Ma Chuangxin; Wang Baoyi

    2000-01-01

    The porous silicon formed by anodization of crystal silicon was studied by positron annihilation technique (PAT) and scanning electron microscopy (SEM). The PAT experiments showed that the mean life and vacancy defects increased with the increasing anodization time. While the intensities of the longest lifetime, several ns-tens ns (ortho-positronium) dropped down. Small single-crystal Si spheres with mean radius of a few μm were observed by SEM after anodization. Pits with mean radius of a few μm from the divorcement of single-crystal spheres were also observed after further anodization. The increases of vacancy defects might be that the extension of structures of porous silicon towards inner layer with anodization time and caused more vacancy defects in inner layer. The SEM observation presented another possibility of the increase of density of vacancy defects in surface layer induced by the change of structures

  15. Structure of anodized Al–Zr sputter deposited coatings and effect on optical appearance

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Canulescu, Stela; Shabadi, Rajashekhara

    2014-01-01

    The mechanism of interaction of light with the microstructure of anodized layer giving specific optical appearance is investigated using Al–Zr sputter deposited coating as a model system on an AA6060 substrate. Differences in the oxidative nature of various microstructural components result...... in the evolution of typical features in the anodized layer, which are investigated as a function of microstructure and correlated with its optical appearance. The Zr concentration in the coating was varied from 6 wt.% to 23 wt.%. Heat treatment of the coated samples was carried out at 550°C for 4 h in order...... to evolve Al–Zr based second phase precipitates in the microstructure. Anodizing was performed using 20 wt.% sulphuric acidat 18°C with an intention to study the effect of anodizing on the Al–Zr based precipitates in the coating.Detailed microstructural characterization of the coating and anodized layer...

  16. Surface characteristics of hydroxyapatite films deposited on anodized titanium by an electrochemical method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang [Research Institute, Kuwotech, 970–88, Wolchul-dong, Buk-ku, Gwangju (Korea, Republic of); Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Jeong, Yong-Hoon; Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State, University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of)

    2013-11-01

    The biocompatibility of anodized titanium (Ti) was improved by an electrochemically deposited calcium phosphate (CaP) layer. The CaP layer was grown on the anodized Ti surface in modified simulated body fluid (M-SBF) at 85 °C. The phases and morphologies for the CaP layers were influenced by the electrolyte concentration. Nano flake-like precipitates that formed under low M-SBF concentrations were identified as hydroxyapatite (HAp) crystals orientated in the c-axis direction. In high M-SBF concentrations, the CaP layer formed micro plate-like precipitates on anodized Ti, and micropores were covered with HAp. Proliferation of murine preosteoblast cell (MC3T3-E1) on the HAp/anodized Ti surfaces was significantly higher than for untreated Ti and anodized Ti surfaces. - Highlights: • CaP layers were grown on anodized Ti surfaces by an electrochemical deposition process. • Phases and morphologies of layers were influenced by the electrolyte concentration. • Superior cell proliferation was observed on hydroxyapatite-coated anodized surfaces.

  17. Electrocatalytic Properties of BDD Anodes: Its Loosely Adsorbed Hydroxyl Radicals

    Directory of Open Access Journals (Sweden)

    Nicolaos Vatistas

    2012-01-01

    Full Text Available The high oxidative action of boron doped diamond (BDD anodes on the biorefractory organic compounds has been attributed to the low adsorption of the generated hydroxyl radicals on the BDD surface in respect to other anodic materials. In a previous paper, the effect of low adsorption of BBD has been studied by proposing a continuum approach to represent the adsorption layer. The oxidative action of the hydroxyl radicals is attributed to the values of their diffusivity into the adsorption and adjacent reactive layer as well as to the value of kinetic constant in both layers. In this paper, more details on both layers are reported in order to justify the proposed continuum approach as well as the assumptions concerning diffusivity and kinetic constant in both adsorption and reactive layers, where the oxidative action of hydroxyl radicals occurs.

  18. Interfacial structure of V2AlC thin films deposited on (112-bar 0)-sapphire

    International Nuclear Information System (INIS)

    Sigumonrong, Darwin P.; Zhang, Jie; Zhou, Yanchun; Music, Denis; Emmerlich, Jens; Mayer, Joachim; Schneider, Jochen M.

    2011-01-01

    Local epitaxy between V 2 AlC and sapphire without intentionally or spontaneously formed seed layers was observed by transmission electron microscopy. Our ab initio calculations suggest that the most stable interfacial structure is characterized by the stacking sequence ...C-V-Al-V//O-Al..., exhibiting the largest work of separation for the configurations studied and hence strong interfacial bonding. It is proposed that a small misfit accompanied by strong interfacial bonding enable the local epitaxial growth of V 2 AlC on (112-bar 0)-sapphire.

  19. On the stabilization of viscoelastic laminated beams with interfacial slip

    Science.gov (United States)

    Mustafa, Muhammad I.

    2018-04-01

    In this paper, we consider a viscoelastic laminated beam model. This structure is given by two identical uniform layers on top of each other, taking into account that an adhesive of small thickness is bonding the two surfaces and produces an interfacial slip. We use viscoelastic damping with general assumptions on the relaxation function and establish explicit energy decay result from which we can recover the optimal exponential and polynomial rates. Our result generalizes the earlier related results in the literature.

  20. Enhanced H2/CH4 and H2/CO2 Separation by Carbon Molecular Sieve Membrane Coated on Titania Modified Alumina Support: Effects of TiO2 Intermediate Layer Preparation Variables on Interfacial Adhesion.

    Czech Academy of Sciences Publication Activity Database

    Tseng, H.-H.; Wang, Ch.-T.; Zhuang, G.-L.; Uchytil, Petr; Řezníčková Čermáková, Jiřina; Setničková, Kateřina

    2016-01-01

    Roč. 510, JUL 15 (2016), s. 391-404 ISSN 0376-7388 Grant - others:NSC(TW) NSC100-2221-E- 040-004-MY3 Institutional support : RVO:67985858 Keywords : carbon membrane * intermediate layer * adhesion Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 6.035, year: 2016

  1. Enhanced H2/CH4 and H2/CO2 Separation by Carbon Molecular Sieve Membrane Coated on Titania Modified Alumina Support: Effects of TiO2 Intermediate Layer Preparation Variables on Interfacial Adhesion.

    Czech Academy of Sciences Publication Activity Database

    Tseng, H.-H.; Wang, Ch.-T.; Zhuang, G.-L.; Uchytil, Petr; Řezníčková Čermáková, Jiřina; Setničková, Kateřina

    2016-01-01

    Roč. 510, JUL 15 (2016), s. 391-404 ISSN 0376-7388 Grant - others:NSC(TW) NSC100-2221-E- 040-004-MY3 Institutional support: RVO:67985858 Keywords : carbon membrane * intermediate layer * adhesion Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 6.035, year: 2016

  2. The effect of interfacial intermixing on magnetization and anomalous Hall effect in Co/Pd multilayers

    KAUST Repository

    Guo, Zaibing

    2015-05-01

    The effect of interfacial intermixing on magnetization and anomalous Hall effect (AHE) in Co/Pd multilayers is studied by using rapid thermal annealing to enhance the interfacial diffusion. The dependence of saturation magnetization and coercivity on the temperature of rapid thermal annealing at 5 K is discussed. It is found that AHE is closely related to the relative thickness of the Co and Pd layers. Localized paramagnetism has been observed which destroys AHE, while AHE can be enhanced by annealing.

  3. Development of an interfacial model for forming of a metal-composite material system

    Science.gov (United States)

    Kalyanasundaram, Shankar; Compston, Paul; Mosse, Luke

    2013-12-01

    This work presents a finite element model for the stamp forming simulation of Fiber-Metal laminate system consisting of glass fiber reinforced composite material layer sandwiched between two aluminium layers. A novel interfacial model was developed to analyze the role of the interface between the metal and composite layers. A one way coupled thermo mechanical model was used to study the effect of pre heating the material system to improve the formability. Comparison between the simulation and experiments were carried out for forming of rectangular cups. The results indicate that the interfacial model is effective in predicting the forming behavior of this advanced light weight material system.

  4. Origin of Photovoltage Enhancement via Interfacial Modification with Silver Nanoparticles Embedded in an a-SiC:H p-Type Layer in a-Si:H Solar Cells.

    Science.gov (United States)

    Li, Tiantian; Zhang, Qixing; Ni, Jian; Huang, Qian; Zhang, Dekun; Li, Baozhang; Wei, Changchun; Yan, Baojie; Zhao, Ying; Zhang, Xiaodan

    2017-03-29

    We used silver nanoparticles (Ag-NPs) embedded in the p-type semiconductor layer of hydrogenated amorphous silicon (a-Si:H) solar cells in the Schottky barrier contact design to modify the interface between aluminum-doped ZnO (ZnO:Al, AZO) and p-type hydrogenated amorphous silicon carbide (p-a-SiC:H) without plasmonic absorption. The high work function of the Ag-NPs provided a good channel for the transport of photogenerated holes. A p-type nanocrystalline SiC:H layer was used to compensate for the real surface defects and voids on the surface of Ag-NPs to reduce recombination at the AZO/p-type layer interface, which then enhanced the photovoltage of single-junction a-Si:H solar cells to values as high as 1.01 V. The Ag-NPs were around 10 nm in diameter and thermally stable in the p-type a-SiC:H film at the solar-cell process temperature. We will also show that a wide range of photovoltages between 1.01 and 2.89 V could be obtained with single-, double-, and triple-junction solar cells based on the single-junction a-Si:H solar cells with tunable high photovoltage. These solar cells are suitable photocathodes for solar water-splitting applications.

  5. Enhanced interfacial contact between PbS and TiO2 layers in quantum dot solar cells using 2D-arrayed TiO2 hemisphere nanostructures

    Science.gov (United States)

    Lee, Wonseok; Ryu, Ilhwan; Lee, Haein; Yim, Sanggyu

    2018-02-01

    Two-dimensionally (2D) arrayed hemispherical nanostructures of TiO2 thin films were successfully fabricated using a simple procedure of spin-coating or dip-coating TiO2 nanoparticles onto 2D close-packed polystyrene (PS) nanospheres, followed by PS extraction. The nanostructured TiO2 film was then used as an n-type layer in a lead sulfide (PbS) colloidal quantum dot solar cell. The TiO2 nanostructure could provide significantly increased contacts with subsequently deposited PbS quantum dot layer. In addition, the periodically arrayed nanostructure could enhance optical absorption of the cell by redirecting the path of the incident light and increasing the path length passing though the active layer. As a result, the power conversion efficiency (PCE) reached 5.13%, which is approximately a 1.7-fold increase over that of the control cell without nanostructuring, 3.02%. This PCE enhancement can mainly be attributed to the increase of the short-circuit current density from 19.6 mA/cm2 to 30.6 mA/cm2, whereas the open-circuit voltage and fill factor values did not vary significantly.

  6. Anodic processes in the chemical and electrochemical etching of Si crystals in acid-fluoride solutions: Pore formation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ulin, V. P.; Ulin, N. V.; Soldatenkov, F. Yu., E-mail: f.soldatenkov@mail.ioffe.ru [Ioffe Physical–Technical Institute (Russian Federation)

    2017-04-15

    The interaction of heavily doped p- and n-type Si crystals with hydrofluoric acid in the dark with and without contact with metals having greatly differing work functions (Ag and Pd) is studied. The dependences of the dissolution rates of Si crystals in HF solutions that contain oxidizing agents with different redox potentials (FeCl{sub 3}, V{sub 2}O{sub 5} and CrO{sub 3}) on the type and level of silicon doping are determined. Analysis of the experimental data suggests that valence-band holes in silicon are not directly involved in the anodic reactions of silicon oxidation and dissolution and their generation in crystals does not limit the rate of these processes. It is also shown that the character and rate of the chemical process leading to silicon dissolution in HF-containing electrolytes are determined by the interfacial potential attained at the semiconductor–electrolyte interface. The mechanism of electrochemical pore formation in silicon crystals is discussed in terms of selfconsistent cooperative reactions of nucleophilic substitution between chemisorbed fluorine anions and coordination- saturated silicon atoms in the crystal subsurface layer. A specific feature of these reactions for silicon crystals is that vacant nonbonding d{sup 2}sp{sup 3} orbitals of Si atoms, associated with sixfold degenerate states corresponding to the Δ valley of the conduction band, are involved in the formation of intermediate complexes. According to the suggested model, the pore-formation process spontaneously develops in local regions of the interface under the action of the interfacial potential in the adsorption layer and occurs as a result of the detachment of (SiF{sub 2}){sub n} polymer chains from the crystal. Just this process leads to the preferential propagation of pores along the <100> crystallographic directions. The thermodynamic aspects of pore nucleation and the effect of the potential drop across the interface, conduction type, and free-carrier concentration

  7. Influence of the anodizing process variables on the acidic properties of anodic alumina films

    Directory of Open Access Journals (Sweden)

    D.E. Boldrini

    Full Text Available Abstract In the present work, the effect of the different variables involved in the process of aluminum anodizing on the total surface acidity of the samples obtained was studied. Aluminum foils were treated by the electro-chemical process of anodic anodizing within the following variable ranges: concentration = 1.5-2.5 M; temperature = 303-323 K; voltage = 10-20 V; time = 30-90 min. The total acidity of the samples was characterized by two different methods: acid-base titration using Hammett indicators and potentiometric titration. The results showed that anodizing time, temperature and concentration were the main variables that determined the surface acid properties of the samples, and to a lesser extent voltage. Acidity increased with increasing concentration of the electrolytic bath, whereas the rest of the variables had the opposite effect. The results obtained provide a novel tool for variable selection in order to use synthetized materials as catalytic supports, adding to previous research based on the morphology of alumina layers.

  8. On the mechanisms of cation injection in conducting bridge memories: The case of HfO2 in contact with noble metal anodes (Au, Cu, Ag)

    International Nuclear Information System (INIS)

    Saadi, M.; Gonon, P.; Vallée, C.; Mannequin, C.; Bsiesy, A.; Grampeix, H.; Jalaguier, E.; Jomni, F.

    2016-01-01

    Resistance switching is studied in HfO 2 as a function of the anode metal (Au, Cu, and Ag) in view of its application to resistive memories (resistive random access memories, RRAM). Current-voltage (I-V) and current-time (I-t) characteristics are presented. For Au anodes, resistance transition is controlled by oxygen vacancies (oxygen-based resistive random access memory, OxRRAM). For Ag anodes, resistance switching is governed by cation injection (Conducting Bridge random access memory, CBRAM). Cu anodes lead to an intermediate case. I-t experiments are shown to be a valuable tool to distinguish between OxRRAM and CBRAM behaviors. A model is proposed to explain the high-to-low resistance transition in CBRAMs. The model is based on the theory of low-temperature oxidation of metals (Cabrera-Mott theory). Upon electron injection, oxygen vacancies and oxygen ions are generated in the oxide. Oxygen ions are drifted to the anode, and an interfacial oxide is formed at the HfO 2 /anode interface. If oxygen ion mobility is low in the interfacial oxide, a negative space charge builds-up at the HfO 2 /oxide interface. This negative space charge is the source of a strong electric field across the interfacial oxide thickness, which pulls out cations from the anode (CBRAM case). Inversely, if oxygen ions migration through the interfacial oxide is important (or if the anode does not oxidize such as Au), bulk oxygen vacancies govern resistance transition (OxRRAM case).

  9. Aluminum anode for aluminum-air battery - Part II: Influence of In addition on the electrochemical characteristics of Al-Zn alloy in alkaline solution

    Science.gov (United States)

    Park, In-Jun; Choi, Seok-Ryul; Kim, Jung-Gu

    2017-07-01

    Effects of Zn and In additions on the aluminum anode for Al-air battery in alkaline solution are examined by the self-corrosion rate, cell voltage, current-voltage characteristics, anodic polarization, discharge performance and AC impedance measurements. The passivation behavior of Zn-added anode during anodic polarization decreases the discharge performance of Al-air battery. The addition of In to Al-Zn anode reduces the formation of Zn passivation film by repeated adsorption and desorption behavior of In ion onto anode surface. The attenuated Zn passive layer by In ion attack leads to the improvement of discharge performance of Al-air battery.

  10. Nanostructured silicon anodes for lithium ion rechargeable batteries.

    Science.gov (United States)

    Teki, Ranganath; Datta, Moni K; Krishnan, Rahul; Parker, Thomas C; Lu, Toh-Ming; Kumta, Prashant N; Koratkar, Nikhil

    2009-10-01

    Rechargeable lithium ion batteries are integral to today's information-rich, mobile society. Currently they are one of the most popular types of battery used in portable electronics because of their high energy density and flexible design. Despite their increasing use at the present time, there is great continued commercial interest in developing new and improved electrode materials for lithium ion batteries that would lead to dramatically higher energy capacity and longer cycle life. Silicon is one of the most promising anode materials because it has the highest known theoretical charge capacity and is the second most abundant element on earth. However, silicon anodes have limited applications because of the huge volume change associated with the insertion and extraction of lithium. This causes cracking and pulverization of the anode, which leads to a loss of electrical contact and eventual fading of capacity. Nanostructured silicon anodes, as compared to the previously tested silicon film anodes, can help overcome the above issues. As arrays of silicon nanowires or nanorods, which help accommodate the volume changes, or as nanoscale compliant layers, which increase the stress resilience of silicon films, nanoengineered silicon anodes show potential to enable a new generation of lithium ion batteries with significantly higher reversible charge capacity and longer cycle life.

  11. Modeling of the anode surface deformation in high-current vacuum arcs with AMF contacts

    International Nuclear Information System (INIS)

    Huang, Xiaolong; Wang, Lijun; Deng, Jie; Jia, Shenli; Qin, Kang; Shi, Zongqian

    2016-01-01

    azimuthal velocity of the anode melting pool for arc current 12.5 kA root-mean-square (rms) is larger than that for 17.5 kA (rms), which is likely to be caused by the thinner liquid layer, and also a smaller melting pool mass of 12.5 kA. (paper)

  12. Structural analysis of anodic porous alumina used for resistive random access memory

    International Nuclear Information System (INIS)

    Lee, Jeungwoo; Nigo, Seisuke; Kato, Seiichi; Kitazawa, Hideaki; Kido, Giyuu; Nakano, Yoshihiro

    2010-01-01

    Anodic porous alumina with duplex layers exhibits a voltage-induced switching effect and is a promising candidate for resistive random access memory. The nanostructural analysis of porous alumina is important for understanding the switching effect. We investigated the difference between the two layers of an anodic porous alumina film using transmission electron microscopy and electron energy-loss spectroscopy. Diffraction patterns showed that both layers are amorphous, and the electron energy-loss spectroscopy indicated that the inner layer contains less oxygen than the outer layer. We speculate that the conduction paths are mostly located in the oxygen-depleted area.

  13. Anodic oxide growth on Zr in neutral aqueous solution

    Indian Academy of Sciences (India)

    anodization and cathodic reactions on metal surfaces. Our sample, specially pre- pared for neutron reflectometry, was a sputter-deposited film on a polished Si(1 1 1) substrate, sufficiently thick to imitate a bulk metal. Upon removal from the sput- tering chamber and exposure to air, a passive oxide layer grew on the film. An.

  14. Composite anode for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    de Guzman, Rhet C.; Ng, K.Y. Simon; Salley, Steven O.

    2018-03-06

    A composite anode for a lithium-ion battery is manufactured from silicon nanoparticles having diameters mostly under 10 nm; providing an oxide layer on the silicon nanoparticles; dispersing the silicon nanoparticles in a polar liquid; providing a graphene oxide suspension; mixing the polar liquid containing the dispersed silicone nanoparticles with the graphene oxide suspension to obtain a composite mixture; probe-sonicating the mixture for a predetermined time; filtering the composite mixture to obtain a solid composite; drying the composite; and reducing the composite to obtain graphene and silicon.

  15. Interfacial transport processes and rheology

    CERN Document Server

    Brenner, Howard

    1991-01-01

    This textbook is designed to provide the theory, methods of measurement, and principal applications of the expanding field of interfacial hydrodynamics. It is intended to serve the research needs of both academic and industrial scientists, including chemical or mechanical engineers, material and surface scientists, physical chemists, chemical and biophysicists, rheologists, physiochemical hydrodynamicists, and applied mathematicians (especially those with interests in viscous fluid mechanics and continuum mechanics).As a textbook it provides materials for a one- or two-semester graduate-level

  16. Mesoporous Silicon-Based Anodes

    Science.gov (United States)

    Peramunage, Dharmasena

    2015-01-01

    For high-capacity, high-performance lithium-ion batteries. A new high-capacity anode composite based on mesoporous silicon is being developed. With a structure that resembles a pseudo one-dimensional phase, the active anode material will accommodate significant volume changes expected upon alloying and dealloying with lithium (Li).

  17. Molecular beam deposition of Al2O3 on p-Ge(001)/Ge0.95Sn0.05 heterostructure and impact of a Ge-cap interfacial layer

    International Nuclear Information System (INIS)

    Merckling, C.; Franquet, A.; Vincent, B.; Vandervorst, W.; Loo, R.; Caymax, M.; Sun, X.; Shimura, Y.; Takeuchi, S.; Nakatsuka, O.; Zaima, S.

    2011-01-01

    We investigated the molecular beam deposition of Al 2 O 3 on Ge 0.95 Sn 0.05 surface with and without an ultra thin Ge cap layer in between. We first studied the atomic configuration of both Ge 1-x Sn x and Ge/Ge 1-x Sn x surfaces after deoxidation by reflection high-energy electron diffraction and resulted, respectively, in a c(4x2) and (2x1) surface reconstructions. After in situ deposition of an Al 2 O 3 high-κ gate dielectric we evidenced using time-of-flight secondary ion mass spectroscopy analyses that Sn diffusion was at the origin of high leakage current densities in the Ge 1-x Sn x /Al 2 O 3 gate stack. This damage could be avoided by inserting a thin 5-nm-thick Ge cap between the oxide and the Ge 1-x Sn x layer. Finally, metal-oxide-semiconductor capacitors on the Ge capped sample showed well-behaved capacitance-voltage (C-V) characteristics with interface trap density (D it ) in the range of 10 12 eV -1 cm -2 in mid gap and higher close to the valence band edge.

  18. The analysis of interfacial waves

    International Nuclear Information System (INIS)

    Galimov, Azat Yu.; Drew, Donald A.; Lahey, Richard T.; Moraga, Francisco J.

    2005-01-01

    We present analytical results for stable stratified wavy two-phase flow and functional forms for the various interfacial force densities in a two-fluid model. In particular, we have derived analytically the components of the non-drag interfacial force density [Drew, D.A., Passman, S.L., 1998. Theory of Multicomponent Fluids. Springer-Verlag, New York; Nigmatulin, T.R., Drew, D.A., Lahey, R.T., Jr., 2000. An analysis of wavy annular flow. In: International Conference on Multiphase Systems, ICMS'2000, Ufa, Russia, June 15-17], Reynolds stress tensor, and the term, (p-bar cl i -p-bar cl )-bar α cl , where p-bar cl i is interfacial average pressure, p-bar cl the average pressure, and α cl is the volume fraction of the continuous liquid phase. These functional forms should be useful for assessing two-fluid closure relations and Computational Multiphase Fluid Dynamics (CMFD) numerical models for stratified wavy flows. Moreover, it appears that this approach can be generalized to other flow regimes (e.g., annular flows)

  19. Anodic Concentration Polarization in SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Williford, Rick E.; Chick, Lawrence A.; Maupin, Gary D.; Simner, Steve P.; Stevenson, Jeffry W.; Khaleel, Mohammad A.; Wachsman, ED, et al

    2003-08-01

    Concentration polarization is important because it determines the maximum power output of a solid oxide fuel cell (SOFC) at high fuel utilization. Anodic concentration polarization occurs when the demand for reactants exceeds the capacity of the porous ceramic anode to supply them by gas diffusion mechanisms. High tortuosities (bulk diffusion resistances) are often assumed to explain this behavior. However, recent experiments show that anodic concentration polarization originates in the immediate vicinity of the reactive triple phase boundary (TPB) sites near the anode/electrolyte interface. A model is proposed to describe how concentration polarization is controlled by two localized phenomena: competitive adsorption of reactants in areas adjacent to the reactive TPB sites, followed by relatively slow surface diffusion to the reactive sites. Results suggest that future SOFC design improvements should focus on optimization of the reactive area, adsorption, and surface diffusion at the anode/electrolyte interface.

  20. Polymer composite electrolytes having core-shell silica fillers with anion-trapping boron moiety in the shell layer for all-solid-state lithium-ion batteries.

    Science.gov (United States)

    Shim, Jimin; Kim, Dong-Gyun; Kim, Hee Joong; Lee, Jin Hong; Lee, Jong-Chan

    2015-04-15

    Core-shell silica particles with ion-conducting poly(ethylene glycol) and anion-trapping boron moiety in the shell layer were prepared to be used as fillers for polymer composite electrolytes based on organic/inorganic hybrid branched copolymer as polymer matrix for all-solid-state lithium-ion battery applications. The core-shell silica particles were found to improve mechanical strength and thermal stability of the polymer matrix and poly(ethylene glycol) and boron moiety in the shell layer increase compatibility between filler and polymer matrix. Furthermore, boron moiety in the shell layer increases both ionic conductivity and lithium transference number of the polymer matrix because lithium salt can be more easily dissociated by the anion-trapping boron. Interfacial compatibility with lithium metal anode is also improved because well-dispersed silica particles serve as protective layer against interfacial side reactions. As a result, all-solid-state battery performance was found to be enhanced when the copolymer having core-shell silica particles with the boron moiety was used as solid polymer electrolyte.

  1. Effect of interfacial layer on the crystal structure of InAs/AlAs{sub 0.16}Sb{sub 0.84}/AlSb quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y. M., E-mail: ymlin.ee97g@g2.nctu.edu.tw [Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan (China); Chen, C. H. [Center for Nano Science and Technology, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan (China); Lee, C. P. [Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan (China); Center for Nano Science and Technology, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan (China)

    2014-04-28

    Ion channeling technique using MeV C{sup 2+} ions and high resolution X-ray diffraction were used to study the crystal quality of an InAs/AlSb-based quantum wells. We found that the InAs quality has a strong dependence on the type of the interface used. With the addition of the InSb-like interface, the crystal quality of the InAs channel was greatly improved. The InAs lattice was fully strained and aligned with the lattice of the buffer layer without any lattice relaxation. On the other hand, if the interface was of the AlAs type, the lattice of the InAs quantum well was relaxed and the crystal quality was poor. This explains why a superior InAs quantum well with high electron mobility and good surface morphology can be achieved with the use of the InSb interface.

  2. Morphological Instability in InAs/GaSb Superlattices due to Interfacial Bonds

    International Nuclear Information System (INIS)

    Li, J.H.; Moss, S.C.; Stokes, D.W.; Caha, O.; Bassler, K.E.; Ammu, S.L.; Bai, J.

    2005-01-01

    Synchrotron x-ray diffraction is used to compare the misfit strain and composition in a self-organized nanowire array in an InAs/GaSb superlattice with InSb interfacial bonds to a planar InAs/GaSb superlattice with GaAs interfacial bonds. It is found that the morphological instability that occurs in the nanowire array results from the large misfit strain that the InSb interfacial bonds have in the nanowire array. Based on this result, we propose that tailoring the type of interfacial bonds during the epitaxial growth of III-V semiconductor films provides a novel approach for producing the technologically important morphological instability in anomalously thin layers

  3. A biomimetic approach to enhancing interfacial interactions: polydopamine-coated clay as reinforcement for epoxy resin.

    Science.gov (United States)

    Yang, Liping; Phua, Si Lei; Teo, Jun Kai Herman; Toh, Cher Ling; Lau, Soo Khim; Ma, Jan; Lu, Xuehong

    2011-08-01

    A facile biomimetic method was developed to enhance the interfacial interaction in polymer-layered silicate nanocomposites. By mimicking mussel adhesive proteins, a monolayer of polydopamine was constructed on clay surface by a controllable coating method. The modified clay (D-clay) was incorporated into an epoxy resin, it is found that the strong interfacial interactions brought by the polydopamine benefits not only the dispersion of the D-clay in the epoxy but also the effective interfacial stress transfer, leading to greatly improved thermomechanical properties at very low inorganic loadings. Rheological and infrared spectroscopic studies show that the interfacial interactions between the D-clay and epoxy are dominated by the hydrogen bonds between the catechol-enriched polydopamine and the epoxy.

  4. The effect of foil purity on morphology of anodized nanoporous ZrO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wierzbicka, Ewa; Syrek, Karolina [Department of Physical Chemistry & Electrochemistry, Faculty of Chemistry, Jagiellonian University in Krakow, Ingardena 3, 30-060 Krakow (Poland); Sulka, Grzegorz D., E-mail: sulka@chemia.uj.edu.pl [Department of Physical Chemistry & Electrochemistry, Faculty of Chemistry, Jagiellonian University in Krakow, Ingardena 3, 30-060 Krakow (Poland); Pisarek, Marcin; Janik-Czachor, Maria [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland)

    2016-12-01

    Highlights: • Anodization of Zr with different purities in an aqueous electrolyte was studied. • The structural parameters of formed anodic oxides were compared. • Effect of Zr foil purity on the hexagonal arrangement of pores and cells in anodic ZrO{sub 2} was investigated. • Current efficiency and rate of anodic oxide formation were estimated. - Abstract: A two-step electrochemical formation of nanoporous zirconium oxide layers on different zirconium foils (purity 99.2% and 99.8%) was investigated. Anodizations were carried out at 20 V in an electrolyte composed of 1 M (NH{sub 4}){sub 2}SO{sub 4} and 0.15 M NH{sub 4}F. It was found that the thickness of grown oxide layer, and consequently, the rate of oxide formation depend slightly on the Zr substrate purity. The pore nucleation and anodization process occur easier in the presence of higher concentration of impurities. From top view SEM images, the structural parameters of oxide layers such as pore diameter, interpore distance, pore density, wall thickness and porosity of anodic oxide layers were estimated for both types of used substrates. On the other hand, cell size, intercell distance and cell density were evaluated from the bottom side of anodic oxide layers. A special emphasis was put on the qualitative analysis of hexagonal arrangement of nanopores and cells. The nanopore and cells arrangements in formed oxides were evaluated using various approaches based on Delaunay triangulations, angular distribution functions (ADFs) and pair distribution functions (PDFs). These results were supported by calculations of percentage of defective pores and cells for both types of used Zr substrates. The use of low purity Zr for anodizing does not affect drastically the morphology of formed nanoporous zirconia and offers a promising perspective to reduce production costs and increase availability of this material.

  5. Aluminum as anode for energy storage and conversion: a review

    Science.gov (United States)

    Li, Qingfeng; Bjerrum, Niels J.

    Aluminum has long attracted attention as a potential battery anode because of its high theoretical voltage and specific energy. The protective oxide layer on the aluminum surface is however detrimental to the battery performance, contributing to failure to achieve the reversible potential and causing the delayed activation of the anode. By developing aluminum alloys as anodes and solution additives to electrolytes, a variety of aluminum batteries have been extensively investigated for various applications. From molten salt and other non-aqueous electrolytes, aluminum can be electrodeposited and therefore be suitable for developing rechargable batteries. Considerable efforts have been made to develop secondary aluminum batteries of high power density. In the present paper, these research activities are reviewed, including aqueous electrolyte primary batteries, aluminum-air batteries and molten salt secondary batteries.

  6. Energy transfer in porous anodic alumina/rhodamine 110 nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Elhouichet, H., E-mail: habib.elhouichet@fst.rnu.tn [Laboratoire de Physico-Chimie des Materiaux Mineraux et leurs Applications, Centre National de Recherches en Sciences des Materiaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Departement de Physique, Faculte des Sciences de Tunis, University of Tunis Elmanar 2092 Tunis (Tunisia); Harima, N.; Koyama, H. [Hyogo University of Teacher Education, Kato, Hyogo 673-1494 (Japan); Gaponenko, N.V. [Belarusian State University of Informatics and Radioelectronics, P. Browki St. 6, 220013 Minsk (Belarus)

    2012-09-15

    We have used porous anodic alumina (PAA) films as templates for embedding rhodamine 110 (Rh110) molecules and examined their photoluminescence (PL) properties in detail. The analysis of the polarization memory (PM) of PL strongly suggests that there is a significant energy transfer from PAA to Rh110 molecules. The effect of annealing the PAA layer on the PL properties of the nanocomposite has been studied. The results show that the energy transfer becomes more efficient in annealed PAA. - Highlights: Black-Right-Pointing-Pointer Porous anodic alumina-rhodamine 110 nanocomposites are elaborated. Black-Right-Pointing-Pointer Efficient energy transfer from the host to Rh110 molecules is evidenced from measurements of photoluminescence and degree of polarization memory spectra. Black-Right-Pointing-Pointer Thermal annealing of porous anodic alumina can improve the process of excitation transfer.

  7. Anode Improvement in Rechargeable Lithium-Sulfur Batteries.

    Science.gov (United States)

    Tao, Tao; Lu, Shengguo; Fan, Ye; Lei, Weiwei; Huang, Shaoming; Chen, Ying

    2017-12-01

    Owing to their theoretical energy density of 2600 Wh kg -1 , lithium-sulfur batteries represent a promising future energy storage device to power electric vehicles. However, the practical applications of lithium-sulfur batteries suffer from poor cycle life and low Coulombic efficiency, which is attributed, in part, to the polysulfide shuttle and Li dendrite formation. Suppressing Li dendrite growth, blocking the unfavorable reaction between soluble polysulfides and Li, and improving the safety of Li-S batteries have become very important for the development of high-performance lithium sulfur batteries. A comprehensive review of various strategies is presented for enhancing the stability of the anode of lithium sulfur batteries, including inserting an interlayer, modifying the separator and electrolytes, employing artificial protection layers, and alternative anodes to replace the Li metal anode. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Surface Modification of Titanium Using Anodization to Enhance Antimicrobial Properties and Osseointegration

    Science.gov (United States)

    Jain, Sakshi

    Titanium and its alloys are frequently used in dental and orthopedic implants because they have good mechanical strength, chemical stability and biocompatibility. These properties can be further improved by surface treatments such as anodization that are able to grow thicker and produce crystalline oxide layers with controlled morphological and physico-chemical properties. Both anatase (A) and rutile (R) crystalline phases of titanium oxide have been shown to promote bioactivity and antimicrobial effects. In a previous study in our laboratories, four electrolyte mixtures were optimized to produce anodized layers on commercially pure titanium consisting of specific anatase and rutile oxide ratios at an endpoint forming voltage of 180 V. In the present study, changes that occurred in the anodized layers with increasing forming voltage including crystallinity, thickness, surface morphology, surface roughness, surface chemistry, fractal dimension, shear strength, and corrosion resistance were determined for each of these electrolytes. The results showed the crystallinity, thickness, surface pore sizes, and surface roughness increased with increasing forming voltage. Incorporation of phosphorus into the anodized layers was shown in phosphoric acid containing electrolytes at higher forming voltages. Decreases in corrosion resistance were also shown at higher forming voltages in each electrolyte due to increased pore interconnectivity within the anodized layers. In addition, the apatite inducing ability of anodized layers in SBF was examined for selected forming voltages in each electrolyte. Anodization in phosphoric acid containing electrolytes was shown to be more favorable for apatite formation. The streptococcal and MRSA bacterial attachment before and after UV treatments was determined for selected forming voltages in each electrolyte. Additionally, the killing efficacy after 10-minute pre-irradiation with UVA or UVC treatments was determined. UVA treatments showed

  9. Morphology and stress at silicon-glass interface in anodic bonding

    International Nuclear Information System (INIS)

    Tang, Jiali; Cai, Cheng; Ming, Xiaoxiang; Yu, Xinhai; Zhao, Shuangliang; Tu, Shan-Tung; Liu, Honglai

    2016-01-01

    Highlights: • Amorphous SiO 2 is the most probable silica morphology generated in anodic bonding. • Amorphous SiO 2 thickness at the interface is at least 2 nm for 90 min anodic bonding. • Silicon oxidation rate at the interface is 0.022 nm min −1 from 30 to 90 min. - Abstract: The morphologies and structural details of formed silica at the interface of silicon-glass anodic bonding determine the stress at the interface but they have been rarely clarified. In this study, a miniaturized anodic bonding device was developed and coupled with a Raman spectrometer. The silicon-glass anodic bonding was carried out and the evolution of the stress at the bonding interface was measured in situ by a Raman spectrometer. In addition, large-scale atomistic simulations were conducted by considering the formed silica with different morphologies. The most conceivable silica morphology was identified as the corresponding silicon-glass interfacial stress presents qualitatively agreement with the experimental observation. It was found that amorphous SiO 2 is the silica morphology generated in anodic bonding. The amorphous SiO 2 thickness is at least 2 nm in the case of 90 min anodic bonding at 400 °C with the DC voltage of −1000 V. The combination of experimental and simulation results can ascertain the silicon oxidation reaction rate in anodic bonding process, and under the above-mentioned condition, the reaction rate was estimated as 0.022 nm min −1 from 30 to 90 min.

  10. Morphology and stress at silicon-glass interface in anodic bonding

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jiali [Key Laboratory of Pressure Systems and Safety (MOE), School of Mechanical Engineering, East China University of Science and Technology, Shanghai 200237 (China); Cai, Cheng [State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai (China); Ming, Xiaoxiang [Key Laboratory of Pressure Systems and Safety (MOE), School of Mechanical Engineering, East China University of Science and Technology, Shanghai 200237 (China); State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai (China); Yu, Xinhai, E-mail: yxhh@ecust.edu.cn [Key Laboratory of Pressure Systems and Safety (MOE), School of Mechanical Engineering, East China University of Science and Technology, Shanghai 200237 (China); State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhao, Shuangliang, E-mail: szhao@ecust.edu.cn [State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai (China); Tu, Shan-Tung [Key Laboratory of Pressure Systems and Safety (MOE), School of Mechanical Engineering, East China University of Science and Technology, Shanghai 200237 (China); Liu, Honglai [State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai (China)

    2016-11-30

    Highlights: • Amorphous SiO{sub 2} is the most probable silica morphology generated in anodic bonding. • Amorphous SiO{sub 2} thickness at the interface is at least 2 nm for 90 min anodic bonding. • Silicon oxidation rate at the interface is 0.022 nm min{sup −1} from 30 to 90 min. - Abstract: The morphologies and structural details of formed silica at the interface of silicon-glass anodic bonding determine the stress at the interface but they have been rarely clarified. In this study, a miniaturized anodic bonding device was developed and coupled with a Raman spectrometer. The silicon-glass anodic bonding was carried out and the evolution of the stress at the bonding interface was measured in situ by a Raman spectrometer. In addition, large-scale atomistic simulations were conducted by considering the formed silica with different morphologies. The most conceivable silica morphology was identified as the corresponding silicon-glass interfacial stress presents qualitatively agreement with the experimental observation. It was found that amorphous SiO{sub 2} is the silica morphology generated in anodic bonding. The amorphous SiO{sub 2} thickness is at least 2 nm in the case of 90 min anodic bonding at 400 °C with the DC voltage of −1000 V. The combination of experimental and simulation results can ascertain the silicon oxidation reaction rate in anodic bonding process, and under the above-mentioned condition, the reaction rate was estimated as 0.022 nm min{sup −1} from 30 to 90 min.

  11. Electrical Resistance Measurements and Microstructural Characterization of the Anode/Interconnect Contact in Simulated Anode-Side SOFC Conditions

    DEFF Research Database (Denmark)

    Harthøj, Anders; Alimadadi, Hossein; Holt, Tobias

    2015-01-01

    . The zone is austenitic at the exposure temperature but transforms to ferrite during cooling. When a CeO2 nickel diffusion barrier layer was used The ASR was considerably higher. These results imply that nickel diffusion is not only detrimental: It leads to microstructural instability but also results......Metallic interconnects in solid oxide fuel cell (SOFC) stacks are often in direct contact with a nickel/yttria stabilized zirconia (Ni/YSZ) cermet anode. Interdiffusion between the two components may occur at the operating temperature of 700–850◦C. The alteration of chemical composition can result...... anode conditions at 800◦C. The microstructure in the contact area was characterized using scanning electron microscopy techniques. The ASR was low for the steel in direct contact with the Ni/YSZ anode. Nickel diffusion into the steel resulted in a fine grained zone, which was identified as ferrite...

  12. Corrosion protection of iron using porous anodic oxide/conducting polymer composite coatings.

    Science.gov (United States)

    Konno, Yoshiki; Tsuji, Etsushi; Aoki, Yoshitaka; Ohtsuka, Toshiaki; Habazaki, Hiroki

    2015-01-01

    Conducting polymers (CPs), including polypyrrole, have attracted attention for their potential in the protection of metals against corrosion; however, CP coatings have the limitation of poor adhesion to metal substrates. In this study, a composite coating, comprising a self-organized porous anodic oxide layer and a polypyrrole layer, has been developed on iron. Because of electropolymerization in the pores of the anodic oxide layer, the composite coating showed improved adhesion to the substrate along with prolonged corrosion protection in a NaCl aqueous corrosive environment. The anodic oxide layers are formed in a fluoride-containing organic electrolyte and contain a large amount of fluoride species. The removal of these fluoride species from the oxide layer and the metal/oxide interface region is crucial for improving the corrosion protection.

  13. Nano structural anodes for radiation detectors

    Science.gov (United States)

    Cordaro, Joseph V.; Serkiz, Steven M.; McWhorter, Christopher S.; Sexton, Lindsay T.; Retterer, Scott T.

    2015-07-07

    Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., .sup.10B) allow the use of neutron detectors that do not use .sup.3He.

  14. Monitoring of epitaxial graphene anodization

    International Nuclear Information System (INIS)

    Vagin, Mikhail Yu.; Sekretaryova, Alina N.; Ivanov, Ivan G.; Håkansson, Anna; Iakimov, Tihomir; Syväjärvi, Mikael; Yakimova, Rositsa; Lundström, Ingemar; Eriksson, Mats

    2017-01-01

    Anodization of a graphene monolayer on silicon carbide was monitored with electrochemical impedance spectroscopy. Structural and functional changes of the material were observed by Raman spectroscopy and voltammetry. A 21 fold increase of the specific capacitance of graphene was observed during the anodization. An electrochemical kinetic study of the Fe(CN) 6 3−/4− redox couple showed a slow irreversible redox process at the pristine graphene, but after anodization the reaction rate increased by several orders of magnitude. On the other hand, the Ru(NH 3 ) 6 3+/2+ redox couple proved to be insensitive to the activation process. The results of the electron transfer kinetics correlate well with capacitance measurements. The Raman mapping results suggest that the increased specific capacitance of the anodized sample is likely due to a substantial increase of electron doping, induced by defect formation, in the monolayer upon anodization. The doping concentration increased from less than 1 × 10 13 of the pristine graphene to 4–8 × 10 13 of the anodized graphene.

  15. Analysis of peel strength of consisting of an aluminum sheet, anodic aluminum oxide and a copper foil laminate composite

    Science.gov (United States)

    Shin, Hyeong-Won; Lee, Hyo-Soo; Jung, Seung-Boo

    2017-01-01

    Laminate composites consisting of an aluminum sheet, anodic aluminum oxide, and copper foil have been used as heat-spreader materials for high-power light-emitting diodes (LEDs). These composites are comparable to the conventional structure comprising an aluminum sheet, epoxy adhesives, and copper foil. The peel strength between the copper foil and anodic aluminum oxide should be more than 1.0 kgf/cm in order to be applied in high-power LED products. We investigated the effect of the anodic aluminum oxide morphology and heat-treatment conditions on the peel strength of the composites. We formed an anodic aluminum oxide layer on a 99.999% pure aluminum sheet using electrochemical anodization. A Ti/Cu seed layer was formed using the sputtering direct bonding copper process in order to form a copper circuit layer on the anodic aluminum oxide layer by electroplating. The developed heat spreader, composed of an aluminum layer, anodic aluminum oxide, and a copper circuit layer, showed peel strengths ranging from 1.05 to 3.45 kgf/cm, which is very suitable for high-power LED applications.

  16. Droplet-based interfacial capacitive sensing.

    Science.gov (United States)

    Nie, Baoqing; Xing, Siyuan; Brandt, James D; Pan, Tingrui

    2012-03-21

    This paper presented a novel droplet-based pressure sensor using elastic and capacitive electrode-electrolyte interfaces to achieve ultrahigh mechanical-to-electrical sensitivity (1.58 μF kPa(-1)) and resolution (1.8 Pa) with a simple device architecture. The miniature transparent droplet sensors, fabricated by one-step laser micromachining, consisted of two flexible polymer membranes with conductive coating and a separation layer hosting a sensing chamber for an electrolyte droplet. The sensing principle primarily relied on high elasticity of the sensing droplet and large capacitance presented at the electrode-electrolyte interface. A simple surface modification scheme was introduced to the conductive coating, which reduced hysteresis of the droplet deformation without substantially compromising the interfacial capacitance. Moreover, the major concern of liquid evaporation was addressed by a mixture of glycerol and electrolyte with long-term stability in a laboratory environment. Theoretical analyses and experimental investigations on several design parameters (i.e., the dimensions of the sensing chamber and the droplet size) were thoroughly conducted to characterize and optimize the overall sensitivity of the device. Moreover, the environmental influences (e.g., temperature and humidity) on the capacitive measurement were further investigated. Finally, the simply constructed and mechanically flexible droplet sensor was successfully applied to detect minute blood pressure variations on the skin surface (with the maximum value less than 100 Pa) throughout cardiovascular cycles.

  17. Fabrication of Porous Anodic Alumina with Ultrasmall Nanopores

    Directory of Open Access Journals (Sweden)

    Ding GuQiao

    2010-01-01

    Full Text Available Abstract Anodization of Al foil under low voltages of 1–10 V was conducted to obtain porous anodic aluminas (PAAs with ultrasmall nanopores. Regular nanopore arrays with pore diameter 6–10 nm were realized in four different electrolytes under 0–30°C according to the AFM, FESEM, TEM images and current evolution curves. It is found that the pore diameter and interpore distance, as well as the barrier layer thickness, are not sensitive to the applied potentials and electrolytes, which is totally different from the rules of general PAA fabrication. The brand-new formation mechanism has been revealed by the AFM study on the samples anodized for very short durations of 2–60 s. It is discovered for the first time that the regular nanoparticles come into being under 1–10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultrasmall nanopores. Under higher potentials from 10 to 40 V, the surface nanoparticles will be less and less and nanopores transform into general PAAs.

  18. Interfacial heat transfer - State of the art

    International Nuclear Information System (INIS)

    Yadigaroglu, G.

    1987-01-01

    Interfacial heat exchanges control the interfacial mass exchange rate, depend on the interfacial area, and are tied to the prediction of thermal nonequilibrium. The nature of the problem usually requires the formulation of mechanistic laws and precludes the general use of universal correlations. This is partly due to the fact that the length scale controlling the interfacial exchanges varies widely from one situation to another and has a strong influence on the exchange coefficients. Within the framework of the ''two-fluid models'', the exchanges occurring at the interfaces are explicitly taken into consideration by the jump condition linking the volumetric mass exchange (evaporation) rate between the phases, to the interfacial energy transfer rates

  19. Interfacial rheological properties of self-assembling biopolymer microcapsules.

    Science.gov (United States)

    Xie, Kaili; de Loubens, Clément; Dubreuil, Frédéric; Gunes, Deniz Z; Jaeger, Marc; Léonetti, Marc

    2017-09-20

    Tuning the mechanical properties of microcapsules through a cost-efficient route of fabrication is still a challenge. The traditional method of layer-by-layer assembly of microcapsules allows building a tailored composite multi-layer membrane but is technically complex as it requires numerous steps. The objective of this article is to characterize the interfacial rheological properties of self-assembling biopolymer microcapsules that were obtained in one single facile step. This thorough study provides new insights into the mechanics of these weakly cohesive membranes. Firstly, suspensions of water-in-oil microcapsules were formed in microfluidic junctions by self-assembly of two oppositely charged polyelectrolytes, namely chitosan (water soluble) and phosphatidic fatty acid (oil soluble). In this way, composite membranes of tunable thickness (between 40 and 900 nm measured by AFM) were formed at water/oil interfaces in a single step by changing the composition. Secondly, microcapsules were mechanically characterized by stretching them up to break-up in an extensional flow chamber which extends the relevance and convenience of the hydrodynamic method to weakly cohesive membranes. Finally, we show that the design of microcapsules can be 'engineered' in an extensive way since they present a wealth of interfacial rheological properties in terms of elasticity, plasticity and yield stress whose magnitudes can be controlled by the composition. These behaviors are explained by the variation of the membrane thickness with the physico-chemical parameters of the process.

  20. Interfacial Structural Transition in Hydration Shells of a Polarizable Solute.

    Science.gov (United States)

    Dinpajooh, Mohammadhasan; Matyushov, Dmitry V

    2015-05-22

    Electrostatics of polar solvation is typically described by harmonic free energy functionals. Polarizability contributes a negative polarization term that can make the harmonic free energy negative. The harmonic truncation fails in this regime. Simulations of polarizable ideal dipoles in water show that water's susceptibility passes through a maximum in the range of polarizabilities zeroing the harmonic term out. The microscopic origin of the nonmonotonic behavior is an interfacial structural transition involving the density collapse of the first hydration layer and enhanced number of dangling OH bonds.

  1. Mathematical modeling of transport phenomena in porous SOFC anodes

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, M.M.; Li, X. [Department of Mechanical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Dincer, I. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (UOIT) Oshawa, Ontario L1H 7K4 (Canada)

    2007-01-15

    In the present study, a mathematical model describing the transport of multi-component species inside porous SOFC anodes is developed. The model considers the reaction zone layer as a distinct volume rather than a mere mathematical surface (boundary condition) as treated in the existing models. The reaction zone layer is a relatively thin layer in the vicinity of electrolyte where electrochemical H{sub 2} oxidation takes place to produce electrons and water vapor. The model also incorporates the effect of Knudsen diffusion in the porous electrode and reaction zone layers. Simulations are performed using multi-component ethanol reformate fuel to predict the distribution of multi-component species in the electrode and reaction zone layers at different loads (current densities). In addition, the effect of shift reaction on the concentration over-potential is examined. Moreover, the effect of treating reaction zone layer as a discrete volume is investigated. (author)

  2. Determination of sulfuric acid concentration for anti-cavitation characteristics of Al alloy by two step anodizing process to forming nano porous.

    Science.gov (United States)

    Lee, Seung-Jun; Kim, Seong-Kweon; Jeong, Jae-Yong; Kim, Seong-Jong

    2014-12-01

    Al alloy is a highly active metal but forms a protective oxide film having high corrosion resistance in atmosphere environment. However, the oxide film is not suitable for practical use, since the thickness of the film is not uniform and it is severly altered with formation conditions. This study focused on developing an aluminum anodizing layer having hardness, corrosion resistance and abrasion resistance equivalent to a commercial grade protective layer. Aluminum anodizing layer was produced by two-step aluminum anodizing oxide (AAO) process with different sulfuric acid concentrations, and the cavitation characteristics of the anodized coating layer was investigated. In hardness measurement, the anodized coating layer produced with 15 vol.% of sulfuric acid condition had the highest value of hardness but exhibited poor cavitation resistance due to being more brittle than those with other conditions. The 10 vol.% of sulfuric acid condition was thus considered to be the optimum condition as it had the lowest weight loss and damage depth.

  3. Interfacial assembly of turnip yellow mosaic virus nanoparticles.

    Science.gov (United States)

    Kaur, Gagandeep; He, Jinbo; Xu, Ji; Pingali, Saivenkatesh; Jutz, Günther; Böker, Alexander; Niu, Zhongwei; Li, Tao; Rawlinson, Dustin; Emrick, Todd; Lee, Byeongdu; Thiyagarajan, Pappannan; Russell, Thomas P; Wang, Qian

    2009-05-05

    An extensive study of the factors that affect the interfacial assembly of bionanoparticles at the oil/water (O/W) interface is reported. Bionanoparticles, such as viruses, have distinctive structural properties due to the unique arrangement of their protein structures. The assembly process of such bionanoparticles at interfaces is governed by factors including the ionic strength and pH of the aqueous layer, concentration of the particles, and nature of the oil phase. This study highlights the impact of these factors on the interfacial assembly of bionanoparticles at the O/W interface using native turnip yellow mosaic virus (TYMV) as the prototype. Robust monolayer assemblies of TYMV were produced by self-assembly at the O/W interface using emulsions and planar interfaces. TYMV maintained its structure and integrity under different assembly conditions. For the emulsion droplets, they were fully covered with TYMV as evidenced by transmission electron microscopy (TEM) and scanning force microscopy (SFM). Tensiometry and small-angle neutron scattering (SANS) further supported this finding. Although the emulsions offered a complete coverage by TYMV particles, they lacked long-range ordering due to rapid exchange at the interface. By altering the assembly process, highly ordered, hexagonal arrays of TYMV were obtained at planar O/W interfaces. The pH, ionic strength, and viscosity of the solution played a crucial role in enhancing the lateral ordering of TYMV assembled at the planar O/W interface. This interfacial ordering of TYMV particles was further stabilized by introduction of a positively charged dehydroabietyl amine (DHAA) in the organic phase which held the assembly together by electrostatic interactions. The long-range array formation was observed using TEM and SFM. The results presented here illustrate that the interfacial assembly at the O/W interface is a versatile approach to achieve highly stable self-assembled structures.

  4. Improved Anode for a Direct Methanol Fuel Cell

    Science.gov (United States)

    Valdez, Thomas; Narayanan, Sekharipuram

    2005-01-01

    A modified chemical composition has been devised to improve the performance of the anode of a direct methanol fuel cell. The main feature of the modified composition is the incorporation of hydrous ruthenium oxide into the anode structure. This modification can reduce the internal electrical resistance of the cell and increase the degree of utilization of the anode catalyst. As a result, a higher anode current density can be sustained with a smaller amount of anode catalyst. These improvements can translate into a smaller fuel-cell system and higher efficiency of conversion. Some background information is helpful for understanding the benefit afforded by the addition of hydrous ruthenium oxide. The anode of a direct methanol fuel cell sustains the electro-oxidation of methanol to carbon dioxide in the reaction CH3OH + H2O--->CO2 + 6H(+) + 6e(-). An electrocatalyst is needed to enable this reaction to occur. The catalyst that offers the highest activity is an alloy of approximately equal numbers of atoms of the noble metals platinum and ruthenium. The anode is made of a composite material that includes high-surface-area Pt/Ru alloy particles and a proton-conducting ionomeric material. This composite is usually deposited onto a polymer-electrolyte (proton-conducting) membrane and onto an anode gas-diffusion/current-collector sheet that is subsequently bonded to the proton-conducting membrane by hot pressing. Heretofore, the areal density of noble-metal catalyst typically needed for high performance has been about 8 mg/cm2. However, not all of the catalyst has been utilized in the catalyzed electro-oxidation reaction. Increasing the degree of utilization of the catalyst would make it possible to improve the performance of the cell for a given catalyst loading and/or reduce the catalyst loading (thereby reducing the cost of the cell). The use of carbon and possibly other electronic conductors in the catalyst layer has been proposed for increasing the utilization of the

  5. A nanoscale study of charge extraction in organic solar cells: the impact of interfacial molecular configurations.

    Science.gov (United States)

    Tang, Fu-Ching; Wu, Fu-Chiao; Yen, Chia-Te; Chang, Jay; Chou, Wei-Yang; Gilbert Chang, Shih-Hui; Cheng, Horng-Long

    2015-01-07

    In the optimization of organic solar cells (OSCs), a key problem lies in the maximization of charge carriers from the active layer to the electrodes. Hence, this study focused on the interfacial molecular configurations in efficient OSC charge extraction by theoretical investigations and experiments, including small molecule-based bilayer-heterojunction (sm-BLHJ) and polymer-based bulk-heterojunction (p-BHJ) OSCs. We first examined a well-defined sm-BLHJ model system of OSC composed of p-type pentacene, an n-type perylene derivative, and a nanogroove-structured poly(3,4-ethylenedioxythiophene) (NS-PEDOT) hole extraction layer. The OSC with NS-PEDOT shows a 230% increment in the short circuit current density compared with that of the conventional planar PEDOT layer. Our theoretical calculations indicated that small variations in the microscopic intermolecular interaction among these interfacial configurations could induce significant differences in charge extraction efficiency. Experimentally, different interfacial configurations were generated between the photo-active layer and the nanostructured charge extraction layer with periodic nanogroove structures. In addition to pentacene, poly(3-hexylthiophene), the most commonly used electron-donor material system in p-BHJ OSCs was also explored in terms of its possible use as a photo-active layer. Local conductive atomic force microscopy was used to measure the nanoscale charge extraction efficiency at different locations within the nanogroove, thus highlighting the importance of interfacial molecular configurations in efficient charge extraction. This study enriches understanding regarding the optimization of the photovoltaic properties of several types of OSCs by conducting appropriate interfacial engineering based on organic/polymer molecular orientations. The ultimate power conversion efficiency beyond at least 15% is highly expected when the best state-of-the-art p-BHJ OSCs are combined with present arguments.

  6. Silicon based nano-architectures for high power lithium-ion battery anodes

    Science.gov (United States)

    Krishnan, Rahul

    consisted of Carbon nanorods with an intermediate Aluminum layer finally capped by a nanoscoop of Silicon. The strain gradation arises from the fact that each of these materials has differential volumetric expansions due to different extents of Li uptake. Such a strain gradation from Carbon towards Silicon would provide for a less abrupt transition across the material interfaces thereby reducing interfacial mismatch and improving the tolerance to delamination at very high rates. This nano-architecture provided average capacities of ˜412 mAh/g with a power output of ˜100 kW/kg electrode continuously over 100 cycles. Even when the power output was as high as ˜250 kW/kgelectrode, the average capacity over 100 cycles is still ˜90 mAh/g. Furthermore, scanning electron microscopy and X-ray photoelectron spectroscopy investigations revealed that the functionally strain graded nanostructures were being partially lithiated in the bulk even at high rates. The fact that charge storage was not merely a surface phenomenon supported the high energy densities obtained at high charge/discharge rates. In an attempt to improve the mass loading density of Silicon based nano-architectures, a nano-compliant layer (NCL) supported thin film architecture was also explored. This consisted of an array of oblique nanorods (the nano-compliant layer) sandwiched between the substrate and the thin film. The NCL layer was used to improve the stress tolerance of the thin film thereby allowing the use of bulk thin films as opposed to nanostructures. This would directly improve the mass loading density. Silicon films with Carbon NCLs and Carbon films with Silicon NCLs were both deposited and tested. It was found that Li+ diffusivity is higher in carbon than in silicon by at least two orders of magnitude. This was calculated from cyclic voltammetry tests using the Randles-Sevcik equation. This difference in Li+ diffusivity within the two materials was found to be the C-rate limiting factor for a given

  7. An experimental investigation of the interfacial condensation heat transfer in steam/water countercurrent stratified flow in a horizontal pipe

    Energy Technology Data Exchange (ETDEWEB)

    Chu, In Cheol; Yu, Seon Oh; Chun, Moon Hyun [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Kim, Byong Sup; Kim, Yang Seok; Kim, In Hwan; Lee, Sang Won [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    An interfacial condensation heat transfer phenomenon in a steam/water countercurrent stratified flow in a nearly horizontal pipe has been experimentally investigated. The present study has been focused on the measurement of the temperature and velocity distributions within the water layer. In particular, the water layer thickness used in the present work is large enough so that the turbulent mixing is limited and the thermal stratification is established. As a result, the thermal resistance of the water layer to the condensation heat transfer is increased significantly. An empirical correlation of the interfacial condensation heat transfer has been developed. The present correlation agrees with the data within {+-} 15%. 5 refs., 6 figs. (Author)

  8. PIC simulation of the anode plasma in a high-power hollow cathode diode

    Science.gov (United States)

    Liu, Laqun; Zou, Wenkang; Wang, Huihui; Guo, Fan; Liu, Dagang

    2018-02-01

    In this paper, the evolution and dynamics of anode plasmas in high-power hollow cathode diodes were studied by particle-in-cell (PIC) simulation. The simulation results show that the ion flow emitted by the anode plasma layer and the increase of the electron current caused by the ion flow will cause a significant decline in the diode impedance in a short time. In addition, the expansion of the anode plasma layer will cause the diode impedance to decrease. The PIC simulation technique is also applied to a high-power hollow cathode diode of a 1.0 MV-LTD generator for anode plasmas, and the PIC simulation results were compared with the experimental data.

  9. In Situ STEM-EELS Observation of Nanoscale Interfacial Phenomena in All-Solid-State Batteries.

    Science.gov (United States)

    Wang, Ziying; Santhanagopalan, Dhamodaran; Zhang, Wei; Wang, Feng; Xin, Huolin L; He, Kai; Li, Juchuan; Dudney, Nancy; Meng, Ying Shirley

    2016-06-08

    Behaviors of functional interfaces are crucial factors in the performance and safety of energy storage and conversion devices. Indeed, solid electrode-solid electrolyte interfacial impedance is now considered the main limiting factor in all-solid-state batteries rather than low ionic conductivity of the solid electrolyte. Here, we present a new approach to conducting in situ scanning transmission electron microscopy (STEM) coupled with electron energy loss spectroscopy (EELS) in order to uncover the unique interfacial phenomena related to lithium ion transport and its corresponding charge transfer. Our approach allowed quantitative spectroscopic characterization of a galvanostatically biased electrochemical system under in situ conditions. Using a LiCoO2/LiPON/Si thin film battery, an unexpected structurally disordered interfacial layer between LiCoO2 cathode and LiPON electrolyte was discovered to be inherent to this interface without cycling. During in situ charging, spectroscopic characterization revealed that this interfacial layer evolved to form highly oxidized Co ions species along with lithium oxide and lithium peroxide species. These findings suggest that the mechanism of interfacial impedance at the LiCoO2/LiPON interface is caused by chemical changes rather than space charge effects. Insights gained from this technique will shed light on important challenges of interfaces in all-solid-state energy storage and conversion systems and facilitate improved engineering of devices operated far from equilibrium.

  10. Synthesis by anodic-spark deposition of Ca- and P-containing films on pure titanium and their biological response

    International Nuclear Information System (INIS)

    Banakh, Oksana; Journot, Tony; Gay, Pierre-Antoine; Matthey, Joël; Csefalvay, Catherine; Kalinichenko, Oleg; Sereda, Olha; Moussa, Mira; Durual, Stéphane; Snizhko, Lyubov

    2016-01-01

    Highlights: • ​CP-4 Ti was treated by anodic spark oxidation in the electrolyte containing Ca and P ions by varying process time and electrolyte concentration. • Ca/P ratio in layers is 0.23–0.47, much lower than in hydroxyapatites (1.67). It means coatings should be resorbable in a biological medium • After immersion in SBF, Ca and P content in layers decrease. Ca and P loss occurs faster in thin layers than in thicker coatings. • The biological response of the samples suggests their excellent biocompatibility and even stimulating effects on osteoblasts proliferation. - Abstract: The purpose of this work is to characterize the anodized layers formed on titanium by anodic-spark deposition in an electrolyte containing Ca and P ions, Ca 3 (PO 4 ) 2 , studied for the first time. The oxidation experiments were performed at different periods of time and using different concentrations of electrolyte. The influence of the process parameters (time of electrolysis and electrolyte concentration) on the surface morphology and chemical composition of the anodized layers was studied. It has been found that it is possible to incorporate Ca and P into the growing layer. A response of the anodized layers in a biological medium was evaluated by their immersion in a simulated body fluid. An enrichment of titanium and a simultaneous loss of calcium and phosphorus in the layer after immersion tests indicate that these coatings should be bioresorbable in a biological medium. Preliminary biological assays were performed on some anodized layers in order to assess their biocompatibility with osteoblast cells. The cell proliferation on one selected anodized sample was assessed up to 21 days after seeding. The preliminary results suggest excellent biocompatibility properties of anodized coatings.

  11. Electrochemical anodizing treatment to enhance localized corrosion resistance of pure titanium.

    Science.gov (United States)

    Prando, Davide; Brenna, Andrea; Bolzoni, Fabio M; Diamanti, Maria V; Pedeferri, Mariapia; Ormellese, Marco

    2017-01-26

    Titanium has outstanding corrosion resistance due to the thin protective oxide layer that is formed on its surface. Nevertheless, in harsh and severe environments, pure titanium may suffer localized corrosion. In those conditions, costly titanium alloys containing palladium, nickel and molybdenum are used. This purpose investigated how it is possible to control corrosion, at lower cost, by electrochemical surface treatment on pure titanium, increasing the thickness of the natural oxide layer. Anodic oxidation was performed on titanium by immersion in H2SO4 solution and applying voltages ranging from 10 to 80 V. Different anodic current densities were considered. Potentiodynamic tests in chloride- and fluoride-containing solutions were carried out on anodized titanium to determine the pitting potential. All tested anodizing treatments increased corrosion resistance of pure titanium, but never reached the performance of titanium alloys. The best corrosion behavior was obtained on titanium anodized at voltages lower than 40 V at 20 mA/cm2. Titanium samples anodized at low cell voltage were seen to give high corrosion resistance in chloride- and fluoride-containing solutions. Electrolyte bath and anodic current density have little effect on the corrosion behavior.

  12. Optimal condition for fabricating superhydrophobic Aluminum surfaces with controlled anodizing processes

    Science.gov (United States)

    Saffari, Hamid; Sohrabi, Beheshteh; Noori, Mohammad Reza; Bahrami, Hamid Reza Talesh

    2018-03-01

    A single step anodizing process is used to produce micro-nano structures on Aluminum (1050) substrates with sulfuric acid as electrolyte. Therefore, surface energy of the anodized layer is reduced using stearic acid modification. Undoubtedly, effects of different parameters including anodizing time, electrical current, and type and concentration of electrolyte on the final contact angle are systemically studied and optimized. Results show that anodizing current of 0.41 A, electrolyte (sulfuric acid) concentration of 15 wt.% and anodizing time of 90 min are optimal conditions which give contact angle as high as 159.2° and sliding angle lower than 5°. Moreover, the study reveals that adding oxalic acid to the sulfuric acid cannot enhance superhydrophobicity of the samples. Also, scanning electron microscopy images of samples show that irregular (bird's nest) structures present on the surface instead of high-ordered honeycomb structures expecting from normal anodizing process. Additionally, X-ray diffraction analysis of the samples shows that only amorphous structures present on the surface. The Brunauer-Emmett-Teller (BET) specific surface area of the anodized layer is 2.55 m2 g-1 in optimal condition. Ultimately, the surface keeps its hydrophobicity in air and deionized water (DIW) after one week and 12 weeks, respectively.

  13. Single-step direct fabrication of pillar-on-pore hybrid nanostructures in anodizing aluminum for superior superhydrophobic efficiency.

    Science.gov (United States)

    Jeong, Chanyoung; Choi, Chang-Hwan

    2012-02-01

    Conventional electrochemical anodizing processes of metals such as aluminum typically produce planar and homogeneous nanopore structures. If hydrophobically treated, such 2D planar and interconnected pore structures typically result in lower contact angle and larger contact angle hysteresis than 3D disconnected pillar structures and, hence, exhibit inferior superhydrophobic efficiency. In this study, we demonstrate for the first time that the anodizing parameters can be engineered to design novel pillar-on-pore (POP) hybrid nanostructures directly in a simple one-step fabrication process so that superior surface superhydrophobicity can also be realized effectively from the electrochemical anodization process. On the basis of the characteristic of forming a self-ordered porous morphology in a hexagonal array, the modulation of anodizing voltage and duration enabled the formulation of the hybrid-type nanostructures having controlled pillar morphology on top of a porous layer in both mild and hard anodization modes. The hybrid nanostructures of the anodized metal oxide layer initially enhanced the surface hydrophilicity significantly (i.e., superhydrophilic). However, after a hydrophobic monolayer coating, such hybrid nanostructures then showed superior superhydrophobic nonwetting properties not attainable by the plain nanoporous surfaces produced by conventional anodization conditions. The well-regulated anodization process suggests that electrochemical anodizing can expand its usefulness and efficacy to render various metallic substrates with great superhydrophilicity or -hydrophobicity by directly realizing pillar-like structures on top of a self-ordered nanoporous array through a simple one-step fabrication procedure.

  14. The effect of silicon crystallographic orientation on the formation of silicon nanoclusters during anodic electrochemical etching

    International Nuclear Information System (INIS)

    Timokhov, D. F.; Timokhov, F. P.

    2009-01-01

    Possible ways for increasing the photoluminescence quantum yield of porous silicon layers have been investigated. The effect of the anodization parameters on the photoluminescence properties for porous silicon layers formed on silicon substrates with different crystallographic orientations was studied. The average diameters for silicon nanoclusters are calculated from the photoluminescence spectra of porous silicon. The influence of the substrate crystallographic orientation on the photoluminescence quantum yield of porous silicon is revealed. A model explaining the effect of the substrate orientation on the photoluminescence properties for the porous silicon layers formed by anode electrochemical etching is proposed.

  15. Pulsed laser deposited Si on multilayer graphene as anode material for lithium ion batteries

    Directory of Open Access Journals (Sweden)

    Gouri Radhakrishnan

    2013-12-01

    Full Text Available Pulsed laser deposition and chemical vapor deposition were used to deposit very thin silicon on multilayer graphene (MLG on a nickel foam substrate for application as an anode material for lithium ion batteries. The as-grown material was directly fabricated into an anode without a binder, and tested in a half-cell configuration. Even under stressful voltage limits that accelerate degradation, the Si-MLG films displayed higher stability than Si-only electrodes. Post-cycling images of the anodes reveal the differences between the two material systems and emphasize the role of the graphene layers in improving adhesion and electrochemical stability of the Si.

  16. Interfacial Structure and Double Layer Capacitance of Ionic Liquids

    NARCIS (Netherlands)

    Jitvisate, Monchai

    2018-01-01

    Ionic liquids are organic salts that are in liquid phase at room temperature. Their wide liquidus range, particularly at room temperature, results from the liquids’ large and asymmetric molecular geometry. This leads to a collection of unique properties, such as, high ionic strength, extremely low

  17. Confinement-induced symmetry breaking of interfacial surfactant layers

    NARCIS (Netherlands)

    Leermakers, F.A.M.; Koopal, L.K.; Goloub, T.P.; Vermeer, A.W.P.; Kijlstra, J.

    2006-01-01

    Interaction forces between mesoscopic objects are fundamental to soft-condensed matter and are among the prime targets of investigation in colloidal systems. Surfactant molecules are often used to tailor these interactions. The forces are experimentally accessible and for a first theoretical

  18. Biocatalytic anode for glucose oxidation utilizing carbon nanotubes for direct electron transfer with glucose oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Vaze, Abhay; Hussain, Nighat; Tang, Chi [Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060 (United States); Leech, Donal [School of Chemistry, National University of Ireland, Galway (Ireland); Rusling, James [Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060 (United States); Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032 (United States); School of Chemistry, National University of Ireland, Galway (Ireland)

    2009-10-15

    Covalently linked layers of glucose oxidase, single-wall carbon nanotubes and poly-L-lysine on pyrolytic graphite resulted in a stable biofuel cell anode featuring direct electron transfer from the enzyme. Catalytic response observed upon addition of glucose was due to electrochemical oxidation of FADH{sub 2} under aerobic conditions. The electrode potential depended on glucose concentration. This system has essential attributes of an anode in a mediator-free biocatalytic fuel cell. (author)

  19. Improved ceramic anodes for SOFCs with modified electrode/electrolyte interface

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain; Høgh, Jens Valdemar Thorvald; Zhang, Wei

    2012-01-01

    The electrode performance of solid oxide fuel cell anode with Pd nanoparticles at the interface of ScYSZ electrolyte and Sr0.94Ti0.9Nb0.1O3 (STN) electrode introduced in the form of metal functional layer have been investigated at temperatures below 600 °C. A metal functional layer consisting of ...

  20. Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes.

    Science.gov (United States)

    Wang, Bin; Li, Xianglong; Zhang, Xianfeng; Luo, Bin; Jin, Meihua; Liang, Minghui; Dayeh, Shadi A; Picraux, S T; Zhi, Linjie

    2013-02-26

    Silicon has been touted as one of the most promising anode materials for next generation lithium ion batteries. Yet, how to build energetic silicon-based electrode architectures by addressing the structural and interfacial stability issues facing silicon anodes still remains a big challenge. Here, we develop a novel kind of self-supporting binder-free silicon-based anodes via the encapsulation of silicon nanowires (SiNWs) with dual adaptable apparels (overlapped graphene (G) sheaths and reduced graphene oxide (RGO) overcoats). In the resulted architecture (namely, SiNW@G@RGO), the overlapped graphene sheets, as adaptable but sealed sheaths, prevent the direct exposure of encapsulated silicon to the electrolyte and enable the structural and interfacial stabilization of silicon nanowires. Meanwhile, the flexible and conductive RGO overcoats accommodate the volume change of embedded SiNW@G nanocables and thus maintain the structural and electrical integrity of the SiNW@G@RGO. As a result, the SiNW@G@RGO electrodes exhibit high reversible specific capacity of 1600 mAh g⁻¹ at 2.1 A g⁻¹, 80% capacity retention after 100 cycles, and superior rate capability (500 mAh g⁻¹ at 8.4 A g⁻¹) on the basis of the total electrode weight.

  1. On anodic stability and decomposition mechanism of sulfolane in high-voltage lithium ion battery

    International Nuclear Information System (INIS)

    Xing, Lidan; Tu, Wenqiang; Vatamanu, Jenel; Liu, Qifeng; Huang, Wenna; Wang, Yating; Zhou, Hebing; Zeng, Ronghua; Li, Weishan

    2014-01-01

    Graphical abstract: - Highlights: • Influence of lithium salts on the anodic stability of sulfolane has been investigated. • Oxidation decomposition mechanisms of LiPF 6 /Sulfolane electrolyte have been well understood by theoretical and experimental methods. • Decomposition products of the electrolyte can be found on the electrode surface and in the interfacial electrolyte. - Abstract: In this work, we investigated the anodic stability and decomposition mechanism of sulfolane (SL). The anodic stability of SL-based electrolyte with different lithium salts on Pt and LiNi 0.5 Mn 1.5 O 4 electrodes was found to decrease as follows: LiPF 6 /SL > LiBF 4 /SL > LiClO 4 /SL. The oxidation potential of 1M LiPF 6 /SL electrolyte on both Pt and electrodes is about 5.0V vs Li/Li + . The presence of PF 6 - and another SL solvent dramatically alters the decomposition mechanism of SL. Oxidation decomposition of SL-SL cluster is the most favorable reaction in LiPF 6 /SL electrolyte. The dimer products with S-O-R group were detected by IR spectra on the charged LiNi 0.5 Mn 1.5 O 4 electrode surface and in the electrolyte near the electrode surface, and were found to increase the interfacial reaction resistance of the LiNi 0.5 Mn 1.5 O 4 electrode

  2. Control of interfacial intermetallic compounds in Fe–Al joining by Zn addition

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J. [Key Laboratory of Robot and Welding Automation of Jiangxi Province, School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China); Center for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Li, Y.L., E-mail: liyulong1112ster@gmail.com [Key Laboratory of Robot and Welding Automation of Jiangxi Province, School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China); Zhang, H. [Key Laboratory of Robot and Welding Automation of Jiangxi Province, School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China); Guo, W. [Center for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Zhou, Y. [Center for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada)

    2015-10-01

    By Zn addition to the fusion zone, the interfacial intermetallic compounds (IMCs) of laser Al/steel joint changed from layered Fe{sub 2}Al{sub 5} and needle-like FeAl{sub 3} to layered Fe{sub 2}Al{sub 5−x}Zn{sub x} and dispersed FeZn{sub 10} with minor Al-rich amorphous phase. This resulted in an improvement in the joint strength and the change of failure mode.

  3. Density control of electrodeposited Ni nanoparticles/nanowires inside porous anodic alumina templates by an exponential anodization voltage decrease.

    Science.gov (United States)

    Marquardt, B; Eude, L; Gowtham, M; Cho, G; Jeong, H J; Châtelet, M; Cojocaru, C S; Kim, B S; Pribat, D

    2008-10-08

    Porous alumina templates have been fabricated by applying an exponential voltage decrease at the end of the anodization process. The time constant η of the exponential voltage function has been used to control the average thickness and the thickness distribution of the barrier layer at the bottom of the pores of the alumina structure. Depending on the η value, the thickness distribution of the barrier layer can be made very uniform or highly scattered, which allows us to subsequently fine tune the electrodeposition yield of nickel nanoparticles/nanowires at low voltage. As an illustration, the pore filling percentage with Ni has been varied, in a totally reproducible manner, between ∼3 and 100%. Combined with the ability to vary the pore diameter and repetition step over ∼2 orders of magnitude (by varying the anodization voltage and electrolyte type), the control of the pore filling percentage with metal particles/nanowires could bring novel approaches for the organization of nano-objects.

  4. Vertical single- and double-walled carbon nanotubes grown from modified porous anodic alumina templates

    International Nuclear Information System (INIS)

    Maschmann, Matthew R; Franklin, Aaron D; Amama, Placidus B; Zakharov, Dmitri N; Stach, Eric A; Sands, Timothy D; Fisher, Timothy S

    2006-01-01

    Vertical single-walled and double-walled carbon nanotube (SWNT and DWNT) arrays have been grown using a catalyst embedded within the pore walls of a porous anodic alumina (PAA) template. The initial film structure consisted of a SiO x adhesion layer, a Ti layer, a bottom Al layer, a Fe layer, and a top Al layer deposited on a Si wafer. The Al and Fe layers were subsequently anodized to create a vertically oriented pore structure through the film stack. CNTs were synthesized from the catalyst layer by plasma-enhanced chemical vapour deposition (PECVD). The resulting structure is expected to form the basis for development of vertically oriented CNT-based electronics and sensors

  5. Anodic oxide films on tungsten

    International Nuclear Information System (INIS)

    Di Paola, A.; Di Quarto, F.; Sunseri, C.

    1980-01-01

    Scanning electron microscopy was used to investigate the morphology of anodic oxide films on tungsten, obtained in various conditions of anodization. Studies were made of the growth of porous films, whose thickness increases with time and depends upon the current density. Temperature and electrolyte composition influence the film morphology. Gravimetric measurements of film dissolution at 70 0 C show that after a transient time, the rate of metal dissolution and that of film formation coincide. The porous films thicken because tungsten dissolves as WO 2 2+ and precipitates as WO 3 .H 2 O. (author)

  6. Anodic selective functionalization of cyclic amine derivatives

    OpenAIRE

    Onomura, Osamu

    2012-01-01

    Anodic reactions are desirable methods from the viewpoint of Green Chemistry, since no toxic oxidants are necessary for the oxidation of organic molecules. This review introduces usefulness of anodic oxidation and successive reaction for selective functionalization of cyclic amine derivatives.

  7. Resistance switching of the interfacial conductance in amorphous SrTiO3 heterostructures

    DEFF Research Database (Denmark)

    Christensen, Dennis; Trier, Felix; Chen, Yunzhong

    Complex oxides have attracted a lot of interest recently as this class of material exhibits a plethora of remarkable properties. In particular, a great variety of properties is observed in the heterostructure composed of lanthanum aluminate (LaAlO3) and strontium titanate (SrTiO3). For instance...... by an electric field. It has previously been demonstrated that SrTiO3 heterostructures with amorphous LaAlO3 top layers can display interfacial conductivity with similar critical thickness dependence. Here, we report resistance switching of the interfacial conductance for SrTiO3 heterostructures with amorphous...

  8. Miscibility–dispersion, interfacial strength and nanoclay mobility relationships in polymer nanocomposites

    KAUST Repository

    Carretero-González, Javier

    2009-01-01

    Fully dispersed layered silicate nanoparticles (nanoclay) in a polymer matrix have provided a new class of multi-functional materials exhibiting several performance improvements over conventional composites. Yet the challenges of miscibility and interfacial strength might prevent nanocomposites from realizing their full potential. In this paper we demonstrate the effect of the chemical characteristics of the nanoclay on the miscibility and dispersion in the polymer matrix as well as on the interfacial strength of the bound polymer and the nanoclay mobility, all of which determine the macroscopic properties of the nanocomposite. © 2009 The Royal Society of Chemistry.

  9. Physicochemically functional ultrathin films by interfacial polymerization

    Science.gov (United States)

    Lonsdale, Harold K.; Babcock, Walter C.; Friensen, Dwayne T.; Smith, Kelly L.; Johnson, Bruce M.; Wamser, Carl C.

    1990-01-01

    Interfacially-polymerized ultrathin films containing physicochemically functional groups are disclosed, both with and without supports. Various applications are disclsoed, including membrane electrodes, selective membranes and sorbents, biocompatible materials, targeted drug delivery, and narrow band optical absorbers.

  10. Interfacial structures - Thermodynamical and experimental studies of the interfacial mass transfer

    International Nuclear Information System (INIS)

    Morel, Jean-Emile

    1972-01-01

    In the first section, we put forward hypotheses concerning the structure of the interfacial regions between two immiscible liquid phases. It appears that the longitudinal structure is comparable with that of a crystallized solid and that the transversal structure is nearest of that of a liquid. In the second section, we present a thermodynamical treatment of the irreversible phenomena in the interfacial region. The equation of evolution of a system consisting of two immiscible liquid phases are deduced. The third part allows an experimental verification of the theoretical relations. We also make clear, in certain cases, the appearance of a great 'interfacial resistance' which slows down the interfacial mass transfer. (author) [fr

  11. Weighing graphene with QCM to monitor interfacial mass changes

    Science.gov (United States)

    Kakenov, Nurbek; Balci, Osman; Salihoglu, Omer; Hur, Seung Hyun; Balci, Sinan; Kocabas, Coskun

    2016-08-01

    In this Letter, we experimentally determined the mass density of graphene using quartz crystal microbalance (QCM) as a mechanical resonator. We developed a transfer printing technique to integrate large area single-layer graphene on QCM. By monitoring the resonant frequency of an oscillating quartz crystal loaded with graphene, we were able to measure the mass density of graphene as ˜118 ng/cm2, which is significantly larger than the ideal graphene (˜76 ng/cm2) mainly due to the presence of wrinkles and organic/inorganic residues on graphene sheets. High sensitivity of the quartz crystal resonator allowed us to determine the number of graphene layers in a particular sample. Additionally, we extended our technique to probe interfacial mass variation during adsorption of biomolecules on graphene surface and plasma-assisted oxidation of graphene.

  12. Spin-injection efficiency and magnetoresistance in a hybrid ferromagnetic-semiconductor trilayer with interfacial barriers

    International Nuclear Information System (INIS)

    Agrawal, S.; Jalil, M.B.A.; Tan, S.G.; Teo, K.L.; Liew, T.

    2006-01-01

    We present a self-consistent model of spin transport in a ferromagnetic (FM)-semiconductor (SC)-FM trilayer structure with interfacial barriers at the FM-SC boundaries. The SC layer consists of a highly doped n 2+ AlGaAs-GaAs 2DEG while the interfacial resistance is modeled as delta potential (δ) barriers. The self-consistent scheme combines a ballistic model of spin-dependent transmission across the δ-barriers, and a drift-diffusion model within the bulk of the trilayer. The interfacial resistance (R I ) values of the two junctions were found to be asymmetric despite the symmetry of the trilayer structure. Transport characteristics such as the asymmetry in R I , spin-injection efficiency and magnetoresistance (MR) are calculated as a function of bulk conductivity σ s and spin-diffusion length (SDL) within the SC layer. In general a large σ s tends to improve all three characteristics, while a long SDL improves the MR ratio but reduces the spin-injection efficiency. These trends may be explained in terms of conductivity mismatch and spin accumulation either at the interfacial zones or within the bulk of the SC layer

  13. Modeling interfacial fracture in Sierra.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Arthur A.; Ohashi, Yuki; Lu, Wei-Yang; Nelson, Stacy A. C.; Foulk, James W.,; Reedy, Earl David,; Austin, Kevin N.; Margolis, Stephen B.

    2013-09-01

    This report summarizes computational efforts to model interfacial fracture using cohesive zone models in the SIERRA/SolidMechanics (SIERRA/SM) finite element code. Cohesive surface elements were used to model crack initiation and propagation along predefined paths. Mesh convergence was observed with SIERRA/SM for numerous geometries. As the funding for this project came from the Advanced Simulation and Computing Verification and Validation (ASC V&V) focus area, considerable effort was spent performing verification and validation. Code verification was performed to compare code predictions to analytical solutions for simple three-element simulations as well as a higher-fidelity simulation of a double-cantilever beam. Parameter identification was conducted with Dakota using experimental results on asymmetric double-cantilever beam (ADCB) and end-notched-flexure (ENF) experiments conducted under Campaign-6 funding. Discretization convergence studies were also performed with respect to mesh size and time step and an optimization study was completed for mode II delamination using the ENF geometry. Throughout this verification process, numerous SIERRA/SM bugs were found and reported, all of which have been fixed, leading to over a 10-fold increase in convergence rates. Finally, mixed-mode flexure experiments were performed for validation. One of the unexplained issues encountered was material property variability for ostensibly the same composite material. Since the variability is not fully understood, it is difficult to accurately assess uncertainty when performing predictions.

  14. [Corrosion resistant properties of different anodized microtopographies on titanium surfaces].

    Science.gov (United States)

    Fangjun, Huo; Li, Xie; Xingye, Tong; Yueting, Wang; Weihua, Guo; Weidong, Tian

    2015-12-01

    To investigate the corrosion resistant properties of titanium samples prepared by anodic oxidation with different surface morphologies. Pure titanium substrates were treated by anodic oxidation to obtain porous titanium films in micron, submicron, and micron-submicron scales. The surface morphologies, coating cross-sectional morphologies, crystalline structures, and surface roughness of these samples were characterized. Electrochemical technique was used to measure the corrosion potential (Ecorr), current density of corrosion (Icorr), and polarization resistance (Rp) of these samples in a simulated body fluid. Pure titanium could be modified to exhibit different surface morphologies by the anodic oxidation technique. The Tafel curve results showed that the technique can improve the corrosion resistance of pure titanium. Furthermore, the corrosion resistance varied with different surface morphologies. The submicron porous surface sample demonstrated the best corrosion resistance, with maximal Ecorr and Rp and minimal Icorr. Anodic oxidation technology can improve the corrosion resistance of pure titanium in a simulated body fluid. The submicron porous surface sample exhibited the best corrosion resistance because of its small surface area and thick barrier layer.

  15. Effect of Atmospheric Ions on Interfacial Water

    Directory of Open Access Journals (Sweden)

    Chien-Chang Kurt Kung

    2014-11-01

    Full Text Available The effect of atmospheric positivity on the electrical properties of interfacial water was explored. Interfacial, or exclusion zone (EZ water was created in the standard way, next to a sheet of Nafion placed horizontally at the bottom of a water-filled chamber. Positive atmospheric ions were created from a high voltage source placed above the chamber. Electrical potential distribution in the interfacial water was measured using microelectrodes. We found that beyond a threshold, the positive ions diminished the magnitude of the negative electrical potential in the interfacial water, sometimes even turning it to positive. Additionally, positive ions produced by an air conditioner were observed to generate similar effects; i.e., the electrical potential shifted in the positive direction but returned to negative when the air conditioner stopped blowing. Sometimes, the effect of the positive ions from the air conditioner was strong enough to destroy the structure of interfacial water by turning the potential decidedly positive. Thus, positive air ions can compromise interfacial water negativity and may explain the known negative impact of positive ions on health.

  16. Water and oil wettability of anodized 6016 aluminum alloy surface

    Science.gov (United States)

    Rodrigues, S. P.; Alves, C. F. Almeida; Cavaleiro, A.; Carvalho, S.

    2017-11-01

    This paper reports on the control of wettability behaviour of a 6000 series aluminum (Al) alloy surface (Al6016-T4), which is widely used in the automotive and aerospace industries. In order to induce the surface micro-nanostructuring of the surface, a combination of prior mechanical polishing steps followed by anodization process with different conditions was used. The surface polishing with sandpaper grit size 1000 promoted aligned grooves on the surface leading to static water contact angle (WCA) of 91° and oil (α-bromonaphthalene) contact angle (OCA) of 32°, indicating a slightly hydrophobic and oleophilic character. H2SO4 and H3PO4 acid electrolytes were used to grow aluminum oxide layers (Al2O3) by anodization, working at 15 V/18° C and 100 V/0 °C, respectively, in one or two-steps configuration. Overall, the anodization results showed that the structured Al surfaces were hydrophilic and oleophilic-like with both WCA and OCA below 90°. The one-step configuration led to a dimple-shaped Al alloy surface with small diameter of around 31 nm, in case of H2SO4, and with larger diameters of around 223 nm in case of H3PO4. The larger dimples achieved with H3PO4 electrolyte allowed to reach a slight hydrophobic surface. The thicker porous Al oxide layers, produced by anodization in two-step configuration, revealed that the liquids can penetrate easily inside the non-ordered porous structures and, thus, the surface wettability tended to superhydrophilic and superoleophilic character (CA mechanisms of porous structures, was broken. Moreover, thicker oxide layers with narrow pores of about 29 nm diameter allowed to achieve WCA mechanical components or in water-oil separation process.

  17. Chemical sensitive interfacial free volume studies of nanophase Al-rich alloys

    International Nuclear Information System (INIS)

    Lechner, W.; Puff, W.; Wuerschum, R.; Wilde, G.

    2006-01-01

    Full text: Al-based nanocrystalline alloys have attracted substantial interest due to their outstanding mechanical properties. These alloys can be obtained by crystallization of melt-spun amorphous precursors or by grain refinement upon repeated cold-rolling of elemental layers. For both synthesis routes, the nanocrystallization process is sensitively affected by interfacial chemistry and free volumes. In order to contribute to an atomistic understanding of the interfacial structure and processes during nanocrystallization, the present work deals with studies of interfacial free volumes by means of positron-annihilation-spectroscopy. In addition to positron lifetime spectroscopy which yields information on the size of free volumes, coincident Doppler broadening of the positron-electron annihilation photons is applied as novel technique for studying the chemistry of interfaces in nanophase materials on an atomistic scale. Al-rich alloys of the above mentioned synthesis routes were studied in this work. (author)

  18. Thickness dependence of the interfacial Dzyaloshinskii–Moriya interaction in inversion symmetry broken systems

    Science.gov (United States)

    Cho, Jaehun; Kim, Nam-Hui; Lee, Sukmock; Kim, June-Seo; Lavrijsen, Reinoud; Solignac, Aurelie; Yin, Yuxiang; Han, Dong-Soo; van Hoof, Niels J. J.; Swagten, Henk J. M.; Koopmans, Bert; You, Chun-Yeol

    2015-01-01

    In magnetic multilayer systems, a large spin-orbit coupling at the interface between heavy metals and ferromagnets can lead to intriguing phenomena such as the perpendicular magnetic anisotropy, the spin Hall effect, the Rashba effect, and especially the interfacial Dzyaloshinskii–Moriya (IDM) interaction. This interfacial nature of the IDM interaction has been recently revisited because of its scientific and technological potential. Here we demonstrate an experimental technique to straightforwardly observe the IDM interaction, namely Brillouin light scattering. The non-reciprocal spin wave dispersions, systematically measured by Brillouin light scattering, allow not only the determination of the IDM energy densities beyond the regime of perpendicular magnetization but also the revelation of the inverse proportionality with the thickness of the magnetic layer, which is a clear signature of the interfacial nature. Altogether, our experimental and theoretical approaches involving double time Green's function methods open up possibilities for exploring magnetic hybrid structures for engineering the IDM interaction. PMID:26154986

  19. Interfacial functionalization and engineering of nanoparticles

    Science.gov (United States)

    Song, Yang

    also of the metal elements in the nanoparticle cores, in contrast to the bulk-exchange counterparts where these distributions were homogeneous within the nanoparticles, as manifested in contact angle, UV--vis, XPS, and TEM measurements. More interestingly, the electrocatalytic performance of the Janus nanoparticles was markedly better than the bulk-exchange ones, suggesting that the segregated distribution of the polar ligands from the apolar ones might further facilitate charge transfer from Ag to Au in the nanoparticle cores, leading to additional improvement of the adsorption and reduction of oxygen. This interfacial protocol was then adopted to prepare trimetallic Ag AuPt Neapolitan nanoparticles by two sequential galvanic exchange reactions of 1-hexanethiolate-capped silver nanoparticles with gold(I)-thiomalic acid and platinum(II)-hexanethiolate complexes. As both reactions were confined to an interface, the Au and Pt elements were situated on two opposite poles of the original Ag nanoparticles, which was clearly manifested in elemental mapping of the nanoparticles, and consistent with the damping and red-shift of the nanoparticle surface plasmon resonance. As nanoscale analogs to conventional amphiphilic molecules, the resulting Janus nanoparticles were found to form oil-in-water micelle-like or water-in-oil reverse micelle-like superparticulate structures depending on the solvent media. These unique characteristics were exploited for the effective transfer of diverse guest nanoparticles between organic and water phase. The transfer of hydrophobic nanoparticles from organic to water media or water-soluble nanoparticles to the organic phase was evidenced by TEM, DLS, UV-Vis, and PL measurements. In particular, line scans based on EDS analysis showed that the vesicle-like structures consisted of multiple layers of the Janus nanoparticles, which encapsulated the guest nanoparticles in the cores. The results highlight the unique effectiveness of using Janus

  20. Effect of aluminum anodizing in phosphoric acid electrolyte on adhesion strength and thermal performance

    Science.gov (United States)

    Lee, Sulki; Kim, Donghyun; Kim, Yonghwan; Jung, Uoochang; Chung, Wonsub

    2016-01-01

    This study examined the adhesive bond strength and thermal performance of the anodized aluminum 6061 in phosphoric acid electrolyte to improve the adhesive bond strength and thermal performance for use in metal core printed circuit boards (MCPCB). The electrolyte temperature and applied voltage were altered to generate varied pore structures. The thickness, porosity and pore diameter of the anodized layer were measured. The pore morphologies were affected most by temperature, which was the driving force for ion transportation. The mechanism of adhesive bond was penetration of the epoxy into the pores. The optimal anodization conditions for maximum adhesive bond strength, 27 MPa, were 293 K and 100V. The maximum thermal conductivity of the epoxy-treated anodized layer was 1.6 W/m·K at 273 K. Compared with the epoxy-treated Al layer used for conventional MCPCBs, the epoxy-treated anodized layer showed advanced thermal performance due to a low difference of thermal resistance and high heat dissipation.

  1. Effect of anodization on the surface characteristics and electrochemical behaviour of zirconium in artificial saliva

    Energy Technology Data Exchange (ETDEWEB)

    Romonti, Daniela E. [Faculty of Applied Chemistry and Materials Science, Department of General Chemistry, 1-7 Polizu, district 1, Bucharest Ro-011061 (Romania); Gomez Sanchez, Andrea V. [INTEMA, CONICET, Universidad Nacional de Mar del Plata, Juan B. Justo, 4302, B7608FDQ Mar del Plata (Argentina); Milošev, Ingrid [Jožef Stefan Institute, Department of Physical and Organic Chemistry, Jamova c. 39, SI-1000 Ljubljana (Slovenia); Demetrescu, Ioana [Faculty of Applied Chemistry and Materials Science, Department of General Chemistry, 1-7 Polizu, district 1, Bucharest Ro-011061 (Romania); Ceré, Silvia, E-mail: smcere@fi.mdp.edu.ar [INTEMA, CONICET, Universidad Nacional de Mar del Plata, Juan B. Justo, 4302, B7608FDQ Mar del Plata (Argentina)

    2016-05-01

    The paper is focused on elaboration of ZrO{sub 2} films on pure zirconium via anodizing in phosphoric acid with and without fluoride at constant potentials of 30 V and 60 V. The structure and composition of the films were investigated using scanning electronic microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The composition of the oxides formed at both potentials can be identified as monoclinic ZrO{sub 2.} In addition to Zr and O, the layers formed in phosphoric acid contain phosphorus originating from the phosphoric acid. When the phosphoric acid solution contains NaF, fluorine is also incorporated into the oxide layer. The oxides formed at a higher voltage have greater roughness than those formed at 30 V. Anodized samples exhibit smaller current densities during anodic polarization compared to the as-received zirconium covered with native oxide. - Highlights: • Anodic oxide layer formed on Zr in phosphoric acid with fluoride is monoclinic ZrO{sub 2}. • Fluorine ions from the electrolyte are incorporated in the oxide layer. • Anodic polarization in Afnor solution evidences breakdown of the passive films. • Decrease of breakdown potential may be induced by defects caused by fluorine.

  2. A physical model of Direct Methanol Fuel Cell anode impedance

    Science.gov (United States)

    Zago, M.; Casalegno, A.

    2014-02-01

    In the present work a physically based model of direct methanol fuel cell anode impedance has been developed and validated at different operating current densities. The proposed model includes the two-phase mass transport of both methanol and water through diffusion and catalyst layers and the methanol oxidation reaction involving CO adsorbed intermediate. Model simulations are in good quantitative agreement with experimental observations and permit to evaluate the origin of anode impedance features. Model results confirm that the high frequency 45° linear branch is caused by proton transport limitations within the catalyst layer and that the low frequency inductive behavior is due to surface coverage by CO reaction intermediate. Moreover model predictions elucidate the contribution to the impedance of mass transport phenomena through diffusion layer, that is relevant even at low current density and increases along the channel length. In particular liquid convective fluxes are considered as a process of pressure buildup and breakthrough at diffusion layer intersecting fibers, resulting in a discontinuous phenomenon. By means of this intermittent description it is possible to correctly reproduce mass transport limitations through diffusion layers, that manifest themselves as a second arch superimposed to the first one, peculiar of kinetic losses.

  3. Interfacial reactions in thermoelectric modules

    KAUST Repository

    Wu, Hsin-jay

    2018-02-21

    Engineering transport properties of thermoelectric (TE) materials leads to incessantly breakthroughs in the zT values. Nevertheless, modular design holds a key factor to advance the TE technology. Herein, we discuss the structures of TE module and illustrate the inter-diffusions across the interface of constituent layers. For Bi2Te3-based module, soldering is the primary bonding method, giving rise to the investigations on the selections of solder, diffusion barrier layer and electrode. For mid-temperature PbTe-based TE module, hot-pressing or spark plasma sintering are alternative bonding approaches; the inter-diffusions between the diffusion barrier layer, electrode and TE substrate are addressed as well.

  4. Bioinspired design and interfacial failure of biomedical systems

    Science.gov (United States)

    Rahbar, Nima

    The deformation mechanism of nacre as a model biological material is studied in this project. A numerical model is presented which consists of tensile pillars, shear pillars, asperities and aragonite platelets. It has been shown that the tensile pillars are the main elements that control the global stiffness of the nacre structure. Meanwhile, ultimate strength of the nacre structure is controlled by asperities and their behavior and the ratio of L/2D which is itself a function of the geometry of the platelets. Protein/shear pillars provide the glue which holds the assembly of entire system together, particularly in the direction normal to the platelets main axis. This dissertation also presents the results of a combined theoretical/computational and experimental effort to develop crack resistant dental multilayers that are inspired by the functionally graded dento-enamel junction (DEJ) structure that occurs between dentin and enamel in natural teeth. The complex structures of natural teeth and ceramic crowns are idealized using at layered configurations. The potential effects of occlusal contact are then modeled using finite element simulations of Hertzian contact. The resulting stress distributions are compared for a range of possible bioinspired, functionally graded architecture. The computed stress distributions show that the highest stress concentrations in the top ceramic layer of crown structures are reduced significantly by the use of bioinspired functionally graded architectures. The reduced stresses are shown to be associated with significant improvements (30%) in the pop-in loads over a wide range of clinically-relevant loading rates. The implications of the results are discussed for the design of bioinspired dental ceramic crown structures. The results of a combined experimental and computational study of mixed mode fracture in glass/cement and zirconia/cement interfaces that are relevant to dental restorations is also presented. The interfacial fracture

  5. Controlling interfacial film formation in mixed polymer-surfactant systems by changing the vapor phase.

    Science.gov (United States)

    Mokhtari, Tahereh; Pham, Quoc Dat; Hirst, Christopher; O'Driscoll, Benjamin M D; Nylander, Tommy; Edler, Karen J; Sparr, Emma

    2014-08-26

    Here we show that transport-generated phase separation at the air-liquid interface in systems containing self-assembling amphiphilic molecules and polymers can be controlled by the relative humidity (RH) of the air. We also show that our observations can be described quantitatively with a theoretical model describing interfacial phase separation in a water gradient that we published previously. These phenomena arises from the fact that the water chemical potential corresponding to the ambient RH will, in general, not match the water chemical potential in the open aqueous solution. This implies nonequilibrium conditions at the air-water interface, which in turn can have consequences on the molecular organization in this layer. The experimental setup is such that we can control the boundary conditions in RH and thereby verify the predictions from the theoretical model. The polymer-surfactant systems studied here are composed of polyethylenimine (PEI) and hexadecyltrimethylammonium bromide (CTAB) or didecyldimethylammonium bromide (DDAB). Grazing-incidence small-angle X-ray scattering results show that interfacial phases with hexagonal or lamellar structure form at the interface of dilute polymer-surfactant micellar solutions. From spectroscopic ellipsometry data we conclude that variations in RH can be used to control the growth of micrometer-thick interfacial films and that reducing RH leads to thicker films. For the CTAB-PEI system, we compare the phase behavior of the interfacial phase to the equilibrium bulk phase behavior. The interfacial film resembles the bulk phases formed at high surfactant to polymer ratio and reduced water contents, and this can be used to predict the composition of interfacial phase. We also show that convection in the vapor phase strongly reduces film formation, likely due to reduction of the unstirred layer, where diffusive transport is dominating.

  6. Electrocatalytic Materials and Techniques for the Anodic Oxidation of Various Organic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Treimer, Stephen Everett [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    The focus of this thesis was first to characterize and improve the applicability of Fe(III) and Bi(V) doped PbO2 film electrodes for use in anodic O-transfer reactions of toxic and waste organic compounds, e.g. phenol, aniline, benzene, and naphthalene. Further, they investigated the use of alternative solution/electrode interfacial excitation techniques to enhance the performance of these electrodes for remediation and electrosynthetic applications. Finally, they have attempted to identify a less toxic metal oxide film that may hold promise for future studies in the electrocatalysis and photoelectrocatalysis of O-transfer reactions using metal oxide film electrodes.

  7. Direct observation of interfacial Au atoms on TiO₂ in three dimensions.

    Science.gov (United States)

    Gao, Wenpei; Sivaramakrishnan, Shankar; Wen, Jianguo; Zuo, Jian-Min

    2015-04-08

    Interfacial atoms, which result from interactions between the metal nanoparticles and support, have a large impact on the physical and chemical properties of nanoparticles. However, they are difficult to observe; the lack of knowledge has been a major obstacle toward unraveling their role in chemical transformations. Here we report conclusive evidence of interfacial Au atoms formed on the rutile (TiO2) (110) surfaces by activation using high-temperature (∼500 °C) annealing in air. Three-dimensional imaging was performed using depth-sectioning enabled by aberration-corrected scanning transmission electron microscopy. Results show that the interface between Au nanocrystals and TiO2 (110) surfaces consists of a single atomic layer with Au atoms embedded inside Ti-O. The number of interfacial Au atoms is estimated from ∼1-8 in an interfacial atomic column. Direct impact of interfacial Au atoms is observed on an enhanced Au-TiO2 interaction and the reduction of surface TiO2; both are critical to Au catalysis.

  8. In Situ FTIR Analysis of CO-Tolerance of a Pt-Fe Alloy with Stabilized Pt Skin Layers as a Hydrogen Anode Catalyst for Polymer Electrolyte Fuel Cells

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Ogihara

    2016-12-01

    Full Text Available The CO-tolerance mechanism of a carbon-supported Pt-Fe alloy catalyst with two atomic layers of stabilized Pt-skin (Pt2AL–PtFe/C was investigated, in comparison with commercial Pt2Ru3/C (c-Pt2Ru3/C, by in situ attenuated total reflection Fourier transform infrared (ATR-FTIR spectroscopy in 0.1 M HClO4 solution at 60 °C. When 1% CO (H2-balance was bubbled continuously in the solution, the hydrogen oxidation reaction (HOR activities of both catalysts decreased severely because the active sites were blocked by COad, reaching the coverage θCO ≈ 0.99. The bands in the IR spectra observed on both catalysts were successfully assigned to linearly adsorbed CO (COL and bridged CO (COB, both of which consisted of multiple components (COL or COB at terraces and step/edge sites. The Pt2AL–PtFe/C catalyst lost 99% of its initial mass activity (MA for the HOR after 30 min, whereas about 10% of the initial MA was maintained on c-Pt2Ru3/C after 2 h, which can be ascribed to a suppression of linearly adsorbed CO at terrace sites (COL, terrace. In contrast, the HOR activities of both catalysts with pre-adsorbed CO recovered appreciably after bubbling with CO-free pure H2. We clarify, for the first time, that such a recovery of activity can be ascribed to an increased number of active sites by a transfer of COL, terrace to COL, step/edge, without removal of COad from the surface. The Pt2AL–PtFe/C catalyst showed a larger decrease in the band intensity of COL, terrace. A possible mechanism for the CO-tolerant HOR is also discussed.

  9. Nano structured porous anodized aluminium oxide by using C2H2O4 for electronic applications: Study of the cell potential effects on formation of porous alumina

    International Nuclear Information System (INIS)

    Nur Hafiza Mohd Najib; Derman, M.N.M.; Nuzaihan, M.N.; Nazwa, T.; Azniza, A.

    2011-01-01

    In this research, a nano porous anodized aluminium oxide AAO thin film was successfully grown onto oxide layer on silicon substrate. The anodization of Si/ SiO 2 / Al substrate was conducted in a vigorous stirring oxalic acid bath solution. The rate of growth, morphology and also the kinetic study of the AAO thin film were investigated. The resulting array, pores structure and pores density of AAO strongly depends on an applied voltage of the anodizing process. (author)

  10. Fabrication of advanced design (grooved) cermet anodes

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, C.F. Jr. [Pacific Northwest Lab., Richland, WA (United States); Huettig, F.R. [Ceramic Magnetics, Inc., Fairfield, NJ (United States)

    1993-05-01

    Attempts were made to fabricate full-size anodes with advanced, or grooved, design using isostatic pressing, slip casting injection molding. Of the three approaches, isostatic pressing produced an anode with dimensions nearest to the target specifications, without serious macroscopic flaws. This approach is considered the most promising for making advanced anodes for aluminum smelting. However, significant work still remains to optimize the physical properties and microstructure of the anode, both of which were significantly different from that of previous anodes. Injection molding and slip casting yielded anode materials with serious deficiencies, including cracks and holes. Injection molding gave cermet material with the best intrinsic microstructure, i.e., the microstructure of the material between macroscopic flaws was very similar to that of anodes previously made at PNL. Reason for the similarity may have to do with amount of residual binder in the material prior to sintering.

  11. Magnesium sacrificial anode behavior at elevated temperature

    International Nuclear Information System (INIS)

    Othman, Mohsen Othman

    2006-01-01

    Magnesium sacrificial anode coupled to mild steel was tasted in sodium chloride and tap water environments at elevated temperatures. The anode failed to protect the mild steel specimens in tap water environment at all temperatures specified. This was partly due to low conductivity of this medium. The temperature factor did not help to activate the anode in this medium. In sodium chloride environment the anode demonstrated good protection for steel cathodes. The weight loss was high for magnesium in sodium chloride environment particularly beyond 60 degree centigrade. In tap water environment the weight loss was negligible for the anode. It also suffered localized shallow pitting corrosion. Magnesium anode cannot be utilized where high temperature is involved particularly in high conductivity mediums. Protection of structures containing high resistivity waters is not feasible using sacrificial anode system. (author)

  12. Improvements in the corrosion resistance and biocompatibility of biomedical Ti–6Al–7Nb alloy using an electrochemical anodization treatment

    International Nuclear Information System (INIS)

    Huang, Her-Hsiung; Wu, Chia-Ping; Sun, Ying-Sui; Lee, Tzu-Hsin

    2013-01-01

    The biocompatibility of an implant material is determined by its surface characteristics. This study investigated the application of an electrochemical anodization surface treatment to improve both the corrosion resistance and biocompatibility of Ti–6Al–7Nb alloy for implant applications. The electrochemical anodization treatment produced an Al-free oxide layer with nanoscale porosity on the Ti–6Al–7Nb alloy surface. The surface topography and microstructure of Ti–6Al–7Nb alloy were analyzed. The corrosion resistance was investigated using potentiodynamic polarization curve measurements in simulated blood plasma (SBP). The adhesion and proliferation of human bone marrow mesenchymal stem cells to test specimens were evaluated using various biological analysis techniques. The results showed that the presence of a nanoporous oxide layer on the anodized Ti–6Al–7Nb alloy increased the corrosion resistance (i.e., increased the corrosion potential and decreased both the corrosion rate and the passive current) in SBP compared with the untreated Ti–6Al–7Nb alloy. Changes in the nanotopography also improved the cell adhesion and proliferation on the anodized Ti–6Al–7Nb alloy. We conclude that a fast and simple electrochemical anodization surface treatment improves the corrosion resistance and biocompatibility of Ti–6Al–7Nb alloy for biomedical implant applications. - Highlights: ► Simple/fast electrochemical anodization was applied to biomedical Ti–6Al–7Nb surface. ► Anodized surface had nano-porous topography and contained Al-free oxide layer. ► Anodized surface raised corrosion resistance in three simulated biological solutions. ► Anodized surface enhanced cell adhesion and cell proliferation. ► Electrochemical anodization has potential as biomedical implant surface treatment

  13. Nanostructural characterization of large-scale porous alumina fabricated via anodizing in arsenic acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Akiya, Shunta; Kikuchi, Tatsuya, E-mail: kiku@eng.hokudai.ac.jp; Natsui, Shungo; Suzuki, Ryosuke O.

    2017-05-01

    Highlights: • Anodic porous alumina was formed in an arsenic acid solution. • Potential difference (voltage) anodizing at 340 V was achieved. • The porous alumina was slightly ordered under the appropriate conditions. • Pore sealing behavior was not observed in boiling distilled water. • The porous alumina exhibits a white photoluminescence emission under UV irradiation. - Abstract: Anodizing of aluminum in an arsenic acid solution is reported for the fabrication of anodic porous alumina. The highest potential difference (voltage) without oxide burning increased as the temperature and the concentration of the arsenic acid solution decreased, and a high anodizing potential difference of 340 V was achieved. An ordered porous alumina with several tens of cells was formed in 0.1–0.5 M arsenic acid solutions at 310–340 V for 20 h. However, the regularity of the porous alumina was not improved via anodizing for 72 h. No pore sealing behavior of the porous alumina was observed upon immersion in boiling distilled water, and it may be due to the formation of an insoluble complex on the oxide surface. The porous alumina consisted of two different layers: a hexagonal alumina layer that contained arsenic from the electrolyte and a pure alumina honeycomb skeleton. The porous alumina exhibited a white photoluminescence emission at approximately 515 nm under UV irradiation at 254 nm.

  14. The performance of 3-D graphite doped anodes in microbial electrolysis cells

    Science.gov (United States)

    Yasri, Nael G.; Nakhla, George

    2017-02-01

    This study investigated the use of granular activated carbon (GAC) as high surface area 3-dimensional (3-D) anode in MECs systems. The interfacial anodes' charge transfer resistance of the doped GAC did not impact the overall performance of MECs. Based on our finding, the 3-D anode packed with GAC-doped with nonconductive calcium sulfide (CaS) outperformed the more conductive iron (II) sulfide (FeS), magnetite (Fe3O4), or GAC without doping. The results showed higher current densities for 3-D CaS (40.1 A/m3), as compared with 3-D FeS (34.4 A/m3), 3-D Fe3O4 (29.8 A/m3), and 3-D GAC (23.1 A/m3). The higher current density in the 3-D CaS translated to higher coulombic efficiency (96.7%), hydrogen yield (3.6 mol H2/mol acetate), and attached biomass per anode mass (54.01 mg COD biomass/g GAC). Although the 3-D MEC achieved similar hydrogen yield, hydrogen recovery efficiency, and COD removal rate to a conventional sandwich type MEC, the current density, coulombic efficiency, and overall energy efficiency were higher.

  15. Interfacial area and interfacial transfer in two-phase systems. DOE final report

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Mamoru; Hibiki, T.; Revankar, S.T.; Kim, S.; Le Corre, J.M.

    2002-07-01

    In the two-fluid model, the field equations are expressed by the six conservation equations consisting of mass, momentum and energy equations for each phase. The existence of the interfacial transfer terms is one of the most important characteristics of the two-fluid model formulation. The interfacial transfer terms are strongly related to the interfacial area concentration and to the local transfer mechanisms such as the degree of turbulence near interfaces. This study focuses on the development of a closure relation for the interfacial area concentration. A brief summary of several problems of the current closure relation for the interfacial area concentration and a new concept to overcome the problem are given.

  16. Fabrication of copper-based anodes via atmosphoric plasma spraying techniques

    Science.gov (United States)

    Lu, Chun [Monroeville, PA

    2012-04-24

    A fuel electrode anode (18) for a solid oxide fuel cell is made by presenting a solid oxide fuel cell having an electrolyte surface (15), mixing copper powder with solid oxide electrolyte in a mixing step (24, 44) to provide a spray feedstock (30,50) which is fed into a plasma jet (32, 52) of a plasma torch to melt the spray feed stock and propel it onto an electrolyte surface (34, 54) where the spray feed stock flattens into lamellae layer upon solidification, where the layer (38, 59) is an anode coating with greater than 35 vol. % based on solids volume.

  17. New anode catalyst for the negative electrode of the nickel-hydrogen battery

    Science.gov (United States)

    Vaidyanathan, H.

    Hydrogen electrodes fabricated using an anode catalyst of 10-percent platinum and utilizing Vulcan XC72 carbon as support are shown to exhibit low polarization and charge/discharge characterisitcs comparable to platinum-black-based electrodes, with a tenfold reduction in platinum usage. A rolling and compacting procedure has been developed to fabricate continuous films of very thin catalyst layers, using fewer steps and resulting in greater electrode uniformity. It is found that the Gore-Tex layer can be eliminated in the prismatic design with rectangular electrodes without reducing performance. The anode catalyst has application to the Ni/H2 batteries employed in various spacecraft designs.

  18. Electrochemical polymerization of phenol on 304 stainless steel anodes and subsequent coating structure analysis

    International Nuclear Information System (INIS)

    Bao Liyin; Xiong Rongchun; Wei Gang

    2010-01-01

    Anodic oxidation was carried out using 304 stainless steel anodes in neutral 0.1 mol/L phenol solution with an electrolyte composed of 0.1 mol/L sodium sulfate. This oxidation generated a yellow brown polyphenol coating on the steel anode surface. The reaction conditions discussed in this report relate to the methods of linear scanning, cyclic voltammetry and constant current oxidation. The proper anodic electrode potential for polyphenol deposition was observed to be 1.45 V, with a bath voltage of 2.5 V. The chemical structure of the polyphenol coating was analyzed by infrared spectroscopy and the molecular weight of the soluble part of the coating was detected by gel permeation chromatography. A scanning electron microscope was used to analyze the microstructure of the polyphenol coating, taking advantage of the partial solubility of the polyphenol in tetrahydrofuran. The observed linear and flake-layer modes of the polyphenol coating growth are summarized herein.

  19. Electrochemical polymerization of phenol on 304 stainless steel anodes and subsequent coating structure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bao Liyin [College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Xiong Rongchun, E-mail: rongchunxiong@163.co [College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Wei Gang [College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2010-04-30

    Anodic oxidation was carried out using 304 stainless steel anodes in neutral 0.1 mol/L phenol solution with an electrolyte composed of 0.1 mol/L sodium sulfate. This oxidation generated a yellow brown polyphenol coating on the steel anode surface. The reaction conditions discussed in this report relate to the methods of linear scanning, cyclic voltammetry and constant current oxidation. The proper anodic electrode potential for polyphenol deposition was observed to be 1.45 V, with a bath voltage of 2.5 V. The chemical structure of the polyphenol coating was analyzed by infrared spectroscopy and the molecular weight of the soluble part of the coating was detected by gel permeation chromatography. A scanning electron microscope was used to analyze the microstructure of the polyphenol coating, taking advantage of the partial solubility of the polyphenol in tetrahydrofuran. The observed linear and flake-layer modes of the polyphenol coating growth are summarized herein.

  20. Electrochemically anodized porous silicon: Towards simple and affordable anode material for Li-ion batteries.

    Science.gov (United States)

    Ikonen, T; Nissinen, T; Pohjalainen, E; Sorsa, O; Kallio, T; Lehto, V-P

    2017-08-11

    Silicon is being increasingly studied as the next-generation anode material for Li-ion batteries because of its ten times higher gravimetric capacity compared with the widely-used graphite. While nanoparticles and other nanostructured silicon materials often exhibit good cyclability, their volumetric capacity tends to be worse or similar than that of graphite. Furthermore, these materials are commonly complicated and expensive to produce. An effortless way to produce nanostructured silicon is electrochemical anodization. However, there is no systematic study how various material properties affect its performance in LIBs. In the present study, the effects of particle size, surface passivation and boron doping degree were evaluated for the mesoporous silicon with relatively low porosity of 50%. This porosity value was estimated to be the lowest value for the silicon material that still can accommodate the substantial volume change during the charge/discharge cycling. The optimal particle size was between 10-20 µm, the carbide layer enhanced the rate capability by improving the lithiation kinetics, and higher levels of boron doping were beneficial for obtaining higher specific capacity at lower rates. Comparison of pristine and cycled electrodes revealed the loss of electrical contact and electrolyte decay to be the major contributors to the capacity decay.

  1. Reactions on carbon anodes in aluminium electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Eidet, Trygve

    1997-12-31

    The consumption of carbon anodes and energy in aluminium electrolysis is higher than what is required theoretically. This thesis studies the most important of the reactions that consume anode materials. These reactions are the electrochemical anode reaction and the airburn and carboxy reactions. The first part of the thesis deals with the kinetics and mechanism of the electrochemical anode reaction using electrochemical impedance spectroscopy. The second part deals with air and carboxy reactivity of carbon anodes and studies the effects of inorganic impurities on the reactivity of carbon anodes in the aluminium industry. Special attention is given to sulphur since its effect on the carbon gasification is not well understood. Sulphur is always present in anodes, and it is expected that the sulphur content of available anode cokes will increase in the future. It has also been suggested that sulphur poisons catalyzing impurities in the anodes. Other impurities that were investigated are iron, nickel and vanadium, which are common impurities in anodes which have been reported to catalyze carbon gasification. 88 refs., 92 figs., 24 tabs.

  2. A conducting polymer/ferritin anode for biofuel cell applications

    International Nuclear Information System (INIS)

    Inamuddin; Shin, Kwang Min; Kim, Sun I.; So, Insuk; Kim, Seon Jeong

    2009-01-01

    An enzyme anode for use in biofuel cells (BFCs) was constructed using an electrically connected bilayer based on a glassy carbon (GC) electrode immobilized with the conducting polymer polypyrrole (Ppy) as electron transfer enhancer, and with horse spleen ferritin protein (Frt) as electron transfer mediator. The surface-coupled redox system of nicotinamide adenine dinucleotide (NADH) catalyzed with diaphorase (Di) was used for the regeneration of NAD + in the inner layer and the NAD + -dependent enzyme catalyst glucose dehydrogenase (GDH) in the outer layer. The outer layer of the GC-Ppy-Frt-Di-NADH-GDH electrode effectively catalyzes the oxidation of glucose biofuel continuously; using the NAD + generated at the inner layer of the Di-catalyzed NADH redox system mediated by Frt and Ppy provides electrical communication with enhancement in electron transport. The electrochemical characteristics of the electrodes were investigated by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). This anode provides a current density of 1.2 mA cm -2 in a 45 mM glucose solution and offers a good possibility for application in biofuel cells.

  3. Solar-Pumping Upconversion of Interfacial Coordination Nanoparticles

    Science.gov (United States)

    Ishii, Ayumi; Hasegawa, Miki

    2017-01-01

    An interfacial coordination nanoparticle successfully exhibited an upconversion blue emission excited by very low-power light irradiation, such as sunlight. The interfacial complex was composed of Yb ions and indigo dye, which formed a nano-ordered thin shell layer on a Tm2O3 nanoparticle. At the surface of the Tm2O3 particle, the indigo dye can be excited by non-laser excitation at 640 nm, following the intramolecular energy transfer from the indigo dye to the Yb ions. Additionally, the excitation energy of the Yb ion was upconverted to the blue emission of the Tm ion at 475 nm. This upconversion blue emission was achieved by excitation with a CW Xe lamp at an excitation power of 0.14 mW/cm2, which is significantly lower than the solar irradiation power of 1.4 mW/cm2 at 640 ± 5 nm.

  4. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes.

    Science.gov (United States)

    Gu, Yu; Wang, Wei-Wei; Li, Yi-Juan; Wu, Qi-Hui; Tang, Shuai; Yan, Jia-Wei; Zheng, Ming-Sen; Wu, De-Yin; Fan, Chun-Hai; Hu, Wei-Qiang; Chen, Zhao-Bin; Fang, Yuan; Zhang, Qing-Hong; Dong, Quan-Feng; Mao, Bing-Wei

    2018-04-09

    Dendrite growth of alkali metal anodes limited their lifetime for charge/discharge cycling. Here, we report near-perfect anodes of lithium, sodium, and potassium metals achieved by electrochemical polishing, which removes microscopic defects and creates ultra-smooth ultra-thin solid-electrolyte interphase layers at metal surfaces for providing a homogeneous environment. Precise characterizations by AFM force probing with corroborative in-depth XPS profile analysis reveal that the ultra-smooth ultra-thin solid-electrolyte interphase can be designed to have alternating inorganic-rich and organic-rich/mixed multi-layered structure, which offers mechanical property of coupled rigidity and elasticity. The polished metal anodes exhibit significantly enhanced cycling stability, specifically the lithium anodes can cycle for over 200 times at a real current density of 2 mA cm -2 with 100% depth of discharge. Our work illustrates that an ultra-smooth ultra-thin solid-electrolyte interphase may be robust enough to suppress dendrite growth and thus serve as an initial layer for further improved protection of alkali metal anodes.

  5. Interfacial Reaction and IMC Growth of an Ultrasonically Soldered Cu/SAC305/Cu Structure during Isothermal Aging

    Directory of Open Access Journals (Sweden)

    Yulong Li

    2018-01-01

    Full Text Available In order to accelerate the growth of interfacial intermetallic compound (IMC layers in a soldering structure, Cu/SAC305/Cu was first ultrasonically spot soldered and then subjected to isothermal aging. Relatively short vibration times, i.e., 400 ms and 800 ms, were used for the ultrasonic soldering. The isothermal aging was conducted at 150 °C for 0, 120, 240, and 360 h. The evolution of microstructure, the IMC layer growth mechanism during aging, and the shear strength of the joints after aging were systemically investigated. Results showed the following. (i Formation of intermetallic compounds was accelerated by ultrasonic cavitation and streaming effects, the thickness of the interfacial Cu6Sn5 layer increased with aging time, and a thin Cu3Sn layer was identified after aging for 360 h. (ii The growth of the interfacial IMC layer of the ultrasonically soldered Cu/SAC305/Cu joints followed a linear function of the square root of the aging time, revealing a diffusion-controlled mechanism. (iii The tensile shear strength of the joint decreased to a small extent with increasing aging time, owing to the combined effects of IMC grain coarsening and the increase of the interfacial IMC. (iv Finally, although the fracture surfaces and failure locations of the joint soldered with 400 ms and 800 ms vibration times show similar characteristics, they are influenced by the aging time.

  6. Flexible graphite-based integrated anode plate for direct methanol fuel cells at high methanol feed concentration

    Science.gov (United States)

    Zhang, HaiFeng; Hsing, I.-Ming

    An integrated anode plate suitable for operating direct methanol fuel cells (DMFCs) at a high methanol feed concentration is reported. This anode structure which was made of flexible graphite materials not only provides dual role of liquid diffusion layer and flow field plate, but also serves as a methanol blocker by decreasing methanol flux to the interface of catalyst and membrane electrolyte. DMFCs incorporating this new anode structure exhibited a much higher open circuit voltage (OCV) (∼0.51 V) than that (∼0.42 V) of a conventional DMFC at a 10 M methanol feed. Cell polarization data show that this new anode structure significantly improves the cell performance at high methanol concentration scenarios (e.g. 12 M or above). Moreover, this new design greatly simplifies the anode structure and offers a promising approach in running passive-mode DMFC at high methanol feed concentrations.

  7. Single-Molecule Interfacial Electron Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H. Peter [Bowling Green State Univ., Bowling Green, OH (United States). Dept. of Chemistry and Center for Photochemical Sciences

    2017-11-28

    This project is focused on the use of single-molecule high spatial and temporal resolved techniques to study molecular dynamics in condensed phase and at interfaces, especially, the complex reaction dynamics associated with electron and energy transfer rate processes. The complexity and inhomogeneity of the interfacial ET dynamics often present a major challenge for a molecular level comprehension of the intrinsically complex systems, which calls for both higher spatial and temporal resolutions at ultimate single-molecule and single-particle sensitivities. Combined single-molecule spectroscopy and electrochemical atomic force microscopy approaches are unique for heterogeneous and complex interfacial electron transfer systems because the static and dynamic inhomogeneities can be identified and characterized by studying one molecule at a specific nanoscale surface site at a time. The goal of our project is to integrate and apply these spectroscopic imaging and topographic scanning techniques to measure the energy flow and electron flow between molecules and substrate surfaces as a function of surface site geometry and molecular structure. We have been primarily focusing on studying interfacial electron transfer under ambient condition and electrolyte solution involving both single crystal and colloidal TiO2 and related substrates. The resulting molecular level understanding of the fundamental interfacial electron transfer processes will be important for developing efficient light harvesting systems and broadly applicable to problems in fundamental chemistry and physics. We have made significant advancement on deciphering the underlying mechanism of the complex and inhomogeneous interfacial electron transfer dynamics in dyesensitized TiO2 nanoparticle systems that strongly involves with and regulated by molecule-surface interactions. We have studied interfacial electron transfer on TiO2 nanoparticle surfaces by using ultrafast single

  8. Mephisto: Interfacial Destabilization in Metal Alloys

    Science.gov (United States)

    Favier, J. J.; Malmejac, Y.

    1985-01-01

    The destabilizing mechanisms at a solidification interface were studied to obtain information on the kinetics and morphologies in the transient and steady state, and to separate the influences of liquid phase instabilities from interfacial instabilities. A differential seebeck voltage measurements technique was developed to provide a continuous record of the solid-liquid interface temperature as the solidification rate is varied to determine the kinetic coefficients. Signal processing and noise suppression techniques allow nonovolt precision which corresponds to mK accuracy for the interfacial temperature.

  9. Pressure-induced reinforcement of interfacial superconductivity in a Bi2Te3/Fe1+yTe heterostructure

    Science.gov (United States)

    Shen, Junying; Heuckeroth, Claire; Deng, Yuhang; He, Qinglin; Liu, Hong Chao; Liang, Jing; Wang, Jiannong; Sou, Iam Keong; Schilling, James S.; Lortz, Rolf

    2017-12-01

    We investigate the hydrostatic pressure dependence of interfacial superconductivity occurring at the atomically sharp interface between two non-superconducting materials: the topological insulator (TI) Bi2Te3 and the parent compound Fe1+yTe of the chalcogenide iron-based superconductors. Under pressure, a significant increase in the superconducting transition temperature Tc is observed. We interpret our data in the context of a pressure-induced enhanced coupling of the Fe1+yTe interfacial layer with the Bi2Te3 surface state, which modifies the electronic properties of the interface layer in a way that superconductivity emerges and becomes further enhanced under pressure. This demonstrates the important role of the TI in the interfacial superconducting mechanism.

  10. Influence of charged defects on the interfacial bonding strength of tantalum- and silver-doped nanograined TiO2.

    Science.gov (United States)

    Azadmanjiri, Jalal; Wang, James; Berndt, Christopher C; Kapoor, Ajay; Zhu, De Ming; Ang, Andrew S M; Srivastava, Vijay K

    2017-05-17

    A nano-grained layer including line defects was formed on the surface of a Ti alloy (Ti alloy , Ti-6Al-4V ELI). Then, the micro- and nano-grained Ti alloy with the formation of TiO 2 on its top surface was coated with a bioactive Ta layer with or without incorporating an antibacterial agent of Ag that was manufactured by magnetron sputtering. Subsequently, the influence of the charged defects (the defects that can be electrically charged on the surface) on the interfacial bonding strength and hardness of the surface system was studied via an electronic model. Thereby, material systems of (i) Ta coated micro-grained titanium alloy (Ta/MGTi alloy ), (ii) Ta coated nano-grained titanium alloy (Ta/NGTi alloy ), (iii) TaAg coated micro-grained titanium alloy (TaAg/MGTi alloy ) and (iv) TaAg coated nano-grained titanium alloy (TaAg/NGTi alloy ) were formed. X-ray photoelectron spectroscopy was used to probe the electronic structure of the micro- and nano-grained Ti alloy , and so-formed heterostructures. The thin film/substrate interfaces exhibited different satellite peak intensities. The satellite peak intensity may be related to the interfacial bonding strength and hardness of the surface system. The interfacial layer of TaAg/NGTi alloy exhibited the highest satellite intensity and maximum hardness value. The increased bonding strength and hardness in the TaAg/NGTi alloy arises due to the negative core charge of the dislocations and neighbor space charge accumulation, as well as electron accumulation in the created semiconductor phases of larger band gap at the interfacial layer. These two factors generate interfacial polarization and enhance the satellite intensity. Consequently, the interfacial bonding strength and hardness of the surface system are improved by the formation of mixed covalent-ionic bonding structures around the dislocation core area and the interfacial layer. The bonding strength relationship by in situ XPS on the metal/TiO 2 interfacial layer may

  11. Impedance of vapor feed direct methanol fuel cells--polarization dependence of elementary processes at the anode

    International Nuclear Information System (INIS)

    Fukunaga, Hiroshi; Ishida, Tomohiro; Teranishi, Nozomu; Arai, Chikao; Yamada, Koichi

    2004-01-01

    Membrane electrode assemblies of direct methanol fuel cells (DMFCs) with different catalyst and ionomer loading were prepared. Anode performance and impedance spectra were measured to clarify the characteristics of vapor feed DMFCs (VF-DMFCs). The impedance spectra were deconvolved into three semi-circles with different time constants, each showing a different dependence on the anodic polarization. The middle-frequency range arc decreased as the anodic polarization increased, indicating that this process represents the oxidation reaction of methanol. The high-frequency range arc showed little dependence on the anodic polarization, but increased with the thickness of the electrode, indicating that this process might be related to proton conduction through the electrode. The low-frequency range arc was observed only when the methanol concentration was low, in contrast to liquid feed DMFCs (LF-DMFCs), for which the removal of the product gas presents a large resistance. A simpler design can therefore be used for a VF-DMFC, giving it an advantage over an LF-DMFC. A decreasing ionomer to catalyst ratio (I/C) caused the interfacial conductivity (σ E ) to increase, but it intensively decreased when I/C was below 0.25. Thus, the connection of the catalysts is important for the anode's performance

  12. Infiltrated SrTiO3:FeCr-based anodes for metalsupported SOFC

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Persson, Åsa Helen; Nielsen, Jimmi

    2012-01-01

    The concept of using highly electronically conducting backbones with subsequent infiltration of electrocatalytic active materials, has recently been used to develop an alternative SOFC design based on a ferritic stainless steel support. The metal-supported SOFC is comprised of porous and highly e...... changes occurring in the anode layer during testing. The results indicate that the STN component in the anode seems to have a positive effect on the corrosion stability of the FeCr-particles in the anode layer.......) and FeCr. Electrochemical characterization and post test SEM analysis have been used to get an insight into the possible degradation mechanisms of this novel electrode infiltrated with Gd-doped CeO2 and Ni. Accelerated oxidation/corrosion experiments have been conducted to evaluate the microstructural...

  13. Interfacial Properties of CZTS Thin Film Solar Cell

    Directory of Open Access Journals (Sweden)

    N. Muhunthan

    2014-01-01

    Full Text Available Cu-deficient CZTS (copper zinc tin sulfide thin films were grown on soda lime as well as molybdenum coated soda lime glass by reactive cosputtering. Polycrystalline CZTS film with kesterite structure was produced by annealing it at 500°C in Ar atmosphere. These films were characterized for compositional, structural, surface morphological, optical, and transport properties using energy dispersive X-ray analysis, glancing incidence X-ray diffraction, Raman spectroscopy, scanning electron microscopy, atomic force microscopy, UV-Vis spectroscopy, and Hall effect measurement. A CZTS solar cell device having conversion efficiency of ~0.11% has been made by depositing CdS, ZnO, ITO, and Al layers over the CZTS thin film deposited on Mo coated soda lime glass. The series resistance of the device was very high. The interfacial properties of device were characterized by cross-sectional SEM and cross-sectional HRTEM.

  14. The effects of interfacial recombination and injection barrier on the electrical characteristics of perovskite solar cells

    Science.gov (United States)

    Shi, Lin Xing; Wang, Zi Shuai; Huang, Zengguang; Sha, Wei E. I.; Wang, Haoran; Zhou, Zhen

    2018-02-01

    Charge carrier recombination in the perovskite solar cells (PSCs) has a deep influence on the electrical performance, such as open circuit voltage, short circuit current, fill factor and ultimately power conversion efficiency. The impacts of injection barrier, recombination channels, doping properties of carrier transport layers and light intensity on the performance of PSCs are theoretically investigated by drift-diffusion model in this work. The results indicate that due to the injection barrier at the interfaces of perovskite and carrier transport layer, the accumulated carriers modify the electric field distribution throughout the PSCs. Thus, a zero electric field is generated at a specific applied voltage, with greatly increases the interfacial recombination, resulting in a local kink of current density-voltage (J-V) curve. This work provides an effective strategy to improve the efficiency of PSCs by pertinently reducing both the injection barrier and interfacial recombination.

  15. A Method for Promoting Assembly of Metallic and Nonmetallic Nanoparticles into Interfacial Monolayer Films.

    Science.gov (United States)

    Xu, Yikai; Konrad, Magdalena P; Lee, Wendy W Y; Ye, Ziwei; Bell, Steven E J

    2016-08-10

    Two-dimensional metal nanoparticle arrays are normally constructed at liquid-oil interfaces by modifying the surfaces of the constituent nanoparticles so that they self-assemble. Here we present a general and facile new approach for promoting such interfacial assembly without any surface modification. The method use salts that have hydrophobic ions of opposite charge to the nanoparticles, which sit in the oil layer and thus reduce the Coulombic repulsion between the particles in the organic phase, allowing the particles to sit in close proximity to each other at the interface. The advantage of this method is that because it does not require the surface of the particles to be modified it allows nonmetallic particles including TiO2 and SiO2 to be assembled into dense interfacial layers using the same procedure as is used for metallic particles. This opens up a route to a new family of nanostructured functional materials.

  16. Lithium-ion batteries having conformal solid electrolyte layers

    Science.gov (United States)

    Kim, Gi-Heon; Jung, Yoon Seok

    2014-05-27

    Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

  17. The Constrained Vapor Bubble Experiment - Interfacial Flow Region

    Science.gov (United States)

    Kundan, Akshay; Wayner, Peter C., Jr.; Plawsky, Joel L.

    2015-01-01

    Internal heat transfer coefficient of the CVB correlated to the presence of the interfacial flow region. Competition between capillary and Marangoni flow caused Flooding and not a Dry-out region. Interfacial flow region growth is arrested at higher power inputs. 1D heat model confirms the presence of interfacial flow region. 1D heat model confirms the arresting phenomena of interfacial flow region Visual observations are essential to understanding.

  18. Surface and interfacial tension measurement, theory, and applications

    CERN Document Server

    Hartland, Stanley

    2004-01-01

    This edited volume offers complete coverage of the latest theoretical, experimental, and computer-based data as summarized by leading international researchers. It promotes full understanding of the physical phenomena and mechanisms at work in surface and interfacial tensions and gradients, their direct impact on interface shape and movement, and their significance to numerous applications. Assessing methods for the accurate measurement of surface tension, interfacial tension, and contact angles, Surface and Interfacial Tension presents modern simulations of complex interfacial motions, such a

  19. Impact of Interfacial Water Transport in PEMFCs on Cell Performance

    International Nuclear Information System (INIS)

    Kotaka, Toshikazu; Tabuchi, Yuichiro; Pasaogullari, Ugur; Wang, Chao-Yang

    2014-01-01

    Coupled cell performance evaluation, liquid water visualization by neutron radiography (NRG) and numerical modeling based on multiphase mixture (M2) model were performed with three types of GDMs: Micro Porous Layer (MPL) free; Carbon Paper (CP) with MPL; and CP free to investigate interfacial liquid water transport phenomena in PEMFCs and its effect on cell performance. The visualized results of MPL free GDM with different wettability of bi-polar plates (BPPs) showed hydrophilic BPP improved liquid water transport at the interface between CP and channel. Numerical modeling results indicated that this difference with BPP wettability was caused by the liquid water coverage difference on CP surface. Thus, controlling liquid water coverage is the one of the key strategies for improving cell performance. Additionally, liquid water distributions across the cell for three types of GDMs were compared and significant difference in liquid water content at the interface between Catalyst Layer (CL) and GDM was observed. Numerical modeling suggests this difference is influenced by the gap at the interface and that the MPL could minimize this effect. The CP free cell (i.e. only MPL) showed the best performance and the lowest liquid water content. There were multiple impacts of interfacial liquid water transport both at CL-GDM and GDM-channel interfaces. High hydrophobicity and fine structure of MPLs contributed to enhanced liquid water transport at GDM-channel interface and as a result reduced the liquid water coverage. At the same time, MPL improves contact at the CL-GDM interface in the same manner as seen in CP with MPL case. Thus, the CP free concept showed the best performance. It is suggested that the design of the interface between each component of the PEMFC has a great impact on cell performance and plays a significant role in achievement of high current density operation and cost reduction in FCEVs

  20. Anodic behavior of uranium in AlCl3-1-ethyl-3-methyl-imidazolium chloride ionic liquid

    Science.gov (United States)

    Jiang, Yidong; Luo, Lizhu; Wang, Shaofei; Bin, Ren; Zhang, Guikai; Wang, Xiaolin

    2018-01-01

    The oxidation state of metals unambiguously affects its anodic behavior in ionic liquid. We systematically investigated the anodic behavior of uranium with different surface oxidation states by electrochemical measurements, spectroscopic methods and surface analysis techniques. In the anodic process, metal uranium can be oxidized to U3+. The corresponding products accumulated on the metal/ILs interface will form a viscous layer. The anodic behavior of uranium is also strongly dependent upon the surface oxide states including thickness and homogeneity of the oxide film. With an increase in the thickness of oxide film, it will be breached at potentials in excess of a critical value. A uniform oxide on uranium surface can be breached evenly, and then the underlying metal starts to dissolve forming a viscous layer which can facilitate uniformly stripping of oxide, thus giving an oxide-free surface. Otherwise, a nonuniform oxide can result in a severe pitted surface with residue oxygen.

  1. Catalysts, Protection Layers, and Semiconductors

    DEFF Research Database (Denmark)

    Chorkendorff, Ib

    2015-01-01

    Hydrogen is the simplest solar fuel to produce and in this presentation we shall give a short overview of the pros and cons of various tandem devices [1]. The large band gap semiconductor needs to be in front, but apart from that we can chose to have either the anode in front or back using either...... acid or alkaline conditions. Since most relevant semiconductors are very prone to corrosion the advantage of using buried junctions and using protection layers offering shall be discussed [2-4]. Next we shall discuss the availability of various catalysts for being coupled to these protections layers...... and how their stability may be evaluated [5, 6]. Examples of half-cell reaction using protection layers for both cathode and anode will be discussed though some of recent examples under both alkaline and acidic conditions. Si is a very good low band gap semiconductor and by using TiO2 as a protection...

  2. Application of Anodization Process for Cast Aluminium Surface Properties Enhancement

    Directory of Open Access Journals (Sweden)

    Włodarczyk-Fligier A.

    2016-09-01

    Full Text Available An huge interest is observed in last years in metal matrix composite, mostly light metal based, which have found their applications in many industry branches, among others in the aircraft industry, automotive-, and armaments ones, as well as in electrical engineering and electronics, where one of the most important issue is related to the corrosion resistance, especially on the surface layer of the used aluminium alloys. This elaboration presents the influence of ceramic phase on the corrosion resistance, quality of the surface layer its thickness and structure of an anodic layer formed on aluminium alloys. As test materials it was applied the aluminium alloys Al-Si-Cu and Al-Cu-Mg, for which heat treatment processes and corrosion tests were carried out. It was presented herein grindability test results and metallographic examination, as well. Hardness of the treated alloys with those ones subjected to corrosion process were compared.

  3. Investigation of anodic oxide coatings on zirconium after heat treatment

    International Nuclear Information System (INIS)

    Sowa, Maciej; Dercz, Grzegorz; Suchanek, Katarzyna; Simka, Wojciech

    2015-01-01

    Highlights: • Oxide layers prepared via PEO of zirconium were subjected to heat treatment. • Surface characteristics were determined for the obtained oxide coatings. • Heat treatment led to the partial destruction of the anodic oxide layer. • Pitting corrosion resistance of zirconium was improved after the modification. - Abstract: Herein, results of heat treatment of zirconium anodised under plasma electrolytic oxidation (PEO) conditions at 500–800 °C are presented. The obtained oxide films were investigated by means of SEM, XRD and Raman spectroscopy. The corrosion resistance of the zirconium specimens was evaluated in Ringer's solution. A bilayer oxide coatings generated in the course of PEO of zirconium were not observed after the heat treatment. The resulting oxide layers contained a new sublayer located at the metal/oxide interface is suggested to originate from the thermal oxidation of zirconium. The corrosion resistance of the anodised metal was improved after the heat treatment

  4. Research on Electrochemical Behavior of Ti-Ir-Ru Anode Coating in Electrolytic Antifouling of Flowing Brine

    Science.gov (United States)

    Liang, Chenghao; Huang, Naibao

    2009-11-01

    By electrochemical techniques, the electrochemical behavior of Ti-Ir-Ru anode coating was studied in electrolytic antifouling of flowing brine. The effect of the brine’s flow rate and the anode/cathode interval on electrolysis was also considered. The results indicated that the brine’s flow rate had remarkable effect on the characteristic of the Ti-Ir-Ru anode. The electrolytic voltage and the evolved active chlorine concentration of Ti-Ir-Ru anode increased with increasing flow rate. Its energy consumption displayed the same variable rule as the electrolytic voltage. But the current density reduced with increasing flow rate. Increasing flow rate favored attenuation of the thickness of mass-transfer control layer and expediting the oxygen’s mass transfer, which accelerated the cathode polarization and the oxygen absorption reaction. The maximal current efficiency for Ti-Ir-Ru anode was obtained at the anode/cathode interval of 5 cm with the current density of 60 mA/cm2. At this point, Ti-Ir-Ru anode also had relatively low electrolytic voltage. The above operating procedure was ideal for electrolyzing flowing brine using Ti-Ir-Ru anode coating.

  5. Computing anode heating voltage in high-pressure arc discharges and modelling rod electrodes in dc and ac regimes

    International Nuclear Information System (INIS)

    Almeida, N A; Cunha, M D; Benilov, M S

    2017-01-01

    Numerical modelling of near-anode layers in arc discharges in several gases (Ar, Xe and Hg) is performed in a wide range of current densities, anode surface temperatures, and plasma pressures. It is shown that the density of energy flux to the anode is only weakly affected by the anode surface temperature and varies linearly with the current density. This allows one to interpret the results in terms of anode heating voltage (volt equivalent of the heat flux to the anode). The computed data may be useful in different ways. An example considered in this work concerns the evaluation of thermal regime of anodes in the shape of a thin rod operating in the diffuse mode. Invoking the model of nonlinear surface heating for cathodes, one obtains a simple and free of empirical parameters model of thin rod electrodes applicable to dc and ac high-pressure arcs provided that no anode spots are present. The model is applied to a variety of experiments reported in the literature and a good agreement with the experimental data found. (paper)

  6. Modeling interfacial dynamics using nonequilibrium thermodynamics frameworks

    NARCIS (Netherlands)

    Sagis, L.M.C.

    2013-01-01

    In recent years several nonequilibrium thermodynamic frameworks have been developed capable of describing the dynamics of multiphase systems with complex microstructured interfaces. In this paper we present an overview of these frameworks. We will discuss interfacial dynamics in the context of the

  7. Gelation and interfacial behaviour of vegetable proteins

    NARCIS (Netherlands)

    Vliet, van T.; Martin, A.H.; Bos, M.A.

    2002-01-01

    Recent studies on gelation and interfacial properties of vegetable proteins are reviewed. Attention is focused on legume proteins, mainly soy proteins, and on wheat proteins. The rheological properties of vegetable protein gels as a function of heating time or temperature is discussed as well as the

  8. Gelation and interfacial behaviour of vegetable proteins

    NARCIS (Netherlands)

    Vliet, T. van; Martin, A.H.; Bos, M.A.

    2002-01-01

    Recent studies on gelation and interfacial properties of vegetable protiens are reviewed. Attention is focused on legume proteins, mainly soy proteins, and on wheat proteins. The rheological properteis of vegetable protein gels as a function of heating time or temperature is discussed as well as the

  9. Interfacial properties of green leaf cellulosic particles

    NARCIS (Netherlands)

    Tamayo Tenorio, A.; Gieteling, J.; Nikiforidis, C.V.; Boom, R.M.; Goot, van der A.J.

    2017-01-01

    Cellulosic pulp from sugar beet leaves was fractionated and assessed on its interfacial properties. After pressing leaves to express the juice, the press cake was washed at alkaline pH (pH 9) to remove residual protein, dried, milled and air classified. The obtained cellulosic particles mainly

  10. Impact of Reduction Parameters on the Initial Performance and Stability of Ni/(Sc)YSZ Cermet Anodes for SOFCs

    DEFF Research Database (Denmark)

    Ebbehøj, Søren Lyng; Ramos, Tania; Mogensen, Mogens Bjerg

    2012-01-01

    processes for Ni/10Sc1YSZ cells. The Ni/8YSZ cells behaved oppositely with respect to reduction temperature. A hypothesis is proposed relating performance to variations in Ni microstructure, Ni/ceramic contacting and extent of TPB resulting from differences in reduction parameters. Further, the performance......In-situ reduction of Ni cermet anodes produces the porosity and influences the microstructure, performance and stability of the anodes. The impact on initial performance, stability and microstructure of two different reduction procedures currently in use at DTU Energy Conversion with reduction...... stability under high steam conditions was evaluated, and very stable performances and microstructures of the anode layers were observed....

  11. Comparison in performance of sediment microbial fuel cells according to depth of embedded anode.

    Science.gov (United States)

    An, Junyeong; Kim, Bongkyu; Nam, Jonghyeon; Ng, How Yong; Chang, In Seop

    2013-01-01

    Five rigid graphite plates were embedded in evenly divided sections of sediment, ranging from 2 cm (A1) to 10 cm (A5) below the top sediment layer. The maximum power and current of the MFCs increased in depth order; however, despite the increase in the internal resistance, the power and current density of the A5 MFC were 2.2 and 3.5 times higher, respectively, than those of the A1 MFC. In addition, the anode open circuit potentials (OCPs) of the sediment microbial fuel cells (SMFCs) became more negative with sediment depth. Based on these results, it could be then concluded that as the anode-embedding depth increases, that the anode environment is thermodynamically and kinetically favorable to anodophiles or electrophiles. Therefore, the anode-embedding depth should be considered an important parameter that determines the performance of SMFCs, and we posit that the anode potential could be one indicator for selecting the anode-embedding depth. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Effect of Graphene-Graphene Oxide Modified Anode on the Performance of Microbial Fuel Cell

    Science.gov (United States)

    Yang, Na; Ren, Yueping; Li, Xiufen; Wang, Xinhua

    2016-01-01

    The inferior hydrophilicity of graphene is an adverse factor to the performance of the graphene modified anodes (G anodes) in microbial fuel cells (MFCs). In this paper, different amounts of hydrophilic graphene oxide (GO) were doped into the modification layers to elevate the hydrophilicity of the G anodes so as to further improve their performance. Increasing the GO doped ratio from 0.15 mg·mg−1 to 0.2 mg·mg−1 and 0.25 mg·mg−1, the static water contact angle (θc) of the G-GO anodes decreased from 74.2 ± 0.52° to 64.6 ± 2.75° and 41.7 ± 3.69°, respectively. The G-GO0.2 anode with GO doped ratio of 0.2 mg·mg−1 exhibited the optimal performance and the maximum power density (Pmax) of the corresponding MFC was 1100.18 mW·m−2, 1.51 times higher than that of the MFC with the G anode. PMID:28335302

  13. Nanocarbon-Coated Porous Anodic Alumina for Bionic Devices

    Directory of Open Access Journals (Sweden)

    Morteza Aramesh

    2015-08-01

    Full Text Available A highly-stable and biocompatible nanoporous electrode is demonstrated herein. The electrode is based on a porous anodic alumina which is conformally coated with an ultra-thin layer of diamond-like carbon. The nanocarbon coating plays an essential role for the chemical stability and biocompatibility of the electrodes; thus, the coated electrodes are ideally suited for biomedical applications. The corrosion resistance of the proposed electrodes was tested under extreme chemical conditions, such as in boiling acidic/alkali environments. The nanostructured morphology and the surface chemistry of the electrodes were maintained after wet/dry chemical corrosion tests. The non-cytotoxicity of the electrodes was tested by standard toxicity tests using mouse fibroblasts and cortical neurons. Furthermore, the cell–electrode interaction of cortical neurons with nanocarbon coated nanoporous anodic alumina was studied in vitro. Cortical neurons were found to attach and spread to the nanocarbon coated electrodes without using additional biomolecules, whilst no cell attachment was observed on the surface of the bare anodic alumina. Neurite growth appeared to be sensitive to nanotopographical features of the electrodes. The proposed electrodes show a great promise for practical applications such as retinal prostheses and bionic implants in general.

  14. Effect of sealing on the morphology of anodized aluminum oxide

    International Nuclear Information System (INIS)

    Hu, Naiping; Dong, Xuecheng; He, Xueying; Browning, James F.; Schaefer, Dale W.

    2015-01-01

    Highlights: • We explored structural change of anodizing aluminum oxide induced by sealing. • All sealing methods decrease pore size as shown by X-ray/neutron scattering. • Cold sealing and hot water sealing do not alter the aluminum oxide framework. • Hot nickel acetate sealing both fills the pores and deposits on air oxide interface. • Samples with hot nickel acetate sealing outperform other sealing methods. - Abstract: Ultra-small angle X-ray scattering (USAXS), small-angle neutron scattering (SANS), X-ray reflectometry (XRR) and neutron reflectometry (NR) were used to probe structure evolution induced by sealing of anodized aluminum. While cold nickel acetate sealing and hot-water sealing decrease pore size, these methods do not alter the cylindrical porous framework of the anodic aluminum oxide layer. Hot nickel acetate both fills the pores and deposits on the air surface (air–oxide interface), leading to low porosity and small mean pore radius (39 Å). Electrochemical impedance spectroscopy and direct current polarization show that samples sealed by hot nickel acetate outperform samples sealed by other sealing methods

  15. Single-Molecule Interfacial Electron Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Wilson [Univ. of California, Irvine, CA (United States)

    2018-02-03

    Interfacial electron transfer (ET) plays an important role in many chemical and biological processes. Specifically, interfacial ET in TiO2-based systems is important to solar energy technology, catalysis, and environmental remediation technology. However, the microscopic mechanism of interfacial ET is not well understood with regard to atomic surface structure, molecular structure, bonding, orientation, and motion. In this project, we used two complementary methodologies; single-molecule fluorescence spectroscopy, and scanning-tunneling microscopy and spectroscopy (STM and STS) to address this scientific need. The goal of this project was to integrate these techniques and measure the molecular dependence of ET between adsorbed molecules and TiO2 semiconductor surfaces and the ET induced reactions such as the splitting of water. The scanning probe techniques, STM and STS, are capable of providing the highest spatial resolution but not easily time-resolved data. Single-molecule fluorescence spectroscopy is capable of good time resolution but requires further development to match the spatial resolution of the STM. The integrated approach involving Peter Lu at Bowling Green State University (BGSU) and Wilson Ho at the University of California, Irvine (UC Irvine) produced methods for time and spatially resolved chemical imaging of interfacial electron transfer dynamics and photocatalytic reactions. An integral aspect of the joint research was a significant exchange of graduate students to work at the two institutions. This project bridged complementary approaches to investigate a set of common problems by working with the same molecules on a variety of solid surfaces, but using appropriate techniques to probe under ambient (BGSU) and ultrahigh vacuum (UCI) conditions. The molecular level understanding of the fundamental interfacial electron transfer processes obtained in this joint project will be important for developing efficient light harvesting

  16. Interfacial Effect on Confined Crystallization of Poly(ethylene oxide)/Silica Composites.

    Science.gov (United States)

    Su, Yunlan; Zhao, Weiwei; Muller, Alejandro; Gao, Xia; Wang, Dujin

    In this study, the interfacial confinement effect of silica (SiO2) nanoparticles on the crystallization behavior of poly(ethylene oxide) (PEO) composites has been systematically investigated considering the size and concentration of SiO2 as well as the molecular weight (Mw) of PEO in the composites. Only when Mw of PEO is higher than 1100 g/mol but lower than 35000 g/mol, do the composites with high silica loadings exhibit two crystallization peaks of PEO as determined by differential scanning calorimetry. The first peak at 0 -50 °C is assigned to the crystallization of bulk PEO, while the second at -20 to -30 °C is attributed to the crystallization of restricted PEO segments. Three-layer (amorphous, interfacial and bulk) model is proposed to interpret the confined crystallization of PEO/SiO2 composites, which is supported by the results of thermogravimetric analysis and solid-state 1H nuclear magnetic resonance. In the amorphous layer, most PEO segments are directly adsorbed on SiO2 surface via hydrogen bonding, while for the interfacial layer, the conformation is closely connected with the polymer chain length, originating mainly from the inhomogeneous segment mobilities of adsorbed polymers along the direction perpendicular to the surface of silica. National Natural Science Foundation of China (NSFC) under contract 21574141.

  17. Properties and Structure of the LiCl-films on Lithium Anodes in Liquid Cathodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Hennesø, Erik

    2016-01-01

    Lithium anodes passivated by LiCl layers in different types of liquid cathodes (catholytes) based on LiAlCl4 in SOCl2 or SO2 have been studied by means of impedance spectroscopy. The impedance spectra have been fitted with two equivalent circuits using a nonlinear least squares fit program...

  18. Electrochemical Characterization of Ni/ScYSZ Electrodes as SOFC Anodes

    DEFF Research Database (Denmark)

    Ramos, Tania; Søgaard, Martin; Mogensen, Mogens Bjerg

    2014-01-01

    diffusion in the anode support layer (ASC). A higher frequency process has also been identified, and correlated to the charge transfer (CT) combined with ionic conduction in the ceramic matrix. This has been fitted using a transmission line model (TML), which correlates the exhibited responses...

  19. Pore development in anodic alumina in sulphuric acid and borax electrolytes

    International Nuclear Information System (INIS)

    Garcia-Vergara, S.J.; Skeldon, P.; Thompson, G.E.; Habakaki, H.

    2007-01-01

    The formation of porous anodic films on an Al-3.5 at.%W alloy is compared in sulphuric acid and borax electrolytes in order to investigate pore development processes. The findings disclose that for anodizing in sulphuric acid, the pores develop mainly due to the influences of field-induced plasticity of the film and growth stresses; in borax, field-assisted dissolution dominates. The films formed in sulphuric acid are consequently much thicker than the layer of oxidized alloy and tungsten species are retained in the film. In contrast, with borax, the films and oxidized alloy layers are of similar thickness and tungsten species are lost to the electrolyte. Efficiencies of film growth are also significantly different, about 65% in sulphuric acid and about 52% in borax. The retention of tungsten species during anodizing in sulphuric acid is due to the localization of tungsten in the inner regions of the barrier layer and cell walls, with a layer of anodic alumina separating the tungsten-containing regions from the electrolyte. For borax, the tungsten is distributed more uniformly through the film material, enabling loss of tungsten species to the electrolyte from the pore base

  20. Improving the performance of si-based li-ion battery anodes by utilizing phosphorene encapsulation

    NARCIS (Netherlands)

    Peng, B.; Xu, Y.; Mulder, F.M.

    2017-01-01

    Si-based anode materials in Li-ion batteries (LIBs) suffer from severe volume expansion/contraction during repetitive discharge/charge, which results in the pulverization of active materials, continuous growth of solid electrolyte interface (SE!) layers, loss of electrical conduction, and,

  1. Oxidation of H2 and CO in a fuel cell with a Platinum-tin Anode

    Directory of Open Access Journals (Sweden)

    Javier González

    2004-05-01

    Full Text Available This report describes the construction and evolution of a fuel cell with a bi-metallic anode of Pt-Sn supported on carbon, as catalysts for oxidation of pure hydrogen, pure CO and a 2% CO in H2 mixture. Both, cathode and anode were made with a structure composed by a diffusive layer and a catalytic layer. The diffusive layer was made with a carbon cloth while the catalytic layer contained the platinum and tin supported on carbon. To test the performance of the catalytic mixture, a proton exchange membrane fuel cell (PEMFC was developed with an original design for the gas distributation plates. The reactants were feed to ambient temperature and 3 psig in the anode side, while 5 psig pure oxygen was used in the cathode. The anode catalytic load was 0.57 mg/cm2 of platinum and 0.08 mg/cm2 of tin. The catalytic load in cathode was 0.85 mg/cm2 of pure platinum. It was found that this caralytic mixture is tolerant to CO presence.

  2. Passivation of organic light emitting diode anode grid lines by pulsed Joule heating

    NARCIS (Netherlands)

    Janka, M.; Gierth, R.; Rubingh, J.E.; Abendroth, M.; Eggert, M.; Moet, D.J.D.; Lupo, D.

    2015-01-01

    We report the self-aligned passivation of a current distribution grid for an organic light emitting diode (OLED) anode using a pulsed Joule heating method to align the passivation layer accurately on the metal grid. This method involves passing an electric current through the grid to cure a polymer

  3. Layer-dependent surface potential of phosphorene and anisotropic/layer-dependent charge transfer in phosphorene-gold hybrid systems.

    Science.gov (United States)

    Xu, Renjing; Yang, Jiong; Zhu, Yi; Yan, Han; Pei, Jiajie; Myint, Ye Win; Zhang, Shuang; Lu, Yuerui

    2016-01-07

    The surface potential and the efficiency of interfacial charge transfer are extremely important for designing future semiconductor devices based on the emerging two-dimensional (2D) phosphorene. Here, we directly measured the strong layer-dependent surface potential of mono- and few-layered phosphorene on gold, which is consistent with the reported theoretical prediction. At the same time, we used an optical way photoluminescence (PL) spectroscopy to probe charge transfer in the phosphorene-gold hybrid system. We firstly observed highly anisotropic and layer-dependent PL quenching in the phosphorene-gold hybrid system, which is attributed to the highly anisotropic/layer-dependent interfacial charge transfer.

  4. Silicene: A Promising Anode for Lithium-Ion Batteries.

    Science.gov (United States)

    Zhuang, Jincheng; Xu, Xun; Peleckis, Germanas; Hao, Weichang; Dou, Shi Xue; Du, Yi

    2017-12-01

    Silicene, a single-layer-thick silicon nanosheet with a honeycomb structure, is successfully fabricated by the molecular-beam-epitaxy (MBE) deposition method on metallic substrates and by the solid-state reaction method. Here, recent progress on the features of silicene that make it a prospective anode for lithium-ion batteries (LIBs) are discussed, including its charge-carrier mobility, chemical stability, and metal-silicene interactions. The electrochemical performance of silicene is reviewed in terms of both theoretical predictions and experimental measurements, and finally, its challenges and outlook are considered. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Are nanometric films of liquid undercooled interfacial water bio-relevant?

    Science.gov (United States)

    Möhlmann, Diedrich T F

    2009-06-01

    stabilize the formation of layers of interfacial water. A more detailed future investigation of the possible support of life processes by nanometric ULI water in ice is a challenge to current cryomicrobiology. Related results of Rivkina et al. [22] indeed indicate that life processes can remain active at water contents corresponding to about or less than two monolayers of ULI water.

  6. Effect of Slotted Anode on Gas Bubble Behaviors in Aluminum Reduction Cell

    Science.gov (United States)

    Sun, Meijia; Li, Baokuan; Li, Linmin; Wang, Qiang; Peng, Jianping; Wang, Yaowu; Cheung, Sherman C. P.

    2017-12-01

    In the aluminum reduction cells, gas bubbles are generated at the bottom of the anode which eventually reduces the effective current contact area and the system efficiency. To encourage the removal of gas bubbles, slotted anode has been proposed and increasingly adopted by some industrial aluminum reduction cells. Nonetheless, the exact gas bubble removal mechanisms are yet to be fully understood. A three-dimensional (3D) transient, multiphase flow mathematical model coupled with magnetohydrodynamics has been developed to investigate the effect of slotted anode on the gas bubble movement. The Eulerian volume of fluid approach is applied to track the electrolyte (bath)-molten aluminum (metal) interface. Meanwhile, the Lagrangian discrete particle model is employed to handle the dynamics of gas bubbles with considerations of the buoyancy force, drag force, virtual mass force, and pressure gradient force. The gas bubble coalescence process is also taken into account based on the O'Rourke's algorithm. The two-way coupling between discrete bubbles and fluids is achieved by the inter-phase momentum exchange. Numerical predictions are validated against the anode current variation in an industrial test. Comparing the results using slotted anode with the traditional one, the time-averaged gas bubble removal rate increases from 36 to 63 pct; confirming that the slotted anode provides more escaping ways and shortens the trajectories for gas bubbles. Furthermore, the slotted anode also reduces gas bubble's residence time and the probability of coalescence. Moreover, the bubble layer thickness in aluminum cell with slotted anode is reduced about 3.5 mm (17.4 pct), so the resistance can be cut down for the sake of energy saving and the metal surface fluctuation amplitude is significantly reduced for the stable operation due to the slighter perturbation with smaller bubbles.

  7. Anodic behavior of stainless-steel substrate in organic electrolyte solutions containing different lithium salts

    International Nuclear Information System (INIS)

    Furukawa, Kazuki; Yoshimoto, Nobuko; Egashira, Minato; Morita, Masayuki

    2014-01-01

    Highlights: • We investigated anodic behavior of stainless-steel in organic electrolytes for advanced capacitor. • Anion of the electrolyte affected the anodic stability of the alloy. • Anodic passivation occurs in LiPF 6 solution but pitting or active dissolution proceeds in other electrolyte solutions. • Fluoride source in the solution contributes to forming a stable surface layer on the stainless steel. - Abstract: The anodic behavior of austenitic stainless-steel, SUS304, as a current collector of positive electrode in lithium-ion battery/capacitor has been investigated in organic electrolyte solutions based on a mixed alkyl carbonate solvent with different lithium salts. Stable passivation characteristics were observed for the stainless-steel in the LiPF 6 solution, but pitting corrosion or active dissolution proceeded in the solutions containing other anions, BF 4 - , (CF 3 SO 2 ) 2 N - (TFSA - ) and ClO 4 - . The mass ratios of the dissolved metal species in the solutions of LiTFSA and LiClO 4 were equivalent to that of the alloy composition, which suggests that no preferential dissolution occurs during the anodic polarization in these electrolyte solutions. An HF component formed by decomposition of PF 6 - with the contaminate water will act as an F - source for the formation of a surface fluoride layer, that will contribute to the anodic stability of SUS304 in the LiPF 6 solution. The anodic corrosion in the LiTFSA solution was suppressed in part by mixing the PF 6 salt or adding HF in the electrolyte

  8. In situ fabrication of green reduced graphene-based biocompatible anode for efficient energy recycle.

    Science.gov (United States)

    Cheng, Ying; Mallavarapu, Megharaj; Naidu, Ravi; Chen, Zuliang

    2018-02-01

    Improving the anode configuration to enhance biocompatibility and accelerate electron shuttling is critical for efficient energy recovery in microbial fuel cells (MFCs). In this paper, green reduced graphene nanocomposite was successfully coated using layer-by-layer assembly technique onto carbon brush anode. The modified anode achieved a 3.2-fold higher power density of 33.7 W m -3 at a current density of 69.4 A m -3 with a 75% shorter start period. As revealed in the characterization, the green synthesized nanocomposite film affords larger surface roughness for microbial colonization. Besides, gold nanoparticles, which anchored on graphene sheets, promise the relatively high electroactive sites and facilitate electron transfer from electricigens to the anode. The reduction-oxidation peaks in cyclic voltammograms indicated the mechanism of surface cytochromes facilitated current generation while the electrochemical impedance spectroscopy confirmed the enhanced electron transfer from surface cytochrome to electrode. The green synthesis process has the potential to generate a high performing anode in further applications of MFCs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. High-efficiency, nickel-ceramic composite anode current collector for micro-tubular solid oxide fuel cells

    Science.gov (United States)

    Li, Tao; Wu, Zhentao; Li, K.

    2015-04-01

    High manufacturing cost and low-efficient current collection have been the two major bottlenecks that prevent micro-tubular SOFCs from large-scale application. In this work, a new nickel-based composite anode current collector has been developed for anode-supported MT-SOFC, addressing reduced cost, manufacturability and current collection efficiencies. Triple-layer hollow fibers have been successfully fabricated via a phase inversion-assisted co-extrusion process, during which a thin nickel-based inner layer was uniformly coated throughout the interior anode surface for improved adhesion with superior process economy. 10 wt.% CGO was added into the inner layer to prevent the excessive shrinkage of pure NiO, thus helping to achieve the co-sintering process. The electrochemical performance tests illustrate that samples with the thinnest anodic current collector (15% of the anode thickness) displayed the highest power density (1.07 W cm-2). The impedance analysis and theoretical calculations suggest that inserting the anodic current collector could dramatically reduce the percentage of contact loss down to 6-10 % of the total ohmic loss (compared to 70% as reported in literatures), which proves the high efficiencies of new current collector design. Moreover, the superior manufacturability and process economy suggest this composite current collector suitable for mass-scale production.

  10. Multi-anode wire straw tube tracker

    International Nuclear Information System (INIS)

    Oh, S.H.; Ebenstein, W.L.; Wang, C.W.

    2011-01-01

    We report on a test of a straw tube detector design having several anode (sense) wires inside a straw tube. The anode wires form a circle inside the tube and are read out independently. This design could solve several shortcomings of the traditional single wire straw tube design such as double hit capability and stereo configuration.

  11. Screened anode N/sub 2/ laser

    Energy Technology Data Exchange (ETDEWEB)

    Sabry, M.M.F.

    1985-01-01

    An experimental study of the effect of screening the discharge channel on the output energy is presented. It has been found that a screened anode nitrogen laser generates higher output energy than that of a screened cathode, and also higher than that when both cathode and anode are unshielded at higher pressures.

  12. Interfacial scattering effect on anisotropic magnetoresistance and anomalous Hall effect in Ta/Fe multilayers

    KAUST Repository

    Zhang, Qiang

    2017-12-26

    The effect of interfacial scattering on anisotropic magnetoresistance (AMR) and anomalous Hall effect (AHE) was studied in the (Ta12n/Fe36n)n multilayers, where the numbers give the thickness in nanometer and n is an integer from 1 to 12. The multilayer structure has been confirmed by the XRR spectra and STEM images of cross-sections. The magneto-transport properties were measured by four-point probe method in Hall bar shaped samples in the temperature range of 5 - 300 K. The AMR increases with n, which could be ascribed to the interfacial spin-orbit scattering. At 5 K, the longitudinal resistivity (ρ) increases by 6.4 times and the anomalous Hall resistivity (ρ) increases by 49.4 times from n =1 to n =12, indicative of the interfacial scattering effect. The skew-scattering, side-jump and intrinsic contributions to the AHE were separated successfully. As n increases from 1 to 12, the intrinsic contribution decreases because of the decaying crystallinity or finite size effect and the intrinsic contribution dominated the AHE for all samples. The side jump changes from negative to positive because the interfacial scattering and intralayer scattering in Fe layers both contribute to side jump in the AHE but with opposite sign.

  13. Optimization of interfacial properties of carbon fiber/epoxy composites via a modified polyacrylate emulsion sizing

    International Nuclear Information System (INIS)

    Yuan, Xiaomin; Zhu, Bo; Cai, Xun; Liu, Jianjun; Qiao, Kun; Yu, Junwei

    2017-01-01

    Highlights: • An improved interfacial adhesion in CF/EP composite by FSMPA sizing was put forward. • Sized CFs featured promotions of wettability, chemical activity and mechanical property. • A sizing mechanism containing chemical interaction and physical absorption was proposed. - Abstract: The adhesion behavior of epoxy resin to carbon fibers has always been a challenge, on account of the inertness of carbon fibers and the lack of reactive functional groups. In this work, a modified polyacrylate sizing agent was prepared to modify the interface between the carbon fiber and the epoxy matrix. The surface characteristics of carbon fibers were investigated to determine chemical composition, morphology, wettability, interfacial phase analysis and interfacial adhesion. Sized carbon fibers featured improved wettability and a slightly decreased surface roughness due to the coverage of a smooth sizing layer, compared with the unsized ones. Moreover, the content of surface activated carbon atoms increased from 12.65% to 24.70% and the interlaminar shear strength (ILSS) of carbon fiber/epoxy composites raised by 14.2%, indicating a significant improvement of chemical activity and mechanical property. SEM images of the fractured surface of composites further proved that a gradient interfacial structure with increased thicknesses was formed due to the transition role of the sizing. Based on these results, a sizing mechanism consisting of chemical interaction bonding and physical force absorption was proposed, which provides an efficient and feasible method to solve the poor adhesion between carbon fiber and epoxy matrix.

  14. Optimization of interfacial properties of carbon fiber/epoxy composites via a modified polyacrylate emulsion sizing

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xiaomin [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Zhu, Bo, E-mail: zhubo@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Cai, Xun, E-mail: caixunzh@sdu.edu.cn [School of Computer Science and Technology, Shandong University, Jinan 250101 (China); Liu, Jianjun [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Qiao, Kun [Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Yu, Junwei [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)

    2017-04-15

    Highlights: • An improved interfacial adhesion in CF/EP composite by FSMPA sizing was put forward. • Sized CFs featured promotions of wettability, chemical activity and mechanical property. • A sizing mechanism containing chemical interaction and physical absorption was proposed. - Abstract: The adhesion behavior of epoxy resin to carbon fibers has always been a challenge, on account of the inertness of carbon fibers and the lack of reactive functional groups. In this work, a modified polyacrylate sizing agent was prepared to modify the interface between the carbon fiber and the epoxy matrix. The surface characteristics of carbon fibers were investigated to determine chemical composition, morphology, wettability, interfacial phase analysis and interfacial adhesion. Sized carbon fibers featured improved wettability and a slightly decreased surface roughness due to the coverage of a smooth sizing layer, compared with the unsized ones. Moreover, the content of surface activated carbon atoms increased from 12.65% to 24.70% and the interlaminar shear strength (ILSS) of carbon fiber/epoxy composites raised by 14.2%, indicating a significant improvement of chemical activity and mechanical property. SEM images of the fractured surface of composites further proved that a gradient interfacial structure with increased thicknesses was formed due to the transition role of the sizing. Based on these results, a sizing mechanism consisting of chemical interaction bonding and physical force absorption was proposed, which provides an efficient and feasible method to solve the poor adhesion between carbon fiber and epoxy matrix.

  15. Tunable anomalous hall effect induced by interfacial catalyst in perpendicular multilayers

    Science.gov (United States)

    Zhang, J. Y.; Peng, W. L.; Sun, Q. Y.; Liu, Y. W.; Dong, B. W.; Zheng, X. Q.; Yu, G. H.; Wang, C.; Zhao, Y. C.; Wang, S. G.

    2018-04-01

    The interfacial structures, playing a critical role on the transport properties and the perpendicular magnetic anisotropy in thin films and multilayers, can be modified by inserting an ultrathin functional layer at the various interfaces. The anomalous Hall effect (AHE) in the multilayers with core structure of Ta/CoFeB/X/MgO/Ta (X: Hf or Pt) is tuned by interfacial catalytic engineering. The saturation anomalous Hall resistance (RAH) is increased by 16.5% with 0.1 nm Hf insertion compared with the reference sample without insertion. However, the RAH value is decreased by 9.0% with 0.1 nm Pt insertion. The interfacial states were characterized by the X-ray photoelectron spectroscopy (XPS). The XPS results indicate that a strong bonding between Hf and O for Hf insertion, but no bonding between Pt and O for Pt insertion. The bonding between metal and oxygen leads to various oxygen migration behavior at the interfaces. Therefore, the opposite behavior about the RAH originates from the different oxygen behavior due to various interfacial insertion. This work provides a new approach to manipulate spin transport property for the potential applications.

  16. Tailoring the Interfacial Chemical Interaction for High-Efficiency Perovskite Solar Cells.

    Science.gov (United States)

    Zuo, Lijian; Chen, Qi; De Marco, Nicholas; Hsieh, Yao-Tsung; Chen, Huajun; Sun, Pengyu; Chang, Sheng-Yung; Zhao, Hongxiang; Dong, Shiqi; Yang, Yang

    2017-01-11

    The ionic nature of perovskite photovoltaic materials makes it easy to form various chemical interactions with different functional groups. Here, we demonstrate that interfacial chemical interactions are a critical factor in determining the optoelectronic properties of perovskite solar cells. By depositing different self-assembled monolayers (SAMs), we introduce different functional groups onto the SnO 2 surface to form various chemical interactions with the perovskite layer. It is observed that the perovskite solar cell device performance shows an opposite trend to that of the energy level alignment theory, which shows that chemical interactions are the predominant factor governing the interfacial optoelectronic properties. Further analysis verifies that proper interfacial interactions can significantly reduce trap state density and facilitate the interfacial charge transfer. Through use of the 4-pyridinecarboxylic acid SAM, the resulting perovskite solar cell exhibits striking improvements to the reach the highest efficiency of 18.8%, which constitutes an ∼10% enhancement compared to those without SAMs. Our work highlights the importance of chemical interactions at perovskite/electrode interfaces and paves the way for further optimizing performances of perovskite solar cells.

  17. Mixed phase Pt-Ru catalyst for direct methanol fuel cell anode by flame aerosol synthesis

    DEFF Research Database (Denmark)

    Chakraborty, Debasish; Bischoff, H.; Chorkendorff, Ib

    2005-01-01

    A spray-flame aerosol catalyzation technique was studied for producing Pt-Ru anode electrodes for the direct methanol fuel cell. Catalysts were produced as aerosol nanoparticles in a spray-flame reactor and deposited directly as a thin layer on the gas diffusion layer. The as-prepared catalyst......Ru1/Vulcan carbon. The kinetics of methanol oxidation on the mixed phase catalyst was also explored by electrochemical impedance spectroscopy. (c) 2005 The Electrochemical Society....

  18. Ultrasound-assisted anodization of aluminum in oxalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Rong; Jiang Kaiming [Department of Physics, Shanghai Maritime University, 1550 Pudong Avenue, Shanghai 200135 (China); Zhu Yun [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China); Qi Haiyang [Department of Physics, Shanghai Maritime University, 1550 Pudong Avenue, Shanghai 200135 (China); Ding Guqiao, E-mail: gqding@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China)

    2011-10-15

    Porous anodic alumina is an important nanoscale template for fabrication of various nanostructures. We report a new ultrasound-assisted anodization process in oxalic acid. Under the continuous irradiation of ultrasound, the one-step-anodized sample has a smooth and clean surface, and two-step-anodization brings ordered porous anodic alumina with higher growth rate of 52 {mu}m/h. The ultrasound applied during the anodization can clean the surface and enhance the nanopore growth since it can accelerate the oxide dissolving on the electrolyte/oxide interface. The ultrasound-assisted anodization may be utilized for other anodizations.

  19. Effects of Nafion loading in anode catalyst inks on the miniature direct formic acid fuel cell

    Science.gov (United States)

    Morgan, Robert D.; Haan, John L.; Masel, Richard I.

    Nafion, within the anode and cathode catalyst layers, plays a large role in the performance of fuel cells, especially during the operation of the direct formic acid fuel cell (DFAFC). Nafion affects the proton transfer in the catalyst layers of the fuel cell, and studies presented here show the effects of three different Nafion loadings, 10 wt.%, 30 wt.% and 50 wt.%. Short term voltage-current measurements using the three different loadings show that 30 wt.% Nafion loading in the anode shows the best performance in the miniature, passive DFAFC. Nafion also serves as a binder to help hold the catalyst nanoparticles onto the proton exchange membrane (PEM). The DFAFC anode temporarily needs to be regenerated by raising the anode potential to around 0.8 V vs. RHE to oxidize CO bound to the surface, but the Pourbaix diagram predicts that Pd will corrode at these potentials. We found that an anode loading of 30 wt.% Nafion showed the best stability, of the three Nafion loadings chosen, for reducing the amount of loss of electrochemically active area due to high regeneration potentials. Only 58% of the area was lost after 600 potential cycles in formic acid compared to 96 and 99% for 10 wt.% and 50 wt.% loadings, respectively. Lastly we present cyclic voltammetry data that suggest that the Nafion adds to the production of CO during oxidation of formic acid for 12 h at 0.3 V vs. RHE. The resulting data showed that an increase in CO coverage was observed with increasing Nafion content in the anode catalyst layer.

  20. Organic Light-Emitting Diodes with Highly Conductive Polymer Electrodes as Anode and Their Stress Tolerance

    Science.gov (United States)

    Kajii, Hirotake; Ohmori, Yutaka; Maki, Hideki; Sekimoto, Yasuhiro; Shigeno, Yasuhiro; Takehara, Naoya; Nakagawa, Hiroshi

    2008-01-01

    The fabrication and characteristics of organic light-emitting diodes (OLEDs) with highly conductive polymer electrodes as an anode and the stress tolerance of the devices fabricated on polymeric substrates were studied. By inserting a wet-processed organic layer between a polymer electrode and a dry-processed hole-transport layer, the surface emission pattern from an OLED was markedly improved. For the device with a wet-processed organic layer (methoxy-substituted 1,3,5-tris[4-(diphenylamino)phenyl]benzene), the uniform surface emission resulted from the uniform applied electric field in the emissive layer and the improvement in interface adherence. The OLED with a wet-processed layer as a hole injection layer showed a maximum luminance and a maximum efficiency of 10,000 cd/m2 and 3.5 cd/A, respectively. For the device fabricated on a polymeric substrate, the impact testing of the OLEDs with highly conductive polymer electrodes [poly(ethylenedioxythiophene):poly(styrene sulfonic acid)] as an anode revealed that the emission lasted for more than several ten thousand steps. A highly conductive polymer electrode had a sufficient tolerance to mechanical stress, as determined by comparing devices with indium tin oxide and a highly conductive polymer as anodes.

  1. Mixed resin and carbon fibres surface treatment for preparation of carbon fibres composites with good interfacial bonding strength

    International Nuclear Information System (INIS)

    He, Hongwei; Wang, Jianlong; Li, Kaixi; Wang, Jian; Gu, Jianyu

    2010-01-01

    The objective of this work is to improve the interlaminar shear strength of composites by mixing epoxy resin and modifying carbon fibres. The effect of mixed resin matrix's structure on carbon fibres composites was studied. Anodic oxidation treatment was used to modify the surface of carbon fibres. The tensile strength of multifilament and interlaminar shear strength of composites were investigated respectively. The morphologies of untreated and treated carbon fibres were characterized by scanning electron microscope and X-ray photoelectron spectroscopy. Surface analysis indicates that the amount of carbon fibres chemisorbed oxygen-containing groups, active carbon atom, the surface roughness, and wetting ability increases after treatment. The tensile strength of carbon fibres decreased little after treatment by anodic oxidation. The results show that the treated carbon fibres composites could possess excellent interfacial properties with mixed resins, and interlaminar shear strength of the composites is up to 85.41 MPa. The mechanism of mixed resins and treated carbon fibres to improve the interfacial property of composites is obtained.

  2. Interfacial Exchange Coupling Induced Anomalous Anisotropic Magnetoresistance in Epitaxial γ′-Fe 4 N/CoN Bilayers

    KAUST Repository

    Li, Zirun

    2015-02-02

    Anisotropic magnetoresistance (AMR) of the facing-target reactively sputtered epitaxial γ′-Fe4N/CoN bilayers is investigated. The phase shift and rectangular-like AMR appears at low temperatures, which can be ascribed to the interfacial exchange coupling. The phase shift comes from the exchange bias (EB) that makes the magnetization lag behind a small field. When the γ′-Fe4N thickness increases, the rectangular-like AMR appears. The rectangular-like AMR should be from the combined contributions including the EB-induced unidirectional anisotropy, intrinsic AMR of γ′-Fe4N layer and interfacial spin scattering.

  3. The roles of bulk and interfacial molecular orientations in determining the performance of organic bilayer solar cells

    KAUST Repository

    Ngongang Ndjawa, Guy O.

    2014-09-09

    Molecular orientation plays a significant role in determining the performance of small molecule solar cells. Key photovoltaic processes in these cells are strongly dependent on how the molecules are oriented in the active layer. We isolate contributions arising from the bulk molecular orientations vs. those from interfacial orientations in ZnPc/C60 bilayer systems and we probe these contributions by comparing device pairs in which only the bulk or the interface differ. By controlling the orientation in the bulk the current can be strongly modulated, whereas controlling the interfacial molecular orientation and degree of intermixing mediate the voltage.

  4. Chemically tuned anode with tailored aqueous hydrocarbon binder for direct methanol fuel cells.

    Science.gov (United States)

    Lee, Chang Hyun; Lee, So Young; Lee, Young Moo; McGrath, James E

    2009-07-21

    An anode for direct methanol fuel cells was chemically tuned by tailoring an aqueous hydrocarbon catalyst (SPI-BT) binder instead of using a conventional perfluorinated sulfonic acid ionomer (PFSI). SPI-BT designed in triethylamine salt form showed lower proton conductivity than PFSI, but it was stable in the catalyst ink forming the aqueous colloids. The aqueous colloidal particle size of SPI-BT was much smaller than that of PFSI. The small SPI-BT colloidal particles contributed to forming small catalyst agglomerates and simultaneously reducing their pore volume. Consequently, the high filling level of binders in the pores, where Pt-Ru catalysts are mainly located on the wall and physically interconnected, resulted in increased electrochemical active surface area of the anode, leading to high catalyst utilization. In addition, the chemical affinity between the SPI-BT binder and the membrane material derived from their similar chemical structure induced a stable interface on the membrane-electrode assembly (MEA) and showed low electric resistance. Upon adding SPI-BT, the synergistic effect of high catalyst utilization, improved mass transfer behavior to Pt-Ru catalyst, and low interfacial resistance of MEA became greater than the influence of reduced proton conductivity in the electrochemical performance of single cells. The electrochemical performance of MEAs with SPI-BT anode was enhanced to almost the same degree or somewhat higher than that with PFSI at 90 degrees C.

  5. Discharge modes at the anode of a vacuum arc

    International Nuclear Information System (INIS)

    Miller, H.C.

    1982-01-01

    The two most common anode modes in a vacuum arc are the low current mode, where the anode is basically inert; and the high current mode with a fully developed anode spot. This anode spot is very bright, has a temperature near the boiling point of the anode material, and is a copious source of vapor and energetic ions. However, other anode modes can exist. A low current vacuum arc with electrodes of readily sputterable material will emit a flux of sputtered atoms from the anode. An intermediate currents an anode footpoint can form. This footpoint is luminous, but much cooler than a true anode spot. Finally, a high current mode can exist where several small anode spots are present instead of a single large anode spot

  6. Frontiers of interfacial water research :workshop report.

    Energy Technology Data Exchange (ETDEWEB)

    Cygan, Randall Timothy; Greathouse, Jeffery A.

    2005-10-01

    Water is the critical natural resource of the new century. Significant improvements in traditional water treatment processes require novel approaches based on a fundamental understanding of nanoscale and atomic interactions at interfaces between aqueous solution and materials. To better understand these critical issues and to promote an open dialog among leading international experts in water-related specialties, Sandia National Laboratories sponsored a workshop on April 24-26, 2005 in Santa Fe, New Mexico. The ''Frontiers of Interfacial Water Research Workshop'' provided attendees with a critical review of water technologies and emphasized the new advances in surface and interfacial microscopy, spectroscopy, diffraction, and computer simulation needed for the development of new materials for water treatment.

  7. Mesoscale Interfacial Dynamics in Magnetoelectric Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Shashank, Priya [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2009-12-14

    Biphasic composites are the key towards achieving enhanced magnetoelectric response. In order understand the control behavior of the composites and resultant symmetry of the multifunctional product tensors, we need to synthesized model material systems with the following features (i) interface formation through either deposition control or natural decomposition; (ii) a very high interphase-interfacial area, to maximize the ME coupling; and (iii) an equilibrium phase distribution and morphology, resulting in preferred crystallographic orientation relations between phases across the interphase-interfacial boundaries. This thought process guided the experimental evolution in this program. We initiated the research with the co-fired composites approach and then moved on to the thin film laminates deposited through the rf-magnetron sputtering and pulsed laser deposition process

  8. Mapping interfacial excess in atom probe data

    International Nuclear Information System (INIS)

    Felfer, Peter; Scherrer, Barbara; Demeulemeester, Jelle; Vandervorst, Wilfried; Cairney, Julie M.

    2015-01-01

    Using modern wide-angle atom probes, it is possible to acquire atomic scale 3D data containing 1000 s of nm 2 of interfaces. It is therefore possible to probe the distribution of segregated species across these interfaces. Here, we present techniques that allow the production of models for interfacial excess (IE) mapping and discuss the underlying considerations and sampling statistics. We also show, how the same principles can be used to achieve thickness mapping of thin films. We demonstrate the effectiveness on example applications, including the analysis of segregation to a phase boundary in stainless steel, segregation to a metal–ceramic interface and the assessment of thickness variations of the gate oxide in a fin-FET. - Highlights: • Using computational geometry, interfacial excess can be mapped for various features in APT. • Suitable analysis models can be created by combining manual modelling and mesh generation algorithms. • Thin film thickness can be mapped with high accuracy using this technique.

  9. Interfacial friction damping properties in magnetorheological elastomers

    International Nuclear Information System (INIS)

    Fan, Yanceng; Gong, Xinglong; Xuan, Shouhu; Zhang, Wei; Zheng, Jian; Jiang, Wanquan

    2011-01-01

    In this study, the interfacial friction damping properties of magnetorheological elastomers (MREs) were investigated experimentally. Two kinds of carbonyl iron particles, with sizes of 1.1 µm and 9.0 µm, were used to fabricate four MRE samples, whose particle weight fractions were 10%, 30%, 60% and 80%, respectively. Their microstructures were observed using an environmental scanning electron microscope (SEM). The dynamic performances of these samples, including shear storage modulus and loss factor were measured with a modified dynamic mechanical analyzer (DMA). The experimental results indicate that MRE samples fabricated with 1.1 µm carbonyl iron particles have obvious particle agglomeration, which results in the fluctuation of loss factor compared with other MRE samples fabricated with large particle sizes. The analysis implies that the interfacial friction damping mainly comes from the frictional sliding at the interfaces between the free rubber and the particles

  10. Interfacial Fluid Mechanics A Mathematical Modeling Approach

    CERN Document Server

    Ajaev, Vladimir S

    2012-01-01

    Interfacial Fluid Mechanics: A Mathematical Modeling Approach provides an introduction to mathematical models of viscous flow used in rapidly developing fields of microfluidics and microscale heat transfer. The basic physical effects are first introduced in the context of simple configurations and their relative importance in typical microscale applications is discussed. Then,several configurations of importance to microfluidics, most notably thin films/droplets on substrates and confined bubbles, are discussed in detail.  Topics from current research on electrokinetic phenomena, liquid flow near structured solid surfaces, evaporation/condensation, and surfactant phenomena are discussed in the later chapters. This book also:  Discusses mathematical models in the context of actual applications such as electrowetting Includes unique material on fluid flow near structured surfaces and phase change phenomena Shows readers how to solve modeling problems related to microscale multiphase flows Interfacial Fluid Me...

  11. High efficient and continuous surface modification of carbon fibers with improved tensile strength and interfacial adhesion

    Science.gov (United States)

    Sun, Jingfeng; Zhao, Feng; Yao, Yue; Jin, Zhen; Liu, Xu; Huang, Yudong

    2017-08-01

    Most of the surface modification technologies for carbon fibers, no matter in laboratory scale or for commercial manufacture, are accompanied by a simultaneous decrease in tensile strength. In this paper, a feasible and high efficient strategy for carbon fiber treatment which could obviously improve both tensile strength and interfacial adhesion was proposed. Continuously moving carbon fibers were treated with atmospheric helium plasma for 1 min, followed by a 5 min pyrolytic carbon deposition using ethanol as precursor at 800 °C. The effects of the new approach were characterized by SEM, AFM, nanoindentation, XPS, Raman, wettability analysis, single fiber tensile strength testing and single fiber pull-out testing. After modification, pyrolytic carbon coating was deposited on the fiber surface uniformly, and the roughness and surface energy increased significantly. The single fiber tensile testing results indicate that the resulting fiber strength increased 15.7%, rising from 3.13 to 3.62 GPa. Meanwhile, the interfacial shear strength of its epoxy composites increased from 65.3 to 83.5 MPa. The comparative studies of carbon fibers modified with commercial anodic oxidation and sizing were also carried out. The results demonstrate that the new method can be utilized in the carbon fiber manufacture process and is more efficient than the traditional approaches.

  12. The comparison of possibilities at using of different electrolytes in the process of anodizing aluminum

    Directory of Open Access Journals (Sweden)

    M. Gombar

    2014-01-01

    Full Text Available The contribution researches and solves the suitability of utilize of electrolyte, consisting of the oxalic acid, boric acid, sodium chloride and aluminium cations in the process of anodizing aluminium in operating conditions of electrolyte T = 22 °C, t = time of oxidation and the size of at least 210 an applied voltage U = 12 V. The appropriate use of the electrolyte is judged by the thickness of the anodic aluminium oxide layer (AAO formed on the basis of the monitoring and the resulting quality of the sample surface.

  13. The initial stages of atomic force microscope based local anodic oxidation of silicon

    Science.gov (United States)

    Kozhukhov, A. S.; Scheglov, D. V.; Fedina, L. I.; Latyshev, A. V.

    2018-02-01

    In this paper, the initial stages of local anodic oxidation (LAO) process initiated by AFM probe are studied on the wide (˜100μm) terraces of the atomic-smooth Si (111) surface when creating dense array of local oxidation points. The dependence of LAO points height on the value of voltage initiating the oxidation is found to have a pronounced step-like feature with a characteristic period of 0.7 ± 0.1 nm. The presented analysis shows for the first time the realization of the step-layer mechanism of anodic oxide growth on the Si (111) surface.

  14. Facile Interfacial Electron Transfer of Hemoglobin

    Directory of Open Access Journals (Sweden)

    Chunhai Fan

    2005-12-01

    Full Text Available Abstract: We herein describe a method of depositing hemoglobin (Hb and sulfonated polyaniline (SPAN on GC electrodes that facilitate interfacial protein electron transfer. Well-defined, reproducible, chemically reversible peaks of Hb and SPAN can be obtained in our experiments. We also observed enhanced peroxidase activity of Hb in SPAN films. These results clearly showed that SPAN worked as molecular wires and effectively exchanged electrons between Hb and electrodes.Mediated by Conjugated Polymers

  15. Interfacially driven transport in narrow channels

    OpenAIRE

    Bacchin, Patrice

    2018-01-01

    When colloids flow in a narrow channel, the transport efficiency is controlled by the non-equilibrium interplay between colloid-wall interactions and hydrodynamics. In this paper, a general, unifying description of colloidal dispersion flow in a confined system is proposed. A momentum and mass balance founded framework implementing the colloid-interface interactions is introduced. The framework allows us to depict how interfacial forces drive the particles and the liquid flows. The interfacia...

  16. Improved interfacial adhesion in carbon fiber/polyether sulfone composites through an organic solvent-free polyamic acid sizing

    International Nuclear Information System (INIS)

    Yuan, Haojie; Zhang, Shouchun; Lu, Chunxiang; He, Shuqing; An, Feng

    2013-01-01

    An organic solvent-free polyamic acid (PAA) nanoemulsion was obtained by direct ionization of the solid PAA in deionized water, with the average particle size of 261 nm and Zeta potential of −55.1 mV, and used as a carbon fiber sizing to improve the interfacial adhesion between the carbon fiber and polyether sulfone (PES). The surface characteristics of PAA coated carbon fibers were investigated using Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and dynamic contact angle measurement. The results demonstrated that a continuous and uniform PAA sizing layer was formed on the surface of carbon fibers, and the surface energy of carbon fibers increased from 42.91 to 54.55 mN/m after sizing treatment. The single fiber pull-out testing was also performed, which showed the increased interfacial shear strength (IFSS) of carbon fiber/PES composites from 33.6 to 49.7 MPa by 47.9%. The major reasons for the improved interfacial adhesion were the increased van der Waals forces between the PES matrix and sizing layer as well as the chemical bonding between the sizing layer and carbon fiber surface. Furthermore, the PAA sizing also presented a positive effect on the interfacial adhesion of carbon fiber/PES composites under hydrothermal condition.

  17. Perovskites synthesis to SOFC anodes

    International Nuclear Information System (INIS)

    Wendler, L.P.; Chinelatto, A.L.; Chinelatto, A.S.A.; Ramos, K.

    2012-01-01

    Perovskite structure materials containing lanthanum have been widely applied as solid oxide fuel cells (SOFCs) electrodes, due to its electrical properties. Was investigated the obtain of the perovskite structure LaCr 0,5 Ni 0,5 O 3 , by Pechini method, and its suitability as SOFC anode. The choice of this composition was based on the stability provided by chromium and the catalytic properties of nickel. After preparing the resins, the samples were calcined at 300 deg C, 600 deg C, 700 deg C and 850 deg C. The resulting powders were characterized by X-ray diffraction to determine the existing phases. Furthermore, were performed other analysis, like X-ray fluorescence, He pycnometry, specific surface area by BET isotherm and scanning electronic microscopy (author)

  18. Influence of Zn additions on the interfacial reaction and microstructure of Sn37Pb/Cu solder joints

    Science.gov (United States)

    Qiu, Yu; Hu, Xiaowu; Li, Yulong; Jiang, Xiongxin

    2017-10-01

    The effects of Zn (5 and 10 wt%) additions into Sn37Pb solder and isothermal solid state aging on the interfacial reactions between Sn37Pb- xZn solders and Cu substrates were investigated in this study. It was found that the addition of Zn changed the types and morphologies of interfacial IMC layers during reflowing and thereafter under aging condition. During reflowing, the planar-type Cu5Zn8 compound was the interfacial IMC for Sn37Pb- xZn (5 and 10 wt%) solder, while the scallop-type Cu6Sn5 was the interfacial IMC for Sn37Pb solder. After aging, the final interfacial structure for Sn37Pb-5Zn solder was solder/Cu5Zn8/Cu6(Sn,Zn)5/Cu, while solder/Cu6Sn5/Cu3Sn/Cu for Sn37Pb solder and solder/Cu5Zn8/Cu for Sn37Pb-10Zn solder, respectively. The Kirkendall voids disappeared with Zn addition into Sn37Pb solder. For the Sn37Pb-5Zn/Cu solder joint, the thickness of Cu6(Sn,Zn)5 layer increased, while the thickness of Cu5Zn8 layer decreased with aging time extended to 360 h due to the decomposition of the Cu5Zn8 IMC layer by diffusing Cu and Zn atoms into nether IMC layer, combining Sn atoms diffused from solder matrix to form Cu6(Sn,Zn)5 IMCs. Furthermore, the growth of Cu6Sn5 and Cu3Sn layers for Sn37Pb/Cu solder joint and the total IMC layer at the interface of Sn37Pb- xZn ( x = 0, 5, and 10 wt%) solder with Cu substrate followed the diffusion control mechanism. Compared to the Sn37Pb-5Zn/Cu solder joint, higher Zn concentration depressed the growth of Cu5Zn8 layer for Sn37Pb-10Zn solder. In the end, refining effect on IMC grains was found by the addition of Zn into Sn37Pb solder and the 10 wt% Zn-doping significantly refined the interfacial IMC grains.

  19. Arresting dissolution by interfacial rheology design

    Science.gov (United States)

    Beltramo, Peter J.; Gupta, Manish; Alicke, Alexandra; Liascukiene, Irma; Gunes, Deniz Z.; Baroud, Charles N.

    2017-01-01

    A strategy to halt dissolution of particle-coated air bubbles in water based on interfacial rheology design is presented. Whereas previously a dense monolayer was believed to be required for such an “armored bubble” to resist dissolution, in fact engineering a 2D yield stress interface suffices to achieve such performance at submonolayer particle coverages. We use a suite of interfacial rheology techniques to characterize spherical and ellipsoidal particles at an air–water interface as a function of surface coverage. Bubbles with varying particle coverages are made and their resistance to dissolution evaluated using a microfluidic technique. Whereas a bare bubble only has a single pressure at which a given radius is stable, we find a range of pressures over which bubble dissolution is arrested for armored bubbles. The link between interfacial rheology and macroscopic dissolution of ∼ 100 μm bubbles coated with ∼ 1 μm particles is presented and discussed. The generic design rationale is confirmed by using nonspherical particles, which develop significant yield stress at even lower surface coverages. Hence, it can be applied to successfully inhibit Ostwald ripening in a multitude of foam and emulsion applications. PMID:28893993

  20. Interfacial gauge methods for incompressible fluid dynamics

    Science.gov (United States)

    Saye, Robert

    2016-01-01

    Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of “gauge freedom” to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work, high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena. PMID:27386567